xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 7bc7e232)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.43 2007/11/24 19:19:43 pavalos Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/thread2.h>
48 
49 #include <machine/clock.h>
50 
51 #include "cam.h"
52 #include "cam_ccb.h"
53 #include "cam_periph.h"
54 #include "cam_sim.h"
55 #include "cam_xpt.h"
56 #include "cam_xpt_sim.h"
57 #include "cam_xpt_periph.h"
58 #include "cam_debug.h"
59 
60 #include "scsi/scsi_all.h"
61 #include "scsi/scsi_message.h"
62 #include "scsi/scsi_pass.h"
63 #include "opt_cam.h"
64 
65 /* Datastructures internal to the xpt layer */
66 
67 /*
68  * Definition of an async handler callback block.  These are used to add
69  * SIMs and peripherals to the async callback lists.
70  */
71 struct async_node {
72 	SLIST_ENTRY(async_node)	links;
73 	u_int32_t	event_enable;	/* Async Event enables */
74 	void		(*callback)(void *arg, u_int32_t code,
75 				    struct cam_path *path, void *args);
76 	void		*callback_arg;
77 };
78 
79 SLIST_HEAD(async_list, async_node);
80 SLIST_HEAD(periph_list, cam_periph);
81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
82 
83 /*
84  * This is the maximum number of high powered commands (e.g. start unit)
85  * that can be outstanding at a particular time.
86  */
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER  4
89 #endif
90 
91 /* number of high powered commands that can go through right now */
92 static int num_highpower = CAM_MAX_HIGHPOWER;
93 
94 /*
95  * Structure for queueing a device in a run queue.
96  * There is one run queue for allocating new ccbs,
97  * and another for sending ccbs to the controller.
98  */
99 struct cam_ed_qinfo {
100 	cam_pinfo pinfo;
101 	struct	  cam_ed *device;
102 };
103 
104 /*
105  * The CAM EDT (Existing Device Table) contains the device information for
106  * all devices for all busses in the system.  The table contains a
107  * cam_ed structure for each device on the bus.
108  */
109 struct cam_ed {
110 	TAILQ_ENTRY(cam_ed) links;
111 	struct	cam_ed_qinfo alloc_ccb_entry;
112 	struct	cam_ed_qinfo send_ccb_entry;
113 	struct	cam_et	 *target;
114 	lun_id_t	 lun_id;
115 	struct	camq drvq;		/*
116 					 * Queue of type drivers wanting to do
117 					 * work on this device.
118 					 */
119 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
120 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
121 	struct	periph_list periphs;	/* All attached devices */
122 	u_int	generation;		/* Generation number */
123 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
124 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
125 					/* Storage for the inquiry data */
126 #ifdef CAM_NEW_TRAN_CODE
127 	cam_proto	 protocol;
128 	u_int		 protocol_version;
129 	cam_xport	 transport;
130 	u_int		 transport_version;
131 #endif /* CAM_NEW_TRAN_CODE */
132 	struct		 scsi_inquiry_data inq_data;
133 	u_int8_t	 inq_flags;	/*
134 					 * Current settings for inquiry flags.
135 					 * This allows us to override settings
136 					 * like disconnection and tagged
137 					 * queuing for a device.
138 					 */
139 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
140 	u_int8_t	 serial_num_len;
141 	u_int8_t	*serial_num;
142 	u_int32_t	 qfrozen_cnt;
143 	u_int32_t	 flags;
144 #define CAM_DEV_UNCONFIGURED	 	0x01
145 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
146 #define CAM_DEV_REL_ON_COMPLETE		0x04
147 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
148 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
149 #define CAM_DEV_TAG_AFTER_COUNT		0x20
150 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
151 	u_int32_t	 tag_delay_count;
152 #define	CAM_TAG_DELAY_COUNT		5
153 	u_int32_t	 refcount;
154 	struct		 callout c_handle;
155 };
156 
157 /*
158  * Each target is represented by an ET (Existing Target).  These
159  * entries are created when a target is successfully probed with an
160  * identify, and removed when a device fails to respond after a number
161  * of retries, or a bus rescan finds the device missing.
162  */
163 struct cam_et {
164 	TAILQ_HEAD(, cam_ed) ed_entries;
165 	TAILQ_ENTRY(cam_et) links;
166 	struct	cam_eb	*bus;
167 	target_id_t	target_id;
168 	u_int32_t	refcount;
169 	u_int		generation;
170 	struct		timeval last_reset;	/* uptime of last reset */
171 };
172 
173 /*
174  * Each bus is represented by an EB (Existing Bus).  These entries
175  * are created by calls to xpt_bus_register and deleted by calls to
176  * xpt_bus_deregister.
177  */
178 struct cam_eb {
179 	TAILQ_HEAD(, cam_et) et_entries;
180 	TAILQ_ENTRY(cam_eb)  links;
181 	path_id_t	     path_id;
182 	struct cam_sim	     *sim;
183 	struct timeval	     last_reset;	/* uptime of last reset */
184 	u_int32_t	     flags;
185 #define	CAM_EB_RUNQ_SCHEDULED	0x01
186 	u_int32_t	     refcount;
187 	u_int		     generation;
188 };
189 
190 struct cam_path {
191 	struct cam_periph *periph;
192 	struct cam_eb	  *bus;
193 	struct cam_et	  *target;
194 	struct cam_ed	  *device;
195 };
196 
197 struct xpt_quirk_entry {
198 	struct scsi_inquiry_pattern inq_pat;
199 	u_int8_t quirks;
200 #define	CAM_QUIRK_NOLUNS	0x01
201 #define	CAM_QUIRK_NOSERIAL	0x02
202 #define	CAM_QUIRK_HILUNS	0x04
203 	u_int mintags;
204 	u_int maxtags;
205 };
206 #define	CAM_SCSI2_MAXLUN	8
207 
208 typedef enum {
209 	XPT_FLAG_OPEN		= 0x01
210 } xpt_flags;
211 
212 struct xpt_softc {
213 	xpt_flags	flags;
214 	u_int32_t	generation;
215 };
216 
217 static const char quantum[] = "QUANTUM";
218 static const char sony[] = "SONY";
219 static const char west_digital[] = "WDIGTL";
220 static const char samsung[] = "SAMSUNG";
221 static const char seagate[] = "SEAGATE";
222 static const char microp[] = "MICROP";
223 
224 static struct xpt_quirk_entry xpt_quirk_table[] =
225 {
226 	{
227 		/* Reports QUEUE FULL for temporary resource shortages */
228 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
229 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
230 	},
231 	{
232 		/* Reports QUEUE FULL for temporary resource shortages */
233 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
234 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
235 	},
236 	{
237 		/* Reports QUEUE FULL for temporary resource shortages */
238 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
239 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
240 	},
241 	{
242 		/* Broken tagged queuing drive */
243 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
244 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
245 	},
246 	{
247 		/* Broken tagged queuing drive */
248 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
249 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
250 	},
251 	{
252 		/* Broken tagged queuing drive */
253 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
254 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
255 	},
256 	{
257 		/*
258 		 * Unfortunately, the Quantum Atlas III has the same
259 		 * problem as the Atlas II drives above.
260 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
261 		 *
262 		 * For future reference, the drive with the problem was:
263 		 * QUANTUM QM39100TD-SW N1B0
264 		 *
265 		 * It's possible that Quantum will fix the problem in later
266 		 * firmware revisions.  If that happens, the quirk entry
267 		 * will need to be made specific to the firmware revisions
268 		 * with the problem.
269 		 *
270 		 */
271 		/* Reports QUEUE FULL for temporary resource shortages */
272 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
273 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
274 	},
275 	{
276 		/*
277 		 * 18 Gig Atlas III, same problem as the 9G version.
278 		 * Reported by: Andre Albsmeier
279 		 *		<andre.albsmeier@mchp.siemens.de>
280 		 *
281 		 * For future reference, the drive with the problem was:
282 		 * QUANTUM QM318000TD-S N491
283 		 */
284 		/* Reports QUEUE FULL for temporary resource shortages */
285 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
286 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
287 	},
288 	{
289 		/*
290 		 * Broken tagged queuing drive
291 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
292 		 *         and: Martin Renters <martin@tdc.on.ca>
293 		 */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
295 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
296 	},
297 		/*
298 		 * The Seagate Medalist Pro drives have very poor write
299 		 * performance with anything more than 2 tags.
300 		 *
301 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
302 		 * Drive:  <SEAGATE ST36530N 1444>
303 		 *
304 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
305 		 * Drive:  <SEAGATE ST34520W 1281>
306 		 *
307 		 * No one has actually reported that the 9G version
308 		 * (ST39140*) of the Medalist Pro has the same problem, but
309 		 * we're assuming that it does because the 4G and 6.5G
310 		 * versions of the drive are broken.
311 		 */
312 	{
313 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
314 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
315 	},
316 	{
317 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
318 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
319 	},
320 	{
321 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
322 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
323 	},
324 	{
325 		/*
326 		 * Slow when tagged queueing is enabled.  Write performance
327 		 * steadily drops off with more and more concurrent
328 		 * transactions.  Best sequential write performance with
329 		 * tagged queueing turned off and write caching turned on.
330 		 *
331 		 * PR:  kern/10398
332 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
333 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
334 		 *
335 		 * The drive with the problem had the "S65A" firmware
336 		 * revision, and has also been reported (by Stephen J.
337 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
338 		 * firmware revision.
339 		 *
340 		 * Although no one has reported problems with the 2 gig
341 		 * version of the DCAS drive, the assumption is that it
342 		 * has the same problems as the 4 gig version.  Therefore
343 		 * this quirk entries disables tagged queueing for all
344 		 * DCAS drives.
345 		 */
346 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
347 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
348 	},
349 	{
350 		/* Broken tagged queuing drive */
351 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
352 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
353 	},
354 	{
355 		/* Broken tagged queuing drive */
356 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
357 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
358 	},
359 	{
360 		/*
361 		 * Broken tagged queuing drive.
362 		 * Submitted by:
363 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
364 		 * in PR kern/9535
365 		 */
366 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
367 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
368 	},
369         {
370 		/*
371 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
372 		 * 8MB/sec.)
373 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
374 		 * Best performance with these drives is achieved with
375 		 * tagged queueing turned off, and write caching turned on.
376 		 */
377 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
378 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
379         },
380         {
381 		/*
382 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
383 		 * 8MB/sec.)
384 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
385 		 * Best performance with these drives is achieved with
386 		 * tagged queueing turned off, and write caching turned on.
387 		 */
388 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
389 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
390         },
391 	{
392 		/*
393 		 * Doesn't handle queue full condition correctly,
394 		 * so we need to limit maxtags to what the device
395 		 * can handle instead of determining this automatically.
396 		 */
397 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
398 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
399 	},
400 	{
401 		/* Really only one LUN */
402 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
403 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* I can't believe we need a quirk for DPT volumes. */
407 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
408 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
409 		/*mintags*/0, /*maxtags*/255
410 	},
411 	{
412 		/*
413 		 * Many Sony CDROM drives don't like multi-LUN probing.
414 		 */
415 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
416 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
417 	},
418 	{
419 		/*
420 		 * This drive doesn't like multiple LUN probing.
421 		 * Submitted by:  Parag Patel <parag@cgt.com>
422 		 */
423 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
424 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
425 	},
426 	{
427 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
428 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
429 	},
430 	{
431 		/*
432 		 * The 8200 doesn't like multi-lun probing, and probably
433 		 * don't like serial number requests either.
434 		 */
435 		{
436 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
437 			"EXB-8200*", "*"
438 		},
439 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
440 	},
441 	{
442 		/*
443 		 * Let's try the same as above, but for a drive that says
444 		 * it's an IPL-6860 but is actually an EXB 8200.
445 		 */
446 		{
447 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
448 			"IPL-6860*", "*"
449 		},
450 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
451 	},
452 	{
453 		/*
454 		 * These Hitachi drives don't like multi-lun probing.
455 		 * The PR submitter has a DK319H, but says that the Linux
456 		 * kernel has a similar work-around for the DK312 and DK314,
457 		 * so all DK31* drives are quirked here.
458 		 * PR:            misc/18793
459 		 * Submitted by:  Paul Haddad <paul@pth.com>
460 		 */
461 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
462 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
463 	},
464 	{
465 		/*
466 		 * This old revision of the TDC3600 is also SCSI-1, and
467 		 * hangs upon serial number probing.
468 		 */
469 		{
470 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
471 			" TDC 3600", "U07:"
472 		},
473 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
474 	},
475 	{
476 		/*
477 		 * Would repond to all LUNs if asked for.
478 		 */
479 		{
480 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
481 			"CP150", "*"
482 		},
483 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
484 	},
485 	{
486 		/*
487 		 * Would repond to all LUNs if asked for.
488 		 */
489 		{
490 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
491 			"96X2*", "*"
492 		},
493 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
494 	},
495 	{
496 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
497 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
502 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
503 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
504 	},
505 	{
506 		/* TeraSolutions special settings for TRC-22 RAID */
507 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
508 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
509 	},
510 	{
511 		/* Veritas Storage Appliance */
512 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
513 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
514 	},
515 	{
516 		/*
517 		 * Would respond to all LUNs.  Device type and removable
518 		 * flag are jumper-selectable.
519 		 */
520 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
521 		  "Tahiti 1", "*"
522 		},
523 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
524 	},
525 	{
526 		/* Default tagged queuing parameters for all devices */
527 		{
528 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
529 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
530 		},
531 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
532 	},
533 };
534 
535 static const int xpt_quirk_table_size =
536 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
537 
538 typedef enum {
539 	DM_RET_COPY		= 0x01,
540 	DM_RET_FLAG_MASK	= 0x0f,
541 	DM_RET_NONE		= 0x00,
542 	DM_RET_STOP		= 0x10,
543 	DM_RET_DESCEND		= 0x20,
544 	DM_RET_ERROR		= 0x30,
545 	DM_RET_ACTION_MASK	= 0xf0
546 } dev_match_ret;
547 
548 typedef enum {
549 	XPT_DEPTH_BUS,
550 	XPT_DEPTH_TARGET,
551 	XPT_DEPTH_DEVICE,
552 	XPT_DEPTH_PERIPH
553 } xpt_traverse_depth;
554 
555 struct xpt_traverse_config {
556 	xpt_traverse_depth	depth;
557 	void			*tr_func;
558 	void			*tr_arg;
559 };
560 
561 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
562 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
563 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
564 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
565 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
566 
567 /* Transport layer configuration information */
568 static struct xpt_softc xsoftc;
569 
570 /* Queues for our software interrupt handler */
571 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
572 static cam_isrq_t cam_bioq;
573 static cam_isrq_t cam_netq;
574 
575 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
576 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
577 static u_int xpt_max_ccbs;	/*
578 				 * Maximum size of ccb pool.  Modified as
579 				 * devices are added/removed or have their
580 				 * opening counts changed.
581 				 */
582 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
583 
584 struct cam_periph *xpt_periph;
585 
586 static periph_init_t xpt_periph_init;
587 
588 static periph_init_t probe_periph_init;
589 
590 static struct periph_driver xpt_driver =
591 {
592 	xpt_periph_init, "xpt",
593 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
594 };
595 
596 static struct periph_driver probe_driver =
597 {
598 	probe_periph_init, "probe",
599 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
600 };
601 
602 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
603 PERIPHDRIVER_DECLARE(probe, probe_driver);
604 
605 #define XPT_CDEV_MAJOR 104
606 
607 static d_open_t xptopen;
608 static d_close_t xptclose;
609 static d_ioctl_t xptioctl;
610 
611 static struct dev_ops xpt_ops = {
612 	{ "xpt", XPT_CDEV_MAJOR, 0 },
613 	.d_open = xptopen,
614 	.d_close = xptclose,
615 	.d_ioctl = xptioctl
616 };
617 
618 static struct intr_config_hook *xpt_config_hook;
619 
620 /* Registered busses */
621 static TAILQ_HEAD(,cam_eb) xpt_busses;
622 static u_int bus_generation;
623 
624 /* Storage for debugging datastructures */
625 #ifdef	CAMDEBUG
626 struct cam_path *cam_dpath;
627 u_int32_t cam_dflags;
628 u_int32_t cam_debug_delay;
629 #endif
630 
631 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
632 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
633 #endif
634 
635 /*
636  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
637  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
638  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
639  */
640 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
641     || defined(CAM_DEBUG_LUN)
642 #ifdef CAMDEBUG
643 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
644     || !defined(CAM_DEBUG_LUN)
645 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
646         and CAM_DEBUG_LUN"
647 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
648 #else /* !CAMDEBUG */
649 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
650 #endif /* CAMDEBUG */
651 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
652 
653 /* Our boot-time initialization hook */
654 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
655 
656 static moduledata_t cam_moduledata = {
657 	"cam",
658 	cam_module_event_handler,
659 	NULL
660 };
661 
662 static void	xpt_init(void *);
663 
664 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
665 MODULE_VERSION(cam, 1);
666 
667 
668 static cam_status	xpt_compile_path(struct cam_path *new_path,
669 					 struct cam_periph *perph,
670 					 path_id_t path_id,
671 					 target_id_t target_id,
672 					 lun_id_t lun_id);
673 
674 static void		xpt_release_path(struct cam_path *path);
675 
676 static void		xpt_async_bcast(struct async_list *async_head,
677 					u_int32_t async_code,
678 					struct cam_path *path,
679 					void *async_arg);
680 static void		xpt_dev_async(u_int32_t async_code,
681 				      struct cam_eb *bus,
682 				      struct cam_et *target,
683 				      struct cam_ed *device,
684 				      void *async_arg);
685 static path_id_t xptnextfreepathid(void);
686 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
687 static union ccb *xpt_get_ccb(struct cam_ed *device);
688 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
689 				  u_int32_t new_priority);
690 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
691 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
692 static timeout_t xpt_release_devq_timeout;
693 static void	 xpt_release_bus(struct cam_eb *bus);
694 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
695 					 int run_queue);
696 static struct cam_et*
697 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
698 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
699 static struct cam_ed*
700 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
701 				  lun_id_t lun_id);
702 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
703 				    struct cam_ed *device);
704 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
705 static struct cam_eb*
706 		 xpt_find_bus(path_id_t path_id);
707 static struct cam_et*
708 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
709 static struct cam_ed*
710 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
711 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
712 static void	 xpt_scan_lun(struct cam_periph *periph,
713 			      struct cam_path *path, cam_flags flags,
714 			      union ccb *ccb);
715 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
716 static xpt_busfunc_t	xptconfigbuscountfunc;
717 static xpt_busfunc_t	xptconfigfunc;
718 static void	 xpt_config(void *arg);
719 static xpt_devicefunc_t xptpassannouncefunc;
720 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
721 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
722 static void	 xptpoll(struct cam_sim *sim);
723 static inthand2_t swi_camnet;
724 static inthand2_t swi_cambio;
725 static void	 camisr(cam_isrq_t *queue);
726 #if 0
727 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
728 static void	 xptasync(struct cam_periph *periph,
729 			  u_int32_t code, cam_path *path);
730 #endif
731 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
732 				    u_int num_patterns, struct cam_eb *bus);
733 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
734 				       u_int num_patterns,
735 				       struct cam_ed *device);
736 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
737 				       u_int num_patterns,
738 				       struct cam_periph *periph);
739 static xpt_busfunc_t	xptedtbusfunc;
740 static xpt_targetfunc_t	xptedttargetfunc;
741 static xpt_devicefunc_t	xptedtdevicefunc;
742 static xpt_periphfunc_t	xptedtperiphfunc;
743 static xpt_pdrvfunc_t	xptplistpdrvfunc;
744 static xpt_periphfunc_t	xptplistperiphfunc;
745 static int		xptedtmatch(struct ccb_dev_match *cdm);
746 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
747 static int		xptbustraverse(struct cam_eb *start_bus,
748 				       xpt_busfunc_t *tr_func, void *arg);
749 static int		xpttargettraverse(struct cam_eb *bus,
750 					  struct cam_et *start_target,
751 					  xpt_targetfunc_t *tr_func, void *arg);
752 static int		xptdevicetraverse(struct cam_et *target,
753 					  struct cam_ed *start_device,
754 					  xpt_devicefunc_t *tr_func, void *arg);
755 static int		xptperiphtraverse(struct cam_ed *device,
756 					  struct cam_periph *start_periph,
757 					  xpt_periphfunc_t *tr_func, void *arg);
758 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
759 					xpt_pdrvfunc_t *tr_func, void *arg);
760 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
761 					    struct cam_periph *start_periph,
762 					    xpt_periphfunc_t *tr_func,
763 					    void *arg);
764 static xpt_busfunc_t	xptdefbusfunc;
765 static xpt_targetfunc_t	xptdeftargetfunc;
766 static xpt_devicefunc_t	xptdefdevicefunc;
767 static xpt_periphfunc_t	xptdefperiphfunc;
768 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
769 #ifdef notusedyet
770 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
771 					    void *arg);
772 #endif
773 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
774 					    void *arg);
775 #ifdef notusedyet
776 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
777 					    void *arg);
778 #endif
779 static xpt_devicefunc_t	xptsetasyncfunc;
780 static xpt_busfunc_t	xptsetasyncbusfunc;
781 static cam_status	xptregister(struct cam_periph *periph,
782 				    void *arg);
783 static cam_status	proberegister(struct cam_periph *periph,
784 				      void *arg);
785 static void	 probeschedule(struct cam_periph *probe_periph);
786 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
787 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
788 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
789 static void	 probecleanup(struct cam_periph *periph);
790 static void	 xpt_find_quirk(struct cam_ed *device);
791 #ifdef CAM_NEW_TRAN_CODE
792 static void	 xpt_devise_transport(struct cam_path *path);
793 #endif /* CAM_NEW_TRAN_CODE */
794 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
795 					   struct cam_ed *device,
796 					   int async_update);
797 static void	 xpt_toggle_tags(struct cam_path *path);
798 static void	 xpt_start_tags(struct cam_path *path);
799 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
800 					    struct cam_ed *dev);
801 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
802 					   struct cam_ed *dev);
803 static __inline int periph_is_queued(struct cam_periph *periph);
804 static __inline int device_is_alloc_queued(struct cam_ed *device);
805 static __inline int device_is_send_queued(struct cam_ed *device);
806 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
807 
808 static __inline int
809 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
810 {
811 	int retval;
812 
813 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
814 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
815 			cam_ccbq_resize(&dev->ccbq,
816 					dev->ccbq.dev_openings
817 					+ dev->ccbq.dev_active);
818 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
819 		}
820 		/*
821 		 * The priority of a device waiting for CCB resources
822 		 * is that of the the highest priority peripheral driver
823 		 * enqueued.
824 		 */
825 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
826 					  &dev->alloc_ccb_entry.pinfo,
827 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
828 	} else {
829 		retval = 0;
830 	}
831 
832 	return (retval);
833 }
834 
835 static __inline int
836 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
837 {
838 	int	retval;
839 
840 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
841 		/*
842 		 * The priority of a device waiting for controller
843 		 * resources is that of the the highest priority CCB
844 		 * enqueued.
845 		 */
846 		retval =
847 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
848 				     &dev->send_ccb_entry.pinfo,
849 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
850 	} else {
851 		retval = 0;
852 	}
853 	return (retval);
854 }
855 
856 static __inline int
857 periph_is_queued(struct cam_periph *periph)
858 {
859 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
860 }
861 
862 static __inline int
863 device_is_alloc_queued(struct cam_ed *device)
864 {
865 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
866 }
867 
868 static __inline int
869 device_is_send_queued(struct cam_ed *device)
870 {
871 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
872 }
873 
874 static __inline int
875 dev_allocq_is_runnable(struct cam_devq *devq)
876 {
877 	/*
878 	 * Have work to do.
879 	 * Have space to do more work.
880 	 * Allowed to do work.
881 	 */
882 	return ((devq->alloc_queue.qfrozen_cnt == 0)
883 	     && (devq->alloc_queue.entries > 0)
884 	     && (devq->alloc_openings > 0));
885 }
886 
887 static void
888 xpt_periph_init(void)
889 {
890 	dev_ops_add(&xpt_ops, 0, 0);
891 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
892 }
893 
894 static void
895 probe_periph_init(void)
896 {
897 }
898 
899 
900 static void
901 xptdone(struct cam_periph *periph, union ccb *done_ccb)
902 {
903 	/* Caller will release the CCB */
904 	wakeup(&done_ccb->ccb_h.cbfcnp);
905 }
906 
907 static int
908 xptopen(struct dev_open_args *ap)
909 {
910 	cdev_t dev = ap->a_head.a_dev;
911 	int unit;
912 
913 	unit = minor(dev) & 0xff;
914 
915 	/*
916 	 * Only allow read-write access.
917 	 */
918 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
919 		return(EPERM);
920 
921 	/*
922 	 * We don't allow nonblocking access.
923 	 */
924 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
925 		kprintf("xpt%d: can't do nonblocking access\n", unit);
926 		return(ENODEV);
927 	}
928 
929 	/*
930 	 * We only have one transport layer right now.  If someone accesses
931 	 * us via something other than minor number 1, point out their
932 	 * mistake.
933 	 */
934 	if (unit != 0) {
935 		kprintf("xptopen: got invalid xpt unit %d\n", unit);
936 		return(ENXIO);
937 	}
938 
939 	/* Mark ourselves open */
940 	xsoftc.flags |= XPT_FLAG_OPEN;
941 
942 	return(0);
943 }
944 
945 static int
946 xptclose(struct dev_close_args *ap)
947 {
948 	cdev_t dev = ap->a_head.a_dev;
949 	int unit;
950 
951 	unit = minor(dev) & 0xff;
952 
953 	/*
954 	 * We only have one transport layer right now.  If someone accesses
955 	 * us via something other than minor number 1, point out their
956 	 * mistake.
957 	 */
958 	if (unit != 0) {
959 		kprintf("xptclose: got invalid xpt unit %d\n", unit);
960 		return(ENXIO);
961 	}
962 
963 	/* Mark ourselves closed */
964 	xsoftc.flags &= ~XPT_FLAG_OPEN;
965 
966 	return(0);
967 }
968 
969 static int
970 xptioctl(struct dev_ioctl_args *ap)
971 {
972 	cdev_t dev = ap->a_head.a_dev;
973 	int unit, error;
974 
975 	error = 0;
976 	unit = minor(dev) & 0xff;
977 
978 	/*
979 	 * We only have one transport layer right now.  If someone accesses
980 	 * us via something other than minor number 1, point out their
981 	 * mistake.
982 	 */
983 	if (unit != 0) {
984 		kprintf("xptioctl: got invalid xpt unit %d\n", unit);
985 		return(ENXIO);
986 	}
987 
988 	switch(ap->a_cmd) {
989 	/*
990 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
991 	 * to accept CCB types that don't quite make sense to send through a
992 	 * passthrough driver.
993 	 */
994 	case CAMIOCOMMAND: {
995 		union ccb *ccb;
996 		union ccb *inccb;
997 
998 		inccb = (union ccb *)ap->a_data;
999 
1000 		switch(inccb->ccb_h.func_code) {
1001 		case XPT_SCAN_BUS:
1002 		case XPT_RESET_BUS:
1003 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1004 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1005 				error = EINVAL;
1006 				break;
1007 			}
1008 			/* FALLTHROUGH */
1009 		case XPT_PATH_INQ:
1010 		case XPT_ENG_INQ:
1011 		case XPT_SCAN_LUN:
1012 
1013 			ccb = xpt_alloc_ccb();
1014 
1015 			/*
1016 			 * Create a path using the bus, target, and lun the
1017 			 * user passed in.
1018 			 */
1019 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1020 					    inccb->ccb_h.path_id,
1021 					    inccb->ccb_h.target_id,
1022 					    inccb->ccb_h.target_lun) !=
1023 					    CAM_REQ_CMP){
1024 				error = EINVAL;
1025 				xpt_free_ccb(ccb);
1026 				break;
1027 			}
1028 			/* Ensure all of our fields are correct */
1029 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1030 				      inccb->ccb_h.pinfo.priority);
1031 			xpt_merge_ccb(ccb, inccb);
1032 			ccb->ccb_h.cbfcnp = xptdone;
1033 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1034 			bcopy(ccb, inccb, sizeof(union ccb));
1035 			xpt_free_path(ccb->ccb_h.path);
1036 			xpt_free_ccb(ccb);
1037 			break;
1038 
1039 		case XPT_DEBUG: {
1040 			union ccb ccb;
1041 
1042 			/*
1043 			 * This is an immediate CCB, so it's okay to
1044 			 * allocate it on the stack.
1045 			 */
1046 
1047 			/*
1048 			 * Create a path using the bus, target, and lun the
1049 			 * user passed in.
1050 			 */
1051 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1052 					    inccb->ccb_h.path_id,
1053 					    inccb->ccb_h.target_id,
1054 					    inccb->ccb_h.target_lun) !=
1055 					    CAM_REQ_CMP){
1056 				error = EINVAL;
1057 				break;
1058 			}
1059 			/* Ensure all of our fields are correct */
1060 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1061 				      inccb->ccb_h.pinfo.priority);
1062 			xpt_merge_ccb(&ccb, inccb);
1063 			ccb.ccb_h.cbfcnp = xptdone;
1064 			xpt_action(&ccb);
1065 			bcopy(&ccb, inccb, sizeof(union ccb));
1066 			xpt_free_path(ccb.ccb_h.path);
1067 			break;
1068 
1069 		}
1070 		case XPT_DEV_MATCH: {
1071 			struct cam_periph_map_info mapinfo;
1072 			struct cam_path *old_path;
1073 
1074 			/*
1075 			 * We can't deal with physical addresses for this
1076 			 * type of transaction.
1077 			 */
1078 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1079 				error = EINVAL;
1080 				break;
1081 			}
1082 
1083 			/*
1084 			 * Save this in case the caller had it set to
1085 			 * something in particular.
1086 			 */
1087 			old_path = inccb->ccb_h.path;
1088 
1089 			/*
1090 			 * We really don't need a path for the matching
1091 			 * code.  The path is needed because of the
1092 			 * debugging statements in xpt_action().  They
1093 			 * assume that the CCB has a valid path.
1094 			 */
1095 			inccb->ccb_h.path = xpt_periph->path;
1096 
1097 			bzero(&mapinfo, sizeof(mapinfo));
1098 
1099 			/*
1100 			 * Map the pattern and match buffers into kernel
1101 			 * virtual address space.
1102 			 */
1103 			error = cam_periph_mapmem(inccb, &mapinfo);
1104 
1105 			if (error) {
1106 				inccb->ccb_h.path = old_path;
1107 				break;
1108 			}
1109 
1110 			/*
1111 			 * This is an immediate CCB, we can send it on directly.
1112 			 */
1113 			xpt_action(inccb);
1114 
1115 			/*
1116 			 * Map the buffers back into user space.
1117 			 */
1118 			cam_periph_unmapmem(inccb, &mapinfo);
1119 
1120 			inccb->ccb_h.path = old_path;
1121 
1122 			error = 0;
1123 			break;
1124 		}
1125 		default:
1126 			error = ENOTSUP;
1127 			break;
1128 		}
1129 		break;
1130 	}
1131 	/*
1132 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1133 	 * with the periphal driver name and unit name filled in.  The other
1134 	 * fields don't really matter as input.  The passthrough driver name
1135 	 * ("pass"), and unit number are passed back in the ccb.  The current
1136 	 * device generation number, and the index into the device peripheral
1137 	 * driver list, and the status are also passed back.  Note that
1138 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1139 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1140 	 * (or rather should be) impossible for the device peripheral driver
1141 	 * list to change since we look at the whole thing in one pass, and
1142 	 * we do it within a critical section.
1143 	 *
1144 	 */
1145 	case CAMGETPASSTHRU: {
1146 		union ccb *ccb;
1147 		struct cam_periph *periph;
1148 		struct periph_driver **p_drv;
1149 		char   *name;
1150 		u_int unit;
1151 		u_int cur_generation;
1152 		int base_periph_found;
1153 		int splbreaknum;
1154 
1155 		ccb = (union ccb *)ap->a_data;
1156 		unit = ccb->cgdl.unit_number;
1157 		name = ccb->cgdl.periph_name;
1158 		/*
1159 		 * Every 100 devices, we want to call splz() to check for
1160 		 * and allow the software interrupt handler a chance to run.
1161 		 *
1162 		 * Most systems won't run into this check, but this should
1163 		 * avoid starvation in the software interrupt handler in
1164 		 * large systems.
1165 		 */
1166 		splbreaknum = 100;
1167 
1168 		ccb = (union ccb *)ap->a_data;
1169 
1170 		base_periph_found = 0;
1171 
1172 		/*
1173 		 * Sanity check -- make sure we don't get a null peripheral
1174 		 * driver name.
1175 		 */
1176 		if (*ccb->cgdl.periph_name == '\0') {
1177 			error = EINVAL;
1178 			break;
1179 		}
1180 
1181 		/* Keep the list from changing while we traverse it */
1182 		crit_enter();
1183 ptstartover:
1184 		cur_generation = xsoftc.generation;
1185 
1186 		/* first find our driver in the list of drivers */
1187 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1188 			if (strcmp((*p_drv)->driver_name, name) == 0)
1189 				break;
1190 		}
1191 
1192 		if (*p_drv == NULL) {
1193 			crit_exit();
1194 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1195 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1196 			*ccb->cgdl.periph_name = '\0';
1197 			ccb->cgdl.unit_number = 0;
1198 			error = ENOENT;
1199 			break;
1200 		}
1201 
1202 		/*
1203 		 * Run through every peripheral instance of this driver
1204 		 * and check to see whether it matches the unit passed
1205 		 * in by the user.  If it does, get out of the loops and
1206 		 * find the passthrough driver associated with that
1207 		 * peripheral driver.
1208 		 */
1209 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1210 
1211 			if (periph->unit_number == unit) {
1212 				break;
1213 			} else if (--splbreaknum == 0) {
1214 				splz();
1215 				splbreaknum = 100;
1216 				if (cur_generation != xsoftc.generation)
1217 				       goto ptstartover;
1218 			}
1219 		}
1220 		/*
1221 		 * If we found the peripheral driver that the user passed
1222 		 * in, go through all of the peripheral drivers for that
1223 		 * particular device and look for a passthrough driver.
1224 		 */
1225 		if (periph != NULL) {
1226 			struct cam_ed *device;
1227 			int i;
1228 
1229 			base_periph_found = 1;
1230 			device = periph->path->device;
1231 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1232 			     periph != NULL;
1233 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1234 				/*
1235 				 * Check to see whether we have a
1236 				 * passthrough device or not.
1237 				 */
1238 				if (strcmp(periph->periph_name, "pass") == 0) {
1239 					/*
1240 					 * Fill in the getdevlist fields.
1241 					 */
1242 					strcpy(ccb->cgdl.periph_name,
1243 					       periph->periph_name);
1244 					ccb->cgdl.unit_number =
1245 						periph->unit_number;
1246 					if (SLIST_NEXT(periph, periph_links))
1247 						ccb->cgdl.status =
1248 							CAM_GDEVLIST_MORE_DEVS;
1249 					else
1250 						ccb->cgdl.status =
1251 						       CAM_GDEVLIST_LAST_DEVICE;
1252 					ccb->cgdl.generation =
1253 						device->generation;
1254 					ccb->cgdl.index = i;
1255 					/*
1256 					 * Fill in some CCB header fields
1257 					 * that the user may want.
1258 					 */
1259 					ccb->ccb_h.path_id =
1260 						periph->path->bus->path_id;
1261 					ccb->ccb_h.target_id =
1262 						periph->path->target->target_id;
1263 					ccb->ccb_h.target_lun =
1264 						periph->path->device->lun_id;
1265 					ccb->ccb_h.status = CAM_REQ_CMP;
1266 					break;
1267 				}
1268 			}
1269 		}
1270 
1271 		/*
1272 		 * If the periph is null here, one of two things has
1273 		 * happened.  The first possibility is that we couldn't
1274 		 * find the unit number of the particular peripheral driver
1275 		 * that the user is asking about.  e.g. the user asks for
1276 		 * the passthrough driver for "da11".  We find the list of
1277 		 * "da" peripherals all right, but there is no unit 11.
1278 		 * The other possibility is that we went through the list
1279 		 * of peripheral drivers attached to the device structure,
1280 		 * but didn't find one with the name "pass".  Either way,
1281 		 * we return ENOENT, since we couldn't find something.
1282 		 */
1283 		if (periph == NULL) {
1284 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1285 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1286 			*ccb->cgdl.periph_name = '\0';
1287 			ccb->cgdl.unit_number = 0;
1288 			error = ENOENT;
1289 			/*
1290 			 * It is unfortunate that this is even necessary,
1291 			 * but there are many, many clueless users out there.
1292 			 * If this is true, the user is looking for the
1293 			 * passthrough driver, but doesn't have one in his
1294 			 * kernel.
1295 			 */
1296 			if (base_periph_found == 1) {
1297 				kprintf("xptioctl: pass driver is not in the "
1298 				       "kernel\n");
1299 				kprintf("xptioctl: put \"device pass0\" in "
1300 				       "your kernel config file\n");
1301 			}
1302 		}
1303 		crit_exit();
1304 		break;
1305 		}
1306 	default:
1307 		error = ENOTTY;
1308 		break;
1309 	}
1310 
1311 	return(error);
1312 }
1313 
1314 static int
1315 cam_module_event_handler(module_t mod, int what, void *arg)
1316 {
1317 	if (what == MOD_LOAD) {
1318 		xpt_init(NULL);
1319 	} else if (what == MOD_UNLOAD) {
1320 		return EBUSY;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 /* Functions accessed by the peripheral drivers */
1327 static void
1328 xpt_init(void *dummy)
1329 {
1330 	struct cam_sim *xpt_sim;
1331 	struct cam_path *path;
1332 	struct cam_devq *devq;
1333 	cam_status status;
1334 
1335 	TAILQ_INIT(&xpt_busses);
1336 	TAILQ_INIT(&cam_bioq);
1337 	TAILQ_INIT(&cam_netq);
1338 	SLIST_INIT(&ccb_freeq);
1339 	STAILQ_INIT(&highpowerq);
1340 
1341 	/*
1342 	 * The xpt layer is, itself, the equivelent of a SIM.
1343 	 * Allow 16 ccbs in the ccb pool for it.  This should
1344 	 * give decent parallelism when we probe busses and
1345 	 * perform other XPT functions.
1346 	 */
1347 	devq = cam_simq_alloc(16);
1348 	xpt_sim = cam_sim_alloc(xptaction,
1349 				xptpoll,
1350 				"xpt",
1351 				/*softc*/NULL,
1352 				/*unit*/0,
1353 				/*max_dev_transactions*/0,
1354 				/*max_tagged_dev_transactions*/0,
1355 				devq);
1356 	cam_simq_release(devq);
1357 	xpt_max_ccbs = 16;
1358 
1359 	xpt_bus_register(xpt_sim, /*bus #*/0);
1360 
1361 	/*
1362 	 * Looking at the XPT from the SIM layer, the XPT is
1363 	 * the equivelent of a peripheral driver.  Allocate
1364 	 * a peripheral driver entry for us.
1365 	 */
1366 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1367 				      CAM_TARGET_WILDCARD,
1368 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1369 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1370 		       " failing attach\n", status);
1371 		return;
1372 	}
1373 
1374 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1375 			 path, NULL, 0, NULL);
1376 	xpt_free_path(path);
1377 
1378 	xpt_sim->softc = xpt_periph;
1379 
1380 	/*
1381 	 * Register a callback for when interrupts are enabled.
1382 	 */
1383 	xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1384 				  M_TEMP, M_INTWAIT | M_ZERO);
1385 	xpt_config_hook->ich_func = xpt_config;
1386 	xpt_config_hook->ich_desc = "xpt";
1387 	xpt_config_hook->ich_order = 1000;
1388 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1389 		kfree (xpt_config_hook, M_TEMP);
1390 		kprintf("xpt_init: config_intrhook_establish failed "
1391 		       "- failing attach\n");
1392 	}
1393 
1394 	/* Install our software interrupt handlers */
1395 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet", NULL);
1396 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1397 }
1398 
1399 static cam_status
1400 xptregister(struct cam_periph *periph, void *arg)
1401 {
1402 	if (periph == NULL) {
1403 		kprintf("xptregister: periph was NULL!!\n");
1404 		return(CAM_REQ_CMP_ERR);
1405 	}
1406 
1407 	periph->softc = NULL;
1408 
1409 	xpt_periph = periph;
1410 
1411 	return(CAM_REQ_CMP);
1412 }
1413 
1414 int32_t
1415 xpt_add_periph(struct cam_periph *periph)
1416 {
1417 	struct cam_ed *device;
1418 	int32_t	 status;
1419 	struct periph_list *periph_head;
1420 
1421 	device = periph->path->device;
1422 
1423 	periph_head = &device->periphs;
1424 
1425 	status = CAM_REQ_CMP;
1426 
1427 	if (device != NULL) {
1428 		/*
1429 		 * Make room for this peripheral
1430 		 * so it will fit in the queue
1431 		 * when it's scheduled to run
1432 		 */
1433 		crit_enter();
1434 		status = camq_resize(&device->drvq,
1435 				     device->drvq.array_size + 1);
1436 
1437 		device->generation++;
1438 
1439 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1440 		crit_exit();
1441 	}
1442 
1443 	xsoftc.generation++;
1444 
1445 	return (status);
1446 }
1447 
1448 void
1449 xpt_remove_periph(struct cam_periph *periph)
1450 {
1451 	struct cam_ed *device;
1452 
1453 	device = periph->path->device;
1454 
1455 	if (device != NULL) {
1456 		struct periph_list *periph_head;
1457 
1458 		periph_head = &device->periphs;
1459 
1460 		/* Release the slot for this peripheral */
1461 		crit_enter();
1462 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1463 
1464 		device->generation++;
1465 
1466 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1467 		crit_exit();
1468 	}
1469 
1470 	xsoftc.generation++;
1471 
1472 }
1473 
1474 #ifdef CAM_NEW_TRAN_CODE
1475 
1476 void
1477 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1478 {
1479 	struct	ccb_pathinq cpi;
1480 	struct	ccb_trans_settings cts;
1481 	struct	cam_path *path;
1482 	u_int	speed;
1483 	u_int	freq;
1484 	u_int	mb;
1485 
1486 	path = periph->path;
1487 	/*
1488 	 * To ensure that this is printed in one piece,
1489 	 * mask out CAM interrupts.
1490 	 */
1491 	crit_enter();
1492 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1493 	       periph->periph_name, periph->unit_number,
1494 	       path->bus->sim->sim_name,
1495 	       path->bus->sim->unit_number,
1496 	       path->bus->sim->bus_id,
1497 	       path->target->target_id,
1498 	       path->device->lun_id);
1499 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1500 	scsi_print_inquiry(&path->device->inq_data);
1501 	if (bootverbose && path->device->serial_num_len > 0) {
1502 		/* Don't wrap the screen  - print only the first 60 chars */
1503 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1504 		       periph->unit_number, path->device->serial_num);
1505 	}
1506 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1507 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1508 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1509 	xpt_action((union ccb*)&cts);
1510 
1511 	/* Ask the SIM for its base transfer speed */
1512 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1513 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1514 	xpt_action((union ccb *)&cpi);
1515 
1516 	speed = cpi.base_transfer_speed;
1517 	freq = 0;
1518 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1519 		struct	ccb_trans_settings_spi *spi;
1520 
1521 		spi = &cts.xport_specific.spi;
1522 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1523 		  && spi->sync_offset != 0) {
1524 			freq = scsi_calc_syncsrate(spi->sync_period);
1525 			speed = freq;
1526 		}
1527 
1528 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1529 			speed *= (0x01 << spi->bus_width);
1530 	}
1531 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1532 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1533 		if (fc->valid & CTS_FC_VALID_SPEED) {
1534 			speed = fc->bitrate;
1535 		}
1536 	}
1537 
1538 	mb = speed / 1000;
1539 	if (mb > 0)
1540 		printf("%s%d: %d.%03dMB/s transfers",
1541 		       periph->periph_name, periph->unit_number,
1542 		       mb, speed % 1000);
1543 	else
1544 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1545 		       periph->unit_number, speed);
1546 	/* Report additional information about SPI connections */
1547 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1548 		struct	ccb_trans_settings_spi *spi;
1549 
1550 		spi = &cts.xport_specific.spi;
1551 		if (freq != 0) {
1552 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1553 			       freq % 1000,
1554 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1555 			     ? " DT" : "",
1556 			       spi->sync_offset);
1557 		}
1558 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1559 		 && spi->bus_width > 0) {
1560 			if (freq != 0) {
1561 				printf(", ");
1562 			} else {
1563 				printf(" (");
1564 			}
1565 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1566 		} else if (freq != 0) {
1567 			printf(")");
1568 		}
1569 	}
1570 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1571 		struct	ccb_trans_settings_fc *fc;
1572 
1573 		fc = &cts.xport_specific.fc;
1574 		if (fc->valid & CTS_FC_VALID_WWNN)
1575 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1576 		if (fc->valid & CTS_FC_VALID_WWPN)
1577 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1578 		if (fc->valid & CTS_FC_VALID_PORT)
1579 			printf(" PortID 0x%x", fc->port);
1580 	}
1581 
1582 	if (path->device->inq_flags & SID_CmdQue
1583 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1584 		printf("\n%s%d: Tagged Queueing Enabled",
1585 		       periph->periph_name, periph->unit_number);
1586 	}
1587 	printf("\n");
1588 
1589 	/*
1590 	 * We only want to print the caller's announce string if they've
1591 	 * passed one in..
1592 	 */
1593 	if (announce_string != NULL)
1594 		printf("%s%d: %s\n", periph->periph_name,
1595 		       periph->unit_number, announce_string);
1596 	crit_exit();
1597 }
1598 #else /* CAM_NEW_TRAN_CODE */
1599 void
1600 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1601 {
1602 	u_int mb;
1603 	struct cam_path *path;
1604 	struct ccb_trans_settings cts;
1605 
1606 	path = periph->path;
1607 	/*
1608 	 * To ensure that this is printed in one piece,
1609 	 * mask out CAM interrupts.
1610 	 */
1611 	crit_enter();
1612 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1613 	       periph->periph_name, periph->unit_number,
1614 	       path->bus->sim->sim_name,
1615 	       path->bus->sim->unit_number,
1616 	       path->bus->sim->bus_id,
1617 	       path->target->target_id,
1618 	       path->device->lun_id);
1619 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1620 	scsi_print_inquiry(&path->device->inq_data);
1621 	if ((bootverbose)
1622 	 && (path->device->serial_num_len > 0)) {
1623 		/* Don't wrap the screen  - print only the first 60 chars */
1624 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1625 		       periph->unit_number, path->device->serial_num);
1626 	}
1627 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1628 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1629 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1630 	xpt_action((union ccb*)&cts);
1631 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1632 		u_int speed;
1633 		u_int freq;
1634 
1635 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1636 		  && cts.sync_offset != 0) {
1637 			freq = scsi_calc_syncsrate(cts.sync_period);
1638 			speed = freq;
1639 		} else {
1640 			struct ccb_pathinq cpi;
1641 
1642 			/* Ask the SIM for its base transfer speed */
1643 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1644 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1645 			xpt_action((union ccb *)&cpi);
1646 
1647 			speed = cpi.base_transfer_speed;
1648 			freq = 0;
1649 		}
1650 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1651 			speed *= (0x01 << cts.bus_width);
1652 		mb = speed / 1000;
1653 		if (mb > 0)
1654 			kprintf("%s%d: %d.%03dMB/s transfers",
1655 			       periph->periph_name, periph->unit_number,
1656 			       mb, speed % 1000);
1657 		else
1658 			kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1659 			       periph->unit_number, speed);
1660 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1661 		 && cts.sync_offset != 0) {
1662 			kprintf(" (%d.%03dMHz, offset %d", freq / 1000,
1663 			       freq % 1000, cts.sync_offset);
1664 		}
1665 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1666 		 && cts.bus_width > 0) {
1667 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1668 			 && cts.sync_offset != 0) {
1669 				kprintf(", ");
1670 			} else {
1671 				kprintf(" (");
1672 			}
1673 			kprintf("%dbit)", 8 * (0x01 << cts.bus_width));
1674 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1675 			&& cts.sync_offset != 0) {
1676 			kprintf(")");
1677 		}
1678 
1679 		if (path->device->inq_flags & SID_CmdQue
1680 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1681 			kprintf(", Tagged Queueing Enabled");
1682 		}
1683 
1684 		kprintf("\n");
1685 	} else if (path->device->inq_flags & SID_CmdQue
1686    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1687 		kprintf("%s%d: Tagged Queueing Enabled\n",
1688 		       periph->periph_name, periph->unit_number);
1689 	}
1690 
1691 	/*
1692 	 * We only want to print the caller's announce string if they've
1693 	 * passed one in..
1694 	 */
1695 	if (announce_string != NULL)
1696 		kprintf("%s%d: %s\n", periph->periph_name,
1697 		       periph->unit_number, announce_string);
1698 	crit_exit();
1699 }
1700 
1701 #endif /* CAM_NEW_TRAN_CODE */
1702 
1703 static dev_match_ret
1704 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1705 	    struct cam_eb *bus)
1706 {
1707 	dev_match_ret retval;
1708 	int i;
1709 
1710 	retval = DM_RET_NONE;
1711 
1712 	/*
1713 	 * If we aren't given something to match against, that's an error.
1714 	 */
1715 	if (bus == NULL)
1716 		return(DM_RET_ERROR);
1717 
1718 	/*
1719 	 * If there are no match entries, then this bus matches no
1720 	 * matter what.
1721 	 */
1722 	if ((patterns == NULL) || (num_patterns == 0))
1723 		return(DM_RET_DESCEND | DM_RET_COPY);
1724 
1725 	for (i = 0; i < num_patterns; i++) {
1726 		struct bus_match_pattern *cur_pattern;
1727 
1728 		/*
1729 		 * If the pattern in question isn't for a bus node, we
1730 		 * aren't interested.  However, we do indicate to the
1731 		 * calling routine that we should continue descending the
1732 		 * tree, since the user wants to match against lower-level
1733 		 * EDT elements.
1734 		 */
1735 		if (patterns[i].type != DEV_MATCH_BUS) {
1736 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1737 				retval |= DM_RET_DESCEND;
1738 			continue;
1739 		}
1740 
1741 		cur_pattern = &patterns[i].pattern.bus_pattern;
1742 
1743 		/*
1744 		 * If they want to match any bus node, we give them any
1745 		 * device node.
1746 		 */
1747 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1748 			/* set the copy flag */
1749 			retval |= DM_RET_COPY;
1750 
1751 			/*
1752 			 * If we've already decided on an action, go ahead
1753 			 * and return.
1754 			 */
1755 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1756 				return(retval);
1757 		}
1758 
1759 		/*
1760 		 * Not sure why someone would do this...
1761 		 */
1762 		if (cur_pattern->flags == BUS_MATCH_NONE)
1763 			continue;
1764 
1765 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1766 		 && (cur_pattern->path_id != bus->path_id))
1767 			continue;
1768 
1769 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1770 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1771 			continue;
1772 
1773 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1774 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1775 			continue;
1776 
1777 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1778 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1779 			     DEV_IDLEN) != 0))
1780 			continue;
1781 
1782 		/*
1783 		 * If we get to this point, the user definitely wants
1784 		 * information on this bus.  So tell the caller to copy the
1785 		 * data out.
1786 		 */
1787 		retval |= DM_RET_COPY;
1788 
1789 		/*
1790 		 * If the return action has been set to descend, then we
1791 		 * know that we've already seen a non-bus matching
1792 		 * expression, therefore we need to further descend the tree.
1793 		 * This won't change by continuing around the loop, so we
1794 		 * go ahead and return.  If we haven't seen a non-bus
1795 		 * matching expression, we keep going around the loop until
1796 		 * we exhaust the matching expressions.  We'll set the stop
1797 		 * flag once we fall out of the loop.
1798 		 */
1799 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1800 			return(retval);
1801 	}
1802 
1803 	/*
1804 	 * If the return action hasn't been set to descend yet, that means
1805 	 * we haven't seen anything other than bus matching patterns.  So
1806 	 * tell the caller to stop descending the tree -- the user doesn't
1807 	 * want to match against lower level tree elements.
1808 	 */
1809 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1810 		retval |= DM_RET_STOP;
1811 
1812 	return(retval);
1813 }
1814 
1815 static dev_match_ret
1816 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1817 	       struct cam_ed *device)
1818 {
1819 	dev_match_ret retval;
1820 	int i;
1821 
1822 	retval = DM_RET_NONE;
1823 
1824 	/*
1825 	 * If we aren't given something to match against, that's an error.
1826 	 */
1827 	if (device == NULL)
1828 		return(DM_RET_ERROR);
1829 
1830 	/*
1831 	 * If there are no match entries, then this device matches no
1832 	 * matter what.
1833 	 */
1834 	if ((patterns == NULL) || (patterns == 0))
1835 		return(DM_RET_DESCEND | DM_RET_COPY);
1836 
1837 	for (i = 0; i < num_patterns; i++) {
1838 		struct device_match_pattern *cur_pattern;
1839 
1840 		/*
1841 		 * If the pattern in question isn't for a device node, we
1842 		 * aren't interested.
1843 		 */
1844 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1845 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1846 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1847 				retval |= DM_RET_DESCEND;
1848 			continue;
1849 		}
1850 
1851 		cur_pattern = &patterns[i].pattern.device_pattern;
1852 
1853 		/*
1854 		 * If they want to match any device node, we give them any
1855 		 * device node.
1856 		 */
1857 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1858 			/* set the copy flag */
1859 			retval |= DM_RET_COPY;
1860 
1861 
1862 			/*
1863 			 * If we've already decided on an action, go ahead
1864 			 * and return.
1865 			 */
1866 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1867 				return(retval);
1868 		}
1869 
1870 		/*
1871 		 * Not sure why someone would do this...
1872 		 */
1873 		if (cur_pattern->flags == DEV_MATCH_NONE)
1874 			continue;
1875 
1876 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1877 		 && (cur_pattern->path_id != device->target->bus->path_id))
1878 			continue;
1879 
1880 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1881 		 && (cur_pattern->target_id != device->target->target_id))
1882 			continue;
1883 
1884 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1885 		 && (cur_pattern->target_lun != device->lun_id))
1886 			continue;
1887 
1888 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1889 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1890 				    (caddr_t)&cur_pattern->inq_pat,
1891 				    1, sizeof(cur_pattern->inq_pat),
1892 				    scsi_static_inquiry_match) == NULL))
1893 			continue;
1894 
1895 		/*
1896 		 * If we get to this point, the user definitely wants
1897 		 * information on this device.  So tell the caller to copy
1898 		 * the data out.
1899 		 */
1900 		retval |= DM_RET_COPY;
1901 
1902 		/*
1903 		 * If the return action has been set to descend, then we
1904 		 * know that we've already seen a peripheral matching
1905 		 * expression, therefore we need to further descend the tree.
1906 		 * This won't change by continuing around the loop, so we
1907 		 * go ahead and return.  If we haven't seen a peripheral
1908 		 * matching expression, we keep going around the loop until
1909 		 * we exhaust the matching expressions.  We'll set the stop
1910 		 * flag once we fall out of the loop.
1911 		 */
1912 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1913 			return(retval);
1914 	}
1915 
1916 	/*
1917 	 * If the return action hasn't been set to descend yet, that means
1918 	 * we haven't seen any peripheral matching patterns.  So tell the
1919 	 * caller to stop descending the tree -- the user doesn't want to
1920 	 * match against lower level tree elements.
1921 	 */
1922 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1923 		retval |= DM_RET_STOP;
1924 
1925 	return(retval);
1926 }
1927 
1928 /*
1929  * Match a single peripheral against any number of match patterns.
1930  */
1931 static dev_match_ret
1932 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1933 	       struct cam_periph *periph)
1934 {
1935 	dev_match_ret retval;
1936 	int i;
1937 
1938 	/*
1939 	 * If we aren't given something to match against, that's an error.
1940 	 */
1941 	if (periph == NULL)
1942 		return(DM_RET_ERROR);
1943 
1944 	/*
1945 	 * If there are no match entries, then this peripheral matches no
1946 	 * matter what.
1947 	 */
1948 	if ((patterns == NULL) || (num_patterns == 0))
1949 		return(DM_RET_STOP | DM_RET_COPY);
1950 
1951 	/*
1952 	 * There aren't any nodes below a peripheral node, so there's no
1953 	 * reason to descend the tree any further.
1954 	 */
1955 	retval = DM_RET_STOP;
1956 
1957 	for (i = 0; i < num_patterns; i++) {
1958 		struct periph_match_pattern *cur_pattern;
1959 
1960 		/*
1961 		 * If the pattern in question isn't for a peripheral, we
1962 		 * aren't interested.
1963 		 */
1964 		if (patterns[i].type != DEV_MATCH_PERIPH)
1965 			continue;
1966 
1967 		cur_pattern = &patterns[i].pattern.periph_pattern;
1968 
1969 		/*
1970 		 * If they want to match on anything, then we will do so.
1971 		 */
1972 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1973 			/* set the copy flag */
1974 			retval |= DM_RET_COPY;
1975 
1976 			/*
1977 			 * We've already set the return action to stop,
1978 			 * since there are no nodes below peripherals in
1979 			 * the tree.
1980 			 */
1981 			return(retval);
1982 		}
1983 
1984 		/*
1985 		 * Not sure why someone would do this...
1986 		 */
1987 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1988 			continue;
1989 
1990 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1991 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1992 			continue;
1993 
1994 		/*
1995 		 * For the target and lun id's, we have to make sure the
1996 		 * target and lun pointers aren't NULL.  The xpt peripheral
1997 		 * has a wildcard target and device.
1998 		 */
1999 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2000 		 && ((periph->path->target == NULL)
2001 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2002 			continue;
2003 
2004 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2005 		 && ((periph->path->device == NULL)
2006 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2007 			continue;
2008 
2009 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2010 		 && (cur_pattern->unit_number != periph->unit_number))
2011 			continue;
2012 
2013 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2014 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2015 			     DEV_IDLEN) != 0))
2016 			continue;
2017 
2018 		/*
2019 		 * If we get to this point, the user definitely wants
2020 		 * information on this peripheral.  So tell the caller to
2021 		 * copy the data out.
2022 		 */
2023 		retval |= DM_RET_COPY;
2024 
2025 		/*
2026 		 * The return action has already been set to stop, since
2027 		 * peripherals don't have any nodes below them in the EDT.
2028 		 */
2029 		return(retval);
2030 	}
2031 
2032 	/*
2033 	 * If we get to this point, the peripheral that was passed in
2034 	 * doesn't match any of the patterns.
2035 	 */
2036 	return(retval);
2037 }
2038 
2039 static int
2040 xptedtbusfunc(struct cam_eb *bus, void *arg)
2041 {
2042 	struct ccb_dev_match *cdm;
2043 	dev_match_ret retval;
2044 
2045 	cdm = (struct ccb_dev_match *)arg;
2046 
2047 	/*
2048 	 * If our position is for something deeper in the tree, that means
2049 	 * that we've already seen this node.  So, we keep going down.
2050 	 */
2051 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2052 	 && (cdm->pos.cookie.bus == bus)
2053 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2054 	 && (cdm->pos.cookie.target != NULL))
2055 		retval = DM_RET_DESCEND;
2056 	else
2057 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2058 
2059 	/*
2060 	 * If we got an error, bail out of the search.
2061 	 */
2062 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2063 		cdm->status = CAM_DEV_MATCH_ERROR;
2064 		return(0);
2065 	}
2066 
2067 	/*
2068 	 * If the copy flag is set, copy this bus out.
2069 	 */
2070 	if (retval & DM_RET_COPY) {
2071 		int spaceleft, j;
2072 
2073 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2074 			sizeof(struct dev_match_result));
2075 
2076 		/*
2077 		 * If we don't have enough space to put in another
2078 		 * match result, save our position and tell the
2079 		 * user there are more devices to check.
2080 		 */
2081 		if (spaceleft < sizeof(struct dev_match_result)) {
2082 			bzero(&cdm->pos, sizeof(cdm->pos));
2083 			cdm->pos.position_type =
2084 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2085 
2086 			cdm->pos.cookie.bus = bus;
2087 			cdm->pos.generations[CAM_BUS_GENERATION]=
2088 				bus_generation;
2089 			cdm->status = CAM_DEV_MATCH_MORE;
2090 			return(0);
2091 		}
2092 		j = cdm->num_matches;
2093 		cdm->num_matches++;
2094 		cdm->matches[j].type = DEV_MATCH_BUS;
2095 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2096 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2097 		cdm->matches[j].result.bus_result.unit_number =
2098 			bus->sim->unit_number;
2099 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2100 			bus->sim->sim_name, DEV_IDLEN);
2101 	}
2102 
2103 	/*
2104 	 * If the user is only interested in busses, there's no
2105 	 * reason to descend to the next level in the tree.
2106 	 */
2107 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2108 		return(1);
2109 
2110 	/*
2111 	 * If there is a target generation recorded, check it to
2112 	 * make sure the target list hasn't changed.
2113 	 */
2114 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2115 	 && (bus == cdm->pos.cookie.bus)
2116 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2117 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2118 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2119 	     bus->generation)) {
2120 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2121 		return(0);
2122 	}
2123 
2124 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2125 	 && (cdm->pos.cookie.bus == bus)
2126 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2127 	 && (cdm->pos.cookie.target != NULL))
2128 		return(xpttargettraverse(bus,
2129 					(struct cam_et *)cdm->pos.cookie.target,
2130 					 xptedttargetfunc, arg));
2131 	else
2132 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2133 }
2134 
2135 static int
2136 xptedttargetfunc(struct cam_et *target, void *arg)
2137 {
2138 	struct ccb_dev_match *cdm;
2139 
2140 	cdm = (struct ccb_dev_match *)arg;
2141 
2142 	/*
2143 	 * If there is a device list generation recorded, check it to
2144 	 * make sure the device list hasn't changed.
2145 	 */
2146 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2147 	 && (cdm->pos.cookie.bus == target->bus)
2148 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2149 	 && (cdm->pos.cookie.target == target)
2150 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2151 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2152 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2153 	     target->generation)) {
2154 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2155 		return(0);
2156 	}
2157 
2158 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2159 	 && (cdm->pos.cookie.bus == target->bus)
2160 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2161 	 && (cdm->pos.cookie.target == target)
2162 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2163 	 && (cdm->pos.cookie.device != NULL))
2164 		return(xptdevicetraverse(target,
2165 					(struct cam_ed *)cdm->pos.cookie.device,
2166 					 xptedtdevicefunc, arg));
2167 	else
2168 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2169 }
2170 
2171 static int
2172 xptedtdevicefunc(struct cam_ed *device, void *arg)
2173 {
2174 
2175 	struct ccb_dev_match *cdm;
2176 	dev_match_ret retval;
2177 
2178 	cdm = (struct ccb_dev_match *)arg;
2179 
2180 	/*
2181 	 * If our position is for something deeper in the tree, that means
2182 	 * that we've already seen this node.  So, we keep going down.
2183 	 */
2184 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2185 	 && (cdm->pos.cookie.device == device)
2186 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2187 	 && (cdm->pos.cookie.periph != NULL))
2188 		retval = DM_RET_DESCEND;
2189 	else
2190 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2191 					device);
2192 
2193 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2194 		cdm->status = CAM_DEV_MATCH_ERROR;
2195 		return(0);
2196 	}
2197 
2198 	/*
2199 	 * If the copy flag is set, copy this device out.
2200 	 */
2201 	if (retval & DM_RET_COPY) {
2202 		int spaceleft, j;
2203 
2204 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2205 			sizeof(struct dev_match_result));
2206 
2207 		/*
2208 		 * If we don't have enough space to put in another
2209 		 * match result, save our position and tell the
2210 		 * user there are more devices to check.
2211 		 */
2212 		if (spaceleft < sizeof(struct dev_match_result)) {
2213 			bzero(&cdm->pos, sizeof(cdm->pos));
2214 			cdm->pos.position_type =
2215 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2216 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2217 
2218 			cdm->pos.cookie.bus = device->target->bus;
2219 			cdm->pos.generations[CAM_BUS_GENERATION]=
2220 				bus_generation;
2221 			cdm->pos.cookie.target = device->target;
2222 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2223 				device->target->bus->generation;
2224 			cdm->pos.cookie.device = device;
2225 			cdm->pos.generations[CAM_DEV_GENERATION] =
2226 				device->target->generation;
2227 			cdm->status = CAM_DEV_MATCH_MORE;
2228 			return(0);
2229 		}
2230 		j = cdm->num_matches;
2231 		cdm->num_matches++;
2232 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2233 		cdm->matches[j].result.device_result.path_id =
2234 			device->target->bus->path_id;
2235 		cdm->matches[j].result.device_result.target_id =
2236 			device->target->target_id;
2237 		cdm->matches[j].result.device_result.target_lun =
2238 			device->lun_id;
2239 		bcopy(&device->inq_data,
2240 		      &cdm->matches[j].result.device_result.inq_data,
2241 		      sizeof(struct scsi_inquiry_data));
2242 
2243 		/* Let the user know whether this device is unconfigured */
2244 		if (device->flags & CAM_DEV_UNCONFIGURED)
2245 			cdm->matches[j].result.device_result.flags =
2246 				DEV_RESULT_UNCONFIGURED;
2247 		else
2248 			cdm->matches[j].result.device_result.flags =
2249 				DEV_RESULT_NOFLAG;
2250 	}
2251 
2252 	/*
2253 	 * If the user isn't interested in peripherals, don't descend
2254 	 * the tree any further.
2255 	 */
2256 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2257 		return(1);
2258 
2259 	/*
2260 	 * If there is a peripheral list generation recorded, make sure
2261 	 * it hasn't changed.
2262 	 */
2263 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2264 	 && (device->target->bus == cdm->pos.cookie.bus)
2265 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2266 	 && (device->target == cdm->pos.cookie.target)
2267 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2268 	 && (device == cdm->pos.cookie.device)
2269 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2270 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2271 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2272 	     device->generation)){
2273 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2274 		return(0);
2275 	}
2276 
2277 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2278 	 && (cdm->pos.cookie.bus == device->target->bus)
2279 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2280 	 && (cdm->pos.cookie.target == device->target)
2281 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2282 	 && (cdm->pos.cookie.device == device)
2283 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2284 	 && (cdm->pos.cookie.periph != NULL))
2285 		return(xptperiphtraverse(device,
2286 				(struct cam_periph *)cdm->pos.cookie.periph,
2287 				xptedtperiphfunc, arg));
2288 	else
2289 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2290 }
2291 
2292 static int
2293 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2294 {
2295 	struct ccb_dev_match *cdm;
2296 	dev_match_ret retval;
2297 
2298 	cdm = (struct ccb_dev_match *)arg;
2299 
2300 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2301 
2302 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2303 		cdm->status = CAM_DEV_MATCH_ERROR;
2304 		return(0);
2305 	}
2306 
2307 	/*
2308 	 * If the copy flag is set, copy this peripheral out.
2309 	 */
2310 	if (retval & DM_RET_COPY) {
2311 		int spaceleft, j;
2312 
2313 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2314 			sizeof(struct dev_match_result));
2315 
2316 		/*
2317 		 * If we don't have enough space to put in another
2318 		 * match result, save our position and tell the
2319 		 * user there are more devices to check.
2320 		 */
2321 		if (spaceleft < sizeof(struct dev_match_result)) {
2322 			bzero(&cdm->pos, sizeof(cdm->pos));
2323 			cdm->pos.position_type =
2324 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2325 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2326 				CAM_DEV_POS_PERIPH;
2327 
2328 			cdm->pos.cookie.bus = periph->path->bus;
2329 			cdm->pos.generations[CAM_BUS_GENERATION]=
2330 				bus_generation;
2331 			cdm->pos.cookie.target = periph->path->target;
2332 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2333 				periph->path->bus->generation;
2334 			cdm->pos.cookie.device = periph->path->device;
2335 			cdm->pos.generations[CAM_DEV_GENERATION] =
2336 				periph->path->target->generation;
2337 			cdm->pos.cookie.periph = periph;
2338 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2339 				periph->path->device->generation;
2340 			cdm->status = CAM_DEV_MATCH_MORE;
2341 			return(0);
2342 		}
2343 
2344 		j = cdm->num_matches;
2345 		cdm->num_matches++;
2346 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2347 		cdm->matches[j].result.periph_result.path_id =
2348 			periph->path->bus->path_id;
2349 		cdm->matches[j].result.periph_result.target_id =
2350 			periph->path->target->target_id;
2351 		cdm->matches[j].result.periph_result.target_lun =
2352 			periph->path->device->lun_id;
2353 		cdm->matches[j].result.periph_result.unit_number =
2354 			periph->unit_number;
2355 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2356 			periph->periph_name, DEV_IDLEN);
2357 	}
2358 
2359 	return(1);
2360 }
2361 
2362 static int
2363 xptedtmatch(struct ccb_dev_match *cdm)
2364 {
2365 	int ret;
2366 
2367 	cdm->num_matches = 0;
2368 
2369 	/*
2370 	 * Check the bus list generation.  If it has changed, the user
2371 	 * needs to reset everything and start over.
2372 	 */
2373 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2374 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2375 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2376 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2377 		return(0);
2378 	}
2379 
2380 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2381 	 && (cdm->pos.cookie.bus != NULL))
2382 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2383 				     xptedtbusfunc, cdm);
2384 	else
2385 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2386 
2387 	/*
2388 	 * If we get back 0, that means that we had to stop before fully
2389 	 * traversing the EDT.  It also means that one of the subroutines
2390 	 * has set the status field to the proper value.  If we get back 1,
2391 	 * we've fully traversed the EDT and copied out any matching entries.
2392 	 */
2393 	if (ret == 1)
2394 		cdm->status = CAM_DEV_MATCH_LAST;
2395 
2396 	return(ret);
2397 }
2398 
2399 static int
2400 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2401 {
2402 	struct ccb_dev_match *cdm;
2403 
2404 	cdm = (struct ccb_dev_match *)arg;
2405 
2406 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2407 	 && (cdm->pos.cookie.pdrv == pdrv)
2408 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2409 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2410 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2411 	     (*pdrv)->generation)) {
2412 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2413 		return(0);
2414 	}
2415 
2416 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2417 	 && (cdm->pos.cookie.pdrv == pdrv)
2418 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2419 	 && (cdm->pos.cookie.periph != NULL))
2420 		return(xptpdperiphtraverse(pdrv,
2421 				(struct cam_periph *)cdm->pos.cookie.periph,
2422 				xptplistperiphfunc, arg));
2423 	else
2424 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2425 }
2426 
2427 static int
2428 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2429 {
2430 	struct ccb_dev_match *cdm;
2431 	dev_match_ret retval;
2432 
2433 	cdm = (struct ccb_dev_match *)arg;
2434 
2435 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2436 
2437 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2438 		cdm->status = CAM_DEV_MATCH_ERROR;
2439 		return(0);
2440 	}
2441 
2442 	/*
2443 	 * If the copy flag is set, copy this peripheral out.
2444 	 */
2445 	if (retval & DM_RET_COPY) {
2446 		int spaceleft, j;
2447 
2448 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2449 			sizeof(struct dev_match_result));
2450 
2451 		/*
2452 		 * If we don't have enough space to put in another
2453 		 * match result, save our position and tell the
2454 		 * user there are more devices to check.
2455 		 */
2456 		if (spaceleft < sizeof(struct dev_match_result)) {
2457 			struct periph_driver **pdrv;
2458 
2459 			pdrv = NULL;
2460 			bzero(&cdm->pos, sizeof(cdm->pos));
2461 			cdm->pos.position_type =
2462 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2463 				CAM_DEV_POS_PERIPH;
2464 
2465 			/*
2466 			 * This may look a bit non-sensical, but it is
2467 			 * actually quite logical.  There are very few
2468 			 * peripheral drivers, and bloating every peripheral
2469 			 * structure with a pointer back to its parent
2470 			 * peripheral driver linker set entry would cost
2471 			 * more in the long run than doing this quick lookup.
2472 			 */
2473 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2474 				if (strcmp((*pdrv)->driver_name,
2475 				    periph->periph_name) == 0)
2476 					break;
2477 			}
2478 
2479 			if (*pdrv == NULL) {
2480 				cdm->status = CAM_DEV_MATCH_ERROR;
2481 				return(0);
2482 			}
2483 
2484 			cdm->pos.cookie.pdrv = pdrv;
2485 			/*
2486 			 * The periph generation slot does double duty, as
2487 			 * does the periph pointer slot.  They are used for
2488 			 * both edt and pdrv lookups and positioning.
2489 			 */
2490 			cdm->pos.cookie.periph = periph;
2491 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2492 				(*pdrv)->generation;
2493 			cdm->status = CAM_DEV_MATCH_MORE;
2494 			return(0);
2495 		}
2496 
2497 		j = cdm->num_matches;
2498 		cdm->num_matches++;
2499 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2500 		cdm->matches[j].result.periph_result.path_id =
2501 			periph->path->bus->path_id;
2502 
2503 		/*
2504 		 * The transport layer peripheral doesn't have a target or
2505 		 * lun.
2506 		 */
2507 		if (periph->path->target)
2508 			cdm->matches[j].result.periph_result.target_id =
2509 				periph->path->target->target_id;
2510 		else
2511 			cdm->matches[j].result.periph_result.target_id = -1;
2512 
2513 		if (periph->path->device)
2514 			cdm->matches[j].result.periph_result.target_lun =
2515 				periph->path->device->lun_id;
2516 		else
2517 			cdm->matches[j].result.periph_result.target_lun = -1;
2518 
2519 		cdm->matches[j].result.periph_result.unit_number =
2520 			periph->unit_number;
2521 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2522 			periph->periph_name, DEV_IDLEN);
2523 	}
2524 
2525 	return(1);
2526 }
2527 
2528 static int
2529 xptperiphlistmatch(struct ccb_dev_match *cdm)
2530 {
2531 	int ret;
2532 
2533 	cdm->num_matches = 0;
2534 
2535 	/*
2536 	 * At this point in the edt traversal function, we check the bus
2537 	 * list generation to make sure that no busses have been added or
2538 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2539 	 * For the peripheral driver list traversal function, however, we
2540 	 * don't have to worry about new peripheral driver types coming or
2541 	 * going; they're in a linker set, and therefore can't change
2542 	 * without a recompile.
2543 	 */
2544 
2545 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2546 	 && (cdm->pos.cookie.pdrv != NULL))
2547 		ret = xptpdrvtraverse(
2548 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2549 				xptplistpdrvfunc, cdm);
2550 	else
2551 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2552 
2553 	/*
2554 	 * If we get back 0, that means that we had to stop before fully
2555 	 * traversing the peripheral driver tree.  It also means that one of
2556 	 * the subroutines has set the status field to the proper value.  If
2557 	 * we get back 1, we've fully traversed the EDT and copied out any
2558 	 * matching entries.
2559 	 */
2560 	if (ret == 1)
2561 		cdm->status = CAM_DEV_MATCH_LAST;
2562 
2563 	return(ret);
2564 }
2565 
2566 static int
2567 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2568 {
2569 	struct cam_eb *bus, *next_bus;
2570 	int retval;
2571 
2572 	retval = 1;
2573 
2574 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2575 	     bus != NULL;
2576 	     bus = next_bus) {
2577 		next_bus = TAILQ_NEXT(bus, links);
2578 
2579 		retval = tr_func(bus, arg);
2580 		if (retval == 0)
2581 			return(retval);
2582 	}
2583 
2584 	return(retval);
2585 }
2586 
2587 static int
2588 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2589 		  xpt_targetfunc_t *tr_func, void *arg)
2590 {
2591 	struct cam_et *target, *next_target;
2592 	int retval;
2593 
2594 	retval = 1;
2595 	for (target = (start_target ? start_target :
2596 		       TAILQ_FIRST(&bus->et_entries));
2597 	     target != NULL; target = next_target) {
2598 
2599 		next_target = TAILQ_NEXT(target, links);
2600 
2601 		retval = tr_func(target, arg);
2602 
2603 		if (retval == 0)
2604 			return(retval);
2605 	}
2606 
2607 	return(retval);
2608 }
2609 
2610 static int
2611 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2612 		  xpt_devicefunc_t *tr_func, void *arg)
2613 {
2614 	struct cam_ed *device, *next_device;
2615 	int retval;
2616 
2617 	retval = 1;
2618 	for (device = (start_device ? start_device :
2619 		       TAILQ_FIRST(&target->ed_entries));
2620 	     device != NULL;
2621 	     device = next_device) {
2622 
2623 		next_device = TAILQ_NEXT(device, links);
2624 
2625 		retval = tr_func(device, arg);
2626 
2627 		if (retval == 0)
2628 			return(retval);
2629 	}
2630 
2631 	return(retval);
2632 }
2633 
2634 static int
2635 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2636 		  xpt_periphfunc_t *tr_func, void *arg)
2637 {
2638 	struct cam_periph *periph, *next_periph;
2639 	int retval;
2640 
2641 	retval = 1;
2642 
2643 	for (periph = (start_periph ? start_periph :
2644 		       SLIST_FIRST(&device->periphs));
2645 	     periph != NULL;
2646 	     periph = next_periph) {
2647 
2648 		next_periph = SLIST_NEXT(periph, periph_links);
2649 
2650 		retval = tr_func(periph, arg);
2651 		if (retval == 0)
2652 			return(retval);
2653 	}
2654 
2655 	return(retval);
2656 }
2657 
2658 static int
2659 xptpdrvtraverse(struct periph_driver **start_pdrv,
2660 		xpt_pdrvfunc_t *tr_func, void *arg)
2661 {
2662 	struct periph_driver **pdrv;
2663 	int retval;
2664 
2665 	retval = 1;
2666 
2667 	/*
2668 	 * We don't traverse the peripheral driver list like we do the
2669 	 * other lists, because it is a linker set, and therefore cannot be
2670 	 * changed during runtime.  If the peripheral driver list is ever
2671 	 * re-done to be something other than a linker set (i.e. it can
2672 	 * change while the system is running), the list traversal should
2673 	 * be modified to work like the other traversal functions.
2674 	 */
2675 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2676 	     *pdrv != NULL; pdrv++) {
2677 		retval = tr_func(pdrv, arg);
2678 
2679 		if (retval == 0)
2680 			return(retval);
2681 	}
2682 
2683 	return(retval);
2684 }
2685 
2686 static int
2687 xptpdperiphtraverse(struct periph_driver **pdrv,
2688 		    struct cam_periph *start_periph,
2689 		    xpt_periphfunc_t *tr_func, void *arg)
2690 {
2691 	struct cam_periph *periph, *next_periph;
2692 	int retval;
2693 
2694 	retval = 1;
2695 
2696 	for (periph = (start_periph ? start_periph :
2697 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2698 	     periph = next_periph) {
2699 
2700 		next_periph = TAILQ_NEXT(periph, unit_links);
2701 
2702 		retval = tr_func(periph, arg);
2703 		if (retval == 0)
2704 			return(retval);
2705 	}
2706 	return(retval);
2707 }
2708 
2709 static int
2710 xptdefbusfunc(struct cam_eb *bus, void *arg)
2711 {
2712 	struct xpt_traverse_config *tr_config;
2713 
2714 	tr_config = (struct xpt_traverse_config *)arg;
2715 
2716 	if (tr_config->depth == XPT_DEPTH_BUS) {
2717 		xpt_busfunc_t *tr_func;
2718 
2719 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2720 
2721 		return(tr_func(bus, tr_config->tr_arg));
2722 	} else
2723 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2724 }
2725 
2726 static int
2727 xptdeftargetfunc(struct cam_et *target, void *arg)
2728 {
2729 	struct xpt_traverse_config *tr_config;
2730 
2731 	tr_config = (struct xpt_traverse_config *)arg;
2732 
2733 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2734 		xpt_targetfunc_t *tr_func;
2735 
2736 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2737 
2738 		return(tr_func(target, tr_config->tr_arg));
2739 	} else
2740 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2741 }
2742 
2743 static int
2744 xptdefdevicefunc(struct cam_ed *device, void *arg)
2745 {
2746 	struct xpt_traverse_config *tr_config;
2747 
2748 	tr_config = (struct xpt_traverse_config *)arg;
2749 
2750 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2751 		xpt_devicefunc_t *tr_func;
2752 
2753 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2754 
2755 		return(tr_func(device, tr_config->tr_arg));
2756 	} else
2757 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2758 }
2759 
2760 static int
2761 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2762 {
2763 	struct xpt_traverse_config *tr_config;
2764 	xpt_periphfunc_t *tr_func;
2765 
2766 	tr_config = (struct xpt_traverse_config *)arg;
2767 
2768 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2769 
2770 	/*
2771 	 * Unlike the other default functions, we don't check for depth
2772 	 * here.  The peripheral driver level is the last level in the EDT,
2773 	 * so if we're here, we should execute the function in question.
2774 	 */
2775 	return(tr_func(periph, tr_config->tr_arg));
2776 }
2777 
2778 /*
2779  * Execute the given function for every bus in the EDT.
2780  */
2781 static int
2782 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2783 {
2784 	struct xpt_traverse_config tr_config;
2785 
2786 	tr_config.depth = XPT_DEPTH_BUS;
2787 	tr_config.tr_func = tr_func;
2788 	tr_config.tr_arg = arg;
2789 
2790 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2791 }
2792 
2793 #ifdef notusedyet
2794 /*
2795  * Execute the given function for every target in the EDT.
2796  */
2797 static int
2798 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2799 {
2800 	struct xpt_traverse_config tr_config;
2801 
2802 	tr_config.depth = XPT_DEPTH_TARGET;
2803 	tr_config.tr_func = tr_func;
2804 	tr_config.tr_arg = arg;
2805 
2806 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2807 }
2808 #endif /* notusedyet */
2809 
2810 /*
2811  * Execute the given function for every device in the EDT.
2812  */
2813 static int
2814 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2815 {
2816 	struct xpt_traverse_config tr_config;
2817 
2818 	tr_config.depth = XPT_DEPTH_DEVICE;
2819 	tr_config.tr_func = tr_func;
2820 	tr_config.tr_arg = arg;
2821 
2822 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2823 }
2824 
2825 #ifdef notusedyet
2826 /*
2827  * Execute the given function for every peripheral in the EDT.
2828  */
2829 static int
2830 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2831 {
2832 	struct xpt_traverse_config tr_config;
2833 
2834 	tr_config.depth = XPT_DEPTH_PERIPH;
2835 	tr_config.tr_func = tr_func;
2836 	tr_config.tr_arg = arg;
2837 
2838 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2839 }
2840 #endif /* notusedyet */
2841 
2842 static int
2843 xptsetasyncfunc(struct cam_ed *device, void *arg)
2844 {
2845 	struct cam_path path;
2846 	struct ccb_getdev cgd;
2847 	struct async_node *cur_entry;
2848 
2849 	cur_entry = (struct async_node *)arg;
2850 
2851 	/*
2852 	 * Don't report unconfigured devices (Wildcard devs,
2853 	 * devices only for target mode, device instances
2854 	 * that have been invalidated but are waiting for
2855 	 * their last reference count to be released).
2856 	 */
2857 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2858 		return (1);
2859 
2860 	xpt_compile_path(&path,
2861 			 NULL,
2862 			 device->target->bus->path_id,
2863 			 device->target->target_id,
2864 			 device->lun_id);
2865 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2866 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2867 	xpt_action((union ccb *)&cgd);
2868 	cur_entry->callback(cur_entry->callback_arg,
2869 			    AC_FOUND_DEVICE,
2870 			    &path, &cgd);
2871 	xpt_release_path(&path);
2872 
2873 	return(1);
2874 }
2875 
2876 static int
2877 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2878 {
2879 	struct cam_path path;
2880 	struct ccb_pathinq cpi;
2881 	struct async_node *cur_entry;
2882 
2883 	cur_entry = (struct async_node *)arg;
2884 
2885 	xpt_compile_path(&path, /*periph*/NULL,
2886 			 bus->sim->path_id,
2887 			 CAM_TARGET_WILDCARD,
2888 			 CAM_LUN_WILDCARD);
2889 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2890 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2891 	xpt_action((union ccb *)&cpi);
2892 	cur_entry->callback(cur_entry->callback_arg,
2893 			    AC_PATH_REGISTERED,
2894 			    &path, &cpi);
2895 	xpt_release_path(&path);
2896 
2897 	return(1);
2898 }
2899 
2900 void
2901 xpt_action(union ccb *start_ccb)
2902 {
2903 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2904 
2905 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2906 
2907 	crit_enter();
2908 
2909 	switch (start_ccb->ccb_h.func_code) {
2910 	case XPT_SCSI_IO:
2911 	{
2912 #ifdef CAM_NEW_TRAN_CODE
2913 		struct cam_ed *device;
2914 #endif /* CAM_NEW_TRAN_CODE */
2915 #ifdef CAMDEBUG
2916 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2917 		struct cam_path *path;
2918 
2919 		path = start_ccb->ccb_h.path;
2920 #endif
2921 
2922 		/*
2923 		 * For the sake of compatibility with SCSI-1
2924 		 * devices that may not understand the identify
2925 		 * message, we include lun information in the
2926 		 * second byte of all commands.  SCSI-1 specifies
2927 		 * that luns are a 3 bit value and reserves only 3
2928 		 * bits for lun information in the CDB.  Later
2929 		 * revisions of the SCSI spec allow for more than 8
2930 		 * luns, but have deprecated lun information in the
2931 		 * CDB.  So, if the lun won't fit, we must omit.
2932 		 *
2933 		 * Also be aware that during initial probing for devices,
2934 		 * the inquiry information is unknown but initialized to 0.
2935 		 * This means that this code will be exercised while probing
2936 		 * devices with an ANSI revision greater than 2.
2937 		 */
2938 #ifdef CAM_NEW_TRAN_CODE
2939 		device = start_ccb->ccb_h.path->device;
2940 		if (device->protocol_version <= SCSI_REV_2
2941 #else /* CAM_NEW_TRAN_CODE */
2942 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2943 #endif /* CAM_NEW_TRAN_CODE */
2944 		 && start_ccb->ccb_h.target_lun < 8
2945 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2946 
2947 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2948 			    start_ccb->ccb_h.target_lun << 5;
2949 		}
2950 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2951 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2952 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2953 			  	       &path->device->inq_data),
2954 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2955 					  cdb_str, sizeof(cdb_str))));
2956 		/* FALLTHROUGH */
2957 	}
2958 	case XPT_TARGET_IO:
2959 	case XPT_CONT_TARGET_IO:
2960 		start_ccb->csio.sense_resid = 0;
2961 		start_ccb->csio.resid = 0;
2962 		/* FALLTHROUGH */
2963 	case XPT_RESET_DEV:
2964 	case XPT_ENG_EXEC:
2965 	{
2966 		struct cam_path *path;
2967 		int runq;
2968 
2969 		path = start_ccb->ccb_h.path;
2970 
2971 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2972 		if (path->device->qfrozen_cnt == 0)
2973 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2974 		else
2975 			runq = 0;
2976 		if (runq != 0)
2977 			xpt_run_dev_sendq(path->bus);
2978 		break;
2979 	}
2980 	case XPT_SET_TRAN_SETTINGS:
2981 	{
2982 		xpt_set_transfer_settings(&start_ccb->cts,
2983 					  start_ccb->ccb_h.path->device,
2984 					  /*async_update*/FALSE);
2985 		break;
2986 	}
2987 	case XPT_CALC_GEOMETRY:
2988 	{
2989 		struct cam_sim *sim;
2990 
2991 		/* Filter out garbage */
2992 		if (start_ccb->ccg.block_size == 0
2993 		 || start_ccb->ccg.volume_size == 0) {
2994 			start_ccb->ccg.cylinders = 0;
2995 			start_ccb->ccg.heads = 0;
2996 			start_ccb->ccg.secs_per_track = 0;
2997 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2998 			break;
2999 		}
3000 		sim = start_ccb->ccb_h.path->bus->sim;
3001 		(*(sim->sim_action))(sim, start_ccb);
3002 		break;
3003 	}
3004 	case XPT_ABORT:
3005 	{
3006 		union ccb* abort_ccb;
3007 
3008 		abort_ccb = start_ccb->cab.abort_ccb;
3009 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3010 
3011 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3012 				struct cam_ccbq *ccbq;
3013 
3014 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3015 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3016 				abort_ccb->ccb_h.status =
3017 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3018 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3019 				xpt_done(abort_ccb);
3020 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3021 				break;
3022 			}
3023 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3024 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3025 				/*
3026 				 * We've caught this ccb en route to
3027 				 * the SIM.  Flag it for abort and the
3028 				 * SIM will do so just before starting
3029 				 * real work on the CCB.
3030 				 */
3031 				abort_ccb->ccb_h.status =
3032 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3033 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3034 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3035 				break;
3036 			}
3037 		}
3038 		if (XPT_FC_IS_QUEUED(abort_ccb)
3039 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3040 			/*
3041 			 * It's already completed but waiting
3042 			 * for our SWI to get to it.
3043 			 */
3044 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3045 			break;
3046 		}
3047 		/*
3048 		 * If we weren't able to take care of the abort request
3049 		 * in the XPT, pass the request down to the SIM for processing.
3050 		 */
3051 		/* FALLTHROUGH */
3052 	}
3053 	case XPT_ACCEPT_TARGET_IO:
3054 	case XPT_EN_LUN:
3055 	case XPT_IMMED_NOTIFY:
3056 	case XPT_NOTIFY_ACK:
3057 	case XPT_GET_TRAN_SETTINGS:
3058 	case XPT_RESET_BUS:
3059 	{
3060 		struct cam_sim *sim;
3061 
3062 		sim = start_ccb->ccb_h.path->bus->sim;
3063 		(*(sim->sim_action))(sim, start_ccb);
3064 		break;
3065 	}
3066 	case XPT_PATH_INQ:
3067 	{
3068 		struct cam_sim *sim;
3069 
3070 		sim = start_ccb->ccb_h.path->bus->sim;
3071 		(*(sim->sim_action))(sim, start_ccb);
3072 		break;
3073 	}
3074 	case XPT_PATH_STATS:
3075 		start_ccb->cpis.last_reset =
3076 			start_ccb->ccb_h.path->bus->last_reset;
3077 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3078 		break;
3079 	case XPT_GDEV_TYPE:
3080 	{
3081 		struct cam_ed *dev;
3082 
3083 		dev = start_ccb->ccb_h.path->device;
3084 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3085 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3086 		} else {
3087 			struct ccb_getdev *cgd;
3088 			struct cam_eb *bus;
3089 			struct cam_et *tar;
3090 
3091 			cgd = &start_ccb->cgd;
3092 			bus = cgd->ccb_h.path->bus;
3093 			tar = cgd->ccb_h.path->target;
3094 			cgd->inq_data = dev->inq_data;
3095 			cgd->ccb_h.status = CAM_REQ_CMP;
3096 			cgd->serial_num_len = dev->serial_num_len;
3097 			if ((dev->serial_num_len > 0)
3098 			 && (dev->serial_num != NULL))
3099 				bcopy(dev->serial_num, cgd->serial_num,
3100 				      dev->serial_num_len);
3101 		}
3102 		break;
3103 	}
3104 	case XPT_GDEV_STATS:
3105 	{
3106 		struct cam_ed *dev;
3107 
3108 		dev = start_ccb->ccb_h.path->device;
3109 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3110 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3111 		} else {
3112 			struct ccb_getdevstats *cgds;
3113 			struct cam_eb *bus;
3114 			struct cam_et *tar;
3115 
3116 			cgds = &start_ccb->cgds;
3117 			bus = cgds->ccb_h.path->bus;
3118 			tar = cgds->ccb_h.path->target;
3119 			cgds->dev_openings = dev->ccbq.dev_openings;
3120 			cgds->dev_active = dev->ccbq.dev_active;
3121 			cgds->devq_openings = dev->ccbq.devq_openings;
3122 			cgds->devq_queued = dev->ccbq.queue.entries;
3123 			cgds->held = dev->ccbq.held;
3124 			cgds->last_reset = tar->last_reset;
3125 			cgds->maxtags = dev->quirk->maxtags;
3126 			cgds->mintags = dev->quirk->mintags;
3127 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3128 				cgds->last_reset = bus->last_reset;
3129 			cgds->ccb_h.status = CAM_REQ_CMP;
3130 		}
3131 		break;
3132 	}
3133 	case XPT_GDEVLIST:
3134 	{
3135 		struct cam_periph	*nperiph;
3136 		struct periph_list	*periph_head;
3137 		struct ccb_getdevlist	*cgdl;
3138 		u_int			i;
3139 		struct cam_ed		*device;
3140 		int			found;
3141 
3142 
3143 		found = 0;
3144 
3145 		/*
3146 		 * Don't want anyone mucking with our data.
3147 		 */
3148 		device = start_ccb->ccb_h.path->device;
3149 		periph_head = &device->periphs;
3150 		cgdl = &start_ccb->cgdl;
3151 
3152 		/*
3153 		 * Check and see if the list has changed since the user
3154 		 * last requested a list member.  If so, tell them that the
3155 		 * list has changed, and therefore they need to start over
3156 		 * from the beginning.
3157 		 */
3158 		if ((cgdl->index != 0) &&
3159 		    (cgdl->generation != device->generation)) {
3160 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3161 			break;
3162 		}
3163 
3164 		/*
3165 		 * Traverse the list of peripherals and attempt to find
3166 		 * the requested peripheral.
3167 		 */
3168 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3169 		     (nperiph != NULL) && (i <= cgdl->index);
3170 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3171 			if (i == cgdl->index) {
3172 				strncpy(cgdl->periph_name,
3173 					nperiph->periph_name,
3174 					DEV_IDLEN);
3175 				cgdl->unit_number = nperiph->unit_number;
3176 				found = 1;
3177 			}
3178 		}
3179 		if (found == 0) {
3180 			cgdl->status = CAM_GDEVLIST_ERROR;
3181 			break;
3182 		}
3183 
3184 		if (nperiph == NULL)
3185 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3186 		else
3187 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3188 
3189 		cgdl->index++;
3190 		cgdl->generation = device->generation;
3191 
3192 		cgdl->ccb_h.status = CAM_REQ_CMP;
3193 		break;
3194 	}
3195 	case XPT_DEV_MATCH:
3196 	{
3197 		dev_pos_type position_type;
3198 		struct ccb_dev_match *cdm;
3199 		int ret;
3200 
3201 		cdm = &start_ccb->cdm;
3202 
3203 		/*
3204 		 * Prevent EDT changes while we traverse it.
3205 		 */
3206 		/*
3207 		 * There are two ways of getting at information in the EDT.
3208 		 * The first way is via the primary EDT tree.  It starts
3209 		 * with a list of busses, then a list of targets on a bus,
3210 		 * then devices/luns on a target, and then peripherals on a
3211 		 * device/lun.  The "other" way is by the peripheral driver
3212 		 * lists.  The peripheral driver lists are organized by
3213 		 * peripheral driver.  (obviously)  So it makes sense to
3214 		 * use the peripheral driver list if the user is looking
3215 		 * for something like "da1", or all "da" devices.  If the
3216 		 * user is looking for something on a particular bus/target
3217 		 * or lun, it's generally better to go through the EDT tree.
3218 		 */
3219 
3220 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3221 			position_type = cdm->pos.position_type;
3222 		else {
3223 			u_int i;
3224 
3225 			position_type = CAM_DEV_POS_NONE;
3226 
3227 			for (i = 0; i < cdm->num_patterns; i++) {
3228 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3229 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3230 					position_type = CAM_DEV_POS_EDT;
3231 					break;
3232 				}
3233 			}
3234 
3235 			if (cdm->num_patterns == 0)
3236 				position_type = CAM_DEV_POS_EDT;
3237 			else if (position_type == CAM_DEV_POS_NONE)
3238 				position_type = CAM_DEV_POS_PDRV;
3239 		}
3240 
3241 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3242 		case CAM_DEV_POS_EDT:
3243 			ret = xptedtmatch(cdm);
3244 			break;
3245 		case CAM_DEV_POS_PDRV:
3246 			ret = xptperiphlistmatch(cdm);
3247 			break;
3248 		default:
3249 			cdm->status = CAM_DEV_MATCH_ERROR;
3250 			break;
3251 		}
3252 
3253 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3254 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3255 		else
3256 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3257 
3258 		break;
3259 	}
3260 	case XPT_SASYNC_CB:
3261 	{
3262 		struct ccb_setasync *csa;
3263 		struct async_node *cur_entry;
3264 		struct async_list *async_head;
3265 		u_int32_t added;
3266 
3267 		csa = &start_ccb->csa;
3268 		added = csa->event_enable;
3269 		async_head = &csa->ccb_h.path->device->asyncs;
3270 
3271 		/*
3272 		 * If there is already an entry for us, simply
3273 		 * update it.
3274 		 */
3275 		cur_entry = SLIST_FIRST(async_head);
3276 		while (cur_entry != NULL) {
3277 			if ((cur_entry->callback_arg == csa->callback_arg)
3278 			 && (cur_entry->callback == csa->callback))
3279 				break;
3280 			cur_entry = SLIST_NEXT(cur_entry, links);
3281 		}
3282 
3283 		if (cur_entry != NULL) {
3284 		 	/*
3285 			 * If the request has no flags set,
3286 			 * remove the entry.
3287 			 */
3288 			added &= ~cur_entry->event_enable;
3289 			if (csa->event_enable == 0) {
3290 				SLIST_REMOVE(async_head, cur_entry,
3291 					     async_node, links);
3292 				csa->ccb_h.path->device->refcount--;
3293 				kfree(cur_entry, M_DEVBUF);
3294 			} else {
3295 				cur_entry->event_enable = csa->event_enable;
3296 			}
3297 		} else {
3298 			cur_entry = kmalloc(sizeof(*cur_entry),
3299 					    M_DEVBUF, M_INTWAIT);
3300 			cur_entry->event_enable = csa->event_enable;
3301 			cur_entry->callback_arg = csa->callback_arg;
3302 			cur_entry->callback = csa->callback;
3303 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3304 			csa->ccb_h.path->device->refcount++;
3305 		}
3306 
3307 		if ((added & AC_FOUND_DEVICE) != 0) {
3308 			/*
3309 			 * Get this peripheral up to date with all
3310 			 * the currently existing devices.
3311 			 */
3312 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3313 		}
3314 		if ((added & AC_PATH_REGISTERED) != 0) {
3315 			/*
3316 			 * Get this peripheral up to date with all
3317 			 * the currently existing busses.
3318 			 */
3319 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3320 		}
3321 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3322 		break;
3323 	}
3324 	case XPT_REL_SIMQ:
3325 	{
3326 		struct ccb_relsim *crs;
3327 		struct cam_ed *dev;
3328 
3329 		crs = &start_ccb->crs;
3330 		dev = crs->ccb_h.path->device;
3331 		if (dev == NULL) {
3332 
3333 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3334 			break;
3335 		}
3336 
3337 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3338 
3339  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3340 
3341 				/* Don't ever go below one opening */
3342 				if (crs->openings > 0) {
3343 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3344 							    crs->openings);
3345 
3346 					if (bootverbose) {
3347 						xpt_print_path(crs->ccb_h.path);
3348 						kprintf("tagged openings "
3349 						       "now %d\n",
3350 						       crs->openings);
3351 					}
3352 				}
3353 			}
3354 		}
3355 
3356 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3357 
3358 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3359 
3360 				/*
3361 				 * Just extend the old timeout and decrement
3362 				 * the freeze count so that a single timeout
3363 				 * is sufficient for releasing the queue.
3364 				 */
3365 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3366 				callout_stop(&dev->c_handle);
3367 			} else {
3368 
3369 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3370 			}
3371 
3372 			callout_reset(&dev->c_handle,
3373 				      (crs->release_timeout * hz) / 1000,
3374 				      xpt_release_devq_timeout, dev);
3375 
3376 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3377 
3378 		}
3379 
3380 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3381 
3382 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3383 				/*
3384 				 * Decrement the freeze count so that a single
3385 				 * completion is still sufficient to unfreeze
3386 				 * the queue.
3387 				 */
3388 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3389 			} else {
3390 
3391 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3392 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3393 			}
3394 		}
3395 
3396 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3397 
3398 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3399 			 || (dev->ccbq.dev_active == 0)) {
3400 
3401 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3402 			} else {
3403 
3404 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3405 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3406 			}
3407 		}
3408 
3409 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3410 
3411 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3412 					 /*run_queue*/TRUE);
3413 		}
3414 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3415 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3416 		break;
3417 	}
3418 	case XPT_SCAN_BUS:
3419 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3420 		break;
3421 	case XPT_SCAN_LUN:
3422 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3423 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3424 			     start_ccb);
3425 		break;
3426 	case XPT_DEBUG: {
3427 #ifdef CAMDEBUG
3428 #ifdef CAM_DEBUG_DELAY
3429 		cam_debug_delay = CAM_DEBUG_DELAY;
3430 #endif
3431 		cam_dflags = start_ccb->cdbg.flags;
3432 		if (cam_dpath != NULL) {
3433 			xpt_free_path(cam_dpath);
3434 			cam_dpath = NULL;
3435 		}
3436 
3437 		if (cam_dflags != CAM_DEBUG_NONE) {
3438 			if (xpt_create_path(&cam_dpath, xpt_periph,
3439 					    start_ccb->ccb_h.path_id,
3440 					    start_ccb->ccb_h.target_id,
3441 					    start_ccb->ccb_h.target_lun) !=
3442 					    CAM_REQ_CMP) {
3443 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3444 				cam_dflags = CAM_DEBUG_NONE;
3445 			} else {
3446 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3447 				xpt_print_path(cam_dpath);
3448 				kprintf("debugging flags now %x\n", cam_dflags);
3449 			}
3450 		} else {
3451 			cam_dpath = NULL;
3452 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3453 		}
3454 #else /* !CAMDEBUG */
3455 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3456 #endif /* CAMDEBUG */
3457 		break;
3458 	}
3459 	case XPT_NOOP:
3460 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3461 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3462 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3463 		break;
3464 	default:
3465 	case XPT_SDEV_TYPE:
3466 	case XPT_TERM_IO:
3467 	case XPT_ENG_INQ:
3468 		/* XXX Implement */
3469 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3470 		break;
3471 	}
3472 	crit_exit();
3473 }
3474 
3475 void
3476 xpt_polled_action(union ccb *start_ccb)
3477 {
3478 	u_int32_t timeout;
3479 	struct	  cam_sim *sim;
3480 	struct	  cam_devq *devq;
3481 	struct	  cam_ed *dev;
3482 
3483 	timeout = start_ccb->ccb_h.timeout;
3484 	sim = start_ccb->ccb_h.path->bus->sim;
3485 	devq = sim->devq;
3486 	dev = start_ccb->ccb_h.path->device;
3487 
3488 	crit_enter();
3489 
3490 	/*
3491 	 * Steal an opening so that no other queued requests
3492 	 * can get it before us while we simulate interrupts.
3493 	 */
3494 	dev->ccbq.devq_openings--;
3495 	dev->ccbq.dev_openings--;
3496 
3497 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3498 	   && (--timeout > 0)) {
3499 		DELAY(1000);
3500 		(*(sim->sim_poll))(sim);
3501 		swi_camnet(NULL, NULL);
3502 		swi_cambio(NULL, NULL);
3503 	}
3504 
3505 	dev->ccbq.devq_openings++;
3506 	dev->ccbq.dev_openings++;
3507 
3508 	if (timeout != 0) {
3509 		xpt_action(start_ccb);
3510 		while(--timeout > 0) {
3511 			(*(sim->sim_poll))(sim);
3512 			swi_camnet(NULL, NULL);
3513 			swi_cambio(NULL, NULL);
3514 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3515 			    != CAM_REQ_INPROG)
3516 				break;
3517 			DELAY(1000);
3518 		}
3519 		if (timeout == 0) {
3520 			/*
3521 			 * XXX Is it worth adding a sim_timeout entry
3522 			 * point so we can attempt recovery?  If
3523 			 * this is only used for dumps, I don't think
3524 			 * it is.
3525 			 */
3526 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3527 		}
3528 	} else {
3529 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3530 	}
3531 	crit_exit();
3532 }
3533 
3534 /*
3535  * Schedule a peripheral driver to receive a ccb when it's
3536  * target device has space for more transactions.
3537  */
3538 void
3539 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3540 {
3541 	struct cam_ed *device;
3542 	int runq;
3543 
3544 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3545 	device = perph->path->device;
3546 	crit_enter();
3547 	if (periph_is_queued(perph)) {
3548 		/* Simply reorder based on new priority */
3549 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3550 			  ("   change priority to %d\n", new_priority));
3551 		if (new_priority < perph->pinfo.priority) {
3552 			camq_change_priority(&device->drvq,
3553 					     perph->pinfo.index,
3554 					     new_priority);
3555 		}
3556 		runq = 0;
3557 	} else {
3558 		/* New entry on the queue */
3559 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3560 			  ("   added periph to queue\n"));
3561 		perph->pinfo.priority = new_priority;
3562 		perph->pinfo.generation = ++device->drvq.generation;
3563 		camq_insert(&device->drvq, &perph->pinfo);
3564 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3565 	}
3566 	crit_exit();
3567 	if (runq != 0) {
3568 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3569 			  ("   calling xpt_run_devq\n"));
3570 		xpt_run_dev_allocq(perph->path->bus);
3571 	}
3572 }
3573 
3574 
3575 /*
3576  * Schedule a device to run on a given queue.
3577  * If the device was inserted as a new entry on the queue,
3578  * return 1 meaning the device queue should be run. If we
3579  * were already queued, implying someone else has already
3580  * started the queue, return 0 so the caller doesn't attempt
3581  * to run the queue.  Must be run in a critical section.
3582  */
3583 static int
3584 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3585 		 u_int32_t new_priority)
3586 {
3587 	int retval;
3588 	u_int32_t old_priority;
3589 
3590 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3591 
3592 	old_priority = pinfo->priority;
3593 
3594 	/*
3595 	 * Are we already queued?
3596 	 */
3597 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3598 		/* Simply reorder based on new priority */
3599 		if (new_priority < old_priority) {
3600 			camq_change_priority(queue, pinfo->index,
3601 					     new_priority);
3602 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3603 					("changed priority to %d\n",
3604 					 new_priority));
3605 		}
3606 		retval = 0;
3607 	} else {
3608 		/* New entry on the queue */
3609 		if (new_priority < old_priority)
3610 			pinfo->priority = new_priority;
3611 
3612 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3613 				("Inserting onto queue\n"));
3614 		pinfo->generation = ++queue->generation;
3615 		camq_insert(queue, pinfo);
3616 		retval = 1;
3617 	}
3618 	return (retval);
3619 }
3620 
3621 static void
3622 xpt_run_dev_allocq(struct cam_eb *bus)
3623 {
3624 	struct	cam_devq *devq;
3625 
3626 	if ((devq = bus->sim->devq) == NULL) {
3627 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3628 		return;
3629 	}
3630 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3631 
3632 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3633 			("   qfrozen_cnt == 0x%x, entries == %d, "
3634 			 "openings == %d, active == %d\n",
3635 			 devq->alloc_queue.qfrozen_cnt,
3636 			 devq->alloc_queue.entries,
3637 			 devq->alloc_openings,
3638 			 devq->alloc_active));
3639 
3640 	crit_enter();
3641 	devq->alloc_queue.qfrozen_cnt++;
3642 	while ((devq->alloc_queue.entries > 0)
3643 	    && (devq->alloc_openings > 0)
3644 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3645 		struct	cam_ed_qinfo *qinfo;
3646 		struct	cam_ed *device;
3647 		union	ccb *work_ccb;
3648 		struct	cam_periph *drv;
3649 		struct	camq *drvq;
3650 
3651 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3652 							   CAMQ_HEAD);
3653 		device = qinfo->device;
3654 
3655 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3656 				("running device %p\n", device));
3657 
3658 		drvq = &device->drvq;
3659 
3660 #ifdef CAMDEBUG
3661 		if (drvq->entries <= 0) {
3662 			panic("xpt_run_dev_allocq: "
3663 			      "Device on queue without any work to do");
3664 		}
3665 #endif
3666 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3667 			devq->alloc_openings--;
3668 			devq->alloc_active++;
3669 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3670 			crit_exit();
3671 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3672 				      drv->pinfo.priority);
3673 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3674 					("calling periph start\n"));
3675 			drv->periph_start(drv, work_ccb);
3676 		} else {
3677 			/*
3678 			 * Malloc failure in alloc_ccb
3679 			 */
3680 			/*
3681 			 * XXX add us to a list to be run from free_ccb
3682 			 * if we don't have any ccbs active on this
3683 			 * device queue otherwise we may never get run
3684 			 * again.
3685 			 */
3686 			break;
3687 		}
3688 
3689 		/* Raise IPL for possible insertion and test at top of loop */
3690 		crit_enter();
3691 
3692 		if (drvq->entries > 0) {
3693 			/* We have more work.  Attempt to reschedule */
3694 			xpt_schedule_dev_allocq(bus, device);
3695 		}
3696 	}
3697 	devq->alloc_queue.qfrozen_cnt--;
3698 	crit_exit();
3699 }
3700 
3701 static void
3702 xpt_run_dev_sendq(struct cam_eb *bus)
3703 {
3704 	struct	cam_devq *devq;
3705 
3706 	if ((devq = bus->sim->devq) == NULL) {
3707 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3708 		return;
3709 	}
3710 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3711 
3712 	crit_enter();
3713 	devq->send_queue.qfrozen_cnt++;
3714 	while ((devq->send_queue.entries > 0)
3715 	    && (devq->send_openings > 0)) {
3716 		struct	cam_ed_qinfo *qinfo;
3717 		struct	cam_ed *device;
3718 		union ccb *work_ccb;
3719 		struct	cam_sim *sim;
3720 
3721 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3722 			break;
3723 		}
3724 
3725 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3726 							   CAMQ_HEAD);
3727 		device = qinfo->device;
3728 
3729 		/*
3730 		 * If the device has been "frozen", don't attempt
3731 		 * to run it.
3732 		 */
3733 		if (device->qfrozen_cnt > 0) {
3734 			continue;
3735 		}
3736 
3737 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3738 				("running device %p\n", device));
3739 
3740 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3741 		if (work_ccb == NULL) {
3742 			kprintf("device on run queue with no ccbs???\n");
3743 			continue;
3744 		}
3745 
3746 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3747 
3748 		 	if (num_highpower <= 0) {
3749 				/*
3750 				 * We got a high power command, but we
3751 				 * don't have any available slots.  Freeze
3752 				 * the device queue until we have a slot
3753 				 * available.
3754 				 */
3755 				device->qfrozen_cnt++;
3756 				STAILQ_INSERT_TAIL(&highpowerq,
3757 						   &work_ccb->ccb_h,
3758 						   xpt_links.stqe);
3759 
3760 				continue;
3761 			} else {
3762 				/*
3763 				 * Consume a high power slot while
3764 				 * this ccb runs.
3765 				 */
3766 				num_highpower--;
3767 			}
3768 		}
3769 		devq->active_dev = device;
3770 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3771 
3772 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3773 
3774 		devq->send_openings--;
3775 		devq->send_active++;
3776 
3777 		if (device->ccbq.queue.entries > 0)
3778 			xpt_schedule_dev_sendq(bus, device);
3779 
3780 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3781 			/*
3782 			 * The client wants to freeze the queue
3783 			 * after this CCB is sent.
3784 			 */
3785 			device->qfrozen_cnt++;
3786 		}
3787 
3788 		/* In Target mode, the peripheral driver knows best... */
3789 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3790 			if ((device->inq_flags & SID_CmdQue) != 0
3791 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3792 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3793 			else
3794 				/*
3795 				 * Clear this in case of a retried CCB that
3796 				 * failed due to a rejected tag.
3797 				 */
3798 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3799 		}
3800 
3801 		/*
3802 		 * Device queues can be shared among multiple sim instances
3803 		 * that reside on different busses.  Use the SIM in the queue
3804 		 * CCB's path, rather than the one in the bus that was passed
3805 		 * into this function.
3806 		 */
3807 		sim = work_ccb->ccb_h.path->bus->sim;
3808 		(*(sim->sim_action))(sim, work_ccb);
3809 
3810 		devq->active_dev = NULL;
3811 		/* Raise IPL for possible insertion and test at top of loop */
3812 	}
3813 	devq->send_queue.qfrozen_cnt--;
3814 	crit_exit();
3815 }
3816 
3817 /*
3818  * This function merges stuff from the slave ccb into the master ccb, while
3819  * keeping important fields in the master ccb constant.
3820  */
3821 void
3822 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3823 {
3824 	/*
3825 	 * Pull fields that are valid for peripheral drivers to set
3826 	 * into the master CCB along with the CCB "payload".
3827 	 */
3828 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3829 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3830 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3831 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3832 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3833 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3834 }
3835 
3836 void
3837 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3838 {
3839 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3840 	callout_init(&ccb_h->timeout_ch);
3841 	ccb_h->pinfo.priority = priority;
3842 	ccb_h->path = path;
3843 	ccb_h->path_id = path->bus->path_id;
3844 	if (path->target)
3845 		ccb_h->target_id = path->target->target_id;
3846 	else
3847 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3848 	if (path->device) {
3849 		ccb_h->target_lun = path->device->lun_id;
3850 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3851 	} else {
3852 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3853 	}
3854 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3855 	ccb_h->flags = 0;
3856 }
3857 
3858 /* Path manipulation functions */
3859 cam_status
3860 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3861 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3862 {
3863 	struct	   cam_path *path;
3864 	cam_status status;
3865 
3866 	path = kmalloc(sizeof(*path), M_DEVBUF, M_INTWAIT);
3867 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3868 	if (status != CAM_REQ_CMP) {
3869 		kfree(path, M_DEVBUF);
3870 		path = NULL;
3871 	}
3872 	*new_path_ptr = path;
3873 	return (status);
3874 }
3875 
3876 static cam_status
3877 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3878 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3879 {
3880 	struct	     cam_eb *bus;
3881 	struct	     cam_et *target;
3882 	struct	     cam_ed *device;
3883 	cam_status   status;
3884 
3885 	status = CAM_REQ_CMP;	/* Completed without error */
3886 	target = NULL;		/* Wildcarded */
3887 	device = NULL;		/* Wildcarded */
3888 
3889 	/*
3890 	 * We will potentially modify the EDT, so block interrupts
3891 	 * that may attempt to create cam paths.
3892 	 */
3893 	crit_enter();
3894 	bus = xpt_find_bus(path_id);
3895 	if (bus == NULL) {
3896 		status = CAM_PATH_INVALID;
3897 	} else {
3898 		target = xpt_find_target(bus, target_id);
3899 		if (target == NULL) {
3900 			/* Create one */
3901 			struct cam_et *new_target;
3902 
3903 			new_target = xpt_alloc_target(bus, target_id);
3904 			if (new_target == NULL) {
3905 				status = CAM_RESRC_UNAVAIL;
3906 			} else {
3907 				target = new_target;
3908 			}
3909 		}
3910 		if (target != NULL) {
3911 			device = xpt_find_device(target, lun_id);
3912 			if (device == NULL) {
3913 				/* Create one */
3914 				struct cam_ed *new_device;
3915 
3916 				new_device = xpt_alloc_device(bus,
3917 							      target,
3918 							      lun_id);
3919 				if (new_device == NULL) {
3920 					status = CAM_RESRC_UNAVAIL;
3921 				} else {
3922 					device = new_device;
3923 				}
3924 			}
3925 		}
3926 	}
3927 	crit_exit();
3928 
3929 	/*
3930 	 * Only touch the user's data if we are successful.
3931 	 */
3932 	if (status == CAM_REQ_CMP) {
3933 		new_path->periph = perph;
3934 		new_path->bus = bus;
3935 		new_path->target = target;
3936 		new_path->device = device;
3937 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3938 	} else {
3939 		if (device != NULL)
3940 			xpt_release_device(bus, target, device);
3941 		if (target != NULL)
3942 			xpt_release_target(bus, target);
3943 		if (bus != NULL)
3944 			xpt_release_bus(bus);
3945 	}
3946 	return (status);
3947 }
3948 
3949 static void
3950 xpt_release_path(struct cam_path *path)
3951 {
3952 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3953 	if (path->device != NULL) {
3954 		xpt_release_device(path->bus, path->target, path->device);
3955 		path->device = NULL;
3956 	}
3957 	if (path->target != NULL) {
3958 		xpt_release_target(path->bus, path->target);
3959 		path->target = NULL;
3960 	}
3961 	if (path->bus != NULL) {
3962 		xpt_release_bus(path->bus);
3963 		path->bus = NULL;
3964 	}
3965 }
3966 
3967 void
3968 xpt_free_path(struct cam_path *path)
3969 {
3970 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3971 	xpt_release_path(path);
3972 	kfree(path, M_DEVBUF);
3973 }
3974 
3975 
3976 /*
3977  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3978  * in path1, 2 for match with wildcards in path2.
3979  */
3980 int
3981 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3982 {
3983 	int retval = 0;
3984 
3985 	if (path1->bus != path2->bus) {
3986 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3987 			retval = 1;
3988 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3989 			retval = 2;
3990 		else
3991 			return (-1);
3992 	}
3993 	if (path1->target != path2->target) {
3994 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3995 			if (retval == 0)
3996 				retval = 1;
3997 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3998 			retval = 2;
3999 		else
4000 			return (-1);
4001 	}
4002 	if (path1->device != path2->device) {
4003 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4004 			if (retval == 0)
4005 				retval = 1;
4006 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4007 			retval = 2;
4008 		else
4009 			return (-1);
4010 	}
4011 	return (retval);
4012 }
4013 
4014 void
4015 xpt_print_path(struct cam_path *path)
4016 {
4017 	if (path == NULL)
4018 		kprintf("(nopath): ");
4019 	else {
4020 		if (path->periph != NULL)
4021 			kprintf("(%s%d:", path->periph->periph_name,
4022 			       path->periph->unit_number);
4023 		else
4024 			kprintf("(noperiph:");
4025 
4026 		if (path->bus != NULL)
4027 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4028 			       path->bus->sim->unit_number,
4029 			       path->bus->sim->bus_id);
4030 		else
4031 			kprintf("nobus:");
4032 
4033 		if (path->target != NULL)
4034 			kprintf("%d:", path->target->target_id);
4035 		else
4036 			kprintf("X:");
4037 
4038 		if (path->device != NULL)
4039 			kprintf("%d): ", path->device->lun_id);
4040 		else
4041 			kprintf("X): ");
4042 	}
4043 }
4044 
4045 int
4046 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4047 {
4048 	struct sbuf sb;
4049 
4050 	sbuf_new(&sb, str, str_len, 0);
4051 
4052 	if (path == NULL)
4053 		sbuf_printf(&sb, "(nopath): ");
4054 	else {
4055 		if (path->periph != NULL)
4056 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4057 				    path->periph->unit_number);
4058 		else
4059 			sbuf_printf(&sb, "(noperiph:");
4060 
4061 		if (path->bus != NULL)
4062 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4063 				    path->bus->sim->unit_number,
4064 				    path->bus->sim->bus_id);
4065 		else
4066 			sbuf_printf(&sb, "nobus:");
4067 
4068 		if (path->target != NULL)
4069 			sbuf_printf(&sb, "%d:", path->target->target_id);
4070 		else
4071 			sbuf_printf(&sb, "X:");
4072 
4073 		if (path->device != NULL)
4074 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4075 		else
4076 			sbuf_printf(&sb, "X): ");
4077 	}
4078 	sbuf_finish(&sb);
4079 
4080 	return(sbuf_len(&sb));
4081 }
4082 
4083 path_id_t
4084 xpt_path_path_id(struct cam_path *path)
4085 {
4086 	return(path->bus->path_id);
4087 }
4088 
4089 target_id_t
4090 xpt_path_target_id(struct cam_path *path)
4091 {
4092 	if (path->target != NULL)
4093 		return (path->target->target_id);
4094 	else
4095 		return (CAM_TARGET_WILDCARD);
4096 }
4097 
4098 lun_id_t
4099 xpt_path_lun_id(struct cam_path *path)
4100 {
4101 	if (path->device != NULL)
4102 		return (path->device->lun_id);
4103 	else
4104 		return (CAM_LUN_WILDCARD);
4105 }
4106 
4107 struct cam_sim *
4108 xpt_path_sim(struct cam_path *path)
4109 {
4110 	return (path->bus->sim);
4111 }
4112 
4113 struct cam_periph*
4114 xpt_path_periph(struct cam_path *path)
4115 {
4116 	return (path->periph);
4117 }
4118 
4119 /*
4120  * Release a CAM control block for the caller.  Remit the cost of the structure
4121  * to the device referenced by the path.  If the this device had no 'credits'
4122  * and peripheral drivers have registered async callbacks for this notification
4123  * call them now.
4124  */
4125 void
4126 xpt_release_ccb(union ccb *free_ccb)
4127 {
4128 	struct	 cam_path *path;
4129 	struct	 cam_ed *device;
4130 	struct	 cam_eb *bus;
4131 
4132 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4133 	path = free_ccb->ccb_h.path;
4134 	device = path->device;
4135 	bus = path->bus;
4136 	crit_enter();
4137 	cam_ccbq_release_opening(&device->ccbq);
4138 	if (xpt_ccb_count > xpt_max_ccbs) {
4139 		xpt_free_ccb(free_ccb);
4140 		xpt_ccb_count--;
4141 	} else {
4142 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4143 	}
4144 	if (bus->sim->devq) {
4145 		bus->sim->devq->alloc_openings++;
4146 		bus->sim->devq->alloc_active--;
4147 	}
4148 	/* XXX Turn this into an inline function - xpt_run_device?? */
4149 	if ((device_is_alloc_queued(device) == 0)
4150 	 && (device->drvq.entries > 0)) {
4151 		xpt_schedule_dev_allocq(bus, device);
4152 	}
4153 	crit_exit();
4154 	if (bus->sim->devq && dev_allocq_is_runnable(bus->sim->devq))
4155 		xpt_run_dev_allocq(bus);
4156 }
4157 
4158 /* Functions accessed by SIM drivers */
4159 
4160 /*
4161  * A sim structure, listing the SIM entry points and instance
4162  * identification info is passed to xpt_bus_register to hook the SIM
4163  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4164  * for this new bus and places it in the array of busses and assigns
4165  * it a path_id.  The path_id may be influenced by "hard wiring"
4166  * information specified by the user.  Once interrupt services are
4167  * availible, the bus will be probed.
4168  */
4169 int32_t
4170 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4171 {
4172 	struct cam_eb *new_bus;
4173 	struct cam_eb *old_bus;
4174 	struct ccb_pathinq cpi;
4175 
4176 	sim->bus_id = bus;
4177 	new_bus = kmalloc(sizeof(*new_bus), M_DEVBUF, M_INTWAIT);
4178 
4179 	if (strcmp(sim->sim_name, "xpt") != 0) {
4180 		sim->path_id =
4181 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4182 	}
4183 
4184 	TAILQ_INIT(&new_bus->et_entries);
4185 	new_bus->path_id = sim->path_id;
4186 	new_bus->sim = sim;
4187 	++sim->refcount;
4188 	timevalclear(&new_bus->last_reset);
4189 	new_bus->flags = 0;
4190 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4191 	new_bus->generation = 0;
4192 	crit_enter();
4193 	old_bus = TAILQ_FIRST(&xpt_busses);
4194 	while (old_bus != NULL
4195 	    && old_bus->path_id < new_bus->path_id)
4196 		old_bus = TAILQ_NEXT(old_bus, links);
4197 	if (old_bus != NULL)
4198 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4199 	else
4200 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4201 	bus_generation++;
4202 	crit_exit();
4203 
4204 	/* Notify interested parties */
4205 	if (sim->path_id != CAM_XPT_PATH_ID) {
4206 		struct cam_path path;
4207 
4208 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4209 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4210 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4211 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4212 		xpt_action((union ccb *)&cpi);
4213 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4214 		xpt_release_path(&path);
4215 	}
4216 	return (CAM_SUCCESS);
4217 }
4218 
4219 /*
4220  * Deregister a bus.  We must clean out all transactions pending on the bus.
4221  * This routine is typically called prior to cam_sim_free() (e.g. see
4222  * dev/usbmisc/umass/umass.c)
4223  */
4224 int32_t
4225 xpt_bus_deregister(path_id_t pathid)
4226 {
4227 	struct cam_path bus_path;
4228 	cam_status status;
4229 
4230 	status = xpt_compile_path(&bus_path, NULL, pathid,
4231 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4232 	if (status != CAM_REQ_CMP)
4233 		return (status);
4234 
4235 	/*
4236 	 * This should clear out all pending requests and timeouts, but
4237 	 * the ccb's may be queued to a software interrupt.
4238 	 *
4239 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4240 	 * and it really ought to.
4241 	 */
4242 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4243 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4244 
4245 	/* make sure all responses have been processed */
4246 	camisr(&cam_netq);
4247 	camisr(&cam_bioq);
4248 
4249 	/* Release the reference count held while registered. */
4250 	xpt_release_bus(bus_path.bus);
4251 	xpt_release_path(&bus_path);
4252 
4253 	return (CAM_REQ_CMP);
4254 }
4255 
4256 static path_id_t
4257 xptnextfreepathid(void)
4258 {
4259 	struct cam_eb *bus;
4260 	path_id_t pathid;
4261 	char *strval;
4262 
4263 	pathid = 0;
4264 	bus = TAILQ_FIRST(&xpt_busses);
4265 retry:
4266 	/* Find an unoccupied pathid */
4267 	while (bus != NULL
4268 	    && bus->path_id <= pathid) {
4269 		if (bus->path_id == pathid)
4270 			pathid++;
4271 		bus = TAILQ_NEXT(bus, links);
4272 	}
4273 
4274 	/*
4275 	 * Ensure that this pathid is not reserved for
4276 	 * a bus that may be registered in the future.
4277 	 */
4278 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4279 		++pathid;
4280 		/* Start the search over */
4281 		goto retry;
4282 	}
4283 	return (pathid);
4284 }
4285 
4286 static path_id_t
4287 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4288 {
4289 	path_id_t pathid;
4290 	int i, dunit, val;
4291 	char buf[32];
4292 
4293 	pathid = CAM_XPT_PATH_ID;
4294 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4295 	i = -1;
4296 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4297 		if (strcmp(resource_query_name(i), "scbus")) {
4298 			/* Avoid a bit of foot shooting. */
4299 			continue;
4300 		}
4301 		dunit = resource_query_unit(i);
4302 		if (dunit < 0)		/* unwired?! */
4303 			continue;
4304 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4305 			if (sim_bus == val) {
4306 				pathid = dunit;
4307 				break;
4308 			}
4309 		} else if (sim_bus == 0) {
4310 			/* Unspecified matches bus 0 */
4311 			pathid = dunit;
4312 			break;
4313 		} else {
4314 			kprintf("Ambiguous scbus configuration for %s%d "
4315 			       "bus %d, cannot wire down.  The kernel "
4316 			       "config entry for scbus%d should "
4317 			       "specify a controller bus.\n"
4318 			       "Scbus will be assigned dynamically.\n",
4319 			       sim_name, sim_unit, sim_bus, dunit);
4320 			break;
4321 		}
4322 	}
4323 
4324 	if (pathid == CAM_XPT_PATH_ID)
4325 		pathid = xptnextfreepathid();
4326 	return (pathid);
4327 }
4328 
4329 void
4330 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4331 {
4332 	struct cam_eb *bus;
4333 	struct cam_et *target, *next_target;
4334 	struct cam_ed *device, *next_device;
4335 
4336 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4337 
4338 	/*
4339 	 * Most async events come from a CAM interrupt context.  In
4340 	 * a few cases, the error recovery code at the peripheral layer,
4341 	 * which may run from our SWI or a process context, may signal
4342 	 * deferred events with a call to xpt_async. Ensure async
4343 	 * notifications are serialized by blocking cam interrupts.
4344 	 */
4345 	crit_enter();
4346 
4347 	bus = path->bus;
4348 
4349 	if (async_code == AC_BUS_RESET) {
4350 		/* Update our notion of when the last reset occurred */
4351 		microuptime(&bus->last_reset);
4352 	}
4353 
4354 	for (target = TAILQ_FIRST(&bus->et_entries);
4355 	     target != NULL;
4356 	     target = next_target) {
4357 
4358 		next_target = TAILQ_NEXT(target, links);
4359 
4360 		if (path->target != target
4361 		 && path->target->target_id != CAM_TARGET_WILDCARD
4362 		 && target->target_id != CAM_TARGET_WILDCARD)
4363 			continue;
4364 
4365 		if (async_code == AC_SENT_BDR) {
4366 			/* Update our notion of when the last reset occurred */
4367 			microuptime(&path->target->last_reset);
4368 		}
4369 
4370 		for (device = TAILQ_FIRST(&target->ed_entries);
4371 		     device != NULL;
4372 		     device = next_device) {
4373 
4374 			next_device = TAILQ_NEXT(device, links);
4375 
4376 			if (path->device != device
4377 			 && path->device->lun_id != CAM_LUN_WILDCARD
4378 			 && device->lun_id != CAM_LUN_WILDCARD)
4379 				continue;
4380 
4381 			xpt_dev_async(async_code, bus, target,
4382 				      device, async_arg);
4383 
4384 			xpt_async_bcast(&device->asyncs, async_code,
4385 					path, async_arg);
4386 		}
4387 	}
4388 
4389 	/*
4390 	 * If this wasn't a fully wildcarded async, tell all
4391 	 * clients that want all async events.
4392 	 */
4393 	if (bus != xpt_periph->path->bus)
4394 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4395 				path, async_arg);
4396 	crit_exit();
4397 }
4398 
4399 static void
4400 xpt_async_bcast(struct async_list *async_head,
4401 		u_int32_t async_code,
4402 		struct cam_path *path, void *async_arg)
4403 {
4404 	struct async_node *cur_entry;
4405 
4406 	cur_entry = SLIST_FIRST(async_head);
4407 	while (cur_entry != NULL) {
4408 		struct async_node *next_entry;
4409 		/*
4410 		 * Grab the next list entry before we call the current
4411 		 * entry's callback.  This is because the callback function
4412 		 * can delete its async callback entry.
4413 		 */
4414 		next_entry = SLIST_NEXT(cur_entry, links);
4415 		if ((cur_entry->event_enable & async_code) != 0)
4416 			cur_entry->callback(cur_entry->callback_arg,
4417 					    async_code, path,
4418 					    async_arg);
4419 		cur_entry = next_entry;
4420 	}
4421 }
4422 
4423 /*
4424  * Handle any per-device event notifications that require action by the XPT.
4425  */
4426 static void
4427 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4428 	      struct cam_ed *device, void *async_arg)
4429 {
4430 	cam_status status;
4431 	struct cam_path newpath;
4432 
4433 	/*
4434 	 * We only need to handle events for real devices.
4435 	 */
4436 	if (target->target_id == CAM_TARGET_WILDCARD
4437 	 || device->lun_id == CAM_LUN_WILDCARD)
4438 		return;
4439 
4440 	/*
4441 	 * We need our own path with wildcards expanded to
4442 	 * handle certain types of events.
4443 	 */
4444 	if ((async_code == AC_SENT_BDR)
4445 	 || (async_code == AC_BUS_RESET)
4446 	 || (async_code == AC_INQ_CHANGED))
4447 		status = xpt_compile_path(&newpath, NULL,
4448 					  bus->path_id,
4449 					  target->target_id,
4450 					  device->lun_id);
4451 	else
4452 		status = CAM_REQ_CMP_ERR;
4453 
4454 	if (status == CAM_REQ_CMP) {
4455 
4456 		/*
4457 		 * Allow transfer negotiation to occur in a
4458 		 * tag free environment.
4459 		 */
4460 		if (async_code == AC_SENT_BDR
4461 		 || async_code == AC_BUS_RESET)
4462 			xpt_toggle_tags(&newpath);
4463 
4464 		if (async_code == AC_INQ_CHANGED) {
4465 			/*
4466 			 * We've sent a start unit command, or
4467 			 * something similar to a device that
4468 			 * may have caused its inquiry data to
4469 			 * change. So we re-scan the device to
4470 			 * refresh the inquiry data for it.
4471 			 */
4472 			xpt_scan_lun(newpath.periph, &newpath,
4473 				     CAM_EXPECT_INQ_CHANGE, NULL);
4474 		}
4475 		xpt_release_path(&newpath);
4476 	} else if (async_code == AC_LOST_DEVICE) {
4477 		/*
4478 		 * When we lose a device the device may be about to detach
4479 		 * the sim, we have to clear out all pending timeouts and
4480 		 * requests before that happens.  XXX it would be nice if
4481 		 * we could abort the requests pertaining to the device.
4482 		 */
4483 		xpt_release_devq_timeout(device);
4484 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4485 			device->flags |= CAM_DEV_UNCONFIGURED;
4486 			xpt_release_device(bus, target, device);
4487 		}
4488 	} else if (async_code == AC_TRANSFER_NEG) {
4489 		struct ccb_trans_settings *settings;
4490 
4491 		settings = (struct ccb_trans_settings *)async_arg;
4492 		xpt_set_transfer_settings(settings, device,
4493 					  /*async_update*/TRUE);
4494 	}
4495 }
4496 
4497 u_int32_t
4498 xpt_freeze_devq(struct cam_path *path, u_int count)
4499 {
4500 	struct ccb_hdr *ccbh;
4501 
4502 	crit_enter();
4503 	path->device->qfrozen_cnt += count;
4504 
4505 	/*
4506 	 * Mark the last CCB in the queue as needing
4507 	 * to be requeued if the driver hasn't
4508 	 * changed it's state yet.  This fixes a race
4509 	 * where a ccb is just about to be queued to
4510 	 * a controller driver when it's interrupt routine
4511 	 * freezes the queue.  To completly close the
4512 	 * hole, controller drives must check to see
4513 	 * if a ccb's status is still CAM_REQ_INPROG
4514 	 * under critical section protection just before they queue
4515 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4516 	 * an example.
4517 	 */
4518 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4519 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4520 		ccbh->status = CAM_REQUEUE_REQ;
4521 	crit_exit();
4522 	return (path->device->qfrozen_cnt);
4523 }
4524 
4525 u_int32_t
4526 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4527 {
4528 	if (sim->devq == NULL)
4529 		return(count);
4530 	sim->devq->send_queue.qfrozen_cnt += count;
4531 	if (sim->devq->active_dev != NULL) {
4532 		struct ccb_hdr *ccbh;
4533 
4534 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4535 				  ccb_hdr_tailq);
4536 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4537 			ccbh->status = CAM_REQUEUE_REQ;
4538 	}
4539 	return (sim->devq->send_queue.qfrozen_cnt);
4540 }
4541 
4542 /*
4543  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4544  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4545  * freed, which is not the case here), but the device queue is also freed XXX
4546  * and we have to check that here.
4547  *
4548  * XXX fixme: could we simply not null-out the device queue via
4549  * cam_sim_free()?
4550  */
4551 static void
4552 xpt_release_devq_timeout(void *arg)
4553 {
4554 	struct cam_ed *device;
4555 
4556 	device = (struct cam_ed *)arg;
4557 
4558 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4559 }
4560 
4561 void
4562 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4563 {
4564 	xpt_release_devq_device(path->device, count, run_queue);
4565 }
4566 
4567 static void
4568 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4569 {
4570 	int	rundevq;
4571 
4572 	rundevq = 0;
4573 	crit_enter();
4574 
4575 	if (dev->qfrozen_cnt > 0) {
4576 
4577 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4578 		dev->qfrozen_cnt -= count;
4579 		if (dev->qfrozen_cnt == 0) {
4580 
4581 			/*
4582 			 * No longer need to wait for a successful
4583 			 * command completion.
4584 			 */
4585 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4586 
4587 			/*
4588 			 * Remove any timeouts that might be scheduled
4589 			 * to release this queue.
4590 			 */
4591 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4592 				callout_stop(&dev->c_handle);
4593 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4594 			}
4595 
4596 			/*
4597 			 * Now that we are unfrozen schedule the
4598 			 * device so any pending transactions are
4599 			 * run.
4600 			 */
4601 			if ((dev->ccbq.queue.entries > 0)
4602 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4603 			 && (run_queue != 0)) {
4604 				rundevq = 1;
4605 			}
4606 		}
4607 	}
4608 	if (rundevq != 0)
4609 		xpt_run_dev_sendq(dev->target->bus);
4610 	crit_exit();
4611 }
4612 
4613 void
4614 xpt_release_simq(struct cam_sim *sim, int run_queue)
4615 {
4616 	struct	camq *sendq;
4617 
4618 	if (sim->devq == NULL)
4619 		return;
4620 
4621 	sendq = &(sim->devq->send_queue);
4622 	crit_enter();
4623 
4624 	if (sendq->qfrozen_cnt > 0) {
4625 		sendq->qfrozen_cnt--;
4626 		if (sendq->qfrozen_cnt == 0) {
4627 			struct cam_eb *bus;
4628 
4629 			/*
4630 			 * If there is a timeout scheduled to release this
4631 			 * sim queue, remove it.  The queue frozen count is
4632 			 * already at 0.
4633 			 */
4634 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4635 				callout_stop(&sim->c_handle);
4636 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4637 			}
4638 			bus = xpt_find_bus(sim->path_id);
4639 			crit_exit();
4640 
4641 			if (run_queue) {
4642 				/*
4643 				 * Now that we are unfrozen run the send queue.
4644 				 */
4645 				xpt_run_dev_sendq(bus);
4646 			}
4647 			xpt_release_bus(bus);
4648 		} else {
4649 			crit_exit();
4650 		}
4651 	} else {
4652 		crit_exit();
4653 	}
4654 }
4655 
4656 void
4657 xpt_done(union ccb *done_ccb)
4658 {
4659 	crit_enter();
4660 
4661 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4662 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4663 		/*
4664 		 * Queue up the request for handling by our SWI handler
4665 		 * any of the "non-immediate" type of ccbs.
4666 		 */
4667 		switch (done_ccb->ccb_h.path->periph->type) {
4668 		case CAM_PERIPH_BIO:
4669 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4670 					  sim_links.tqe);
4671 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4672 			setsoftcambio();
4673 			break;
4674 		case CAM_PERIPH_NET:
4675 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4676 					  sim_links.tqe);
4677 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4678 			setsoftcamnet();
4679 			break;
4680 		}
4681 	}
4682 	crit_exit();
4683 }
4684 
4685 union ccb *
4686 xpt_alloc_ccb(void)
4687 {
4688 	union ccb *new_ccb;
4689 
4690 	new_ccb = kmalloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4691 	return (new_ccb);
4692 }
4693 
4694 void
4695 xpt_free_ccb(union ccb *free_ccb)
4696 {
4697 	kfree(free_ccb, M_DEVBUF);
4698 }
4699 
4700 
4701 
4702 /* Private XPT functions */
4703 
4704 /*
4705  * Get a CAM control block for the caller. Charge the structure to the device
4706  * referenced by the path.  If the this device has no 'credits' then the
4707  * device already has the maximum number of outstanding operations under way
4708  * and we return NULL. If we don't have sufficient resources to allocate more
4709  * ccbs, we also return NULL.
4710  */
4711 static union ccb *
4712 xpt_get_ccb(struct cam_ed *device)
4713 {
4714 	union ccb *new_ccb;
4715 
4716 	crit_enter();
4717 	if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) {
4718 		new_ccb = kmalloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4719 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4720 				  xpt_links.sle);
4721 		xpt_ccb_count++;
4722 	}
4723 	cam_ccbq_take_opening(&device->ccbq);
4724 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4725 	crit_exit();
4726 	return (new_ccb);
4727 }
4728 
4729 static void
4730 xpt_release_bus(struct cam_eb *bus)
4731 {
4732 
4733 	crit_enter();
4734 	if (bus->refcount == 1) {
4735 		KKASSERT(TAILQ_FIRST(&bus->et_entries) == NULL);
4736 		TAILQ_REMOVE(&xpt_busses, bus, links);
4737 		if (bus->sim) {
4738 			cam_sim_release(bus->sim, 0);
4739 			bus->sim = NULL;
4740 		}
4741 		bus_generation++;
4742 		KKASSERT(bus->refcount == 1);
4743 		kfree(bus, M_DEVBUF);
4744 	} else {
4745 		--bus->refcount;
4746 	}
4747 	crit_exit();
4748 }
4749 
4750 static struct cam_et *
4751 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4752 {
4753 	struct cam_et *target;
4754 	struct cam_et *cur_target;
4755 
4756 	target = kmalloc(sizeof(*target), M_DEVBUF, M_INTWAIT);
4757 
4758 	TAILQ_INIT(&target->ed_entries);
4759 	target->bus = bus;
4760 	target->target_id = target_id;
4761 	target->refcount = 1;
4762 	target->generation = 0;
4763 	timevalclear(&target->last_reset);
4764 	/*
4765 	 * Hold a reference to our parent bus so it
4766 	 * will not go away before we do.
4767 	 */
4768 	bus->refcount++;
4769 
4770 	/* Insertion sort into our bus's target list */
4771 	cur_target = TAILQ_FIRST(&bus->et_entries);
4772 	while (cur_target != NULL && cur_target->target_id < target_id)
4773 		cur_target = TAILQ_NEXT(cur_target, links);
4774 
4775 	if (cur_target != NULL) {
4776 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4777 	} else {
4778 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4779 	}
4780 	bus->generation++;
4781 	return (target);
4782 }
4783 
4784 static void
4785 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4786 {
4787 	crit_enter();
4788 	if (target->refcount == 1) {
4789 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4790 		TAILQ_REMOVE(&bus->et_entries, target, links);
4791 		bus->generation++;
4792 		xpt_release_bus(bus);
4793 		KKASSERT(target->refcount == 1);
4794 		kfree(target, M_DEVBUF);
4795 	} else {
4796 		--target->refcount;
4797 	}
4798 	crit_exit();
4799 }
4800 
4801 static struct cam_ed *
4802 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4803 {
4804 #ifdef CAM_NEW_TRAN_CODE
4805 	struct	   cam_path path;
4806 #endif /* CAM_NEW_TRAN_CODE */
4807 	struct	   cam_ed *device;
4808 	struct	   cam_devq *devq;
4809 	cam_status status;
4810 
4811 	/* Make space for us in the device queue on our bus */
4812 	if (bus->sim->devq == NULL)
4813 		return(NULL);
4814 	devq = bus->sim->devq;
4815 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4816 
4817 	if (status != CAM_REQ_CMP) {
4818 		device = NULL;
4819 	} else {
4820 		device = kmalloc(sizeof(*device), M_DEVBUF, M_INTWAIT);
4821 	}
4822 
4823 	if (device != NULL) {
4824 		struct cam_ed *cur_device;
4825 
4826 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4827 		device->alloc_ccb_entry.device = device;
4828 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4829 		device->send_ccb_entry.device = device;
4830 		device->target = target;
4831 		device->lun_id = lun_id;
4832 		/* Initialize our queues */
4833 		if (camq_init(&device->drvq, 0) != 0) {
4834 			kfree(device, M_DEVBUF);
4835 			return (NULL);
4836 		}
4837 		if (cam_ccbq_init(&device->ccbq,
4838 				  bus->sim->max_dev_openings) != 0) {
4839 			camq_fini(&device->drvq);
4840 			kfree(device, M_DEVBUF);
4841 			return (NULL);
4842 		}
4843 		SLIST_INIT(&device->asyncs);
4844 		SLIST_INIT(&device->periphs);
4845 		device->generation = 0;
4846 		device->owner = NULL;
4847 		/*
4848 		 * Take the default quirk entry until we have inquiry
4849 		 * data and can determine a better quirk to use.
4850 		 */
4851 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4852 		bzero(&device->inq_data, sizeof(device->inq_data));
4853 		device->inq_flags = 0;
4854 		device->queue_flags = 0;
4855 		device->serial_num = NULL;
4856 		device->serial_num_len = 0;
4857 		device->qfrozen_cnt = 0;
4858 		device->flags = CAM_DEV_UNCONFIGURED;
4859 		device->tag_delay_count = 0;
4860 		device->refcount = 1;
4861 		callout_init(&device->c_handle);
4862 
4863 		/*
4864 		 * Hold a reference to our parent target so it
4865 		 * will not go away before we do.
4866 		 */
4867 		target->refcount++;
4868 
4869 		/*
4870 		 * XXX should be limited by number of CCBs this bus can
4871 		 * do.
4872 		 */
4873 		xpt_max_ccbs += device->ccbq.devq_openings;
4874 		/* Insertion sort into our target's device list */
4875 		cur_device = TAILQ_FIRST(&target->ed_entries);
4876 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4877 			cur_device = TAILQ_NEXT(cur_device, links);
4878 		if (cur_device != NULL) {
4879 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4880 		} else {
4881 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4882 		}
4883 		target->generation++;
4884 #ifdef CAM_NEW_TRAN_CODE
4885 		if (lun_id != CAM_LUN_WILDCARD) {
4886 			xpt_compile_path(&path,
4887 					 NULL,
4888 					 bus->path_id,
4889 					 target->target_id,
4890 					 lun_id);
4891 			xpt_devise_transport(&path);
4892 			xpt_release_path(&path);
4893 		}
4894 #endif /* CAM_NEW_TRAN_CODE */
4895 	}
4896 	return (device);
4897 }
4898 
4899 static void
4900 xpt_reference_device(struct cam_ed *device)
4901 {
4902 	++device->refcount;
4903 }
4904 
4905 static void
4906 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4907 		   struct cam_ed *device)
4908 {
4909 	struct cam_devq *devq;
4910 
4911 	crit_enter();
4912 	if (device->refcount == 1) {
4913 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
4914 
4915 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4916 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4917 			panic("Removing device while still queued for ccbs");
4918 
4919 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4920 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4921 			callout_stop(&device->c_handle);
4922 		}
4923 
4924 		TAILQ_REMOVE(&target->ed_entries, device,links);
4925 		target->generation++;
4926 		xpt_max_ccbs -= device->ccbq.devq_openings;
4927 		/* Release our slot in the devq */
4928 		devq = bus->sim->devq;
4929 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4930 		xpt_release_target(bus, target);
4931 		KKASSERT(device->refcount == 1);
4932 		kfree(device, M_DEVBUF);
4933 	} else {
4934 		--device->refcount;
4935 	}
4936 	crit_exit();
4937 }
4938 
4939 static u_int32_t
4940 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4941 {
4942 	int	diff;
4943 	int	result;
4944 	struct	cam_ed *dev;
4945 
4946 	dev = path->device;
4947 
4948 	crit_enter();
4949 
4950 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4951 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4952 	if (result == CAM_REQ_CMP && (diff < 0)) {
4953 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4954 	}
4955 	/* Adjust the global limit */
4956 	xpt_max_ccbs += diff;
4957 	crit_exit();
4958 	return (result);
4959 }
4960 
4961 static struct cam_eb *
4962 xpt_find_bus(path_id_t path_id)
4963 {
4964 	struct cam_eb *bus;
4965 
4966 	TAILQ_FOREACH(bus, &xpt_busses, links) {
4967 		if (bus->path_id == path_id) {
4968 			bus->refcount++;
4969 			break;
4970 		}
4971 	}
4972 	return (bus);
4973 }
4974 
4975 static struct cam_et *
4976 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4977 {
4978 	struct cam_et *target;
4979 
4980 	TAILQ_FOREACH(target, &bus->et_entries, links) {
4981 		if (target->target_id == target_id) {
4982 			target->refcount++;
4983 			break;
4984 		}
4985 	}
4986 	return (target);
4987 }
4988 
4989 static struct cam_ed *
4990 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4991 {
4992 	struct cam_ed *device;
4993 
4994 	TAILQ_FOREACH(device, &target->ed_entries, links) {
4995 		if (device->lun_id == lun_id) {
4996 			device->refcount++;
4997 			break;
4998 		}
4999 	}
5000 	return (device);
5001 }
5002 
5003 typedef struct {
5004 	union	ccb *request_ccb;
5005 	struct 	ccb_pathinq *cpi;
5006 	int	pending_count;
5007 } xpt_scan_bus_info;
5008 
5009 /*
5010  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5011  * As the scan progresses, xpt_scan_bus is used as the
5012  * callback on completion function.
5013  */
5014 static void
5015 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5016 {
5017 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5018 		  ("xpt_scan_bus\n"));
5019 	switch (request_ccb->ccb_h.func_code) {
5020 	case XPT_SCAN_BUS:
5021 	{
5022 		xpt_scan_bus_info *scan_info;
5023 		union	ccb *work_ccb;
5024 		struct	cam_path *path;
5025 		u_int	i;
5026 		u_int	max_target;
5027 		u_int	initiator_id;
5028 
5029 		/* Find out the characteristics of the bus */
5030 		work_ccb = xpt_alloc_ccb();
5031 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5032 			      request_ccb->ccb_h.pinfo.priority);
5033 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5034 		xpt_action(work_ccb);
5035 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5036 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5037 			xpt_free_ccb(work_ccb);
5038 			xpt_done(request_ccb);
5039 			return;
5040 		}
5041 
5042 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5043 			/*
5044 			 * Can't scan the bus on an adapter that
5045 			 * cannot perform the initiator role.
5046 			 */
5047 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5048 			xpt_free_ccb(work_ccb);
5049 			xpt_done(request_ccb);
5050 			return;
5051 		}
5052 
5053 		/* Save some state for use while we probe for devices */
5054 		scan_info = (xpt_scan_bus_info *)
5055 		    kmalloc(sizeof(xpt_scan_bus_info), M_TEMP, M_INTWAIT);
5056 		scan_info->request_ccb = request_ccb;
5057 		scan_info->cpi = &work_ccb->cpi;
5058 
5059 		/* Cache on our stack so we can work asynchronously */
5060 		max_target = scan_info->cpi->max_target;
5061 		initiator_id = scan_info->cpi->initiator_id;
5062 
5063 		/*
5064 		 * Don't count the initiator if the
5065 		 * initiator is addressable.
5066 		 */
5067 		scan_info->pending_count = max_target + 1;
5068 		if (initiator_id <= max_target)
5069 			scan_info->pending_count--;
5070 
5071 		for (i = 0; i <= max_target; i++) {
5072 			cam_status status;
5073 		 	if (i == initiator_id)
5074 				continue;
5075 
5076 			status = xpt_create_path(&path, xpt_periph,
5077 						 request_ccb->ccb_h.path_id,
5078 						 i, 0);
5079 			if (status != CAM_REQ_CMP) {
5080 				kprintf("xpt_scan_bus: xpt_create_path failed"
5081 				       " with status %#x, bus scan halted\n",
5082 				       status);
5083 				break;
5084 			}
5085 			work_ccb = xpt_alloc_ccb();
5086 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5087 				      request_ccb->ccb_h.pinfo.priority);
5088 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5089 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5090 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5091 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5092 			xpt_action(work_ccb);
5093 		}
5094 		break;
5095 	}
5096 	case XPT_SCAN_LUN:
5097 	{
5098 		xpt_scan_bus_info *scan_info;
5099 		path_id_t path_id;
5100 		target_id_t target_id;
5101 		lun_id_t lun_id;
5102 
5103 		/* Reuse the same CCB to query if a device was really found */
5104 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5105 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5106 			      request_ccb->ccb_h.pinfo.priority);
5107 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5108 
5109 		path_id = request_ccb->ccb_h.path_id;
5110 		target_id = request_ccb->ccb_h.target_id;
5111 		lun_id = request_ccb->ccb_h.target_lun;
5112 		xpt_action(request_ccb);
5113 
5114 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5115 			struct cam_ed *device;
5116 			struct cam_et *target;
5117 			int phl;
5118 
5119 			/*
5120 			 * If we already probed lun 0 successfully, or
5121 			 * we have additional configured luns on this
5122 			 * target that might have "gone away", go onto
5123 			 * the next lun.
5124 			 */
5125 			target = request_ccb->ccb_h.path->target;
5126 			/*
5127 			 * We may touch devices that we don't
5128 			 * hold references too, so ensure they
5129 			 * don't disappear out from under us.
5130 			 * The target above is referenced by the
5131 			 * path in the request ccb.
5132 			 */
5133 			phl = 0;
5134 			crit_enter();
5135 			device = TAILQ_FIRST(&target->ed_entries);
5136 			if (device != NULL) {
5137 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5138 				if (device->lun_id == 0)
5139 					device = TAILQ_NEXT(device, links);
5140 			}
5141 			crit_exit();
5142 			if ((lun_id != 0) || (device != NULL)) {
5143 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5144 					lun_id++;
5145 			}
5146 		} else {
5147 			struct cam_ed *device;
5148 
5149 			device = request_ccb->ccb_h.path->device;
5150 
5151 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5152 				/* Try the next lun */
5153 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5154 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5155 					lun_id++;
5156 			}
5157 		}
5158 
5159 		xpt_free_path(request_ccb->ccb_h.path);
5160 
5161 		/* Check Bounds */
5162 		if ((lun_id == request_ccb->ccb_h.target_lun)
5163 		 || lun_id > scan_info->cpi->max_lun) {
5164 			/* We're done */
5165 
5166 			xpt_free_ccb(request_ccb);
5167 			scan_info->pending_count--;
5168 			if (scan_info->pending_count == 0) {
5169 				xpt_free_ccb((union ccb *)scan_info->cpi);
5170 				request_ccb = scan_info->request_ccb;
5171 				kfree(scan_info, M_TEMP);
5172 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5173 				xpt_done(request_ccb);
5174 			}
5175 		} else {
5176 			/* Try the next device */
5177 			struct cam_path *path;
5178 			cam_status status;
5179 
5180 			path = request_ccb->ccb_h.path;
5181 			status = xpt_create_path(&path, xpt_periph,
5182 						 path_id, target_id, lun_id);
5183 			if (status != CAM_REQ_CMP) {
5184 				kprintf("xpt_scan_bus: xpt_create_path failed "
5185 				       "with status %#x, halting LUN scan\n",
5186 			 	       status);
5187 				xpt_free_ccb(request_ccb);
5188 				scan_info->pending_count--;
5189 				if (scan_info->pending_count == 0) {
5190 					xpt_free_ccb(
5191 						(union ccb *)scan_info->cpi);
5192 					request_ccb = scan_info->request_ccb;
5193 					kfree(scan_info, M_TEMP);
5194 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5195 					xpt_done(request_ccb);
5196 					break;
5197 				}
5198 			}
5199 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5200 				      request_ccb->ccb_h.pinfo.priority);
5201 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5202 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5203 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5204 			request_ccb->crcn.flags =
5205 				scan_info->request_ccb->crcn.flags;
5206 			xpt_action(request_ccb);
5207 		}
5208 		break;
5209 	}
5210 	default:
5211 		break;
5212 	}
5213 }
5214 
5215 typedef enum {
5216 	PROBE_TUR,
5217 	PROBE_INQUIRY,
5218 	PROBE_FULL_INQUIRY,
5219 	PROBE_MODE_SENSE,
5220 	PROBE_SERIAL_NUM,
5221 	PROBE_TUR_FOR_NEGOTIATION
5222 } probe_action;
5223 
5224 typedef enum {
5225 	PROBE_INQUIRY_CKSUM	= 0x01,
5226 	PROBE_SERIAL_CKSUM	= 0x02,
5227 	PROBE_NO_ANNOUNCE	= 0x04
5228 } probe_flags;
5229 
5230 typedef struct {
5231 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5232 	probe_action	action;
5233 	union ccb	saved_ccb;
5234 	probe_flags	flags;
5235 	MD5_CTX		context;
5236 	u_int8_t	digest[16];
5237 } probe_softc;
5238 
5239 static void
5240 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5241 	     cam_flags flags, union ccb *request_ccb)
5242 {
5243 	struct ccb_pathinq cpi;
5244 	cam_status status;
5245 	struct cam_path *new_path;
5246 	struct cam_periph *old_periph;
5247 
5248 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5249 		  ("xpt_scan_lun\n"));
5250 
5251 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5252 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5253 	xpt_action((union ccb *)&cpi);
5254 
5255 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5256 		if (request_ccb != NULL) {
5257 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5258 			xpt_done(request_ccb);
5259 		}
5260 		return;
5261 	}
5262 
5263 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5264 		/*
5265 		 * Can't scan the bus on an adapter that
5266 		 * cannot perform the initiator role.
5267 		 */
5268 		if (request_ccb != NULL) {
5269 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5270 			xpt_done(request_ccb);
5271 		}
5272 		return;
5273 	}
5274 
5275 	if (request_ccb == NULL) {
5276 		request_ccb = kmalloc(sizeof(union ccb), M_TEMP, M_INTWAIT);
5277 		new_path = kmalloc(sizeof(*new_path), M_TEMP, M_INTWAIT);
5278 		status = xpt_compile_path(new_path, xpt_periph,
5279 					  path->bus->path_id,
5280 					  path->target->target_id,
5281 					  path->device->lun_id);
5282 
5283 		if (status != CAM_REQ_CMP) {
5284 			xpt_print_path(path);
5285 			kprintf("xpt_scan_lun: can't compile path, can't "
5286 			       "continue\n");
5287 			kfree(request_ccb, M_TEMP);
5288 			kfree(new_path, M_TEMP);
5289 			return;
5290 		}
5291 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5292 		request_ccb->ccb_h.cbfcnp = xptscandone;
5293 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5294 		request_ccb->crcn.flags = flags;
5295 	}
5296 
5297 	crit_enter();
5298 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5299 		probe_softc *softc;
5300 
5301 		softc = (probe_softc *)old_periph->softc;
5302 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5303 				  periph_links.tqe);
5304 	} else {
5305 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5306 					  probestart, "probe",
5307 					  CAM_PERIPH_BIO,
5308 					  request_ccb->ccb_h.path, NULL, 0,
5309 					  request_ccb);
5310 
5311 		if (status != CAM_REQ_CMP) {
5312 			xpt_print_path(path);
5313 			kprintf("xpt_scan_lun: cam_alloc_periph returned an "
5314 			       "error, can't continue probe\n");
5315 			request_ccb->ccb_h.status = status;
5316 			xpt_done(request_ccb);
5317 		}
5318 	}
5319 	crit_exit();
5320 }
5321 
5322 static void
5323 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5324 {
5325 	xpt_release_path(done_ccb->ccb_h.path);
5326 	kfree(done_ccb->ccb_h.path, M_TEMP);
5327 	kfree(done_ccb, M_TEMP);
5328 }
5329 
5330 static cam_status
5331 proberegister(struct cam_periph *periph, void *arg)
5332 {
5333 	union ccb *request_ccb;	/* CCB representing the probe request */
5334 	probe_softc *softc;
5335 
5336 	request_ccb = (union ccb *)arg;
5337 	if (periph == NULL) {
5338 		kprintf("proberegister: periph was NULL!!\n");
5339 		return(CAM_REQ_CMP_ERR);
5340 	}
5341 
5342 	if (request_ccb == NULL) {
5343 		kprintf("proberegister: no probe CCB, "
5344 		       "can't register device\n");
5345 		return(CAM_REQ_CMP_ERR);
5346 	}
5347 
5348 	softc = kmalloc(sizeof(*softc), M_TEMP, M_INTWAIT | M_ZERO);
5349 	TAILQ_INIT(&softc->request_ccbs);
5350 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5351 			  periph_links.tqe);
5352 	softc->flags = 0;
5353 	periph->softc = softc;
5354 	cam_periph_acquire(periph);
5355 	/*
5356 	 * Ensure we've waited at least a bus settle
5357 	 * delay before attempting to probe the device.
5358 	 * For HBAs that don't do bus resets, this won't make a difference.
5359 	 */
5360 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5361 				      scsi_delay);
5362 	probeschedule(periph);
5363 	return(CAM_REQ_CMP);
5364 }
5365 
5366 static void
5367 probeschedule(struct cam_periph *periph)
5368 {
5369 	struct ccb_pathinq cpi;
5370 	union ccb *ccb;
5371 	probe_softc *softc;
5372 
5373 	softc = (probe_softc *)periph->softc;
5374 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5375 
5376 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5377 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5378 	xpt_action((union ccb *)&cpi);
5379 
5380 	/*
5381 	 * If a device has gone away and another device, or the same one,
5382 	 * is back in the same place, it should have a unit attention
5383 	 * condition pending.  It will not report the unit attention in
5384 	 * response to an inquiry, which may leave invalid transfer
5385 	 * negotiations in effect.  The TUR will reveal the unit attention
5386 	 * condition.  Only send the TUR for lun 0, since some devices
5387 	 * will get confused by commands other than inquiry to non-existent
5388 	 * luns.  If you think a device has gone away start your scan from
5389 	 * lun 0.  This will insure that any bogus transfer settings are
5390 	 * invalidated.
5391 	 *
5392 	 * If we haven't seen the device before and the controller supports
5393 	 * some kind of transfer negotiation, negotiate with the first
5394 	 * sent command if no bus reset was performed at startup.  This
5395 	 * ensures that the device is not confused by transfer negotiation
5396 	 * settings left over by loader or BIOS action.
5397 	 */
5398 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5399 	 && (ccb->ccb_h.target_lun == 0)) {
5400 		softc->action = PROBE_TUR;
5401 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5402 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5403 		proberequestdefaultnegotiation(periph);
5404 		softc->action = PROBE_INQUIRY;
5405 	} else {
5406 		softc->action = PROBE_INQUIRY;
5407 	}
5408 
5409 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5410 		softc->flags |= PROBE_NO_ANNOUNCE;
5411 	else
5412 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5413 
5414 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5415 }
5416 
5417 static void
5418 probestart(struct cam_periph *periph, union ccb *start_ccb)
5419 {
5420 	/* Probe the device that our peripheral driver points to */
5421 	struct ccb_scsiio *csio;
5422 	probe_softc *softc;
5423 
5424 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5425 
5426 	softc = (probe_softc *)periph->softc;
5427 	csio = &start_ccb->csio;
5428 
5429 	switch (softc->action) {
5430 	case PROBE_TUR:
5431 	case PROBE_TUR_FOR_NEGOTIATION:
5432 	{
5433 		scsi_test_unit_ready(csio,
5434 				     /*retries*/4,
5435 				     probedone,
5436 				     MSG_SIMPLE_Q_TAG,
5437 				     SSD_FULL_SIZE,
5438 				     /*timeout*/60000);
5439 		break;
5440 	}
5441 	case PROBE_INQUIRY:
5442 	case PROBE_FULL_INQUIRY:
5443 	{
5444 		u_int inquiry_len;
5445 		struct scsi_inquiry_data *inq_buf;
5446 
5447 		inq_buf = &periph->path->device->inq_data;
5448 		/*
5449 		 * If the device is currently configured, we calculate an
5450 		 * MD5 checksum of the inquiry data, and if the serial number
5451 		 * length is greater than 0, add the serial number data
5452 		 * into the checksum as well.  Once the inquiry and the
5453 		 * serial number check finish, we attempt to figure out
5454 		 * whether we still have the same device.
5455 		 */
5456 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5457 
5458 			MD5Init(&softc->context);
5459 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5460 				  sizeof(struct scsi_inquiry_data));
5461 			softc->flags |= PROBE_INQUIRY_CKSUM;
5462 			if (periph->path->device->serial_num_len > 0) {
5463 				MD5Update(&softc->context,
5464 					  periph->path->device->serial_num,
5465 					  periph->path->device->serial_num_len);
5466 				softc->flags |= PROBE_SERIAL_CKSUM;
5467 			}
5468 			MD5Final(softc->digest, &softc->context);
5469 		}
5470 
5471 		if (softc->action == PROBE_INQUIRY)
5472 			inquiry_len = SHORT_INQUIRY_LENGTH;
5473 		else
5474 			inquiry_len = inq_buf->additional_length + 5;
5475 
5476 		scsi_inquiry(csio,
5477 			     /*retries*/4,
5478 			     probedone,
5479 			     MSG_SIMPLE_Q_TAG,
5480 			     (u_int8_t *)inq_buf,
5481 			     inquiry_len,
5482 			     /*evpd*/FALSE,
5483 			     /*page_code*/0,
5484 			     SSD_MIN_SIZE,
5485 			     /*timeout*/60 * 1000);
5486 		break;
5487 	}
5488 	case PROBE_MODE_SENSE:
5489 	{
5490 		void  *mode_buf;
5491 		int    mode_buf_len;
5492 
5493 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5494 			     + sizeof(struct scsi_mode_blk_desc)
5495 			     + sizeof(struct scsi_control_page);
5496 		mode_buf = kmalloc(mode_buf_len, M_TEMP, M_INTWAIT);
5497 		scsi_mode_sense(csio,
5498 				/*retries*/4,
5499 				probedone,
5500 				MSG_SIMPLE_Q_TAG,
5501 				/*dbd*/FALSE,
5502 				SMS_PAGE_CTRL_CURRENT,
5503 				SMS_CONTROL_MODE_PAGE,
5504 				mode_buf,
5505 				mode_buf_len,
5506 				SSD_FULL_SIZE,
5507 				/*timeout*/60000);
5508 		break;
5509 	}
5510 	case PROBE_SERIAL_NUM:
5511 	{
5512 		struct scsi_vpd_unit_serial_number *serial_buf;
5513 		struct cam_ed* device;
5514 
5515 		serial_buf = NULL;
5516 		device = periph->path->device;
5517 		device->serial_num = NULL;
5518 		device->serial_num_len = 0;
5519 
5520 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5521 			serial_buf = kmalloc(sizeof(*serial_buf), M_TEMP,
5522 					    M_INTWAIT | M_ZERO);
5523 			scsi_inquiry(csio,
5524 				     /*retries*/4,
5525 				     probedone,
5526 				     MSG_SIMPLE_Q_TAG,
5527 				     (u_int8_t *)serial_buf,
5528 				     sizeof(*serial_buf),
5529 				     /*evpd*/TRUE,
5530 				     SVPD_UNIT_SERIAL_NUMBER,
5531 				     SSD_MIN_SIZE,
5532 				     /*timeout*/60 * 1000);
5533 			break;
5534 		}
5535 		/*
5536 		 * We'll have to do without, let our probedone
5537 		 * routine finish up for us.
5538 		 */
5539 		start_ccb->csio.data_ptr = NULL;
5540 		probedone(periph, start_ccb);
5541 		return;
5542 	}
5543 	}
5544 	xpt_action(start_ccb);
5545 }
5546 
5547 static void
5548 proberequestdefaultnegotiation(struct cam_periph *periph)
5549 {
5550 	struct ccb_trans_settings cts;
5551 
5552 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5553 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5554 #ifdef CAM_NEW_TRAN_CODE
5555 	cts.type = CTS_TYPE_USER_SETTINGS;
5556 #else /* CAM_NEW_TRAN_CODE */
5557 	cts.flags = CCB_TRANS_USER_SETTINGS;
5558 #endif /* CAM_NEW_TRAN_CODE */
5559 	xpt_action((union ccb *)&cts);
5560 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5561 #ifdef CAM_NEW_TRAN_CODE
5562 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5563 #else /* CAM_NEW_TRAN_CODE */
5564 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5565 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5566 #endif /* CAM_NEW_TRAN_CODE */
5567 	xpt_action((union ccb *)&cts);
5568 }
5569 
5570 static void
5571 probedone(struct cam_periph *periph, union ccb *done_ccb)
5572 {
5573 	probe_softc *softc;
5574 	struct cam_path *path;
5575 	u_int32_t  priority;
5576 
5577 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5578 
5579 	softc = (probe_softc *)periph->softc;
5580 	path = done_ccb->ccb_h.path;
5581 	priority = done_ccb->ccb_h.pinfo.priority;
5582 
5583 	switch (softc->action) {
5584 	case PROBE_TUR:
5585 	{
5586 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5587 
5588 			if (cam_periph_error(done_ccb, 0,
5589 					     SF_NO_PRINT, NULL) == ERESTART)
5590 				return;
5591 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5592 				/* Don't wedge the queue */
5593 				xpt_release_devq(done_ccb->ccb_h.path,
5594 						 /*count*/1,
5595 						 /*run_queue*/TRUE);
5596 		}
5597 		softc->action = PROBE_INQUIRY;
5598 		xpt_release_ccb(done_ccb);
5599 		xpt_schedule(periph, priority);
5600 		return;
5601 	}
5602 	case PROBE_INQUIRY:
5603 	case PROBE_FULL_INQUIRY:
5604 	{
5605 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5606 			struct scsi_inquiry_data *inq_buf;
5607 			u_int8_t periph_qual;
5608 
5609 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5610 			inq_buf = &path->device->inq_data;
5611 
5612 			periph_qual = SID_QUAL(inq_buf);
5613 
5614 			switch(periph_qual) {
5615 			case SID_QUAL_LU_CONNECTED:
5616 			{
5617 				u_int8_t alen;
5618 
5619 				/*
5620 				 * We conservatively request only
5621 				 * SHORT_INQUIRY_LEN bytes of inquiry
5622 				 * information during our first try
5623 				 * at sending an INQUIRY. If the device
5624 				 * has more information to give,
5625 				 * perform a second request specifying
5626 				 * the amount of information the device
5627 				 * is willing to give.
5628 				 */
5629 				alen = inq_buf->additional_length;
5630 				if (softc->action == PROBE_INQUIRY
5631 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5632 					softc->action = PROBE_FULL_INQUIRY;
5633 					xpt_release_ccb(done_ccb);
5634 					xpt_schedule(periph, priority);
5635 					return;
5636 				}
5637 
5638 				xpt_find_quirk(path->device);
5639 
5640 #ifdef CAM_NEW_TRAN_CODE
5641 				xpt_devise_transport(path);
5642 #endif /* CAM_NEW_TRAN_CODE */
5643 				if ((inq_buf->flags & SID_CmdQue) != 0)
5644 					softc->action = PROBE_MODE_SENSE;
5645 				else
5646 					softc->action = PROBE_SERIAL_NUM;
5647 
5648 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5649 				xpt_reference_device(path->device);
5650 
5651 				xpt_release_ccb(done_ccb);
5652 				xpt_schedule(periph, priority);
5653 				return;
5654 			}
5655 			default:
5656 				break;
5657 			}
5658 		} else if (cam_periph_error(done_ccb, 0,
5659 					    done_ccb->ccb_h.target_lun > 0
5660 					    ? SF_RETRY_UA|SF_QUIET_IR
5661 					    : SF_RETRY_UA,
5662 					    &softc->saved_ccb) == ERESTART) {
5663 			return;
5664 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5665 			/* Don't wedge the queue */
5666 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5667 					 /*run_queue*/TRUE);
5668 		}
5669 		/*
5670 		 * If we get to this point, we got an error status back
5671 		 * from the inquiry and the error status doesn't require
5672 		 * automatically retrying the command.  Therefore, the
5673 		 * inquiry failed.  If we had inquiry information before
5674 		 * for this device, but this latest inquiry command failed,
5675 		 * the device has probably gone away.  If this device isn't
5676 		 * already marked unconfigured, notify the peripheral
5677 		 * drivers that this device is no more.
5678 		 */
5679 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5680 			/* Send the async notification. */
5681 			xpt_async(AC_LOST_DEVICE, path, NULL);
5682 		}
5683 
5684 		xpt_release_ccb(done_ccb);
5685 		break;
5686 	}
5687 	case PROBE_MODE_SENSE:
5688 	{
5689 		struct ccb_scsiio *csio;
5690 		struct scsi_mode_header_6 *mode_hdr;
5691 
5692 		csio = &done_ccb->csio;
5693 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5694 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5695 			struct scsi_control_page *page;
5696 			u_int8_t *offset;
5697 
5698 			offset = ((u_int8_t *)&mode_hdr[1])
5699 			    + mode_hdr->blk_desc_len;
5700 			page = (struct scsi_control_page *)offset;
5701 			path->device->queue_flags = page->queue_flags;
5702 		} else if (cam_periph_error(done_ccb, 0,
5703 					    SF_RETRY_UA|SF_NO_PRINT,
5704 					    &softc->saved_ccb) == ERESTART) {
5705 			return;
5706 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5707 			/* Don't wedge the queue */
5708 			xpt_release_devq(done_ccb->ccb_h.path,
5709 					 /*count*/1, /*run_queue*/TRUE);
5710 		}
5711 		xpt_release_ccb(done_ccb);
5712 		kfree(mode_hdr, M_TEMP);
5713 		softc->action = PROBE_SERIAL_NUM;
5714 		xpt_schedule(periph, priority);
5715 		return;
5716 	}
5717 	case PROBE_SERIAL_NUM:
5718 	{
5719 		struct ccb_scsiio *csio;
5720 		struct scsi_vpd_unit_serial_number *serial_buf;
5721 		u_int32_t  priority;
5722 		int changed;
5723 		int have_serialnum;
5724 
5725 		changed = 1;
5726 		have_serialnum = 0;
5727 		csio = &done_ccb->csio;
5728 		priority = done_ccb->ccb_h.pinfo.priority;
5729 		serial_buf =
5730 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5731 
5732 		/* Clean up from previous instance of this device */
5733 		if (path->device->serial_num != NULL) {
5734 			kfree(path->device->serial_num, M_DEVBUF);
5735 			path->device->serial_num = NULL;
5736 			path->device->serial_num_len = 0;
5737 		}
5738 
5739 		if (serial_buf == NULL) {
5740 			/*
5741 			 * Don't process the command as it was never sent
5742 			 */
5743 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5744 			&& (serial_buf->length > 0)) {
5745 
5746 			have_serialnum = 1;
5747 			path->device->serial_num =
5748 				kmalloc((serial_buf->length + 1),
5749 				       M_DEVBUF, M_INTWAIT);
5750 			bcopy(serial_buf->serial_num,
5751 			      path->device->serial_num,
5752 			      serial_buf->length);
5753 			path->device->serial_num_len = serial_buf->length;
5754 			path->device->serial_num[serial_buf->length] = '\0';
5755 		} else if (cam_periph_error(done_ccb, 0,
5756 					    SF_RETRY_UA|SF_NO_PRINT,
5757 					    &softc->saved_ccb) == ERESTART) {
5758 			return;
5759 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5760 			/* Don't wedge the queue */
5761 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5762 					 /*run_queue*/TRUE);
5763 		}
5764 
5765 		/*
5766 		 * Let's see if we have seen this device before.
5767 		 */
5768 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5769 			MD5_CTX context;
5770 			u_int8_t digest[16];
5771 
5772 			MD5Init(&context);
5773 
5774 			MD5Update(&context,
5775 				  (unsigned char *)&path->device->inq_data,
5776 				  sizeof(struct scsi_inquiry_data));
5777 
5778 			if (have_serialnum)
5779 				MD5Update(&context, serial_buf->serial_num,
5780 					  serial_buf->length);
5781 
5782 			MD5Final(digest, &context);
5783 			if (bcmp(softc->digest, digest, 16) == 0)
5784 				changed = 0;
5785 
5786 			/*
5787 			 * XXX Do we need to do a TUR in order to ensure
5788 			 *     that the device really hasn't changed???
5789 			 */
5790 			if ((changed != 0)
5791 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5792 				xpt_async(AC_LOST_DEVICE, path, NULL);
5793 		}
5794 		if (serial_buf != NULL)
5795 			kfree(serial_buf, M_TEMP);
5796 
5797 		if (changed != 0) {
5798 			/*
5799 			 * Now that we have all the necessary
5800 			 * information to safely perform transfer
5801 			 * negotiations... Controllers don't perform
5802 			 * any negotiation or tagged queuing until
5803 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5804 			 * received.  So, on a new device, just retreive
5805 			 * the user settings, and set them as the current
5806 			 * settings to set the device up.
5807 			 */
5808 			proberequestdefaultnegotiation(periph);
5809 			xpt_release_ccb(done_ccb);
5810 
5811 			/*
5812 			 * Perform a TUR to allow the controller to
5813 			 * perform any necessary transfer negotiation.
5814 			 */
5815 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5816 			xpt_schedule(periph, priority);
5817 			return;
5818 		}
5819 		xpt_release_ccb(done_ccb);
5820 		break;
5821 	}
5822 	case PROBE_TUR_FOR_NEGOTIATION:
5823 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5824 			/* Don't wedge the queue */
5825 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5826 					 /*run_queue*/TRUE);
5827 		}
5828 
5829 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5830 		xpt_reference_device(path->device);
5831 
5832 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5833 			/* Inform the XPT that a new device has been found */
5834 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5835 			xpt_action(done_ccb);
5836 
5837 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5838 		}
5839 		xpt_release_ccb(done_ccb);
5840 		break;
5841 	}
5842 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5843 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5844 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5845 	xpt_done(done_ccb);
5846 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5847 		cam_periph_invalidate(periph);
5848 		cam_periph_release(periph);
5849 	} else {
5850 		probeschedule(periph);
5851 	}
5852 }
5853 
5854 static void
5855 probecleanup(struct cam_periph *periph)
5856 {
5857 	kfree(periph->softc, M_TEMP);
5858 }
5859 
5860 static void
5861 xpt_find_quirk(struct cam_ed *device)
5862 {
5863 	caddr_t	match;
5864 
5865 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5866 			       (caddr_t)xpt_quirk_table,
5867 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5868 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5869 
5870 	if (match == NULL)
5871 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5872 
5873 	device->quirk = (struct xpt_quirk_entry *)match;
5874 }
5875 
5876 #ifdef CAM_NEW_TRAN_CODE
5877 
5878 static void
5879 xpt_devise_transport(struct cam_path *path)
5880 {
5881 	struct ccb_pathinq cpi;
5882 	struct ccb_trans_settings cts;
5883 	struct scsi_inquiry_data *inq_buf;
5884 
5885 	/* Get transport information from the SIM */
5886 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5887 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5888 	xpt_action((union ccb *)&cpi);
5889 
5890 	inq_buf = NULL;
5891 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
5892 		inq_buf = &path->device->inq_data;
5893 	path->device->protocol = PROTO_SCSI;
5894 	path->device->protocol_version =
5895 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
5896 	path->device->transport = cpi.transport;
5897 	path->device->transport_version = cpi.transport_version;
5898 
5899 	/*
5900 	 * Any device not using SPI3 features should
5901 	 * be considered SPI2 or lower.
5902 	 */
5903 	if (inq_buf != NULL) {
5904 		if (path->device->transport == XPORT_SPI
5905 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
5906 		 && path->device->transport_version > 2)
5907 			path->device->transport_version = 2;
5908 	} else {
5909 		struct cam_ed* otherdev;
5910 
5911 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
5912 		     otherdev != NULL;
5913 		     otherdev = TAILQ_NEXT(otherdev, links)) {
5914 			if (otherdev != path->device)
5915 				break;
5916 		}
5917 
5918 		if (otherdev != NULL) {
5919 			/*
5920 			 * Initially assume the same versioning as
5921 			 * prior luns for this target.
5922 			 */
5923 			path->device->protocol_version =
5924 			    otherdev->protocol_version;
5925 			path->device->transport_version =
5926 			    otherdev->transport_version;
5927 		} else {
5928 			/* Until we know better, opt for safty */
5929 			path->device->protocol_version = 2;
5930 			if (path->device->transport == XPORT_SPI)
5931 				path->device->transport_version = 2;
5932 			else
5933 				path->device->transport_version = 0;
5934 		}
5935 	}
5936 
5937 	/*
5938 	 * XXX
5939 	 * For a device compliant with SPC-2 we should be able
5940 	 * to determine the transport version supported by
5941 	 * scrutinizing the version descriptors in the
5942 	 * inquiry buffer.
5943 	 */
5944 
5945 	/* Tell the controller what we think */
5946 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
5947 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5948 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5949 	cts.transport = path->device->transport;
5950 	cts.transport_version = path->device->transport_version;
5951 	cts.protocol = path->device->protocol;
5952 	cts.protocol_version = path->device->protocol_version;
5953 	cts.proto_specific.valid = 0;
5954 	cts.xport_specific.valid = 0;
5955 	xpt_action((union ccb *)&cts);
5956 }
5957 
5958 static void
5959 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5960 			  int async_update)
5961 {
5962 	struct	ccb_pathinq cpi;
5963 	struct	ccb_trans_settings cur_cts;
5964 	struct	ccb_trans_settings_scsi *scsi;
5965 	struct	ccb_trans_settings_scsi *cur_scsi;
5966 	struct	cam_sim *sim;
5967 	struct	scsi_inquiry_data *inq_data;
5968 
5969 	if (device == NULL) {
5970 		cts->ccb_h.status = CAM_PATH_INVALID;
5971 		xpt_done((union ccb *)cts);
5972 		return;
5973 	}
5974 
5975 	if (cts->protocol == PROTO_UNKNOWN
5976 	 || cts->protocol == PROTO_UNSPECIFIED) {
5977 		cts->protocol = device->protocol;
5978 		cts->protocol_version = device->protocol_version;
5979 	}
5980 
5981 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
5982 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
5983 		cts->protocol_version = device->protocol_version;
5984 
5985 	if (cts->protocol != device->protocol) {
5986 		xpt_print_path(cts->ccb_h.path);
5987 		printf("Uninitialized Protocol %x:%x?\n",
5988 		       cts->protocol, device->protocol);
5989 		cts->protocol = device->protocol;
5990 	}
5991 
5992 	if (cts->protocol_version > device->protocol_version) {
5993 		if (bootverbose) {
5994 			xpt_print_path(cts->ccb_h.path);
5995 			printf("Down reving Protocol Version from %d to %d?\n",
5996 			       cts->protocol_version, device->protocol_version);
5997 		}
5998 		cts->protocol_version = device->protocol_version;
5999 	}
6000 
6001 	if (cts->transport == XPORT_UNKNOWN
6002 	 || cts->transport == XPORT_UNSPECIFIED) {
6003 		cts->transport = device->transport;
6004 		cts->transport_version = device->transport_version;
6005 	}
6006 
6007 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6008 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6009 		cts->transport_version = device->transport_version;
6010 
6011 	if (cts->transport != device->transport) {
6012 		xpt_print_path(cts->ccb_h.path);
6013 		printf("Uninitialized Transport %x:%x?\n",
6014 		       cts->transport, device->transport);
6015 		cts->transport = device->transport;
6016 	}
6017 
6018 	if (cts->transport_version > device->transport_version) {
6019 		if (bootverbose) {
6020 			xpt_print_path(cts->ccb_h.path);
6021 			printf("Down reving Transport Version from %d to %d?\n",
6022 			       cts->transport_version,
6023 			       device->transport_version);
6024 		}
6025 		cts->transport_version = device->transport_version;
6026 	}
6027 
6028 	sim = cts->ccb_h.path->bus->sim;
6029 
6030 	/*
6031 	 * Nothing more of interest to do unless
6032 	 * this is a device connected via the
6033 	 * SCSI protocol.
6034 	 */
6035 	if (cts->protocol != PROTO_SCSI) {
6036 		if (async_update == FALSE)
6037 			(*(sim->sim_action))(sim, (union ccb *)cts);
6038 		return;
6039 	}
6040 
6041 	inq_data = &device->inq_data;
6042 	scsi = &cts->proto_specific.scsi;
6043 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6044 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6045 	xpt_action((union ccb *)&cpi);
6046 
6047 	/* SCSI specific sanity checking */
6048 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6049 	 || (inq_data->flags & SID_CmdQue) == 0
6050 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6051 	 || (device->quirk->mintags == 0)) {
6052 		/*
6053 		 * Can't tag on hardware that doesn't support tags,
6054 		 * doesn't have it enabled, or has broken tag support.
6055 		 */
6056 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6057 	}
6058 
6059 	if (async_update == FALSE) {
6060 		/*
6061 		 * Perform sanity checking against what the
6062 		 * controller and device can do.
6063 		 */
6064 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6065 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6066 		cur_cts.type = cts->type;
6067 		xpt_action((union ccb *)&cur_cts);
6068 
6069 		cur_scsi = &cur_cts.proto_specific.scsi;
6070 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6071 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6072 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6073 		}
6074 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6075 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6076 	}
6077 
6078 	/* SPI specific sanity checking */
6079 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6080 		u_int spi3caps;
6081 		struct ccb_trans_settings_spi *spi;
6082 		struct ccb_trans_settings_spi *cur_spi;
6083 
6084 		spi = &cts->xport_specific.spi;
6085 
6086 		cur_spi = &cur_cts.xport_specific.spi;
6087 
6088 		/* Fill in any gaps in what the user gave us */
6089 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6090 			spi->sync_period = cur_spi->sync_period;
6091 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6092 			spi->sync_period = 0;
6093 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6094 			spi->sync_offset = cur_spi->sync_offset;
6095 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6096 			spi->sync_offset = 0;
6097 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6098 			spi->ppr_options = cur_spi->ppr_options;
6099 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6100 			spi->ppr_options = 0;
6101 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6102 			spi->bus_width = cur_spi->bus_width;
6103 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6104 			spi->bus_width = 0;
6105 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6106 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6107 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6108 		}
6109 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6110 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6111 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6112 		  && (inq_data->flags & SID_Sync) == 0
6113 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6114 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6115 		 || (cur_spi->sync_offset == 0)
6116 		 || (cur_spi->sync_period == 0)) {
6117 			/* Force async */
6118 			spi->sync_period = 0;
6119 			spi->sync_offset = 0;
6120 		}
6121 
6122 		switch (spi->bus_width) {
6123 		case MSG_EXT_WDTR_BUS_32_BIT:
6124 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6125 			  || (inq_data->flags & SID_WBus32) != 0
6126 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6127 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6128 				break;
6129 			/* Fall Through to 16-bit */
6130 		case MSG_EXT_WDTR_BUS_16_BIT:
6131 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6132 			  || (inq_data->flags & SID_WBus16) != 0
6133 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6134 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6135 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6136 				break;
6137 			}
6138 			/* Fall Through to 8-bit */
6139 		default: /* New bus width?? */
6140 		case MSG_EXT_WDTR_BUS_8_BIT:
6141 			/* All targets can do this */
6142 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6143 			break;
6144 		}
6145 
6146 		spi3caps = cpi.xport_specific.spi.ppr_options;
6147 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6148 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6149 			spi3caps &= inq_data->spi3data;
6150 
6151 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6152 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6153 
6154 		if ((spi3caps & SID_SPI_IUS) == 0)
6155 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6156 
6157 		if ((spi3caps & SID_SPI_QAS) == 0)
6158 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6159 
6160 		/* No SPI Transfer settings are allowed unless we are wide */
6161 		if (spi->bus_width == 0)
6162 			spi->ppr_options = 0;
6163 
6164 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6165 			/*
6166 			 * Can't tag queue without disconnection.
6167 			 */
6168 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6169 			scsi->valid |= CTS_SCSI_VALID_TQ;
6170 		}
6171 
6172 		/*
6173 		 * If we are currently performing tagged transactions to
6174 		 * this device and want to change its negotiation parameters,
6175 		 * go non-tagged for a bit to give the controller a chance to
6176 		 * negotiate unhampered by tag messages.
6177 		 */
6178 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6179 		 && (device->inq_flags & SID_CmdQue) != 0
6180 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6181 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6182 				   CTS_SPI_VALID_SYNC_OFFSET|
6183 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6184 			xpt_toggle_tags(cts->ccb_h.path);
6185 	}
6186 
6187 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6188 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6189 		int device_tagenb;
6190 
6191 		/*
6192 		 * If we are transitioning from tags to no-tags or
6193 		 * vice-versa, we need to carefully freeze and restart
6194 		 * the queue so that we don't overlap tagged and non-tagged
6195 		 * commands.  We also temporarily stop tags if there is
6196 		 * a change in transfer negotiation settings to allow
6197 		 * "tag-less" negotiation.
6198 		 */
6199 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6200 		 || (device->inq_flags & SID_CmdQue) != 0)
6201 			device_tagenb = TRUE;
6202 		else
6203 			device_tagenb = FALSE;
6204 
6205 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6206 		  && device_tagenb == FALSE)
6207 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6208 		  && device_tagenb == TRUE)) {
6209 
6210 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6211 				/*
6212 				 * Delay change to use tags until after a
6213 				 * few commands have gone to this device so
6214 				 * the controller has time to perform transfer
6215 				 * negotiations without tagged messages getting
6216 				 * in the way.
6217 				 */
6218 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6219 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6220 			} else {
6221 				struct ccb_relsim crs;
6222 
6223 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6224 				device->inq_flags &= ~SID_CmdQue;
6225 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6226 						    sim->max_dev_openings);
6227 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6228 				device->tag_delay_count = 0;
6229 
6230 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6231 					      /*priority*/1);
6232 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6233 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6234 				crs.openings
6235 				    = crs.release_timeout
6236 				    = crs.qfrozen_cnt
6237 				    = 0;
6238 				xpt_action((union ccb *)&crs);
6239 			}
6240 		}
6241 	}
6242 	if (async_update == FALSE)
6243 		(*(sim->sim_action))(sim, (union ccb *)cts);
6244 }
6245 
6246 #else /* CAM_NEW_TRAN_CODE */
6247 
6248 static void
6249 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6250 			  int async_update)
6251 {
6252 	struct	cam_sim *sim;
6253 	int	qfrozen;
6254 
6255 	sim = cts->ccb_h.path->bus->sim;
6256 	if (async_update == FALSE) {
6257 		struct	scsi_inquiry_data *inq_data;
6258 		struct	ccb_pathinq cpi;
6259 		struct	ccb_trans_settings cur_cts;
6260 
6261 		if (device == NULL) {
6262 			cts->ccb_h.status = CAM_PATH_INVALID;
6263 			xpt_done((union ccb *)cts);
6264 			return;
6265 		}
6266 
6267 		/*
6268 		 * Perform sanity checking against what the
6269 		 * controller and device can do.
6270 		 */
6271 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6272 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6273 		xpt_action((union ccb *)&cpi);
6274 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6275 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6276 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
6277 		xpt_action((union ccb *)&cur_cts);
6278 		inq_data = &device->inq_data;
6279 
6280 		/* Fill in any gaps in what the user gave us */
6281 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
6282 			cts->sync_period = cur_cts.sync_period;
6283 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
6284 			cts->sync_offset = cur_cts.sync_offset;
6285 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
6286 			cts->bus_width = cur_cts.bus_width;
6287 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
6288 			cts->flags &= ~CCB_TRANS_DISC_ENB;
6289 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
6290 		}
6291 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
6292 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6293 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
6294 		}
6295 
6296 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6297 		  && (inq_data->flags & SID_Sync) == 0)
6298 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6299 		 || (cts->sync_offset == 0)
6300 		 || (cts->sync_period == 0)) {
6301 			/* Force async */
6302 			cts->sync_period = 0;
6303 			cts->sync_offset = 0;
6304 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
6305 
6306 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
6307 			 && cts->sync_period <= 0x9) {
6308 				/*
6309 				 * Don't allow DT transmission rates if the
6310 				 * device does not support it.
6311 				 */
6312 				cts->sync_period = 0xa;
6313 			}
6314 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
6315 			 && cts->sync_period <= 0x8) {
6316 				/*
6317 				 * Don't allow PACE transmission rates
6318 				 * if the device does support packetized
6319 				 * transfers.
6320 				 */
6321 				cts->sync_period = 0x9;
6322 			}
6323 		}
6324 
6325 		switch (cts->bus_width) {
6326 		case MSG_EXT_WDTR_BUS_32_BIT:
6327 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6328 			  || (inq_data->flags & SID_WBus32) != 0)
6329 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6330 				break;
6331 			/* Fall Through to 16-bit */
6332 		case MSG_EXT_WDTR_BUS_16_BIT:
6333 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6334 			  || (inq_data->flags & SID_WBus16) != 0)
6335 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6336 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6337 				break;
6338 			}
6339 			/* Fall Through to 8-bit */
6340 		default: /* New bus width?? */
6341 		case MSG_EXT_WDTR_BUS_8_BIT:
6342 			/* All targets can do this */
6343 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6344 			break;
6345 		}
6346 
6347 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
6348 			/*
6349 			 * Can't tag queue without disconnection.
6350 			 */
6351 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6352 			cts->valid |= CCB_TRANS_TQ_VALID;
6353 		}
6354 
6355 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6356 		 || (inq_data->flags & SID_CmdQue) == 0
6357 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6358 		 || (device->quirk->mintags == 0)) {
6359 			/*
6360 			 * Can't tag on hardware that doesn't support,
6361 			 * doesn't have it enabled, or has broken tag support.
6362 			 */
6363 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6364 		}
6365 	}
6366 
6367 	qfrozen = FALSE;
6368 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
6369 		int device_tagenb;
6370 
6371 		/*
6372 		 * If we are transitioning from tags to no-tags or
6373 		 * vice-versa, we need to carefully freeze and restart
6374 		 * the queue so that we don't overlap tagged and non-tagged
6375 		 * commands.  We also temporarily stop tags if there is
6376 		 * a change in transfer negotiation settings to allow
6377 		 * "tag-less" negotiation.
6378 		 */
6379 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6380 		 || (device->inq_flags & SID_CmdQue) != 0)
6381 			device_tagenb = TRUE;
6382 		else
6383 			device_tagenb = FALSE;
6384 
6385 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
6386 		  && device_tagenb == FALSE)
6387 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
6388 		  && device_tagenb == TRUE)) {
6389 
6390 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
6391 				/*
6392 				 * Delay change to use tags until after a
6393 				 * few commands have gone to this device so
6394 				 * the controller has time to perform transfer
6395 				 * negotiations without tagged messages getting
6396 				 * in the way.
6397 				 */
6398 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6399 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6400 			} else {
6401 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6402 				qfrozen = TRUE;
6403 		  		device->inq_flags &= ~SID_CmdQue;
6404 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6405 						    sim->max_dev_openings);
6406 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6407 				device->tag_delay_count = 0;
6408 			}
6409 		}
6410 	}
6411 
6412 	if (async_update == FALSE) {
6413 		/*
6414 		 * If we are currently performing tagged transactions to
6415 		 * this device and want to change its negotiation parameters,
6416 		 * go non-tagged for a bit to give the controller a chance to
6417 		 * negotiate unhampered by tag messages.
6418 		 */
6419 		if ((device->inq_flags & SID_CmdQue) != 0
6420 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
6421 				   CCB_TRANS_SYNC_OFFSET_VALID|
6422 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
6423 			xpt_toggle_tags(cts->ccb_h.path);
6424 
6425 		(*(sim->sim_action))(sim, (union ccb *)cts);
6426 	}
6427 
6428 	if (qfrozen) {
6429 		struct ccb_relsim crs;
6430 
6431 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6432 			      /*priority*/1);
6433 		crs.ccb_h.func_code = XPT_REL_SIMQ;
6434 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6435 		crs.openings
6436 		    = crs.release_timeout
6437 		    = crs.qfrozen_cnt
6438 		    = 0;
6439 		xpt_action((union ccb *)&crs);
6440 	}
6441 }
6442 
6443 
6444 #endif /* CAM_NEW_TRAN_CODE */
6445 
6446 static void
6447 xpt_toggle_tags(struct cam_path *path)
6448 {
6449 	struct cam_ed *dev;
6450 
6451 	/*
6452 	 * Give controllers a chance to renegotiate
6453 	 * before starting tag operations.  We
6454 	 * "toggle" tagged queuing off then on
6455 	 * which causes the tag enable command delay
6456 	 * counter to come into effect.
6457 	 */
6458 	dev = path->device;
6459 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6460 	 || ((dev->inq_flags & SID_CmdQue) != 0
6461  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6462 		struct ccb_trans_settings cts;
6463 
6464 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6465 #ifdef CAM_NEW_TRAN_CODE
6466 		cts.protocol = PROTO_SCSI;
6467 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6468 		cts.transport = XPORT_UNSPECIFIED;
6469 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6470 		cts.proto_specific.scsi.flags = 0;
6471 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6472 #else /* CAM_NEW_TRAN_CODE */
6473 		cts.flags = 0;
6474 		cts.valid = CCB_TRANS_TQ_VALID;
6475 #endif /* CAM_NEW_TRAN_CODE */
6476 		xpt_set_transfer_settings(&cts, path->device,
6477 					  /*async_update*/TRUE);
6478 #ifdef CAM_NEW_TRAN_CODE
6479 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6480 #else /* CAM_NEW_TRAN_CODE */
6481 		cts.flags = CCB_TRANS_TAG_ENB;
6482 #endif /* CAM_NEW_TRAN_CODE */
6483 		xpt_set_transfer_settings(&cts, path->device,
6484 					  /*async_update*/TRUE);
6485 	}
6486 }
6487 
6488 static void
6489 xpt_start_tags(struct cam_path *path)
6490 {
6491 	struct ccb_relsim crs;
6492 	struct cam_ed *device;
6493 	struct cam_sim *sim;
6494 	int    newopenings;
6495 
6496 	device = path->device;
6497 	sim = path->bus->sim;
6498 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6499 	xpt_freeze_devq(path, /*count*/1);
6500 	device->inq_flags |= SID_CmdQue;
6501 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6502 	xpt_dev_ccbq_resize(path, newopenings);
6503 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6504 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6505 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6506 	crs.openings
6507 	    = crs.release_timeout
6508 	    = crs.qfrozen_cnt
6509 	    = 0;
6510 	xpt_action((union ccb *)&crs);
6511 }
6512 
6513 static int busses_to_config;
6514 static int busses_to_reset;
6515 
6516 static int
6517 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6518 {
6519 	if (bus->path_id != CAM_XPT_PATH_ID) {
6520 		struct cam_path path;
6521 		struct ccb_pathinq cpi;
6522 		int can_negotiate;
6523 
6524 		busses_to_config++;
6525 		xpt_compile_path(&path, NULL, bus->path_id,
6526 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6527 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6528 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6529 		xpt_action((union ccb *)&cpi);
6530 		can_negotiate = cpi.hba_inquiry;
6531 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6532 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6533 		 && can_negotiate)
6534 			busses_to_reset++;
6535 		xpt_release_path(&path);
6536 	}
6537 
6538 	return(1);
6539 }
6540 
6541 static int
6542 xptconfigfunc(struct cam_eb *bus, void *arg)
6543 {
6544 	struct	cam_path *path;
6545 	union	ccb *work_ccb;
6546 
6547 	if (bus->path_id != CAM_XPT_PATH_ID) {
6548 		cam_status status;
6549 		int can_negotiate;
6550 
6551 		work_ccb = xpt_alloc_ccb();
6552 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6553 					      CAM_TARGET_WILDCARD,
6554 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6555 			kprintf("xptconfigfunc: xpt_create_path failed with "
6556 			       "status %#x for bus %d\n", status, bus->path_id);
6557 			kprintf("xptconfigfunc: halting bus configuration\n");
6558 			xpt_free_ccb(work_ccb);
6559 			busses_to_config--;
6560 			xpt_finishconfig(xpt_periph, NULL);
6561 			return(0);
6562 		}
6563 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6564 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6565 		xpt_action(work_ccb);
6566 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6567 			kprintf("xptconfigfunc: CPI failed on bus %d "
6568 			       "with status %d\n", bus->path_id,
6569 			       work_ccb->ccb_h.status);
6570 			xpt_finishconfig(xpt_periph, work_ccb);
6571 			return(1);
6572 		}
6573 
6574 		can_negotiate = work_ccb->cpi.hba_inquiry;
6575 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6576 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6577 		 && (can_negotiate != 0)) {
6578 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6579 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6580 			work_ccb->ccb_h.cbfcnp = NULL;
6581 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6582 				  ("Resetting Bus\n"));
6583 			xpt_action(work_ccb);
6584 			xpt_finishconfig(xpt_periph, work_ccb);
6585 		} else {
6586 			/* Act as though we performed a successful BUS RESET */
6587 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6588 			xpt_finishconfig(xpt_periph, work_ccb);
6589 		}
6590 	}
6591 
6592 	return(1);
6593 }
6594 
6595 static void
6596 xpt_config(void *arg)
6597 {
6598 	/*
6599 	 * Now that interrupts are enabled, go find our devices
6600 	 */
6601 
6602 #ifdef CAMDEBUG
6603 	/* Setup debugging flags and path */
6604 #ifdef CAM_DEBUG_FLAGS
6605 	cam_dflags = CAM_DEBUG_FLAGS;
6606 #else /* !CAM_DEBUG_FLAGS */
6607 	cam_dflags = CAM_DEBUG_NONE;
6608 #endif /* CAM_DEBUG_FLAGS */
6609 #ifdef CAM_DEBUG_BUS
6610 	if (cam_dflags != CAM_DEBUG_NONE) {
6611 		if (xpt_create_path(&cam_dpath, xpt_periph,
6612 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6613 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6614 			kprintf("xpt_config: xpt_create_path() failed for debug"
6615 			       " target %d:%d:%d, debugging disabled\n",
6616 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6617 			cam_dflags = CAM_DEBUG_NONE;
6618 		}
6619 	} else
6620 		cam_dpath = NULL;
6621 #else /* !CAM_DEBUG_BUS */
6622 	cam_dpath = NULL;
6623 #endif /* CAM_DEBUG_BUS */
6624 #endif /* CAMDEBUG */
6625 
6626 	/*
6627 	 * Scan all installed busses.
6628 	 */
6629 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6630 
6631 	if (busses_to_config == 0) {
6632 		/* Call manually because we don't have any busses */
6633 		xpt_finishconfig(xpt_periph, NULL);
6634 	} else  {
6635 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
6636 			kprintf("Waiting %d seconds for SCSI "
6637 			       "devices to settle\n", scsi_delay/1000);
6638 		}
6639 		xpt_for_all_busses(xptconfigfunc, NULL);
6640 	}
6641 }
6642 
6643 /*
6644  * If the given device only has one peripheral attached to it, and if that
6645  * peripheral is the passthrough driver, announce it.  This insures that the
6646  * user sees some sort of announcement for every peripheral in their system.
6647  */
6648 static int
6649 xptpassannouncefunc(struct cam_ed *device, void *arg)
6650 {
6651 	struct cam_periph *periph;
6652 	int i;
6653 
6654 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6655 	     periph = SLIST_NEXT(periph, periph_links), i++);
6656 
6657 	periph = SLIST_FIRST(&device->periphs);
6658 	if ((i == 1)
6659 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6660 		xpt_announce_periph(periph, NULL);
6661 
6662 	return(1);
6663 }
6664 
6665 static void
6666 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6667 {
6668 	struct	periph_driver **p_drv;
6669 	int	i;
6670 
6671 	if (done_ccb != NULL) {
6672 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6673 			  ("xpt_finishconfig\n"));
6674 		switch(done_ccb->ccb_h.func_code) {
6675 		case XPT_RESET_BUS:
6676 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6677 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6678 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6679 				xpt_action(done_ccb);
6680 				return;
6681 			}
6682 			/* FALLTHROUGH */
6683 		case XPT_SCAN_BUS:
6684 		default:
6685 			xpt_free_path(done_ccb->ccb_h.path);
6686 			busses_to_config--;
6687 			break;
6688 		}
6689 	}
6690 
6691 	if (busses_to_config == 0) {
6692 		/* Register all the peripheral drivers */
6693 		/* XXX This will have to change when we have loadable modules */
6694 		p_drv = periph_drivers;
6695 		for (i = 0; p_drv[i] != NULL; i++) {
6696 			(*p_drv[i]->init)();
6697 		}
6698 
6699 		/*
6700 		 * Check for devices with no "standard" peripheral driver
6701 		 * attached.  For any devices like that, announce the
6702 		 * passthrough driver so the user will see something.
6703 		 */
6704 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6705 
6706 		/* Release our hook so that the boot can continue. */
6707 		config_intrhook_disestablish(xpt_config_hook);
6708 		kfree(xpt_config_hook, M_TEMP);
6709 		xpt_config_hook = NULL;
6710 	}
6711 	if (done_ccb != NULL)
6712 		xpt_free_ccb(done_ccb);
6713 }
6714 
6715 static void
6716 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6717 {
6718 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6719 
6720 	switch (work_ccb->ccb_h.func_code) {
6721 	/* Common cases first */
6722 	case XPT_PATH_INQ:		/* Path routing inquiry */
6723 	{
6724 		struct ccb_pathinq *cpi;
6725 
6726 		cpi = &work_ccb->cpi;
6727 		cpi->version_num = 1; /* XXX??? */
6728 		cpi->hba_inquiry = 0;
6729 		cpi->target_sprt = 0;
6730 		cpi->hba_misc = 0;
6731 		cpi->hba_eng_cnt = 0;
6732 		cpi->max_target = 0;
6733 		cpi->max_lun = 0;
6734 		cpi->initiator_id = 0;
6735 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6736 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6737 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6738 		cpi->unit_number = sim->unit_number;
6739 		cpi->bus_id = sim->bus_id;
6740 		cpi->base_transfer_speed = 0;
6741 #ifdef CAM_NEW_TRAN_CODE
6742 		cpi->protocol = PROTO_UNSPECIFIED;
6743 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
6744 		cpi->transport = XPORT_UNSPECIFIED;
6745 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
6746 #endif /* CAM_NEW_TRAN_CODE */
6747 		cpi->ccb_h.status = CAM_REQ_CMP;
6748 		xpt_done(work_ccb);
6749 		break;
6750 	}
6751 	default:
6752 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6753 		xpt_done(work_ccb);
6754 		break;
6755 	}
6756 }
6757 
6758 /*
6759  * The xpt as a "controller" has no interrupt sources, so polling
6760  * is a no-op.
6761  */
6762 static void
6763 xptpoll(struct cam_sim *sim)
6764 {
6765 }
6766 
6767 /*
6768  * Should only be called by the machine interrupt dispatch routines,
6769  * so put these prototypes here instead of in the header.
6770  */
6771 
6772 static void
6773 swi_camnet(void *arg, void *frame)
6774 {
6775 	camisr(&cam_netq);
6776 }
6777 
6778 static void
6779 swi_cambio(void *arg, void *frame)
6780 {
6781 	camisr(&cam_bioq);
6782 }
6783 
6784 static void
6785 camisr(cam_isrq_t *queue)
6786 {
6787 	struct	ccb_hdr *ccb_h;
6788 
6789 	crit_enter();
6790 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6791 		int	runq;
6792 
6793 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6794 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6795 		splz();
6796 
6797 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6798 			  ("camisr\n"));
6799 
6800 		runq = FALSE;
6801 
6802 		if (ccb_h->flags & CAM_HIGH_POWER) {
6803 			struct highpowerlist	*hphead;
6804 			struct cam_ed		*device;
6805 			union ccb		*send_ccb;
6806 
6807 			hphead = &highpowerq;
6808 
6809 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6810 
6811 			/*
6812 			 * Increment the count since this command is done.
6813 			 */
6814 			num_highpower++;
6815 
6816 			/*
6817 			 * Any high powered commands queued up?
6818 			 */
6819 			if (send_ccb != NULL) {
6820 				device = send_ccb->ccb_h.path->device;
6821 
6822 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6823 
6824 				xpt_release_devq(send_ccb->ccb_h.path,
6825 						 /*count*/1, /*runqueue*/TRUE);
6826 			}
6827 		}
6828 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6829 			struct cam_ed *dev;
6830 
6831 			dev = ccb_h->path->device;
6832 
6833 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6834 
6835 			if (ccb_h->path->bus->sim->devq) {
6836 				ccb_h->path->bus->sim->devq->send_active--;
6837 				ccb_h->path->bus->sim->devq->send_openings++;
6838 			}
6839 
6840 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6841 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
6842 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6843 			  && (dev->ccbq.dev_active == 0))) {
6844 
6845 				xpt_release_devq(ccb_h->path, /*count*/1,
6846 						 /*run_queue*/TRUE);
6847 			}
6848 
6849 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6850 			 && (--dev->tag_delay_count == 0))
6851 				xpt_start_tags(ccb_h->path);
6852 
6853 			if ((dev->ccbq.queue.entries > 0)
6854 			 && (dev->qfrozen_cnt == 0)
6855 			 && (device_is_send_queued(dev) == 0)) {
6856 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6857 							      dev);
6858 			}
6859 		}
6860 
6861 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6862 			xpt_release_simq(ccb_h->path->bus->sim,
6863 					 /*run_queue*/TRUE);
6864 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6865 			runq = FALSE;
6866 		}
6867 
6868 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6869 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6870 			xpt_release_devq(ccb_h->path, /*count*/1,
6871 					 /*run_queue*/TRUE);
6872 			ccb_h->status &= ~CAM_DEV_QFRZN;
6873 		} else if (runq) {
6874 			xpt_run_dev_sendq(ccb_h->path->bus);
6875 		}
6876 
6877 		/* Call the peripheral driver's callback */
6878 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6879 	}
6880 	crit_exit();
6881 }
6882