xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 70705abf)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.40 2007/11/18 17:53:01 pavalos Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/thread2.h>
48 
49 #include <machine/clock.h>
50 
51 #include "cam.h"
52 #include "cam_ccb.h"
53 #include "cam_periph.h"
54 #include "cam_sim.h"
55 #include "cam_xpt.h"
56 #include "cam_xpt_sim.h"
57 #include "cam_xpt_periph.h"
58 #include "cam_debug.h"
59 
60 #include "scsi/scsi_all.h"
61 #include "scsi/scsi_message.h"
62 #include "scsi/scsi_pass.h"
63 #include "opt_cam.h"
64 
65 /* Datastructures internal to the xpt layer */
66 
67 /*
68  * Definition of an async handler callback block.  These are used to add
69  * SIMs and peripherals to the async callback lists.
70  */
71 struct async_node {
72 	SLIST_ENTRY(async_node)	links;
73 	u_int32_t	event_enable;	/* Async Event enables */
74 	void		(*callback)(void *arg, u_int32_t code,
75 				    struct cam_path *path, void *args);
76 	void		*callback_arg;
77 };
78 
79 SLIST_HEAD(async_list, async_node);
80 SLIST_HEAD(periph_list, cam_periph);
81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
82 
83 /*
84  * This is the maximum number of high powered commands (e.g. start unit)
85  * that can be outstanding at a particular time.
86  */
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER  4
89 #endif
90 
91 /* number of high powered commands that can go through right now */
92 static int num_highpower = CAM_MAX_HIGHPOWER;
93 
94 /*
95  * Structure for queueing a device in a run queue.
96  * There is one run queue for allocating new ccbs,
97  * and another for sending ccbs to the controller.
98  */
99 struct cam_ed_qinfo {
100 	cam_pinfo pinfo;
101 	struct	  cam_ed *device;
102 };
103 
104 /*
105  * The CAM EDT (Existing Device Table) contains the device information for
106  * all devices for all busses in the system.  The table contains a
107  * cam_ed structure for each device on the bus.
108  */
109 struct cam_ed {
110 	TAILQ_ENTRY(cam_ed) links;
111 	struct	cam_ed_qinfo alloc_ccb_entry;
112 	struct	cam_ed_qinfo send_ccb_entry;
113 	struct	cam_et	 *target;
114 	lun_id_t	 lun_id;
115 	struct	camq drvq;		/*
116 					 * Queue of type drivers wanting to do
117 					 * work on this device.
118 					 */
119 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
120 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
121 	struct	periph_list periphs;	/* All attached devices */
122 	u_int	generation;		/* Generation number */
123 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
124 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
125 					/* Storage for the inquiry data */
126 #ifdef CAM_NEW_TRAN_CODE
127 	cam_proto	 protocol;
128 	u_int		 protocol_version;
129 	cam_xport	 transport;
130 	u_int		 transport_version;
131 #endif /* CAM_NEW_TRAN_CODE */
132 	struct		 scsi_inquiry_data inq_data;
133 	u_int8_t	 inq_flags;	/*
134 					 * Current settings for inquiry flags.
135 					 * This allows us to override settings
136 					 * like disconnection and tagged
137 					 * queuing for a device.
138 					 */
139 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
140 	u_int8_t	 serial_num_len;
141 	u_int8_t	*serial_num;
142 	u_int32_t	 qfrozen_cnt;
143 	u_int32_t	 flags;
144 #define CAM_DEV_UNCONFIGURED	 	0x01
145 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
146 #define CAM_DEV_REL_ON_COMPLETE		0x04
147 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
148 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
149 #define CAM_DEV_TAG_AFTER_COUNT		0x20
150 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
151 	u_int32_t	 tag_delay_count;
152 #define	CAM_TAG_DELAY_COUNT		5
153 	u_int32_t	 refcount;
154 	struct		 callout c_handle;
155 };
156 
157 /*
158  * Each target is represented by an ET (Existing Target).  These
159  * entries are created when a target is successfully probed with an
160  * identify, and removed when a device fails to respond after a number
161  * of retries, or a bus rescan finds the device missing.
162  */
163 struct cam_et {
164 	TAILQ_HEAD(, cam_ed) ed_entries;
165 	TAILQ_ENTRY(cam_et) links;
166 	struct	cam_eb	*bus;
167 	target_id_t	target_id;
168 	u_int32_t	refcount;
169 	u_int		generation;
170 	struct		timeval last_reset;	/* uptime of last reset */
171 };
172 
173 /*
174  * Each bus is represented by an EB (Existing Bus).  These entries
175  * are created by calls to xpt_bus_register and deleted by calls to
176  * xpt_bus_deregister.
177  */
178 struct cam_eb {
179 	TAILQ_HEAD(, cam_et) et_entries;
180 	TAILQ_ENTRY(cam_eb)  links;
181 	path_id_t	     path_id;
182 	struct cam_sim	     *sim;
183 	struct timeval	     last_reset;	/* uptime of last reset */
184 	u_int32_t	     flags;
185 #define	CAM_EB_RUNQ_SCHEDULED	0x01
186 	u_int32_t	     refcount;
187 	u_int		     generation;
188 };
189 
190 struct cam_path {
191 	struct cam_periph *periph;
192 	struct cam_eb	  *bus;
193 	struct cam_et	  *target;
194 	struct cam_ed	  *device;
195 };
196 
197 struct xpt_quirk_entry {
198 	struct scsi_inquiry_pattern inq_pat;
199 	u_int8_t quirks;
200 #define	CAM_QUIRK_NOLUNS	0x01
201 #define	CAM_QUIRK_NOSERIAL	0x02
202 #define	CAM_QUIRK_HILUNS	0x04
203 	u_int mintags;
204 	u_int maxtags;
205 };
206 #define	CAM_SCSI2_MAXLUN	8
207 
208 typedef enum {
209 	XPT_FLAG_OPEN		= 0x01
210 } xpt_flags;
211 
212 struct xpt_softc {
213 	xpt_flags	flags;
214 	u_int32_t	generation;
215 };
216 
217 static const char quantum[] = "QUANTUM";
218 static const char sony[] = "SONY";
219 static const char west_digital[] = "WDIGTL";
220 static const char samsung[] = "SAMSUNG";
221 static const char seagate[] = "SEAGATE";
222 static const char microp[] = "MICROP";
223 
224 static struct xpt_quirk_entry xpt_quirk_table[] =
225 {
226 	{
227 		/* Reports QUEUE FULL for temporary resource shortages */
228 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
229 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
230 	},
231 	{
232 		/* Reports QUEUE FULL for temporary resource shortages */
233 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
234 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
235 	},
236 	{
237 		/* Reports QUEUE FULL for temporary resource shortages */
238 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
239 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
240 	},
241 	{
242 		/* Broken tagged queuing drive */
243 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
244 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
245 	},
246 	{
247 		/* Broken tagged queuing drive */
248 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
249 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
250 	},
251 	{
252 		/* Broken tagged queuing drive */
253 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
254 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
255 	},
256 	{
257 		/*
258 		 * Unfortunately, the Quantum Atlas III has the same
259 		 * problem as the Atlas II drives above.
260 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
261 		 *
262 		 * For future reference, the drive with the problem was:
263 		 * QUANTUM QM39100TD-SW N1B0
264 		 *
265 		 * It's possible that Quantum will fix the problem in later
266 		 * firmware revisions.  If that happens, the quirk entry
267 		 * will need to be made specific to the firmware revisions
268 		 * with the problem.
269 		 *
270 		 */
271 		/* Reports QUEUE FULL for temporary resource shortages */
272 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
273 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
274 	},
275 	{
276 		/*
277 		 * 18 Gig Atlas III, same problem as the 9G version.
278 		 * Reported by: Andre Albsmeier
279 		 *		<andre.albsmeier@mchp.siemens.de>
280 		 *
281 		 * For future reference, the drive with the problem was:
282 		 * QUANTUM QM318000TD-S N491
283 		 */
284 		/* Reports QUEUE FULL for temporary resource shortages */
285 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
286 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
287 	},
288 	{
289 		/*
290 		 * Broken tagged queuing drive
291 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
292 		 *         and: Martin Renters <martin@tdc.on.ca>
293 		 */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
295 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
296 	},
297 		/*
298 		 * The Seagate Medalist Pro drives have very poor write
299 		 * performance with anything more than 2 tags.
300 		 *
301 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
302 		 * Drive:  <SEAGATE ST36530N 1444>
303 		 *
304 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
305 		 * Drive:  <SEAGATE ST34520W 1281>
306 		 *
307 		 * No one has actually reported that the 9G version
308 		 * (ST39140*) of the Medalist Pro has the same problem, but
309 		 * we're assuming that it does because the 4G and 6.5G
310 		 * versions of the drive are broken.
311 		 */
312 	{
313 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
314 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
315 	},
316 	{
317 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
318 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
319 	},
320 	{
321 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
322 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
323 	},
324 	{
325 		/*
326 		 * Slow when tagged queueing is enabled.  Write performance
327 		 * steadily drops off with more and more concurrent
328 		 * transactions.  Best sequential write performance with
329 		 * tagged queueing turned off and write caching turned on.
330 		 *
331 		 * PR:  kern/10398
332 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
333 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
334 		 *
335 		 * The drive with the problem had the "S65A" firmware
336 		 * revision, and has also been reported (by Stephen J.
337 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
338 		 * firmware revision.
339 		 *
340 		 * Although no one has reported problems with the 2 gig
341 		 * version of the DCAS drive, the assumption is that it
342 		 * has the same problems as the 4 gig version.  Therefore
343 		 * this quirk entries disables tagged queueing for all
344 		 * DCAS drives.
345 		 */
346 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
347 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
348 	},
349 	{
350 		/* Broken tagged queuing drive */
351 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
352 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
353 	},
354 	{
355 		/* Broken tagged queuing drive */
356 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
357 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
358 	},
359 	{
360 		/*
361 		 * Broken tagged queuing drive.
362 		 * Submitted by:
363 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
364 		 * in PR kern/9535
365 		 */
366 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
367 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
368 	},
369         {
370 		/*
371 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
372 		 * 8MB/sec.)
373 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
374 		 * Best performance with these drives is achieved with
375 		 * tagged queueing turned off, and write caching turned on.
376 		 */
377 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
378 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
379         },
380         {
381 		/*
382 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
383 		 * 8MB/sec.)
384 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
385 		 * Best performance with these drives is achieved with
386 		 * tagged queueing turned off, and write caching turned on.
387 		 */
388 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
389 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
390         },
391 	{
392 		/*
393 		 * Doesn't handle queue full condition correctly,
394 		 * so we need to limit maxtags to what the device
395 		 * can handle instead of determining this automatically.
396 		 */
397 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
398 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
399 	},
400 	{
401 		/* Really only one LUN */
402 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
403 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* I can't believe we need a quirk for DPT volumes. */
407 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
408 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
409 		/*mintags*/0, /*maxtags*/255
410 	},
411 	{
412 		/*
413 		 * Many Sony CDROM drives don't like multi-LUN probing.
414 		 */
415 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
416 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
417 	},
418 	{
419 		/*
420 		 * This drive doesn't like multiple LUN probing.
421 		 * Submitted by:  Parag Patel <parag@cgt.com>
422 		 */
423 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
424 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
425 	},
426 	{
427 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
428 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
429 	},
430 	{
431 		/*
432 		 * The 8200 doesn't like multi-lun probing, and probably
433 		 * don't like serial number requests either.
434 		 */
435 		{
436 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
437 			"EXB-8200*", "*"
438 		},
439 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
440 	},
441 	{
442 		/*
443 		 * Let's try the same as above, but for a drive that says
444 		 * it's an IPL-6860 but is actually an EXB 8200.
445 		 */
446 		{
447 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
448 			"IPL-6860*", "*"
449 		},
450 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
451 	},
452 	{
453 		/*
454 		 * These Hitachi drives don't like multi-lun probing.
455 		 * The PR submitter has a DK319H, but says that the Linux
456 		 * kernel has a similar work-around for the DK312 and DK314,
457 		 * so all DK31* drives are quirked here.
458 		 * PR:            misc/18793
459 		 * Submitted by:  Paul Haddad <paul@pth.com>
460 		 */
461 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
462 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
463 	},
464 	{
465 		/*
466 		 * This old revision of the TDC3600 is also SCSI-1, and
467 		 * hangs upon serial number probing.
468 		 */
469 		{
470 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
471 			" TDC 3600", "U07:"
472 		},
473 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
474 	},
475 	{
476 		/*
477 		 * Would repond to all LUNs if asked for.
478 		 */
479 		{
480 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
481 			"CP150", "*"
482 		},
483 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
484 	},
485 	{
486 		/*
487 		 * Would repond to all LUNs if asked for.
488 		 */
489 		{
490 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
491 			"96X2*", "*"
492 		},
493 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
494 	},
495 	{
496 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
497 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
502 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
503 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
504 	},
505 	{
506 		/* TeraSolutions special settings for TRC-22 RAID */
507 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
508 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
509 	},
510 	{
511 		/* Veritas Storage Appliance */
512 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
513 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
514 	},
515 	{
516 		/*
517 		 * Would respond to all LUNs.  Device type and removable
518 		 * flag are jumper-selectable.
519 		 */
520 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
521 		  "Tahiti 1", "*"
522 		},
523 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
524 	},
525 	{
526 		/* Default tagged queuing parameters for all devices */
527 		{
528 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
529 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
530 		},
531 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
532 	},
533 };
534 
535 static const int xpt_quirk_table_size =
536 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
537 
538 typedef enum {
539 	DM_RET_COPY		= 0x01,
540 	DM_RET_FLAG_MASK	= 0x0f,
541 	DM_RET_NONE		= 0x00,
542 	DM_RET_STOP		= 0x10,
543 	DM_RET_DESCEND		= 0x20,
544 	DM_RET_ERROR		= 0x30,
545 	DM_RET_ACTION_MASK	= 0xf0
546 } dev_match_ret;
547 
548 typedef enum {
549 	XPT_DEPTH_BUS,
550 	XPT_DEPTH_TARGET,
551 	XPT_DEPTH_DEVICE,
552 	XPT_DEPTH_PERIPH
553 } xpt_traverse_depth;
554 
555 struct xpt_traverse_config {
556 	xpt_traverse_depth	depth;
557 	void			*tr_func;
558 	void			*tr_arg;
559 };
560 
561 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
562 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
563 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
564 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
565 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
566 
567 /* Transport layer configuration information */
568 static struct xpt_softc xsoftc;
569 
570 /* Queues for our software interrupt handler */
571 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
572 static cam_isrq_t cam_bioq;
573 static cam_isrq_t cam_netq;
574 
575 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
576 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
577 static u_int xpt_max_ccbs;	/*
578 				 * Maximum size of ccb pool.  Modified as
579 				 * devices are added/removed or have their
580 				 * opening counts changed.
581 				 */
582 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
583 
584 struct cam_periph *xpt_periph;
585 
586 static periph_init_t xpt_periph_init;
587 
588 static periph_init_t probe_periph_init;
589 
590 static struct periph_driver xpt_driver =
591 {
592 	xpt_periph_init, "xpt",
593 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
594 };
595 
596 static struct periph_driver probe_driver =
597 {
598 	probe_periph_init, "probe",
599 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
600 };
601 
602 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
603 PERIPHDRIVER_DECLARE(probe, probe_driver);
604 
605 #define XPT_CDEV_MAJOR 104
606 
607 static d_open_t xptopen;
608 static d_close_t xptclose;
609 static d_ioctl_t xptioctl;
610 
611 static struct dev_ops xpt_ops = {
612 	{ "xpt", XPT_CDEV_MAJOR, 0 },
613 	.d_open = xptopen,
614 	.d_close = xptclose,
615 	.d_ioctl = xptioctl
616 };
617 
618 static struct intr_config_hook *xpt_config_hook;
619 
620 /* Registered busses */
621 static TAILQ_HEAD(,cam_eb) xpt_busses;
622 static u_int bus_generation;
623 
624 /* Storage for debugging datastructures */
625 #ifdef	CAMDEBUG
626 struct cam_path *cam_dpath;
627 u_int32_t cam_dflags;
628 u_int32_t cam_debug_delay;
629 #endif
630 
631 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
632 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
633 #endif
634 
635 /*
636  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
637  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
638  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
639  */
640 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
641     || defined(CAM_DEBUG_LUN)
642 #ifdef CAMDEBUG
643 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
644     || !defined(CAM_DEBUG_LUN)
645 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
646         and CAM_DEBUG_LUN"
647 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
648 #else /* !CAMDEBUG */
649 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
650 #endif /* CAMDEBUG */
651 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
652 
653 /* Our boot-time initialization hook */
654 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
655 
656 static moduledata_t cam_moduledata = {
657 	"cam",
658 	cam_module_event_handler,
659 	NULL
660 };
661 
662 static void	xpt_init(void *);
663 
664 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
665 MODULE_VERSION(cam, 1);
666 
667 
668 static cam_status	xpt_compile_path(struct cam_path *new_path,
669 					 struct cam_periph *perph,
670 					 path_id_t path_id,
671 					 target_id_t target_id,
672 					 lun_id_t lun_id);
673 
674 static void		xpt_release_path(struct cam_path *path);
675 
676 static void		xpt_async_bcast(struct async_list *async_head,
677 					u_int32_t async_code,
678 					struct cam_path *path,
679 					void *async_arg);
680 static void		xpt_dev_async(u_int32_t async_code,
681 				      struct cam_eb *bus,
682 				      struct cam_et *target,
683 				      struct cam_ed *device,
684 				      void *async_arg);
685 static path_id_t xptnextfreepathid(void);
686 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
687 static union ccb *xpt_get_ccb(struct cam_ed *device);
688 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
689 				  u_int32_t new_priority);
690 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
691 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
692 static timeout_t xpt_release_devq_timeout;
693 static void	 xpt_release_bus(struct cam_eb *bus);
694 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
695 					 int run_queue);
696 static struct cam_et*
697 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
698 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
699 static struct cam_ed*
700 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
701 				  lun_id_t lun_id);
702 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
703 				    struct cam_ed *device);
704 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
705 static struct cam_eb*
706 		 xpt_find_bus(path_id_t path_id);
707 static struct cam_et*
708 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
709 static struct cam_ed*
710 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
711 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
712 static void	 xpt_scan_lun(struct cam_periph *periph,
713 			      struct cam_path *path, cam_flags flags,
714 			      union ccb *ccb);
715 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
716 static xpt_busfunc_t	xptconfigbuscountfunc;
717 static xpt_busfunc_t	xptconfigfunc;
718 static void	 xpt_config(void *arg);
719 static xpt_devicefunc_t xptpassannouncefunc;
720 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
721 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
722 static void	 xptpoll(struct cam_sim *sim);
723 static inthand2_t swi_camnet;
724 static inthand2_t swi_cambio;
725 static void	 camisr(cam_isrq_t *queue);
726 #if 0
727 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
728 static void	 xptasync(struct cam_periph *periph,
729 			  u_int32_t code, cam_path *path);
730 #endif
731 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
732 				    u_int num_patterns, struct cam_eb *bus);
733 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
734 				       u_int num_patterns,
735 				       struct cam_ed *device);
736 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
737 				       u_int num_patterns,
738 				       struct cam_periph *periph);
739 static xpt_busfunc_t	xptedtbusfunc;
740 static xpt_targetfunc_t	xptedttargetfunc;
741 static xpt_devicefunc_t	xptedtdevicefunc;
742 static xpt_periphfunc_t	xptedtperiphfunc;
743 static xpt_pdrvfunc_t	xptplistpdrvfunc;
744 static xpt_periphfunc_t	xptplistperiphfunc;
745 static int		xptedtmatch(struct ccb_dev_match *cdm);
746 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
747 static int		xptbustraverse(struct cam_eb *start_bus,
748 				       xpt_busfunc_t *tr_func, void *arg);
749 static int		xpttargettraverse(struct cam_eb *bus,
750 					  struct cam_et *start_target,
751 					  xpt_targetfunc_t *tr_func, void *arg);
752 static int		xptdevicetraverse(struct cam_et *target,
753 					  struct cam_ed *start_device,
754 					  xpt_devicefunc_t *tr_func, void *arg);
755 static int		xptperiphtraverse(struct cam_ed *device,
756 					  struct cam_periph *start_periph,
757 					  xpt_periphfunc_t *tr_func, void *arg);
758 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
759 					xpt_pdrvfunc_t *tr_func, void *arg);
760 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
761 					    struct cam_periph *start_periph,
762 					    xpt_periphfunc_t *tr_func,
763 					    void *arg);
764 static xpt_busfunc_t	xptdefbusfunc;
765 static xpt_targetfunc_t	xptdeftargetfunc;
766 static xpt_devicefunc_t	xptdefdevicefunc;
767 static xpt_periphfunc_t	xptdefperiphfunc;
768 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
769 #ifdef notusedyet
770 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
771 					    void *arg);
772 #endif
773 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
774 					    void *arg);
775 #ifdef notusedyet
776 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
777 					    void *arg);
778 #endif
779 static xpt_devicefunc_t	xptsetasyncfunc;
780 static xpt_busfunc_t	xptsetasyncbusfunc;
781 static cam_status	xptregister(struct cam_periph *periph,
782 				    void *arg);
783 static cam_status	proberegister(struct cam_periph *periph,
784 				      void *arg);
785 static void	 probeschedule(struct cam_periph *probe_periph);
786 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
787 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
788 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
789 static void	 probecleanup(struct cam_periph *periph);
790 static void	 xpt_find_quirk(struct cam_ed *device);
791 #ifdef CAM_NEW_TRAN_CODE
792 static void	 xpt_devise_transport(struct cam_path *path);
793 #endif /* CAM_NEW_TRAN_CODE */
794 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
795 					   struct cam_ed *device,
796 					   int async_update);
797 static void	 xpt_toggle_tags(struct cam_path *path);
798 static void	 xpt_start_tags(struct cam_path *path);
799 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
800 					    struct cam_ed *dev);
801 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
802 					   struct cam_ed *dev);
803 static __inline int periph_is_queued(struct cam_periph *periph);
804 static __inline int device_is_alloc_queued(struct cam_ed *device);
805 static __inline int device_is_send_queued(struct cam_ed *device);
806 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
807 
808 static __inline int
809 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
810 {
811 	int retval;
812 
813 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
814 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
815 			cam_ccbq_resize(&dev->ccbq,
816 					dev->ccbq.dev_openings
817 					+ dev->ccbq.dev_active);
818 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
819 		}
820 		/*
821 		 * The priority of a device waiting for CCB resources
822 		 * is that of the the highest priority peripheral driver
823 		 * enqueued.
824 		 */
825 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
826 					  &dev->alloc_ccb_entry.pinfo,
827 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
828 	} else {
829 		retval = 0;
830 	}
831 
832 	return (retval);
833 }
834 
835 static __inline int
836 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
837 {
838 	int	retval;
839 
840 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
841 		/*
842 		 * The priority of a device waiting for controller
843 		 * resources is that of the the highest priority CCB
844 		 * enqueued.
845 		 */
846 		retval =
847 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
848 				     &dev->send_ccb_entry.pinfo,
849 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
850 	} else {
851 		retval = 0;
852 	}
853 	return (retval);
854 }
855 
856 static __inline int
857 periph_is_queued(struct cam_periph *periph)
858 {
859 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
860 }
861 
862 static __inline int
863 device_is_alloc_queued(struct cam_ed *device)
864 {
865 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
866 }
867 
868 static __inline int
869 device_is_send_queued(struct cam_ed *device)
870 {
871 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
872 }
873 
874 static __inline int
875 dev_allocq_is_runnable(struct cam_devq *devq)
876 {
877 	/*
878 	 * Have work to do.
879 	 * Have space to do more work.
880 	 * Allowed to do work.
881 	 */
882 	return ((devq->alloc_queue.qfrozen_cnt == 0)
883 	     && (devq->alloc_queue.entries > 0)
884 	     && (devq->alloc_openings > 0));
885 }
886 
887 static void
888 xpt_periph_init(void)
889 {
890 	dev_ops_add(&xpt_ops, 0, 0);
891 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
892 }
893 
894 static void
895 probe_periph_init(void)
896 {
897 }
898 
899 
900 static void
901 xptdone(struct cam_periph *periph, union ccb *done_ccb)
902 {
903 	/* Caller will release the CCB */
904 	wakeup(&done_ccb->ccb_h.cbfcnp);
905 }
906 
907 static int
908 xptopen(struct dev_open_args *ap)
909 {
910 	cdev_t dev = ap->a_head.a_dev;
911 	int unit;
912 
913 	unit = minor(dev) & 0xff;
914 
915 	/*
916 	 * Only allow read-write access.
917 	 */
918 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
919 		return(EPERM);
920 
921 	/*
922 	 * We don't allow nonblocking access.
923 	 */
924 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
925 		kprintf("xpt%d: can't do nonblocking access\n", unit);
926 		return(ENODEV);
927 	}
928 
929 	/*
930 	 * We only have one transport layer right now.  If someone accesses
931 	 * us via something other than minor number 1, point out their
932 	 * mistake.
933 	 */
934 	if (unit != 0) {
935 		kprintf("xptopen: got invalid xpt unit %d\n", unit);
936 		return(ENXIO);
937 	}
938 
939 	/* Mark ourselves open */
940 	xsoftc.flags |= XPT_FLAG_OPEN;
941 
942 	return(0);
943 }
944 
945 static int
946 xptclose(struct dev_close_args *ap)
947 {
948 	cdev_t dev = ap->a_head.a_dev;
949 	int unit;
950 
951 	unit = minor(dev) & 0xff;
952 
953 	/*
954 	 * We only have one transport layer right now.  If someone accesses
955 	 * us via something other than minor number 1, point out their
956 	 * mistake.
957 	 */
958 	if (unit != 0) {
959 		kprintf("xptclose: got invalid xpt unit %d\n", unit);
960 		return(ENXIO);
961 	}
962 
963 	/* Mark ourselves closed */
964 	xsoftc.flags &= ~XPT_FLAG_OPEN;
965 
966 	return(0);
967 }
968 
969 static int
970 xptioctl(struct dev_ioctl_args *ap)
971 {
972 	cdev_t dev = ap->a_head.a_dev;
973 	int unit, error;
974 
975 	error = 0;
976 	unit = minor(dev) & 0xff;
977 
978 	/*
979 	 * We only have one transport layer right now.  If someone accesses
980 	 * us via something other than minor number 1, point out their
981 	 * mistake.
982 	 */
983 	if (unit != 0) {
984 		kprintf("xptioctl: got invalid xpt unit %d\n", unit);
985 		return(ENXIO);
986 	}
987 
988 	switch(ap->a_cmd) {
989 	/*
990 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
991 	 * to accept CCB types that don't quite make sense to send through a
992 	 * passthrough driver.
993 	 */
994 	case CAMIOCOMMAND: {
995 		union ccb *ccb;
996 		union ccb *inccb;
997 
998 		inccb = (union ccb *)ap->a_data;
999 
1000 		switch(inccb->ccb_h.func_code) {
1001 		case XPT_SCAN_BUS:
1002 		case XPT_RESET_BUS:
1003 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1004 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1005 				error = EINVAL;
1006 				break;
1007 			}
1008 			/* FALLTHROUGH */
1009 		case XPT_PATH_INQ:
1010 		case XPT_ENG_INQ:
1011 		case XPT_SCAN_LUN:
1012 
1013 			ccb = xpt_alloc_ccb();
1014 
1015 			/*
1016 			 * Create a path using the bus, target, and lun the
1017 			 * user passed in.
1018 			 */
1019 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1020 					    inccb->ccb_h.path_id,
1021 					    inccb->ccb_h.target_id,
1022 					    inccb->ccb_h.target_lun) !=
1023 					    CAM_REQ_CMP){
1024 				error = EINVAL;
1025 				xpt_free_ccb(ccb);
1026 				break;
1027 			}
1028 			/* Ensure all of our fields are correct */
1029 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1030 				      inccb->ccb_h.pinfo.priority);
1031 			xpt_merge_ccb(ccb, inccb);
1032 			ccb->ccb_h.cbfcnp = xptdone;
1033 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1034 			bcopy(ccb, inccb, sizeof(union ccb));
1035 			xpt_free_path(ccb->ccb_h.path);
1036 			xpt_free_ccb(ccb);
1037 			break;
1038 
1039 		case XPT_DEBUG: {
1040 			union ccb ccb;
1041 
1042 			/*
1043 			 * This is an immediate CCB, so it's okay to
1044 			 * allocate it on the stack.
1045 			 */
1046 
1047 			/*
1048 			 * Create a path using the bus, target, and lun the
1049 			 * user passed in.
1050 			 */
1051 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1052 					    inccb->ccb_h.path_id,
1053 					    inccb->ccb_h.target_id,
1054 					    inccb->ccb_h.target_lun) !=
1055 					    CAM_REQ_CMP){
1056 				error = EINVAL;
1057 				break;
1058 			}
1059 			/* Ensure all of our fields are correct */
1060 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1061 				      inccb->ccb_h.pinfo.priority);
1062 			xpt_merge_ccb(&ccb, inccb);
1063 			ccb.ccb_h.cbfcnp = xptdone;
1064 			xpt_action(&ccb);
1065 			bcopy(&ccb, inccb, sizeof(union ccb));
1066 			xpt_free_path(ccb.ccb_h.path);
1067 			break;
1068 
1069 		}
1070 		case XPT_DEV_MATCH: {
1071 			struct cam_periph_map_info mapinfo;
1072 			struct cam_path *old_path;
1073 
1074 			/*
1075 			 * We can't deal with physical addresses for this
1076 			 * type of transaction.
1077 			 */
1078 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1079 				error = EINVAL;
1080 				break;
1081 			}
1082 
1083 			/*
1084 			 * Save this in case the caller had it set to
1085 			 * something in particular.
1086 			 */
1087 			old_path = inccb->ccb_h.path;
1088 
1089 			/*
1090 			 * We really don't need a path for the matching
1091 			 * code.  The path is needed because of the
1092 			 * debugging statements in xpt_action().  They
1093 			 * assume that the CCB has a valid path.
1094 			 */
1095 			inccb->ccb_h.path = xpt_periph->path;
1096 
1097 			bzero(&mapinfo, sizeof(mapinfo));
1098 
1099 			/*
1100 			 * Map the pattern and match buffers into kernel
1101 			 * virtual address space.
1102 			 */
1103 			error = cam_periph_mapmem(inccb, &mapinfo);
1104 
1105 			if (error) {
1106 				inccb->ccb_h.path = old_path;
1107 				break;
1108 			}
1109 
1110 			/*
1111 			 * This is an immediate CCB, we can send it on directly.
1112 			 */
1113 			xpt_action(inccb);
1114 
1115 			/*
1116 			 * Map the buffers back into user space.
1117 			 */
1118 			cam_periph_unmapmem(inccb, &mapinfo);
1119 
1120 			inccb->ccb_h.path = old_path;
1121 
1122 			error = 0;
1123 			break;
1124 		}
1125 		default:
1126 			error = ENOTSUP;
1127 			break;
1128 		}
1129 		break;
1130 	}
1131 	/*
1132 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1133 	 * with the periphal driver name and unit name filled in.  The other
1134 	 * fields don't really matter as input.  The passthrough driver name
1135 	 * ("pass"), and unit number are passed back in the ccb.  The current
1136 	 * device generation number, and the index into the device peripheral
1137 	 * driver list, and the status are also passed back.  Note that
1138 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1139 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1140 	 * (or rather should be) impossible for the device peripheral driver
1141 	 * list to change since we look at the whole thing in one pass, and
1142 	 * we do it within a critical section.
1143 	 *
1144 	 */
1145 	case CAMGETPASSTHRU: {
1146 		union ccb *ccb;
1147 		struct cam_periph *periph;
1148 		struct periph_driver **p_drv;
1149 		char   *name;
1150 		u_int unit;
1151 		u_int cur_generation;
1152 		int base_periph_found;
1153 		int splbreaknum;
1154 
1155 		ccb = (union ccb *)ap->a_data;
1156 		unit = ccb->cgdl.unit_number;
1157 		name = ccb->cgdl.periph_name;
1158 		/*
1159 		 * Every 100 devices, we want to call splz() to check for
1160 		 * and allow the software interrupt handler a chance to run.
1161 		 *
1162 		 * Most systems won't run into this check, but this should
1163 		 * avoid starvation in the software interrupt handler in
1164 		 * large systems.
1165 		 */
1166 		splbreaknum = 100;
1167 
1168 		ccb = (union ccb *)ap->a_data;
1169 
1170 		base_periph_found = 0;
1171 
1172 		/*
1173 		 * Sanity check -- make sure we don't get a null peripheral
1174 		 * driver name.
1175 		 */
1176 		if (*ccb->cgdl.periph_name == '\0') {
1177 			error = EINVAL;
1178 			break;
1179 		}
1180 
1181 		/* Keep the list from changing while we traverse it */
1182 		crit_enter();
1183 ptstartover:
1184 		cur_generation = xsoftc.generation;
1185 
1186 		/* first find our driver in the list of drivers */
1187 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1188 			if (strcmp((*p_drv)->driver_name, name) == 0)
1189 				break;
1190 		}
1191 
1192 		if (*p_drv == NULL) {
1193 			crit_exit();
1194 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1195 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1196 			*ccb->cgdl.periph_name = '\0';
1197 			ccb->cgdl.unit_number = 0;
1198 			error = ENOENT;
1199 			break;
1200 		}
1201 
1202 		/*
1203 		 * Run through every peripheral instance of this driver
1204 		 * and check to see whether it matches the unit passed
1205 		 * in by the user.  If it does, get out of the loops and
1206 		 * find the passthrough driver associated with that
1207 		 * peripheral driver.
1208 		 */
1209 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1210 
1211 			if (periph->unit_number == unit) {
1212 				break;
1213 			} else if (--splbreaknum == 0) {
1214 				splz();
1215 				splbreaknum = 100;
1216 				if (cur_generation != xsoftc.generation)
1217 				       goto ptstartover;
1218 			}
1219 		}
1220 		/*
1221 		 * If we found the peripheral driver that the user passed
1222 		 * in, go through all of the peripheral drivers for that
1223 		 * particular device and look for a passthrough driver.
1224 		 */
1225 		if (periph != NULL) {
1226 			struct cam_ed *device;
1227 			int i;
1228 
1229 			base_periph_found = 1;
1230 			device = periph->path->device;
1231 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1232 			     periph != NULL;
1233 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1234 				/*
1235 				 * Check to see whether we have a
1236 				 * passthrough device or not.
1237 				 */
1238 				if (strcmp(periph->periph_name, "pass") == 0) {
1239 					/*
1240 					 * Fill in the getdevlist fields.
1241 					 */
1242 					strcpy(ccb->cgdl.periph_name,
1243 					       periph->periph_name);
1244 					ccb->cgdl.unit_number =
1245 						periph->unit_number;
1246 					if (SLIST_NEXT(periph, periph_links))
1247 						ccb->cgdl.status =
1248 							CAM_GDEVLIST_MORE_DEVS;
1249 					else
1250 						ccb->cgdl.status =
1251 						       CAM_GDEVLIST_LAST_DEVICE;
1252 					ccb->cgdl.generation =
1253 						device->generation;
1254 					ccb->cgdl.index = i;
1255 					/*
1256 					 * Fill in some CCB header fields
1257 					 * that the user may want.
1258 					 */
1259 					ccb->ccb_h.path_id =
1260 						periph->path->bus->path_id;
1261 					ccb->ccb_h.target_id =
1262 						periph->path->target->target_id;
1263 					ccb->ccb_h.target_lun =
1264 						periph->path->device->lun_id;
1265 					ccb->ccb_h.status = CAM_REQ_CMP;
1266 					break;
1267 				}
1268 			}
1269 		}
1270 
1271 		/*
1272 		 * If the periph is null here, one of two things has
1273 		 * happened.  The first possibility is that we couldn't
1274 		 * find the unit number of the particular peripheral driver
1275 		 * that the user is asking about.  e.g. the user asks for
1276 		 * the passthrough driver for "da11".  We find the list of
1277 		 * "da" peripherals all right, but there is no unit 11.
1278 		 * The other possibility is that we went through the list
1279 		 * of peripheral drivers attached to the device structure,
1280 		 * but didn't find one with the name "pass".  Either way,
1281 		 * we return ENOENT, since we couldn't find something.
1282 		 */
1283 		if (periph == NULL) {
1284 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1285 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1286 			*ccb->cgdl.periph_name = '\0';
1287 			ccb->cgdl.unit_number = 0;
1288 			error = ENOENT;
1289 			/*
1290 			 * It is unfortunate that this is even necessary,
1291 			 * but there are many, many clueless users out there.
1292 			 * If this is true, the user is looking for the
1293 			 * passthrough driver, but doesn't have one in his
1294 			 * kernel.
1295 			 */
1296 			if (base_periph_found == 1) {
1297 				kprintf("xptioctl: pass driver is not in the "
1298 				       "kernel\n");
1299 				kprintf("xptioctl: put \"device pass0\" in "
1300 				       "your kernel config file\n");
1301 			}
1302 		}
1303 		crit_exit();
1304 		break;
1305 		}
1306 	default:
1307 		error = ENOTTY;
1308 		break;
1309 	}
1310 
1311 	return(error);
1312 }
1313 
1314 static int
1315 cam_module_event_handler(module_t mod, int what, void *arg)
1316 {
1317 	if (what == MOD_LOAD) {
1318 		xpt_init(NULL);
1319 	} else if (what == MOD_UNLOAD) {
1320 		return EBUSY;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 /* Functions accessed by the peripheral drivers */
1327 static void
1328 xpt_init(void *dummy)
1329 {
1330 	struct cam_sim *xpt_sim;
1331 	struct cam_path *path;
1332 	struct cam_devq *devq;
1333 	cam_status status;
1334 
1335 	TAILQ_INIT(&xpt_busses);
1336 	TAILQ_INIT(&cam_bioq);
1337 	TAILQ_INIT(&cam_netq);
1338 	SLIST_INIT(&ccb_freeq);
1339 	STAILQ_INIT(&highpowerq);
1340 
1341 	/*
1342 	 * The xpt layer is, itself, the equivelent of a SIM.
1343 	 * Allow 16 ccbs in the ccb pool for it.  This should
1344 	 * give decent parallelism when we probe busses and
1345 	 * perform other XPT functions.
1346 	 */
1347 	devq = cam_simq_alloc(16);
1348 	xpt_sim = cam_sim_alloc(xptaction,
1349 				xptpoll,
1350 				"xpt",
1351 				/*softc*/NULL,
1352 				/*unit*/0,
1353 				/*max_dev_transactions*/0,
1354 				/*max_tagged_dev_transactions*/0,
1355 				devq);
1356 	cam_simq_release(devq);
1357 	xpt_max_ccbs = 16;
1358 
1359 	xpt_bus_register(xpt_sim, /*bus #*/0);
1360 
1361 	/*
1362 	 * Looking at the XPT from the SIM layer, the XPT is
1363 	 * the equivelent of a peripheral driver.  Allocate
1364 	 * a peripheral driver entry for us.
1365 	 */
1366 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1367 				      CAM_TARGET_WILDCARD,
1368 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1369 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1370 		       " failing attach\n", status);
1371 		return;
1372 	}
1373 
1374 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1375 			 path, NULL, 0, NULL);
1376 	xpt_free_path(path);
1377 
1378 	xpt_sim->softc = xpt_periph;
1379 
1380 	/*
1381 	 * Register a callback for when interrupts are enabled.
1382 	 */
1383 	xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1384 				  M_TEMP, M_INTWAIT | M_ZERO);
1385 	xpt_config_hook->ich_func = xpt_config;
1386 	xpt_config_hook->ich_desc = "xpt";
1387 	xpt_config_hook->ich_order = 1000;
1388 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1389 		kfree (xpt_config_hook, M_TEMP);
1390 		kprintf("xpt_init: config_intrhook_establish failed "
1391 		       "- failing attach\n");
1392 	}
1393 
1394 	/* Install our software interrupt handlers */
1395 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet", NULL);
1396 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1397 }
1398 
1399 static cam_status
1400 xptregister(struct cam_periph *periph, void *arg)
1401 {
1402 	if (periph == NULL) {
1403 		kprintf("xptregister: periph was NULL!!\n");
1404 		return(CAM_REQ_CMP_ERR);
1405 	}
1406 
1407 	periph->softc = NULL;
1408 
1409 	xpt_periph = periph;
1410 
1411 	return(CAM_REQ_CMP);
1412 }
1413 
1414 int32_t
1415 xpt_add_periph(struct cam_periph *periph)
1416 {
1417 	struct cam_ed *device;
1418 	int32_t	 status;
1419 	struct periph_list *periph_head;
1420 
1421 	device = periph->path->device;
1422 
1423 	periph_head = &device->periphs;
1424 
1425 	status = CAM_REQ_CMP;
1426 
1427 	if (device != NULL) {
1428 		/*
1429 		 * Make room for this peripheral
1430 		 * so it will fit in the queue
1431 		 * when it's scheduled to run
1432 		 */
1433 		crit_enter();
1434 		status = camq_resize(&device->drvq,
1435 				     device->drvq.array_size + 1);
1436 
1437 		device->generation++;
1438 
1439 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1440 		crit_exit();
1441 	}
1442 
1443 	xsoftc.generation++;
1444 
1445 	return (status);
1446 }
1447 
1448 void
1449 xpt_remove_periph(struct cam_periph *periph)
1450 {
1451 	struct cam_ed *device;
1452 
1453 	device = periph->path->device;
1454 
1455 	if (device != NULL) {
1456 		struct periph_list *periph_head;
1457 
1458 		periph_head = &device->periphs;
1459 
1460 		/* Release the slot for this peripheral */
1461 		crit_enter();
1462 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1463 
1464 		device->generation++;
1465 
1466 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1467 		crit_exit();
1468 	}
1469 
1470 	xsoftc.generation++;
1471 
1472 }
1473 
1474 #ifdef CAM_NEW_TRAN_CODE
1475 
1476 void
1477 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1478 {
1479 	struct	ccb_pathinq cpi;
1480 	struct	ccb_trans_settings cts;
1481 	struct	cam_path *path;
1482 	u_int	speed;
1483 	u_int	freq;
1484 	u_int	mb;
1485 
1486 	path = periph->path;
1487 	/*
1488 	 * To ensure that this is printed in one piece,
1489 	 * mask out CAM interrupts.
1490 	 */
1491 	crit_enter();
1492 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1493 	       periph->periph_name, periph->unit_number,
1494 	       path->bus->sim->sim_name,
1495 	       path->bus->sim->unit_number,
1496 	       path->bus->sim->bus_id,
1497 	       path->target->target_id,
1498 	       path->device->lun_id);
1499 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1500 	scsi_print_inquiry(&path->device->inq_data);
1501 	if ((bootverbose)
1502 	 && (path->device->serial_num_len > 0)) {
1503 		/* Don't wrap the screen  - print only the first 60 chars */
1504 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1505 		       periph->unit_number, path->device->serial_num);
1506 	}
1507 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1508 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1509 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1510 	xpt_action((union ccb*)&cts);
1511 
1512 	/* Ask the SIM for its base transfer speed */
1513 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1514 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1515 	xpt_action((union ccb *)&cpi);
1516 
1517 	speed = cpi.base_transfer_speed;
1518 	freq = 0;
1519 	if (cts.ccb_h.status == CAM_REQ_CMP
1520 	 && cts.transport == XPORT_SPI) {
1521 		struct	ccb_trans_settings_spi *spi;
1522 
1523 		spi = &cts.xport_specific.spi;
1524 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1525 		  && spi->sync_offset != 0) {
1526 			freq = scsi_calc_syncsrate(spi->sync_period);
1527 			speed = freq;
1528 		}
1529 
1530 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1531 			speed *= (0x01 << spi->bus_width);
1532 	}
1533 
1534 	mb = speed / 1000;
1535 	if (mb > 0)
1536 		printf("%s%d: %d.%03dMB/s transfers",
1537 		       periph->periph_name, periph->unit_number,
1538 		       mb, speed % 1000);
1539 	else
1540 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1541 		       periph->unit_number, speed);
1542 	/* Report additional information about SPI connections */
1543 	if (cts.ccb_h.status == CAM_REQ_CMP
1544 	 && cts.transport == XPORT_SPI) {
1545 		struct	ccb_trans_settings_spi *spi;
1546 
1547 		spi = &cts.xport_specific.spi;
1548 		if (freq != 0) {
1549 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1550 			       freq % 1000,
1551 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1552 			     ? " DT" : "",
1553 			       spi->sync_offset);
1554 		}
1555 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1556 		 && spi->bus_width > 0) {
1557 			if (freq != 0) {
1558 				printf(", ");
1559 			} else {
1560 				printf(" (");
1561 			}
1562 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1563 		} else if (freq != 0) {
1564 			printf(")");
1565 		}
1566 	}
1567 
1568 	if (path->device->inq_flags & SID_CmdQue
1569 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1570 		printf("\n%s%d: Tagged Queueing Enabled",
1571 		       periph->periph_name, periph->unit_number);
1572 	}
1573 	printf("\n");
1574 
1575 	/*
1576 	 * We only want to print the caller's announce string if they've
1577 	 * passed one in..
1578 	 */
1579 	if (announce_string != NULL)
1580 		printf("%s%d: %s\n", periph->periph_name,
1581 		       periph->unit_number, announce_string);
1582 	crit_exit();
1583 }
1584 #else /* CAM_NEW_TRAN_CODE */
1585 void
1586 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1587 {
1588 	u_int mb;
1589 	struct cam_path *path;
1590 	struct ccb_trans_settings cts;
1591 
1592 	path = periph->path;
1593 	/*
1594 	 * To ensure that this is printed in one piece,
1595 	 * mask out CAM interrupts.
1596 	 */
1597 	crit_enter();
1598 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1599 	       periph->periph_name, periph->unit_number,
1600 	       path->bus->sim->sim_name,
1601 	       path->bus->sim->unit_number,
1602 	       path->bus->sim->bus_id,
1603 	       path->target->target_id,
1604 	       path->device->lun_id);
1605 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1606 	scsi_print_inquiry(&path->device->inq_data);
1607 	if ((bootverbose)
1608 	 && (path->device->serial_num_len > 0)) {
1609 		/* Don't wrap the screen  - print only the first 60 chars */
1610 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1611 		       periph->unit_number, path->device->serial_num);
1612 	}
1613 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1614 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1615 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1616 	xpt_action((union ccb*)&cts);
1617 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1618 		u_int speed;
1619 		u_int freq;
1620 
1621 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1622 		  && cts.sync_offset != 0) {
1623 			freq = scsi_calc_syncsrate(cts.sync_period);
1624 			speed = freq;
1625 		} else {
1626 			struct ccb_pathinq cpi;
1627 
1628 			/* Ask the SIM for its base transfer speed */
1629 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1630 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1631 			xpt_action((union ccb *)&cpi);
1632 
1633 			speed = cpi.base_transfer_speed;
1634 			freq = 0;
1635 		}
1636 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1637 			speed *= (0x01 << cts.bus_width);
1638 		mb = speed / 1000;
1639 		if (mb > 0)
1640 			kprintf("%s%d: %d.%03dMB/s transfers",
1641 			       periph->periph_name, periph->unit_number,
1642 			       mb, speed % 1000);
1643 		else
1644 			kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1645 			       periph->unit_number, speed);
1646 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1647 		 && cts.sync_offset != 0) {
1648 			kprintf(" (%d.%03dMHz, offset %d", freq / 1000,
1649 			       freq % 1000, cts.sync_offset);
1650 		}
1651 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1652 		 && cts.bus_width > 0) {
1653 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1654 			 && cts.sync_offset != 0) {
1655 				kprintf(", ");
1656 			} else {
1657 				kprintf(" (");
1658 			}
1659 			kprintf("%dbit)", 8 * (0x01 << cts.bus_width));
1660 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1661 			&& cts.sync_offset != 0) {
1662 			kprintf(")");
1663 		}
1664 
1665 		if (path->device->inq_flags & SID_CmdQue
1666 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1667 			kprintf(", Tagged Queueing Enabled");
1668 		}
1669 
1670 		kprintf("\n");
1671 	} else if (path->device->inq_flags & SID_CmdQue
1672    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1673 		kprintf("%s%d: Tagged Queueing Enabled\n",
1674 		       periph->periph_name, periph->unit_number);
1675 	}
1676 
1677 	/*
1678 	 * We only want to print the caller's announce string if they've
1679 	 * passed one in..
1680 	 */
1681 	if (announce_string != NULL)
1682 		kprintf("%s%d: %s\n", periph->periph_name,
1683 		       periph->unit_number, announce_string);
1684 	crit_exit();
1685 }
1686 
1687 #endif /* CAM_NEW_TRAN_CODE */
1688 
1689 static dev_match_ret
1690 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1691 	    struct cam_eb *bus)
1692 {
1693 	dev_match_ret retval;
1694 	int i;
1695 
1696 	retval = DM_RET_NONE;
1697 
1698 	/*
1699 	 * If we aren't given something to match against, that's an error.
1700 	 */
1701 	if (bus == NULL)
1702 		return(DM_RET_ERROR);
1703 
1704 	/*
1705 	 * If there are no match entries, then this bus matches no
1706 	 * matter what.
1707 	 */
1708 	if ((patterns == NULL) || (num_patterns == 0))
1709 		return(DM_RET_DESCEND | DM_RET_COPY);
1710 
1711 	for (i = 0; i < num_patterns; i++) {
1712 		struct bus_match_pattern *cur_pattern;
1713 
1714 		/*
1715 		 * If the pattern in question isn't for a bus node, we
1716 		 * aren't interested.  However, we do indicate to the
1717 		 * calling routine that we should continue descending the
1718 		 * tree, since the user wants to match against lower-level
1719 		 * EDT elements.
1720 		 */
1721 		if (patterns[i].type != DEV_MATCH_BUS) {
1722 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1723 				retval |= DM_RET_DESCEND;
1724 			continue;
1725 		}
1726 
1727 		cur_pattern = &patterns[i].pattern.bus_pattern;
1728 
1729 		/*
1730 		 * If they want to match any bus node, we give them any
1731 		 * device node.
1732 		 */
1733 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1734 			/* set the copy flag */
1735 			retval |= DM_RET_COPY;
1736 
1737 			/*
1738 			 * If we've already decided on an action, go ahead
1739 			 * and return.
1740 			 */
1741 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1742 				return(retval);
1743 		}
1744 
1745 		/*
1746 		 * Not sure why someone would do this...
1747 		 */
1748 		if (cur_pattern->flags == BUS_MATCH_NONE)
1749 			continue;
1750 
1751 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1752 		 && (cur_pattern->path_id != bus->path_id))
1753 			continue;
1754 
1755 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1756 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1757 			continue;
1758 
1759 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1760 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1761 			continue;
1762 
1763 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1764 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1765 			     DEV_IDLEN) != 0))
1766 			continue;
1767 
1768 		/*
1769 		 * If we get to this point, the user definitely wants
1770 		 * information on this bus.  So tell the caller to copy the
1771 		 * data out.
1772 		 */
1773 		retval |= DM_RET_COPY;
1774 
1775 		/*
1776 		 * If the return action has been set to descend, then we
1777 		 * know that we've already seen a non-bus matching
1778 		 * expression, therefore we need to further descend the tree.
1779 		 * This won't change by continuing around the loop, so we
1780 		 * go ahead and return.  If we haven't seen a non-bus
1781 		 * matching expression, we keep going around the loop until
1782 		 * we exhaust the matching expressions.  We'll set the stop
1783 		 * flag once we fall out of the loop.
1784 		 */
1785 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1786 			return(retval);
1787 	}
1788 
1789 	/*
1790 	 * If the return action hasn't been set to descend yet, that means
1791 	 * we haven't seen anything other than bus matching patterns.  So
1792 	 * tell the caller to stop descending the tree -- the user doesn't
1793 	 * want to match against lower level tree elements.
1794 	 */
1795 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1796 		retval |= DM_RET_STOP;
1797 
1798 	return(retval);
1799 }
1800 
1801 static dev_match_ret
1802 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1803 	       struct cam_ed *device)
1804 {
1805 	dev_match_ret retval;
1806 	int i;
1807 
1808 	retval = DM_RET_NONE;
1809 
1810 	/*
1811 	 * If we aren't given something to match against, that's an error.
1812 	 */
1813 	if (device == NULL)
1814 		return(DM_RET_ERROR);
1815 
1816 	/*
1817 	 * If there are no match entries, then this device matches no
1818 	 * matter what.
1819 	 */
1820 	if ((patterns == NULL) || (patterns == 0))
1821 		return(DM_RET_DESCEND | DM_RET_COPY);
1822 
1823 	for (i = 0; i < num_patterns; i++) {
1824 		struct device_match_pattern *cur_pattern;
1825 
1826 		/*
1827 		 * If the pattern in question isn't for a device node, we
1828 		 * aren't interested.
1829 		 */
1830 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1831 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1832 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1833 				retval |= DM_RET_DESCEND;
1834 			continue;
1835 		}
1836 
1837 		cur_pattern = &patterns[i].pattern.device_pattern;
1838 
1839 		/*
1840 		 * If they want to match any device node, we give them any
1841 		 * device node.
1842 		 */
1843 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1844 			/* set the copy flag */
1845 			retval |= DM_RET_COPY;
1846 
1847 
1848 			/*
1849 			 * If we've already decided on an action, go ahead
1850 			 * and return.
1851 			 */
1852 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1853 				return(retval);
1854 		}
1855 
1856 		/*
1857 		 * Not sure why someone would do this...
1858 		 */
1859 		if (cur_pattern->flags == DEV_MATCH_NONE)
1860 			continue;
1861 
1862 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1863 		 && (cur_pattern->path_id != device->target->bus->path_id))
1864 			continue;
1865 
1866 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1867 		 && (cur_pattern->target_id != device->target->target_id))
1868 			continue;
1869 
1870 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1871 		 && (cur_pattern->target_lun != device->lun_id))
1872 			continue;
1873 
1874 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1875 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1876 				    (caddr_t)&cur_pattern->inq_pat,
1877 				    1, sizeof(cur_pattern->inq_pat),
1878 				    scsi_static_inquiry_match) == NULL))
1879 			continue;
1880 
1881 		/*
1882 		 * If we get to this point, the user definitely wants
1883 		 * information on this device.  So tell the caller to copy
1884 		 * the data out.
1885 		 */
1886 		retval |= DM_RET_COPY;
1887 
1888 		/*
1889 		 * If the return action has been set to descend, then we
1890 		 * know that we've already seen a peripheral matching
1891 		 * expression, therefore we need to further descend the tree.
1892 		 * This won't change by continuing around the loop, so we
1893 		 * go ahead and return.  If we haven't seen a peripheral
1894 		 * matching expression, we keep going around the loop until
1895 		 * we exhaust the matching expressions.  We'll set the stop
1896 		 * flag once we fall out of the loop.
1897 		 */
1898 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1899 			return(retval);
1900 	}
1901 
1902 	/*
1903 	 * If the return action hasn't been set to descend yet, that means
1904 	 * we haven't seen any peripheral matching patterns.  So tell the
1905 	 * caller to stop descending the tree -- the user doesn't want to
1906 	 * match against lower level tree elements.
1907 	 */
1908 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1909 		retval |= DM_RET_STOP;
1910 
1911 	return(retval);
1912 }
1913 
1914 /*
1915  * Match a single peripheral against any number of match patterns.
1916  */
1917 static dev_match_ret
1918 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1919 	       struct cam_periph *periph)
1920 {
1921 	dev_match_ret retval;
1922 	int i;
1923 
1924 	/*
1925 	 * If we aren't given something to match against, that's an error.
1926 	 */
1927 	if (periph == NULL)
1928 		return(DM_RET_ERROR);
1929 
1930 	/*
1931 	 * If there are no match entries, then this peripheral matches no
1932 	 * matter what.
1933 	 */
1934 	if ((patterns == NULL) || (num_patterns == 0))
1935 		return(DM_RET_STOP | DM_RET_COPY);
1936 
1937 	/*
1938 	 * There aren't any nodes below a peripheral node, so there's no
1939 	 * reason to descend the tree any further.
1940 	 */
1941 	retval = DM_RET_STOP;
1942 
1943 	for (i = 0; i < num_patterns; i++) {
1944 		struct periph_match_pattern *cur_pattern;
1945 
1946 		/*
1947 		 * If the pattern in question isn't for a peripheral, we
1948 		 * aren't interested.
1949 		 */
1950 		if (patterns[i].type != DEV_MATCH_PERIPH)
1951 			continue;
1952 
1953 		cur_pattern = &patterns[i].pattern.periph_pattern;
1954 
1955 		/*
1956 		 * If they want to match on anything, then we will do so.
1957 		 */
1958 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1959 			/* set the copy flag */
1960 			retval |= DM_RET_COPY;
1961 
1962 			/*
1963 			 * We've already set the return action to stop,
1964 			 * since there are no nodes below peripherals in
1965 			 * the tree.
1966 			 */
1967 			return(retval);
1968 		}
1969 
1970 		/*
1971 		 * Not sure why someone would do this...
1972 		 */
1973 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1974 			continue;
1975 
1976 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1977 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1978 			continue;
1979 
1980 		/*
1981 		 * For the target and lun id's, we have to make sure the
1982 		 * target and lun pointers aren't NULL.  The xpt peripheral
1983 		 * has a wildcard target and device.
1984 		 */
1985 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1986 		 && ((periph->path->target == NULL)
1987 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1988 			continue;
1989 
1990 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1991 		 && ((periph->path->device == NULL)
1992 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1993 			continue;
1994 
1995 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1996 		 && (cur_pattern->unit_number != periph->unit_number))
1997 			continue;
1998 
1999 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2000 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2001 			     DEV_IDLEN) != 0))
2002 			continue;
2003 
2004 		/*
2005 		 * If we get to this point, the user definitely wants
2006 		 * information on this peripheral.  So tell the caller to
2007 		 * copy the data out.
2008 		 */
2009 		retval |= DM_RET_COPY;
2010 
2011 		/*
2012 		 * The return action has already been set to stop, since
2013 		 * peripherals don't have any nodes below them in the EDT.
2014 		 */
2015 		return(retval);
2016 	}
2017 
2018 	/*
2019 	 * If we get to this point, the peripheral that was passed in
2020 	 * doesn't match any of the patterns.
2021 	 */
2022 	return(retval);
2023 }
2024 
2025 static int
2026 xptedtbusfunc(struct cam_eb *bus, void *arg)
2027 {
2028 	struct ccb_dev_match *cdm;
2029 	dev_match_ret retval;
2030 
2031 	cdm = (struct ccb_dev_match *)arg;
2032 
2033 	/*
2034 	 * If our position is for something deeper in the tree, that means
2035 	 * that we've already seen this node.  So, we keep going down.
2036 	 */
2037 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2038 	 && (cdm->pos.cookie.bus == bus)
2039 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2040 	 && (cdm->pos.cookie.target != NULL))
2041 		retval = DM_RET_DESCEND;
2042 	else
2043 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2044 
2045 	/*
2046 	 * If we got an error, bail out of the search.
2047 	 */
2048 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2049 		cdm->status = CAM_DEV_MATCH_ERROR;
2050 		return(0);
2051 	}
2052 
2053 	/*
2054 	 * If the copy flag is set, copy this bus out.
2055 	 */
2056 	if (retval & DM_RET_COPY) {
2057 		int spaceleft, j;
2058 
2059 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2060 			sizeof(struct dev_match_result));
2061 
2062 		/*
2063 		 * If we don't have enough space to put in another
2064 		 * match result, save our position and tell the
2065 		 * user there are more devices to check.
2066 		 */
2067 		if (spaceleft < sizeof(struct dev_match_result)) {
2068 			bzero(&cdm->pos, sizeof(cdm->pos));
2069 			cdm->pos.position_type =
2070 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2071 
2072 			cdm->pos.cookie.bus = bus;
2073 			cdm->pos.generations[CAM_BUS_GENERATION]=
2074 				bus_generation;
2075 			cdm->status = CAM_DEV_MATCH_MORE;
2076 			return(0);
2077 		}
2078 		j = cdm->num_matches;
2079 		cdm->num_matches++;
2080 		cdm->matches[j].type = DEV_MATCH_BUS;
2081 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2082 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2083 		cdm->matches[j].result.bus_result.unit_number =
2084 			bus->sim->unit_number;
2085 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2086 			bus->sim->sim_name, DEV_IDLEN);
2087 	}
2088 
2089 	/*
2090 	 * If the user is only interested in busses, there's no
2091 	 * reason to descend to the next level in the tree.
2092 	 */
2093 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2094 		return(1);
2095 
2096 	/*
2097 	 * If there is a target generation recorded, check it to
2098 	 * make sure the target list hasn't changed.
2099 	 */
2100 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2101 	 && (bus == cdm->pos.cookie.bus)
2102 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2103 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2104 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2105 	     bus->generation)) {
2106 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2107 		return(0);
2108 	}
2109 
2110 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2111 	 && (cdm->pos.cookie.bus == bus)
2112 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2113 	 && (cdm->pos.cookie.target != NULL))
2114 		return(xpttargettraverse(bus,
2115 					(struct cam_et *)cdm->pos.cookie.target,
2116 					 xptedttargetfunc, arg));
2117 	else
2118 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2119 }
2120 
2121 static int
2122 xptedttargetfunc(struct cam_et *target, void *arg)
2123 {
2124 	struct ccb_dev_match *cdm;
2125 
2126 	cdm = (struct ccb_dev_match *)arg;
2127 
2128 	/*
2129 	 * If there is a device list generation recorded, check it to
2130 	 * make sure the device list hasn't changed.
2131 	 */
2132 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2133 	 && (cdm->pos.cookie.bus == target->bus)
2134 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2135 	 && (cdm->pos.cookie.target == target)
2136 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2137 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2138 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2139 	     target->generation)) {
2140 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2141 		return(0);
2142 	}
2143 
2144 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2145 	 && (cdm->pos.cookie.bus == target->bus)
2146 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2147 	 && (cdm->pos.cookie.target == target)
2148 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2149 	 && (cdm->pos.cookie.device != NULL))
2150 		return(xptdevicetraverse(target,
2151 					(struct cam_ed *)cdm->pos.cookie.device,
2152 					 xptedtdevicefunc, arg));
2153 	else
2154 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2155 }
2156 
2157 static int
2158 xptedtdevicefunc(struct cam_ed *device, void *arg)
2159 {
2160 
2161 	struct ccb_dev_match *cdm;
2162 	dev_match_ret retval;
2163 
2164 	cdm = (struct ccb_dev_match *)arg;
2165 
2166 	/*
2167 	 * If our position is for something deeper in the tree, that means
2168 	 * that we've already seen this node.  So, we keep going down.
2169 	 */
2170 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2171 	 && (cdm->pos.cookie.device == device)
2172 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2173 	 && (cdm->pos.cookie.periph != NULL))
2174 		retval = DM_RET_DESCEND;
2175 	else
2176 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2177 					device);
2178 
2179 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2180 		cdm->status = CAM_DEV_MATCH_ERROR;
2181 		return(0);
2182 	}
2183 
2184 	/*
2185 	 * If the copy flag is set, copy this device out.
2186 	 */
2187 	if (retval & DM_RET_COPY) {
2188 		int spaceleft, j;
2189 
2190 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2191 			sizeof(struct dev_match_result));
2192 
2193 		/*
2194 		 * If we don't have enough space to put in another
2195 		 * match result, save our position and tell the
2196 		 * user there are more devices to check.
2197 		 */
2198 		if (spaceleft < sizeof(struct dev_match_result)) {
2199 			bzero(&cdm->pos, sizeof(cdm->pos));
2200 			cdm->pos.position_type =
2201 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2202 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2203 
2204 			cdm->pos.cookie.bus = device->target->bus;
2205 			cdm->pos.generations[CAM_BUS_GENERATION]=
2206 				bus_generation;
2207 			cdm->pos.cookie.target = device->target;
2208 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2209 				device->target->bus->generation;
2210 			cdm->pos.cookie.device = device;
2211 			cdm->pos.generations[CAM_DEV_GENERATION] =
2212 				device->target->generation;
2213 			cdm->status = CAM_DEV_MATCH_MORE;
2214 			return(0);
2215 		}
2216 		j = cdm->num_matches;
2217 		cdm->num_matches++;
2218 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2219 		cdm->matches[j].result.device_result.path_id =
2220 			device->target->bus->path_id;
2221 		cdm->matches[j].result.device_result.target_id =
2222 			device->target->target_id;
2223 		cdm->matches[j].result.device_result.target_lun =
2224 			device->lun_id;
2225 		bcopy(&device->inq_data,
2226 		      &cdm->matches[j].result.device_result.inq_data,
2227 		      sizeof(struct scsi_inquiry_data));
2228 
2229 		/* Let the user know whether this device is unconfigured */
2230 		if (device->flags & CAM_DEV_UNCONFIGURED)
2231 			cdm->matches[j].result.device_result.flags =
2232 				DEV_RESULT_UNCONFIGURED;
2233 		else
2234 			cdm->matches[j].result.device_result.flags =
2235 				DEV_RESULT_NOFLAG;
2236 	}
2237 
2238 	/*
2239 	 * If the user isn't interested in peripherals, don't descend
2240 	 * the tree any further.
2241 	 */
2242 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2243 		return(1);
2244 
2245 	/*
2246 	 * If there is a peripheral list generation recorded, make sure
2247 	 * it hasn't changed.
2248 	 */
2249 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2250 	 && (device->target->bus == cdm->pos.cookie.bus)
2251 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2252 	 && (device->target == cdm->pos.cookie.target)
2253 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2254 	 && (device == cdm->pos.cookie.device)
2255 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2256 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2257 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2258 	     device->generation)){
2259 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2260 		return(0);
2261 	}
2262 
2263 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2264 	 && (cdm->pos.cookie.bus == device->target->bus)
2265 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2266 	 && (cdm->pos.cookie.target == device->target)
2267 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2268 	 && (cdm->pos.cookie.device == device)
2269 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2270 	 && (cdm->pos.cookie.periph != NULL))
2271 		return(xptperiphtraverse(device,
2272 				(struct cam_periph *)cdm->pos.cookie.periph,
2273 				xptedtperiphfunc, arg));
2274 	else
2275 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2276 }
2277 
2278 static int
2279 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2280 {
2281 	struct ccb_dev_match *cdm;
2282 	dev_match_ret retval;
2283 
2284 	cdm = (struct ccb_dev_match *)arg;
2285 
2286 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2287 
2288 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2289 		cdm->status = CAM_DEV_MATCH_ERROR;
2290 		return(0);
2291 	}
2292 
2293 	/*
2294 	 * If the copy flag is set, copy this peripheral out.
2295 	 */
2296 	if (retval & DM_RET_COPY) {
2297 		int spaceleft, j;
2298 
2299 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2300 			sizeof(struct dev_match_result));
2301 
2302 		/*
2303 		 * If we don't have enough space to put in another
2304 		 * match result, save our position and tell the
2305 		 * user there are more devices to check.
2306 		 */
2307 		if (spaceleft < sizeof(struct dev_match_result)) {
2308 			bzero(&cdm->pos, sizeof(cdm->pos));
2309 			cdm->pos.position_type =
2310 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2311 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2312 				CAM_DEV_POS_PERIPH;
2313 
2314 			cdm->pos.cookie.bus = periph->path->bus;
2315 			cdm->pos.generations[CAM_BUS_GENERATION]=
2316 				bus_generation;
2317 			cdm->pos.cookie.target = periph->path->target;
2318 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2319 				periph->path->bus->generation;
2320 			cdm->pos.cookie.device = periph->path->device;
2321 			cdm->pos.generations[CAM_DEV_GENERATION] =
2322 				periph->path->target->generation;
2323 			cdm->pos.cookie.periph = periph;
2324 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2325 				periph->path->device->generation;
2326 			cdm->status = CAM_DEV_MATCH_MORE;
2327 			return(0);
2328 		}
2329 
2330 		j = cdm->num_matches;
2331 		cdm->num_matches++;
2332 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2333 		cdm->matches[j].result.periph_result.path_id =
2334 			periph->path->bus->path_id;
2335 		cdm->matches[j].result.periph_result.target_id =
2336 			periph->path->target->target_id;
2337 		cdm->matches[j].result.periph_result.target_lun =
2338 			periph->path->device->lun_id;
2339 		cdm->matches[j].result.periph_result.unit_number =
2340 			periph->unit_number;
2341 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2342 			periph->periph_name, DEV_IDLEN);
2343 	}
2344 
2345 	return(1);
2346 }
2347 
2348 static int
2349 xptedtmatch(struct ccb_dev_match *cdm)
2350 {
2351 	int ret;
2352 
2353 	cdm->num_matches = 0;
2354 
2355 	/*
2356 	 * Check the bus list generation.  If it has changed, the user
2357 	 * needs to reset everything and start over.
2358 	 */
2359 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2360 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2361 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2362 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2363 		return(0);
2364 	}
2365 
2366 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2367 	 && (cdm->pos.cookie.bus != NULL))
2368 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2369 				     xptedtbusfunc, cdm);
2370 	else
2371 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2372 
2373 	/*
2374 	 * If we get back 0, that means that we had to stop before fully
2375 	 * traversing the EDT.  It also means that one of the subroutines
2376 	 * has set the status field to the proper value.  If we get back 1,
2377 	 * we've fully traversed the EDT and copied out any matching entries.
2378 	 */
2379 	if (ret == 1)
2380 		cdm->status = CAM_DEV_MATCH_LAST;
2381 
2382 	return(ret);
2383 }
2384 
2385 static int
2386 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2387 {
2388 	struct ccb_dev_match *cdm;
2389 
2390 	cdm = (struct ccb_dev_match *)arg;
2391 
2392 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2393 	 && (cdm->pos.cookie.pdrv == pdrv)
2394 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2395 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2396 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2397 	     (*pdrv)->generation)) {
2398 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2399 		return(0);
2400 	}
2401 
2402 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2403 	 && (cdm->pos.cookie.pdrv == pdrv)
2404 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2405 	 && (cdm->pos.cookie.periph != NULL))
2406 		return(xptpdperiphtraverse(pdrv,
2407 				(struct cam_periph *)cdm->pos.cookie.periph,
2408 				xptplistperiphfunc, arg));
2409 	else
2410 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2411 }
2412 
2413 static int
2414 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2415 {
2416 	struct ccb_dev_match *cdm;
2417 	dev_match_ret retval;
2418 
2419 	cdm = (struct ccb_dev_match *)arg;
2420 
2421 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2422 
2423 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2424 		cdm->status = CAM_DEV_MATCH_ERROR;
2425 		return(0);
2426 	}
2427 
2428 	/*
2429 	 * If the copy flag is set, copy this peripheral out.
2430 	 */
2431 	if (retval & DM_RET_COPY) {
2432 		int spaceleft, j;
2433 
2434 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2435 			sizeof(struct dev_match_result));
2436 
2437 		/*
2438 		 * If we don't have enough space to put in another
2439 		 * match result, save our position and tell the
2440 		 * user there are more devices to check.
2441 		 */
2442 		if (spaceleft < sizeof(struct dev_match_result)) {
2443 			struct periph_driver **pdrv;
2444 
2445 			pdrv = NULL;
2446 			bzero(&cdm->pos, sizeof(cdm->pos));
2447 			cdm->pos.position_type =
2448 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2449 				CAM_DEV_POS_PERIPH;
2450 
2451 			/*
2452 			 * This may look a bit non-sensical, but it is
2453 			 * actually quite logical.  There are very few
2454 			 * peripheral drivers, and bloating every peripheral
2455 			 * structure with a pointer back to its parent
2456 			 * peripheral driver linker set entry would cost
2457 			 * more in the long run than doing this quick lookup.
2458 			 */
2459 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2460 				if (strcmp((*pdrv)->driver_name,
2461 				    periph->periph_name) == 0)
2462 					break;
2463 			}
2464 
2465 			if (*pdrv == NULL) {
2466 				cdm->status = CAM_DEV_MATCH_ERROR;
2467 				return(0);
2468 			}
2469 
2470 			cdm->pos.cookie.pdrv = pdrv;
2471 			/*
2472 			 * The periph generation slot does double duty, as
2473 			 * does the periph pointer slot.  They are used for
2474 			 * both edt and pdrv lookups and positioning.
2475 			 */
2476 			cdm->pos.cookie.periph = periph;
2477 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2478 				(*pdrv)->generation;
2479 			cdm->status = CAM_DEV_MATCH_MORE;
2480 			return(0);
2481 		}
2482 
2483 		j = cdm->num_matches;
2484 		cdm->num_matches++;
2485 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2486 		cdm->matches[j].result.periph_result.path_id =
2487 			periph->path->bus->path_id;
2488 
2489 		/*
2490 		 * The transport layer peripheral doesn't have a target or
2491 		 * lun.
2492 		 */
2493 		if (periph->path->target)
2494 			cdm->matches[j].result.periph_result.target_id =
2495 				periph->path->target->target_id;
2496 		else
2497 			cdm->matches[j].result.periph_result.target_id = -1;
2498 
2499 		if (periph->path->device)
2500 			cdm->matches[j].result.periph_result.target_lun =
2501 				periph->path->device->lun_id;
2502 		else
2503 			cdm->matches[j].result.periph_result.target_lun = -1;
2504 
2505 		cdm->matches[j].result.periph_result.unit_number =
2506 			periph->unit_number;
2507 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2508 			periph->periph_name, DEV_IDLEN);
2509 	}
2510 
2511 	return(1);
2512 }
2513 
2514 static int
2515 xptperiphlistmatch(struct ccb_dev_match *cdm)
2516 {
2517 	int ret;
2518 
2519 	cdm->num_matches = 0;
2520 
2521 	/*
2522 	 * At this point in the edt traversal function, we check the bus
2523 	 * list generation to make sure that no busses have been added or
2524 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2525 	 * For the peripheral driver list traversal function, however, we
2526 	 * don't have to worry about new peripheral driver types coming or
2527 	 * going; they're in a linker set, and therefore can't change
2528 	 * without a recompile.
2529 	 */
2530 
2531 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2532 	 && (cdm->pos.cookie.pdrv != NULL))
2533 		ret = xptpdrvtraverse(
2534 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2535 				xptplistpdrvfunc, cdm);
2536 	else
2537 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2538 
2539 	/*
2540 	 * If we get back 0, that means that we had to stop before fully
2541 	 * traversing the peripheral driver tree.  It also means that one of
2542 	 * the subroutines has set the status field to the proper value.  If
2543 	 * we get back 1, we've fully traversed the EDT and copied out any
2544 	 * matching entries.
2545 	 */
2546 	if (ret == 1)
2547 		cdm->status = CAM_DEV_MATCH_LAST;
2548 
2549 	return(ret);
2550 }
2551 
2552 static int
2553 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2554 {
2555 	struct cam_eb *bus, *next_bus;
2556 	int retval;
2557 
2558 	retval = 1;
2559 
2560 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2561 	     bus != NULL;
2562 	     bus = next_bus) {
2563 		next_bus = TAILQ_NEXT(bus, links);
2564 
2565 		retval = tr_func(bus, arg);
2566 		if (retval == 0)
2567 			return(retval);
2568 	}
2569 
2570 	return(retval);
2571 }
2572 
2573 static int
2574 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2575 		  xpt_targetfunc_t *tr_func, void *arg)
2576 {
2577 	struct cam_et *target, *next_target;
2578 	int retval;
2579 
2580 	retval = 1;
2581 	for (target = (start_target ? start_target :
2582 		       TAILQ_FIRST(&bus->et_entries));
2583 	     target != NULL; target = next_target) {
2584 
2585 		next_target = TAILQ_NEXT(target, links);
2586 
2587 		retval = tr_func(target, arg);
2588 
2589 		if (retval == 0)
2590 			return(retval);
2591 	}
2592 
2593 	return(retval);
2594 }
2595 
2596 static int
2597 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2598 		  xpt_devicefunc_t *tr_func, void *arg)
2599 {
2600 	struct cam_ed *device, *next_device;
2601 	int retval;
2602 
2603 	retval = 1;
2604 	for (device = (start_device ? start_device :
2605 		       TAILQ_FIRST(&target->ed_entries));
2606 	     device != NULL;
2607 	     device = next_device) {
2608 
2609 		next_device = TAILQ_NEXT(device, links);
2610 
2611 		retval = tr_func(device, arg);
2612 
2613 		if (retval == 0)
2614 			return(retval);
2615 	}
2616 
2617 	return(retval);
2618 }
2619 
2620 static int
2621 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2622 		  xpt_periphfunc_t *tr_func, void *arg)
2623 {
2624 	struct cam_periph *periph, *next_periph;
2625 	int retval;
2626 
2627 	retval = 1;
2628 
2629 	for (periph = (start_periph ? start_periph :
2630 		       SLIST_FIRST(&device->periphs));
2631 	     periph != NULL;
2632 	     periph = next_periph) {
2633 
2634 		next_periph = SLIST_NEXT(periph, periph_links);
2635 
2636 		retval = tr_func(periph, arg);
2637 		if (retval == 0)
2638 			return(retval);
2639 	}
2640 
2641 	return(retval);
2642 }
2643 
2644 static int
2645 xptpdrvtraverse(struct periph_driver **start_pdrv,
2646 		xpt_pdrvfunc_t *tr_func, void *arg)
2647 {
2648 	struct periph_driver **pdrv;
2649 	int retval;
2650 
2651 	retval = 1;
2652 
2653 	/*
2654 	 * We don't traverse the peripheral driver list like we do the
2655 	 * other lists, because it is a linker set, and therefore cannot be
2656 	 * changed during runtime.  If the peripheral driver list is ever
2657 	 * re-done to be something other than a linker set (i.e. it can
2658 	 * change while the system is running), the list traversal should
2659 	 * be modified to work like the other traversal functions.
2660 	 */
2661 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2662 	     *pdrv != NULL; pdrv++) {
2663 		retval = tr_func(pdrv, arg);
2664 
2665 		if (retval == 0)
2666 			return(retval);
2667 	}
2668 
2669 	return(retval);
2670 }
2671 
2672 static int
2673 xptpdperiphtraverse(struct periph_driver **pdrv,
2674 		    struct cam_periph *start_periph,
2675 		    xpt_periphfunc_t *tr_func, void *arg)
2676 {
2677 	struct cam_periph *periph, *next_periph;
2678 	int retval;
2679 
2680 	retval = 1;
2681 
2682 	for (periph = (start_periph ? start_periph :
2683 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2684 	     periph = next_periph) {
2685 
2686 		next_periph = TAILQ_NEXT(periph, unit_links);
2687 
2688 		retval = tr_func(periph, arg);
2689 		if (retval == 0)
2690 			return(retval);
2691 	}
2692 	return(retval);
2693 }
2694 
2695 static int
2696 xptdefbusfunc(struct cam_eb *bus, void *arg)
2697 {
2698 	struct xpt_traverse_config *tr_config;
2699 
2700 	tr_config = (struct xpt_traverse_config *)arg;
2701 
2702 	if (tr_config->depth == XPT_DEPTH_BUS) {
2703 		xpt_busfunc_t *tr_func;
2704 
2705 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2706 
2707 		return(tr_func(bus, tr_config->tr_arg));
2708 	} else
2709 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2710 }
2711 
2712 static int
2713 xptdeftargetfunc(struct cam_et *target, void *arg)
2714 {
2715 	struct xpt_traverse_config *tr_config;
2716 
2717 	tr_config = (struct xpt_traverse_config *)arg;
2718 
2719 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2720 		xpt_targetfunc_t *tr_func;
2721 
2722 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2723 
2724 		return(tr_func(target, tr_config->tr_arg));
2725 	} else
2726 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2727 }
2728 
2729 static int
2730 xptdefdevicefunc(struct cam_ed *device, void *arg)
2731 {
2732 	struct xpt_traverse_config *tr_config;
2733 
2734 	tr_config = (struct xpt_traverse_config *)arg;
2735 
2736 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2737 		xpt_devicefunc_t *tr_func;
2738 
2739 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2740 
2741 		return(tr_func(device, tr_config->tr_arg));
2742 	} else
2743 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2744 }
2745 
2746 static int
2747 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2748 {
2749 	struct xpt_traverse_config *tr_config;
2750 	xpt_periphfunc_t *tr_func;
2751 
2752 	tr_config = (struct xpt_traverse_config *)arg;
2753 
2754 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2755 
2756 	/*
2757 	 * Unlike the other default functions, we don't check for depth
2758 	 * here.  The peripheral driver level is the last level in the EDT,
2759 	 * so if we're here, we should execute the function in question.
2760 	 */
2761 	return(tr_func(periph, tr_config->tr_arg));
2762 }
2763 
2764 /*
2765  * Execute the given function for every bus in the EDT.
2766  */
2767 static int
2768 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2769 {
2770 	struct xpt_traverse_config tr_config;
2771 
2772 	tr_config.depth = XPT_DEPTH_BUS;
2773 	tr_config.tr_func = tr_func;
2774 	tr_config.tr_arg = arg;
2775 
2776 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2777 }
2778 
2779 #ifdef notusedyet
2780 /*
2781  * Execute the given function for every target in the EDT.
2782  */
2783 static int
2784 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2785 {
2786 	struct xpt_traverse_config tr_config;
2787 
2788 	tr_config.depth = XPT_DEPTH_TARGET;
2789 	tr_config.tr_func = tr_func;
2790 	tr_config.tr_arg = arg;
2791 
2792 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2793 }
2794 #endif /* notusedyet */
2795 
2796 /*
2797  * Execute the given function for every device in the EDT.
2798  */
2799 static int
2800 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2801 {
2802 	struct xpt_traverse_config tr_config;
2803 
2804 	tr_config.depth = XPT_DEPTH_DEVICE;
2805 	tr_config.tr_func = tr_func;
2806 	tr_config.tr_arg = arg;
2807 
2808 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2809 }
2810 
2811 #ifdef notusedyet
2812 /*
2813  * Execute the given function for every peripheral in the EDT.
2814  */
2815 static int
2816 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2817 {
2818 	struct xpt_traverse_config tr_config;
2819 
2820 	tr_config.depth = XPT_DEPTH_PERIPH;
2821 	tr_config.tr_func = tr_func;
2822 	tr_config.tr_arg = arg;
2823 
2824 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2825 }
2826 #endif /* notusedyet */
2827 
2828 static int
2829 xptsetasyncfunc(struct cam_ed *device, void *arg)
2830 {
2831 	struct cam_path path;
2832 	struct ccb_getdev cgd;
2833 	struct async_node *cur_entry;
2834 
2835 	cur_entry = (struct async_node *)arg;
2836 
2837 	/*
2838 	 * Don't report unconfigured devices (Wildcard devs,
2839 	 * devices only for target mode, device instances
2840 	 * that have been invalidated but are waiting for
2841 	 * their last reference count to be released).
2842 	 */
2843 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2844 		return (1);
2845 
2846 	xpt_compile_path(&path,
2847 			 NULL,
2848 			 device->target->bus->path_id,
2849 			 device->target->target_id,
2850 			 device->lun_id);
2851 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2852 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2853 	xpt_action((union ccb *)&cgd);
2854 	cur_entry->callback(cur_entry->callback_arg,
2855 			    AC_FOUND_DEVICE,
2856 			    &path, &cgd);
2857 	xpt_release_path(&path);
2858 
2859 	return(1);
2860 }
2861 
2862 static int
2863 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2864 {
2865 	struct cam_path path;
2866 	struct ccb_pathinq cpi;
2867 	struct async_node *cur_entry;
2868 
2869 	cur_entry = (struct async_node *)arg;
2870 
2871 	xpt_compile_path(&path, /*periph*/NULL,
2872 			 bus->sim->path_id,
2873 			 CAM_TARGET_WILDCARD,
2874 			 CAM_LUN_WILDCARD);
2875 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2876 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2877 	xpt_action((union ccb *)&cpi);
2878 	cur_entry->callback(cur_entry->callback_arg,
2879 			    AC_PATH_REGISTERED,
2880 			    &path, &cpi);
2881 	xpt_release_path(&path);
2882 
2883 	return(1);
2884 }
2885 
2886 void
2887 xpt_action(union ccb *start_ccb)
2888 {
2889 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2890 
2891 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2892 
2893 	crit_enter();
2894 
2895 	switch (start_ccb->ccb_h.func_code) {
2896 	case XPT_SCSI_IO:
2897 	{
2898 #ifdef CAM_NEW_TRAN_CODE
2899 		struct cam_ed *device;
2900 #endif /* CAM_NEW_TRAN_CODE */
2901 #ifdef CAMDEBUG
2902 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2903 		struct cam_path *path;
2904 
2905 		path = start_ccb->ccb_h.path;
2906 #endif
2907 
2908 		/*
2909 		 * For the sake of compatibility with SCSI-1
2910 		 * devices that may not understand the identify
2911 		 * message, we include lun information in the
2912 		 * second byte of all commands.  SCSI-1 specifies
2913 		 * that luns are a 3 bit value and reserves only 3
2914 		 * bits for lun information in the CDB.  Later
2915 		 * revisions of the SCSI spec allow for more than 8
2916 		 * luns, but have deprecated lun information in the
2917 		 * CDB.  So, if the lun won't fit, we must omit.
2918 		 *
2919 		 * Also be aware that during initial probing for devices,
2920 		 * the inquiry information is unknown but initialized to 0.
2921 		 * This means that this code will be exercised while probing
2922 		 * devices with an ANSI revision greater than 2.
2923 		 */
2924 #ifdef CAM_NEW_TRAN_CODE
2925 		device = start_ccb->ccb_h.path->device;
2926 		if (device->protocol_version <= SCSI_REV_2
2927 #else /* CAM_NEW_TRAN_CODE */
2928 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2929 #endif /* CAM_NEW_TRAN_CODE */
2930 		 && start_ccb->ccb_h.target_lun < 8
2931 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2932 
2933 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2934 			    start_ccb->ccb_h.target_lun << 5;
2935 		}
2936 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2937 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2938 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2939 			  	       &path->device->inq_data),
2940 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2941 					  cdb_str, sizeof(cdb_str))));
2942 		/* FALLTHROUGH */
2943 	}
2944 	case XPT_TARGET_IO:
2945 	case XPT_CONT_TARGET_IO:
2946 		start_ccb->csio.sense_resid = 0;
2947 		start_ccb->csio.resid = 0;
2948 		/* FALLTHROUGH */
2949 	case XPT_RESET_DEV:
2950 	case XPT_ENG_EXEC:
2951 	{
2952 		struct cam_path *path;
2953 		int runq;
2954 
2955 		path = start_ccb->ccb_h.path;
2956 
2957 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2958 		if (path->device->qfrozen_cnt == 0)
2959 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2960 		else
2961 			runq = 0;
2962 		if (runq != 0)
2963 			xpt_run_dev_sendq(path->bus);
2964 		break;
2965 	}
2966 	case XPT_SET_TRAN_SETTINGS:
2967 	{
2968 		xpt_set_transfer_settings(&start_ccb->cts,
2969 					  start_ccb->ccb_h.path->device,
2970 					  /*async_update*/FALSE);
2971 		break;
2972 	}
2973 	case XPT_CALC_GEOMETRY:
2974 	{
2975 		struct cam_sim *sim;
2976 
2977 		/* Filter out garbage */
2978 		if (start_ccb->ccg.block_size == 0
2979 		 || start_ccb->ccg.volume_size == 0) {
2980 			start_ccb->ccg.cylinders = 0;
2981 			start_ccb->ccg.heads = 0;
2982 			start_ccb->ccg.secs_per_track = 0;
2983 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2984 			break;
2985 		}
2986 		sim = start_ccb->ccb_h.path->bus->sim;
2987 		(*(sim->sim_action))(sim, start_ccb);
2988 		break;
2989 	}
2990 	case XPT_ABORT:
2991 	{
2992 		union ccb* abort_ccb;
2993 
2994 		abort_ccb = start_ccb->cab.abort_ccb;
2995 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2996 
2997 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2998 				struct cam_ccbq *ccbq;
2999 
3000 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3001 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3002 				abort_ccb->ccb_h.status =
3003 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3004 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3005 				xpt_done(abort_ccb);
3006 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3007 				break;
3008 			}
3009 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3010 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3011 				/*
3012 				 * We've caught this ccb en route to
3013 				 * the SIM.  Flag it for abort and the
3014 				 * SIM will do so just before starting
3015 				 * real work on the CCB.
3016 				 */
3017 				abort_ccb->ccb_h.status =
3018 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3019 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3020 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3021 				break;
3022 			}
3023 		}
3024 		if (XPT_FC_IS_QUEUED(abort_ccb)
3025 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3026 			/*
3027 			 * It's already completed but waiting
3028 			 * for our SWI to get to it.
3029 			 */
3030 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3031 			break;
3032 		}
3033 		/*
3034 		 * If we weren't able to take care of the abort request
3035 		 * in the XPT, pass the request down to the SIM for processing.
3036 		 */
3037 		/* FALLTHROUGH */
3038 	}
3039 	case XPT_ACCEPT_TARGET_IO:
3040 	case XPT_EN_LUN:
3041 	case XPT_IMMED_NOTIFY:
3042 	case XPT_NOTIFY_ACK:
3043 	case XPT_GET_TRAN_SETTINGS:
3044 	case XPT_RESET_BUS:
3045 	{
3046 		struct cam_sim *sim;
3047 
3048 		sim = start_ccb->ccb_h.path->bus->sim;
3049 		(*(sim->sim_action))(sim, start_ccb);
3050 		break;
3051 	}
3052 	case XPT_PATH_INQ:
3053 	{
3054 		struct cam_sim *sim;
3055 
3056 		sim = start_ccb->ccb_h.path->bus->sim;
3057 		(*(sim->sim_action))(sim, start_ccb);
3058 		break;
3059 	}
3060 	case XPT_PATH_STATS:
3061 		start_ccb->cpis.last_reset =
3062 			start_ccb->ccb_h.path->bus->last_reset;
3063 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3064 		break;
3065 	case XPT_GDEV_TYPE:
3066 	{
3067 		struct cam_ed *dev;
3068 
3069 		dev = start_ccb->ccb_h.path->device;
3070 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3071 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3072 		} else {
3073 			struct ccb_getdev *cgd;
3074 			struct cam_eb *bus;
3075 			struct cam_et *tar;
3076 
3077 			cgd = &start_ccb->cgd;
3078 			bus = cgd->ccb_h.path->bus;
3079 			tar = cgd->ccb_h.path->target;
3080 			cgd->inq_data = dev->inq_data;
3081 			cgd->ccb_h.status = CAM_REQ_CMP;
3082 			cgd->serial_num_len = dev->serial_num_len;
3083 			if ((dev->serial_num_len > 0)
3084 			 && (dev->serial_num != NULL))
3085 				bcopy(dev->serial_num, cgd->serial_num,
3086 				      dev->serial_num_len);
3087 		}
3088 		break;
3089 	}
3090 	case XPT_GDEV_STATS:
3091 	{
3092 		struct cam_ed *dev;
3093 
3094 		dev = start_ccb->ccb_h.path->device;
3095 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3096 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3097 		} else {
3098 			struct ccb_getdevstats *cgds;
3099 			struct cam_eb *bus;
3100 			struct cam_et *tar;
3101 
3102 			cgds = &start_ccb->cgds;
3103 			bus = cgds->ccb_h.path->bus;
3104 			tar = cgds->ccb_h.path->target;
3105 			cgds->dev_openings = dev->ccbq.dev_openings;
3106 			cgds->dev_active = dev->ccbq.dev_active;
3107 			cgds->devq_openings = dev->ccbq.devq_openings;
3108 			cgds->devq_queued = dev->ccbq.queue.entries;
3109 			cgds->held = dev->ccbq.held;
3110 			cgds->last_reset = tar->last_reset;
3111 			cgds->maxtags = dev->quirk->maxtags;
3112 			cgds->mintags = dev->quirk->mintags;
3113 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3114 				cgds->last_reset = bus->last_reset;
3115 			cgds->ccb_h.status = CAM_REQ_CMP;
3116 		}
3117 		break;
3118 	}
3119 	case XPT_GDEVLIST:
3120 	{
3121 		struct cam_periph	*nperiph;
3122 		struct periph_list	*periph_head;
3123 		struct ccb_getdevlist	*cgdl;
3124 		u_int			i;
3125 		struct cam_ed		*device;
3126 		int			found;
3127 
3128 
3129 		found = 0;
3130 
3131 		/*
3132 		 * Don't want anyone mucking with our data.
3133 		 */
3134 		device = start_ccb->ccb_h.path->device;
3135 		periph_head = &device->periphs;
3136 		cgdl = &start_ccb->cgdl;
3137 
3138 		/*
3139 		 * Check and see if the list has changed since the user
3140 		 * last requested a list member.  If so, tell them that the
3141 		 * list has changed, and therefore they need to start over
3142 		 * from the beginning.
3143 		 */
3144 		if ((cgdl->index != 0) &&
3145 		    (cgdl->generation != device->generation)) {
3146 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3147 			break;
3148 		}
3149 
3150 		/*
3151 		 * Traverse the list of peripherals and attempt to find
3152 		 * the requested peripheral.
3153 		 */
3154 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3155 		     (nperiph != NULL) && (i <= cgdl->index);
3156 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3157 			if (i == cgdl->index) {
3158 				strncpy(cgdl->periph_name,
3159 					nperiph->periph_name,
3160 					DEV_IDLEN);
3161 				cgdl->unit_number = nperiph->unit_number;
3162 				found = 1;
3163 			}
3164 		}
3165 		if (found == 0) {
3166 			cgdl->status = CAM_GDEVLIST_ERROR;
3167 			break;
3168 		}
3169 
3170 		if (nperiph == NULL)
3171 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3172 		else
3173 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3174 
3175 		cgdl->index++;
3176 		cgdl->generation = device->generation;
3177 
3178 		cgdl->ccb_h.status = CAM_REQ_CMP;
3179 		break;
3180 	}
3181 	case XPT_DEV_MATCH:
3182 	{
3183 		dev_pos_type position_type;
3184 		struct ccb_dev_match *cdm;
3185 		int ret;
3186 
3187 		cdm = &start_ccb->cdm;
3188 
3189 		/*
3190 		 * Prevent EDT changes while we traverse it.
3191 		 */
3192 		/*
3193 		 * There are two ways of getting at information in the EDT.
3194 		 * The first way is via the primary EDT tree.  It starts
3195 		 * with a list of busses, then a list of targets on a bus,
3196 		 * then devices/luns on a target, and then peripherals on a
3197 		 * device/lun.  The "other" way is by the peripheral driver
3198 		 * lists.  The peripheral driver lists are organized by
3199 		 * peripheral driver.  (obviously)  So it makes sense to
3200 		 * use the peripheral driver list if the user is looking
3201 		 * for something like "da1", or all "da" devices.  If the
3202 		 * user is looking for something on a particular bus/target
3203 		 * or lun, it's generally better to go through the EDT tree.
3204 		 */
3205 
3206 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3207 			position_type = cdm->pos.position_type;
3208 		else {
3209 			u_int i;
3210 
3211 			position_type = CAM_DEV_POS_NONE;
3212 
3213 			for (i = 0; i < cdm->num_patterns; i++) {
3214 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3215 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3216 					position_type = CAM_DEV_POS_EDT;
3217 					break;
3218 				}
3219 			}
3220 
3221 			if (cdm->num_patterns == 0)
3222 				position_type = CAM_DEV_POS_EDT;
3223 			else if (position_type == CAM_DEV_POS_NONE)
3224 				position_type = CAM_DEV_POS_PDRV;
3225 		}
3226 
3227 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3228 		case CAM_DEV_POS_EDT:
3229 			ret = xptedtmatch(cdm);
3230 			break;
3231 		case CAM_DEV_POS_PDRV:
3232 			ret = xptperiphlistmatch(cdm);
3233 			break;
3234 		default:
3235 			cdm->status = CAM_DEV_MATCH_ERROR;
3236 			break;
3237 		}
3238 
3239 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3240 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3241 		else
3242 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3243 
3244 		break;
3245 	}
3246 	case XPT_SASYNC_CB:
3247 	{
3248 		struct ccb_setasync *csa;
3249 		struct async_node *cur_entry;
3250 		struct async_list *async_head;
3251 		u_int32_t added;
3252 
3253 		csa = &start_ccb->csa;
3254 		added = csa->event_enable;
3255 		async_head = &csa->ccb_h.path->device->asyncs;
3256 
3257 		/*
3258 		 * If there is already an entry for us, simply
3259 		 * update it.
3260 		 */
3261 		cur_entry = SLIST_FIRST(async_head);
3262 		while (cur_entry != NULL) {
3263 			if ((cur_entry->callback_arg == csa->callback_arg)
3264 			 && (cur_entry->callback == csa->callback))
3265 				break;
3266 			cur_entry = SLIST_NEXT(cur_entry, links);
3267 		}
3268 
3269 		if (cur_entry != NULL) {
3270 		 	/*
3271 			 * If the request has no flags set,
3272 			 * remove the entry.
3273 			 */
3274 			added &= ~cur_entry->event_enable;
3275 			if (csa->event_enable == 0) {
3276 				SLIST_REMOVE(async_head, cur_entry,
3277 					     async_node, links);
3278 				csa->ccb_h.path->device->refcount--;
3279 				kfree(cur_entry, M_DEVBUF);
3280 			} else {
3281 				cur_entry->event_enable = csa->event_enable;
3282 			}
3283 		} else {
3284 			cur_entry = kmalloc(sizeof(*cur_entry),
3285 					    M_DEVBUF, M_INTWAIT);
3286 			cur_entry->event_enable = csa->event_enable;
3287 			cur_entry->callback_arg = csa->callback_arg;
3288 			cur_entry->callback = csa->callback;
3289 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3290 			csa->ccb_h.path->device->refcount++;
3291 		}
3292 
3293 		if ((added & AC_FOUND_DEVICE) != 0) {
3294 			/*
3295 			 * Get this peripheral up to date with all
3296 			 * the currently existing devices.
3297 			 */
3298 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3299 		}
3300 		if ((added & AC_PATH_REGISTERED) != 0) {
3301 			/*
3302 			 * Get this peripheral up to date with all
3303 			 * the currently existing busses.
3304 			 */
3305 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3306 		}
3307 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3308 		break;
3309 	}
3310 	case XPT_REL_SIMQ:
3311 	{
3312 		struct ccb_relsim *crs;
3313 		struct cam_ed *dev;
3314 
3315 		crs = &start_ccb->crs;
3316 		dev = crs->ccb_h.path->device;
3317 		if (dev == NULL) {
3318 
3319 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3320 			break;
3321 		}
3322 
3323 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3324 
3325  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3326 
3327 				/* Don't ever go below one opening */
3328 				if (crs->openings > 0) {
3329 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3330 							    crs->openings);
3331 
3332 					if (bootverbose) {
3333 						xpt_print_path(crs->ccb_h.path);
3334 						kprintf("tagged openings "
3335 						       "now %d\n",
3336 						       crs->openings);
3337 					}
3338 				}
3339 			}
3340 		}
3341 
3342 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3343 
3344 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3345 
3346 				/*
3347 				 * Just extend the old timeout and decrement
3348 				 * the freeze count so that a single timeout
3349 				 * is sufficient for releasing the queue.
3350 				 */
3351 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3352 				callout_stop(&dev->c_handle);
3353 			} else {
3354 
3355 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3356 			}
3357 
3358 			callout_reset(&dev->c_handle,
3359 				      (crs->release_timeout * hz) / 1000,
3360 				      xpt_release_devq_timeout, dev);
3361 
3362 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3363 
3364 		}
3365 
3366 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3367 
3368 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3369 				/*
3370 				 * Decrement the freeze count so that a single
3371 				 * completion is still sufficient to unfreeze
3372 				 * the queue.
3373 				 */
3374 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3375 			} else {
3376 
3377 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3378 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3379 			}
3380 		}
3381 
3382 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3383 
3384 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3385 			 || (dev->ccbq.dev_active == 0)) {
3386 
3387 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3388 			} else {
3389 
3390 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3391 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3392 			}
3393 		}
3394 
3395 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3396 
3397 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3398 					 /*run_queue*/TRUE);
3399 		}
3400 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3401 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3402 		break;
3403 	}
3404 	case XPT_SCAN_BUS:
3405 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3406 		break;
3407 	case XPT_SCAN_LUN:
3408 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3409 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3410 			     start_ccb);
3411 		break;
3412 	case XPT_DEBUG: {
3413 #ifdef CAMDEBUG
3414 #ifdef CAM_DEBUG_DELAY
3415 		cam_debug_delay = CAM_DEBUG_DELAY;
3416 #endif
3417 		cam_dflags = start_ccb->cdbg.flags;
3418 		if (cam_dpath != NULL) {
3419 			xpt_free_path(cam_dpath);
3420 			cam_dpath = NULL;
3421 		}
3422 
3423 		if (cam_dflags != CAM_DEBUG_NONE) {
3424 			if (xpt_create_path(&cam_dpath, xpt_periph,
3425 					    start_ccb->ccb_h.path_id,
3426 					    start_ccb->ccb_h.target_id,
3427 					    start_ccb->ccb_h.target_lun) !=
3428 					    CAM_REQ_CMP) {
3429 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3430 				cam_dflags = CAM_DEBUG_NONE;
3431 			} else {
3432 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3433 				xpt_print_path(cam_dpath);
3434 				kprintf("debugging flags now %x\n", cam_dflags);
3435 			}
3436 		} else {
3437 			cam_dpath = NULL;
3438 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3439 		}
3440 #else /* !CAMDEBUG */
3441 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3442 #endif /* CAMDEBUG */
3443 		break;
3444 	}
3445 	case XPT_NOOP:
3446 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3447 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3448 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3449 		break;
3450 	default:
3451 	case XPT_SDEV_TYPE:
3452 	case XPT_TERM_IO:
3453 	case XPT_ENG_INQ:
3454 		/* XXX Implement */
3455 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3456 		break;
3457 	}
3458 	crit_exit();
3459 }
3460 
3461 void
3462 xpt_polled_action(union ccb *start_ccb)
3463 {
3464 	u_int32_t timeout;
3465 	struct	  cam_sim *sim;
3466 	struct	  cam_devq *devq;
3467 	struct	  cam_ed *dev;
3468 
3469 	timeout = start_ccb->ccb_h.timeout;
3470 	sim = start_ccb->ccb_h.path->bus->sim;
3471 	devq = sim->devq;
3472 	dev = start_ccb->ccb_h.path->device;
3473 
3474 	crit_enter();
3475 
3476 	/*
3477 	 * Steal an opening so that no other queued requests
3478 	 * can get it before us while we simulate interrupts.
3479 	 */
3480 	dev->ccbq.devq_openings--;
3481 	dev->ccbq.dev_openings--;
3482 
3483 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3484 	   && (--timeout > 0)) {
3485 		DELAY(1000);
3486 		(*(sim->sim_poll))(sim);
3487 		swi_camnet(NULL, NULL);
3488 		swi_cambio(NULL, NULL);
3489 	}
3490 
3491 	dev->ccbq.devq_openings++;
3492 	dev->ccbq.dev_openings++;
3493 
3494 	if (timeout != 0) {
3495 		xpt_action(start_ccb);
3496 		while(--timeout > 0) {
3497 			(*(sim->sim_poll))(sim);
3498 			swi_camnet(NULL, NULL);
3499 			swi_cambio(NULL, NULL);
3500 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3501 			    != CAM_REQ_INPROG)
3502 				break;
3503 			DELAY(1000);
3504 		}
3505 		if (timeout == 0) {
3506 			/*
3507 			 * XXX Is it worth adding a sim_timeout entry
3508 			 * point so we can attempt recovery?  If
3509 			 * this is only used for dumps, I don't think
3510 			 * it is.
3511 			 */
3512 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3513 		}
3514 	} else {
3515 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3516 	}
3517 	crit_exit();
3518 }
3519 
3520 /*
3521  * Schedule a peripheral driver to receive a ccb when it's
3522  * target device has space for more transactions.
3523  */
3524 void
3525 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3526 {
3527 	struct cam_ed *device;
3528 	int runq;
3529 
3530 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3531 	device = perph->path->device;
3532 	crit_enter();
3533 	if (periph_is_queued(perph)) {
3534 		/* Simply reorder based on new priority */
3535 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3536 			  ("   change priority to %d\n", new_priority));
3537 		if (new_priority < perph->pinfo.priority) {
3538 			camq_change_priority(&device->drvq,
3539 					     perph->pinfo.index,
3540 					     new_priority);
3541 		}
3542 		runq = 0;
3543 	} else {
3544 		/* New entry on the queue */
3545 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3546 			  ("   added periph to queue\n"));
3547 		perph->pinfo.priority = new_priority;
3548 		perph->pinfo.generation = ++device->drvq.generation;
3549 		camq_insert(&device->drvq, &perph->pinfo);
3550 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3551 	}
3552 	crit_exit();
3553 	if (runq != 0) {
3554 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3555 			  ("   calling xpt_run_devq\n"));
3556 		xpt_run_dev_allocq(perph->path->bus);
3557 	}
3558 }
3559 
3560 
3561 /*
3562  * Schedule a device to run on a given queue.
3563  * If the device was inserted as a new entry on the queue,
3564  * return 1 meaning the device queue should be run. If we
3565  * were already queued, implying someone else has already
3566  * started the queue, return 0 so the caller doesn't attempt
3567  * to run the queue.  Must be run in a critical section.
3568  */
3569 static int
3570 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3571 		 u_int32_t new_priority)
3572 {
3573 	int retval;
3574 	u_int32_t old_priority;
3575 
3576 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3577 
3578 	old_priority = pinfo->priority;
3579 
3580 	/*
3581 	 * Are we already queued?
3582 	 */
3583 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3584 		/* Simply reorder based on new priority */
3585 		if (new_priority < old_priority) {
3586 			camq_change_priority(queue, pinfo->index,
3587 					     new_priority);
3588 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3589 					("changed priority to %d\n",
3590 					 new_priority));
3591 		}
3592 		retval = 0;
3593 	} else {
3594 		/* New entry on the queue */
3595 		if (new_priority < old_priority)
3596 			pinfo->priority = new_priority;
3597 
3598 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3599 				("Inserting onto queue\n"));
3600 		pinfo->generation = ++queue->generation;
3601 		camq_insert(queue, pinfo);
3602 		retval = 1;
3603 	}
3604 	return (retval);
3605 }
3606 
3607 static void
3608 xpt_run_dev_allocq(struct cam_eb *bus)
3609 {
3610 	struct	cam_devq *devq;
3611 
3612 	if ((devq = bus->sim->devq) == NULL) {
3613 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3614 		return;
3615 	}
3616 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3617 
3618 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3619 			("   qfrozen_cnt == 0x%x, entries == %d, "
3620 			 "openings == %d, active == %d\n",
3621 			 devq->alloc_queue.qfrozen_cnt,
3622 			 devq->alloc_queue.entries,
3623 			 devq->alloc_openings,
3624 			 devq->alloc_active));
3625 
3626 	crit_enter();
3627 	devq->alloc_queue.qfrozen_cnt++;
3628 	while ((devq->alloc_queue.entries > 0)
3629 	    && (devq->alloc_openings > 0)
3630 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3631 		struct	cam_ed_qinfo *qinfo;
3632 		struct	cam_ed *device;
3633 		union	ccb *work_ccb;
3634 		struct	cam_periph *drv;
3635 		struct	camq *drvq;
3636 
3637 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3638 							   CAMQ_HEAD);
3639 		device = qinfo->device;
3640 
3641 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3642 				("running device %p\n", device));
3643 
3644 		drvq = &device->drvq;
3645 
3646 #ifdef CAMDEBUG
3647 		if (drvq->entries <= 0) {
3648 			panic("xpt_run_dev_allocq: "
3649 			      "Device on queue without any work to do");
3650 		}
3651 #endif
3652 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3653 			devq->alloc_openings--;
3654 			devq->alloc_active++;
3655 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3656 			crit_exit();
3657 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3658 				      drv->pinfo.priority);
3659 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3660 					("calling periph start\n"));
3661 			drv->periph_start(drv, work_ccb);
3662 		} else {
3663 			/*
3664 			 * Malloc failure in alloc_ccb
3665 			 */
3666 			/*
3667 			 * XXX add us to a list to be run from free_ccb
3668 			 * if we don't have any ccbs active on this
3669 			 * device queue otherwise we may never get run
3670 			 * again.
3671 			 */
3672 			break;
3673 		}
3674 
3675 		/* Raise IPL for possible insertion and test at top of loop */
3676 		crit_enter();
3677 
3678 		if (drvq->entries > 0) {
3679 			/* We have more work.  Attempt to reschedule */
3680 			xpt_schedule_dev_allocq(bus, device);
3681 		}
3682 	}
3683 	devq->alloc_queue.qfrozen_cnt--;
3684 	crit_exit();
3685 }
3686 
3687 static void
3688 xpt_run_dev_sendq(struct cam_eb *bus)
3689 {
3690 	struct	cam_devq *devq;
3691 
3692 	if ((devq = bus->sim->devq) == NULL) {
3693 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3694 		return;
3695 	}
3696 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3697 
3698 	crit_enter();
3699 	devq->send_queue.qfrozen_cnt++;
3700 	while ((devq->send_queue.entries > 0)
3701 	    && (devq->send_openings > 0)) {
3702 		struct	cam_ed_qinfo *qinfo;
3703 		struct	cam_ed *device;
3704 		union ccb *work_ccb;
3705 		struct	cam_sim *sim;
3706 
3707 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3708 			break;
3709 		}
3710 
3711 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3712 							   CAMQ_HEAD);
3713 		device = qinfo->device;
3714 
3715 		/*
3716 		 * If the device has been "frozen", don't attempt
3717 		 * to run it.
3718 		 */
3719 		if (device->qfrozen_cnt > 0) {
3720 			continue;
3721 		}
3722 
3723 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3724 				("running device %p\n", device));
3725 
3726 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3727 		if (work_ccb == NULL) {
3728 			kprintf("device on run queue with no ccbs???\n");
3729 			continue;
3730 		}
3731 
3732 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3733 
3734 		 	if (num_highpower <= 0) {
3735 				/*
3736 				 * We got a high power command, but we
3737 				 * don't have any available slots.  Freeze
3738 				 * the device queue until we have a slot
3739 				 * available.
3740 				 */
3741 				device->qfrozen_cnt++;
3742 				STAILQ_INSERT_TAIL(&highpowerq,
3743 						   &work_ccb->ccb_h,
3744 						   xpt_links.stqe);
3745 
3746 				continue;
3747 			} else {
3748 				/*
3749 				 * Consume a high power slot while
3750 				 * this ccb runs.
3751 				 */
3752 				num_highpower--;
3753 			}
3754 		}
3755 		devq->active_dev = device;
3756 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3757 
3758 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3759 
3760 		devq->send_openings--;
3761 		devq->send_active++;
3762 
3763 		if (device->ccbq.queue.entries > 0)
3764 			xpt_schedule_dev_sendq(bus, device);
3765 
3766 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3767 			/*
3768 			 * The client wants to freeze the queue
3769 			 * after this CCB is sent.
3770 			 */
3771 			device->qfrozen_cnt++;
3772 		}
3773 
3774 		/* In Target mode, the peripheral driver knows best... */
3775 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3776 			if ((device->inq_flags & SID_CmdQue) != 0
3777 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3778 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3779 			else
3780 				/*
3781 				 * Clear this in case of a retried CCB that
3782 				 * failed due to a rejected tag.
3783 				 */
3784 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3785 		}
3786 
3787 		/*
3788 		 * Device queues can be shared among multiple sim instances
3789 		 * that reside on different busses.  Use the SIM in the queue
3790 		 * CCB's path, rather than the one in the bus that was passed
3791 		 * into this function.
3792 		 */
3793 		sim = work_ccb->ccb_h.path->bus->sim;
3794 		(*(sim->sim_action))(sim, work_ccb);
3795 
3796 		devq->active_dev = NULL;
3797 		/* Raise IPL for possible insertion and test at top of loop */
3798 	}
3799 	devq->send_queue.qfrozen_cnt--;
3800 	crit_exit();
3801 }
3802 
3803 /*
3804  * This function merges stuff from the slave ccb into the master ccb, while
3805  * keeping important fields in the master ccb constant.
3806  */
3807 void
3808 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3809 {
3810 	/*
3811 	 * Pull fields that are valid for peripheral drivers to set
3812 	 * into the master CCB along with the CCB "payload".
3813 	 */
3814 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3815 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3816 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3817 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3818 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3819 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3820 }
3821 
3822 void
3823 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3824 {
3825 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3826 	callout_init(&ccb_h->timeout_ch);
3827 	ccb_h->pinfo.priority = priority;
3828 	ccb_h->path = path;
3829 	ccb_h->path_id = path->bus->path_id;
3830 	if (path->target)
3831 		ccb_h->target_id = path->target->target_id;
3832 	else
3833 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3834 	if (path->device) {
3835 		ccb_h->target_lun = path->device->lun_id;
3836 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3837 	} else {
3838 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3839 	}
3840 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3841 	ccb_h->flags = 0;
3842 }
3843 
3844 /* Path manipulation functions */
3845 cam_status
3846 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3847 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3848 {
3849 	struct	   cam_path *path;
3850 	cam_status status;
3851 
3852 	path = kmalloc(sizeof(*path), M_DEVBUF, M_INTWAIT);
3853 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3854 	if (status != CAM_REQ_CMP) {
3855 		kfree(path, M_DEVBUF);
3856 		path = NULL;
3857 	}
3858 	*new_path_ptr = path;
3859 	return (status);
3860 }
3861 
3862 static cam_status
3863 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3864 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3865 {
3866 	struct	     cam_eb *bus;
3867 	struct	     cam_et *target;
3868 	struct	     cam_ed *device;
3869 	cam_status   status;
3870 
3871 	status = CAM_REQ_CMP;	/* Completed without error */
3872 	target = NULL;		/* Wildcarded */
3873 	device = NULL;		/* Wildcarded */
3874 
3875 	/*
3876 	 * We will potentially modify the EDT, so block interrupts
3877 	 * that may attempt to create cam paths.
3878 	 */
3879 	crit_enter();
3880 	bus = xpt_find_bus(path_id);
3881 	if (bus == NULL) {
3882 		status = CAM_PATH_INVALID;
3883 	} else {
3884 		target = xpt_find_target(bus, target_id);
3885 		if (target == NULL) {
3886 			/* Create one */
3887 			struct cam_et *new_target;
3888 
3889 			new_target = xpt_alloc_target(bus, target_id);
3890 			if (new_target == NULL) {
3891 				status = CAM_RESRC_UNAVAIL;
3892 			} else {
3893 				target = new_target;
3894 			}
3895 		}
3896 		if (target != NULL) {
3897 			device = xpt_find_device(target, lun_id);
3898 			if (device == NULL) {
3899 				/* Create one */
3900 				struct cam_ed *new_device;
3901 
3902 				new_device = xpt_alloc_device(bus,
3903 							      target,
3904 							      lun_id);
3905 				if (new_device == NULL) {
3906 					status = CAM_RESRC_UNAVAIL;
3907 				} else {
3908 					device = new_device;
3909 				}
3910 			}
3911 		}
3912 	}
3913 	crit_exit();
3914 
3915 	/*
3916 	 * Only touch the user's data if we are successful.
3917 	 */
3918 	if (status == CAM_REQ_CMP) {
3919 		new_path->periph = perph;
3920 		new_path->bus = bus;
3921 		new_path->target = target;
3922 		new_path->device = device;
3923 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3924 	} else {
3925 		if (device != NULL)
3926 			xpt_release_device(bus, target, device);
3927 		if (target != NULL)
3928 			xpt_release_target(bus, target);
3929 		if (bus != NULL)
3930 			xpt_release_bus(bus);
3931 	}
3932 	return (status);
3933 }
3934 
3935 static void
3936 xpt_release_path(struct cam_path *path)
3937 {
3938 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3939 	if (path->device != NULL) {
3940 		xpt_release_device(path->bus, path->target, path->device);
3941 		path->device = NULL;
3942 	}
3943 	if (path->target != NULL) {
3944 		xpt_release_target(path->bus, path->target);
3945 		path->target = NULL;
3946 	}
3947 	if (path->bus != NULL) {
3948 		xpt_release_bus(path->bus);
3949 		path->bus = NULL;
3950 	}
3951 }
3952 
3953 void
3954 xpt_free_path(struct cam_path *path)
3955 {
3956 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3957 	xpt_release_path(path);
3958 	kfree(path, M_DEVBUF);
3959 }
3960 
3961 
3962 /*
3963  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3964  * in path1, 2 for match with wildcards in path2.
3965  */
3966 int
3967 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3968 {
3969 	int retval = 0;
3970 
3971 	if (path1->bus != path2->bus) {
3972 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3973 			retval = 1;
3974 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3975 			retval = 2;
3976 		else
3977 			return (-1);
3978 	}
3979 	if (path1->target != path2->target) {
3980 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3981 			if (retval == 0)
3982 				retval = 1;
3983 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3984 			retval = 2;
3985 		else
3986 			return (-1);
3987 	}
3988 	if (path1->device != path2->device) {
3989 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3990 			if (retval == 0)
3991 				retval = 1;
3992 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3993 			retval = 2;
3994 		else
3995 			return (-1);
3996 	}
3997 	return (retval);
3998 }
3999 
4000 void
4001 xpt_print_path(struct cam_path *path)
4002 {
4003 	if (path == NULL)
4004 		kprintf("(nopath): ");
4005 	else {
4006 		if (path->periph != NULL)
4007 			kprintf("(%s%d:", path->periph->periph_name,
4008 			       path->periph->unit_number);
4009 		else
4010 			kprintf("(noperiph:");
4011 
4012 		if (path->bus != NULL)
4013 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4014 			       path->bus->sim->unit_number,
4015 			       path->bus->sim->bus_id);
4016 		else
4017 			kprintf("nobus:");
4018 
4019 		if (path->target != NULL)
4020 			kprintf("%d:", path->target->target_id);
4021 		else
4022 			kprintf("X:");
4023 
4024 		if (path->device != NULL)
4025 			kprintf("%d): ", path->device->lun_id);
4026 		else
4027 			kprintf("X): ");
4028 	}
4029 }
4030 
4031 int
4032 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4033 {
4034 	struct sbuf sb;
4035 
4036 	sbuf_new(&sb, str, str_len, 0);
4037 
4038 	if (path == NULL)
4039 		sbuf_printf(&sb, "(nopath): ");
4040 	else {
4041 		if (path->periph != NULL)
4042 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4043 				    path->periph->unit_number);
4044 		else
4045 			sbuf_printf(&sb, "(noperiph:");
4046 
4047 		if (path->bus != NULL)
4048 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4049 				    path->bus->sim->unit_number,
4050 				    path->bus->sim->bus_id);
4051 		else
4052 			sbuf_printf(&sb, "nobus:");
4053 
4054 		if (path->target != NULL)
4055 			sbuf_printf(&sb, "%d:", path->target->target_id);
4056 		else
4057 			sbuf_printf(&sb, "X:");
4058 
4059 		if (path->device != NULL)
4060 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4061 		else
4062 			sbuf_printf(&sb, "X): ");
4063 	}
4064 	sbuf_finish(&sb);
4065 
4066 	return(sbuf_len(&sb));
4067 }
4068 
4069 path_id_t
4070 xpt_path_path_id(struct cam_path *path)
4071 {
4072 	return(path->bus->path_id);
4073 }
4074 
4075 target_id_t
4076 xpt_path_target_id(struct cam_path *path)
4077 {
4078 	if (path->target != NULL)
4079 		return (path->target->target_id);
4080 	else
4081 		return (CAM_TARGET_WILDCARD);
4082 }
4083 
4084 lun_id_t
4085 xpt_path_lun_id(struct cam_path *path)
4086 {
4087 	if (path->device != NULL)
4088 		return (path->device->lun_id);
4089 	else
4090 		return (CAM_LUN_WILDCARD);
4091 }
4092 
4093 struct cam_sim *
4094 xpt_path_sim(struct cam_path *path)
4095 {
4096 	return (path->bus->sim);
4097 }
4098 
4099 struct cam_periph*
4100 xpt_path_periph(struct cam_path *path)
4101 {
4102 	return (path->periph);
4103 }
4104 
4105 /*
4106  * Release a CAM control block for the caller.  Remit the cost of the structure
4107  * to the device referenced by the path.  If the this device had no 'credits'
4108  * and peripheral drivers have registered async callbacks for this notification
4109  * call them now.
4110  */
4111 void
4112 xpt_release_ccb(union ccb *free_ccb)
4113 {
4114 	struct	 cam_path *path;
4115 	struct	 cam_ed *device;
4116 	struct	 cam_eb *bus;
4117 
4118 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4119 	path = free_ccb->ccb_h.path;
4120 	device = path->device;
4121 	bus = path->bus;
4122 	crit_enter();
4123 	cam_ccbq_release_opening(&device->ccbq);
4124 	if (xpt_ccb_count > xpt_max_ccbs) {
4125 		xpt_free_ccb(free_ccb);
4126 		xpt_ccb_count--;
4127 	} else {
4128 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4129 	}
4130 	if (bus->sim->devq) {
4131 		bus->sim->devq->alloc_openings++;
4132 		bus->sim->devq->alloc_active--;
4133 	}
4134 	/* XXX Turn this into an inline function - xpt_run_device?? */
4135 	if ((device_is_alloc_queued(device) == 0)
4136 	 && (device->drvq.entries > 0)) {
4137 		xpt_schedule_dev_allocq(bus, device);
4138 	}
4139 	crit_exit();
4140 	if (bus->sim->devq && dev_allocq_is_runnable(bus->sim->devq))
4141 		xpt_run_dev_allocq(bus);
4142 }
4143 
4144 /* Functions accessed by SIM drivers */
4145 
4146 /*
4147  * A sim structure, listing the SIM entry points and instance
4148  * identification info is passed to xpt_bus_register to hook the SIM
4149  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4150  * for this new bus and places it in the array of busses and assigns
4151  * it a path_id.  The path_id may be influenced by "hard wiring"
4152  * information specified by the user.  Once interrupt services are
4153  * availible, the bus will be probed.
4154  */
4155 int32_t
4156 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4157 {
4158 	struct cam_eb *new_bus;
4159 	struct cam_eb *old_bus;
4160 	struct ccb_pathinq cpi;
4161 
4162 	sim->bus_id = bus;
4163 	new_bus = kmalloc(sizeof(*new_bus), M_DEVBUF, M_INTWAIT);
4164 
4165 	if (strcmp(sim->sim_name, "xpt") != 0) {
4166 		sim->path_id =
4167 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4168 	}
4169 
4170 	TAILQ_INIT(&new_bus->et_entries);
4171 	new_bus->path_id = sim->path_id;
4172 	new_bus->sim = sim;
4173 	++sim->refcount;
4174 	timevalclear(&new_bus->last_reset);
4175 	new_bus->flags = 0;
4176 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4177 	new_bus->generation = 0;
4178 	crit_enter();
4179 	old_bus = TAILQ_FIRST(&xpt_busses);
4180 	while (old_bus != NULL
4181 	    && old_bus->path_id < new_bus->path_id)
4182 		old_bus = TAILQ_NEXT(old_bus, links);
4183 	if (old_bus != NULL)
4184 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4185 	else
4186 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4187 	bus_generation++;
4188 	crit_exit();
4189 
4190 	/* Notify interested parties */
4191 	if (sim->path_id != CAM_XPT_PATH_ID) {
4192 		struct cam_path path;
4193 
4194 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4195 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4196 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4197 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4198 		xpt_action((union ccb *)&cpi);
4199 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4200 		xpt_release_path(&path);
4201 	}
4202 	return (CAM_SUCCESS);
4203 }
4204 
4205 /*
4206  * Deregister a bus.  We must clean out all transactions pending on the bus.
4207  * This routine is typically called prior to cam_sim_free() (e.g. see
4208  * dev/usbmisc/umass/umass.c)
4209  */
4210 int32_t
4211 xpt_bus_deregister(path_id_t pathid)
4212 {
4213 	struct cam_path bus_path;
4214 	cam_status status;
4215 
4216 	status = xpt_compile_path(&bus_path, NULL, pathid,
4217 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4218 	if (status != CAM_REQ_CMP)
4219 		return (status);
4220 
4221 	/*
4222 	 * This should clear out all pending requests and timeouts, but
4223 	 * the ccb's may be queued to a software interrupt.
4224 	 *
4225 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4226 	 * and it really ought to.
4227 	 */
4228 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4229 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4230 
4231 	/* make sure all responses have been processed */
4232 	camisr(&cam_netq);
4233 	camisr(&cam_bioq);
4234 
4235 	/* Release the reference count held while registered. */
4236 	xpt_release_bus(bus_path.bus);
4237 	xpt_release_path(&bus_path);
4238 
4239 	return (CAM_REQ_CMP);
4240 }
4241 
4242 static path_id_t
4243 xptnextfreepathid(void)
4244 {
4245 	struct cam_eb *bus;
4246 	path_id_t pathid;
4247 	char *strval;
4248 
4249 	pathid = 0;
4250 	bus = TAILQ_FIRST(&xpt_busses);
4251 retry:
4252 	/* Find an unoccupied pathid */
4253 	while (bus != NULL
4254 	    && bus->path_id <= pathid) {
4255 		if (bus->path_id == pathid)
4256 			pathid++;
4257 		bus = TAILQ_NEXT(bus, links);
4258 	}
4259 
4260 	/*
4261 	 * Ensure that this pathid is not reserved for
4262 	 * a bus that may be registered in the future.
4263 	 */
4264 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4265 		++pathid;
4266 		/* Start the search over */
4267 		goto retry;
4268 	}
4269 	return (pathid);
4270 }
4271 
4272 static path_id_t
4273 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4274 {
4275 	path_id_t pathid;
4276 	int i, dunit, val;
4277 	char buf[32];
4278 
4279 	pathid = CAM_XPT_PATH_ID;
4280 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4281 	i = -1;
4282 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4283 		if (strcmp(resource_query_name(i), "scbus")) {
4284 			/* Avoid a bit of foot shooting. */
4285 			continue;
4286 		}
4287 		dunit = resource_query_unit(i);
4288 		if (dunit < 0)		/* unwired?! */
4289 			continue;
4290 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4291 			if (sim_bus == val) {
4292 				pathid = dunit;
4293 				break;
4294 			}
4295 		} else if (sim_bus == 0) {
4296 			/* Unspecified matches bus 0 */
4297 			pathid = dunit;
4298 			break;
4299 		} else {
4300 			kprintf("Ambiguous scbus configuration for %s%d "
4301 			       "bus %d, cannot wire down.  The kernel "
4302 			       "config entry for scbus%d should "
4303 			       "specify a controller bus.\n"
4304 			       "Scbus will be assigned dynamically.\n",
4305 			       sim_name, sim_unit, sim_bus, dunit);
4306 			break;
4307 		}
4308 	}
4309 
4310 	if (pathid == CAM_XPT_PATH_ID)
4311 		pathid = xptnextfreepathid();
4312 	return (pathid);
4313 }
4314 
4315 void
4316 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4317 {
4318 	struct cam_eb *bus;
4319 	struct cam_et *target, *next_target;
4320 	struct cam_ed *device, *next_device;
4321 
4322 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4323 
4324 	/*
4325 	 * Most async events come from a CAM interrupt context.  In
4326 	 * a few cases, the error recovery code at the peripheral layer,
4327 	 * which may run from our SWI or a process context, may signal
4328 	 * deferred events with a call to xpt_async. Ensure async
4329 	 * notifications are serialized by blocking cam interrupts.
4330 	 */
4331 	crit_enter();
4332 
4333 	bus = path->bus;
4334 
4335 	if (async_code == AC_BUS_RESET) {
4336 		/* Update our notion of when the last reset occurred */
4337 		microuptime(&bus->last_reset);
4338 	}
4339 
4340 	for (target = TAILQ_FIRST(&bus->et_entries);
4341 	     target != NULL;
4342 	     target = next_target) {
4343 
4344 		next_target = TAILQ_NEXT(target, links);
4345 
4346 		if (path->target != target
4347 		 && path->target->target_id != CAM_TARGET_WILDCARD
4348 		 && target->target_id != CAM_TARGET_WILDCARD)
4349 			continue;
4350 
4351 		if (async_code == AC_SENT_BDR) {
4352 			/* Update our notion of when the last reset occurred */
4353 			microuptime(&path->target->last_reset);
4354 		}
4355 
4356 		for (device = TAILQ_FIRST(&target->ed_entries);
4357 		     device != NULL;
4358 		     device = next_device) {
4359 
4360 			next_device = TAILQ_NEXT(device, links);
4361 
4362 			if (path->device != device
4363 			 && path->device->lun_id != CAM_LUN_WILDCARD
4364 			 && device->lun_id != CAM_LUN_WILDCARD)
4365 				continue;
4366 
4367 			xpt_dev_async(async_code, bus, target,
4368 				      device, async_arg);
4369 
4370 			xpt_async_bcast(&device->asyncs, async_code,
4371 					path, async_arg);
4372 		}
4373 	}
4374 
4375 	/*
4376 	 * If this wasn't a fully wildcarded async, tell all
4377 	 * clients that want all async events.
4378 	 */
4379 	if (bus != xpt_periph->path->bus)
4380 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4381 				path, async_arg);
4382 	crit_exit();
4383 }
4384 
4385 static void
4386 xpt_async_bcast(struct async_list *async_head,
4387 		u_int32_t async_code,
4388 		struct cam_path *path, void *async_arg)
4389 {
4390 	struct async_node *cur_entry;
4391 
4392 	cur_entry = SLIST_FIRST(async_head);
4393 	while (cur_entry != NULL) {
4394 		struct async_node *next_entry;
4395 		/*
4396 		 * Grab the next list entry before we call the current
4397 		 * entry's callback.  This is because the callback function
4398 		 * can delete its async callback entry.
4399 		 */
4400 		next_entry = SLIST_NEXT(cur_entry, links);
4401 		if ((cur_entry->event_enable & async_code) != 0)
4402 			cur_entry->callback(cur_entry->callback_arg,
4403 					    async_code, path,
4404 					    async_arg);
4405 		cur_entry = next_entry;
4406 	}
4407 }
4408 
4409 /*
4410  * Handle any per-device event notifications that require action by the XPT.
4411  */
4412 static void
4413 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4414 	      struct cam_ed *device, void *async_arg)
4415 {
4416 	cam_status status;
4417 	struct cam_path newpath;
4418 
4419 	/*
4420 	 * We only need to handle events for real devices.
4421 	 */
4422 	if (target->target_id == CAM_TARGET_WILDCARD
4423 	 || device->lun_id == CAM_LUN_WILDCARD)
4424 		return;
4425 
4426 	/*
4427 	 * We need our own path with wildcards expanded to
4428 	 * handle certain types of events.
4429 	 */
4430 	if ((async_code == AC_SENT_BDR)
4431 	 || (async_code == AC_BUS_RESET)
4432 	 || (async_code == AC_INQ_CHANGED))
4433 		status = xpt_compile_path(&newpath, NULL,
4434 					  bus->path_id,
4435 					  target->target_id,
4436 					  device->lun_id);
4437 	else
4438 		status = CAM_REQ_CMP_ERR;
4439 
4440 	if (status == CAM_REQ_CMP) {
4441 
4442 		/*
4443 		 * Allow transfer negotiation to occur in a
4444 		 * tag free environment.
4445 		 */
4446 		if (async_code == AC_SENT_BDR
4447 		 || async_code == AC_BUS_RESET)
4448 			xpt_toggle_tags(&newpath);
4449 
4450 		if (async_code == AC_INQ_CHANGED) {
4451 			/*
4452 			 * We've sent a start unit command, or
4453 			 * something similar to a device that
4454 			 * may have caused its inquiry data to
4455 			 * change. So we re-scan the device to
4456 			 * refresh the inquiry data for it.
4457 			 */
4458 			xpt_scan_lun(newpath.periph, &newpath,
4459 				     CAM_EXPECT_INQ_CHANGE, NULL);
4460 		}
4461 		xpt_release_path(&newpath);
4462 	} else if (async_code == AC_LOST_DEVICE) {
4463 		/*
4464 		 * When we lose a device the device may be about to detach
4465 		 * the sim, we have to clear out all pending timeouts and
4466 		 * requests before that happens.  XXX it would be nice if
4467 		 * we could abort the requests pertaining to the device.
4468 		 */
4469 		xpt_release_devq_timeout(device);
4470 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4471 			device->flags |= CAM_DEV_UNCONFIGURED;
4472 			xpt_release_device(bus, target, device);
4473 		}
4474 	} else if (async_code == AC_TRANSFER_NEG) {
4475 		struct ccb_trans_settings *settings;
4476 
4477 		settings = (struct ccb_trans_settings *)async_arg;
4478 		xpt_set_transfer_settings(settings, device,
4479 					  /*async_update*/TRUE);
4480 	}
4481 }
4482 
4483 u_int32_t
4484 xpt_freeze_devq(struct cam_path *path, u_int count)
4485 {
4486 	struct ccb_hdr *ccbh;
4487 
4488 	crit_enter();
4489 	path->device->qfrozen_cnt += count;
4490 
4491 	/*
4492 	 * Mark the last CCB in the queue as needing
4493 	 * to be requeued if the driver hasn't
4494 	 * changed it's state yet.  This fixes a race
4495 	 * where a ccb is just about to be queued to
4496 	 * a controller driver when it's interrupt routine
4497 	 * freezes the queue.  To completly close the
4498 	 * hole, controller drives must check to see
4499 	 * if a ccb's status is still CAM_REQ_INPROG
4500 	 * under critical section protection just before they queue
4501 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4502 	 * an example.
4503 	 */
4504 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4505 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4506 		ccbh->status = CAM_REQUEUE_REQ;
4507 	crit_exit();
4508 	return (path->device->qfrozen_cnt);
4509 }
4510 
4511 u_int32_t
4512 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4513 {
4514 	if (sim->devq == NULL)
4515 		return(count);
4516 	sim->devq->send_queue.qfrozen_cnt += count;
4517 	if (sim->devq->active_dev != NULL) {
4518 		struct ccb_hdr *ccbh;
4519 
4520 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4521 				  ccb_hdr_tailq);
4522 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4523 			ccbh->status = CAM_REQUEUE_REQ;
4524 	}
4525 	return (sim->devq->send_queue.qfrozen_cnt);
4526 }
4527 
4528 /*
4529  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4530  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4531  * freed, which is not the case here), but the device queue is also freed XXX
4532  * and we have to check that here.
4533  *
4534  * XXX fixme: could we simply not null-out the device queue via
4535  * cam_sim_free()?
4536  */
4537 static void
4538 xpt_release_devq_timeout(void *arg)
4539 {
4540 	struct cam_ed *device;
4541 
4542 	device = (struct cam_ed *)arg;
4543 
4544 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4545 }
4546 
4547 void
4548 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4549 {
4550 	xpt_release_devq_device(path->device, count, run_queue);
4551 }
4552 
4553 static void
4554 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4555 {
4556 	int	rundevq;
4557 
4558 	rundevq = 0;
4559 	crit_enter();
4560 
4561 	if (dev->qfrozen_cnt > 0) {
4562 
4563 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4564 		dev->qfrozen_cnt -= count;
4565 		if (dev->qfrozen_cnt == 0) {
4566 
4567 			/*
4568 			 * No longer need to wait for a successful
4569 			 * command completion.
4570 			 */
4571 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4572 
4573 			/*
4574 			 * Remove any timeouts that might be scheduled
4575 			 * to release this queue.
4576 			 */
4577 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4578 				callout_stop(&dev->c_handle);
4579 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4580 			}
4581 
4582 			/*
4583 			 * Now that we are unfrozen schedule the
4584 			 * device so any pending transactions are
4585 			 * run.
4586 			 */
4587 			if ((dev->ccbq.queue.entries > 0)
4588 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4589 			 && (run_queue != 0)) {
4590 				rundevq = 1;
4591 			}
4592 		}
4593 	}
4594 	if (rundevq != 0)
4595 		xpt_run_dev_sendq(dev->target->bus);
4596 	crit_exit();
4597 }
4598 
4599 void
4600 xpt_release_simq(struct cam_sim *sim, int run_queue)
4601 {
4602 	struct	camq *sendq;
4603 
4604 	if (sim->devq == NULL)
4605 		return;
4606 
4607 	sendq = &(sim->devq->send_queue);
4608 	crit_enter();
4609 
4610 	if (sendq->qfrozen_cnt > 0) {
4611 		sendq->qfrozen_cnt--;
4612 		if (sendq->qfrozen_cnt == 0) {
4613 			struct cam_eb *bus;
4614 
4615 			/*
4616 			 * If there is a timeout scheduled to release this
4617 			 * sim queue, remove it.  The queue frozen count is
4618 			 * already at 0.
4619 			 */
4620 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4621 				callout_stop(&sim->c_handle);
4622 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4623 			}
4624 			bus = xpt_find_bus(sim->path_id);
4625 			crit_exit();
4626 
4627 			if (run_queue) {
4628 				/*
4629 				 * Now that we are unfrozen run the send queue.
4630 				 */
4631 				xpt_run_dev_sendq(bus);
4632 			}
4633 			xpt_release_bus(bus);
4634 		} else {
4635 			crit_exit();
4636 		}
4637 	} else {
4638 		crit_exit();
4639 	}
4640 }
4641 
4642 void
4643 xpt_done(union ccb *done_ccb)
4644 {
4645 	crit_enter();
4646 
4647 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4648 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4649 		/*
4650 		 * Queue up the request for handling by our SWI handler
4651 		 * any of the "non-immediate" type of ccbs.
4652 		 */
4653 		switch (done_ccb->ccb_h.path->periph->type) {
4654 		case CAM_PERIPH_BIO:
4655 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4656 					  sim_links.tqe);
4657 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4658 			setsoftcambio();
4659 			break;
4660 		case CAM_PERIPH_NET:
4661 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4662 					  sim_links.tqe);
4663 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4664 			setsoftcamnet();
4665 			break;
4666 		}
4667 	}
4668 	crit_exit();
4669 }
4670 
4671 union ccb *
4672 xpt_alloc_ccb(void)
4673 {
4674 	union ccb *new_ccb;
4675 
4676 	new_ccb = kmalloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4677 	return (new_ccb);
4678 }
4679 
4680 void
4681 xpt_free_ccb(union ccb *free_ccb)
4682 {
4683 	kfree(free_ccb, M_DEVBUF);
4684 }
4685 
4686 
4687 
4688 /* Private XPT functions */
4689 
4690 /*
4691  * Get a CAM control block for the caller. Charge the structure to the device
4692  * referenced by the path.  If the this device has no 'credits' then the
4693  * device already has the maximum number of outstanding operations under way
4694  * and we return NULL. If we don't have sufficient resources to allocate more
4695  * ccbs, we also return NULL.
4696  */
4697 static union ccb *
4698 xpt_get_ccb(struct cam_ed *device)
4699 {
4700 	union ccb *new_ccb;
4701 
4702 	crit_enter();
4703 	if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) {
4704 		new_ccb = kmalloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4705 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4706 				  xpt_links.sle);
4707 		xpt_ccb_count++;
4708 	}
4709 	cam_ccbq_take_opening(&device->ccbq);
4710 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4711 	crit_exit();
4712 	return (new_ccb);
4713 }
4714 
4715 static void
4716 xpt_release_bus(struct cam_eb *bus)
4717 {
4718 
4719 	crit_enter();
4720 	if (bus->refcount == 1) {
4721 		KKASSERT(TAILQ_FIRST(&bus->et_entries) == NULL);
4722 		TAILQ_REMOVE(&xpt_busses, bus, links);
4723 		if (bus->sim) {
4724 			cam_sim_release(bus->sim, 0);
4725 			bus->sim = NULL;
4726 		}
4727 		bus_generation++;
4728 		KKASSERT(bus->refcount == 1);
4729 		kfree(bus, M_DEVBUF);
4730 	} else {
4731 		--bus->refcount;
4732 	}
4733 	crit_exit();
4734 }
4735 
4736 static struct cam_et *
4737 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4738 {
4739 	struct cam_et *target;
4740 	struct cam_et *cur_target;
4741 
4742 	target = kmalloc(sizeof(*target), M_DEVBUF, M_INTWAIT);
4743 
4744 	TAILQ_INIT(&target->ed_entries);
4745 	target->bus = bus;
4746 	target->target_id = target_id;
4747 	target->refcount = 1;
4748 	target->generation = 0;
4749 	timevalclear(&target->last_reset);
4750 	/*
4751 	 * Hold a reference to our parent bus so it
4752 	 * will not go away before we do.
4753 	 */
4754 	bus->refcount++;
4755 
4756 	/* Insertion sort into our bus's target list */
4757 	cur_target = TAILQ_FIRST(&bus->et_entries);
4758 	while (cur_target != NULL && cur_target->target_id < target_id)
4759 		cur_target = TAILQ_NEXT(cur_target, links);
4760 
4761 	if (cur_target != NULL) {
4762 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4763 	} else {
4764 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4765 	}
4766 	bus->generation++;
4767 	return (target);
4768 }
4769 
4770 static void
4771 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4772 {
4773 	crit_enter();
4774 	if (target->refcount == 1) {
4775 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4776 		TAILQ_REMOVE(&bus->et_entries, target, links);
4777 		bus->generation++;
4778 		xpt_release_bus(bus);
4779 		KKASSERT(target->refcount == 1);
4780 		kfree(target, M_DEVBUF);
4781 	} else {
4782 		--target->refcount;
4783 	}
4784 	crit_exit();
4785 }
4786 
4787 static struct cam_ed *
4788 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4789 {
4790 #ifdef CAM_NEW_TRAN_CODE
4791 	struct	   cam_path path;
4792 #endif /* CAM_NEW_TRAN_CODE */
4793 	struct	   cam_ed *device;
4794 	struct	   cam_devq *devq;
4795 	cam_status status;
4796 
4797 	/* Make space for us in the device queue on our bus */
4798 	if (bus->sim->devq == NULL)
4799 		return(NULL);
4800 	devq = bus->sim->devq;
4801 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4802 
4803 	if (status != CAM_REQ_CMP) {
4804 		device = NULL;
4805 	} else {
4806 		device = kmalloc(sizeof(*device), M_DEVBUF, M_INTWAIT);
4807 	}
4808 
4809 	if (device != NULL) {
4810 		struct cam_ed *cur_device;
4811 
4812 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4813 		device->alloc_ccb_entry.device = device;
4814 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4815 		device->send_ccb_entry.device = device;
4816 		device->target = target;
4817 		device->lun_id = lun_id;
4818 		/* Initialize our queues */
4819 		if (camq_init(&device->drvq, 0) != 0) {
4820 			kfree(device, M_DEVBUF);
4821 			return (NULL);
4822 		}
4823 		if (cam_ccbq_init(&device->ccbq,
4824 				  bus->sim->max_dev_openings) != 0) {
4825 			camq_fini(&device->drvq);
4826 			kfree(device, M_DEVBUF);
4827 			return (NULL);
4828 		}
4829 		SLIST_INIT(&device->asyncs);
4830 		SLIST_INIT(&device->periphs);
4831 		device->generation = 0;
4832 		device->owner = NULL;
4833 		/*
4834 		 * Take the default quirk entry until we have inquiry
4835 		 * data and can determine a better quirk to use.
4836 		 */
4837 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4838 		bzero(&device->inq_data, sizeof(device->inq_data));
4839 		device->inq_flags = 0;
4840 		device->queue_flags = 0;
4841 		device->serial_num = NULL;
4842 		device->serial_num_len = 0;
4843 		device->qfrozen_cnt = 0;
4844 		device->flags = CAM_DEV_UNCONFIGURED;
4845 		device->tag_delay_count = 0;
4846 		device->refcount = 1;
4847 		callout_init(&device->c_handle);
4848 
4849 		/*
4850 		 * Hold a reference to our parent target so it
4851 		 * will not go away before we do.
4852 		 */
4853 		target->refcount++;
4854 
4855 		/*
4856 		 * XXX should be limited by number of CCBs this bus can
4857 		 * do.
4858 		 */
4859 		xpt_max_ccbs += device->ccbq.devq_openings;
4860 		/* Insertion sort into our target's device list */
4861 		cur_device = TAILQ_FIRST(&target->ed_entries);
4862 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4863 			cur_device = TAILQ_NEXT(cur_device, links);
4864 		if (cur_device != NULL) {
4865 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4866 		} else {
4867 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4868 		}
4869 		target->generation++;
4870 #ifdef CAM_NEW_TRAN_CODE
4871 		if (lun_id != CAM_LUN_WILDCARD) {
4872 			xpt_compile_path(&path,
4873 					 NULL,
4874 					 bus->path_id,
4875 					 target->target_id,
4876 					 lun_id);
4877 			xpt_devise_transport(&path);
4878 			xpt_release_path(&path);
4879 		}
4880 #endif /* CAM_NEW_TRAN_CODE */
4881 	}
4882 	return (device);
4883 }
4884 
4885 static void
4886 xpt_reference_device(struct cam_ed *device)
4887 {
4888 	++device->refcount;
4889 }
4890 
4891 static void
4892 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4893 		   struct cam_ed *device)
4894 {
4895 	struct cam_devq *devq;
4896 
4897 	crit_enter();
4898 	if (device->refcount == 1) {
4899 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
4900 
4901 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4902 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4903 			panic("Removing device while still queued for ccbs");
4904 
4905 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4906 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4907 			callout_stop(&device->c_handle);
4908 		}
4909 
4910 		TAILQ_REMOVE(&target->ed_entries, device,links);
4911 		target->generation++;
4912 		xpt_max_ccbs -= device->ccbq.devq_openings;
4913 		/* Release our slot in the devq */
4914 		devq = bus->sim->devq;
4915 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4916 		xpt_release_target(bus, target);
4917 		KKASSERT(device->refcount == 1);
4918 		kfree(device, M_DEVBUF);
4919 	} else {
4920 		--device->refcount;
4921 	}
4922 	crit_exit();
4923 }
4924 
4925 static u_int32_t
4926 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4927 {
4928 	int	diff;
4929 	int	result;
4930 	struct	cam_ed *dev;
4931 
4932 	dev = path->device;
4933 
4934 	crit_enter();
4935 
4936 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4937 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4938 	if (result == CAM_REQ_CMP && (diff < 0)) {
4939 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4940 	}
4941 	/* Adjust the global limit */
4942 	xpt_max_ccbs += diff;
4943 	crit_exit();
4944 	return (result);
4945 }
4946 
4947 static struct cam_eb *
4948 xpt_find_bus(path_id_t path_id)
4949 {
4950 	struct cam_eb *bus;
4951 
4952 	TAILQ_FOREACH(bus, &xpt_busses, links) {
4953 		if (bus->path_id == path_id) {
4954 			bus->refcount++;
4955 			break;
4956 		}
4957 	}
4958 	return (bus);
4959 }
4960 
4961 static struct cam_et *
4962 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4963 {
4964 	struct cam_et *target;
4965 
4966 	TAILQ_FOREACH(target, &bus->et_entries, links) {
4967 		if (target->target_id == target_id) {
4968 			target->refcount++;
4969 			break;
4970 		}
4971 	}
4972 	return (target);
4973 }
4974 
4975 static struct cam_ed *
4976 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4977 {
4978 	struct cam_ed *device;
4979 
4980 	TAILQ_FOREACH(device, &target->ed_entries, links) {
4981 		if (device->lun_id == lun_id) {
4982 			device->refcount++;
4983 			break;
4984 		}
4985 	}
4986 	return (device);
4987 }
4988 
4989 typedef struct {
4990 	union	ccb *request_ccb;
4991 	struct 	ccb_pathinq *cpi;
4992 	int	pending_count;
4993 } xpt_scan_bus_info;
4994 
4995 /*
4996  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4997  * As the scan progresses, xpt_scan_bus is used as the
4998  * callback on completion function.
4999  */
5000 static void
5001 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5002 {
5003 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5004 		  ("xpt_scan_bus\n"));
5005 	switch (request_ccb->ccb_h.func_code) {
5006 	case XPT_SCAN_BUS:
5007 	{
5008 		xpt_scan_bus_info *scan_info;
5009 		union	ccb *work_ccb;
5010 		struct	cam_path *path;
5011 		u_int	i;
5012 		u_int	max_target;
5013 		u_int	initiator_id;
5014 
5015 		/* Find out the characteristics of the bus */
5016 		work_ccb = xpt_alloc_ccb();
5017 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5018 			      request_ccb->ccb_h.pinfo.priority);
5019 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5020 		xpt_action(work_ccb);
5021 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5022 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5023 			xpt_free_ccb(work_ccb);
5024 			xpt_done(request_ccb);
5025 			return;
5026 		}
5027 
5028 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5029 			/*
5030 			 * Can't scan the bus on an adapter that
5031 			 * cannot perform the initiator role.
5032 			 */
5033 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5034 			xpt_free_ccb(work_ccb);
5035 			xpt_done(request_ccb);
5036 			return;
5037 		}
5038 
5039 		/* Save some state for use while we probe for devices */
5040 		scan_info = (xpt_scan_bus_info *)
5041 		    kmalloc(sizeof(xpt_scan_bus_info), M_TEMP, M_INTWAIT);
5042 		scan_info->request_ccb = request_ccb;
5043 		scan_info->cpi = &work_ccb->cpi;
5044 
5045 		/* Cache on our stack so we can work asynchronously */
5046 		max_target = scan_info->cpi->max_target;
5047 		initiator_id = scan_info->cpi->initiator_id;
5048 
5049 		/*
5050 		 * Don't count the initiator if the
5051 		 * initiator is addressable.
5052 		 */
5053 		scan_info->pending_count = max_target + 1;
5054 		if (initiator_id <= max_target)
5055 			scan_info->pending_count--;
5056 
5057 		for (i = 0; i <= max_target; i++) {
5058 			cam_status status;
5059 		 	if (i == initiator_id)
5060 				continue;
5061 
5062 			status = xpt_create_path(&path, xpt_periph,
5063 						 request_ccb->ccb_h.path_id,
5064 						 i, 0);
5065 			if (status != CAM_REQ_CMP) {
5066 				kprintf("xpt_scan_bus: xpt_create_path failed"
5067 				       " with status %#x, bus scan halted\n",
5068 				       status);
5069 				break;
5070 			}
5071 			work_ccb = xpt_alloc_ccb();
5072 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5073 				      request_ccb->ccb_h.pinfo.priority);
5074 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5075 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5076 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5077 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5078 			xpt_action(work_ccb);
5079 		}
5080 		break;
5081 	}
5082 	case XPT_SCAN_LUN:
5083 	{
5084 		xpt_scan_bus_info *scan_info;
5085 		path_id_t path_id;
5086 		target_id_t target_id;
5087 		lun_id_t lun_id;
5088 
5089 		/* Reuse the same CCB to query if a device was really found */
5090 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5091 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5092 			      request_ccb->ccb_h.pinfo.priority);
5093 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5094 
5095 		path_id = request_ccb->ccb_h.path_id;
5096 		target_id = request_ccb->ccb_h.target_id;
5097 		lun_id = request_ccb->ccb_h.target_lun;
5098 		xpt_action(request_ccb);
5099 
5100 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5101 			struct cam_ed *device;
5102 			struct cam_et *target;
5103 			int phl;
5104 
5105 			/*
5106 			 * If we already probed lun 0 successfully, or
5107 			 * we have additional configured luns on this
5108 			 * target that might have "gone away", go onto
5109 			 * the next lun.
5110 			 */
5111 			target = request_ccb->ccb_h.path->target;
5112 			/*
5113 			 * We may touch devices that we don't
5114 			 * hold references too, so ensure they
5115 			 * don't disappear out from under us.
5116 			 * The target above is referenced by the
5117 			 * path in the request ccb.
5118 			 */
5119 			phl = 0;
5120 			crit_enter();
5121 			device = TAILQ_FIRST(&target->ed_entries);
5122 			if (device != NULL) {
5123 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5124 				if (device->lun_id == 0)
5125 					device = TAILQ_NEXT(device, links);
5126 			}
5127 			crit_exit();
5128 			if ((lun_id != 0) || (device != NULL)) {
5129 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5130 					lun_id++;
5131 			}
5132 		} else {
5133 			struct cam_ed *device;
5134 
5135 			device = request_ccb->ccb_h.path->device;
5136 
5137 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5138 				/* Try the next lun */
5139 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5140 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5141 					lun_id++;
5142 			}
5143 		}
5144 
5145 		xpt_free_path(request_ccb->ccb_h.path);
5146 
5147 		/* Check Bounds */
5148 		if ((lun_id == request_ccb->ccb_h.target_lun)
5149 		 || lun_id > scan_info->cpi->max_lun) {
5150 			/* We're done */
5151 
5152 			xpt_free_ccb(request_ccb);
5153 			scan_info->pending_count--;
5154 			if (scan_info->pending_count == 0) {
5155 				xpt_free_ccb((union ccb *)scan_info->cpi);
5156 				request_ccb = scan_info->request_ccb;
5157 				kfree(scan_info, M_TEMP);
5158 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5159 				xpt_done(request_ccb);
5160 			}
5161 		} else {
5162 			/* Try the next device */
5163 			struct cam_path *path;
5164 			cam_status status;
5165 
5166 			path = request_ccb->ccb_h.path;
5167 			status = xpt_create_path(&path, xpt_periph,
5168 						 path_id, target_id, lun_id);
5169 			if (status != CAM_REQ_CMP) {
5170 				kprintf("xpt_scan_bus: xpt_create_path failed "
5171 				       "with status %#x, halting LUN scan\n",
5172 			 	       status);
5173 				xpt_free_ccb(request_ccb);
5174 				scan_info->pending_count--;
5175 				if (scan_info->pending_count == 0) {
5176 					xpt_free_ccb(
5177 						(union ccb *)scan_info->cpi);
5178 					request_ccb = scan_info->request_ccb;
5179 					kfree(scan_info, M_TEMP);
5180 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5181 					xpt_done(request_ccb);
5182 					break;
5183 				}
5184 			}
5185 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5186 				      request_ccb->ccb_h.pinfo.priority);
5187 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5188 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5189 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5190 			request_ccb->crcn.flags =
5191 				scan_info->request_ccb->crcn.flags;
5192 			xpt_action(request_ccb);
5193 		}
5194 		break;
5195 	}
5196 	default:
5197 		break;
5198 	}
5199 }
5200 
5201 typedef enum {
5202 	PROBE_TUR,
5203 	PROBE_INQUIRY,
5204 	PROBE_FULL_INQUIRY,
5205 	PROBE_MODE_SENSE,
5206 	PROBE_SERIAL_NUM,
5207 	PROBE_TUR_FOR_NEGOTIATION
5208 } probe_action;
5209 
5210 typedef enum {
5211 	PROBE_INQUIRY_CKSUM	= 0x01,
5212 	PROBE_SERIAL_CKSUM	= 0x02,
5213 	PROBE_NO_ANNOUNCE	= 0x04
5214 } probe_flags;
5215 
5216 typedef struct {
5217 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5218 	probe_action	action;
5219 	union ccb	saved_ccb;
5220 	probe_flags	flags;
5221 	MD5_CTX		context;
5222 	u_int8_t	digest[16];
5223 } probe_softc;
5224 
5225 static void
5226 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5227 	     cam_flags flags, union ccb *request_ccb)
5228 {
5229 	struct ccb_pathinq cpi;
5230 	cam_status status;
5231 	struct cam_path *new_path;
5232 	struct cam_periph *old_periph;
5233 
5234 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5235 		  ("xpt_scan_lun\n"));
5236 
5237 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5238 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5239 	xpt_action((union ccb *)&cpi);
5240 
5241 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5242 		if (request_ccb != NULL) {
5243 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5244 			xpt_done(request_ccb);
5245 		}
5246 		return;
5247 	}
5248 
5249 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5250 		/*
5251 		 * Can't scan the bus on an adapter that
5252 		 * cannot perform the initiator role.
5253 		 */
5254 		if (request_ccb != NULL) {
5255 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5256 			xpt_done(request_ccb);
5257 		}
5258 		return;
5259 	}
5260 
5261 	if (request_ccb == NULL) {
5262 		request_ccb = kmalloc(sizeof(union ccb), M_TEMP, M_INTWAIT);
5263 		new_path = kmalloc(sizeof(*new_path), M_TEMP, M_INTWAIT);
5264 		status = xpt_compile_path(new_path, xpt_periph,
5265 					  path->bus->path_id,
5266 					  path->target->target_id,
5267 					  path->device->lun_id);
5268 
5269 		if (status != CAM_REQ_CMP) {
5270 			xpt_print_path(path);
5271 			kprintf("xpt_scan_lun: can't compile path, can't "
5272 			       "continue\n");
5273 			kfree(request_ccb, M_TEMP);
5274 			kfree(new_path, M_TEMP);
5275 			return;
5276 		}
5277 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5278 		request_ccb->ccb_h.cbfcnp = xptscandone;
5279 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5280 		request_ccb->crcn.flags = flags;
5281 	}
5282 
5283 	crit_enter();
5284 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5285 		probe_softc *softc;
5286 
5287 		softc = (probe_softc *)old_periph->softc;
5288 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5289 				  periph_links.tqe);
5290 	} else {
5291 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5292 					  probestart, "probe",
5293 					  CAM_PERIPH_BIO,
5294 					  request_ccb->ccb_h.path, NULL, 0,
5295 					  request_ccb);
5296 
5297 		if (status != CAM_REQ_CMP) {
5298 			xpt_print_path(path);
5299 			kprintf("xpt_scan_lun: cam_alloc_periph returned an "
5300 			       "error, can't continue probe\n");
5301 			request_ccb->ccb_h.status = status;
5302 			xpt_done(request_ccb);
5303 		}
5304 	}
5305 	crit_exit();
5306 }
5307 
5308 static void
5309 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5310 {
5311 	xpt_release_path(done_ccb->ccb_h.path);
5312 	kfree(done_ccb->ccb_h.path, M_TEMP);
5313 	kfree(done_ccb, M_TEMP);
5314 }
5315 
5316 static cam_status
5317 proberegister(struct cam_periph *periph, void *arg)
5318 {
5319 	union ccb *request_ccb;	/* CCB representing the probe request */
5320 	probe_softc *softc;
5321 
5322 	request_ccb = (union ccb *)arg;
5323 	if (periph == NULL) {
5324 		kprintf("proberegister: periph was NULL!!\n");
5325 		return(CAM_REQ_CMP_ERR);
5326 	}
5327 
5328 	if (request_ccb == NULL) {
5329 		kprintf("proberegister: no probe CCB, "
5330 		       "can't register device\n");
5331 		return(CAM_REQ_CMP_ERR);
5332 	}
5333 
5334 	softc = kmalloc(sizeof(*softc), M_TEMP, M_INTWAIT | M_ZERO);
5335 	TAILQ_INIT(&softc->request_ccbs);
5336 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5337 			  periph_links.tqe);
5338 	softc->flags = 0;
5339 	periph->softc = softc;
5340 	cam_periph_acquire(periph);
5341 	/*
5342 	 * Ensure we've waited at least a bus settle
5343 	 * delay before attempting to probe the device.
5344 	 * For HBAs that don't do bus resets, this won't make a difference.
5345 	 */
5346 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5347 				      SCSI_DELAY);
5348 	probeschedule(periph);
5349 	return(CAM_REQ_CMP);
5350 }
5351 
5352 static void
5353 probeschedule(struct cam_periph *periph)
5354 {
5355 	struct ccb_pathinq cpi;
5356 	union ccb *ccb;
5357 	probe_softc *softc;
5358 
5359 	softc = (probe_softc *)periph->softc;
5360 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5361 
5362 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5363 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5364 	xpt_action((union ccb *)&cpi);
5365 
5366 	/*
5367 	 * If a device has gone away and another device, or the same one,
5368 	 * is back in the same place, it should have a unit attention
5369 	 * condition pending.  It will not report the unit attention in
5370 	 * response to an inquiry, which may leave invalid transfer
5371 	 * negotiations in effect.  The TUR will reveal the unit attention
5372 	 * condition.  Only send the TUR for lun 0, since some devices
5373 	 * will get confused by commands other than inquiry to non-existent
5374 	 * luns.  If you think a device has gone away start your scan from
5375 	 * lun 0.  This will insure that any bogus transfer settings are
5376 	 * invalidated.
5377 	 *
5378 	 * If we haven't seen the device before and the controller supports
5379 	 * some kind of transfer negotiation, negotiate with the first
5380 	 * sent command if no bus reset was performed at startup.  This
5381 	 * ensures that the device is not confused by transfer negotiation
5382 	 * settings left over by loader or BIOS action.
5383 	 */
5384 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5385 	 && (ccb->ccb_h.target_lun == 0)) {
5386 		softc->action = PROBE_TUR;
5387 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5388 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5389 		proberequestdefaultnegotiation(periph);
5390 		softc->action = PROBE_INQUIRY;
5391 	} else {
5392 		softc->action = PROBE_INQUIRY;
5393 	}
5394 
5395 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5396 		softc->flags |= PROBE_NO_ANNOUNCE;
5397 	else
5398 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5399 
5400 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5401 }
5402 
5403 static void
5404 probestart(struct cam_periph *periph, union ccb *start_ccb)
5405 {
5406 	/* Probe the device that our peripheral driver points to */
5407 	struct ccb_scsiio *csio;
5408 	probe_softc *softc;
5409 
5410 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5411 
5412 	softc = (probe_softc *)periph->softc;
5413 	csio = &start_ccb->csio;
5414 
5415 	switch (softc->action) {
5416 	case PROBE_TUR:
5417 	case PROBE_TUR_FOR_NEGOTIATION:
5418 	{
5419 		scsi_test_unit_ready(csio,
5420 				     /*retries*/4,
5421 				     probedone,
5422 				     MSG_SIMPLE_Q_TAG,
5423 				     SSD_FULL_SIZE,
5424 				     /*timeout*/60000);
5425 		break;
5426 	}
5427 	case PROBE_INQUIRY:
5428 	case PROBE_FULL_INQUIRY:
5429 	{
5430 		u_int inquiry_len;
5431 		struct scsi_inquiry_data *inq_buf;
5432 
5433 		inq_buf = &periph->path->device->inq_data;
5434 		/*
5435 		 * If the device is currently configured, we calculate an
5436 		 * MD5 checksum of the inquiry data, and if the serial number
5437 		 * length is greater than 0, add the serial number data
5438 		 * into the checksum as well.  Once the inquiry and the
5439 		 * serial number check finish, we attempt to figure out
5440 		 * whether we still have the same device.
5441 		 */
5442 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5443 
5444 			MD5Init(&softc->context);
5445 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5446 				  sizeof(struct scsi_inquiry_data));
5447 			softc->flags |= PROBE_INQUIRY_CKSUM;
5448 			if (periph->path->device->serial_num_len > 0) {
5449 				MD5Update(&softc->context,
5450 					  periph->path->device->serial_num,
5451 					  periph->path->device->serial_num_len);
5452 				softc->flags |= PROBE_SERIAL_CKSUM;
5453 			}
5454 			MD5Final(softc->digest, &softc->context);
5455 		}
5456 
5457 		if (softc->action == PROBE_INQUIRY)
5458 			inquiry_len = SHORT_INQUIRY_LENGTH;
5459 		else
5460 			inquiry_len = inq_buf->additional_length + 5;
5461 
5462 		scsi_inquiry(csio,
5463 			     /*retries*/4,
5464 			     probedone,
5465 			     MSG_SIMPLE_Q_TAG,
5466 			     (u_int8_t *)inq_buf,
5467 			     inquiry_len,
5468 			     /*evpd*/FALSE,
5469 			     /*page_code*/0,
5470 			     SSD_MIN_SIZE,
5471 			     /*timeout*/60 * 1000);
5472 		break;
5473 	}
5474 	case PROBE_MODE_SENSE:
5475 	{
5476 		void  *mode_buf;
5477 		int    mode_buf_len;
5478 
5479 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5480 			     + sizeof(struct scsi_mode_blk_desc)
5481 			     + sizeof(struct scsi_control_page);
5482 		mode_buf = kmalloc(mode_buf_len, M_TEMP, M_INTWAIT);
5483 		scsi_mode_sense(csio,
5484 				/*retries*/4,
5485 				probedone,
5486 				MSG_SIMPLE_Q_TAG,
5487 				/*dbd*/FALSE,
5488 				SMS_PAGE_CTRL_CURRENT,
5489 				SMS_CONTROL_MODE_PAGE,
5490 				mode_buf,
5491 				mode_buf_len,
5492 				SSD_FULL_SIZE,
5493 				/*timeout*/60000);
5494 		break;
5495 	}
5496 	case PROBE_SERIAL_NUM:
5497 	{
5498 		struct scsi_vpd_unit_serial_number *serial_buf;
5499 		struct cam_ed* device;
5500 
5501 		serial_buf = NULL;
5502 		device = periph->path->device;
5503 		device->serial_num = NULL;
5504 		device->serial_num_len = 0;
5505 
5506 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5507 			serial_buf = kmalloc(sizeof(*serial_buf), M_TEMP,
5508 					    M_INTWAIT | M_ZERO);
5509 			scsi_inquiry(csio,
5510 				     /*retries*/4,
5511 				     probedone,
5512 				     MSG_SIMPLE_Q_TAG,
5513 				     (u_int8_t *)serial_buf,
5514 				     sizeof(*serial_buf),
5515 				     /*evpd*/TRUE,
5516 				     SVPD_UNIT_SERIAL_NUMBER,
5517 				     SSD_MIN_SIZE,
5518 				     /*timeout*/60 * 1000);
5519 			break;
5520 		}
5521 		/*
5522 		 * We'll have to do without, let our probedone
5523 		 * routine finish up for us.
5524 		 */
5525 		start_ccb->csio.data_ptr = NULL;
5526 		probedone(periph, start_ccb);
5527 		return;
5528 	}
5529 	}
5530 	xpt_action(start_ccb);
5531 }
5532 
5533 static void
5534 proberequestdefaultnegotiation(struct cam_periph *periph)
5535 {
5536 	struct ccb_trans_settings cts;
5537 
5538 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5539 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5540 #ifdef CAM_NEW_TRAN_CODE
5541 	cts.type = CTS_TYPE_USER_SETTINGS;
5542 #else /* CAM_NEW_TRAN_CODE */
5543 	cts.flags = CCB_TRANS_USER_SETTINGS;
5544 #endif /* CAM_NEW_TRAN_CODE */
5545 	xpt_action((union ccb *)&cts);
5546 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5547 #ifdef CAM_NEW_TRAN_CODE
5548 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5549 #else /* CAM_NEW_TRAN_CODE */
5550 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5551 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5552 #endif /* CAM_NEW_TRAN_CODE */
5553 	xpt_action((union ccb *)&cts);
5554 }
5555 
5556 static void
5557 probedone(struct cam_periph *periph, union ccb *done_ccb)
5558 {
5559 	probe_softc *softc;
5560 	struct cam_path *path;
5561 	u_int32_t  priority;
5562 
5563 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5564 
5565 	softc = (probe_softc *)periph->softc;
5566 	path = done_ccb->ccb_h.path;
5567 	priority = done_ccb->ccb_h.pinfo.priority;
5568 
5569 	switch (softc->action) {
5570 	case PROBE_TUR:
5571 	{
5572 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5573 
5574 			if (cam_periph_error(done_ccb, 0,
5575 					     SF_NO_PRINT, NULL) == ERESTART)
5576 				return;
5577 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5578 				/* Don't wedge the queue */
5579 				xpt_release_devq(done_ccb->ccb_h.path,
5580 						 /*count*/1,
5581 						 /*run_queue*/TRUE);
5582 		}
5583 		softc->action = PROBE_INQUIRY;
5584 		xpt_release_ccb(done_ccb);
5585 		xpt_schedule(periph, priority);
5586 		return;
5587 	}
5588 	case PROBE_INQUIRY:
5589 	case PROBE_FULL_INQUIRY:
5590 	{
5591 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5592 			struct scsi_inquiry_data *inq_buf;
5593 			u_int8_t periph_qual;
5594 
5595 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5596 			inq_buf = &path->device->inq_data;
5597 
5598 			periph_qual = SID_QUAL(inq_buf);
5599 
5600 			switch(periph_qual) {
5601 			case SID_QUAL_LU_CONNECTED:
5602 			{
5603 				u_int8_t alen;
5604 
5605 				/*
5606 				 * We conservatively request only
5607 				 * SHORT_INQUIRY_LEN bytes of inquiry
5608 				 * information during our first try
5609 				 * at sending an INQUIRY. If the device
5610 				 * has more information to give,
5611 				 * perform a second request specifying
5612 				 * the amount of information the device
5613 				 * is willing to give.
5614 				 */
5615 				alen = inq_buf->additional_length;
5616 				if (softc->action == PROBE_INQUIRY
5617 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5618 					softc->action = PROBE_FULL_INQUIRY;
5619 					xpt_release_ccb(done_ccb);
5620 					xpt_schedule(periph, priority);
5621 					return;
5622 				}
5623 
5624 				xpt_find_quirk(path->device);
5625 
5626 #ifdef CAM_NEW_TRAN_CODE
5627 				xpt_devise_transport(path);
5628 #endif /* CAM_NEW_TRAN_CODE */
5629 				if ((inq_buf->flags & SID_CmdQue) != 0)
5630 					softc->action = PROBE_MODE_SENSE;
5631 				else
5632 					softc->action = PROBE_SERIAL_NUM;
5633 
5634 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5635 				xpt_reference_device(path->device);
5636 
5637 				xpt_release_ccb(done_ccb);
5638 				xpt_schedule(periph, priority);
5639 				return;
5640 			}
5641 			default:
5642 				break;
5643 			}
5644 		} else if (cam_periph_error(done_ccb, 0,
5645 					    done_ccb->ccb_h.target_lun > 0
5646 					    ? SF_RETRY_UA|SF_QUIET_IR
5647 					    : SF_RETRY_UA,
5648 					    &softc->saved_ccb) == ERESTART) {
5649 			return;
5650 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5651 			/* Don't wedge the queue */
5652 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5653 					 /*run_queue*/TRUE);
5654 		}
5655 		/*
5656 		 * If we get to this point, we got an error status back
5657 		 * from the inquiry and the error status doesn't require
5658 		 * automatically retrying the command.  Therefore, the
5659 		 * inquiry failed.  If we had inquiry information before
5660 		 * for this device, but this latest inquiry command failed,
5661 		 * the device has probably gone away.  If this device isn't
5662 		 * already marked unconfigured, notify the peripheral
5663 		 * drivers that this device is no more.
5664 		 */
5665 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5666 			/* Send the async notification. */
5667 			xpt_async(AC_LOST_DEVICE, path, NULL);
5668 		}
5669 
5670 		xpt_release_ccb(done_ccb);
5671 		break;
5672 	}
5673 	case PROBE_MODE_SENSE:
5674 	{
5675 		struct ccb_scsiio *csio;
5676 		struct scsi_mode_header_6 *mode_hdr;
5677 
5678 		csio = &done_ccb->csio;
5679 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5680 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5681 			struct scsi_control_page *page;
5682 			u_int8_t *offset;
5683 
5684 			offset = ((u_int8_t *)&mode_hdr[1])
5685 			    + mode_hdr->blk_desc_len;
5686 			page = (struct scsi_control_page *)offset;
5687 			path->device->queue_flags = page->queue_flags;
5688 		} else if (cam_periph_error(done_ccb, 0,
5689 					    SF_RETRY_UA|SF_NO_PRINT,
5690 					    &softc->saved_ccb) == ERESTART) {
5691 			return;
5692 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5693 			/* Don't wedge the queue */
5694 			xpt_release_devq(done_ccb->ccb_h.path,
5695 					 /*count*/1, /*run_queue*/TRUE);
5696 		}
5697 		xpt_release_ccb(done_ccb);
5698 		kfree(mode_hdr, M_TEMP);
5699 		softc->action = PROBE_SERIAL_NUM;
5700 		xpt_schedule(periph, priority);
5701 		return;
5702 	}
5703 	case PROBE_SERIAL_NUM:
5704 	{
5705 		struct ccb_scsiio *csio;
5706 		struct scsi_vpd_unit_serial_number *serial_buf;
5707 		u_int32_t  priority;
5708 		int changed;
5709 		int have_serialnum;
5710 
5711 		changed = 1;
5712 		have_serialnum = 0;
5713 		csio = &done_ccb->csio;
5714 		priority = done_ccb->ccb_h.pinfo.priority;
5715 		serial_buf =
5716 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5717 
5718 		/* Clean up from previous instance of this device */
5719 		if (path->device->serial_num != NULL) {
5720 			kfree(path->device->serial_num, M_DEVBUF);
5721 			path->device->serial_num = NULL;
5722 			path->device->serial_num_len = 0;
5723 		}
5724 
5725 		if (serial_buf == NULL) {
5726 			/*
5727 			 * Don't process the command as it was never sent
5728 			 */
5729 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5730 			&& (serial_buf->length > 0)) {
5731 
5732 			have_serialnum = 1;
5733 			path->device->serial_num =
5734 				kmalloc((serial_buf->length + 1),
5735 				       M_DEVBUF, M_INTWAIT);
5736 			bcopy(serial_buf->serial_num,
5737 			      path->device->serial_num,
5738 			      serial_buf->length);
5739 			path->device->serial_num_len = serial_buf->length;
5740 			path->device->serial_num[serial_buf->length] = '\0';
5741 		} else if (cam_periph_error(done_ccb, 0,
5742 					    SF_RETRY_UA|SF_NO_PRINT,
5743 					    &softc->saved_ccb) == ERESTART) {
5744 			return;
5745 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5746 			/* Don't wedge the queue */
5747 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5748 					 /*run_queue*/TRUE);
5749 		}
5750 
5751 		/*
5752 		 * Let's see if we have seen this device before.
5753 		 */
5754 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5755 			MD5_CTX context;
5756 			u_int8_t digest[16];
5757 
5758 			MD5Init(&context);
5759 
5760 			MD5Update(&context,
5761 				  (unsigned char *)&path->device->inq_data,
5762 				  sizeof(struct scsi_inquiry_data));
5763 
5764 			if (have_serialnum)
5765 				MD5Update(&context, serial_buf->serial_num,
5766 					  serial_buf->length);
5767 
5768 			MD5Final(digest, &context);
5769 			if (bcmp(softc->digest, digest, 16) == 0)
5770 				changed = 0;
5771 
5772 			/*
5773 			 * XXX Do we need to do a TUR in order to ensure
5774 			 *     that the device really hasn't changed???
5775 			 */
5776 			if ((changed != 0)
5777 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5778 				xpt_async(AC_LOST_DEVICE, path, NULL);
5779 		}
5780 		if (serial_buf != NULL)
5781 			kfree(serial_buf, M_TEMP);
5782 
5783 		if (changed != 0) {
5784 			/*
5785 			 * Now that we have all the necessary
5786 			 * information to safely perform transfer
5787 			 * negotiations... Controllers don't perform
5788 			 * any negotiation or tagged queuing until
5789 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5790 			 * received.  So, on a new device, just retreive
5791 			 * the user settings, and set them as the current
5792 			 * settings to set the device up.
5793 			 */
5794 			proberequestdefaultnegotiation(periph);
5795 			xpt_release_ccb(done_ccb);
5796 
5797 			/*
5798 			 * Perform a TUR to allow the controller to
5799 			 * perform any necessary transfer negotiation.
5800 			 */
5801 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5802 			xpt_schedule(periph, priority);
5803 			return;
5804 		}
5805 		xpt_release_ccb(done_ccb);
5806 		break;
5807 	}
5808 	case PROBE_TUR_FOR_NEGOTIATION:
5809 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5810 			/* Don't wedge the queue */
5811 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5812 					 /*run_queue*/TRUE);
5813 		}
5814 
5815 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5816 		xpt_reference_device(path->device);
5817 
5818 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5819 			/* Inform the XPT that a new device has been found */
5820 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5821 			xpt_action(done_ccb);
5822 
5823 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5824 		}
5825 		xpt_release_ccb(done_ccb);
5826 		break;
5827 	}
5828 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5829 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5830 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5831 	xpt_done(done_ccb);
5832 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5833 		cam_periph_invalidate(periph);
5834 		cam_periph_release(periph);
5835 	} else {
5836 		probeschedule(periph);
5837 	}
5838 }
5839 
5840 static void
5841 probecleanup(struct cam_periph *periph)
5842 {
5843 	kfree(periph->softc, M_TEMP);
5844 }
5845 
5846 static void
5847 xpt_find_quirk(struct cam_ed *device)
5848 {
5849 	caddr_t	match;
5850 
5851 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5852 			       (caddr_t)xpt_quirk_table,
5853 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5854 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5855 
5856 	if (match == NULL)
5857 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5858 
5859 	device->quirk = (struct xpt_quirk_entry *)match;
5860 }
5861 
5862 #ifdef CAM_NEW_TRAN_CODE
5863 
5864 static void
5865 xpt_devise_transport(struct cam_path *path)
5866 {
5867 	struct ccb_pathinq cpi;
5868 	struct ccb_trans_settings cts;
5869 	struct scsi_inquiry_data *inq_buf;
5870 
5871 	/* Get transport information from the SIM */
5872 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5873 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5874 	xpt_action((union ccb *)&cpi);
5875 
5876 	inq_buf = NULL;
5877 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
5878 		inq_buf = &path->device->inq_data;
5879 	path->device->protocol = PROTO_SCSI;
5880 	path->device->protocol_version =
5881 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
5882 	path->device->transport = cpi.transport;
5883 	path->device->transport_version = cpi.transport_version;
5884 
5885 	/*
5886 	 * Any device not using SPI3 features should
5887 	 * be considered SPI2 or lower.
5888 	 */
5889 	if (inq_buf != NULL) {
5890 		if (path->device->transport == XPORT_SPI
5891 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
5892 		 && path->device->transport_version > 2)
5893 			path->device->transport_version = 2;
5894 	} else {
5895 		struct cam_ed* otherdev;
5896 
5897 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
5898 		     otherdev != NULL;
5899 		     otherdev = TAILQ_NEXT(otherdev, links)) {
5900 			if (otherdev != path->device)
5901 				break;
5902 		}
5903 
5904 		if (otherdev != NULL) {
5905 			/*
5906 			 * Initially assume the same versioning as
5907 			 * prior luns for this target.
5908 			 */
5909 			path->device->protocol_version =
5910 			    otherdev->protocol_version;
5911 			path->device->transport_version =
5912 			    otherdev->transport_version;
5913 		} else {
5914 			/* Until we know better, opt for safty */
5915 			path->device->protocol_version = 2;
5916 			if (path->device->transport == XPORT_SPI)
5917 				path->device->transport_version = 2;
5918 			else
5919 				path->device->transport_version = 0;
5920 		}
5921 	}
5922 
5923 	/*
5924 	 * XXX
5925 	 * For a device compliant with SPC-2 we should be able
5926 	 * to determine the transport version supported by
5927 	 * scrutinizing the version descriptors in the
5928 	 * inquiry buffer.
5929 	 */
5930 
5931 	/* Tell the controller what we think */
5932 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
5933 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5934 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5935 	cts.transport = path->device->transport;
5936 	cts.transport_version = path->device->transport_version;
5937 	cts.protocol = path->device->protocol;
5938 	cts.protocol_version = path->device->protocol_version;
5939 	cts.proto_specific.valid = 0;
5940 	cts.xport_specific.valid = 0;
5941 	xpt_action((union ccb *)&cts);
5942 }
5943 
5944 static void
5945 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5946 			  int async_update)
5947 {
5948 	struct	ccb_pathinq cpi;
5949 	struct	ccb_trans_settings cur_cts;
5950 	struct	ccb_trans_settings_scsi *scsi;
5951 	struct	ccb_trans_settings_scsi *cur_scsi;
5952 	struct	cam_sim *sim;
5953 	struct	scsi_inquiry_data *inq_data;
5954 
5955 	if (device == NULL) {
5956 		cts->ccb_h.status = CAM_PATH_INVALID;
5957 		xpt_done((union ccb *)cts);
5958 		return;
5959 	}
5960 
5961 	if (cts->protocol == PROTO_UNKNOWN
5962 	 || cts->protocol == PROTO_UNSPECIFIED) {
5963 		cts->protocol = device->protocol;
5964 		cts->protocol_version = device->protocol_version;
5965 	}
5966 
5967 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
5968 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
5969 		cts->protocol_version = device->protocol_version;
5970 
5971 	if (cts->protocol != device->protocol) {
5972 		xpt_print_path(cts->ccb_h.path);
5973 		printf("Uninitialized Protocol %x:%x?\n",
5974 		       cts->protocol, device->protocol);
5975 		cts->protocol = device->protocol;
5976 	}
5977 
5978 	if (cts->protocol_version > device->protocol_version) {
5979 		if (bootverbose) {
5980 			xpt_print_path(cts->ccb_h.path);
5981 			printf("Down reving Protocol Version from %d to %d?\n",
5982 			       cts->protocol_version, device->protocol_version);
5983 		}
5984 		cts->protocol_version = device->protocol_version;
5985 	}
5986 
5987 	if (cts->transport == XPORT_UNKNOWN
5988 	 || cts->transport == XPORT_UNSPECIFIED) {
5989 		cts->transport = device->transport;
5990 		cts->transport_version = device->transport_version;
5991 	}
5992 
5993 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
5994 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
5995 		cts->transport_version = device->transport_version;
5996 
5997 	if (cts->transport != device->transport) {
5998 		xpt_print_path(cts->ccb_h.path);
5999 		printf("Uninitialized Transport %x:%x?\n",
6000 		       cts->transport, device->transport);
6001 		cts->transport = device->transport;
6002 	}
6003 
6004 	if (cts->transport_version > device->transport_version) {
6005 		if (bootverbose) {
6006 			xpt_print_path(cts->ccb_h.path);
6007 			printf("Down reving Transport Version from %d to %d?\n",
6008 			       cts->transport_version,
6009 			       device->transport_version);
6010 		}
6011 		cts->transport_version = device->transport_version;
6012 	}
6013 
6014 	sim = cts->ccb_h.path->bus->sim;
6015 
6016 	/*
6017 	 * Nothing more of interest to do unless
6018 	 * this is a device connected via the
6019 	 * SCSI protocol.
6020 	 */
6021 	if (cts->protocol != PROTO_SCSI) {
6022 		if (async_update == FALSE)
6023 			(*(sim->sim_action))(sim, (union ccb *)cts);
6024 		return;
6025 	}
6026 
6027 	inq_data = &device->inq_data;
6028 	scsi = &cts->proto_specific.scsi;
6029 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6030 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6031 	xpt_action((union ccb *)&cpi);
6032 
6033 	/* SCSI specific sanity checking */
6034 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6035 	 || (inq_data->flags & SID_CmdQue) == 0
6036 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6037 	 || (device->quirk->mintags == 0)) {
6038 		/*
6039 		 * Can't tag on hardware that doesn't support tags,
6040 		 * doesn't have it enabled, or has broken tag support.
6041 		 */
6042 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6043 	}
6044 
6045 	if (async_update == FALSE) {
6046 		/*
6047 		 * Perform sanity checking against what the
6048 		 * controller and device can do.
6049 		 */
6050 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6051 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6052 		cur_cts.type = cts->type;
6053 		xpt_action((union ccb *)&cur_cts);
6054 
6055 		cur_scsi = &cur_cts.proto_specific.scsi;
6056 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6057 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6058 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6059 		}
6060 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6061 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6062 	}
6063 
6064 	/* SPI specific sanity checking */
6065 	if (cts->transport == XPORT_SPI
6066 	 && async_update == FALSE) {
6067 		u_int spi3caps;
6068 		struct ccb_trans_settings_spi *spi;
6069 		struct ccb_trans_settings_spi *cur_spi;
6070 
6071 		spi = &cts->xport_specific.spi;
6072 
6073 		cur_spi = &cur_cts.xport_specific.spi;
6074 
6075 		/* Fill in any gaps in what the user gave us */
6076 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6077 			spi->sync_period = cur_spi->sync_period;
6078 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6079 			spi->sync_period = 0;
6080 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6081 			spi->sync_offset = cur_spi->sync_offset;
6082 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6083 			spi->sync_offset = 0;
6084 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6085 			spi->ppr_options = cur_spi->ppr_options;
6086 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6087 			spi->ppr_options = 0;
6088 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6089 			spi->bus_width = cur_spi->bus_width;
6090 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6091 			spi->bus_width = 0;
6092 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6093 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6094 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6095 		}
6096 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6097 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6098 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6099 		  && (inq_data->flags & SID_Sync) == 0
6100 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6101 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6102 		 || (cts->sync_offset == 0)
6103 		 || (cts->sync_period == 0)) {
6104 			/* Force async */
6105 			spi->sync_period = 0;
6106 			spi->sync_offset = 0;
6107 		}
6108 
6109 		switch (spi->bus_width) {
6110 		case MSG_EXT_WDTR_BUS_32_BIT:
6111 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6112 			  || (inq_data->flags & SID_WBus32) != 0
6113 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6114 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6115 				break;
6116 			/* Fall Through to 16-bit */
6117 		case MSG_EXT_WDTR_BUS_16_BIT:
6118 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6119 			  || (inq_data->flags & SID_WBus16) != 0
6120 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6121 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6122 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6123 				break;
6124 			}
6125 			/* Fall Through to 8-bit */
6126 		default: /* New bus width?? */
6127 		case MSG_EXT_WDTR_BUS_8_BIT:
6128 			/* All targets can do this */
6129 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6130 			break;
6131 		}
6132 
6133 		spi3caps = cpi.xport_specific.spi.ppr_options;
6134 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6135 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6136 			spi3caps &= inq_data->spi3data;
6137 
6138 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6139 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6140 
6141 		if ((spi3caps & SID_SPI_IUS) == 0)
6142 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6143 
6144 		if ((spi3caps & SID_SPI_QAS) == 0)
6145 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6146 
6147 		/* No SPI Transfer settings are allowed unless we are wide */
6148 		if (spi->bus_width == 0)
6149 			spi->ppr_options = 0;
6150 
6151 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6152 			/*
6153 			 * Can't tag queue without disconnection.
6154 			 */
6155 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6156 			scsi->valid |= CTS_SCSI_VALID_TQ;
6157 		}
6158 
6159 		/*
6160 		 * If we are currently performing tagged transactions to
6161 		 * this device and want to change its negotiation parameters,
6162 		 * go non-tagged for a bit to give the controller a chance to
6163 		 * negotiate unhampered by tag messages.
6164 		 */
6165 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6166 		 && (device->inq_flags & SID_CmdQue) != 0
6167 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6168 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6169 				   CTS_SPI_VALID_SYNC_OFFSET|
6170 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6171 			xpt_toggle_tags(cts->ccb_h.path);
6172 	}
6173 
6174 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6175 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6176 		int device_tagenb;
6177 
6178 		/*
6179 		 * If we are transitioning from tags to no-tags or
6180 		 * vice-versa, we need to carefully freeze and restart
6181 		 * the queue so that we don't overlap tagged and non-tagged
6182 		 * commands.  We also temporarily stop tags if there is
6183 		 * a change in transfer negotiation settings to allow
6184 		 * "tag-less" negotiation.
6185 		 */
6186 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6187 		 || (device->inq_flags & SID_CmdQue) != 0)
6188 			device_tagenb = TRUE;
6189 		else
6190 			device_tagenb = FALSE;
6191 
6192 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6193 		  && device_tagenb == FALSE)
6194 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6195 		  && device_tagenb == TRUE)) {
6196 
6197 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6198 				/*
6199 				 * Delay change to use tags until after a
6200 				 * few commands have gone to this device so
6201 				 * the controller has time to perform transfer
6202 				 * negotiations without tagged messages getting
6203 				 * in the way.
6204 				 */
6205 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6206 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6207 			} else {
6208 				struct ccb_relsim crs;
6209 
6210 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6211 				device->inq_flags &= ~SID_CmdQue;
6212 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6213 						    sim->max_dev_openings);
6214 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6215 				device->tag_delay_count = 0;
6216 
6217 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6218 					      /*priority*/1);
6219 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6220 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6221 				crs.openings
6222 				    = crs.release_timeout
6223 				    = crs.qfrozen_cnt
6224 				    = 0;
6225 				xpt_action((union ccb *)&crs);
6226 			}
6227 		}
6228 	}
6229 	if (async_update == FALSE)
6230 		(*(sim->sim_action))(sim, (union ccb *)cts);
6231 }
6232 
6233 #else /* CAM_NEW_TRAN_CODE */
6234 
6235 static void
6236 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6237 			  int async_update)
6238 {
6239 	struct	cam_sim *sim;
6240 	int	qfrozen;
6241 
6242 	sim = cts->ccb_h.path->bus->sim;
6243 	if (async_update == FALSE) {
6244 		struct	scsi_inquiry_data *inq_data;
6245 		struct	ccb_pathinq cpi;
6246 		struct	ccb_trans_settings cur_cts;
6247 
6248 		if (device == NULL) {
6249 			cts->ccb_h.status = CAM_PATH_INVALID;
6250 			xpt_done((union ccb *)cts);
6251 			return;
6252 		}
6253 
6254 		/*
6255 		 * Perform sanity checking against what the
6256 		 * controller and device can do.
6257 		 */
6258 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6259 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6260 		xpt_action((union ccb *)&cpi);
6261 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6262 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6263 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
6264 		xpt_action((union ccb *)&cur_cts);
6265 		inq_data = &device->inq_data;
6266 
6267 		/* Fill in any gaps in what the user gave us */
6268 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
6269 			cts->sync_period = cur_cts.sync_period;
6270 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
6271 			cts->sync_offset = cur_cts.sync_offset;
6272 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
6273 			cts->bus_width = cur_cts.bus_width;
6274 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
6275 			cts->flags &= ~CCB_TRANS_DISC_ENB;
6276 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
6277 		}
6278 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
6279 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6280 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
6281 		}
6282 
6283 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6284 		  && (inq_data->flags & SID_Sync) == 0)
6285 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6286 		 || (cts->sync_offset == 0)
6287 		 || (cts->sync_period == 0)) {
6288 			/* Force async */
6289 			cts->sync_period = 0;
6290 			cts->sync_offset = 0;
6291 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
6292 
6293 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
6294 			 && cts->sync_period <= 0x9) {
6295 				/*
6296 				 * Don't allow DT transmission rates if the
6297 				 * device does not support it.
6298 				 */
6299 				cts->sync_period = 0xa;
6300 			}
6301 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
6302 			 && cts->sync_period <= 0x8) {
6303 				/*
6304 				 * Don't allow PACE transmission rates
6305 				 * if the device does support packetized
6306 				 * transfers.
6307 				 */
6308 				cts->sync_period = 0x9;
6309 			}
6310 		}
6311 
6312 		switch (cts->bus_width) {
6313 		case MSG_EXT_WDTR_BUS_32_BIT:
6314 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6315 			  || (inq_data->flags & SID_WBus32) != 0)
6316 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6317 				break;
6318 			/* Fall Through to 16-bit */
6319 		case MSG_EXT_WDTR_BUS_16_BIT:
6320 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6321 			  || (inq_data->flags & SID_WBus16) != 0)
6322 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6323 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6324 				break;
6325 			}
6326 			/* Fall Through to 8-bit */
6327 		default: /* New bus width?? */
6328 		case MSG_EXT_WDTR_BUS_8_BIT:
6329 			/* All targets can do this */
6330 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6331 			break;
6332 		}
6333 
6334 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
6335 			/*
6336 			 * Can't tag queue without disconnection.
6337 			 */
6338 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6339 			cts->valid |= CCB_TRANS_TQ_VALID;
6340 		}
6341 
6342 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6343 		 || (inq_data->flags & SID_CmdQue) == 0
6344 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6345 		 || (device->quirk->mintags == 0)) {
6346 			/*
6347 			 * Can't tag on hardware that doesn't support,
6348 			 * doesn't have it enabled, or has broken tag support.
6349 			 */
6350 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6351 		}
6352 	}
6353 
6354 	qfrozen = FALSE;
6355 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
6356 		int device_tagenb;
6357 
6358 		/*
6359 		 * If we are transitioning from tags to no-tags or
6360 		 * vice-versa, we need to carefully freeze and restart
6361 		 * the queue so that we don't overlap tagged and non-tagged
6362 		 * commands.  We also temporarily stop tags if there is
6363 		 * a change in transfer negotiation settings to allow
6364 		 * "tag-less" negotiation.
6365 		 */
6366 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6367 		 || (device->inq_flags & SID_CmdQue) != 0)
6368 			device_tagenb = TRUE;
6369 		else
6370 			device_tagenb = FALSE;
6371 
6372 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
6373 		  && device_tagenb == FALSE)
6374 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
6375 		  && device_tagenb == TRUE)) {
6376 
6377 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
6378 				/*
6379 				 * Delay change to use tags until after a
6380 				 * few commands have gone to this device so
6381 				 * the controller has time to perform transfer
6382 				 * negotiations without tagged messages getting
6383 				 * in the way.
6384 				 */
6385 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6386 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6387 			} else {
6388 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6389 				qfrozen = TRUE;
6390 		  		device->inq_flags &= ~SID_CmdQue;
6391 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6392 						    sim->max_dev_openings);
6393 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6394 				device->tag_delay_count = 0;
6395 			}
6396 		}
6397 	}
6398 
6399 	if (async_update == FALSE) {
6400 		/*
6401 		 * If we are currently performing tagged transactions to
6402 		 * this device and want to change its negotiation parameters,
6403 		 * go non-tagged for a bit to give the controller a chance to
6404 		 * negotiate unhampered by tag messages.
6405 		 */
6406 		if ((device->inq_flags & SID_CmdQue) != 0
6407 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
6408 				   CCB_TRANS_SYNC_OFFSET_VALID|
6409 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
6410 			xpt_toggle_tags(cts->ccb_h.path);
6411 
6412 		(*(sim->sim_action))(sim, (union ccb *)cts);
6413 	}
6414 
6415 	if (qfrozen) {
6416 		struct ccb_relsim crs;
6417 
6418 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6419 			      /*priority*/1);
6420 		crs.ccb_h.func_code = XPT_REL_SIMQ;
6421 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6422 		crs.openings
6423 		    = crs.release_timeout
6424 		    = crs.qfrozen_cnt
6425 		    = 0;
6426 		xpt_action((union ccb *)&crs);
6427 	}
6428 }
6429 
6430 
6431 #endif /* CAM_NEW_TRAN_CODE */
6432 
6433 static void
6434 xpt_toggle_tags(struct cam_path *path)
6435 {
6436 	struct cam_ed *dev;
6437 
6438 	/*
6439 	 * Give controllers a chance to renegotiate
6440 	 * before starting tag operations.  We
6441 	 * "toggle" tagged queuing off then on
6442 	 * which causes the tag enable command delay
6443 	 * counter to come into effect.
6444 	 */
6445 	dev = path->device;
6446 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6447 	 || ((dev->inq_flags & SID_CmdQue) != 0
6448  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6449 		struct ccb_trans_settings cts;
6450 
6451 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6452 #ifdef CAM_NEW_TRAN_CODE
6453 		cts.protocol = PROTO_SCSI;
6454 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6455 		cts.transport = XPORT_UNSPECIFIED;
6456 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6457 		cts.proto_specific.scsi.flags = 0;
6458 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6459 #else /* CAM_NEW_TRAN_CODE */
6460 		cts.flags = 0;
6461 		cts.valid = CCB_TRANS_TQ_VALID;
6462 #endif /* CAM_NEW_TRAN_CODE */
6463 		xpt_set_transfer_settings(&cts, path->device,
6464 					  /*async_update*/TRUE);
6465 #ifdef CAM_NEW_TRAN_CODE
6466 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6467 #else /* CAM_NEW_TRAN_CODE */
6468 		cts.flags = CCB_TRANS_TAG_ENB;
6469 #endif /* CAM_NEW_TRAN_CODE */
6470 		xpt_set_transfer_settings(&cts, path->device,
6471 					  /*async_update*/TRUE);
6472 	}
6473 }
6474 
6475 static void
6476 xpt_start_tags(struct cam_path *path)
6477 {
6478 	struct ccb_relsim crs;
6479 	struct cam_ed *device;
6480 	struct cam_sim *sim;
6481 	int    newopenings;
6482 
6483 	device = path->device;
6484 	sim = path->bus->sim;
6485 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6486 	xpt_freeze_devq(path, /*count*/1);
6487 	device->inq_flags |= SID_CmdQue;
6488 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6489 	xpt_dev_ccbq_resize(path, newopenings);
6490 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6491 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6492 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6493 	crs.openings
6494 	    = crs.release_timeout
6495 	    = crs.qfrozen_cnt
6496 	    = 0;
6497 	xpt_action((union ccb *)&crs);
6498 }
6499 
6500 static int busses_to_config;
6501 static int busses_to_reset;
6502 
6503 static int
6504 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6505 {
6506 	if (bus->path_id != CAM_XPT_PATH_ID) {
6507 		struct cam_path path;
6508 		struct ccb_pathinq cpi;
6509 		int can_negotiate;
6510 
6511 		busses_to_config++;
6512 		xpt_compile_path(&path, NULL, bus->path_id,
6513 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6514 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6515 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6516 		xpt_action((union ccb *)&cpi);
6517 		can_negotiate = cpi.hba_inquiry;
6518 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6519 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6520 		 && can_negotiate)
6521 			busses_to_reset++;
6522 		xpt_release_path(&path);
6523 	}
6524 
6525 	return(1);
6526 }
6527 
6528 static int
6529 xptconfigfunc(struct cam_eb *bus, void *arg)
6530 {
6531 	struct	cam_path *path;
6532 	union	ccb *work_ccb;
6533 
6534 	if (bus->path_id != CAM_XPT_PATH_ID) {
6535 		cam_status status;
6536 		int can_negotiate;
6537 
6538 		work_ccb = xpt_alloc_ccb();
6539 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6540 					      CAM_TARGET_WILDCARD,
6541 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6542 			kprintf("xptconfigfunc: xpt_create_path failed with "
6543 			       "status %#x for bus %d\n", status, bus->path_id);
6544 			kprintf("xptconfigfunc: halting bus configuration\n");
6545 			xpt_free_ccb(work_ccb);
6546 			busses_to_config--;
6547 			xpt_finishconfig(xpt_periph, NULL);
6548 			return(0);
6549 		}
6550 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6551 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6552 		xpt_action(work_ccb);
6553 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6554 			kprintf("xptconfigfunc: CPI failed on bus %d "
6555 			       "with status %d\n", bus->path_id,
6556 			       work_ccb->ccb_h.status);
6557 			xpt_finishconfig(xpt_periph, work_ccb);
6558 			return(1);
6559 		}
6560 
6561 		can_negotiate = work_ccb->cpi.hba_inquiry;
6562 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6563 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6564 		 && (can_negotiate != 0)) {
6565 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6566 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6567 			work_ccb->ccb_h.cbfcnp = NULL;
6568 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6569 				  ("Resetting Bus\n"));
6570 			xpt_action(work_ccb);
6571 			xpt_finishconfig(xpt_periph, work_ccb);
6572 		} else {
6573 			/* Act as though we performed a successful BUS RESET */
6574 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6575 			xpt_finishconfig(xpt_periph, work_ccb);
6576 		}
6577 	}
6578 
6579 	return(1);
6580 }
6581 
6582 static void
6583 xpt_config(void *arg)
6584 {
6585 	/*
6586 	 * Now that interrupts are enabled, go find our devices
6587 	 */
6588 
6589 #ifdef CAMDEBUG
6590 	/* Setup debugging flags and path */
6591 #ifdef CAM_DEBUG_FLAGS
6592 	cam_dflags = CAM_DEBUG_FLAGS;
6593 #else /* !CAM_DEBUG_FLAGS */
6594 	cam_dflags = CAM_DEBUG_NONE;
6595 #endif /* CAM_DEBUG_FLAGS */
6596 #ifdef CAM_DEBUG_BUS
6597 	if (cam_dflags != CAM_DEBUG_NONE) {
6598 		if (xpt_create_path(&cam_dpath, xpt_periph,
6599 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6600 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6601 			kprintf("xpt_config: xpt_create_path() failed for debug"
6602 			       " target %d:%d:%d, debugging disabled\n",
6603 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6604 			cam_dflags = CAM_DEBUG_NONE;
6605 		}
6606 	} else
6607 		cam_dpath = NULL;
6608 #else /* !CAM_DEBUG_BUS */
6609 	cam_dpath = NULL;
6610 #endif /* CAM_DEBUG_BUS */
6611 #endif /* CAMDEBUG */
6612 
6613 	/*
6614 	 * Scan all installed busses.
6615 	 */
6616 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6617 
6618 	if (busses_to_config == 0) {
6619 		/* Call manually because we don't have any busses */
6620 		xpt_finishconfig(xpt_periph, NULL);
6621 	} else  {
6622 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6623 			kprintf("Waiting %d seconds for SCSI "
6624 			       "devices to settle\n", SCSI_DELAY/1000);
6625 		}
6626 		xpt_for_all_busses(xptconfigfunc, NULL);
6627 	}
6628 }
6629 
6630 /*
6631  * If the given device only has one peripheral attached to it, and if that
6632  * peripheral is the passthrough driver, announce it.  This insures that the
6633  * user sees some sort of announcement for every peripheral in their system.
6634  */
6635 static int
6636 xptpassannouncefunc(struct cam_ed *device, void *arg)
6637 {
6638 	struct cam_periph *periph;
6639 	int i;
6640 
6641 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6642 	     periph = SLIST_NEXT(periph, periph_links), i++);
6643 
6644 	periph = SLIST_FIRST(&device->periphs);
6645 	if ((i == 1)
6646 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6647 		xpt_announce_periph(periph, NULL);
6648 
6649 	return(1);
6650 }
6651 
6652 static void
6653 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6654 {
6655 	struct	periph_driver **p_drv;
6656 	int	i;
6657 
6658 	if (done_ccb != NULL) {
6659 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6660 			  ("xpt_finishconfig\n"));
6661 		switch(done_ccb->ccb_h.func_code) {
6662 		case XPT_RESET_BUS:
6663 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6664 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6665 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6666 				xpt_action(done_ccb);
6667 				return;
6668 			}
6669 			/* FALLTHROUGH */
6670 		case XPT_SCAN_BUS:
6671 		default:
6672 			xpt_free_path(done_ccb->ccb_h.path);
6673 			busses_to_config--;
6674 			break;
6675 		}
6676 	}
6677 
6678 	if (busses_to_config == 0) {
6679 		/* Register all the peripheral drivers */
6680 		/* XXX This will have to change when we have loadable modules */
6681 		p_drv = periph_drivers;
6682 		for (i = 0; p_drv[i] != NULL; i++) {
6683 			(*p_drv[i]->init)();
6684 		}
6685 
6686 		/*
6687 		 * Check for devices with no "standard" peripheral driver
6688 		 * attached.  For any devices like that, announce the
6689 		 * passthrough driver so the user will see something.
6690 		 */
6691 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6692 
6693 		/* Release our hook so that the boot can continue. */
6694 		config_intrhook_disestablish(xpt_config_hook);
6695 		kfree(xpt_config_hook, M_TEMP);
6696 		xpt_config_hook = NULL;
6697 	}
6698 	if (done_ccb != NULL)
6699 		xpt_free_ccb(done_ccb);
6700 }
6701 
6702 static void
6703 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6704 {
6705 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6706 
6707 	switch (work_ccb->ccb_h.func_code) {
6708 	/* Common cases first */
6709 	case XPT_PATH_INQ:		/* Path routing inquiry */
6710 	{
6711 		struct ccb_pathinq *cpi;
6712 
6713 		cpi = &work_ccb->cpi;
6714 		cpi->version_num = 1; /* XXX??? */
6715 		cpi->hba_inquiry = 0;
6716 		cpi->target_sprt = 0;
6717 		cpi->hba_misc = 0;
6718 		cpi->hba_eng_cnt = 0;
6719 		cpi->max_target = 0;
6720 		cpi->max_lun = 0;
6721 		cpi->initiator_id = 0;
6722 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6723 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6724 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6725 		cpi->unit_number = sim->unit_number;
6726 		cpi->bus_id = sim->bus_id;
6727 		cpi->base_transfer_speed = 0;
6728 #ifdef CAM_NEW_TRAN_CODE
6729 		cpi->protocol = PROTO_UNSPECIFIED;
6730 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
6731 		cpi->transport = XPORT_UNSPECIFIED;
6732 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
6733 #endif /* CAM_NEW_TRAN_CODE */
6734 		cpi->ccb_h.status = CAM_REQ_CMP;
6735 		xpt_done(work_ccb);
6736 		break;
6737 	}
6738 	default:
6739 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6740 		xpt_done(work_ccb);
6741 		break;
6742 	}
6743 }
6744 
6745 /*
6746  * The xpt as a "controller" has no interrupt sources, so polling
6747  * is a no-op.
6748  */
6749 static void
6750 xptpoll(struct cam_sim *sim)
6751 {
6752 }
6753 
6754 /*
6755  * Should only be called by the machine interrupt dispatch routines,
6756  * so put these prototypes here instead of in the header.
6757  */
6758 
6759 static void
6760 swi_camnet(void *arg, void *frame)
6761 {
6762 	camisr(&cam_netq);
6763 }
6764 
6765 static void
6766 swi_cambio(void *arg, void *frame)
6767 {
6768 	camisr(&cam_bioq);
6769 }
6770 
6771 static void
6772 camisr(cam_isrq_t *queue)
6773 {
6774 	struct	ccb_hdr *ccb_h;
6775 
6776 	crit_enter();
6777 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6778 		int	runq;
6779 
6780 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6781 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6782 		splz();
6783 
6784 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6785 			  ("camisr\n"));
6786 
6787 		runq = FALSE;
6788 
6789 		if (ccb_h->flags & CAM_HIGH_POWER) {
6790 			struct highpowerlist	*hphead;
6791 			struct cam_ed		*device;
6792 			union ccb		*send_ccb;
6793 
6794 			hphead = &highpowerq;
6795 
6796 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6797 
6798 			/*
6799 			 * Increment the count since this command is done.
6800 			 */
6801 			num_highpower++;
6802 
6803 			/*
6804 			 * Any high powered commands queued up?
6805 			 */
6806 			if (send_ccb != NULL) {
6807 				device = send_ccb->ccb_h.path->device;
6808 
6809 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6810 
6811 				xpt_release_devq(send_ccb->ccb_h.path,
6812 						 /*count*/1, /*runqueue*/TRUE);
6813 			}
6814 		}
6815 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6816 			struct cam_ed *dev;
6817 
6818 			dev = ccb_h->path->device;
6819 
6820 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6821 
6822 			if (ccb_h->path->bus->sim->devq) {
6823 				ccb_h->path->bus->sim->devq->send_active--;
6824 				ccb_h->path->bus->sim->devq->send_openings++;
6825 			}
6826 
6827 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6828 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
6829 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6830 			  && (dev->ccbq.dev_active == 0))) {
6831 
6832 				xpt_release_devq(ccb_h->path, /*count*/1,
6833 						 /*run_queue*/TRUE);
6834 			}
6835 
6836 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6837 			 && (--dev->tag_delay_count == 0))
6838 				xpt_start_tags(ccb_h->path);
6839 
6840 			if ((dev->ccbq.queue.entries > 0)
6841 			 && (dev->qfrozen_cnt == 0)
6842 			 && (device_is_send_queued(dev) == 0)) {
6843 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6844 							      dev);
6845 			}
6846 		}
6847 
6848 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6849 			xpt_release_simq(ccb_h->path->bus->sim,
6850 					 /*run_queue*/TRUE);
6851 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6852 			runq = FALSE;
6853 		}
6854 
6855 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6856 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6857 			xpt_release_devq(ccb_h->path, /*count*/1,
6858 					 /*run_queue*/TRUE);
6859 			ccb_h->status &= ~CAM_DEV_QFRZN;
6860 		} else if (runq) {
6861 			xpt_run_dev_sendq(ccb_h->path->bus);
6862 		}
6863 
6864 		/* Call the peripheral driver's callback */
6865 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6866 	}
6867 	crit_exit();
6868 }
6869