xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 650094e1)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53 
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56 
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65 
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71 
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77 	struct task	task;
78 	void		*data1;
79 	uintptr_t	data2;
80 };
81 
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87 	SLIST_ENTRY(async_node)	links;
88 	u_int32_t	event_enable;	/* Async Event enables */
89 	void		(*callback)(void *arg, u_int32_t code,
90 				    struct cam_path *path, void *args);
91 	void		*callback_arg;
92 };
93 
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96 
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104 
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111 	cam_pinfo pinfo;
112 	struct	  cam_ed *device;
113 };
114 
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121 	TAILQ_ENTRY(cam_ed) links;
122 	struct	cam_ed_qinfo alloc_ccb_entry;
123 	struct	cam_ed_qinfo send_ccb_entry;
124 	struct	cam_et	 *target;
125 	struct	cam_sim  *sim;
126 	lun_id_t	 lun_id;
127 	struct	camq drvq;		/*
128 					 * Queue of type drivers wanting to do
129 					 * work on this device.
130 					 */
131 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
132 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
133 	struct	periph_list periphs;	/* All attached devices */
134 	u_int	generation;		/* Generation number */
135 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
136 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
137 					/* Storage for the inquiry data */
138 	cam_proto	 protocol;
139 	u_int		 protocol_version;
140 	cam_xport	 transport;
141 	u_int		 transport_version;
142 	struct		 scsi_inquiry_data inq_data;
143 	u_int8_t	 inq_flags;	/*
144 					 * Current settings for inquiry flags.
145 					 * This allows us to override settings
146 					 * like disconnection and tagged
147 					 * queuing for a device.
148 					 */
149 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
150 	u_int8_t	 serial_num_len;
151 	u_int8_t	*serial_num;
152 	u_int32_t	 qfrozen_cnt;
153 	u_int32_t	 flags;
154 #define CAM_DEV_UNCONFIGURED	 	0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
156 #define CAM_DEV_REL_ON_COMPLETE		0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
159 #define CAM_DEV_TAG_AFTER_COUNT		0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
161 #define	CAM_DEV_IN_DV			0x80
162 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
163 	u_int32_t	 tag_delay_count;
164 #define	CAM_TAG_DELAY_COUNT		5
165 	u_int32_t	 tag_saved_openings;
166 	u_int32_t	 refcount;
167 	struct callout	 callout;
168 };
169 
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177 	TAILQ_HEAD(, cam_ed) ed_entries;
178 	TAILQ_ENTRY(cam_et) links;
179 	struct	cam_eb	*bus;
180 	target_id_t	target_id;
181 	u_int32_t	refcount;
182 	u_int		generation;
183 	struct		timeval last_reset;	/* uptime of last reset */
184 };
185 
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192 	TAILQ_HEAD(, cam_et) et_entries;
193 	TAILQ_ENTRY(cam_eb)  links;
194 	path_id_t	     path_id;
195 	struct cam_sim	     *sim;
196 	struct timeval	     last_reset;	/* uptime of last reset */
197 	u_int32_t	     flags;
198 #define	CAM_EB_RUNQ_SCHEDULED	0x01
199 	u_int32_t	     refcount;
200 	u_int		     generation;
201 	int		     counted_to_config;	/* busses_to_config */
202 };
203 
204 struct cam_path {
205 	struct cam_periph *periph;
206 	struct cam_eb	  *bus;
207 	struct cam_et	  *target;
208 	struct cam_ed	  *device;
209 };
210 
211 struct xpt_quirk_entry {
212 	struct scsi_inquiry_pattern inq_pat;
213 	u_int8_t quirks;
214 #define	CAM_QUIRK_NOLUNS	0x01
215 #define	CAM_QUIRK_NOSERIAL	0x02
216 #define	CAM_QUIRK_HILUNS	0x04
217 #define	CAM_QUIRK_NOHILUNS	0x08
218 	u_int mintags;
219 	u_int maxtags;
220 };
221 
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228 
229 #define	CAM_SCSI2_MAXLUN	8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define	CAN_SRCH_HI_SPARSE(dv)				\
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241 
242 #define	CAN_SRCH_HI_DENSE(dv)				\
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246 
247 typedef enum {
248 	XPT_FLAG_OPEN		= 0x01
249 } xpt_flags;
250 
251 struct xpt_softc {
252 	xpt_flags		flags;
253 	u_int32_t		xpt_generation;
254 
255 	/* number of high powered commands that can go through right now */
256 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
257 	int			num_highpower;
258 
259 	/* queue for handling async rescan requests. */
260 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
261 	int			ccb_scanq_running;
262 
263 	/* Registered busses */
264 	TAILQ_HEAD(,cam_eb)	xpt_busses;
265 	u_int			bus_generation;
266 
267 	struct intr_config_hook	*xpt_config_hook;
268 
269 	struct lock		xpt_topo_lock;
270 	struct lock		xpt_lock;
271 };
272 
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279 
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282 	{
283 		/* Reports QUEUE FULL for temporary resource shortages */
284 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
286 	},
287 	{
288 		/* Reports QUEUE FULL for temporary resource shortages */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
291 	},
292 	{
293 		/* Reports QUEUE FULL for temporary resource shortages */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
296 	},
297 	{
298 		/* Broken tagged queuing drive */
299 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
301 	},
302 	{
303 		/* Broken tagged queuing drive */
304 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
306 	},
307 	{
308 		/* Broken tagged queuing drive */
309 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
311 	},
312 	{
313 		/*
314 		 * Unfortunately, the Quantum Atlas III has the same
315 		 * problem as the Atlas II drives above.
316 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
317 		 *
318 		 * For future reference, the drive with the problem was:
319 		 * QUANTUM QM39100TD-SW N1B0
320 		 *
321 		 * It's possible that Quantum will fix the problem in later
322 		 * firmware revisions.  If that happens, the quirk entry
323 		 * will need to be made specific to the firmware revisions
324 		 * with the problem.
325 		 *
326 		 */
327 		/* Reports QUEUE FULL for temporary resource shortages */
328 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
330 	},
331 	{
332 		/*
333 		 * 18 Gig Atlas III, same problem as the 9G version.
334 		 * Reported by: Andre Albsmeier
335 		 *		<andre.albsmeier@mchp.siemens.de>
336 		 *
337 		 * For future reference, the drive with the problem was:
338 		 * QUANTUM QM318000TD-S N491
339 		 */
340 		/* Reports QUEUE FULL for temporary resource shortages */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
343 	},
344 	{
345 		/*
346 		 * Broken tagged queuing drive
347 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 		 *         and: Martin Renters <martin@tdc.on.ca>
349 		 */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 		/*
354 		 * The Seagate Medalist Pro drives have very poor write
355 		 * performance with anything more than 2 tags.
356 		 *
357 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358 		 * Drive:  <SEAGATE ST36530N 1444>
359 		 *
360 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361 		 * Drive:  <SEAGATE ST34520W 1281>
362 		 *
363 		 * No one has actually reported that the 9G version
364 		 * (ST39140*) of the Medalist Pro has the same problem, but
365 		 * we're assuming that it does because the 4G and 6.5G
366 		 * versions of the drive are broken.
367 		 */
368 	{
369 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
371 	},
372 	{
373 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
375 	},
376 	{
377 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
379 	},
380 	{
381 		/*
382 		 * Slow when tagged queueing is enabled.  Write performance
383 		 * steadily drops off with more and more concurrent
384 		 * transactions.  Best sequential write performance with
385 		 * tagged queueing turned off and write caching turned on.
386 		 *
387 		 * PR:  kern/10398
388 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
390 		 *
391 		 * The drive with the problem had the "S65A" firmware
392 		 * revision, and has also been reported (by Stephen J.
393 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
394 		 * firmware revision.
395 		 *
396 		 * Although no one has reported problems with the 2 gig
397 		 * version of the DCAS drive, the assumption is that it
398 		 * has the same problems as the 4 gig version.  Therefore
399 		 * this quirk entries disables tagged queueing for all
400 		 * DCAS drives.
401 		 */
402 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* Broken tagged queuing drive */
407 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
409 	},
410 	{
411 		/* Broken tagged queuing drive */
412 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
414 	},
415 	{
416 		/* This does not support other than LUN 0 */
417 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419 	},
420 	{
421 		/*
422 		 * Broken tagged queuing drive.
423 		 * Submitted by:
424 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425 		 * in PR kern/9535
426 		 */
427 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
429 	},
430         {
431 		/*
432 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
433 		 * 8MB/sec.)
434 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 		 * Best performance with these drives is achieved with
436 		 * tagged queueing turned off, and write caching turned on.
437 		 */
438 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442 		/*
443 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
444 		 * 8MB/sec.)
445 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 		 * Best performance with these drives is achieved with
447 		 * tagged queueing turned off, and write caching turned on.
448 		 */
449 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452 	{
453 		/*
454 		 * Doesn't handle queue full condition correctly,
455 		 * so we need to limit maxtags to what the device
456 		 * can handle instead of determining this automatically.
457 		 */
458 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
460 	},
461 	{
462 		/* Really only one LUN */
463 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465 	},
466 	{
467 		/* I can't believe we need a quirk for DPT volumes. */
468 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469 		CAM_QUIRK_NOLUNS,
470 		/*mintags*/0, /*maxtags*/255
471 	},
472 	{
473 		/*
474 		 * Many Sony CDROM drives don't like multi-LUN probing.
475 		 */
476 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/*
481 		 * This drive doesn't like multiple LUN probing.
482 		 * Submitted by:  Parag Patel <parag@cgt.com>
483 		 */
484 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486 	},
487 	{
488 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490 	},
491 	{
492 		/*
493 		 * The 8200 doesn't like multi-lun probing, and probably
494 		 * don't like serial number requests either.
495 		 */
496 		{
497 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498 			"EXB-8200*", "*"
499 		},
500 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/*
504 		 * Let's try the same as above, but for a drive that says
505 		 * it's an IPL-6860 but is actually an EXB 8200.
506 		 */
507 		{
508 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509 			"IPL-6860*", "*"
510 		},
511 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 	},
513 	{
514 		/*
515 		 * These Hitachi drives don't like multi-lun probing.
516 		 * The PR submitter has a DK319H, but says that the Linux
517 		 * kernel has a similar work-around for the DK312 and DK314,
518 		 * so all DK31* drives are quirked here.
519 		 * PR:            misc/18793
520 		 * Submitted by:  Paul Haddad <paul@pth.com>
521 		 */
522 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524 	},
525 	{
526 		/*
527 		 * The Hitachi CJ series with J8A8 firmware apparantly has
528 		 * problems with tagged commands.
529 		 * PR: 23536
530 		 * Reported by: amagai@nue.org
531 		 */
532 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534 	},
535 	{
536 		/*
537 		 * These are the large storage arrays.
538 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
539 		 */
540 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 		CAM_QUIRK_HILUNS, 2, 1024
542 	},
543 	{
544 		/*
545 		 * This old revision of the TDC3600 is also SCSI-1, and
546 		 * hangs upon serial number probing.
547 		 */
548 		{
549 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550 			" TDC 3600", "U07:"
551 		},
552 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553 	},
554 	{
555 		/*
556 		 * Would repond to all LUNs if asked for.
557 		 */
558 		{
559 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560 			"CP150", "*"
561 		},
562 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563 	},
564 	{
565 		/*
566 		 * Would repond to all LUNs if asked for.
567 		 */
568 		{
569 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570 			"96X2*", "*"
571 		},
572 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573 	},
574 	{
575 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
576 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578 	},
579 	{
580 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
581 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583 	},
584 	{
585 		/* TeraSolutions special settings for TRC-22 RAID */
586 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
588 	},
589 	{
590 		/* Veritas Storage Appliance */
591 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593 	},
594 	{
595 		/*
596 		 * Would respond to all LUNs.  Device type and removable
597 		 * flag are jumper-selectable.
598 		 */
599 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600 		  "Tahiti 1", "*"
601 		},
602 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603 	},
604 	{
605 		/* EasyRAID E5A aka. areca ARC-6010 */
606 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608 	},
609 	{
610 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612 	},
613 	{
614 		/* Default tagged queuing parameters for all devices */
615 		{
616 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
618 		},
619 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
620 	},
621 };
622 
623 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
624 
625 typedef enum {
626 	DM_RET_COPY		= 0x01,
627 	DM_RET_FLAG_MASK	= 0x0f,
628 	DM_RET_NONE		= 0x00,
629 	DM_RET_STOP		= 0x10,
630 	DM_RET_DESCEND		= 0x20,
631 	DM_RET_ERROR		= 0x30,
632 	DM_RET_ACTION_MASK	= 0xf0
633 } dev_match_ret;
634 
635 typedef enum {
636 	XPT_DEPTH_BUS,
637 	XPT_DEPTH_TARGET,
638 	XPT_DEPTH_DEVICE,
639 	XPT_DEPTH_PERIPH
640 } xpt_traverse_depth;
641 
642 struct xpt_traverse_config {
643 	xpt_traverse_depth	depth;
644 	void			*tr_func;
645 	void			*tr_arg;
646 };
647 
648 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
649 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
650 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
651 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
652 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
653 
654 /* Transport layer configuration information */
655 static struct xpt_softc xsoftc;
656 
657 /* Queues for our software interrupt handler */
658 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
659 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
660 static cam_simq_t cam_simq;
661 static struct spinlock cam_simq_spin;
662 
663 struct cam_periph *xpt_periph;
664 
665 static periph_init_t xpt_periph_init;
666 
667 static periph_init_t probe_periph_init;
668 
669 static struct periph_driver xpt_driver =
670 {
671 	xpt_periph_init, "xpt",
672 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
673 };
674 
675 static struct periph_driver probe_driver =
676 {
677 	probe_periph_init, "probe",
678 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
679 };
680 
681 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
682 PERIPHDRIVER_DECLARE(probe, probe_driver);
683 
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
687 
688 static struct dev_ops xpt_ops = {
689 	{ "xpt", 0, 0 },
690 	.d_open = xptopen,
691 	.d_close = xptclose,
692 	.d_ioctl = xptioctl
693 };
694 
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
697 
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock    cam_dead_lock;
701 
702 /* Storage for debugging datastructures */
703 #ifdef	CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
708 
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
712 
713 /*
714  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
716  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
717  */
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719     || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722     || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724         and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
730 
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
733 
734 static moduledata_t cam_moduledata = {
735 	"cam",
736 	cam_module_event_handler,
737 	NULL
738 };
739 
740 static int	xpt_init(void *);
741 
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
744 
745 
746 static cam_status	xpt_compile_path(struct cam_path *new_path,
747 					 struct cam_periph *perph,
748 					 path_id_t path_id,
749 					 target_id_t target_id,
750 					 lun_id_t lun_id);
751 
752 static void		xpt_release_path(struct cam_path *path);
753 
754 static void		xpt_async_bcast(struct async_list *async_head,
755 					u_int32_t async_code,
756 					struct cam_path *path,
757 					void *async_arg);
758 static void		xpt_dev_async(u_int32_t async_code,
759 				      struct cam_eb *bus,
760 				      struct cam_et *target,
761 				      struct cam_ed *device,
762 				      void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767 				  u_int32_t new_priority);
768 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
769 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void	 xpt_release_bus(struct cam_eb *bus);
772 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 					 int run_queue);
774 static struct cam_et*
775 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 				  lun_id_t lun_id);
780 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 				    struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 		 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void	 xpt_scan_lun(struct cam_periph *periph,
791 			      struct cam_path *path, cam_flags flags,
792 			      union ccb *ccb);
793 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t	xptconfigbuscountfunc;
795 static xpt_busfunc_t	xptconfigfunc;
796 static void	 xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void	 xpt_uncount_bus (struct cam_eb *bus);
800 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
801 static void	 xptpoll(struct cam_sim *sim);
802 static inthand2_t swi_cambio;
803 static void	 camisr(void *);
804 static void	 camisr_runqueue(struct cam_sim *);
805 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
806 				    u_int num_patterns, struct cam_eb *bus);
807 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
808 				       u_int num_patterns,
809 				       struct cam_ed *device);
810 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
811 				       u_int num_patterns,
812 				       struct cam_periph *periph);
813 static xpt_busfunc_t	xptedtbusfunc;
814 static xpt_targetfunc_t	xptedttargetfunc;
815 static xpt_devicefunc_t	xptedtdevicefunc;
816 static xpt_periphfunc_t	xptedtperiphfunc;
817 static xpt_pdrvfunc_t	xptplistpdrvfunc;
818 static xpt_periphfunc_t	xptplistperiphfunc;
819 static int		xptedtmatch(struct ccb_dev_match *cdm);
820 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
821 static int		xptbustraverse(struct cam_eb *start_bus,
822 				       xpt_busfunc_t *tr_func, void *arg);
823 static int		xpttargettraverse(struct cam_eb *bus,
824 					  struct cam_et *start_target,
825 					  xpt_targetfunc_t *tr_func, void *arg);
826 static int		xptdevicetraverse(struct cam_et *target,
827 					  struct cam_ed *start_device,
828 					  xpt_devicefunc_t *tr_func, void *arg);
829 static int		xptperiphtraverse(struct cam_ed *device,
830 					  struct cam_periph *start_periph,
831 					  xpt_periphfunc_t *tr_func, void *arg);
832 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
833 					xpt_pdrvfunc_t *tr_func, void *arg);
834 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
835 					    struct cam_periph *start_periph,
836 					    xpt_periphfunc_t *tr_func,
837 					    void *arg);
838 static xpt_busfunc_t	xptdefbusfunc;
839 static xpt_targetfunc_t	xptdeftargetfunc;
840 static xpt_devicefunc_t	xptdefdevicefunc;
841 static xpt_periphfunc_t	xptdefperiphfunc;
842 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
843 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
844 					    void *arg);
845 static xpt_devicefunc_t	xptsetasyncfunc;
846 static xpt_busfunc_t	xptsetasyncbusfunc;
847 static cam_status	xptregister(struct cam_periph *periph,
848 				    void *arg);
849 static cam_status	proberegister(struct cam_periph *periph,
850 				      void *arg);
851 static void	 probeschedule(struct cam_periph *probe_periph);
852 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
853 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
854 static int       proberequestbackoff(struct cam_periph *periph,
855 				     struct cam_ed *device);
856 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
857 static void	 probecleanup(struct cam_periph *periph);
858 static void	 xpt_find_quirk(struct cam_ed *device);
859 static void	 xpt_devise_transport(struct cam_path *path);
860 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
861 					   struct cam_ed *device,
862 					   int async_update);
863 static void	 xpt_toggle_tags(struct cam_path *path);
864 static void	 xpt_start_tags(struct cam_path *path);
865 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
866 					    struct cam_ed *dev);
867 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
868 					   struct cam_ed *dev);
869 static __inline int periph_is_queued(struct cam_periph *periph);
870 static __inline int device_is_alloc_queued(struct cam_ed *device);
871 static __inline int device_is_send_queued(struct cam_ed *device);
872 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873 
874 static __inline int
875 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 {
877 	int retval;
878 
879 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
880 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
881 			cam_ccbq_resize(&dev->ccbq,
882 					dev->ccbq.dev_openings
883 					+ dev->ccbq.dev_active);
884 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
885 		}
886 		/*
887 		 * The priority of a device waiting for CCB resources
888 		 * is that of the the highest priority peripheral driver
889 		 * enqueued.
890 		 */
891 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
892 					  &dev->alloc_ccb_entry.pinfo,
893 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
894 	} else {
895 		retval = 0;
896 	}
897 
898 	return (retval);
899 }
900 
901 static __inline int
902 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 {
904 	int	retval;
905 
906 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907 		/*
908 		 * The priority of a device waiting for controller
909 		 * resources is that of the the highest priority CCB
910 		 * enqueued.
911 		 */
912 		retval =
913 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
914 				     &dev->send_ccb_entry.pinfo,
915 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
916 	} else {
917 		retval = 0;
918 	}
919 	return (retval);
920 }
921 
922 static __inline int
923 periph_is_queued(struct cam_periph *periph)
924 {
925 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
926 }
927 
928 static __inline int
929 device_is_alloc_queued(struct cam_ed *device)
930 {
931 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
932 }
933 
934 static __inline int
935 device_is_send_queued(struct cam_ed *device)
936 {
937 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
938 }
939 
940 static __inline int
941 dev_allocq_is_runnable(struct cam_devq *devq)
942 {
943 	/*
944 	 * Have work to do.
945 	 * Have space to do more work.
946 	 * Allowed to do work.
947 	 */
948 	return ((devq->alloc_queue.qfrozen_cnt == 0)
949 	     && (devq->alloc_queue.entries > 0)
950 	     && (devq->alloc_openings > 0));
951 }
952 
953 static void
954 xpt_periph_init(void)
955 {
956 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
957 }
958 
959 static void
960 probe_periph_init(void)
961 {
962 }
963 
964 
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
967 {
968 	/* Caller will release the CCB */
969 	wakeup(&done_ccb->ccb_h.cbfcnp);
970 }
971 
972 static int
973 xptopen(struct dev_open_args *ap)
974 {
975 	cdev_t dev = ap->a_head.a_dev;
976 
977 	/*
978 	 * Only allow read-write access.
979 	 */
980 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981 		return(EPERM);
982 
983 	/*
984 	 * We don't allow nonblocking access.
985 	 */
986 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
987 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988 		return(ENODEV);
989 	}
990 
991 	/* Mark ourselves open */
992 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993 	xsoftc.flags |= XPT_FLAG_OPEN;
994 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
995 
996 	return(0);
997 }
998 
999 static int
1000 xptclose(struct dev_close_args *ap)
1001 {
1002 
1003 	/* Mark ourselves closed */
1004 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1006 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1007 
1008 	return(0);
1009 }
1010 
1011 /*
1012  * Don't automatically grab the xpt softc lock here even though this is going
1013  * through the xpt device.  The xpt device is really just a back door for
1014  * accessing other devices and SIMs, so the right thing to do is to grab
1015  * the appropriate SIM lock once the bus/SIM is located.
1016  */
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1019 {
1020 	int error;
1021 
1022 	error = 0;
1023 
1024 	switch(ap->a_cmd) {
1025 	/*
1026 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027 	 * to accept CCB types that don't quite make sense to send through a
1028 	 * passthrough driver.
1029 	 */
1030 	case CAMIOCOMMAND: {
1031 		union ccb *ccb;
1032 		union ccb *inccb;
1033 		struct cam_eb *bus;
1034 
1035 		inccb = (union ccb *)ap->a_data;
1036 
1037 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1038 		if (bus == NULL) {
1039 			error = EINVAL;
1040 			break;
1041 		}
1042 
1043 		switch(inccb->ccb_h.func_code) {
1044 		case XPT_SCAN_BUS:
1045 		case XPT_RESET_BUS:
1046 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048 				error = EINVAL;
1049 				break;
1050 			}
1051 			/* FALLTHROUGH */
1052 		case XPT_PATH_INQ:
1053 		case XPT_ENG_INQ:
1054 		case XPT_SCAN_LUN:
1055 
1056 			ccb = xpt_alloc_ccb();
1057 
1058 			CAM_SIM_LOCK(bus->sim);
1059 
1060 			/*
1061 			 * Create a path using the bus, target, and lun the
1062 			 * user passed in.
1063 			 */
1064 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065 					    inccb->ccb_h.path_id,
1066 					    inccb->ccb_h.target_id,
1067 					    inccb->ccb_h.target_lun) !=
1068 					    CAM_REQ_CMP){
1069 				error = EINVAL;
1070 				CAM_SIM_UNLOCK(bus->sim);
1071 				xpt_free_ccb(ccb);
1072 				break;
1073 			}
1074 			/* Ensure all of our fields are correct */
1075 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076 				      inccb->ccb_h.pinfo.priority);
1077 			xpt_merge_ccb(ccb, inccb);
1078 			ccb->ccb_h.cbfcnp = xptdone;
1079 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080 			bcopy(ccb, inccb, sizeof(union ccb));
1081 			xpt_free_path(ccb->ccb_h.path);
1082 			xpt_free_ccb(ccb);
1083 			CAM_SIM_UNLOCK(bus->sim);
1084 			break;
1085 
1086 		case XPT_DEBUG: {
1087 			union ccb ccb;
1088 
1089 			/*
1090 			 * This is an immediate CCB, so it's okay to
1091 			 * allocate it on the stack.
1092 			 */
1093 
1094 			CAM_SIM_LOCK(bus->sim);
1095 
1096 			/*
1097 			 * Create a path using the bus, target, and lun the
1098 			 * user passed in.
1099 			 */
1100 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101 					    inccb->ccb_h.path_id,
1102 					    inccb->ccb_h.target_id,
1103 					    inccb->ccb_h.target_lun) !=
1104 					    CAM_REQ_CMP){
1105 				error = EINVAL;
1106 				CAM_SIM_UNLOCK(bus->sim);
1107 				break;
1108 			}
1109 			/* Ensure all of our fields are correct */
1110 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111 				      inccb->ccb_h.pinfo.priority);
1112 			xpt_merge_ccb(&ccb, inccb);
1113 			ccb.ccb_h.cbfcnp = xptdone;
1114 			xpt_action(&ccb);
1115 			CAM_SIM_UNLOCK(bus->sim);
1116 			bcopy(&ccb, inccb, sizeof(union ccb));
1117 			xpt_free_path(ccb.ccb_h.path);
1118 			break;
1119 
1120 		}
1121 		case XPT_DEV_MATCH: {
1122 			struct cam_periph_map_info mapinfo;
1123 			struct cam_path *old_path;
1124 
1125 			/*
1126 			 * We can't deal with physical addresses for this
1127 			 * type of transaction.
1128 			 */
1129 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130 				error = EINVAL;
1131 				break;
1132 			}
1133 
1134 			/*
1135 			 * Save this in case the caller had it set to
1136 			 * something in particular.
1137 			 */
1138 			old_path = inccb->ccb_h.path;
1139 
1140 			/*
1141 			 * We really don't need a path for the matching
1142 			 * code.  The path is needed because of the
1143 			 * debugging statements in xpt_action().  They
1144 			 * assume that the CCB has a valid path.
1145 			 */
1146 			inccb->ccb_h.path = xpt_periph->path;
1147 
1148 			bzero(&mapinfo, sizeof(mapinfo));
1149 
1150 			/*
1151 			 * Map the pattern and match buffers into kernel
1152 			 * virtual address space.
1153 			 */
1154 			error = cam_periph_mapmem(inccb, &mapinfo);
1155 
1156 			if (error) {
1157 				inccb->ccb_h.path = old_path;
1158 				break;
1159 			}
1160 
1161 			/*
1162 			 * This is an immediate CCB, we can send it on directly.
1163 			 */
1164 			xpt_action(inccb);
1165 
1166 			/*
1167 			 * Map the buffers back into user space.
1168 			 */
1169 			cam_periph_unmapmem(inccb, &mapinfo);
1170 
1171 			inccb->ccb_h.path = old_path;
1172 
1173 			error = 0;
1174 			break;
1175 		}
1176 		default:
1177 			error = ENOTSUP;
1178 			break;
1179 		}
1180 		xpt_release_bus(bus);
1181 		break;
1182 	}
1183 	/*
1184 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185 	 * with the periphal driver name and unit name filled in.  The other
1186 	 * fields don't really matter as input.  The passthrough driver name
1187 	 * ("pass"), and unit number are passed back in the ccb.  The current
1188 	 * device generation number, and the index into the device peripheral
1189 	 * driver list, and the status are also passed back.  Note that
1190 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1192 	 * (or rather should be) impossible for the device peripheral driver
1193 	 * list to change since we look at the whole thing in one pass, and
1194 	 * we do it with lock protection.
1195 	 *
1196 	 */
1197 	case CAMGETPASSTHRU: {
1198 		union ccb *ccb;
1199 		struct cam_periph *periph;
1200 		struct periph_driver **p_drv;
1201 		char   *name;
1202 		u_int unit;
1203 		u_int cur_generation;
1204 		int base_periph_found;
1205 		int splbreaknum;
1206 
1207 		ccb = (union ccb *)ap->a_data;
1208 		unit = ccb->cgdl.unit_number;
1209 		name = ccb->cgdl.periph_name;
1210 		/*
1211 		 * Every 100 devices, we want to drop our lock protection to
1212 		 * give the software interrupt handler a chance to run.
1213 		 * Most systems won't run into this check, but this should
1214 		 * avoid starvation in the software interrupt handler in
1215 		 * large systems.
1216 		 */
1217 		splbreaknum = 100;
1218 
1219 		ccb = (union ccb *)ap->a_data;
1220 
1221 		base_periph_found = 0;
1222 
1223 		/*
1224 		 * Sanity check -- make sure we don't get a null peripheral
1225 		 * driver name.
1226 		 */
1227 		if (*ccb->cgdl.periph_name == '\0') {
1228 			error = EINVAL;
1229 			break;
1230 		}
1231 
1232 		/* Keep the list from changing while we traverse it */
1233 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235 		cur_generation = xsoftc.xpt_generation;
1236 
1237 		/* first find our driver in the list of drivers */
1238 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239 			if (strcmp((*p_drv)->driver_name, name) == 0)
1240 				break;
1241 		}
1242 
1243 		if (*p_drv == NULL) {
1244 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247 			*ccb->cgdl.periph_name = '\0';
1248 			ccb->cgdl.unit_number = 0;
1249 			error = ENOENT;
1250 			break;
1251 		}
1252 
1253 		/*
1254 		 * Run through every peripheral instance of this driver
1255 		 * and check to see whether it matches the unit passed
1256 		 * in by the user.  If it does, get out of the loops and
1257 		 * find the passthrough driver associated with that
1258 		 * peripheral driver.
1259 		 */
1260 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1261 
1262 			if (periph->unit_number == unit) {
1263 				break;
1264 			} else if (--splbreaknum == 0) {
1265 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267 				splbreaknum = 100;
1268 				if (cur_generation != xsoftc.xpt_generation)
1269 				       goto ptstartover;
1270 			}
1271 		}
1272 		/*
1273 		 * If we found the peripheral driver that the user passed
1274 		 * in, go through all of the peripheral drivers for that
1275 		 * particular device and look for a passthrough driver.
1276 		 */
1277 		if (periph != NULL) {
1278 			struct cam_ed *device;
1279 			int i;
1280 
1281 			base_periph_found = 1;
1282 			device = periph->path->device;
1283 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284 			     periph != NULL;
1285 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1286 				/*
1287 				 * Check to see whether we have a
1288 				 * passthrough device or not.
1289 				 */
1290 				if (strcmp(periph->periph_name, "pass") == 0) {
1291 					/*
1292 					 * Fill in the getdevlist fields.
1293 					 */
1294 					strcpy(ccb->cgdl.periph_name,
1295 					       periph->periph_name);
1296 					ccb->cgdl.unit_number =
1297 						periph->unit_number;
1298 					if (SLIST_NEXT(periph, periph_links))
1299 						ccb->cgdl.status =
1300 							CAM_GDEVLIST_MORE_DEVS;
1301 					else
1302 						ccb->cgdl.status =
1303 						       CAM_GDEVLIST_LAST_DEVICE;
1304 					ccb->cgdl.generation =
1305 						device->generation;
1306 					ccb->cgdl.index = i;
1307 					/*
1308 					 * Fill in some CCB header fields
1309 					 * that the user may want.
1310 					 */
1311 					ccb->ccb_h.path_id =
1312 						periph->path->bus->path_id;
1313 					ccb->ccb_h.target_id =
1314 						periph->path->target->target_id;
1315 					ccb->ccb_h.target_lun =
1316 						periph->path->device->lun_id;
1317 					ccb->ccb_h.status = CAM_REQ_CMP;
1318 					break;
1319 				}
1320 			}
1321 		}
1322 
1323 		/*
1324 		 * If the periph is null here, one of two things has
1325 		 * happened.  The first possibility is that we couldn't
1326 		 * find the unit number of the particular peripheral driver
1327 		 * that the user is asking about.  e.g. the user asks for
1328 		 * the passthrough driver for "da11".  We find the list of
1329 		 * "da" peripherals all right, but there is no unit 11.
1330 		 * The other possibility is that we went through the list
1331 		 * of peripheral drivers attached to the device structure,
1332 		 * but didn't find one with the name "pass".  Either way,
1333 		 * we return ENOENT, since we couldn't find something.
1334 		 */
1335 		if (periph == NULL) {
1336 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338 			*ccb->cgdl.periph_name = '\0';
1339 			ccb->cgdl.unit_number = 0;
1340 			error = ENOENT;
1341 			/*
1342 			 * It is unfortunate that this is even necessary,
1343 			 * but there are many, many clueless users out there.
1344 			 * If this is true, the user is looking for the
1345 			 * passthrough driver, but doesn't have one in his
1346 			 * kernel.
1347 			 */
1348 			if (base_periph_found == 1) {
1349 				kprintf("xptioctl: pass driver is not in the "
1350 				       "kernel\n");
1351 				kprintf("xptioctl: put \"device pass\" in "
1352 				       "your kernel config file\n");
1353 			}
1354 		}
1355 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356 		break;
1357 		}
1358 	default:
1359 		error = ENOTTY;
1360 		break;
1361 	}
1362 
1363 	return(error);
1364 }
1365 
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1368 {
1369 	int error;
1370 
1371 	switch (what) {
1372 	case MOD_LOAD:
1373 		if ((error = xpt_init(NULL)) != 0)
1374 			return (error);
1375 		break;
1376 	case MOD_UNLOAD:
1377 		return EBUSY;
1378 	default:
1379 		return EOPNOTSUPP;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /*
1386  * Thread to handle asynchronous main-context requests.
1387  *
1388  * This function is typically used by drivers to perform complex actions
1389  * such as bus scans and engineering requests in a main context instead
1390  * of an interrupt context.
1391  */
1392 static void
1393 xpt_scanner_thread(void *dummy)
1394 {
1395 	union ccb	*ccb;
1396 	struct cam_sim	*sim;
1397 
1398 	get_mplock();
1399 
1400 	for (;;) {
1401 		xpt_lock_buses();
1402 		xsoftc.ccb_scanq_running = 1;
1403 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1404 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1405 				     sim_links.tqe);
1406 			xpt_unlock_buses();
1407 
1408 			sim = ccb->ccb_h.path->bus->sim;
1409 			CAM_SIM_LOCK(sim);
1410 			xpt_action(ccb);
1411 			CAM_SIM_UNLOCK(sim);
1412 
1413 			xpt_lock_buses();
1414 		}
1415 		xsoftc.ccb_scanq_running = 0;
1416 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1417 		xpt_unlock_buses();
1418 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1419 	}
1420 
1421 	rel_mplock();	/* not reached */
1422 }
1423 
1424 /*
1425  * Issue an asynchronous asction
1426  */
1427 void
1428 xpt_action_async(union ccb *ccb)
1429 {
1430 	xpt_lock_buses();
1431 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1432 	if (xsoftc.ccb_scanq_running == 0) {
1433 		xsoftc.ccb_scanq_running = 1;
1434 		wakeup(&xsoftc.ccb_scanq);
1435 	}
1436 	xpt_unlock_buses();
1437 }
1438 
1439 
1440 /* Functions accessed by the peripheral drivers */
1441 static int
1442 xpt_init(void *dummy)
1443 {
1444 	struct cam_sim *xpt_sim;
1445 	struct cam_path *path;
1446 	struct cam_devq *devq;
1447 	cam_status status;
1448 
1449 	TAILQ_INIT(&xsoftc.xpt_busses);
1450 	TAILQ_INIT(&cam_simq);
1451 	TAILQ_INIT(&xsoftc.ccb_scanq);
1452 	STAILQ_INIT(&xsoftc.highpowerq);
1453 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1454 
1455 	spin_init(&cam_simq_spin);
1456 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1457 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1458 
1459 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1460 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1461 	spin_init(&cam_dead_sim.sim_spin);
1462 	cam_dead_sim.sim_action = dead_sim_action;
1463 	cam_dead_sim.sim_poll = dead_sim_poll;
1464 	cam_dead_sim.sim_name = "dead_sim";
1465 	cam_dead_sim.lock = &cam_dead_lock;
1466 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1467 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1468 
1469 	/*
1470 	 * The xpt layer is, itself, the equivelent of a SIM.
1471 	 * Allow 16 ccbs in the ccb pool for it.  This should
1472 	 * give decent parallelism when we probe busses and
1473 	 * perform other XPT functions.
1474 	 */
1475 	devq = cam_simq_alloc(16);
1476 	xpt_sim = cam_sim_alloc(xptaction,
1477 				xptpoll,
1478 				"xpt",
1479 				/*softc*/NULL,
1480 				/*unit*/0,
1481 				/*lock*/&xsoftc.xpt_lock,
1482 				/*max_dev_transactions*/0,
1483 				/*max_tagged_dev_transactions*/0,
1484 				devq);
1485 	cam_simq_release(devq);
1486 	if (xpt_sim == NULL)
1487 		return (ENOMEM);
1488 
1489 	xpt_sim->max_ccbs = 16;
1490 
1491 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1492 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1493 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1508 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1509 		       " failing attach\n", status);
1510 		return (EINVAL);
1511 	}
1512 
1513 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1514 			 path, NULL, 0, xpt_sim);
1515 	xpt_free_path(path);
1516 
1517 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1518 
1519 	/*
1520 	 * Register a callback for when interrupts are enabled.
1521 	 */
1522 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1523 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1524 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1525 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1526 	xsoftc.xpt_config_hook->ich_order = 1000;
1527 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1528 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1529 		kprintf("xpt_init: config_intrhook_establish failed "
1530 		       "- failing attach\n");
1531 	}
1532 
1533 	/* fire up rescan thread */
1534 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1535 		kprintf("xpt_init: failed to create rescan thread\n");
1536 	}
1537 	/* Install our software interrupt handlers */
1538 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1539 
1540 	return (0);
1541 }
1542 
1543 static cam_status
1544 xptregister(struct cam_periph *periph, void *arg)
1545 {
1546 	struct cam_sim *xpt_sim;
1547 
1548 	if (periph == NULL) {
1549 		kprintf("xptregister: periph was NULL!!\n");
1550 		return(CAM_REQ_CMP_ERR);
1551 	}
1552 
1553 	xpt_sim = (struct cam_sim *)arg;
1554 	xpt_sim->softc = periph;
1555 	xpt_periph = periph;
1556 	periph->softc = NULL;
1557 
1558 	return(CAM_REQ_CMP);
1559 }
1560 
1561 int32_t
1562 xpt_add_periph(struct cam_periph *periph)
1563 {
1564 	struct cam_ed *device;
1565 	int32_t	 status;
1566 	struct periph_list *periph_head;
1567 
1568 	sim_lock_assert_owned(periph->sim->lock);
1569 
1570 	device = periph->path->device;
1571 
1572 	periph_head = &device->periphs;
1573 
1574 	status = CAM_REQ_CMP;
1575 
1576 	if (device != NULL) {
1577 		/*
1578 		 * Make room for this peripheral
1579 		 * so it will fit in the queue
1580 		 * when it's scheduled to run
1581 		 */
1582 		status = camq_resize(&device->drvq,
1583 				     device->drvq.array_size + 1);
1584 
1585 		device->generation++;
1586 
1587 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1588 	}
1589 
1590 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1591 	xsoftc.xpt_generation++;
1592 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1593 
1594 	return (status);
1595 }
1596 
1597 void
1598 xpt_remove_periph(struct cam_periph *periph)
1599 {
1600 	struct cam_ed *device;
1601 
1602 	sim_lock_assert_owned(periph->sim->lock);
1603 
1604 	device = periph->path->device;
1605 
1606 	if (device != NULL) {
1607 		struct periph_list *periph_head;
1608 
1609 		periph_head = &device->periphs;
1610 
1611 		/* Release the slot for this peripheral */
1612 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1613 
1614 		device->generation++;
1615 
1616 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1617 	}
1618 
1619 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1620 	xsoftc.xpt_generation++;
1621 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1622 }
1623 
1624 void
1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 {
1627 	struct	ccb_pathinq cpi;
1628 	struct	ccb_trans_settings cts;
1629 	struct	cam_path *path;
1630 	u_int	speed;
1631 	u_int	freq;
1632 	u_int	mb;
1633 
1634 	sim_lock_assert_owned(periph->sim->lock);
1635 
1636 	path = periph->path;
1637 
1638 	/* Report basic attachment and inquiry data */
1639 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1640 	       periph->periph_name, periph->unit_number,
1641 	       path->bus->sim->sim_name,
1642 	       path->bus->sim->unit_number,
1643 	       path->bus->sim->bus_id,
1644 	       path->target->target_id,
1645 	       path->device->lun_id);
1646 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1647 	scsi_print_inquiry(&path->device->inq_data);
1648 
1649 	/* Report serial number */
1650 	if (path->device->serial_num_len > 0) {
1651 		/* Don't wrap the screen  - print only the first 60 chars */
1652 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1653 		       periph->unit_number, path->device->serial_num);
1654 	}
1655 
1656 	/* Acquire and report transfer speed */
1657 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1658 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1659 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1660 	xpt_action((union ccb*)&cts);
1661 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1662 		return;
1663 	}
1664 
1665 	/* Ask the SIM for its base transfer speed */
1666 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1667 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1668 	xpt_action((union ccb *)&cpi);
1669 
1670 	speed = cpi.base_transfer_speed;
1671 	freq = 0;
1672 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1673 		struct	ccb_trans_settings_spi *spi;
1674 
1675 		spi = &cts.xport_specific.spi;
1676 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1677 		  && spi->sync_offset != 0) {
1678 			freq = scsi_calc_syncsrate(spi->sync_period);
1679 			speed = freq;
1680 		}
1681 
1682 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1683 			speed *= (0x01 << spi->bus_width);
1684 	}
1685 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1686 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1687 		if (fc->valid & CTS_FC_VALID_SPEED) {
1688 			speed = fc->bitrate;
1689 		}
1690 	}
1691 
1692 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1693 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1694 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1695 			speed = sas->bitrate;
1696 		}
1697 	}
1698 
1699 	mb = speed / 1000;
1700 	if (mb > 0)
1701 		kprintf("%s%d: %d.%03dMB/s transfers",
1702 		       periph->periph_name, periph->unit_number,
1703 		       mb, speed % 1000);
1704 	else
1705 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1706 		       periph->unit_number, speed);
1707 
1708 	/* Report additional information about SPI connections */
1709 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1710 		struct	ccb_trans_settings_spi *spi;
1711 
1712 		spi = &cts.xport_specific.spi;
1713 		if (freq != 0) {
1714 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1715 			       freq % 1000,
1716 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1717 			     ? " DT" : "",
1718 			       spi->sync_offset);
1719 		}
1720 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1721 		 && spi->bus_width > 0) {
1722 			if (freq != 0) {
1723 				kprintf(", ");
1724 			} else {
1725 				kprintf(" (");
1726 			}
1727 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1728 		} else if (freq != 0) {
1729 			kprintf(")");
1730 		}
1731 	}
1732 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1733 		struct	ccb_trans_settings_fc *fc;
1734 
1735 		fc = &cts.xport_specific.fc;
1736 		if (fc->valid & CTS_FC_VALID_WWNN)
1737 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1738 		if (fc->valid & CTS_FC_VALID_WWPN)
1739 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1740 		if (fc->valid & CTS_FC_VALID_PORT)
1741 			kprintf(" PortID 0x%x", fc->port);
1742 	}
1743 
1744 	if (path->device->inq_flags & SID_CmdQue
1745 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1746 		kprintf("\n%s%d: Command Queueing Enabled",
1747 		       periph->periph_name, periph->unit_number);
1748 	}
1749 	kprintf("\n");
1750 
1751 	/*
1752 	 * We only want to print the caller's announce string if they've
1753 	 * passed one in..
1754 	 */
1755 	if (announce_string != NULL)
1756 		kprintf("%s%d: %s\n", periph->periph_name,
1757 		       periph->unit_number, announce_string);
1758 }
1759 
1760 static dev_match_ret
1761 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1762 	    struct cam_eb *bus)
1763 {
1764 	dev_match_ret retval;
1765 	int i;
1766 
1767 	retval = DM_RET_NONE;
1768 
1769 	/*
1770 	 * If we aren't given something to match against, that's an error.
1771 	 */
1772 	if (bus == NULL)
1773 		return(DM_RET_ERROR);
1774 
1775 	/*
1776 	 * If there are no match entries, then this bus matches no
1777 	 * matter what.
1778 	 */
1779 	if ((patterns == NULL) || (num_patterns == 0))
1780 		return(DM_RET_DESCEND | DM_RET_COPY);
1781 
1782 	for (i = 0; i < num_patterns; i++) {
1783 		struct bus_match_pattern *cur_pattern;
1784 
1785 		/*
1786 		 * If the pattern in question isn't for a bus node, we
1787 		 * aren't interested.  However, we do indicate to the
1788 		 * calling routine that we should continue descending the
1789 		 * tree, since the user wants to match against lower-level
1790 		 * EDT elements.
1791 		 */
1792 		if (patterns[i].type != DEV_MATCH_BUS) {
1793 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1794 				retval |= DM_RET_DESCEND;
1795 			continue;
1796 		}
1797 
1798 		cur_pattern = &patterns[i].pattern.bus_pattern;
1799 
1800 		/*
1801 		 * If they want to match any bus node, we give them any
1802 		 * device node.
1803 		 */
1804 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1805 			/* set the copy flag */
1806 			retval |= DM_RET_COPY;
1807 
1808 			/*
1809 			 * If we've already decided on an action, go ahead
1810 			 * and return.
1811 			 */
1812 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1813 				return(retval);
1814 		}
1815 
1816 		/*
1817 		 * Not sure why someone would do this...
1818 		 */
1819 		if (cur_pattern->flags == BUS_MATCH_NONE)
1820 			continue;
1821 
1822 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1823 		 && (cur_pattern->path_id != bus->path_id))
1824 			continue;
1825 
1826 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1827 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1828 			continue;
1829 
1830 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1831 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1832 			continue;
1833 
1834 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1835 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1836 			     DEV_IDLEN) != 0))
1837 			continue;
1838 
1839 		/*
1840 		 * If we get to this point, the user definitely wants
1841 		 * information on this bus.  So tell the caller to copy the
1842 		 * data out.
1843 		 */
1844 		retval |= DM_RET_COPY;
1845 
1846 		/*
1847 		 * If the return action has been set to descend, then we
1848 		 * know that we've already seen a non-bus matching
1849 		 * expression, therefore we need to further descend the tree.
1850 		 * This won't change by continuing around the loop, so we
1851 		 * go ahead and return.  If we haven't seen a non-bus
1852 		 * matching expression, we keep going around the loop until
1853 		 * we exhaust the matching expressions.  We'll set the stop
1854 		 * flag once we fall out of the loop.
1855 		 */
1856 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1857 			return(retval);
1858 	}
1859 
1860 	/*
1861 	 * If the return action hasn't been set to descend yet, that means
1862 	 * we haven't seen anything other than bus matching patterns.  So
1863 	 * tell the caller to stop descending the tree -- the user doesn't
1864 	 * want to match against lower level tree elements.
1865 	 */
1866 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1867 		retval |= DM_RET_STOP;
1868 
1869 	return(retval);
1870 }
1871 
1872 static dev_match_ret
1873 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1874 	       struct cam_ed *device)
1875 {
1876 	dev_match_ret retval;
1877 	int i;
1878 
1879 	retval = DM_RET_NONE;
1880 
1881 	/*
1882 	 * If we aren't given something to match against, that's an error.
1883 	 */
1884 	if (device == NULL)
1885 		return(DM_RET_ERROR);
1886 
1887 	/*
1888 	 * If there are no match entries, then this device matches no
1889 	 * matter what.
1890 	 */
1891 	if ((patterns == NULL) || (num_patterns == 0))
1892 		return(DM_RET_DESCEND | DM_RET_COPY);
1893 
1894 	for (i = 0; i < num_patterns; i++) {
1895 		struct device_match_pattern *cur_pattern;
1896 
1897 		/*
1898 		 * If the pattern in question isn't for a device node, we
1899 		 * aren't interested.
1900 		 */
1901 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1902 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1903 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1904 				retval |= DM_RET_DESCEND;
1905 			continue;
1906 		}
1907 
1908 		cur_pattern = &patterns[i].pattern.device_pattern;
1909 
1910 		/*
1911 		 * If they want to match any device node, we give them any
1912 		 * device node.
1913 		 */
1914 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1915 			/* set the copy flag */
1916 			retval |= DM_RET_COPY;
1917 
1918 
1919 			/*
1920 			 * If we've already decided on an action, go ahead
1921 			 * and return.
1922 			 */
1923 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1924 				return(retval);
1925 		}
1926 
1927 		/*
1928 		 * Not sure why someone would do this...
1929 		 */
1930 		if (cur_pattern->flags == DEV_MATCH_NONE)
1931 			continue;
1932 
1933 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1934 		 && (cur_pattern->path_id != device->target->bus->path_id))
1935 			continue;
1936 
1937 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1938 		 && (cur_pattern->target_id != device->target->target_id))
1939 			continue;
1940 
1941 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1942 		 && (cur_pattern->target_lun != device->lun_id))
1943 			continue;
1944 
1945 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1946 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1947 				    (caddr_t)&cur_pattern->inq_pat,
1948 				    1, sizeof(cur_pattern->inq_pat),
1949 				    scsi_static_inquiry_match) == NULL))
1950 			continue;
1951 
1952 		/*
1953 		 * If we get to this point, the user definitely wants
1954 		 * information on this device.  So tell the caller to copy
1955 		 * the data out.
1956 		 */
1957 		retval |= DM_RET_COPY;
1958 
1959 		/*
1960 		 * If the return action has been set to descend, then we
1961 		 * know that we've already seen a peripheral matching
1962 		 * expression, therefore we need to further descend the tree.
1963 		 * This won't change by continuing around the loop, so we
1964 		 * go ahead and return.  If we haven't seen a peripheral
1965 		 * matching expression, we keep going around the loop until
1966 		 * we exhaust the matching expressions.  We'll set the stop
1967 		 * flag once we fall out of the loop.
1968 		 */
1969 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1970 			return(retval);
1971 	}
1972 
1973 	/*
1974 	 * If the return action hasn't been set to descend yet, that means
1975 	 * we haven't seen any peripheral matching patterns.  So tell the
1976 	 * caller to stop descending the tree -- the user doesn't want to
1977 	 * match against lower level tree elements.
1978 	 */
1979 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1980 		retval |= DM_RET_STOP;
1981 
1982 	return(retval);
1983 }
1984 
1985 /*
1986  * Match a single peripheral against any number of match patterns.
1987  */
1988 static dev_match_ret
1989 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1990 	       struct cam_periph *periph)
1991 {
1992 	dev_match_ret retval;
1993 	int i;
1994 
1995 	/*
1996 	 * If we aren't given something to match against, that's an error.
1997 	 */
1998 	if (periph == NULL)
1999 		return(DM_RET_ERROR);
2000 
2001 	/*
2002 	 * If there are no match entries, then this peripheral matches no
2003 	 * matter what.
2004 	 */
2005 	if ((patterns == NULL) || (num_patterns == 0))
2006 		return(DM_RET_STOP | DM_RET_COPY);
2007 
2008 	/*
2009 	 * There aren't any nodes below a peripheral node, so there's no
2010 	 * reason to descend the tree any further.
2011 	 */
2012 	retval = DM_RET_STOP;
2013 
2014 	for (i = 0; i < num_patterns; i++) {
2015 		struct periph_match_pattern *cur_pattern;
2016 
2017 		/*
2018 		 * If the pattern in question isn't for a peripheral, we
2019 		 * aren't interested.
2020 		 */
2021 		if (patterns[i].type != DEV_MATCH_PERIPH)
2022 			continue;
2023 
2024 		cur_pattern = &patterns[i].pattern.periph_pattern;
2025 
2026 		/*
2027 		 * If they want to match on anything, then we will do so.
2028 		 */
2029 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2030 			/* set the copy flag */
2031 			retval |= DM_RET_COPY;
2032 
2033 			/*
2034 			 * We've already set the return action to stop,
2035 			 * since there are no nodes below peripherals in
2036 			 * the tree.
2037 			 */
2038 			return(retval);
2039 		}
2040 
2041 		/*
2042 		 * Not sure why someone would do this...
2043 		 */
2044 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2045 			continue;
2046 
2047 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2048 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2049 			continue;
2050 
2051 		/*
2052 		 * For the target and lun id's, we have to make sure the
2053 		 * target and lun pointers aren't NULL.  The xpt peripheral
2054 		 * has a wildcard target and device.
2055 		 */
2056 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2057 		 && ((periph->path->target == NULL)
2058 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2059 			continue;
2060 
2061 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2062 		 && ((periph->path->device == NULL)
2063 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2064 			continue;
2065 
2066 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2067 		 && (cur_pattern->unit_number != periph->unit_number))
2068 			continue;
2069 
2070 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2071 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2072 			     DEV_IDLEN) != 0))
2073 			continue;
2074 
2075 		/*
2076 		 * If we get to this point, the user definitely wants
2077 		 * information on this peripheral.  So tell the caller to
2078 		 * copy the data out.
2079 		 */
2080 		retval |= DM_RET_COPY;
2081 
2082 		/*
2083 		 * The return action has already been set to stop, since
2084 		 * peripherals don't have any nodes below them in the EDT.
2085 		 */
2086 		return(retval);
2087 	}
2088 
2089 	/*
2090 	 * If we get to this point, the peripheral that was passed in
2091 	 * doesn't match any of the patterns.
2092 	 */
2093 	return(retval);
2094 }
2095 
2096 static int
2097 xptedtbusfunc(struct cam_eb *bus, void *arg)
2098 {
2099 	struct ccb_dev_match *cdm;
2100 	dev_match_ret retval;
2101 
2102 	cdm = (struct ccb_dev_match *)arg;
2103 
2104 	/*
2105 	 * If our position is for something deeper in the tree, that means
2106 	 * that we've already seen this node.  So, we keep going down.
2107 	 */
2108 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2109 	 && (cdm->pos.cookie.bus == bus)
2110 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2111 	 && (cdm->pos.cookie.target != NULL))
2112 		retval = DM_RET_DESCEND;
2113 	else
2114 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2115 
2116 	/*
2117 	 * If we got an error, bail out of the search.
2118 	 */
2119 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2120 		cdm->status = CAM_DEV_MATCH_ERROR;
2121 		return(0);
2122 	}
2123 
2124 	/*
2125 	 * If the copy flag is set, copy this bus out.
2126 	 */
2127 	if (retval & DM_RET_COPY) {
2128 		int spaceleft, j;
2129 
2130 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2131 			sizeof(struct dev_match_result));
2132 
2133 		/*
2134 		 * If we don't have enough space to put in another
2135 		 * match result, save our position and tell the
2136 		 * user there are more devices to check.
2137 		 */
2138 		if (spaceleft < sizeof(struct dev_match_result)) {
2139 			bzero(&cdm->pos, sizeof(cdm->pos));
2140 			cdm->pos.position_type =
2141 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2142 
2143 			cdm->pos.cookie.bus = bus;
2144 			cdm->pos.generations[CAM_BUS_GENERATION]=
2145 				xsoftc.bus_generation;
2146 			cdm->status = CAM_DEV_MATCH_MORE;
2147 			return(0);
2148 		}
2149 		j = cdm->num_matches;
2150 		cdm->num_matches++;
2151 		cdm->matches[j].type = DEV_MATCH_BUS;
2152 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2153 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2154 		cdm->matches[j].result.bus_result.unit_number =
2155 			bus->sim->unit_number;
2156 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2157 			bus->sim->sim_name, DEV_IDLEN);
2158 	}
2159 
2160 	/*
2161 	 * If the user is only interested in busses, there's no
2162 	 * reason to descend to the next level in the tree.
2163 	 */
2164 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2165 		return(1);
2166 
2167 	/*
2168 	 * If there is a target generation recorded, check it to
2169 	 * make sure the target list hasn't changed.
2170 	 */
2171 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2172 	 && (bus == cdm->pos.cookie.bus)
2173 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2174 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2175 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2176 	     bus->generation)) {
2177 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2178 		return(0);
2179 	}
2180 
2181 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2182 	 && (cdm->pos.cookie.bus == bus)
2183 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2184 	 && (cdm->pos.cookie.target != NULL))
2185 		return(xpttargettraverse(bus,
2186 					(struct cam_et *)cdm->pos.cookie.target,
2187 					 xptedttargetfunc, arg));
2188 	else
2189 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2190 }
2191 
2192 static int
2193 xptedttargetfunc(struct cam_et *target, void *arg)
2194 {
2195 	struct ccb_dev_match *cdm;
2196 
2197 	cdm = (struct ccb_dev_match *)arg;
2198 
2199 	/*
2200 	 * If there is a device list generation recorded, check it to
2201 	 * make sure the device list hasn't changed.
2202 	 */
2203 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2204 	 && (cdm->pos.cookie.bus == target->bus)
2205 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2206 	 && (cdm->pos.cookie.target == target)
2207 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2208 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2209 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2210 	     target->generation)) {
2211 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2212 		return(0);
2213 	}
2214 
2215 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2216 	 && (cdm->pos.cookie.bus == target->bus)
2217 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2218 	 && (cdm->pos.cookie.target == target)
2219 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2220 	 && (cdm->pos.cookie.device != NULL))
2221 		return(xptdevicetraverse(target,
2222 					(struct cam_ed *)cdm->pos.cookie.device,
2223 					 xptedtdevicefunc, arg));
2224 	else
2225 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2226 }
2227 
2228 static int
2229 xptedtdevicefunc(struct cam_ed *device, void *arg)
2230 {
2231 
2232 	struct ccb_dev_match *cdm;
2233 	dev_match_ret retval;
2234 
2235 	cdm = (struct ccb_dev_match *)arg;
2236 
2237 	/*
2238 	 * If our position is for something deeper in the tree, that means
2239 	 * that we've already seen this node.  So, we keep going down.
2240 	 */
2241 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2242 	 && (cdm->pos.cookie.device == device)
2243 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2244 	 && (cdm->pos.cookie.periph != NULL))
2245 		retval = DM_RET_DESCEND;
2246 	else
2247 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2248 					device);
2249 
2250 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2251 		cdm->status = CAM_DEV_MATCH_ERROR;
2252 		return(0);
2253 	}
2254 
2255 	/*
2256 	 * If the copy flag is set, copy this device out.
2257 	 */
2258 	if (retval & DM_RET_COPY) {
2259 		int spaceleft, j;
2260 
2261 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2262 			sizeof(struct dev_match_result));
2263 
2264 		/*
2265 		 * If we don't have enough space to put in another
2266 		 * match result, save our position and tell the
2267 		 * user there are more devices to check.
2268 		 */
2269 		if (spaceleft < sizeof(struct dev_match_result)) {
2270 			bzero(&cdm->pos, sizeof(cdm->pos));
2271 			cdm->pos.position_type =
2272 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2273 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2274 
2275 			cdm->pos.cookie.bus = device->target->bus;
2276 			cdm->pos.generations[CAM_BUS_GENERATION]=
2277 				xsoftc.bus_generation;
2278 			cdm->pos.cookie.target = device->target;
2279 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2280 				device->target->bus->generation;
2281 			cdm->pos.cookie.device = device;
2282 			cdm->pos.generations[CAM_DEV_GENERATION] =
2283 				device->target->generation;
2284 			cdm->status = CAM_DEV_MATCH_MORE;
2285 			return(0);
2286 		}
2287 		j = cdm->num_matches;
2288 		cdm->num_matches++;
2289 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2290 		cdm->matches[j].result.device_result.path_id =
2291 			device->target->bus->path_id;
2292 		cdm->matches[j].result.device_result.target_id =
2293 			device->target->target_id;
2294 		cdm->matches[j].result.device_result.target_lun =
2295 			device->lun_id;
2296 		bcopy(&device->inq_data,
2297 		      &cdm->matches[j].result.device_result.inq_data,
2298 		      sizeof(struct scsi_inquiry_data));
2299 
2300 		/* Let the user know whether this device is unconfigured */
2301 		if (device->flags & CAM_DEV_UNCONFIGURED)
2302 			cdm->matches[j].result.device_result.flags =
2303 				DEV_RESULT_UNCONFIGURED;
2304 		else
2305 			cdm->matches[j].result.device_result.flags =
2306 				DEV_RESULT_NOFLAG;
2307 	}
2308 
2309 	/*
2310 	 * If the user isn't interested in peripherals, don't descend
2311 	 * the tree any further.
2312 	 */
2313 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2314 		return(1);
2315 
2316 	/*
2317 	 * If there is a peripheral list generation recorded, make sure
2318 	 * it hasn't changed.
2319 	 */
2320 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2321 	 && (device->target->bus == cdm->pos.cookie.bus)
2322 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2323 	 && (device->target == cdm->pos.cookie.target)
2324 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2325 	 && (device == cdm->pos.cookie.device)
2326 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2327 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2328 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2329 	     device->generation)){
2330 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2331 		return(0);
2332 	}
2333 
2334 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2335 	 && (cdm->pos.cookie.bus == device->target->bus)
2336 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2337 	 && (cdm->pos.cookie.target == device->target)
2338 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2339 	 && (cdm->pos.cookie.device == device)
2340 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2341 	 && (cdm->pos.cookie.periph != NULL))
2342 		return(xptperiphtraverse(device,
2343 				(struct cam_periph *)cdm->pos.cookie.periph,
2344 				xptedtperiphfunc, arg));
2345 	else
2346 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2347 }
2348 
2349 static int
2350 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2351 {
2352 	struct ccb_dev_match *cdm;
2353 	dev_match_ret retval;
2354 
2355 	cdm = (struct ccb_dev_match *)arg;
2356 
2357 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2358 
2359 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2360 		cdm->status = CAM_DEV_MATCH_ERROR;
2361 		return(0);
2362 	}
2363 
2364 	/*
2365 	 * If the copy flag is set, copy this peripheral out.
2366 	 */
2367 	if (retval & DM_RET_COPY) {
2368 		int spaceleft, j;
2369 
2370 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2371 			sizeof(struct dev_match_result));
2372 
2373 		/*
2374 		 * If we don't have enough space to put in another
2375 		 * match result, save our position and tell the
2376 		 * user there are more devices to check.
2377 		 */
2378 		if (spaceleft < sizeof(struct dev_match_result)) {
2379 			bzero(&cdm->pos, sizeof(cdm->pos));
2380 			cdm->pos.position_type =
2381 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2382 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2383 				CAM_DEV_POS_PERIPH;
2384 
2385 			cdm->pos.cookie.bus = periph->path->bus;
2386 			cdm->pos.generations[CAM_BUS_GENERATION]=
2387 				xsoftc.bus_generation;
2388 			cdm->pos.cookie.target = periph->path->target;
2389 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2390 				periph->path->bus->generation;
2391 			cdm->pos.cookie.device = periph->path->device;
2392 			cdm->pos.generations[CAM_DEV_GENERATION] =
2393 				periph->path->target->generation;
2394 			cdm->pos.cookie.periph = periph;
2395 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2396 				periph->path->device->generation;
2397 			cdm->status = CAM_DEV_MATCH_MORE;
2398 			return(0);
2399 		}
2400 
2401 		j = cdm->num_matches;
2402 		cdm->num_matches++;
2403 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2404 		cdm->matches[j].result.periph_result.path_id =
2405 			periph->path->bus->path_id;
2406 		cdm->matches[j].result.periph_result.target_id =
2407 			periph->path->target->target_id;
2408 		cdm->matches[j].result.periph_result.target_lun =
2409 			periph->path->device->lun_id;
2410 		cdm->matches[j].result.periph_result.unit_number =
2411 			periph->unit_number;
2412 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2413 			periph->periph_name, DEV_IDLEN);
2414 	}
2415 
2416 	return(1);
2417 }
2418 
2419 static int
2420 xptedtmatch(struct ccb_dev_match *cdm)
2421 {
2422 	int ret;
2423 
2424 	cdm->num_matches = 0;
2425 
2426 	/*
2427 	 * Check the bus list generation.  If it has changed, the user
2428 	 * needs to reset everything and start over.
2429 	 */
2430 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2431 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2432 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2433 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2434 		return(0);
2435 	}
2436 
2437 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2438 	 && (cdm->pos.cookie.bus != NULL))
2439 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2440 				     xptedtbusfunc, cdm);
2441 	else
2442 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2443 
2444 	/*
2445 	 * If we get back 0, that means that we had to stop before fully
2446 	 * traversing the EDT.  It also means that one of the subroutines
2447 	 * has set the status field to the proper value.  If we get back 1,
2448 	 * we've fully traversed the EDT and copied out any matching entries.
2449 	 */
2450 	if (ret == 1)
2451 		cdm->status = CAM_DEV_MATCH_LAST;
2452 
2453 	return(ret);
2454 }
2455 
2456 static int
2457 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2458 {
2459 	struct ccb_dev_match *cdm;
2460 
2461 	cdm = (struct ccb_dev_match *)arg;
2462 
2463 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2464 	 && (cdm->pos.cookie.pdrv == pdrv)
2465 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2466 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2467 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2468 	     (*pdrv)->generation)) {
2469 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2470 		return(0);
2471 	}
2472 
2473 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2474 	 && (cdm->pos.cookie.pdrv == pdrv)
2475 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2476 	 && (cdm->pos.cookie.periph != NULL))
2477 		return(xptpdperiphtraverse(pdrv,
2478 				(struct cam_periph *)cdm->pos.cookie.periph,
2479 				xptplistperiphfunc, arg));
2480 	else
2481 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2482 }
2483 
2484 static int
2485 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2486 {
2487 	struct ccb_dev_match *cdm;
2488 	dev_match_ret retval;
2489 
2490 	cdm = (struct ccb_dev_match *)arg;
2491 
2492 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2493 
2494 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2495 		cdm->status = CAM_DEV_MATCH_ERROR;
2496 		return(0);
2497 	}
2498 
2499 	/*
2500 	 * If the copy flag is set, copy this peripheral out.
2501 	 */
2502 	if (retval & DM_RET_COPY) {
2503 		int spaceleft, j;
2504 
2505 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2506 			sizeof(struct dev_match_result));
2507 
2508 		/*
2509 		 * If we don't have enough space to put in another
2510 		 * match result, save our position and tell the
2511 		 * user there are more devices to check.
2512 		 */
2513 		if (spaceleft < sizeof(struct dev_match_result)) {
2514 			struct periph_driver **pdrv;
2515 
2516 			pdrv = NULL;
2517 			bzero(&cdm->pos, sizeof(cdm->pos));
2518 			cdm->pos.position_type =
2519 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2520 				CAM_DEV_POS_PERIPH;
2521 
2522 			/*
2523 			 * This may look a bit non-sensical, but it is
2524 			 * actually quite logical.  There are very few
2525 			 * peripheral drivers, and bloating every peripheral
2526 			 * structure with a pointer back to its parent
2527 			 * peripheral driver linker set entry would cost
2528 			 * more in the long run than doing this quick lookup.
2529 			 */
2530 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2531 				if (strcmp((*pdrv)->driver_name,
2532 				    periph->periph_name) == 0)
2533 					break;
2534 			}
2535 
2536 			if (*pdrv == NULL) {
2537 				cdm->status = CAM_DEV_MATCH_ERROR;
2538 				return(0);
2539 			}
2540 
2541 			cdm->pos.cookie.pdrv = pdrv;
2542 			/*
2543 			 * The periph generation slot does double duty, as
2544 			 * does the periph pointer slot.  They are used for
2545 			 * both edt and pdrv lookups and positioning.
2546 			 */
2547 			cdm->pos.cookie.periph = periph;
2548 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2549 				(*pdrv)->generation;
2550 			cdm->status = CAM_DEV_MATCH_MORE;
2551 			return(0);
2552 		}
2553 
2554 		j = cdm->num_matches;
2555 		cdm->num_matches++;
2556 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2557 		cdm->matches[j].result.periph_result.path_id =
2558 			periph->path->bus->path_id;
2559 
2560 		/*
2561 		 * The transport layer peripheral doesn't have a target or
2562 		 * lun.
2563 		 */
2564 		if (periph->path->target)
2565 			cdm->matches[j].result.periph_result.target_id =
2566 				periph->path->target->target_id;
2567 		else
2568 			cdm->matches[j].result.periph_result.target_id = -1;
2569 
2570 		if (periph->path->device)
2571 			cdm->matches[j].result.periph_result.target_lun =
2572 				periph->path->device->lun_id;
2573 		else
2574 			cdm->matches[j].result.periph_result.target_lun = -1;
2575 
2576 		cdm->matches[j].result.periph_result.unit_number =
2577 			periph->unit_number;
2578 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2579 			periph->periph_name, DEV_IDLEN);
2580 	}
2581 
2582 	return(1);
2583 }
2584 
2585 static int
2586 xptperiphlistmatch(struct ccb_dev_match *cdm)
2587 {
2588 	int ret;
2589 
2590 	cdm->num_matches = 0;
2591 
2592 	/*
2593 	 * At this point in the edt traversal function, we check the bus
2594 	 * list generation to make sure that no busses have been added or
2595 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2596 	 * For the peripheral driver list traversal function, however, we
2597 	 * don't have to worry about new peripheral driver types coming or
2598 	 * going; they're in a linker set, and therefore can't change
2599 	 * without a recompile.
2600 	 */
2601 
2602 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2603 	 && (cdm->pos.cookie.pdrv != NULL))
2604 		ret = xptpdrvtraverse(
2605 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2606 				xptplistpdrvfunc, cdm);
2607 	else
2608 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2609 
2610 	/*
2611 	 * If we get back 0, that means that we had to stop before fully
2612 	 * traversing the peripheral driver tree.  It also means that one of
2613 	 * the subroutines has set the status field to the proper value.  If
2614 	 * we get back 1, we've fully traversed the EDT and copied out any
2615 	 * matching entries.
2616 	 */
2617 	if (ret == 1)
2618 		cdm->status = CAM_DEV_MATCH_LAST;
2619 
2620 	return(ret);
2621 }
2622 
2623 static int
2624 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2625 {
2626 	struct cam_eb *bus, *next_bus;
2627 	int retval;
2628 
2629 	retval = 1;
2630 
2631 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2632 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2633 	     bus != NULL;
2634 	     bus = next_bus) {
2635 		next_bus = TAILQ_NEXT(bus, links);
2636 
2637 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2638 		CAM_SIM_LOCK(bus->sim);
2639 		retval = tr_func(bus, arg);
2640 		CAM_SIM_UNLOCK(bus->sim);
2641 		if (retval == 0)
2642 			return(retval);
2643 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2644 	}
2645 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2646 
2647 	return(retval);
2648 }
2649 
2650 static int
2651 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2652 		  xpt_targetfunc_t *tr_func, void *arg)
2653 {
2654 	struct cam_et *target, *next_target;
2655 	int retval;
2656 
2657 	retval = 1;
2658 	for (target = (start_target ? start_target :
2659 		       TAILQ_FIRST(&bus->et_entries));
2660 	     target != NULL; target = next_target) {
2661 
2662 		next_target = TAILQ_NEXT(target, links);
2663 
2664 		retval = tr_func(target, arg);
2665 
2666 		if (retval == 0)
2667 			return(retval);
2668 	}
2669 
2670 	return(retval);
2671 }
2672 
2673 static int
2674 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2675 		  xpt_devicefunc_t *tr_func, void *arg)
2676 {
2677 	struct cam_ed *device, *next_device;
2678 	int retval;
2679 
2680 	retval = 1;
2681 	for (device = (start_device ? start_device :
2682 		       TAILQ_FIRST(&target->ed_entries));
2683 	     device != NULL;
2684 	     device = next_device) {
2685 
2686 		next_device = TAILQ_NEXT(device, links);
2687 
2688 		retval = tr_func(device, arg);
2689 
2690 		if (retval == 0)
2691 			return(retval);
2692 	}
2693 
2694 	return(retval);
2695 }
2696 
2697 static int
2698 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2699 		  xpt_periphfunc_t *tr_func, void *arg)
2700 {
2701 	struct cam_periph *periph, *next_periph;
2702 	int retval;
2703 
2704 	retval = 1;
2705 
2706 	for (periph = (start_periph ? start_periph :
2707 		       SLIST_FIRST(&device->periphs));
2708 	     periph != NULL;
2709 	     periph = next_periph) {
2710 
2711 		next_periph = SLIST_NEXT(periph, periph_links);
2712 
2713 		retval = tr_func(periph, arg);
2714 		if (retval == 0)
2715 			return(retval);
2716 	}
2717 
2718 	return(retval);
2719 }
2720 
2721 static int
2722 xptpdrvtraverse(struct periph_driver **start_pdrv,
2723 		xpt_pdrvfunc_t *tr_func, void *arg)
2724 {
2725 	struct periph_driver **pdrv;
2726 	int retval;
2727 
2728 	retval = 1;
2729 
2730 	/*
2731 	 * We don't traverse the peripheral driver list like we do the
2732 	 * other lists, because it is a linker set, and therefore cannot be
2733 	 * changed during runtime.  If the peripheral driver list is ever
2734 	 * re-done to be something other than a linker set (i.e. it can
2735 	 * change while the system is running), the list traversal should
2736 	 * be modified to work like the other traversal functions.
2737 	 */
2738 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2739 	     *pdrv != NULL; pdrv++) {
2740 		retval = tr_func(pdrv, arg);
2741 
2742 		if (retval == 0)
2743 			return(retval);
2744 	}
2745 
2746 	return(retval);
2747 }
2748 
2749 static int
2750 xptpdperiphtraverse(struct periph_driver **pdrv,
2751 		    struct cam_periph *start_periph,
2752 		    xpt_periphfunc_t *tr_func, void *arg)
2753 {
2754 	struct cam_periph *periph, *next_periph;
2755 	int retval;
2756 
2757 	retval = 1;
2758 
2759 	for (periph = (start_periph ? start_periph :
2760 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2761 	     periph = next_periph) {
2762 
2763 		next_periph = TAILQ_NEXT(periph, unit_links);
2764 
2765 		retval = tr_func(periph, arg);
2766 		if (retval == 0)
2767 			return(retval);
2768 	}
2769 	return(retval);
2770 }
2771 
2772 static int
2773 xptdefbusfunc(struct cam_eb *bus, void *arg)
2774 {
2775 	struct xpt_traverse_config *tr_config;
2776 
2777 	tr_config = (struct xpt_traverse_config *)arg;
2778 
2779 	if (tr_config->depth == XPT_DEPTH_BUS) {
2780 		xpt_busfunc_t *tr_func;
2781 
2782 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2783 
2784 		return(tr_func(bus, tr_config->tr_arg));
2785 	} else
2786 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2787 }
2788 
2789 static int
2790 xptdeftargetfunc(struct cam_et *target, void *arg)
2791 {
2792 	struct xpt_traverse_config *tr_config;
2793 
2794 	tr_config = (struct xpt_traverse_config *)arg;
2795 
2796 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2797 		xpt_targetfunc_t *tr_func;
2798 
2799 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2800 
2801 		return(tr_func(target, tr_config->tr_arg));
2802 	} else
2803 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2804 }
2805 
2806 static int
2807 xptdefdevicefunc(struct cam_ed *device, void *arg)
2808 {
2809 	struct xpt_traverse_config *tr_config;
2810 
2811 	tr_config = (struct xpt_traverse_config *)arg;
2812 
2813 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2814 		xpt_devicefunc_t *tr_func;
2815 
2816 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2817 
2818 		return(tr_func(device, tr_config->tr_arg));
2819 	} else
2820 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2821 }
2822 
2823 static int
2824 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2825 {
2826 	struct xpt_traverse_config *tr_config;
2827 	xpt_periphfunc_t *tr_func;
2828 
2829 	tr_config = (struct xpt_traverse_config *)arg;
2830 
2831 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2832 
2833 	/*
2834 	 * Unlike the other default functions, we don't check for depth
2835 	 * here.  The peripheral driver level is the last level in the EDT,
2836 	 * so if we're here, we should execute the function in question.
2837 	 */
2838 	return(tr_func(periph, tr_config->tr_arg));
2839 }
2840 
2841 /*
2842  * Execute the given function for every bus in the EDT.
2843  */
2844 static int
2845 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2846 {
2847 	struct xpt_traverse_config tr_config;
2848 
2849 	tr_config.depth = XPT_DEPTH_BUS;
2850 	tr_config.tr_func = tr_func;
2851 	tr_config.tr_arg = arg;
2852 
2853 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2854 }
2855 
2856 /*
2857  * Execute the given function for every device in the EDT.
2858  */
2859 static int
2860 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2861 {
2862 	struct xpt_traverse_config tr_config;
2863 
2864 	tr_config.depth = XPT_DEPTH_DEVICE;
2865 	tr_config.tr_func = tr_func;
2866 	tr_config.tr_arg = arg;
2867 
2868 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2869 }
2870 
2871 static int
2872 xptsetasyncfunc(struct cam_ed *device, void *arg)
2873 {
2874 	struct cam_path path;
2875 	struct ccb_getdev cgd;
2876 	struct async_node *cur_entry;
2877 
2878 	cur_entry = (struct async_node *)arg;
2879 
2880 	/*
2881 	 * Don't report unconfigured devices (Wildcard devs,
2882 	 * devices only for target mode, device instances
2883 	 * that have been invalidated but are waiting for
2884 	 * their last reference count to be released).
2885 	 */
2886 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2887 		return (1);
2888 
2889 	xpt_compile_path(&path,
2890 			 NULL,
2891 			 device->target->bus->path_id,
2892 			 device->target->target_id,
2893 			 device->lun_id);
2894 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2895 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2896 	xpt_action((union ccb *)&cgd);
2897 	cur_entry->callback(cur_entry->callback_arg,
2898 			    AC_FOUND_DEVICE,
2899 			    &path, &cgd);
2900 	xpt_release_path(&path);
2901 
2902 	return(1);
2903 }
2904 
2905 static int
2906 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2907 {
2908 	struct cam_path path;
2909 	struct ccb_pathinq cpi;
2910 	struct async_node *cur_entry;
2911 
2912 	cur_entry = (struct async_node *)arg;
2913 
2914 	xpt_compile_path(&path, /*periph*/NULL,
2915 			 bus->sim->path_id,
2916 			 CAM_TARGET_WILDCARD,
2917 			 CAM_LUN_WILDCARD);
2918 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2919 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2920 	xpt_action((union ccb *)&cpi);
2921 	cur_entry->callback(cur_entry->callback_arg,
2922 			    AC_PATH_REGISTERED,
2923 			    &path, &cpi);
2924 	xpt_release_path(&path);
2925 
2926 	return(1);
2927 }
2928 
2929 static void
2930 xpt_action_sasync_cb(void *context, int pending)
2931 {
2932 	struct async_node *cur_entry;
2933 	struct xpt_task *task;
2934 	uint32_t added;
2935 
2936 	task = (struct xpt_task *)context;
2937 	cur_entry = (struct async_node *)task->data1;
2938 	added = task->data2;
2939 
2940 	if ((added & AC_FOUND_DEVICE) != 0) {
2941 		/*
2942 		 * Get this peripheral up to date with all
2943 		 * the currently existing devices.
2944 		 */
2945 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946 	}
2947 	if ((added & AC_PATH_REGISTERED) != 0) {
2948 		/*
2949 		 * Get this peripheral up to date with all
2950 		 * the currently existing busses.
2951 		 */
2952 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2953 	}
2954 	kfree(task, M_CAMXPT);
2955 }
2956 
2957 void
2958 xpt_action(union ccb *start_ccb)
2959 {
2960 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2961 
2962 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2963 
2964 	switch (start_ccb->ccb_h.func_code) {
2965 	case XPT_SCSI_IO:
2966 	case XPT_TRIM:
2967 	{
2968 		struct cam_ed *device;
2969 #ifdef CAMDEBUG
2970 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2971 		struct cam_path *path;
2972 
2973 		path = start_ccb->ccb_h.path;
2974 #endif
2975 
2976 		/*
2977 		 * For the sake of compatibility with SCSI-1
2978 		 * devices that may not understand the identify
2979 		 * message, we include lun information in the
2980 		 * second byte of all commands.  SCSI-1 specifies
2981 		 * that luns are a 3 bit value and reserves only 3
2982 		 * bits for lun information in the CDB.  Later
2983 		 * revisions of the SCSI spec allow for more than 8
2984 		 * luns, but have deprecated lun information in the
2985 		 * CDB.  So, if the lun won't fit, we must omit.
2986 		 *
2987 		 * Also be aware that during initial probing for devices,
2988 		 * the inquiry information is unknown but initialized to 0.
2989 		 * This means that this code will be exercised while probing
2990 		 * devices with an ANSI revision greater than 2.
2991 		 */
2992 		device = start_ccb->ccb_h.path->device;
2993 		if (device->protocol_version <= SCSI_REV_2
2994 		 && start_ccb->ccb_h.target_lun < 8
2995 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2996 
2997 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2998 			    start_ccb->ccb_h.target_lun << 5;
2999 		}
3000 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3001 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3002 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3003 			  	       &path->device->inq_data),
3004 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3005 					  cdb_str, sizeof(cdb_str))));
3006 		/* FALLTHROUGH */
3007 	}
3008 	case XPT_TARGET_IO:
3009 	case XPT_CONT_TARGET_IO:
3010 		start_ccb->csio.sense_resid = 0;
3011 		start_ccb->csio.resid = 0;
3012 		/* FALLTHROUGH */
3013 	case XPT_RESET_DEV:
3014 	case XPT_ENG_EXEC:
3015 	{
3016 		struct cam_path *path;
3017 		struct cam_sim *sim;
3018 		int runq;
3019 
3020 		path = start_ccb->ccb_h.path;
3021 
3022 		sim = path->bus->sim;
3023 		if (sim == &cam_dead_sim) {
3024 			/* The SIM has gone; just execute the CCB directly. */
3025 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3026 			(*(sim->sim_action))(sim, start_ccb);
3027 			break;
3028 		}
3029 
3030 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3031 		if (path->device->qfrozen_cnt == 0)
3032 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3033 		else
3034 			runq = 0;
3035 		if (runq != 0)
3036 			xpt_run_dev_sendq(path->bus);
3037 		break;
3038 	}
3039 	case XPT_SET_TRAN_SETTINGS:
3040 	{
3041 		xpt_set_transfer_settings(&start_ccb->cts,
3042 					  start_ccb->ccb_h.path->device,
3043 					  /*async_update*/FALSE);
3044 		break;
3045 	}
3046 	case XPT_CALC_GEOMETRY:
3047 	{
3048 		struct cam_sim *sim;
3049 
3050 		/* Filter out garbage */
3051 		if (start_ccb->ccg.block_size == 0
3052 		 || start_ccb->ccg.volume_size == 0) {
3053 			start_ccb->ccg.cylinders = 0;
3054 			start_ccb->ccg.heads = 0;
3055 			start_ccb->ccg.secs_per_track = 0;
3056 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3057 			break;
3058 		}
3059 		sim = start_ccb->ccb_h.path->bus->sim;
3060 		(*(sim->sim_action))(sim, start_ccb);
3061 		break;
3062 	}
3063 	case XPT_ABORT:
3064 	{
3065 		union ccb* abort_ccb;
3066 
3067 		abort_ccb = start_ccb->cab.abort_ccb;
3068 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3069 
3070 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3071 				struct cam_ccbq *ccbq;
3072 
3073 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3074 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3075 				abort_ccb->ccb_h.status =
3076 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3077 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3078 				xpt_done(abort_ccb);
3079 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3080 				break;
3081 			}
3082 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3083 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3084 				/*
3085 				 * We've caught this ccb en route to
3086 				 * the SIM.  Flag it for abort and the
3087 				 * SIM will do so just before starting
3088 				 * real work on the CCB.
3089 				 */
3090 				abort_ccb->ccb_h.status =
3091 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3092 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3093 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3094 				break;
3095 			}
3096 		}
3097 		if (XPT_FC_IS_QUEUED(abort_ccb)
3098 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3099 			/*
3100 			 * It's already completed but waiting
3101 			 * for our SWI to get to it.
3102 			 */
3103 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3104 			break;
3105 		}
3106 		/*
3107 		 * If we weren't able to take care of the abort request
3108 		 * in the XPT, pass the request down to the SIM for processing.
3109 		 */
3110 		/* FALLTHROUGH */
3111 	}
3112 	case XPT_ACCEPT_TARGET_IO:
3113 	case XPT_EN_LUN:
3114 	case XPT_IMMED_NOTIFY:
3115 	case XPT_NOTIFY_ACK:
3116 	case XPT_GET_TRAN_SETTINGS:
3117 	case XPT_RESET_BUS:
3118 	{
3119 		struct cam_sim *sim;
3120 
3121 		sim = start_ccb->ccb_h.path->bus->sim;
3122 		(*(sim->sim_action))(sim, start_ccb);
3123 		break;
3124 	}
3125 	case XPT_PATH_INQ:
3126 	{
3127 		struct cam_sim *sim;
3128 
3129 		sim = start_ccb->ccb_h.path->bus->sim;
3130 		(*(sim->sim_action))(sim, start_ccb);
3131 		break;
3132 	}
3133 	case XPT_PATH_STATS:
3134 		start_ccb->cpis.last_reset =
3135 			start_ccb->ccb_h.path->bus->last_reset;
3136 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3137 		break;
3138 	case XPT_GDEV_TYPE:
3139 	{
3140 		struct cam_ed *dev;
3141 
3142 		dev = start_ccb->ccb_h.path->device;
3143 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3144 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3145 		} else {
3146 			struct ccb_getdev *cgd;
3147 			struct cam_eb *bus;
3148 			struct cam_et *tar;
3149 
3150 			cgd = &start_ccb->cgd;
3151 			bus = cgd->ccb_h.path->bus;
3152 			tar = cgd->ccb_h.path->target;
3153 			cgd->inq_data = dev->inq_data;
3154 			cgd->ccb_h.status = CAM_REQ_CMP;
3155 			cgd->serial_num_len = dev->serial_num_len;
3156 			if ((dev->serial_num_len > 0)
3157 			 && (dev->serial_num != NULL))
3158 				bcopy(dev->serial_num, cgd->serial_num,
3159 				      dev->serial_num_len);
3160 		}
3161 		break;
3162 	}
3163 	case XPT_GDEV_STATS:
3164 	{
3165 		struct cam_ed *dev;
3166 
3167 		dev = start_ccb->ccb_h.path->device;
3168 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3169 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3170 		} else {
3171 			struct ccb_getdevstats *cgds;
3172 			struct cam_eb *bus;
3173 			struct cam_et *tar;
3174 
3175 			cgds = &start_ccb->cgds;
3176 			bus = cgds->ccb_h.path->bus;
3177 			tar = cgds->ccb_h.path->target;
3178 			cgds->dev_openings = dev->ccbq.dev_openings;
3179 			cgds->dev_active = dev->ccbq.dev_active;
3180 			cgds->devq_openings = dev->ccbq.devq_openings;
3181 			cgds->devq_queued = dev->ccbq.queue.entries;
3182 			cgds->held = dev->ccbq.held;
3183 			cgds->last_reset = tar->last_reset;
3184 			cgds->maxtags = dev->quirk->maxtags;
3185 			cgds->mintags = dev->quirk->mintags;
3186 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3187 				cgds->last_reset = bus->last_reset;
3188 			cgds->ccb_h.status = CAM_REQ_CMP;
3189 		}
3190 		break;
3191 	}
3192 	case XPT_GDEVLIST:
3193 	{
3194 		struct cam_periph	*nperiph;
3195 		struct periph_list	*periph_head;
3196 		struct ccb_getdevlist	*cgdl;
3197 		u_int			i;
3198 		struct cam_ed		*device;
3199 		int			found;
3200 
3201 
3202 		found = 0;
3203 
3204 		/*
3205 		 * Don't want anyone mucking with our data.
3206 		 */
3207 		device = start_ccb->ccb_h.path->device;
3208 		periph_head = &device->periphs;
3209 		cgdl = &start_ccb->cgdl;
3210 
3211 		/*
3212 		 * Check and see if the list has changed since the user
3213 		 * last requested a list member.  If so, tell them that the
3214 		 * list has changed, and therefore they need to start over
3215 		 * from the beginning.
3216 		 */
3217 		if ((cgdl->index != 0) &&
3218 		    (cgdl->generation != device->generation)) {
3219 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3220 			break;
3221 		}
3222 
3223 		/*
3224 		 * Traverse the list of peripherals and attempt to find
3225 		 * the requested peripheral.
3226 		 */
3227 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3228 		     (nperiph != NULL) && (i <= cgdl->index);
3229 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3230 			if (i == cgdl->index) {
3231 				strncpy(cgdl->periph_name,
3232 					nperiph->periph_name,
3233 					DEV_IDLEN);
3234 				cgdl->unit_number = nperiph->unit_number;
3235 				found = 1;
3236 			}
3237 		}
3238 		if (found == 0) {
3239 			cgdl->status = CAM_GDEVLIST_ERROR;
3240 			break;
3241 		}
3242 
3243 		if (nperiph == NULL)
3244 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3245 		else
3246 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3247 
3248 		cgdl->index++;
3249 		cgdl->generation = device->generation;
3250 
3251 		cgdl->ccb_h.status = CAM_REQ_CMP;
3252 		break;
3253 	}
3254 	case XPT_DEV_MATCH:
3255 	{
3256 		dev_pos_type position_type;
3257 		struct ccb_dev_match *cdm;
3258 		int ret;
3259 
3260 		cdm = &start_ccb->cdm;
3261 
3262 		/*
3263 		 * There are two ways of getting at information in the EDT.
3264 		 * The first way is via the primary EDT tree.  It starts
3265 		 * with a list of busses, then a list of targets on a bus,
3266 		 * then devices/luns on a target, and then peripherals on a
3267 		 * device/lun.  The "other" way is by the peripheral driver
3268 		 * lists.  The peripheral driver lists are organized by
3269 		 * peripheral driver.  (obviously)  So it makes sense to
3270 		 * use the peripheral driver list if the user is looking
3271 		 * for something like "da1", or all "da" devices.  If the
3272 		 * user is looking for something on a particular bus/target
3273 		 * or lun, it's generally better to go through the EDT tree.
3274 		 */
3275 
3276 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3277 			position_type = cdm->pos.position_type;
3278 		else {
3279 			u_int i;
3280 
3281 			position_type = CAM_DEV_POS_NONE;
3282 
3283 			for (i = 0; i < cdm->num_patterns; i++) {
3284 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3285 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3286 					position_type = CAM_DEV_POS_EDT;
3287 					break;
3288 				}
3289 			}
3290 
3291 			if (cdm->num_patterns == 0)
3292 				position_type = CAM_DEV_POS_EDT;
3293 			else if (position_type == CAM_DEV_POS_NONE)
3294 				position_type = CAM_DEV_POS_PDRV;
3295 		}
3296 
3297 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3298 		case CAM_DEV_POS_EDT:
3299 			ret = xptedtmatch(cdm);
3300 			break;
3301 		case CAM_DEV_POS_PDRV:
3302 			ret = xptperiphlistmatch(cdm);
3303 			break;
3304 		default:
3305 			cdm->status = CAM_DEV_MATCH_ERROR;
3306 			break;
3307 		}
3308 
3309 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3310 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3311 		else
3312 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3313 
3314 		break;
3315 	}
3316 	case XPT_SASYNC_CB:
3317 	{
3318 		struct ccb_setasync *csa;
3319 		struct async_node *cur_entry;
3320 		struct async_list *async_head;
3321 		u_int32_t added;
3322 
3323 		csa = &start_ccb->csa;
3324 		added = csa->event_enable;
3325 		async_head = &csa->ccb_h.path->device->asyncs;
3326 
3327 		/*
3328 		 * If there is already an entry for us, simply
3329 		 * update it.
3330 		 */
3331 		cur_entry = SLIST_FIRST(async_head);
3332 		while (cur_entry != NULL) {
3333 			if ((cur_entry->callback_arg == csa->callback_arg)
3334 			 && (cur_entry->callback == csa->callback))
3335 				break;
3336 			cur_entry = SLIST_NEXT(cur_entry, links);
3337 		}
3338 
3339 		if (cur_entry != NULL) {
3340 		 	/*
3341 			 * If the request has no flags set,
3342 			 * remove the entry.
3343 			 */
3344 			added &= ~cur_entry->event_enable;
3345 			if (csa->event_enable == 0) {
3346 				SLIST_REMOVE(async_head, cur_entry,
3347 					     async_node, links);
3348 				csa->ccb_h.path->device->refcount--;
3349 				kfree(cur_entry, M_CAMXPT);
3350 			} else {
3351 				cur_entry->event_enable = csa->event_enable;
3352 			}
3353 		} else {
3354 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3355 					   M_INTWAIT);
3356 			cur_entry->event_enable = csa->event_enable;
3357 			cur_entry->callback_arg = csa->callback_arg;
3358 			cur_entry->callback = csa->callback;
3359 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3360 			csa->ccb_h.path->device->refcount++;
3361 		}
3362 
3363 		/*
3364 		 * Need to decouple this operation via a taskqueue so that
3365 		 * the locking doesn't become a mess.
3366 		 */
3367 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3368 			struct xpt_task *task;
3369 
3370 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3371 				      M_INTWAIT);
3372 
3373 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3374 			task->data1 = cur_entry;
3375 			task->data2 = added;
3376 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3377 					  &task->task);
3378 		}
3379 
3380 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3381 		break;
3382 	}
3383 	case XPT_REL_SIMQ:
3384 	{
3385 		struct ccb_relsim *crs;
3386 		struct cam_ed *dev;
3387 
3388 		crs = &start_ccb->crs;
3389 		dev = crs->ccb_h.path->device;
3390 		if (dev == NULL) {
3391 
3392 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3393 			break;
3394 		}
3395 
3396 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3397 
3398  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3399 				/* Don't ever go below one opening */
3400 				if (crs->openings > 0) {
3401 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3402 							    crs->openings);
3403 
3404 					if (bootverbose) {
3405 						xpt_print(crs->ccb_h.path,
3406 						    "tagged openings now %d\n",
3407 						    crs->openings);
3408 					}
3409 				}
3410 			}
3411 		}
3412 
3413 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3414 
3415 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3416 
3417 				/*
3418 				 * Just extend the old timeout and decrement
3419 				 * the freeze count so that a single timeout
3420 				 * is sufficient for releasing the queue.
3421 				 */
3422 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3423 				callout_stop(&dev->callout);
3424 			} else {
3425 
3426 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3427 			}
3428 
3429 			callout_reset(&dev->callout,
3430 				      (crs->release_timeout * hz) / 1000,
3431 				      xpt_release_devq_timeout, dev);
3432 
3433 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3434 
3435 		}
3436 
3437 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3438 
3439 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3440 				/*
3441 				 * Decrement the freeze count so that a single
3442 				 * completion is still sufficient to unfreeze
3443 				 * the queue.
3444 				 */
3445 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3446 			} else {
3447 
3448 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3449 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3450 			}
3451 		}
3452 
3453 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3454 
3455 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3456 			 || (dev->ccbq.dev_active == 0)) {
3457 
3458 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3459 			} else {
3460 
3461 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3462 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3463 			}
3464 		}
3465 
3466 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3467 
3468 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3469 					 /*run_queue*/TRUE);
3470 		}
3471 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3472 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3473 		break;
3474 	}
3475 	case XPT_SCAN_BUS:
3476 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3477 		break;
3478 	case XPT_SCAN_LUN:
3479 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3480 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3481 			     start_ccb);
3482 		break;
3483 	case XPT_DEBUG: {
3484 #ifdef CAMDEBUG
3485 #ifdef CAM_DEBUG_DELAY
3486 		cam_debug_delay = CAM_DEBUG_DELAY;
3487 #endif
3488 		cam_dflags = start_ccb->cdbg.flags;
3489 		if (cam_dpath != NULL) {
3490 			xpt_free_path(cam_dpath);
3491 			cam_dpath = NULL;
3492 		}
3493 
3494 		if (cam_dflags != CAM_DEBUG_NONE) {
3495 			if (xpt_create_path(&cam_dpath, xpt_periph,
3496 					    start_ccb->ccb_h.path_id,
3497 					    start_ccb->ccb_h.target_id,
3498 					    start_ccb->ccb_h.target_lun) !=
3499 					    CAM_REQ_CMP) {
3500 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3501 				cam_dflags = CAM_DEBUG_NONE;
3502 			} else {
3503 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3504 				xpt_print(cam_dpath, "debugging flags now %x\n",
3505 				    cam_dflags);
3506 			}
3507 		} else {
3508 			cam_dpath = NULL;
3509 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3510 		}
3511 #else /* !CAMDEBUG */
3512 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3513 #endif /* CAMDEBUG */
3514 		break;
3515 	}
3516 	case XPT_NOOP:
3517 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3518 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3519 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3520 		break;
3521 	default:
3522 	case XPT_SDEV_TYPE:
3523 	case XPT_TERM_IO:
3524 	case XPT_ENG_INQ:
3525 		/* XXX Implement */
3526 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3527 		break;
3528 	}
3529 }
3530 
3531 void
3532 xpt_polled_action(union ccb *start_ccb)
3533 {
3534 	u_int32_t timeout;
3535 	struct	  cam_sim *sim;
3536 	struct	  cam_devq *devq;
3537 	struct	  cam_ed *dev;
3538 
3539 	timeout = start_ccb->ccb_h.timeout;
3540 	sim = start_ccb->ccb_h.path->bus->sim;
3541 	devq = sim->devq;
3542 	dev = start_ccb->ccb_h.path->device;
3543 
3544 	sim_lock_assert_owned(sim->lock);
3545 
3546 	/*
3547 	 * Steal an opening so that no other queued requests
3548 	 * can get it before us while we simulate interrupts.
3549 	 */
3550 	dev->ccbq.devq_openings--;
3551 	dev->ccbq.dev_openings--;
3552 
3553 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3554 	   && (--timeout > 0)) {
3555 		DELAY(1000);
3556 		(*(sim->sim_poll))(sim);
3557 		camisr_runqueue(sim);
3558 	}
3559 
3560 	dev->ccbq.devq_openings++;
3561 	dev->ccbq.dev_openings++;
3562 
3563 	if (timeout != 0) {
3564 		xpt_action(start_ccb);
3565 		while(--timeout > 0) {
3566 			(*(sim->sim_poll))(sim);
3567 			camisr_runqueue(sim);
3568 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3569 			    != CAM_REQ_INPROG)
3570 				break;
3571 			DELAY(1000);
3572 		}
3573 		if (timeout == 0) {
3574 			/*
3575 			 * XXX Is it worth adding a sim_timeout entry
3576 			 * point so we can attempt recovery?  If
3577 			 * this is only used for dumps, I don't think
3578 			 * it is.
3579 			 */
3580 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3581 		}
3582 	} else {
3583 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3584 	}
3585 }
3586 
3587 /*
3588  * Schedule a peripheral driver to receive a ccb when it's
3589  * target device has space for more transactions.
3590  */
3591 void
3592 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3593 {
3594 	struct cam_ed *device;
3595 	union ccb *work_ccb;
3596 	int runq;
3597 
3598 	sim_lock_assert_owned(perph->sim->lock);
3599 
3600 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3601 	device = perph->path->device;
3602 	if (periph_is_queued(perph)) {
3603 		/* Simply reorder based on new priority */
3604 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3605 			  ("   change priority to %d\n", new_priority));
3606 		if (new_priority < perph->pinfo.priority) {
3607 			camq_change_priority(&device->drvq,
3608 					     perph->pinfo.index,
3609 					     new_priority);
3610 		}
3611 		runq = 0;
3612 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3613 		/* The SIM is gone so just call periph_start directly. */
3614 		work_ccb = xpt_get_ccb(perph->path->device);
3615 		if (work_ccb == NULL)
3616 			return; /* XXX */
3617 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3618 		perph->pinfo.priority = new_priority;
3619 		perph->periph_start(perph, work_ccb);
3620 		return;
3621 	} else {
3622 		/* New entry on the queue */
3623 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3624 			  ("   added periph to queue\n"));
3625 		perph->pinfo.priority = new_priority;
3626 		perph->pinfo.generation = ++device->drvq.generation;
3627 		camq_insert(&device->drvq, &perph->pinfo);
3628 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3629 	}
3630 	if (runq != 0) {
3631 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3632 			  ("   calling xpt_run_devq\n"));
3633 		xpt_run_dev_allocq(perph->path->bus);
3634 	}
3635 }
3636 
3637 
3638 /*
3639  * Schedule a device to run on a given queue.
3640  * If the device was inserted as a new entry on the queue,
3641  * return 1 meaning the device queue should be run. If we
3642  * were already queued, implying someone else has already
3643  * started the queue, return 0 so the caller doesn't attempt
3644  * to run the queue.
3645  */
3646 static int
3647 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3648 		 u_int32_t new_priority)
3649 {
3650 	int retval;
3651 	u_int32_t old_priority;
3652 
3653 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3654 
3655 	old_priority = pinfo->priority;
3656 
3657 	/*
3658 	 * Are we already queued?
3659 	 */
3660 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3661 		/* Simply reorder based on new priority */
3662 		if (new_priority < old_priority) {
3663 			camq_change_priority(queue, pinfo->index,
3664 					     new_priority);
3665 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3666 					("changed priority to %d\n",
3667 					 new_priority));
3668 		}
3669 		retval = 0;
3670 	} else {
3671 		/* New entry on the queue */
3672 		if (new_priority < old_priority)
3673 			pinfo->priority = new_priority;
3674 
3675 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3676 				("Inserting onto queue\n"));
3677 		pinfo->generation = ++queue->generation;
3678 		camq_insert(queue, pinfo);
3679 		retval = 1;
3680 	}
3681 	return (retval);
3682 }
3683 
3684 static void
3685 xpt_run_dev_allocq(struct cam_eb *bus)
3686 {
3687 	struct	cam_devq *devq;
3688 
3689 	if ((devq = bus->sim->devq) == NULL) {
3690 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3691 		return;
3692 	}
3693 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3694 
3695 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3696 			("   qfrozen_cnt == 0x%x, entries == %d, "
3697 			 "openings == %d, active == %d\n",
3698 			 devq->alloc_queue.qfrozen_cnt,
3699 			 devq->alloc_queue.entries,
3700 			 devq->alloc_openings,
3701 			 devq->alloc_active));
3702 
3703 	devq->alloc_queue.qfrozen_cnt++;
3704 	while ((devq->alloc_queue.entries > 0)
3705 	    && (devq->alloc_openings > 0)
3706 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3707 		struct	cam_ed_qinfo *qinfo;
3708 		struct	cam_ed *device;
3709 		union	ccb *work_ccb;
3710 		struct	cam_periph *drv;
3711 		struct	camq *drvq;
3712 
3713 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3714 							   CAMQ_HEAD);
3715 		device = qinfo->device;
3716 
3717 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3718 				("running device %p\n", device));
3719 
3720 		drvq = &device->drvq;
3721 
3722 #ifdef CAMDEBUG
3723 		if (drvq->entries <= 0) {
3724 			panic("xpt_run_dev_allocq: "
3725 			      "Device on queue without any work to do");
3726 		}
3727 #endif
3728 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3729 			devq->alloc_openings--;
3730 			devq->alloc_active++;
3731 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3732 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3733 				      drv->pinfo.priority);
3734 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3735 					("calling periph start\n"));
3736 			drv->periph_start(drv, work_ccb);
3737 		} else {
3738 			/*
3739 			 * Malloc failure in alloc_ccb
3740 			 */
3741 			/*
3742 			 * XXX add us to a list to be run from free_ccb
3743 			 * if we don't have any ccbs active on this
3744 			 * device queue otherwise we may never get run
3745 			 * again.
3746 			 */
3747 			break;
3748 		}
3749 
3750 		if (drvq->entries > 0) {
3751 			/* We have more work.  Attempt to reschedule */
3752 			xpt_schedule_dev_allocq(bus, device);
3753 		}
3754 	}
3755 	devq->alloc_queue.qfrozen_cnt--;
3756 }
3757 
3758 static void
3759 xpt_run_dev_sendq(struct cam_eb *bus)
3760 {
3761 	struct	cam_devq *devq;
3762 
3763 	if ((devq = bus->sim->devq) == NULL) {
3764 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3765 		return;
3766 	}
3767 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3768 
3769 	devq->send_queue.qfrozen_cnt++;
3770 	while ((devq->send_queue.entries > 0)
3771 	    && (devq->send_openings > 0)) {
3772 		struct	cam_ed_qinfo *qinfo;
3773 		struct	cam_ed *device;
3774 		union ccb *work_ccb;
3775 		struct	cam_sim *sim;
3776 
3777 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3778 			break;
3779 		}
3780 
3781 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3782 							   CAMQ_HEAD);
3783 		device = qinfo->device;
3784 
3785 		/*
3786 		 * If the device has been "frozen", don't attempt
3787 		 * to run it.
3788 		 */
3789 		if (device->qfrozen_cnt > 0) {
3790 			continue;
3791 		}
3792 
3793 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3794 				("running device %p\n", device));
3795 
3796 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3797 		if (work_ccb == NULL) {
3798 			kprintf("device on run queue with no ccbs???\n");
3799 			continue;
3800 		}
3801 
3802 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3803 
3804 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3805 			if (xsoftc.num_highpower <= 0) {
3806 				/*
3807 				 * We got a high power command, but we
3808 				 * don't have any available slots.  Freeze
3809 				 * the device queue until we have a slot
3810 				 * available.
3811 				 */
3812 				device->qfrozen_cnt++;
3813 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3814 						   &work_ccb->ccb_h,
3815 						   xpt_links.stqe);
3816 
3817 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3818 				continue;
3819 			} else {
3820 				/*
3821 				 * Consume a high power slot while
3822 				 * this ccb runs.
3823 				 */
3824 				xsoftc.num_highpower--;
3825 			}
3826 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3827 		}
3828 		devq->active_dev = device;
3829 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3830 
3831 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3832 
3833 		devq->send_openings--;
3834 		devq->send_active++;
3835 
3836 		if (device->ccbq.queue.entries > 0)
3837 			xpt_schedule_dev_sendq(bus, device);
3838 
3839 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3840 			/*
3841 			 * The client wants to freeze the queue
3842 			 * after this CCB is sent.
3843 			 */
3844 			device->qfrozen_cnt++;
3845 		}
3846 
3847 		/* In Target mode, the peripheral driver knows best... */
3848 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3849 			if ((device->inq_flags & SID_CmdQue) != 0
3850 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3851 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3852 			else
3853 				/*
3854 				 * Clear this in case of a retried CCB that
3855 				 * failed due to a rejected tag.
3856 				 */
3857 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3858 		}
3859 
3860 		/*
3861 		 * Device queues can be shared among multiple sim instances
3862 		 * that reside on different busses.  Use the SIM in the queue
3863 		 * CCB's path, rather than the one in the bus that was passed
3864 		 * into this function.
3865 		 */
3866 		sim = work_ccb->ccb_h.path->bus->sim;
3867 		(*(sim->sim_action))(sim, work_ccb);
3868 
3869 		devq->active_dev = NULL;
3870 	}
3871 	devq->send_queue.qfrozen_cnt--;
3872 }
3873 
3874 /*
3875  * This function merges stuff from the slave ccb into the master ccb, while
3876  * keeping important fields in the master ccb constant.
3877  */
3878 void
3879 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3880 {
3881 	/*
3882 	 * Pull fields that are valid for peripheral drivers to set
3883 	 * into the master CCB along with the CCB "payload".
3884 	 */
3885 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3886 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3887 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3888 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3889 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3890 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3891 }
3892 
3893 void
3894 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3895 {
3896 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3897 	callout_init(&ccb_h->timeout_ch);
3898 	ccb_h->pinfo.priority = priority;
3899 	ccb_h->path = path;
3900 	ccb_h->path_id = path->bus->path_id;
3901 	if (path->target)
3902 		ccb_h->target_id = path->target->target_id;
3903 	else
3904 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3905 	if (path->device) {
3906 		ccb_h->target_lun = path->device->lun_id;
3907 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3908 	} else {
3909 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3910 	}
3911 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3912 	ccb_h->flags = 0;
3913 }
3914 
3915 /* Path manipulation functions */
3916 cam_status
3917 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3918 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3919 {
3920 	struct	   cam_path *path;
3921 	cam_status status;
3922 
3923 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3924 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3925 	if (status != CAM_REQ_CMP) {
3926 		kfree(path, M_CAMXPT);
3927 		path = NULL;
3928 	}
3929 	*new_path_ptr = path;
3930 	return (status);
3931 }
3932 
3933 cam_status
3934 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3935 			 struct cam_periph *periph, path_id_t path_id,
3936 			 target_id_t target_id, lun_id_t lun_id)
3937 {
3938 	struct	   cam_path *path;
3939 	struct	   cam_eb *bus = NULL;
3940 	cam_status status;
3941 	int	   need_unlock = 0;
3942 
3943 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3944 
3945 	if (path_id != CAM_BUS_WILDCARD) {
3946 		bus = xpt_find_bus(path_id);
3947 		if (bus != NULL) {
3948 			need_unlock = 1;
3949 			CAM_SIM_LOCK(bus->sim);
3950 		}
3951 	}
3952 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3953 	if (need_unlock)
3954 		CAM_SIM_UNLOCK(bus->sim);
3955 	if (status != CAM_REQ_CMP) {
3956 		kfree(path, M_CAMXPT);
3957 		path = NULL;
3958 	}
3959 	*new_path_ptr = path;
3960 	return (status);
3961 }
3962 
3963 static cam_status
3964 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3965 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3966 {
3967 	struct	     cam_eb *bus;
3968 	struct	     cam_et *target;
3969 	struct	     cam_ed *device;
3970 	cam_status   status;
3971 
3972 	status = CAM_REQ_CMP;	/* Completed without error */
3973 	target = NULL;		/* Wildcarded */
3974 	device = NULL;		/* Wildcarded */
3975 
3976 	/*
3977 	 * We will potentially modify the EDT, so block interrupts
3978 	 * that may attempt to create cam paths.
3979 	 */
3980 	bus = xpt_find_bus(path_id);
3981 	if (bus == NULL) {
3982 		status = CAM_PATH_INVALID;
3983 	} else {
3984 		target = xpt_find_target(bus, target_id);
3985 		if (target == NULL) {
3986 			/* Create one */
3987 			struct cam_et *new_target;
3988 
3989 			new_target = xpt_alloc_target(bus, target_id);
3990 			if (new_target == NULL) {
3991 				status = CAM_RESRC_UNAVAIL;
3992 			} else {
3993 				target = new_target;
3994 			}
3995 		}
3996 		if (target != NULL) {
3997 			device = xpt_find_device(target, lun_id);
3998 			if (device == NULL) {
3999 				/* Create one */
4000 				struct cam_ed *new_device;
4001 
4002 				new_device = xpt_alloc_device(bus,
4003 							      target,
4004 							      lun_id);
4005 				if (new_device == NULL) {
4006 					status = CAM_RESRC_UNAVAIL;
4007 				} else {
4008 					device = new_device;
4009 				}
4010 			}
4011 		}
4012 	}
4013 
4014 	/*
4015 	 * Only touch the user's data if we are successful.
4016 	 */
4017 	if (status == CAM_REQ_CMP) {
4018 		new_path->periph = perph;
4019 		new_path->bus = bus;
4020 		new_path->target = target;
4021 		new_path->device = device;
4022 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4023 	} else {
4024 		if (device != NULL)
4025 			xpt_release_device(bus, target, device);
4026 		if (target != NULL)
4027 			xpt_release_target(bus, target);
4028 		if (bus != NULL)
4029 			xpt_release_bus(bus);
4030 	}
4031 	return (status);
4032 }
4033 
4034 static void
4035 xpt_release_path(struct cam_path *path)
4036 {
4037 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4038 	if (path->device != NULL) {
4039 		xpt_release_device(path->bus, path->target, path->device);
4040 		path->device = NULL;
4041 	}
4042 	if (path->target != NULL) {
4043 		xpt_release_target(path->bus, path->target);
4044 		path->target = NULL;
4045 	}
4046 	if (path->bus != NULL) {
4047 		xpt_release_bus(path->bus);
4048 		path->bus = NULL;
4049 	}
4050 }
4051 
4052 void
4053 xpt_free_path(struct cam_path *path)
4054 {
4055 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4056 	xpt_release_path(path);
4057 	kfree(path, M_CAMXPT);
4058 }
4059 
4060 
4061 /*
4062  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4063  * in path1, 2 for match with wildcards in path2.
4064  */
4065 int
4066 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4067 {
4068 	int retval = 0;
4069 
4070 	if (path1->bus != path2->bus) {
4071 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4072 			retval = 1;
4073 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4074 			retval = 2;
4075 		else
4076 			return (-1);
4077 	}
4078 	if (path1->target != path2->target) {
4079 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4080 			if (retval == 0)
4081 				retval = 1;
4082 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4083 			retval = 2;
4084 		else
4085 			return (-1);
4086 	}
4087 	if (path1->device != path2->device) {
4088 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4089 			if (retval == 0)
4090 				retval = 1;
4091 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4092 			retval = 2;
4093 		else
4094 			return (-1);
4095 	}
4096 	return (retval);
4097 }
4098 
4099 void
4100 xpt_print_path(struct cam_path *path)
4101 {
4102 
4103 	if (path == NULL)
4104 		kprintf("(nopath): ");
4105 	else {
4106 		if (path->periph != NULL)
4107 			kprintf("(%s%d:", path->periph->periph_name,
4108 			       path->periph->unit_number);
4109 		else
4110 			kprintf("(noperiph:");
4111 
4112 		if (path->bus != NULL)
4113 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4114 			       path->bus->sim->unit_number,
4115 			       path->bus->sim->bus_id);
4116 		else
4117 			kprintf("nobus:");
4118 
4119 		if (path->target != NULL)
4120 			kprintf("%d:", path->target->target_id);
4121 		else
4122 			kprintf("X:");
4123 
4124 		if (path->device != NULL)
4125 			kprintf("%d): ", path->device->lun_id);
4126 		else
4127 			kprintf("X): ");
4128 	}
4129 }
4130 
4131 void
4132 xpt_print(struct cam_path *path, const char *fmt, ...)
4133 {
4134 	__va_list ap;
4135 	xpt_print_path(path);
4136 	__va_start(ap, fmt);
4137 	kvprintf(fmt, ap);
4138 	__va_end(ap);
4139 }
4140 
4141 int
4142 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4143 {
4144 	struct sbuf sb;
4145 
4146 	sim_lock_assert_owned(path->bus->sim->lock);
4147 
4148 	sbuf_new(&sb, str, str_len, 0);
4149 
4150 	if (path == NULL)
4151 		sbuf_printf(&sb, "(nopath): ");
4152 	else {
4153 		if (path->periph != NULL)
4154 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4155 				    path->periph->unit_number);
4156 		else
4157 			sbuf_printf(&sb, "(noperiph:");
4158 
4159 		if (path->bus != NULL)
4160 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4161 				    path->bus->sim->unit_number,
4162 				    path->bus->sim->bus_id);
4163 		else
4164 			sbuf_printf(&sb, "nobus:");
4165 
4166 		if (path->target != NULL)
4167 			sbuf_printf(&sb, "%d:", path->target->target_id);
4168 		else
4169 			sbuf_printf(&sb, "X:");
4170 
4171 		if (path->device != NULL)
4172 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4173 		else
4174 			sbuf_printf(&sb, "X): ");
4175 	}
4176 	sbuf_finish(&sb);
4177 
4178 	return(sbuf_len(&sb));
4179 }
4180 
4181 path_id_t
4182 xpt_path_path_id(struct cam_path *path)
4183 {
4184 	sim_lock_assert_owned(path->bus->sim->lock);
4185 
4186 	return(path->bus->path_id);
4187 }
4188 
4189 target_id_t
4190 xpt_path_target_id(struct cam_path *path)
4191 {
4192 	sim_lock_assert_owned(path->bus->sim->lock);
4193 
4194 	if (path->target != NULL)
4195 		return (path->target->target_id);
4196 	else
4197 		return (CAM_TARGET_WILDCARD);
4198 }
4199 
4200 lun_id_t
4201 xpt_path_lun_id(struct cam_path *path)
4202 {
4203 	sim_lock_assert_owned(path->bus->sim->lock);
4204 
4205 	if (path->device != NULL)
4206 		return (path->device->lun_id);
4207 	else
4208 		return (CAM_LUN_WILDCARD);
4209 }
4210 
4211 struct cam_sim *
4212 xpt_path_sim(struct cam_path *path)
4213 {
4214 	return (path->bus->sim);
4215 }
4216 
4217 struct cam_periph*
4218 xpt_path_periph(struct cam_path *path)
4219 {
4220 	sim_lock_assert_owned(path->bus->sim->lock);
4221 
4222 	return (path->periph);
4223 }
4224 
4225 char *
4226 xpt_path_serialno(struct cam_path *path)
4227 {
4228 	return (path->device->serial_num);
4229 }
4230 
4231 /*
4232  * Release a CAM control block for the caller.  Remit the cost of the structure
4233  * to the device referenced by the path.  If the this device had no 'credits'
4234  * and peripheral drivers have registered async callbacks for this notification
4235  * call them now.
4236  */
4237 void
4238 xpt_release_ccb(union ccb *free_ccb)
4239 {
4240 	struct	 cam_path *path;
4241 	struct	 cam_ed *device;
4242 	struct	 cam_eb *bus;
4243 	struct   cam_sim *sim;
4244 
4245 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4246 	path = free_ccb->ccb_h.path;
4247 	device = path->device;
4248 	bus = path->bus;
4249 	sim = bus->sim;
4250 
4251 	sim_lock_assert_owned(sim->lock);
4252 
4253 	cam_ccbq_release_opening(&device->ccbq);
4254 	if (sim->ccb_count > sim->max_ccbs) {
4255 		xpt_free_ccb(free_ccb);
4256 		sim->ccb_count--;
4257 	} else if (sim == &cam_dead_sim) {
4258 		xpt_free_ccb(free_ccb);
4259 	} else  {
4260 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4261 		    xpt_links.sle);
4262 	}
4263 	if (sim->devq == NULL) {
4264 		return;
4265 	}
4266 	sim->devq->alloc_openings++;
4267 	sim->devq->alloc_active--;
4268 	/* XXX Turn this into an inline function - xpt_run_device?? */
4269 	if ((device_is_alloc_queued(device) == 0)
4270 	 && (device->drvq.entries > 0)) {
4271 		xpt_schedule_dev_allocq(bus, device);
4272 	}
4273 	if (dev_allocq_is_runnable(sim->devq))
4274 		xpt_run_dev_allocq(bus);
4275 }
4276 
4277 /* Functions accessed by SIM drivers */
4278 
4279 /*
4280  * A sim structure, listing the SIM entry points and instance
4281  * identification info is passed to xpt_bus_register to hook the SIM
4282  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4283  * for this new bus and places it in the array of busses and assigns
4284  * it a path_id.  The path_id may be influenced by "hard wiring"
4285  * information specified by the user.  Once interrupt services are
4286  * availible, the bus will be probed.
4287  */
4288 int32_t
4289 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4290 {
4291 	struct cam_eb *new_bus;
4292 	struct cam_eb *old_bus;
4293 	struct ccb_pathinq cpi;
4294 
4295 	sim_lock_assert_owned(sim->lock);
4296 
4297 	sim->bus_id = bus;
4298 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4299 
4300 	if (strcmp(sim->sim_name, "xpt") != 0) {
4301 		sim->path_id =
4302 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4303 	}
4304 
4305 	TAILQ_INIT(&new_bus->et_entries);
4306 	new_bus->path_id = sim->path_id;
4307 	new_bus->sim = sim;
4308 	++sim->refcount;
4309 	timevalclear(&new_bus->last_reset);
4310 	new_bus->flags = 0;
4311 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4312 	new_bus->generation = 0;
4313 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4314 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4315 	while (old_bus != NULL
4316 	    && old_bus->path_id < new_bus->path_id)
4317 		old_bus = TAILQ_NEXT(old_bus, links);
4318 	if (old_bus != NULL)
4319 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4320 	else
4321 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4322 	xsoftc.bus_generation++;
4323 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4324 
4325 	/* Notify interested parties */
4326 	if (sim->path_id != CAM_XPT_PATH_ID) {
4327 		struct cam_path path;
4328 
4329 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4330 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4331 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4332 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4333 		xpt_action((union ccb *)&cpi);
4334 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4335 		xpt_release_path(&path);
4336 	}
4337 	return (CAM_SUCCESS);
4338 }
4339 
4340 /*
4341  * Deregister a bus.  We must clean out all transactions pending on the bus.
4342  * This routine is typically called prior to cam_sim_free() (e.g. see
4343  * dev/usbmisc/umass/umass.c)
4344  */
4345 int32_t
4346 xpt_bus_deregister(path_id_t pathid)
4347 {
4348 	struct cam_path bus_path;
4349 	struct cam_et *target;
4350 	struct cam_ed *device;
4351 	struct cam_ed_qinfo *qinfo;
4352 	struct cam_devq *devq;
4353 	struct cam_periph *periph;
4354 	struct cam_sim *ccbsim;
4355 	union ccb *work_ccb;
4356 	cam_status status;
4357 	int retries = 0;
4358 
4359 	status = xpt_compile_path(&bus_path, NULL, pathid,
4360 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4361 	if (status != CAM_REQ_CMP)
4362 		return (status);
4363 
4364 	/*
4365 	 * This should clear out all pending requests and timeouts, but
4366 	 * the ccb's may be queued to a software interrupt.
4367 	 *
4368 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4369 	 * and it really ought to.
4370 	 */
4371 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4372 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4373 
4374 	/*
4375 	 * Mark the SIM as having been deregistered.  This prevents
4376 	 * certain operations from re-queueing to it, stops new devices
4377 	 * from being added, etc.
4378 	 */
4379 	devq = bus_path.bus->sim->devq;
4380 	ccbsim = bus_path.bus->sim;
4381 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4382 
4383 again:
4384 	/*
4385 	 * Execute any pending operations now.
4386 	 */
4387 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4388 	    CAMQ_HEAD)) != NULL ||
4389 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4390 	    CAMQ_HEAD)) != NULL) {
4391 		do {
4392 			device = qinfo->device;
4393 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4394 			if (work_ccb != NULL) {
4395 				devq->active_dev = device;
4396 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4397 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4398 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4399 			}
4400 
4401 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4402 			    CAMQ_HEAD);
4403 			if (periph != NULL)
4404 				xpt_schedule(periph, periph->pinfo.priority);
4405 		} while (work_ccb != NULL || periph != NULL);
4406 	}
4407 
4408 	/*
4409 	 * Make sure all completed CCBs are processed.
4410 	 */
4411 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4412 		camisr_runqueue(ccbsim);
4413 	}
4414 
4415 	/*
4416 	 * Check for requeues, reissues asyncs if necessary
4417 	 */
4418 	if (CAMQ_GET_HEAD(&devq->send_queue))
4419 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4420 			devq->send_queue.entries);
4421 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4422 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4423 			devq->alloc_queue.entries);
4424 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4425 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4426 		if (++retries < 5) {
4427 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4428 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4429 			goto again;
4430 		}
4431 	}
4432 
4433 	/*
4434 	 * Retarget the bus and all cached sim pointers to dead_sim.
4435 	 *
4436 	 * Various CAM subsystems may be holding on to targets, devices,
4437 	 * and/or peripherals and may attempt to use the sim pointer cached
4438 	 * in some of these structures during close.
4439 	 */
4440 	bus_path.bus->sim = &cam_dead_sim;
4441 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4442 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4443 			device->sim = &cam_dead_sim;
4444 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4445 				periph->sim = &cam_dead_sim;
4446 			}
4447 		}
4448 	}
4449 
4450 	/*
4451 	 * Repeat the async's for the benefit of any new devices, such as
4452 	 * might be created from completed probes.  Any new device
4453 	 * ops will run on dead_sim.
4454 	 *
4455 	 * XXX There are probably races :-(
4456 	 */
4457 	CAM_SIM_LOCK(&cam_dead_sim);
4458 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4459 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4460 	CAM_SIM_UNLOCK(&cam_dead_sim);
4461 
4462 	/* Release the reference count held while registered. */
4463 	xpt_release_bus(bus_path.bus);
4464 	xpt_release_path(&bus_path);
4465 
4466 	/* Release the ref we got when the bus was registered */
4467 	cam_sim_release(ccbsim, 0);
4468 
4469 	return (CAM_REQ_CMP);
4470 }
4471 
4472 static path_id_t
4473 xptnextfreepathid(void)
4474 {
4475 	struct cam_eb *bus;
4476 	path_id_t pathid;
4477 	char *strval;
4478 
4479 	pathid = 0;
4480 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4481 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4482 retry:
4483 	/* Find an unoccupied pathid */
4484 	while (bus != NULL && bus->path_id <= pathid) {
4485 		if (bus->path_id == pathid)
4486 			pathid++;
4487 		bus = TAILQ_NEXT(bus, links);
4488 	}
4489 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4490 
4491 	/*
4492 	 * Ensure that this pathid is not reserved for
4493 	 * a bus that may be registered in the future.
4494 	 */
4495 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4496 		++pathid;
4497 		/* Start the search over */
4498 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4499 		goto retry;
4500 	}
4501 	return (pathid);
4502 }
4503 
4504 static path_id_t
4505 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4506 {
4507 	path_id_t pathid;
4508 	int i, dunit, val;
4509 	char buf[32];
4510 
4511 	pathid = CAM_XPT_PATH_ID;
4512 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4513 	i = -1;
4514 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4515 		if (strcmp(resource_query_name(i), "scbus")) {
4516 			/* Avoid a bit of foot shooting. */
4517 			continue;
4518 		}
4519 		dunit = resource_query_unit(i);
4520 		if (dunit < 0)		/* unwired?! */
4521 			continue;
4522 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4523 			if (sim_bus == val) {
4524 				pathid = dunit;
4525 				break;
4526 			}
4527 		} else if (sim_bus == 0) {
4528 			/* Unspecified matches bus 0 */
4529 			pathid = dunit;
4530 			break;
4531 		} else {
4532 			kprintf("Ambiguous scbus configuration for %s%d "
4533 			       "bus %d, cannot wire down.  The kernel "
4534 			       "config entry for scbus%d should "
4535 			       "specify a controller bus.\n"
4536 			       "Scbus will be assigned dynamically.\n",
4537 			       sim_name, sim_unit, sim_bus, dunit);
4538 			break;
4539 		}
4540 	}
4541 
4542 	if (pathid == CAM_XPT_PATH_ID)
4543 		pathid = xptnextfreepathid();
4544 	return (pathid);
4545 }
4546 
4547 void
4548 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4549 {
4550 	struct cam_eb *bus;
4551 	struct cam_et *target, *next_target;
4552 	struct cam_ed *device, *next_device;
4553 
4554 	sim_lock_assert_owned(path->bus->sim->lock);
4555 
4556 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4557 
4558 	/*
4559 	 * Most async events come from a CAM interrupt context.  In
4560 	 * a few cases, the error recovery code at the peripheral layer,
4561 	 * which may run from our SWI or a process context, may signal
4562 	 * deferred events with a call to xpt_async.
4563 	 */
4564 
4565 	bus = path->bus;
4566 
4567 	if (async_code == AC_BUS_RESET) {
4568 		/* Update our notion of when the last reset occurred */
4569 		microuptime(&bus->last_reset);
4570 	}
4571 
4572 	for (target = TAILQ_FIRST(&bus->et_entries);
4573 	     target != NULL;
4574 	     target = next_target) {
4575 
4576 		next_target = TAILQ_NEXT(target, links);
4577 
4578 		if (path->target != target
4579 		 && path->target->target_id != CAM_TARGET_WILDCARD
4580 		 && target->target_id != CAM_TARGET_WILDCARD)
4581 			continue;
4582 
4583 		if (async_code == AC_SENT_BDR) {
4584 			/* Update our notion of when the last reset occurred */
4585 			microuptime(&path->target->last_reset);
4586 		}
4587 
4588 		for (device = TAILQ_FIRST(&target->ed_entries);
4589 		     device != NULL;
4590 		     device = next_device) {
4591 
4592 			next_device = TAILQ_NEXT(device, links);
4593 
4594 			if (path->device != device
4595 			 && path->device->lun_id != CAM_LUN_WILDCARD
4596 			 && device->lun_id != CAM_LUN_WILDCARD)
4597 				continue;
4598 
4599 			xpt_dev_async(async_code, bus, target,
4600 				      device, async_arg);
4601 
4602 			xpt_async_bcast(&device->asyncs, async_code,
4603 					path, async_arg);
4604 		}
4605 	}
4606 
4607 	/*
4608 	 * If this wasn't a fully wildcarded async, tell all
4609 	 * clients that want all async events.
4610 	 */
4611 	if (bus != xpt_periph->path->bus)
4612 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4613 				path, async_arg);
4614 }
4615 
4616 static void
4617 xpt_async_bcast(struct async_list *async_head,
4618 		u_int32_t async_code,
4619 		struct cam_path *path, void *async_arg)
4620 {
4621 	struct async_node *cur_entry;
4622 
4623 	cur_entry = SLIST_FIRST(async_head);
4624 	while (cur_entry != NULL) {
4625 		struct async_node *next_entry;
4626 		/*
4627 		 * Grab the next list entry before we call the current
4628 		 * entry's callback.  This is because the callback function
4629 		 * can delete its async callback entry.
4630 		 */
4631 		next_entry = SLIST_NEXT(cur_entry, links);
4632 		if ((cur_entry->event_enable & async_code) != 0)
4633 			cur_entry->callback(cur_entry->callback_arg,
4634 					    async_code, path,
4635 					    async_arg);
4636 		cur_entry = next_entry;
4637 	}
4638 }
4639 
4640 /*
4641  * Handle any per-device event notifications that require action by the XPT.
4642  */
4643 static void
4644 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4645 	      struct cam_ed *device, void *async_arg)
4646 {
4647 	cam_status status;
4648 	struct cam_path newpath;
4649 
4650 	/*
4651 	 * We only need to handle events for real devices.
4652 	 */
4653 	if (target->target_id == CAM_TARGET_WILDCARD
4654 	 || device->lun_id == CAM_LUN_WILDCARD)
4655 		return;
4656 
4657 	/*
4658 	 * We need our own path with wildcards expanded to
4659 	 * handle certain types of events.
4660 	 */
4661 	if ((async_code == AC_SENT_BDR)
4662 	 || (async_code == AC_BUS_RESET)
4663 	 || (async_code == AC_INQ_CHANGED))
4664 		status = xpt_compile_path(&newpath, NULL,
4665 					  bus->path_id,
4666 					  target->target_id,
4667 					  device->lun_id);
4668 	else
4669 		status = CAM_REQ_CMP_ERR;
4670 
4671 	if (status == CAM_REQ_CMP) {
4672 
4673 		/*
4674 		 * Allow transfer negotiation to occur in a
4675 		 * tag free environment.
4676 		 */
4677 		if (async_code == AC_SENT_BDR
4678 		 || async_code == AC_BUS_RESET)
4679 			xpt_toggle_tags(&newpath);
4680 
4681 		if (async_code == AC_INQ_CHANGED) {
4682 			/*
4683 			 * We've sent a start unit command, or
4684 			 * something similar to a device that
4685 			 * may have caused its inquiry data to
4686 			 * change. So we re-scan the device to
4687 			 * refresh the inquiry data for it.
4688 			 */
4689 			xpt_scan_lun(newpath.periph, &newpath,
4690 				     CAM_EXPECT_INQ_CHANGE, NULL);
4691 		}
4692 		xpt_release_path(&newpath);
4693 	} else if (async_code == AC_LOST_DEVICE) {
4694 		/*
4695 		 * When we lose a device the device may be about to detach
4696 		 * the sim, we have to clear out all pending timeouts and
4697 		 * requests before that happens.
4698 		 *
4699 		 * This typically happens most often with USB/UMASS devices.
4700 		 *
4701 		 * XXX it would be nice if we could abort the requests
4702 		 * pertaining to the device.
4703 		 */
4704 		xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4705 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4706 			device->flags |= CAM_DEV_UNCONFIGURED;
4707 			xpt_release_device(bus, target, device);
4708 		}
4709 	} else if (async_code == AC_TRANSFER_NEG) {
4710 		struct ccb_trans_settings *settings;
4711 
4712 		settings = (struct ccb_trans_settings *)async_arg;
4713 		xpt_set_transfer_settings(settings, device,
4714 					  /*async_update*/TRUE);
4715 	}
4716 }
4717 
4718 u_int32_t
4719 xpt_freeze_devq(struct cam_path *path, u_int count)
4720 {
4721 	struct ccb_hdr *ccbh;
4722 
4723 	sim_lock_assert_owned(path->bus->sim->lock);
4724 
4725 	path->device->qfrozen_cnt += count;
4726 
4727 	/*
4728 	 * Mark the last CCB in the queue as needing
4729 	 * to be requeued if the driver hasn't
4730 	 * changed it's state yet.  This fixes a race
4731 	 * where a ccb is just about to be queued to
4732 	 * a controller driver when it's interrupt routine
4733 	 * freezes the queue.  To completly close the
4734 	 * hole, controller drives must check to see
4735 	 * if a ccb's status is still CAM_REQ_INPROG
4736 	 * just before they queue
4737 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4738 	 * an example.
4739 	 */
4740 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4741 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4742 		ccbh->status = CAM_REQUEUE_REQ;
4743 	return (path->device->qfrozen_cnt);
4744 }
4745 
4746 u_int32_t
4747 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4748 {
4749 	sim_lock_assert_owned(sim->lock);
4750 
4751 	if (sim->devq == NULL)
4752 		return(count);
4753 	sim->devq->send_queue.qfrozen_cnt += count;
4754 	if (sim->devq->active_dev != NULL) {
4755 		struct ccb_hdr *ccbh;
4756 
4757 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4758 				  ccb_hdr_tailq);
4759 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4760 			ccbh->status = CAM_REQUEUE_REQ;
4761 	}
4762 	return (sim->devq->send_queue.qfrozen_cnt);
4763 }
4764 
4765 /*
4766  * Release the device queue after a timeout has expired, typically used to
4767  * introduce a delay before retrying after an I/O error or other problem.
4768  */
4769 static void
4770 xpt_release_devq_timeout(void *arg)
4771 {
4772 	struct cam_ed *device;
4773 
4774 	device = (struct cam_ed *)arg;
4775 	CAM_SIM_LOCK(device->sim);
4776 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4777 	CAM_SIM_UNLOCK(device->sim);
4778 }
4779 
4780 void
4781 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4782 {
4783 	sim_lock_assert_owned(path->bus->sim->lock);
4784 
4785 	xpt_release_devq_device(path->device, count, run_queue);
4786 }
4787 
4788 static void
4789 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4790 {
4791 	int	rundevq;
4792 
4793 	rundevq = 0;
4794 
4795 	if (dev->qfrozen_cnt > 0) {
4796 
4797 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4798 		dev->qfrozen_cnt -= count;
4799 		if (dev->qfrozen_cnt == 0) {
4800 
4801 			/*
4802 			 * No longer need to wait for a successful
4803 			 * command completion.
4804 			 */
4805 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4806 
4807 			/*
4808 			 * Remove any timeouts that might be scheduled
4809 			 * to release this queue.
4810 			 */
4811 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4812 				callout_stop(&dev->callout);
4813 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4814 			}
4815 
4816 			/*
4817 			 * Now that we are unfrozen schedule the
4818 			 * device so any pending transactions are
4819 			 * run.
4820 			 */
4821 			if ((dev->ccbq.queue.entries > 0)
4822 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4823 			 && (run_queue != 0)) {
4824 				rundevq = 1;
4825 			}
4826 		}
4827 	}
4828 	if (rundevq != 0)
4829 		xpt_run_dev_sendq(dev->target->bus);
4830 }
4831 
4832 void
4833 xpt_release_simq(struct cam_sim *sim, int run_queue)
4834 {
4835 	struct	camq *sendq;
4836 
4837 	sim_lock_assert_owned(sim->lock);
4838 
4839 	if (sim->devq == NULL)
4840 		return;
4841 
4842 	sendq = &(sim->devq->send_queue);
4843 	if (sendq->qfrozen_cnt > 0) {
4844 		sendq->qfrozen_cnt--;
4845 		if (sendq->qfrozen_cnt == 0) {
4846 			struct cam_eb *bus;
4847 
4848 			/*
4849 			 * If there is a timeout scheduled to release this
4850 			 * sim queue, remove it.  The queue frozen count is
4851 			 * already at 0.
4852 			 */
4853 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4854 				callout_stop(&sim->callout);
4855 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4856 			}
4857 			bus = xpt_find_bus(sim->path_id);
4858 
4859 			if (run_queue) {
4860 				/*
4861 				 * Now that we are unfrozen run the send queue.
4862 				 */
4863 				xpt_run_dev_sendq(bus);
4864 			}
4865 			xpt_release_bus(bus);
4866 		}
4867 	}
4868 }
4869 
4870 void
4871 xpt_done(union ccb *done_ccb)
4872 {
4873 	struct cam_sim *sim;
4874 
4875 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4876 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4877 		/*
4878 		 * Queue up the request for handling by our SWI handler
4879 		 * any of the "non-immediate" type of ccbs.
4880 		 */
4881 		sim = done_ccb->ccb_h.path->bus->sim;
4882 		switch (done_ccb->ccb_h.path->periph->type) {
4883 		case CAM_PERIPH_BIO:
4884 			spin_lock(&sim->sim_spin);
4885 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4886 					  sim_links.tqe);
4887 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4888 			spin_unlock(&sim->sim_spin);
4889 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4890 				spin_lock(&cam_simq_spin);
4891 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4892 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4893 							  links);
4894 					sim->flags |= CAM_SIM_ON_DONEQ;
4895 				}
4896 				spin_unlock(&cam_simq_spin);
4897 			}
4898 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4899 				setsoftcambio();
4900 			break;
4901 		default:
4902 			panic("unknown periph type %d",
4903 				done_ccb->ccb_h.path->periph->type);
4904 		}
4905 	}
4906 }
4907 
4908 union ccb *
4909 xpt_alloc_ccb(void)
4910 {
4911 	union ccb *new_ccb;
4912 
4913 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4914 	return (new_ccb);
4915 }
4916 
4917 void
4918 xpt_free_ccb(union ccb *free_ccb)
4919 {
4920 	kfree(free_ccb, M_CAMXPT);
4921 }
4922 
4923 
4924 
4925 /* Private XPT functions */
4926 
4927 /*
4928  * Get a CAM control block for the caller. Charge the structure to the device
4929  * referenced by the path.  If the this device has no 'credits' then the
4930  * device already has the maximum number of outstanding operations under way
4931  * and we return NULL. If we don't have sufficient resources to allocate more
4932  * ccbs, we also return NULL.
4933  */
4934 static union ccb *
4935 xpt_get_ccb(struct cam_ed *device)
4936 {
4937 	union ccb *new_ccb;
4938 	struct cam_sim *sim;
4939 
4940 	sim = device->sim;
4941 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4942 		new_ccb = xpt_alloc_ccb();
4943 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4944 			callout_init(&new_ccb->ccb_h.timeout_ch);
4945 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4946 				  xpt_links.sle);
4947 		sim->ccb_count++;
4948 	}
4949 	cam_ccbq_take_opening(&device->ccbq);
4950 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4951 	return (new_ccb);
4952 }
4953 
4954 static void
4955 xpt_release_bus(struct cam_eb *bus)
4956 {
4957 
4958 	if ((--bus->refcount == 0)
4959 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4960 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4961 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4962 		xsoftc.bus_generation++;
4963 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4964 		kfree(bus, M_CAMXPT);
4965 	}
4966 }
4967 
4968 static struct cam_et *
4969 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4970 {
4971 	struct cam_et *target;
4972 	struct cam_et *cur_target;
4973 
4974 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4975 
4976 	TAILQ_INIT(&target->ed_entries);
4977 	target->bus = bus;
4978 	target->target_id = target_id;
4979 	target->refcount = 1;
4980 	target->generation = 0;
4981 	timevalclear(&target->last_reset);
4982 	/*
4983 	 * Hold a reference to our parent bus so it
4984 	 * will not go away before we do.
4985 	 */
4986 	bus->refcount++;
4987 
4988 	/* Insertion sort into our bus's target list */
4989 	cur_target = TAILQ_FIRST(&bus->et_entries);
4990 	while (cur_target != NULL && cur_target->target_id < target_id)
4991 		cur_target = TAILQ_NEXT(cur_target, links);
4992 
4993 	if (cur_target != NULL) {
4994 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4995 	} else {
4996 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4997 	}
4998 	bus->generation++;
4999 	return (target);
5000 }
5001 
5002 static void
5003 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5004 {
5005 	if (target->refcount == 1) {
5006 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5007 		TAILQ_REMOVE(&bus->et_entries, target, links);
5008 		bus->generation++;
5009 		xpt_release_bus(bus);
5010 		KKASSERT(target->refcount == 1);
5011 		kfree(target, M_CAMXPT);
5012 	} else {
5013 		--target->refcount;
5014 	}
5015 }
5016 
5017 static struct cam_ed *
5018 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5019 {
5020 	struct	   cam_path path;
5021 	struct	   cam_ed *device;
5022 	struct	   cam_devq *devq;
5023 	cam_status status;
5024 
5025 	/*
5026 	 * Disallow new devices while trying to deregister a sim
5027 	 */
5028 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5029 		return (NULL);
5030 
5031 	/*
5032 	 * Make space for us in the device queue on our bus
5033 	 */
5034 	devq = bus->sim->devq;
5035 	if (devq == NULL)
5036 		return(NULL);
5037 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5038 
5039 	if (status != CAM_REQ_CMP) {
5040 		device = NULL;
5041 	} else {
5042 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5043 	}
5044 
5045 	if (device != NULL) {
5046 		struct cam_ed *cur_device;
5047 
5048 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5049 		device->alloc_ccb_entry.device = device;
5050 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5051 		device->send_ccb_entry.device = device;
5052 		device->target = target;
5053 		device->lun_id = lun_id;
5054 		device->sim = bus->sim;
5055 		/* Initialize our queues */
5056 		if (camq_init(&device->drvq, 0) != 0) {
5057 			kfree(device, M_CAMXPT);
5058 			return (NULL);
5059 		}
5060 		if (cam_ccbq_init(&device->ccbq,
5061 				  bus->sim->max_dev_openings) != 0) {
5062 			camq_fini(&device->drvq);
5063 			kfree(device, M_CAMXPT);
5064 			return (NULL);
5065 		}
5066 		SLIST_INIT(&device->asyncs);
5067 		SLIST_INIT(&device->periphs);
5068 		device->generation = 0;
5069 		device->owner = NULL;
5070 		/*
5071 		 * Take the default quirk entry until we have inquiry
5072 		 * data and can determine a better quirk to use.
5073 		 */
5074 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5075 		bzero(&device->inq_data, sizeof(device->inq_data));
5076 		device->inq_flags = 0;
5077 		device->queue_flags = 0;
5078 		device->serial_num = NULL;
5079 		device->serial_num_len = 0;
5080 		device->qfrozen_cnt = 0;
5081 		device->flags = CAM_DEV_UNCONFIGURED;
5082 		device->tag_delay_count = 0;
5083 		device->tag_saved_openings = 0;
5084 		device->refcount = 1;
5085 		callout_init(&device->callout);
5086 
5087 		/*
5088 		 * Hold a reference to our parent target so it
5089 		 * will not go away before we do.
5090 		 */
5091 		target->refcount++;
5092 
5093 		/*
5094 		 * XXX should be limited by number of CCBs this bus can
5095 		 * do.
5096 		 */
5097 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5098 		/* Insertion sort into our target's device list */
5099 		cur_device = TAILQ_FIRST(&target->ed_entries);
5100 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5101 			cur_device = TAILQ_NEXT(cur_device, links);
5102 		if (cur_device != NULL) {
5103 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5104 		} else {
5105 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5106 		}
5107 		target->generation++;
5108 		if (lun_id != CAM_LUN_WILDCARD) {
5109 			xpt_compile_path(&path,
5110 					 NULL,
5111 					 bus->path_id,
5112 					 target->target_id,
5113 					 lun_id);
5114 			xpt_devise_transport(&path);
5115 			xpt_release_path(&path);
5116 		}
5117 	}
5118 	return (device);
5119 }
5120 
5121 static void
5122 xpt_reference_device(struct cam_ed *device)
5123 {
5124 	++device->refcount;
5125 }
5126 
5127 static void
5128 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5129 		   struct cam_ed *device)
5130 {
5131 	struct cam_devq *devq;
5132 
5133 	if (device->refcount == 1) {
5134 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5135 
5136 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5137 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5138 			panic("Removing device while still queued for ccbs");
5139 
5140 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5141 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5142 			callout_stop(&device->callout);
5143 		}
5144 
5145 		TAILQ_REMOVE(&target->ed_entries, device,links);
5146 		target->generation++;
5147 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5148 		if ((devq = bus->sim->devq) != NULL) {
5149 			/* Release our slot in the devq */
5150 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5151 		}
5152 		camq_fini(&device->drvq);
5153 		camq_fini(&device->ccbq.queue);
5154 		xpt_release_target(bus, target);
5155 		KKASSERT(device->refcount == 1);
5156 		kfree(device, M_CAMXPT);
5157 	} else {
5158 		--device->refcount;
5159 	}
5160 }
5161 
5162 static u_int32_t
5163 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5164 {
5165 	int	diff;
5166 	int	result;
5167 	struct	cam_ed *dev;
5168 
5169 	dev = path->device;
5170 
5171 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5172 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5173 	if (result == CAM_REQ_CMP && (diff < 0)) {
5174 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5175 	}
5176 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5177 	 || (dev->inq_flags & SID_CmdQue) != 0)
5178 		dev->tag_saved_openings = newopenings;
5179 	/* Adjust the global limit */
5180 	dev->sim->max_ccbs += diff;
5181 	return (result);
5182 }
5183 
5184 static struct cam_eb *
5185 xpt_find_bus(path_id_t path_id)
5186 {
5187 	struct cam_eb *bus;
5188 
5189 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5190 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5191 		if (bus->path_id == path_id) {
5192 			bus->refcount++;
5193 			break;
5194 		}
5195 	}
5196 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5197 	return (bus);
5198 }
5199 
5200 static struct cam_et *
5201 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5202 {
5203 	struct cam_et *target;
5204 
5205 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5206 		if (target->target_id == target_id) {
5207 			target->refcount++;
5208 			break;
5209 		}
5210 	}
5211 	return (target);
5212 }
5213 
5214 static struct cam_ed *
5215 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5216 {
5217 	struct cam_ed *device;
5218 
5219 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5220 		if (device->lun_id == lun_id) {
5221 			device->refcount++;
5222 			break;
5223 		}
5224 	}
5225 	return (device);
5226 }
5227 
5228 typedef struct {
5229 	union	ccb *request_ccb;
5230 	struct 	ccb_pathinq *cpi;
5231 	int	counter;
5232 } xpt_scan_bus_info;
5233 
5234 /*
5235  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5236  * As the scan progresses, xpt_scan_bus is used as the
5237  * callback on completion function.
5238  */
5239 static void
5240 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5241 {
5242 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5243 		  ("xpt_scan_bus\n"));
5244 	switch (request_ccb->ccb_h.func_code) {
5245 	case XPT_SCAN_BUS:
5246 	{
5247 		xpt_scan_bus_info *scan_info;
5248 		union	ccb *work_ccb;
5249 		struct	cam_path *path;
5250 		u_int	i;
5251 		u_int	max_target;
5252 		u_int	initiator_id;
5253 
5254 		/* Find out the characteristics of the bus */
5255 		work_ccb = xpt_alloc_ccb();
5256 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5257 			      request_ccb->ccb_h.pinfo.priority);
5258 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5259 		xpt_action(work_ccb);
5260 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5261 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5262 			xpt_free_ccb(work_ccb);
5263 			xpt_done(request_ccb);
5264 			return;
5265 		}
5266 
5267 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5268 			/*
5269 			 * Can't scan the bus on an adapter that
5270 			 * cannot perform the initiator role.
5271 			 */
5272 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5273 			xpt_free_ccb(work_ccb);
5274 			xpt_done(request_ccb);
5275 			return;
5276 		}
5277 
5278 		/* Save some state for use while we probe for devices */
5279 		scan_info = (xpt_scan_bus_info *)
5280 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5281 		scan_info->request_ccb = request_ccb;
5282 		scan_info->cpi = &work_ccb->cpi;
5283 
5284 		/* Cache on our stack so we can work asynchronously */
5285 		max_target = scan_info->cpi->max_target;
5286 		initiator_id = scan_info->cpi->initiator_id;
5287 
5288 
5289 		/*
5290 		 * We can scan all targets in parallel, or do it sequentially.
5291 		 */
5292 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5293 			max_target = 0;
5294 			scan_info->counter = 0;
5295 		} else {
5296 			scan_info->counter = scan_info->cpi->max_target + 1;
5297 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5298 				scan_info->counter--;
5299 			}
5300 		}
5301 
5302 		for (i = 0; i <= max_target; i++) {
5303 			cam_status status;
5304 			if (i == initiator_id)
5305 				continue;
5306 
5307 			status = xpt_create_path(&path, xpt_periph,
5308 						 request_ccb->ccb_h.path_id,
5309 						 i, 0);
5310 			if (status != CAM_REQ_CMP) {
5311 				kprintf("xpt_scan_bus: xpt_create_path failed"
5312 				       " with status %#x, bus scan halted\n",
5313 				       status);
5314 				kfree(scan_info, M_CAMXPT);
5315 				request_ccb->ccb_h.status = status;
5316 				xpt_free_ccb(work_ccb);
5317 				xpt_done(request_ccb);
5318 				break;
5319 			}
5320 			work_ccb = xpt_alloc_ccb();
5321 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5322 				      request_ccb->ccb_h.pinfo.priority);
5323 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5324 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5325 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5326 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5327 			xpt_action(work_ccb);
5328 		}
5329 		break;
5330 	}
5331 	case XPT_SCAN_LUN:
5332 	{
5333 		cam_status status;
5334 		struct cam_path *path;
5335 		xpt_scan_bus_info *scan_info;
5336 		path_id_t path_id;
5337 		target_id_t target_id;
5338 		lun_id_t lun_id;
5339 
5340 		/* Reuse the same CCB to query if a device was really found */
5341 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5342 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5343 			      request_ccb->ccb_h.pinfo.priority);
5344 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5345 
5346 		path_id = request_ccb->ccb_h.path_id;
5347 		target_id = request_ccb->ccb_h.target_id;
5348 		lun_id = request_ccb->ccb_h.target_lun;
5349 		xpt_action(request_ccb);
5350 
5351 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5352 			struct cam_ed *device;
5353 			struct cam_et *target;
5354 			int phl;
5355 
5356 			/*
5357 			 * If we already probed lun 0 successfully, or
5358 			 * we have additional configured luns on this
5359 			 * target that might have "gone away", go onto
5360 			 * the next lun.
5361 			 */
5362 			target = request_ccb->ccb_h.path->target;
5363 			/*
5364 			 * We may touch devices that we don't
5365 			 * hold references too, so ensure they
5366 			 * don't disappear out from under us.
5367 			 * The target above is referenced by the
5368 			 * path in the request ccb.
5369 			 */
5370 			phl = 0;
5371 			device = TAILQ_FIRST(&target->ed_entries);
5372 			if (device != NULL) {
5373 				phl = CAN_SRCH_HI_SPARSE(device);
5374 				if (device->lun_id == 0)
5375 					device = TAILQ_NEXT(device, links);
5376 			}
5377 			if ((lun_id != 0) || (device != NULL)) {
5378 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5379 					lun_id++;
5380 			}
5381 		} else {
5382 			struct cam_ed *device;
5383 
5384 			device = request_ccb->ccb_h.path->device;
5385 
5386 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5387 				/* Try the next lun */
5388 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5389 				  || CAN_SRCH_HI_DENSE(device))
5390 					lun_id++;
5391 			}
5392 		}
5393 
5394 		/*
5395 		 * Free the current request path- we're done with it.
5396 		 */
5397 		xpt_free_path(request_ccb->ccb_h.path);
5398 
5399 		/*
5400 		 * Check to see if we scan any further luns.
5401 		 */
5402 		if (lun_id == request_ccb->ccb_h.target_lun
5403                  || lun_id > scan_info->cpi->max_lun) {
5404 			int done;
5405 
5406  hop_again:
5407 			done = 0;
5408 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5409 				scan_info->counter++;
5410 				if (scan_info->counter ==
5411 				    scan_info->cpi->initiator_id) {
5412 					scan_info->counter++;
5413 				}
5414 				if (scan_info->counter >=
5415 				    scan_info->cpi->max_target+1) {
5416 					done = 1;
5417 				}
5418 			} else {
5419 				scan_info->counter--;
5420 				if (scan_info->counter == 0) {
5421 					done = 1;
5422 				}
5423 			}
5424 			if (done) {
5425 				xpt_free_ccb(request_ccb);
5426 				xpt_free_ccb((union ccb *)scan_info->cpi);
5427 				request_ccb = scan_info->request_ccb;
5428 				kfree(scan_info, M_CAMXPT);
5429 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5430 				xpt_done(request_ccb);
5431 				break;
5432 			}
5433 
5434 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5435 				break;
5436 			}
5437 			status = xpt_create_path(&path, xpt_periph,
5438 			    scan_info->request_ccb->ccb_h.path_id,
5439 			    scan_info->counter, 0);
5440 			if (status != CAM_REQ_CMP) {
5441 				kprintf("xpt_scan_bus: xpt_create_path failed"
5442 				    " with status %#x, bus scan halted\n",
5443 			       	    status);
5444 				xpt_free_ccb(request_ccb);
5445 				xpt_free_ccb((union ccb *)scan_info->cpi);
5446 				request_ccb = scan_info->request_ccb;
5447 				kfree(scan_info, M_CAMXPT);
5448 				request_ccb->ccb_h.status = status;
5449 				xpt_done(request_ccb);
5450 				break;
5451 			}
5452 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5453 			    request_ccb->ccb_h.pinfo.priority);
5454 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5455 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5456 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5457 			request_ccb->crcn.flags =
5458 			    scan_info->request_ccb->crcn.flags;
5459 		} else {
5460 			status = xpt_create_path(&path, xpt_periph,
5461 						 path_id, target_id, lun_id);
5462 			if (status != CAM_REQ_CMP) {
5463 				kprintf("xpt_scan_bus: xpt_create_path failed "
5464 				       "with status %#x, halting LUN scan\n",
5465 			 	       status);
5466 				goto hop_again;
5467 			}
5468 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5469 				      request_ccb->ccb_h.pinfo.priority);
5470 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5471 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5472 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5473 			request_ccb->crcn.flags =
5474 				scan_info->request_ccb->crcn.flags;
5475 		}
5476 		xpt_action(request_ccb);
5477 		break;
5478 	}
5479 	default:
5480 		break;
5481 	}
5482 }
5483 
5484 typedef enum {
5485 	PROBE_TUR,
5486 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5487 	PROBE_FULL_INQUIRY,
5488 	PROBE_MODE_SENSE,
5489 	PROBE_SERIAL_NUM_0,
5490 	PROBE_SERIAL_NUM_1,
5491 	PROBE_TUR_FOR_NEGOTIATION,
5492 	PROBE_INQUIRY_BASIC_DV1,
5493 	PROBE_INQUIRY_BASIC_DV2,
5494 	PROBE_DV_EXIT
5495 } probe_action;
5496 
5497 typedef enum {
5498 	PROBE_INQUIRY_CKSUM	= 0x01,
5499 	PROBE_SERIAL_CKSUM	= 0x02,
5500 	PROBE_NO_ANNOUNCE	= 0x04
5501 } probe_flags;
5502 
5503 typedef struct {
5504 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5505 	probe_action	action;
5506 	union ccb	saved_ccb;
5507 	probe_flags	flags;
5508 	MD5_CTX		context;
5509 	u_int8_t	digest[16];
5510 }probe_softc;
5511 
5512 static void
5513 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5514 	     cam_flags flags, union ccb *request_ccb)
5515 {
5516 	struct ccb_pathinq cpi;
5517 	cam_status status;
5518 	struct cam_path *new_path;
5519 	struct cam_periph *old_periph;
5520 
5521 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5522 		  ("xpt_scan_lun\n"));
5523 
5524 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5525 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5526 	xpt_action((union ccb *)&cpi);
5527 
5528 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5529 		if (request_ccb != NULL) {
5530 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5531 			xpt_done(request_ccb);
5532 		}
5533 		return;
5534 	}
5535 
5536 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5537 		/*
5538 		 * Can't scan the bus on an adapter that
5539 		 * cannot perform the initiator role.
5540 		 */
5541 		if (request_ccb != NULL) {
5542 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5543 			xpt_done(request_ccb);
5544 		}
5545 		return;
5546 	}
5547 
5548 	if (request_ccb == NULL) {
5549 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5550 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5551 		status = xpt_compile_path(new_path, xpt_periph,
5552 					  path->bus->path_id,
5553 					  path->target->target_id,
5554 					  path->device->lun_id);
5555 
5556 		if (status != CAM_REQ_CMP) {
5557 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5558 			    "can't continue\n");
5559 			kfree(request_ccb, M_CAMXPT);
5560 			kfree(new_path, M_CAMXPT);
5561 			return;
5562 		}
5563 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5564 		request_ccb->ccb_h.cbfcnp = xptscandone;
5565 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5566 		request_ccb->crcn.flags = flags;
5567 	}
5568 
5569 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5570 		probe_softc *softc;
5571 
5572 		softc = (probe_softc *)old_periph->softc;
5573 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5574 				  periph_links.tqe);
5575 	} else {
5576 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5577 					  probestart, "probe",
5578 					  CAM_PERIPH_BIO,
5579 					  request_ccb->ccb_h.path, NULL, 0,
5580 					  request_ccb);
5581 
5582 		if (status != CAM_REQ_CMP) {
5583 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5584 			    "returned an error, can't continue probe\n");
5585 			request_ccb->ccb_h.status = status;
5586 			xpt_done(request_ccb);
5587 		}
5588 	}
5589 }
5590 
5591 static void
5592 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5593 {
5594 	xpt_release_path(done_ccb->ccb_h.path);
5595 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5596 	kfree(done_ccb, M_CAMXPT);
5597 }
5598 
5599 static cam_status
5600 proberegister(struct cam_periph *periph, void *arg)
5601 {
5602 	union ccb *request_ccb;	/* CCB representing the probe request */
5603 	cam_status status;
5604 	probe_softc *softc;
5605 
5606 	request_ccb = (union ccb *)arg;
5607 	if (periph == NULL) {
5608 		kprintf("proberegister: periph was NULL!!\n");
5609 		return(CAM_REQ_CMP_ERR);
5610 	}
5611 
5612 	if (request_ccb == NULL) {
5613 		kprintf("proberegister: no probe CCB, "
5614 		       "can't register device\n");
5615 		return(CAM_REQ_CMP_ERR);
5616 	}
5617 
5618 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5619 	TAILQ_INIT(&softc->request_ccbs);
5620 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5621 			  periph_links.tqe);
5622 	softc->flags = 0;
5623 	periph->softc = softc;
5624 	status = cam_periph_acquire(periph);
5625 	if (status != CAM_REQ_CMP) {
5626 		return (status);
5627 	}
5628 
5629 
5630 	/*
5631 	 * Ensure we've waited at least a bus settle
5632 	 * delay before attempting to probe the device.
5633 	 * For HBAs that don't do bus resets, this won't make a difference.
5634 	 */
5635 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5636 				      scsi_delay);
5637 	probeschedule(periph);
5638 	return(CAM_REQ_CMP);
5639 }
5640 
5641 static void
5642 probeschedule(struct cam_periph *periph)
5643 {
5644 	struct ccb_pathinq cpi;
5645 	union ccb *ccb;
5646 	probe_softc *softc;
5647 
5648 	softc = (probe_softc *)periph->softc;
5649 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5650 
5651 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5652 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5653 	xpt_action((union ccb *)&cpi);
5654 
5655 	/*
5656 	 * If a device has gone away and another device, or the same one,
5657 	 * is back in the same place, it should have a unit attention
5658 	 * condition pending.  It will not report the unit attention in
5659 	 * response to an inquiry, which may leave invalid transfer
5660 	 * negotiations in effect.  The TUR will reveal the unit attention
5661 	 * condition.  Only send the TUR for lun 0, since some devices
5662 	 * will get confused by commands other than inquiry to non-existent
5663 	 * luns.  If you think a device has gone away start your scan from
5664 	 * lun 0.  This will insure that any bogus transfer settings are
5665 	 * invalidated.
5666 	 *
5667 	 * If we haven't seen the device before and the controller supports
5668 	 * some kind of transfer negotiation, negotiate with the first
5669 	 * sent command if no bus reset was performed at startup.  This
5670 	 * ensures that the device is not confused by transfer negotiation
5671 	 * settings left over by loader or BIOS action.
5672 	 */
5673 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5674 	 && (ccb->ccb_h.target_lun == 0)) {
5675 		softc->action = PROBE_TUR;
5676 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5677 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5678 		proberequestdefaultnegotiation(periph);
5679 		softc->action = PROBE_INQUIRY;
5680 	} else {
5681 		softc->action = PROBE_INQUIRY;
5682 	}
5683 
5684 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5685 		softc->flags |= PROBE_NO_ANNOUNCE;
5686 	else
5687 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5688 
5689 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5690 }
5691 
5692 static void
5693 probestart(struct cam_periph *periph, union ccb *start_ccb)
5694 {
5695 	/* Probe the device that our peripheral driver points to */
5696 	struct ccb_scsiio *csio;
5697 	probe_softc *softc;
5698 
5699 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5700 
5701 	softc = (probe_softc *)periph->softc;
5702 	csio = &start_ccb->csio;
5703 
5704 	switch (softc->action) {
5705 	case PROBE_TUR:
5706 	case PROBE_TUR_FOR_NEGOTIATION:
5707 	case PROBE_DV_EXIT:
5708 	{
5709 		scsi_test_unit_ready(csio,
5710 				     /*retries*/4,
5711 				     probedone,
5712 				     MSG_SIMPLE_Q_TAG,
5713 				     SSD_FULL_SIZE,
5714 				     /*timeout*/60000);
5715 		break;
5716 	}
5717 	case PROBE_INQUIRY:
5718 	case PROBE_FULL_INQUIRY:
5719 	case PROBE_INQUIRY_BASIC_DV1:
5720 	case PROBE_INQUIRY_BASIC_DV2:
5721 	{
5722 		u_int inquiry_len;
5723 		struct scsi_inquiry_data *inq_buf;
5724 
5725 		inq_buf = &periph->path->device->inq_data;
5726 
5727 		/*
5728 		 * If the device is currently configured, we calculate an
5729 		 * MD5 checksum of the inquiry data, and if the serial number
5730 		 * length is greater than 0, add the serial number data
5731 		 * into the checksum as well.  Once the inquiry and the
5732 		 * serial number check finish, we attempt to figure out
5733 		 * whether we still have the same device.
5734 		 */
5735 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5736 
5737 			MD5Init(&softc->context);
5738 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5739 				  sizeof(struct scsi_inquiry_data));
5740 			softc->flags |= PROBE_INQUIRY_CKSUM;
5741 			if (periph->path->device->serial_num_len > 0) {
5742 				MD5Update(&softc->context,
5743 					  periph->path->device->serial_num,
5744 					  periph->path->device->serial_num_len);
5745 				softc->flags |= PROBE_SERIAL_CKSUM;
5746 			}
5747 			MD5Final(softc->digest, &softc->context);
5748 		}
5749 
5750 		if (softc->action == PROBE_INQUIRY)
5751 			inquiry_len = SHORT_INQUIRY_LENGTH;
5752 		else
5753 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5754 
5755 		/*
5756 		 * Some parallel SCSI devices fail to send an
5757 		 * ignore wide residue message when dealing with
5758 		 * odd length inquiry requests.  Round up to be
5759 		 * safe.
5760 		 */
5761 		inquiry_len = roundup2(inquiry_len, 2);
5762 
5763 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5764 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5765 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5766 		}
5767 		scsi_inquiry(csio,
5768 			     /*retries*/4,
5769 			     probedone,
5770 			     MSG_SIMPLE_Q_TAG,
5771 			     (u_int8_t *)inq_buf,
5772 			     inquiry_len,
5773 			     /*evpd*/FALSE,
5774 			     /*page_code*/0,
5775 			     SSD_MIN_SIZE,
5776 			     /*timeout*/60 * 1000);
5777 		break;
5778 	}
5779 	case PROBE_MODE_SENSE:
5780 	{
5781 		void  *mode_buf;
5782 		int    mode_buf_len;
5783 
5784 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5785 			     + sizeof(struct scsi_mode_blk_desc)
5786 			     + sizeof(struct scsi_control_page);
5787 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5788 		scsi_mode_sense(csio,
5789 				/*retries*/4,
5790 				probedone,
5791 				MSG_SIMPLE_Q_TAG,
5792 				/*dbd*/FALSE,
5793 				SMS_PAGE_CTRL_CURRENT,
5794 				SMS_CONTROL_MODE_PAGE,
5795 				mode_buf,
5796 				mode_buf_len,
5797 				SSD_FULL_SIZE,
5798 				/*timeout*/60000);
5799 		break;
5800 	}
5801 	case PROBE_SERIAL_NUM_0:
5802 	{
5803 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5804 		struct cam_ed *device;
5805 
5806 		device = periph->path->device;
5807 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5808 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5809 			    M_INTWAIT | M_ZERO);
5810 		}
5811 
5812 		if (vpd_list != NULL) {
5813 			scsi_inquiry(csio,
5814 				     /*retries*/4,
5815 				     probedone,
5816 				     MSG_SIMPLE_Q_TAG,
5817 				     (u_int8_t *)vpd_list,
5818 				     sizeof(*vpd_list),
5819 				     /*evpd*/TRUE,
5820 				     SVPD_SUPPORTED_PAGE_LIST,
5821 				     SSD_MIN_SIZE,
5822 				     /*timeout*/60 * 1000);
5823 			break;
5824 		}
5825 		/*
5826 		 * We'll have to do without, let our probedone
5827 		 * routine finish up for us.
5828 		 */
5829 		start_ccb->csio.data_ptr = NULL;
5830 		probedone(periph, start_ccb);
5831 		return;
5832 	}
5833 	case PROBE_SERIAL_NUM_1:
5834 	{
5835 		struct scsi_vpd_unit_serial_number *serial_buf;
5836 		struct cam_ed* device;
5837 
5838 		serial_buf = NULL;
5839 		device = periph->path->device;
5840 		device->serial_num = NULL;
5841 		device->serial_num_len = 0;
5842 
5843 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5844 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5845 				M_INTWAIT | M_ZERO);
5846 		scsi_inquiry(csio,
5847 			     /*retries*/4,
5848 			     probedone,
5849 			     MSG_SIMPLE_Q_TAG,
5850 			     (u_int8_t *)serial_buf,
5851 			     sizeof(*serial_buf),
5852 			     /*evpd*/TRUE,
5853 			     SVPD_UNIT_SERIAL_NUMBER,
5854 			     SSD_MIN_SIZE,
5855 			     /*timeout*/60 * 1000);
5856 		break;
5857 	}
5858 	}
5859 	xpt_action(start_ccb);
5860 }
5861 
5862 static void
5863 proberequestdefaultnegotiation(struct cam_periph *periph)
5864 {
5865 	struct ccb_trans_settings cts;
5866 
5867 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5868 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5869 	cts.type = CTS_TYPE_USER_SETTINGS;
5870 	xpt_action((union ccb *)&cts);
5871 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5872 		return;
5873 	}
5874 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5875 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5876 	xpt_action((union ccb *)&cts);
5877 }
5878 
5879 /*
5880  * Backoff Negotiation Code- only pertinent for SPI devices.
5881  */
5882 static int
5883 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5884 {
5885 	struct ccb_trans_settings cts;
5886 	struct ccb_trans_settings_spi *spi;
5887 
5888 	memset(&cts, 0, sizeof (cts));
5889 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5890 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5891 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5892 	xpt_action((union ccb *)&cts);
5893 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5894 		if (bootverbose) {
5895 			xpt_print(periph->path,
5896 			    "failed to get current device settings\n");
5897 		}
5898 		return (0);
5899 	}
5900 	if (cts.transport != XPORT_SPI) {
5901 		if (bootverbose) {
5902 			xpt_print(periph->path, "not SPI transport\n");
5903 		}
5904 		return (0);
5905 	}
5906 	spi = &cts.xport_specific.spi;
5907 
5908 	/*
5909 	 * We cannot renegotiate sync rate if we don't have one.
5910 	 */
5911 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5912 		if (bootverbose) {
5913 			xpt_print(periph->path, "no sync rate known\n");
5914 		}
5915 		return (0);
5916 	}
5917 
5918 	/*
5919 	 * We'll assert that we don't have to touch PPR options- the
5920 	 * SIM will see what we do with period and offset and adjust
5921 	 * the PPR options as appropriate.
5922 	 */
5923 
5924 	/*
5925 	 * A sync rate with unknown or zero offset is nonsensical.
5926 	 * A sync period of zero means Async.
5927 	 */
5928 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5929 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5930 		if (bootverbose) {
5931 			xpt_print(periph->path, "no sync rate available\n");
5932 		}
5933 		return (0);
5934 	}
5935 
5936 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5937 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5938 		    ("hit async: giving up on DV\n"));
5939 		return (0);
5940 	}
5941 
5942 
5943 	/*
5944 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5945 	 * We don't try to remember 'last' settings to see if the SIM actually
5946 	 * gets into the speed we want to set. We check on the SIM telling
5947 	 * us that a requested speed is bad, but otherwise don't try and
5948 	 * check the speed due to the asynchronous and handshake nature
5949 	 * of speed setting.
5950 	 */
5951 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5952 	for (;;) {
5953 		spi->sync_period++;
5954 		if (spi->sync_period >= 0xf) {
5955 			spi->sync_period = 0;
5956 			spi->sync_offset = 0;
5957 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5958 			    ("setting to async for DV\n"));
5959 			/*
5960 			 * Once we hit async, we don't want to try
5961 			 * any more settings.
5962 			 */
5963 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5964 		} else if (bootverbose) {
5965 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5966 			    ("DV: period 0x%x\n", spi->sync_period));
5967 			kprintf("setting period to 0x%x\n", spi->sync_period);
5968 		}
5969 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5970 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5971 		xpt_action((union ccb *)&cts);
5972 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5973 			break;
5974 		}
5975 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5976 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5977 		if (spi->sync_period == 0) {
5978 			return (0);
5979 		}
5980 	}
5981 	return (1);
5982 }
5983 
5984 static void
5985 probedone(struct cam_periph *periph, union ccb *done_ccb)
5986 {
5987 	probe_softc *softc;
5988 	struct cam_path *path;
5989 	u_int32_t  priority;
5990 
5991 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5992 
5993 	softc = (probe_softc *)periph->softc;
5994 	path = done_ccb->ccb_h.path;
5995 	priority = done_ccb->ccb_h.pinfo.priority;
5996 
5997 	switch (softc->action) {
5998 	case PROBE_TUR:
5999 	{
6000 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6001 
6002 			if (cam_periph_error(done_ccb, 0,
6003 					     SF_NO_PRINT, NULL) == ERESTART)
6004 				return;
6005 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6006 				/* Don't wedge the queue */
6007 				xpt_release_devq(done_ccb->ccb_h.path,
6008 						 /*count*/1,
6009 						 /*run_queue*/TRUE);
6010 		}
6011 		softc->action = PROBE_INQUIRY;
6012 		xpt_release_ccb(done_ccb);
6013 		xpt_schedule(periph, priority);
6014 		return;
6015 	}
6016 	case PROBE_INQUIRY:
6017 	case PROBE_FULL_INQUIRY:
6018 	{
6019 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6020 			struct scsi_inquiry_data *inq_buf;
6021 			u_int8_t periph_qual;
6022 
6023 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6024 			inq_buf = &path->device->inq_data;
6025 
6026 			periph_qual = SID_QUAL(inq_buf);
6027 
6028 			switch(periph_qual) {
6029 			case SID_QUAL_LU_CONNECTED:
6030 			{
6031 				u_int8_t len;
6032 
6033 				/*
6034 				 * We conservatively request only
6035 				 * SHORT_INQUIRY_LEN bytes of inquiry
6036 				 * information during our first try
6037 				 * at sending an INQUIRY. If the device
6038 				 * has more information to give,
6039 				 * perform a second request specifying
6040 				 * the amount of information the device
6041 				 * is willing to give.
6042 				 */
6043 				len = inq_buf->additional_length
6044 				    + offsetof(struct scsi_inquiry_data,
6045 						additional_length) + 1;
6046 				if (softc->action == PROBE_INQUIRY
6047 				    && len > SHORT_INQUIRY_LENGTH) {
6048 					softc->action = PROBE_FULL_INQUIRY;
6049 					xpt_release_ccb(done_ccb);
6050 					xpt_schedule(periph, priority);
6051 					return;
6052 				}
6053 
6054 				xpt_find_quirk(path->device);
6055 
6056 				xpt_devise_transport(path);
6057 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6058 					softc->action = PROBE_MODE_SENSE;
6059 				else
6060 					softc->action = PROBE_SERIAL_NUM_0;
6061 
6062 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6063 				xpt_reference_device(path->device);
6064 
6065 				xpt_release_ccb(done_ccb);
6066 				xpt_schedule(periph, priority);
6067 				return;
6068 			}
6069 			default:
6070 				break;
6071 			}
6072 		} else if (cam_periph_error(done_ccb, 0,
6073 					    done_ccb->ccb_h.target_lun > 0
6074 					    ? SF_RETRY_UA|SF_QUIET_IR
6075 					    : SF_RETRY_UA,
6076 					    &softc->saved_ccb) == ERESTART) {
6077 			return;
6078 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6079 			/* Don't wedge the queue */
6080 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6081 					 /*run_queue*/TRUE);
6082 		}
6083 		/*
6084 		 * If we get to this point, we got an error status back
6085 		 * from the inquiry and the error status doesn't require
6086 		 * automatically retrying the command.  Therefore, the
6087 		 * inquiry failed.  If we had inquiry information before
6088 		 * for this device, but this latest inquiry command failed,
6089 		 * the device has probably gone away.  If this device isn't
6090 		 * already marked unconfigured, notify the peripheral
6091 		 * drivers that this device is no more.
6092 		 */
6093 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6094 			/* Send the async notification. */
6095 			xpt_async(AC_LOST_DEVICE, path, NULL);
6096 		}
6097 
6098 		xpt_release_ccb(done_ccb);
6099 		break;
6100 	}
6101 	case PROBE_MODE_SENSE:
6102 	{
6103 		struct ccb_scsiio *csio;
6104 		struct scsi_mode_header_6 *mode_hdr;
6105 
6106 		csio = &done_ccb->csio;
6107 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6108 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6109 			struct scsi_control_page *page;
6110 			u_int8_t *offset;
6111 
6112 			offset = ((u_int8_t *)&mode_hdr[1])
6113 			    + mode_hdr->blk_desc_len;
6114 			page = (struct scsi_control_page *)offset;
6115 			path->device->queue_flags = page->queue_flags;
6116 		} else if (cam_periph_error(done_ccb, 0,
6117 					    SF_RETRY_UA|SF_NO_PRINT,
6118 					    &softc->saved_ccb) == ERESTART) {
6119 			return;
6120 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6121 			/* Don't wedge the queue */
6122 			xpt_release_devq(done_ccb->ccb_h.path,
6123 					 /*count*/1, /*run_queue*/TRUE);
6124 		}
6125 		xpt_release_ccb(done_ccb);
6126 		kfree(mode_hdr, M_CAMXPT);
6127 		softc->action = PROBE_SERIAL_NUM_0;
6128 		xpt_schedule(periph, priority);
6129 		return;
6130 	}
6131 	case PROBE_SERIAL_NUM_0:
6132 	{
6133 		struct ccb_scsiio *csio;
6134 		struct scsi_vpd_supported_page_list *page_list;
6135 		int length, serialnum_supported, i;
6136 
6137 		serialnum_supported = 0;
6138 		csio = &done_ccb->csio;
6139 		page_list =
6140 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6141 
6142 		if (page_list == NULL) {
6143 			/*
6144 			 * Don't process the command as it was never sent
6145 			 */
6146 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6147 		    && (page_list->length > 0)) {
6148 			length = min(page_list->length,
6149 			    SVPD_SUPPORTED_PAGES_SIZE);
6150 			for (i = 0; i < length; i++) {
6151 				if (page_list->list[i] ==
6152 				    SVPD_UNIT_SERIAL_NUMBER) {
6153 					serialnum_supported = 1;
6154 					break;
6155 				}
6156 			}
6157 		} else if (cam_periph_error(done_ccb, 0,
6158 					    SF_RETRY_UA|SF_NO_PRINT,
6159 					    &softc->saved_ccb) == ERESTART) {
6160 			return;
6161 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6162 			/* Don't wedge the queue */
6163 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6164 					 /*run_queue*/TRUE);
6165 		}
6166 
6167 		if (page_list != NULL)
6168 			kfree(page_list, M_DEVBUF);
6169 
6170 		if (serialnum_supported) {
6171 			xpt_release_ccb(done_ccb);
6172 			softc->action = PROBE_SERIAL_NUM_1;
6173 			xpt_schedule(periph, priority);
6174 			return;
6175 		}
6176 		xpt_release_ccb(done_ccb);
6177 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6178 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6179 		return;
6180 	}
6181 
6182 	case PROBE_SERIAL_NUM_1:
6183 	{
6184 		struct ccb_scsiio *csio;
6185 		struct scsi_vpd_unit_serial_number *serial_buf;
6186 		u_int32_t  priority;
6187 		int changed;
6188 		int have_serialnum;
6189 
6190 		changed = 1;
6191 		have_serialnum = 0;
6192 		csio = &done_ccb->csio;
6193 		priority = done_ccb->ccb_h.pinfo.priority;
6194 		serial_buf =
6195 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6196 
6197 		/* Clean up from previous instance of this device */
6198 		if (path->device->serial_num != NULL) {
6199 			kfree(path->device->serial_num, M_CAMXPT);
6200 			path->device->serial_num = NULL;
6201 			path->device->serial_num_len = 0;
6202 		}
6203 
6204 		if (serial_buf == NULL) {
6205 			/*
6206 			 * Don't process the command as it was never sent
6207 			 */
6208 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6209 			&& (serial_buf->length > 0)) {
6210 
6211 			have_serialnum = 1;
6212 			path->device->serial_num =
6213 				kmalloc((serial_buf->length + 1),
6214 				       M_CAMXPT, M_INTWAIT);
6215 			bcopy(serial_buf->serial_num,
6216 			      path->device->serial_num,
6217 			      serial_buf->length);
6218 			path->device->serial_num_len = serial_buf->length;
6219 			path->device->serial_num[serial_buf->length] = '\0';
6220 		} else if (cam_periph_error(done_ccb, 0,
6221 					    SF_RETRY_UA|SF_NO_PRINT,
6222 					    &softc->saved_ccb) == ERESTART) {
6223 			return;
6224 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6225 			/* Don't wedge the queue */
6226 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6227 					 /*run_queue*/TRUE);
6228 		}
6229 
6230 		/*
6231 		 * Let's see if we have seen this device before.
6232 		 */
6233 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6234 			MD5_CTX context;
6235 			u_int8_t digest[16];
6236 
6237 			MD5Init(&context);
6238 
6239 			MD5Update(&context,
6240 				  (unsigned char *)&path->device->inq_data,
6241 				  sizeof(struct scsi_inquiry_data));
6242 
6243 			if (have_serialnum)
6244 				MD5Update(&context, serial_buf->serial_num,
6245 					  serial_buf->length);
6246 
6247 			MD5Final(digest, &context);
6248 			if (bcmp(softc->digest, digest, 16) == 0)
6249 				changed = 0;
6250 
6251 			/*
6252 			 * XXX Do we need to do a TUR in order to ensure
6253 			 *     that the device really hasn't changed???
6254 			 */
6255 			if ((changed != 0)
6256 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6257 				xpt_async(AC_LOST_DEVICE, path, NULL);
6258 		}
6259 		if (serial_buf != NULL)
6260 			kfree(serial_buf, M_CAMXPT);
6261 
6262 		if (changed != 0) {
6263 			/*
6264 			 * Now that we have all the necessary
6265 			 * information to safely perform transfer
6266 			 * negotiations... Controllers don't perform
6267 			 * any negotiation or tagged queuing until
6268 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6269 			 * received.  So, on a new device, just retrieve
6270 			 * the user settings, and set them as the current
6271 			 * settings to set the device up.
6272 			 */
6273 			proberequestdefaultnegotiation(periph);
6274 			xpt_release_ccb(done_ccb);
6275 
6276 			/*
6277 			 * Perform a TUR to allow the controller to
6278 			 * perform any necessary transfer negotiation.
6279 			 */
6280 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6281 			xpt_schedule(periph, priority);
6282 			return;
6283 		}
6284 		xpt_release_ccb(done_ccb);
6285 		break;
6286 	}
6287 	case PROBE_TUR_FOR_NEGOTIATION:
6288 	case PROBE_DV_EXIT:
6289 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6290 			/* Don't wedge the queue */
6291 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6292 					 /*run_queue*/TRUE);
6293 		}
6294 
6295 		xpt_reference_device(path->device);
6296 		/*
6297 		 * Do Domain Validation for lun 0 on devices that claim
6298 		 * to support Synchronous Transfer modes.
6299 		 */
6300 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6301 		 && done_ccb->ccb_h.target_lun == 0
6302 		 && (path->device->inq_data.flags & SID_Sync) != 0
6303                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6304 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6305 			    ("Begin Domain Validation\n"));
6306 			path->device->flags |= CAM_DEV_IN_DV;
6307 			xpt_release_ccb(done_ccb);
6308 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6309 			xpt_schedule(periph, priority);
6310 			return;
6311 		}
6312 		if (softc->action == PROBE_DV_EXIT) {
6313 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6314 			    ("Leave Domain Validation\n"));
6315 		}
6316 		path->device->flags &=
6317 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6318 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6319 			/* Inform the XPT that a new device has been found */
6320 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6321 			xpt_action(done_ccb);
6322 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6323 				  done_ccb);
6324 		}
6325 		xpt_release_ccb(done_ccb);
6326 		break;
6327 	case PROBE_INQUIRY_BASIC_DV1:
6328 	case PROBE_INQUIRY_BASIC_DV2:
6329 	{
6330 		struct scsi_inquiry_data *nbuf;
6331 		struct ccb_scsiio *csio;
6332 
6333 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6334 			/* Don't wedge the queue */
6335 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6336 					 /*run_queue*/TRUE);
6337 		}
6338 		csio = &done_ccb->csio;
6339 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6340 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6341 			xpt_print(path,
6342 			    "inquiry data fails comparison at DV%d step\n",
6343 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6344 			if (proberequestbackoff(periph, path->device)) {
6345 				path->device->flags &= ~CAM_DEV_IN_DV;
6346 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6347 			} else {
6348 				/* give up */
6349 				softc->action = PROBE_DV_EXIT;
6350 			}
6351 			kfree(nbuf, M_CAMXPT);
6352 			xpt_release_ccb(done_ccb);
6353 			xpt_schedule(periph, priority);
6354 			return;
6355 		}
6356 		kfree(nbuf, M_CAMXPT);
6357 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6358 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6359 			xpt_release_ccb(done_ccb);
6360 			xpt_schedule(periph, priority);
6361 			return;
6362 		}
6363 		if (softc->action == PROBE_DV_EXIT) {
6364 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6365 			    ("Leave Domain Validation Successfully\n"));
6366 		}
6367 		path->device->flags &=
6368 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6369 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6370 			/* Inform the XPT that a new device has been found */
6371 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6372 			xpt_action(done_ccb);
6373 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6374 				  done_ccb);
6375 		}
6376 		xpt_release_ccb(done_ccb);
6377 		break;
6378 	}
6379 	}
6380 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6381 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6382 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6383 	xpt_done(done_ccb);
6384 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6385 		cam_periph_invalidate(periph);
6386 		cam_periph_release(periph);
6387 	} else {
6388 		probeschedule(periph);
6389 	}
6390 }
6391 
6392 static void
6393 probecleanup(struct cam_periph *periph)
6394 {
6395 	kfree(periph->softc, M_CAMXPT);
6396 }
6397 
6398 static void
6399 xpt_find_quirk(struct cam_ed *device)
6400 {
6401 	caddr_t	match;
6402 
6403 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6404 			       (caddr_t)xpt_quirk_table,
6405 			       NELEM(xpt_quirk_table),
6406 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6407 
6408 	if (match == NULL)
6409 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6410 
6411 	device->quirk = (struct xpt_quirk_entry *)match;
6412 }
6413 
6414 static int
6415 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6416 {
6417 	int error, bool;
6418 
6419 	bool = cam_srch_hi;
6420 	error = sysctl_handle_int(oidp, &bool, 0, req);
6421 	if (error != 0 || req->newptr == NULL)
6422 		return (error);
6423 	if (bool == 0 || bool == 1) {
6424 		cam_srch_hi = bool;
6425 		return (0);
6426 	} else {
6427 		return (EINVAL);
6428 	}
6429 }
6430 
6431 static void
6432 xpt_devise_transport(struct cam_path *path)
6433 {
6434 	struct ccb_pathinq cpi;
6435 	struct ccb_trans_settings cts;
6436 	struct scsi_inquiry_data *inq_buf;
6437 
6438 	/* Get transport information from the SIM */
6439 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6440 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6441 	xpt_action((union ccb *)&cpi);
6442 
6443 	inq_buf = NULL;
6444 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6445 		inq_buf = &path->device->inq_data;
6446 	path->device->protocol = PROTO_SCSI;
6447 	path->device->protocol_version =
6448 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6449 	path->device->transport = cpi.transport;
6450 	path->device->transport_version = cpi.transport_version;
6451 
6452 	/*
6453 	 * Any device not using SPI3 features should
6454 	 * be considered SPI2 or lower.
6455 	 */
6456 	if (inq_buf != NULL) {
6457 		if (path->device->transport == XPORT_SPI
6458 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6459 		 && path->device->transport_version > 2)
6460 			path->device->transport_version = 2;
6461 	} else {
6462 		struct cam_ed* otherdev;
6463 
6464 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6465 		     otherdev != NULL;
6466 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6467 			if (otherdev != path->device)
6468 				break;
6469 		}
6470 
6471 		if (otherdev != NULL) {
6472 			/*
6473 			 * Initially assume the same versioning as
6474 			 * prior luns for this target.
6475 			 */
6476 			path->device->protocol_version =
6477 			    otherdev->protocol_version;
6478 			path->device->transport_version =
6479 			    otherdev->transport_version;
6480 		} else {
6481 			/* Until we know better, opt for safty */
6482 			path->device->protocol_version = 2;
6483 			if (path->device->transport == XPORT_SPI)
6484 				path->device->transport_version = 2;
6485 			else
6486 				path->device->transport_version = 0;
6487 		}
6488 	}
6489 
6490 	/*
6491 	 * XXX
6492 	 * For a device compliant with SPC-2 we should be able
6493 	 * to determine the transport version supported by
6494 	 * scrutinizing the version descriptors in the
6495 	 * inquiry buffer.
6496 	 */
6497 
6498 	/* Tell the controller what we think */
6499 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6500 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6501 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6502 	cts.transport = path->device->transport;
6503 	cts.transport_version = path->device->transport_version;
6504 	cts.protocol = path->device->protocol;
6505 	cts.protocol_version = path->device->protocol_version;
6506 	cts.proto_specific.valid = 0;
6507 	cts.xport_specific.valid = 0;
6508 	xpt_action((union ccb *)&cts);
6509 }
6510 
6511 static void
6512 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6513 			  int async_update)
6514 {
6515 	struct	ccb_pathinq cpi;
6516 	struct	ccb_trans_settings cur_cts;
6517 	struct	ccb_trans_settings_scsi *scsi;
6518 	struct	ccb_trans_settings_scsi *cur_scsi;
6519 	struct	cam_sim *sim;
6520 	struct	scsi_inquiry_data *inq_data;
6521 
6522 	if (device == NULL) {
6523 		cts->ccb_h.status = CAM_PATH_INVALID;
6524 		xpt_done((union ccb *)cts);
6525 		return;
6526 	}
6527 
6528 	if (cts->protocol == PROTO_UNKNOWN
6529 	 || cts->protocol == PROTO_UNSPECIFIED) {
6530 		cts->protocol = device->protocol;
6531 		cts->protocol_version = device->protocol_version;
6532 	}
6533 
6534 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6535 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6536 		cts->protocol_version = device->protocol_version;
6537 
6538 	if (cts->protocol != device->protocol) {
6539 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6540 		       cts->protocol, device->protocol);
6541 		cts->protocol = device->protocol;
6542 	}
6543 
6544 	if (cts->protocol_version > device->protocol_version) {
6545 		if (bootverbose) {
6546 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6547 			    "Version from %d to %d?\n", cts->protocol_version,
6548 			    device->protocol_version);
6549 		}
6550 		cts->protocol_version = device->protocol_version;
6551 	}
6552 
6553 	if (cts->transport == XPORT_UNKNOWN
6554 	 || cts->transport == XPORT_UNSPECIFIED) {
6555 		cts->transport = device->transport;
6556 		cts->transport_version = device->transport_version;
6557 	}
6558 
6559 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6560 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6561 		cts->transport_version = device->transport_version;
6562 
6563 	if (cts->transport != device->transport) {
6564 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6565 		    cts->transport, device->transport);
6566 		cts->transport = device->transport;
6567 	}
6568 
6569 	if (cts->transport_version > device->transport_version) {
6570 		if (bootverbose) {
6571 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6572 			    "Version from %d to %d?\n", cts->transport_version,
6573 			    device->transport_version);
6574 		}
6575 		cts->transport_version = device->transport_version;
6576 	}
6577 
6578 	sim = cts->ccb_h.path->bus->sim;
6579 
6580 	/*
6581 	 * Nothing more of interest to do unless
6582 	 * this is a device connected via the
6583 	 * SCSI protocol.
6584 	 */
6585 	if (cts->protocol != PROTO_SCSI) {
6586 		if (async_update == FALSE)
6587 			(*(sim->sim_action))(sim, (union ccb *)cts);
6588 		return;
6589 	}
6590 
6591 	inq_data = &device->inq_data;
6592 	scsi = &cts->proto_specific.scsi;
6593 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6594 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6595 	xpt_action((union ccb *)&cpi);
6596 
6597 	/* SCSI specific sanity checking */
6598 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6599 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6600 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6601 	 || (device->quirk->mintags == 0)) {
6602 		/*
6603 		 * Can't tag on hardware that doesn't support tags,
6604 		 * doesn't have it enabled, or has broken tag support.
6605 		 */
6606 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6607 	}
6608 
6609 	if (async_update == FALSE) {
6610 		/*
6611 		 * Perform sanity checking against what the
6612 		 * controller and device can do.
6613 		 */
6614 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6615 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6616 		cur_cts.type = cts->type;
6617 		xpt_action((union ccb *)&cur_cts);
6618 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6619 			return;
6620 		}
6621 		cur_scsi = &cur_cts.proto_specific.scsi;
6622 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6623 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6624 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6625 		}
6626 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6627 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6628 	}
6629 
6630 	/* SPI specific sanity checking */
6631 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6632 		u_int spi3caps;
6633 		struct ccb_trans_settings_spi *spi;
6634 		struct ccb_trans_settings_spi *cur_spi;
6635 
6636 		spi = &cts->xport_specific.spi;
6637 
6638 		cur_spi = &cur_cts.xport_specific.spi;
6639 
6640 		/* Fill in any gaps in what the user gave us */
6641 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6642 			spi->sync_period = cur_spi->sync_period;
6643 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6644 			spi->sync_period = 0;
6645 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6646 			spi->sync_offset = cur_spi->sync_offset;
6647 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6648 			spi->sync_offset = 0;
6649 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6650 			spi->ppr_options = cur_spi->ppr_options;
6651 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6652 			spi->ppr_options = 0;
6653 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6654 			spi->bus_width = cur_spi->bus_width;
6655 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6656 			spi->bus_width = 0;
6657 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6658 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6659 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6660 		}
6661 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6662 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6663 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6664 		  && (inq_data->flags & SID_Sync) == 0
6665 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6666 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6667 		 || (spi->sync_offset == 0)
6668 		 || (spi->sync_period == 0)) {
6669 			/* Force async */
6670 			spi->sync_period = 0;
6671 			spi->sync_offset = 0;
6672 		}
6673 
6674 		switch (spi->bus_width) {
6675 		case MSG_EXT_WDTR_BUS_32_BIT:
6676 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6677 			  || (inq_data->flags & SID_WBus32) != 0
6678 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6679 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6680 				break;
6681 			/* Fall Through to 16-bit */
6682 		case MSG_EXT_WDTR_BUS_16_BIT:
6683 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6684 			  || (inq_data->flags & SID_WBus16) != 0
6685 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6686 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6687 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6688 				break;
6689 			}
6690 			/* Fall Through to 8-bit */
6691 		default: /* New bus width?? */
6692 		case MSG_EXT_WDTR_BUS_8_BIT:
6693 			/* All targets can do this */
6694 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6695 			break;
6696 		}
6697 
6698 		spi3caps = cpi.xport_specific.spi.ppr_options;
6699 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6700 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6701 			spi3caps &= inq_data->spi3data;
6702 
6703 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6704 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6705 
6706 		if ((spi3caps & SID_SPI_IUS) == 0)
6707 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6708 
6709 		if ((spi3caps & SID_SPI_QAS) == 0)
6710 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6711 
6712 		/* No SPI Transfer settings are allowed unless we are wide */
6713 		if (spi->bus_width == 0)
6714 			spi->ppr_options = 0;
6715 
6716 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6717 			/*
6718 			 * Can't tag queue without disconnection.
6719 			 */
6720 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6721 			scsi->valid |= CTS_SCSI_VALID_TQ;
6722 		}
6723 
6724 		/*
6725 		 * If we are currently performing tagged transactions to
6726 		 * this device and want to change its negotiation parameters,
6727 		 * go non-tagged for a bit to give the controller a chance to
6728 		 * negotiate unhampered by tag messages.
6729 		 */
6730 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6731 		 && (device->inq_flags & SID_CmdQue) != 0
6732 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6733 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6734 				   CTS_SPI_VALID_SYNC_OFFSET|
6735 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6736 			xpt_toggle_tags(cts->ccb_h.path);
6737 	}
6738 
6739 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6740 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6741 		int device_tagenb;
6742 
6743 		/*
6744 		 * If we are transitioning from tags to no-tags or
6745 		 * vice-versa, we need to carefully freeze and restart
6746 		 * the queue so that we don't overlap tagged and non-tagged
6747 		 * commands.  We also temporarily stop tags if there is
6748 		 * a change in transfer negotiation settings to allow
6749 		 * "tag-less" negotiation.
6750 		 */
6751 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6752 		 || (device->inq_flags & SID_CmdQue) != 0)
6753 			device_tagenb = TRUE;
6754 		else
6755 			device_tagenb = FALSE;
6756 
6757 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6758 		  && device_tagenb == FALSE)
6759 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6760 		  && device_tagenb == TRUE)) {
6761 
6762 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6763 				/*
6764 				 * Delay change to use tags until after a
6765 				 * few commands have gone to this device so
6766 				 * the controller has time to perform transfer
6767 				 * negotiations without tagged messages getting
6768 				 * in the way.
6769 				 */
6770 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6771 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6772 			} else {
6773 				struct ccb_relsim crs;
6774 
6775 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6776 				device->inq_flags &= ~SID_CmdQue;
6777 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6778 						    sim->max_dev_openings);
6779 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6780 				device->tag_delay_count = 0;
6781 
6782 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6783 					      /*priority*/1);
6784 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6785 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6786 				crs.openings
6787 				    = crs.release_timeout
6788 				    = crs.qfrozen_cnt
6789 				    = 0;
6790 				xpt_action((union ccb *)&crs);
6791 			}
6792 		}
6793 	}
6794 	if (async_update == FALSE)
6795 		(*(sim->sim_action))(sim, (union ccb *)cts);
6796 }
6797 
6798 static void
6799 xpt_toggle_tags(struct cam_path *path)
6800 {
6801 	struct cam_ed *dev;
6802 
6803 	/*
6804 	 * Give controllers a chance to renegotiate
6805 	 * before starting tag operations.  We
6806 	 * "toggle" tagged queuing off then on
6807 	 * which causes the tag enable command delay
6808 	 * counter to come into effect.
6809 	 */
6810 	dev = path->device;
6811 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6812 	 || ((dev->inq_flags & SID_CmdQue) != 0
6813  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6814 		struct ccb_trans_settings cts;
6815 
6816 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6817 		cts.protocol = PROTO_SCSI;
6818 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6819 		cts.transport = XPORT_UNSPECIFIED;
6820 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6821 		cts.proto_specific.scsi.flags = 0;
6822 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6823 		xpt_set_transfer_settings(&cts, path->device,
6824 					  /*async_update*/TRUE);
6825 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6826 		xpt_set_transfer_settings(&cts, path->device,
6827 					  /*async_update*/TRUE);
6828 	}
6829 }
6830 
6831 static void
6832 xpt_start_tags(struct cam_path *path)
6833 {
6834 	struct ccb_relsim crs;
6835 	struct cam_ed *device;
6836 	struct cam_sim *sim;
6837 	int    newopenings;
6838 
6839 	device = path->device;
6840 	sim = path->bus->sim;
6841 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6842 	xpt_freeze_devq(path, /*count*/1);
6843 	device->inq_flags |= SID_CmdQue;
6844 	if (device->tag_saved_openings != 0)
6845 		newopenings = device->tag_saved_openings;
6846 	else
6847 		newopenings = min(device->quirk->maxtags,
6848 				  sim->max_tagged_dev_openings);
6849 	xpt_dev_ccbq_resize(path, newopenings);
6850 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6851 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6852 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6853 	crs.openings
6854 	    = crs.release_timeout
6855 	    = crs.qfrozen_cnt
6856 	    = 0;
6857 	xpt_action((union ccb *)&crs);
6858 }
6859 
6860 static int busses_to_config;
6861 static int busses_to_reset;
6862 
6863 static int
6864 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6865 {
6866 	sim_lock_assert_owned(bus->sim->lock);
6867 
6868 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6869 		struct cam_path path;
6870 		struct ccb_pathinq cpi;
6871 		int can_negotiate;
6872 
6873 		if (bootverbose) {
6874 			kprintf("CAM: Configuring bus:");
6875 			if (bus->sim) {
6876 				kprintf(" %s%d\n",
6877 					bus->sim->sim_name,
6878 					bus->sim->unit_number);
6879 			} else {
6880 				kprintf(" (unknown)\n");
6881 			}
6882 		}
6883 		atomic_add_int(&busses_to_config, 1);
6884 		bus->counted_to_config = 1;
6885 		xpt_compile_path(&path, NULL, bus->path_id,
6886 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6887 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6888 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6889 		xpt_action((union ccb *)&cpi);
6890 		can_negotiate = cpi.hba_inquiry;
6891 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6892 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6893 			busses_to_reset++;
6894 		xpt_release_path(&path);
6895 	} else
6896 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6897 		/* this is our dummy periph/bus */
6898 		atomic_add_int(&busses_to_config, 1);
6899 		bus->counted_to_config = 1;
6900 	}
6901 
6902 	return(1);
6903 }
6904 
6905 static int
6906 xptconfigfunc(struct cam_eb *bus, void *arg)
6907 {
6908 	struct	cam_path *path;
6909 	union	ccb *work_ccb;
6910 
6911 	sim_lock_assert_owned(bus->sim->lock);
6912 
6913 	if (bus->path_id != CAM_XPT_PATH_ID) {
6914 		cam_status status;
6915 		int can_negotiate;
6916 
6917 		work_ccb = xpt_alloc_ccb();
6918 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6919 					      CAM_TARGET_WILDCARD,
6920 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6921 			kprintf("xptconfigfunc: xpt_create_path failed with "
6922 			       "status %#x for bus %d\n", status, bus->path_id);
6923 			kprintf("xptconfigfunc: halting bus configuration\n");
6924 			xpt_free_ccb(work_ccb);
6925 			xpt_uncount_bus(bus);
6926 			return(0);
6927 		}
6928 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6929 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6930 		xpt_action(work_ccb);
6931 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6932 			kprintf("xptconfigfunc: CPI failed on bus %d "
6933 			       "with status %d\n", bus->path_id,
6934 			       work_ccb->ccb_h.status);
6935 			xpt_finishconfig(xpt_periph, work_ccb);
6936 			return(1);
6937 		}
6938 
6939 		can_negotiate = work_ccb->cpi.hba_inquiry;
6940 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6941 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6942 		 && (can_negotiate != 0)) {
6943 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6944 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6945 			work_ccb->ccb_h.cbfcnp = NULL;
6946 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6947 				  ("Resetting Bus\n"));
6948 			xpt_action(work_ccb);
6949 			xpt_finishconfig(xpt_periph, work_ccb);
6950 		} else {
6951 			/* Act as though we performed a successful BUS RESET */
6952 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6953 			xpt_finishconfig(xpt_periph, work_ccb);
6954 		}
6955 	} else {
6956 		xpt_uncount_bus(bus);
6957 	}
6958 
6959 	return(1);
6960 }
6961 
6962 /*
6963  * Now that interrupts are enabled, go find our devices.
6964  *
6965  * This hook function is called once by run_interrupt_driven_config_hooks().
6966  * XPT is expected to disestablish its hook when done.
6967  */
6968 static void
6969 xpt_config(void *arg)
6970 {
6971 
6972 #ifdef CAMDEBUG
6973 	/* Setup debugging flags and path */
6974 #ifdef CAM_DEBUG_FLAGS
6975 	cam_dflags = CAM_DEBUG_FLAGS;
6976 #else /* !CAM_DEBUG_FLAGS */
6977 	cam_dflags = CAM_DEBUG_NONE;
6978 #endif /* CAM_DEBUG_FLAGS */
6979 #ifdef CAM_DEBUG_BUS
6980 	if (cam_dflags != CAM_DEBUG_NONE) {
6981 		/*
6982 		 * Locking is specifically omitted here.  No SIMs have
6983 		 * registered yet, so xpt_create_path will only be searching
6984 		 * empty lists of targets and devices.
6985 		 */
6986 		if (xpt_create_path(&cam_dpath, xpt_periph,
6987 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6988 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6989 			kprintf("xpt_config: xpt_create_path() failed for debug"
6990 			       " target %d:%d:%d, debugging disabled\n",
6991 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6992 			cam_dflags = CAM_DEBUG_NONE;
6993 		}
6994 	} else {
6995 		cam_dpath = NULL;
6996 	}
6997 #else /* !CAM_DEBUG_BUS */
6998 	cam_dpath = NULL;
6999 #endif /* CAM_DEBUG_BUS */
7000 #endif /* CAMDEBUG */
7001 
7002 	/*
7003 	 * Scan all installed busses.  This will also add a count
7004 	 * for our dummy placeholder (xpt_periph).
7005 	 */
7006 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7007 
7008 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7009 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7010 		kprintf("Waiting %d seconds for SCSI "
7011 			"devices to settle\n",
7012 			scsi_delay/1000);
7013 	}
7014 	xpt_for_all_busses(xptconfigfunc, NULL);
7015 }
7016 
7017 /*
7018  * If the given device only has one peripheral attached to it, and if that
7019  * peripheral is the passthrough driver, announce it.  This insures that the
7020  * user sees some sort of announcement for every peripheral in their system.
7021  */
7022 static int
7023 xptpassannouncefunc(struct cam_ed *device, void *arg)
7024 {
7025 	struct cam_periph *periph;
7026 	int i;
7027 
7028 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7029 	     periph = SLIST_NEXT(periph, periph_links), i++);
7030 
7031 	periph = SLIST_FIRST(&device->periphs);
7032 	if ((i == 1)
7033 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7034 		xpt_announce_periph(periph, NULL);
7035 
7036 	return(1);
7037 }
7038 
7039 static void
7040 xpt_finishconfig_task(void *context, int pending)
7041 {
7042 	struct	periph_driver **p_drv;
7043 	int	i;
7044 
7045 	kprintf("CAM: finished configuring all busses\n");
7046 
7047 	if (busses_to_config == 0) {
7048 		/* Register all the peripheral drivers */
7049 		/* XXX This will have to change when we have loadable modules */
7050 		p_drv = periph_drivers;
7051 		for (i = 0; p_drv[i] != NULL; i++) {
7052 			(*p_drv[i]->init)();
7053 		}
7054 
7055 		/*
7056 		 * Check for devices with no "standard" peripheral driver
7057 		 * attached.  For any devices like that, announce the
7058 		 * passthrough driver so the user will see something.
7059 		 */
7060 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7061 
7062 		/* Release our hook so that the boot can continue. */
7063 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7064 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7065 		xsoftc.xpt_config_hook = NULL;
7066 	}
7067 	kfree(context, M_CAMXPT);
7068 }
7069 
7070 static void
7071 xpt_uncount_bus (struct cam_eb *bus)
7072 {
7073 	struct xpt_task *task;
7074 
7075 	if (bus->counted_to_config) {
7076 		bus->counted_to_config = 0;
7077 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7078 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7079 				       M_INTWAIT | M_ZERO);
7080 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7081 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7082 					  &task->task);
7083 		}
7084 	}
7085 }
7086 
7087 static void
7088 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7089 {
7090 	struct cam_path *path;
7091 
7092 	path = done_ccb->ccb_h.path;
7093 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7094 
7095 	switch(done_ccb->ccb_h.func_code) {
7096 	case XPT_RESET_BUS:
7097 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7098 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7099 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7100 			done_ccb->crcn.flags = 0;
7101 			xpt_action(done_ccb);
7102 			return;
7103 		}
7104 		/* FALLTHROUGH */
7105 	case XPT_SCAN_BUS:
7106 	default:
7107 		if (bootverbose) {
7108 			kprintf("CAM: Finished configuring bus:");
7109 			if (path->bus->sim) {
7110 				kprintf(" %s%d\n",
7111 					path->bus->sim->sim_name,
7112 					path->bus->sim->unit_number);
7113 			} else {
7114 				kprintf(" (unknown)\n");
7115 			}
7116 		}
7117 		xpt_uncount_bus(path->bus);
7118 		xpt_free_path(path);
7119 		xpt_free_ccb(done_ccb);
7120 		break;
7121 	}
7122 }
7123 
7124 cam_status
7125 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7126 		   struct cam_path *path)
7127 {
7128 	struct ccb_setasync csa;
7129 	cam_status status;
7130 	int xptpath = 0;
7131 
7132 	if (path == NULL) {
7133 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7134 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7135 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7136 		if (status != CAM_REQ_CMP) {
7137 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7138 			return (status);
7139 		}
7140 		xptpath = 1;
7141 	}
7142 
7143 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7144 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7145 	csa.event_enable = event;
7146 	csa.callback = cbfunc;
7147 	csa.callback_arg = cbarg;
7148 	xpt_action((union ccb *)&csa);
7149 	status = csa.ccb_h.status;
7150 	if (xptpath) {
7151 		xpt_free_path(path);
7152 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7153 	}
7154 	return (status);
7155 }
7156 
7157 static void
7158 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7159 {
7160 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7161 
7162 	switch (work_ccb->ccb_h.func_code) {
7163 	/* Common cases first */
7164 	case XPT_PATH_INQ:		/* Path routing inquiry */
7165 	{
7166 		struct ccb_pathinq *cpi;
7167 
7168 		cpi = &work_ccb->cpi;
7169 		cpi->version_num = 1; /* XXX??? */
7170 		cpi->hba_inquiry = 0;
7171 		cpi->target_sprt = 0;
7172 		cpi->hba_misc = 0;
7173 		cpi->hba_eng_cnt = 0;
7174 		cpi->max_target = 0;
7175 		cpi->max_lun = 0;
7176 		cpi->initiator_id = 0;
7177 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7178 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7179 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7180 		cpi->unit_number = sim->unit_number;
7181 		cpi->bus_id = sim->bus_id;
7182 		cpi->base_transfer_speed = 0;
7183 		cpi->protocol = PROTO_UNSPECIFIED;
7184 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7185 		cpi->transport = XPORT_UNSPECIFIED;
7186 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7187 		cpi->ccb_h.status = CAM_REQ_CMP;
7188 		xpt_done(work_ccb);
7189 		break;
7190 	}
7191 	default:
7192 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7193 		xpt_done(work_ccb);
7194 		break;
7195 	}
7196 }
7197 
7198 /*
7199  * The xpt as a "controller" has no interrupt sources, so polling
7200  * is a no-op.
7201  */
7202 static void
7203 xptpoll(struct cam_sim *sim)
7204 {
7205 }
7206 
7207 void
7208 xpt_lock_buses(void)
7209 {
7210 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7211 }
7212 
7213 void
7214 xpt_unlock_buses(void)
7215 {
7216 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7217 }
7218 
7219 
7220 /*
7221  * Should only be called by the machine interrupt dispatch routines,
7222  * so put these prototypes here instead of in the header.
7223  */
7224 
7225 static void
7226 swi_cambio(void *arg, void *frame)
7227 {
7228 	camisr(NULL);
7229 }
7230 
7231 static void
7232 camisr(void *dummy)
7233 {
7234 	cam_simq_t queue;
7235 	struct cam_sim *sim;
7236 
7237 	spin_lock(&cam_simq_spin);
7238 	TAILQ_INIT(&queue);
7239 	TAILQ_CONCAT(&queue, &cam_simq, links);
7240 	spin_unlock(&cam_simq_spin);
7241 
7242 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7243 		TAILQ_REMOVE(&queue, sim, links);
7244 		CAM_SIM_LOCK(sim);
7245 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7246 		camisr_runqueue(sim);
7247 		CAM_SIM_UNLOCK(sim);
7248 	}
7249 }
7250 
7251 static void
7252 camisr_runqueue(struct cam_sim *sim)
7253 {
7254 	struct	ccb_hdr *ccb_h;
7255 	int	runq;
7256 
7257 	spin_lock(&sim->sim_spin);
7258 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7259 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7260 		spin_unlock(&sim->sim_spin);
7261 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7262 
7263 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7264 			  ("camisr\n"));
7265 
7266 		runq = FALSE;
7267 
7268 		if (ccb_h->flags & CAM_HIGH_POWER) {
7269 			struct highpowerlist	*hphead;
7270 			struct cam_ed		*device;
7271 			union ccb		*send_ccb;
7272 
7273 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7274 			hphead = &xsoftc.highpowerq;
7275 
7276 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7277 
7278 			/*
7279 			 * Increment the count since this command is done.
7280 			 */
7281 			xsoftc.num_highpower++;
7282 
7283 			/*
7284 			 * Any high powered commands queued up?
7285 			 */
7286 			if (send_ccb != NULL) {
7287 				device = send_ccb->ccb_h.path->device;
7288 
7289 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7290 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7291 
7292 				xpt_release_devq(send_ccb->ccb_h.path,
7293 						 /*count*/1, /*runqueue*/TRUE);
7294 			} else
7295 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7296 		}
7297 
7298 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7299 			struct cam_ed *dev;
7300 
7301 			dev = ccb_h->path->device;
7302 
7303 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7304 
7305 			/*
7306 			 * devq may be NULL if this is cam_dead_sim
7307 			 */
7308 			if (ccb_h->path->bus->sim->devq) {
7309 				ccb_h->path->bus->sim->devq->send_active--;
7310 				ccb_h->path->bus->sim->devq->send_openings++;
7311 			}
7312 
7313 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7314 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7315 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7316 			  && (dev->ccbq.dev_active == 0))) {
7317 
7318 				xpt_release_devq(ccb_h->path, /*count*/1,
7319 						 /*run_queue*/TRUE);
7320 			}
7321 
7322 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7323 			 && (--dev->tag_delay_count == 0))
7324 				xpt_start_tags(ccb_h->path);
7325 
7326 			if ((dev->ccbq.queue.entries > 0)
7327 			 && (dev->qfrozen_cnt == 0)
7328 			 && (device_is_send_queued(dev) == 0)) {
7329 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7330 							      dev);
7331 			}
7332 		}
7333 
7334 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7335 			xpt_release_simq(ccb_h->path->bus->sim,
7336 					 /*run_queue*/TRUE);
7337 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7338 			runq = FALSE;
7339 		}
7340 
7341 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7342 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7343 			xpt_release_devq(ccb_h->path, /*count*/1,
7344 					 /*run_queue*/TRUE);
7345 			ccb_h->status &= ~CAM_DEV_QFRZN;
7346 		} else if (runq) {
7347 			xpt_run_dev_sendq(ccb_h->path->bus);
7348 		}
7349 
7350 		/* Call the peripheral driver's callback */
7351 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7352 		spin_lock(&sim->sim_spin);
7353 	}
7354 	spin_unlock(&sim->sim_spin);
7355 }
7356 
7357 /*
7358  * The dead_sim isn't completely hooked into CAM, we have to make sure
7359  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7360  * doesn't block.
7361  */
7362 static void
7363 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7364 {
7365 
7366 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7367 	xpt_done(ccb);
7368 	camisr_runqueue(sim);
7369 }
7370 
7371 static void
7372 dead_sim_poll(struct cam_sim *sim)
7373 {
7374 }
7375