xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 9bb2a92d)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.9 2004/01/30 05:42:09 dillon Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/bus.h>
44 
45 #ifdef PC98
46 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
47 #endif
48 
49 #include <machine/clock.h>
50 #include <machine/ipl.h>
51 
52 #include "cam.h"
53 #include "cam_ccb.h"
54 #include "cam_periph.h"
55 #include "cam_sim.h"
56 #include "cam_xpt.h"
57 #include "cam_xpt_sim.h"
58 #include "cam_xpt_periph.h"
59 #include "cam_debug.h"
60 
61 #include "scsi/scsi_all.h"
62 #include "scsi/scsi_message.h"
63 #include "scsi/scsi_pass.h"
64 #include "opt_cam.h"
65 
66 /* Datastructures internal to the xpt layer */
67 
68 /*
69  * Definition of an async handler callback block.  These are used to add
70  * SIMs and peripherals to the async callback lists.
71  */
72 struct async_node {
73 	SLIST_ENTRY(async_node)	links;
74 	u_int32_t	event_enable;	/* Async Event enables */
75 	void		(*callback)(void *arg, u_int32_t code,
76 				    struct cam_path *path, void *args);
77 	void		*callback_arg;
78 };
79 
80 SLIST_HEAD(async_list, async_node);
81 SLIST_HEAD(periph_list, cam_periph);
82 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
83 
84 /*
85  * This is the maximum number of high powered commands (e.g. start unit)
86  * that can be outstanding at a particular time.
87  */
88 #ifndef CAM_MAX_HIGHPOWER
89 #define CAM_MAX_HIGHPOWER  4
90 #endif
91 
92 /* number of high powered commands that can go through right now */
93 static int num_highpower = CAM_MAX_HIGHPOWER;
94 
95 /*
96  * Structure for queueing a device in a run queue.
97  * There is one run queue for allocating new ccbs,
98  * and another for sending ccbs to the controller.
99  */
100 struct cam_ed_qinfo {
101 	cam_pinfo pinfo;
102 	struct	  cam_ed *device;
103 };
104 
105 /*
106  * The CAM EDT (Existing Device Table) contains the device information for
107  * all devices for all busses in the system.  The table contains a
108  * cam_ed structure for each device on the bus.
109  */
110 struct cam_ed {
111 	TAILQ_ENTRY(cam_ed) links;
112 	struct	cam_ed_qinfo alloc_ccb_entry;
113 	struct	cam_ed_qinfo send_ccb_entry;
114 	struct	cam_et	 *target;
115 	lun_id_t	 lun_id;
116 	struct	camq drvq;		/*
117 					 * Queue of type drivers wanting to do
118 					 * work on this device.
119 					 */
120 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
121 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
122 	struct	periph_list periphs;	/* All attached devices */
123 	u_int	generation;		/* Generation number */
124 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
125 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
126 					/* Storage for the inquiry data */
127 	struct	scsi_inquiry_data inq_data;
128 	u_int8_t	 inq_flags;	/*
129 					 * Current settings for inquiry flags.
130 					 * This allows us to override settings
131 					 * like disconnection and tagged
132 					 * queuing for a device.
133 					 */
134 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
135 	u_int8_t	 serial_num_len;
136 	u_int8_t	 *serial_num;
137 	u_int32_t	 qfrozen_cnt;
138 	u_int32_t	 flags;
139 #define CAM_DEV_UNCONFIGURED	 	0x01
140 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
141 #define CAM_DEV_REL_ON_COMPLETE		0x04
142 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
143 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
144 #define CAM_DEV_TAG_AFTER_COUNT		0x20
145 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
146 	u_int32_t	 tag_delay_count;
147 #define	CAM_TAG_DELAY_COUNT		5
148 	u_int32_t	 refcount;
149 	struct		 callout_handle c_handle;
150 };
151 
152 /*
153  * Each target is represented by an ET (Existing Target).  These
154  * entries are created when a target is successfully probed with an
155  * identify, and removed when a device fails to respond after a number
156  * of retries, or a bus rescan finds the device missing.
157  */
158 struct cam_et {
159 	TAILQ_HEAD(, cam_ed) ed_entries;
160 	TAILQ_ENTRY(cam_et) links;
161 	struct	cam_eb	*bus;
162 	target_id_t	target_id;
163 	u_int32_t	refcount;
164 	u_int		generation;
165 	struct		timeval last_reset;	/* uptime of last reset */
166 };
167 
168 /*
169  * Each bus is represented by an EB (Existing Bus).  These entries
170  * are created by calls to xpt_bus_register and deleted by calls to
171  * xpt_bus_deregister.
172  */
173 struct cam_eb {
174 	TAILQ_HEAD(, cam_et) et_entries;
175 	TAILQ_ENTRY(cam_eb)  links;
176 	path_id_t	     path_id;
177 	struct cam_sim	     *sim;
178 	struct timeval	     last_reset;	/* uptime of last reset */
179 	u_int32_t	     flags;
180 #define	CAM_EB_RUNQ_SCHEDULED	0x01
181 	u_int32_t	     refcount;
182 	u_int		     generation;
183 };
184 
185 struct cam_path {
186 	struct cam_periph *periph;
187 	struct cam_eb	  *bus;
188 	struct cam_et	  *target;
189 	struct cam_ed	  *device;
190 };
191 
192 struct xpt_quirk_entry {
193 	struct scsi_inquiry_pattern inq_pat;
194 	u_int8_t quirks;
195 #define	CAM_QUIRK_NOLUNS	0x01
196 #define	CAM_QUIRK_NOSERIAL	0x02
197 #define	CAM_QUIRK_HILUNS	0x04
198 	u_int mintags;
199 	u_int maxtags;
200 };
201 #define	CAM_SCSI2_MAXLUN	8
202 
203 typedef enum {
204 	XPT_FLAG_OPEN		= 0x01
205 } xpt_flags;
206 
207 struct xpt_softc {
208 	xpt_flags	flags;
209 	u_int32_t	generation;
210 };
211 
212 static const char quantum[] = "QUANTUM";
213 static const char sony[] = "SONY";
214 static const char west_digital[] = "WDIGTL";
215 static const char samsung[] = "SAMSUNG";
216 static const char seagate[] = "SEAGATE";
217 static const char microp[] = "MICROP";
218 
219 static struct xpt_quirk_entry xpt_quirk_table[] =
220 {
221 	{
222 		/* Reports QUEUE FULL for temporary resource shortages */
223 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
224 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
225 	},
226 	{
227 		/* Reports QUEUE FULL for temporary resource shortages */
228 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
229 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
230 	},
231 	{
232 		/* Reports QUEUE FULL for temporary resource shortages */
233 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
234 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
235 	},
236 	{
237 		/* Broken tagged queuing drive */
238 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
239 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
240 	},
241 	{
242 		/* Broken tagged queuing drive */
243 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
244 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
245 	},
246 	{
247 		/* Broken tagged queuing drive */
248 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
249 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
250 	},
251 	{
252 		/*
253 		 * Unfortunately, the Quantum Atlas III has the same
254 		 * problem as the Atlas II drives above.
255 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
256 		 *
257 		 * For future reference, the drive with the problem was:
258 		 * QUANTUM QM39100TD-SW N1B0
259 		 *
260 		 * It's possible that Quantum will fix the problem in later
261 		 * firmware revisions.  If that happens, the quirk entry
262 		 * will need to be made specific to the firmware revisions
263 		 * with the problem.
264 		 *
265 		 */
266 		/* Reports QUEUE FULL for temporary resource shortages */
267 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
268 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
269 	},
270 	{
271 		/*
272 		 * 18 Gig Atlas III, same problem as the 9G version.
273 		 * Reported by: Andre Albsmeier
274 		 *		<andre.albsmeier@mchp.siemens.de>
275 		 *
276 		 * For future reference, the drive with the problem was:
277 		 * QUANTUM QM318000TD-S N491
278 		 */
279 		/* Reports QUEUE FULL for temporary resource shortages */
280 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
281 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
282 	},
283 	{
284 		/*
285 		 * Broken tagged queuing drive
286 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
287 		 *         and: Martin Renters <martin@tdc.on.ca>
288 		 */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
290 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
291 	},
292 		/*
293 		 * The Seagate Medalist Pro drives have very poor write
294 		 * performance with anything more than 2 tags.
295 		 *
296 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
297 		 * Drive:  <SEAGATE ST36530N 1444>
298 		 *
299 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
300 		 * Drive:  <SEAGATE ST34520W 1281>
301 		 *
302 		 * No one has actually reported that the 9G version
303 		 * (ST39140*) of the Medalist Pro has the same problem, but
304 		 * we're assuming that it does because the 4G and 6.5G
305 		 * versions of the drive are broken.
306 		 */
307 	{
308 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
309 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
310 	},
311 	{
312 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
313 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
314 	},
315 	{
316 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
317 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
318 	},
319 	{
320 		/*
321 		 * Slow when tagged queueing is enabled.  Write performance
322 		 * steadily drops off with more and more concurrent
323 		 * transactions.  Best sequential write performance with
324 		 * tagged queueing turned off and write caching turned on.
325 		 *
326 		 * PR:  kern/10398
327 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
328 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
329 		 *
330 		 * The drive with the problem had the "S65A" firmware
331 		 * revision, and has also been reported (by Stephen J.
332 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
333 		 * firmware revision.
334 		 *
335 		 * Although no one has reported problems with the 2 gig
336 		 * version of the DCAS drive, the assumption is that it
337 		 * has the same problems as the 4 gig version.  Therefore
338 		 * this quirk entries disables tagged queueing for all
339 		 * DCAS drives.
340 		 */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
342 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
343 	},
344 	{
345 		/* Broken tagged queuing drive */
346 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
347 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
348 	},
349 	{
350 		/* Broken tagged queuing drive */
351 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
352 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
353 	},
354 	{
355 		/*
356 		 * Broken tagged queuing drive.
357 		 * Submitted by:
358 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
359 		 * in PR kern/9535
360 		 */
361 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
362 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
363 	},
364         {
365 		/*
366 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
367 		 * 8MB/sec.)
368 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
369 		 * Best performance with these drives is achieved with
370 		 * tagged queueing turned off, and write caching turned on.
371 		 */
372 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
373 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
374         },
375         {
376 		/*
377 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
378 		 * 8MB/sec.)
379 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
380 		 * Best performance with these drives is achieved with
381 		 * tagged queueing turned off, and write caching turned on.
382 		 */
383 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
384 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
385         },
386 	{
387 		/*
388 		 * Doesn't handle queue full condition correctly,
389 		 * so we need to limit maxtags to what the device
390 		 * can handle instead of determining this automatically.
391 		 */
392 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
393 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
394 	},
395 	{
396 		/* Really only one LUN */
397 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
398 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
399 	},
400 	{
401 		/* I can't believe we need a quirk for DPT volumes. */
402 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
403 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
404 		/*mintags*/0, /*maxtags*/255
405 	},
406 	{
407 		/*
408 		 * Many Sony CDROM drives don't like multi-LUN probing.
409 		 */
410 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
411 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/*
415 		 * This drive doesn't like multiple LUN probing.
416 		 * Submitted by:  Parag Patel <parag@cgt.com>
417 		 */
418 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
419 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
420 	},
421 	{
422 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
423 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
424 	},
425 	{
426 		/*
427 		 * The 8200 doesn't like multi-lun probing, and probably
428 		 * don't like serial number requests either.
429 		 */
430 		{
431 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
432 			"EXB-8200*", "*"
433 		},
434 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
435 	},
436 	{
437 		/*
438 		 * Let's try the same as above, but for a drive that says
439 		 * it's an IPL-6860 but is actually an EXB 8200.
440 		 */
441 		{
442 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
443 			"IPL-6860*", "*"
444 		},
445 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
446 	},
447 	{
448 		/*
449 		 * These Hitachi drives don't like multi-lun probing.
450 		 * The PR submitter has a DK319H, but says that the Linux
451 		 * kernel has a similar work-around for the DK312 and DK314,
452 		 * so all DK31* drives are quirked here.
453 		 * PR:            misc/18793
454 		 * Submitted by:  Paul Haddad <paul@pth.com>
455 		 */
456 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
457 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
458 	},
459 	{
460 		/*
461 		 * This old revision of the TDC3600 is also SCSI-1, and
462 		 * hangs upon serial number probing.
463 		 */
464 		{
465 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
466 			" TDC 3600", "U07:"
467 		},
468 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
469 	},
470 	{
471 		/*
472 		 * Would repond to all LUNs if asked for.
473 		 */
474 		{
475 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
476 			"CP150", "*"
477 		},
478 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
479 	},
480 	{
481 		/*
482 		 * Would repond to all LUNs if asked for.
483 		 */
484 		{
485 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
486 			"96X2*", "*"
487 		},
488 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
489 	},
490 	{
491 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
492 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
493 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
494 	},
495 	{
496 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
497 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
498 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499 	},
500 	{
501 		/* TeraSolutions special settings for TRC-22 RAID */
502 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
503 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
504 	},
505 	{
506 		/* Veritas Storage Appliance */
507 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
508 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
509 	},
510 	{
511 		/*
512 		 * Would respond to all LUNs.  Device type and removable
513 		 * flag are jumper-selectable.
514 		 */
515 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
516 		  "Tahiti 1", "*"
517 		},
518 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
519 	},
520 	{
521 		/* Default tagged queuing parameters for all devices */
522 		{
523 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
524 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
525 		},
526 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
527 	},
528 };
529 
530 static const int xpt_quirk_table_size =
531 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
532 
533 typedef enum {
534 	DM_RET_COPY		= 0x01,
535 	DM_RET_FLAG_MASK	= 0x0f,
536 	DM_RET_NONE		= 0x00,
537 	DM_RET_STOP		= 0x10,
538 	DM_RET_DESCEND		= 0x20,
539 	DM_RET_ERROR		= 0x30,
540 	DM_RET_ACTION_MASK	= 0xf0
541 } dev_match_ret;
542 
543 typedef enum {
544 	XPT_DEPTH_BUS,
545 	XPT_DEPTH_TARGET,
546 	XPT_DEPTH_DEVICE,
547 	XPT_DEPTH_PERIPH
548 } xpt_traverse_depth;
549 
550 struct xpt_traverse_config {
551 	xpt_traverse_depth	depth;
552 	void			*tr_func;
553 	void			*tr_arg;
554 };
555 
556 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
557 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
558 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
559 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
560 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
561 
562 /* Transport layer configuration information */
563 static struct xpt_softc xsoftc;
564 
565 /* Queues for our software interrupt handler */
566 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
567 static cam_isrq_t cam_bioq;
568 static cam_isrq_t cam_netq;
569 
570 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
571 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
572 static u_int xpt_max_ccbs;	/*
573 				 * Maximum size of ccb pool.  Modified as
574 				 * devices are added/removed or have their
575 				 * opening counts changed.
576 				 */
577 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
578 
579 struct cam_periph *xpt_periph;
580 
581 static periph_init_t xpt_periph_init;
582 
583 static periph_init_t probe_periph_init;
584 
585 static struct periph_driver xpt_driver =
586 {
587 	xpt_periph_init, "xpt",
588 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
589 };
590 
591 static struct periph_driver probe_driver =
592 {
593 	probe_periph_init, "probe",
594 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
595 };
596 
597 DATA_SET(periphdriver_set, xpt_driver);
598 DATA_SET(periphdriver_set, probe_driver);
599 
600 #define XPT_CDEV_MAJOR 104
601 
602 static d_open_t xptopen;
603 static d_close_t xptclose;
604 static d_ioctl_t xptioctl;
605 
606 static struct cdevsw xpt_cdevsw = {
607 	/* name */	"xpt",
608 	/* maj */	XPT_CDEV_MAJOR,
609 	/* flags */	0,
610 	/* port */	NULL,
611 	/* autoq */	0,
612 
613 	/* open */	xptopen,
614 	/* close */	xptclose,
615 	/* read */	noread,
616 	/* write */	nowrite,
617 	/* ioctl */	xptioctl,
618 	/* poll */	nopoll,
619 	/* mmap */	nommap,
620 	/* strategy */	nostrategy,
621 	/* dump */	nodump,
622 	/* psize */	nopsize
623 };
624 
625 static struct intr_config_hook *xpt_config_hook;
626 
627 /* Registered busses */
628 static TAILQ_HEAD(,cam_eb) xpt_busses;
629 static u_int bus_generation;
630 
631 /* Storage for debugging datastructures */
632 #ifdef	CAMDEBUG
633 struct cam_path *cam_dpath;
634 u_int32_t cam_dflags;
635 u_int32_t cam_debug_delay;
636 #endif
637 
638 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
639 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
640 #endif
641 
642 /*
643  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
644  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
645  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
646  */
647 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
648     || defined(CAM_DEBUG_LUN)
649 #ifdef CAMDEBUG
650 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
651     || !defined(CAM_DEBUG_LUN)
652 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
653         and CAM_DEBUG_LUN"
654 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
655 #else /* !CAMDEBUG */
656 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
657 #endif /* CAMDEBUG */
658 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
659 
660 /* Our boot-time initialization hook */
661 static void	xpt_init(void *);
662 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
663 
664 static cam_status	xpt_compile_path(struct cam_path *new_path,
665 					 struct cam_periph *perph,
666 					 path_id_t path_id,
667 					 target_id_t target_id,
668 					 lun_id_t lun_id);
669 
670 static void		xpt_release_path(struct cam_path *path);
671 
672 static void		xpt_async_bcast(struct async_list *async_head,
673 					u_int32_t async_code,
674 					struct cam_path *path,
675 					void *async_arg);
676 static void		xpt_dev_async(u_int32_t async_code,
677 				      struct cam_eb *bus,
678 				      struct cam_et *target,
679 				      struct cam_ed *device,
680 				      void *async_arg);
681 static path_id_t xptnextfreepathid(void);
682 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
683 static union ccb *xpt_get_ccb(struct cam_ed *device);
684 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
685 				  u_int32_t new_priority);
686 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
687 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
688 static timeout_t xpt_release_devq_timeout;
689 static timeout_t xpt_release_simq_timeout;
690 static void	 xpt_release_bus(struct cam_eb *bus);
691 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
692 					 int run_queue);
693 static struct cam_et*
694 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
695 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
696 static struct cam_ed*
697 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
698 				  lun_id_t lun_id);
699 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
700 				    struct cam_ed *device);
701 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
702 static struct cam_eb*
703 		 xpt_find_bus(path_id_t path_id);
704 static struct cam_et*
705 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
706 static struct cam_ed*
707 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
708 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
709 static void	 xpt_scan_lun(struct cam_periph *periph,
710 			      struct cam_path *path, cam_flags flags,
711 			      union ccb *ccb);
712 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
713 static xpt_busfunc_t	xptconfigbuscountfunc;
714 static xpt_busfunc_t	xptconfigfunc;
715 static void	 xpt_config(void *arg);
716 static xpt_devicefunc_t xptpassannouncefunc;
717 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
718 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
719 static void	 xptpoll(struct cam_sim *sim);
720 static inthand2_t swi_camnet;
721 static inthand2_t swi_cambio;
722 static void	 camisr(cam_isrq_t *queue);
723 #if 0
724 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
725 static void	 xptasync(struct cam_periph *periph,
726 			  u_int32_t code, cam_path *path);
727 #endif
728 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
729 				    int num_patterns, struct cam_eb *bus);
730 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
731 				       int num_patterns, struct cam_ed *device);
732 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
733 				       int num_patterns,
734 				       struct cam_periph *periph);
735 static xpt_busfunc_t	xptedtbusfunc;
736 static xpt_targetfunc_t	xptedttargetfunc;
737 static xpt_devicefunc_t	xptedtdevicefunc;
738 static xpt_periphfunc_t	xptedtperiphfunc;
739 static xpt_pdrvfunc_t	xptplistpdrvfunc;
740 static xpt_periphfunc_t	xptplistperiphfunc;
741 static int		xptedtmatch(struct ccb_dev_match *cdm);
742 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
743 static int		xptbustraverse(struct cam_eb *start_bus,
744 				       xpt_busfunc_t *tr_func, void *arg);
745 static int		xpttargettraverse(struct cam_eb *bus,
746 					  struct cam_et *start_target,
747 					  xpt_targetfunc_t *tr_func, void *arg);
748 static int		xptdevicetraverse(struct cam_et *target,
749 					  struct cam_ed *start_device,
750 					  xpt_devicefunc_t *tr_func, void *arg);
751 static int		xptperiphtraverse(struct cam_ed *device,
752 					  struct cam_periph *start_periph,
753 					  xpt_periphfunc_t *tr_func, void *arg);
754 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
755 					xpt_pdrvfunc_t *tr_func, void *arg);
756 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
757 					    struct cam_periph *start_periph,
758 					    xpt_periphfunc_t *tr_func,
759 					    void *arg);
760 static xpt_busfunc_t	xptdefbusfunc;
761 static xpt_targetfunc_t	xptdeftargetfunc;
762 static xpt_devicefunc_t	xptdefdevicefunc;
763 static xpt_periphfunc_t	xptdefperiphfunc;
764 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
765 #ifdef notusedyet
766 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
767 					    void *arg);
768 #endif
769 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
770 					    void *arg);
771 #ifdef notusedyet
772 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
773 					    void *arg);
774 #endif
775 static xpt_devicefunc_t	xptsetasyncfunc;
776 static xpt_busfunc_t	xptsetasyncbusfunc;
777 static cam_status	xptregister(struct cam_periph *periph,
778 				    void *arg);
779 static cam_status	proberegister(struct cam_periph *periph,
780 				      void *arg);
781 static void	 probeschedule(struct cam_periph *probe_periph);
782 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
783 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
784 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
785 static void	 probecleanup(struct cam_periph *periph);
786 static void	 xpt_find_quirk(struct cam_ed *device);
787 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
788 					   struct cam_ed *device,
789 					   int async_update);
790 static void	 xpt_toggle_tags(struct cam_path *path);
791 static void	 xpt_start_tags(struct cam_path *path);
792 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
793 					    struct cam_ed *dev);
794 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
795 					   struct cam_ed *dev);
796 static __inline int periph_is_queued(struct cam_periph *periph);
797 static __inline int device_is_alloc_queued(struct cam_ed *device);
798 static __inline int device_is_send_queued(struct cam_ed *device);
799 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
800 
801 static __inline int
802 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
803 {
804 	int retval;
805 
806 	if (dev->ccbq.devq_openings > 0) {
807 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
808 			cam_ccbq_resize(&dev->ccbq,
809 					dev->ccbq.dev_openings
810 					+ dev->ccbq.dev_active);
811 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
812 		}
813 		/*
814 		 * The priority of a device waiting for CCB resources
815 		 * is that of the the highest priority peripheral driver
816 		 * enqueued.
817 		 */
818 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
819 					  &dev->alloc_ccb_entry.pinfo,
820 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
821 	} else {
822 		retval = 0;
823 	}
824 
825 	return (retval);
826 }
827 
828 static __inline int
829 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
830 {
831 	int	retval;
832 
833 	if (dev->ccbq.dev_openings > 0) {
834 		/*
835 		 * The priority of a device waiting for controller
836 		 * resources is that of the the highest priority CCB
837 		 * enqueued.
838 		 */
839 		retval =
840 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
841 				     &dev->send_ccb_entry.pinfo,
842 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
843 	} else {
844 		retval = 0;
845 	}
846 	return (retval);
847 }
848 
849 static __inline int
850 periph_is_queued(struct cam_periph *periph)
851 {
852 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
853 }
854 
855 static __inline int
856 device_is_alloc_queued(struct cam_ed *device)
857 {
858 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
859 }
860 
861 static __inline int
862 device_is_send_queued(struct cam_ed *device)
863 {
864 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
865 }
866 
867 static __inline int
868 dev_allocq_is_runnable(struct cam_devq *devq)
869 {
870 	/*
871 	 * Have work to do.
872 	 * Have space to do more work.
873 	 * Allowed to do work.
874 	 */
875 	return ((devq->alloc_queue.qfrozen_cnt == 0)
876 	     && (devq->alloc_queue.entries > 0)
877 	     && (devq->alloc_openings > 0));
878 }
879 
880 static void
881 xpt_periph_init()
882 {
883 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
884 }
885 
886 static void
887 probe_periph_init()
888 {
889 }
890 
891 
892 static void
893 xptdone(struct cam_periph *periph, union ccb *done_ccb)
894 {
895 	/* Caller will release the CCB */
896 	wakeup(&done_ccb->ccb_h.cbfcnp);
897 }
898 
899 static int
900 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
901 {
902 	int unit;
903 
904 	unit = minor(dev) & 0xff;
905 
906 	/*
907 	 * Only allow read-write access.
908 	 */
909 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
910 		return(EPERM);
911 
912 	/*
913 	 * We don't allow nonblocking access.
914 	 */
915 	if ((flags & O_NONBLOCK) != 0) {
916 		printf("xpt%d: can't do nonblocking access\n", unit);
917 		return(ENODEV);
918 	}
919 
920 	/*
921 	 * We only have one transport layer right now.  If someone accesses
922 	 * us via something other than minor number 1, point out their
923 	 * mistake.
924 	 */
925 	if (unit != 0) {
926 		printf("xptopen: got invalid xpt unit %d\n", unit);
927 		return(ENXIO);
928 	}
929 
930 	/* Mark ourselves open */
931 	xsoftc.flags |= XPT_FLAG_OPEN;
932 
933 	return(0);
934 }
935 
936 static int
937 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
938 {
939 	int unit;
940 
941 	unit = minor(dev) & 0xff;
942 
943 	/*
944 	 * We only have one transport layer right now.  If someone accesses
945 	 * us via something other than minor number 1, point out their
946 	 * mistake.
947 	 */
948 	if (unit != 0) {
949 		printf("xptclose: got invalid xpt unit %d\n", unit);
950 		return(ENXIO);
951 	}
952 
953 	/* Mark ourselves closed */
954 	xsoftc.flags &= ~XPT_FLAG_OPEN;
955 
956 	return(0);
957 }
958 
959 static int
960 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
961 {
962 	int unit, error;
963 
964 	error = 0;
965 	unit = minor(dev) & 0xff;
966 
967 	/*
968 	 * We only have one transport layer right now.  If someone accesses
969 	 * us via something other than minor number 1, point out their
970 	 * mistake.
971 	 */
972 	if (unit != 0) {
973 		printf("xptioctl: got invalid xpt unit %d\n", unit);
974 		return(ENXIO);
975 	}
976 
977 	switch(cmd) {
978 	/*
979 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
980 	 * to accept CCB types that don't quite make sense to send through a
981 	 * passthrough driver.
982 	 */
983 	case CAMIOCOMMAND: {
984 		union ccb *ccb;
985 		union ccb *inccb;
986 
987 		inccb = (union ccb *)addr;
988 
989 		switch(inccb->ccb_h.func_code) {
990 		case XPT_SCAN_BUS:
991 		case XPT_RESET_BUS:
992 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
993 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
994 				error = EINVAL;
995 				break;
996 			}
997 			/* FALLTHROUGH */
998 		case XPT_PATH_INQ:
999 		case XPT_ENG_INQ:
1000 		case XPT_SCAN_LUN:
1001 
1002 			ccb = xpt_alloc_ccb();
1003 
1004 			/*
1005 			 * Create a path using the bus, target, and lun the
1006 			 * user passed in.
1007 			 */
1008 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1009 					    inccb->ccb_h.path_id,
1010 					    inccb->ccb_h.target_id,
1011 					    inccb->ccb_h.target_lun) !=
1012 					    CAM_REQ_CMP){
1013 				error = EINVAL;
1014 				xpt_free_ccb(ccb);
1015 				break;
1016 			}
1017 			/* Ensure all of our fields are correct */
1018 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1019 				      inccb->ccb_h.pinfo.priority);
1020 			xpt_merge_ccb(ccb, inccb);
1021 			ccb->ccb_h.cbfcnp = xptdone;
1022 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1023 			bcopy(ccb, inccb, sizeof(union ccb));
1024 			xpt_free_path(ccb->ccb_h.path);
1025 			xpt_free_ccb(ccb);
1026 			break;
1027 
1028 		case XPT_DEBUG: {
1029 			union ccb ccb;
1030 
1031 			/*
1032 			 * This is an immediate CCB, so it's okay to
1033 			 * allocate it on the stack.
1034 			 */
1035 
1036 			/*
1037 			 * Create a path using the bus, target, and lun the
1038 			 * user passed in.
1039 			 */
1040 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1041 					    inccb->ccb_h.path_id,
1042 					    inccb->ccb_h.target_id,
1043 					    inccb->ccb_h.target_lun) !=
1044 					    CAM_REQ_CMP){
1045 				error = EINVAL;
1046 				break;
1047 			}
1048 			/* Ensure all of our fields are correct */
1049 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1050 				      inccb->ccb_h.pinfo.priority);
1051 			xpt_merge_ccb(&ccb, inccb);
1052 			ccb.ccb_h.cbfcnp = xptdone;
1053 			xpt_action(&ccb);
1054 			bcopy(&ccb, inccb, sizeof(union ccb));
1055 			xpt_free_path(ccb.ccb_h.path);
1056 			break;
1057 
1058 		}
1059 		case XPT_DEV_MATCH: {
1060 			struct cam_periph_map_info mapinfo;
1061 			struct cam_path *old_path;
1062 
1063 			/*
1064 			 * We can't deal with physical addresses for this
1065 			 * type of transaction.
1066 			 */
1067 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1068 				error = EINVAL;
1069 				break;
1070 			}
1071 
1072 			/*
1073 			 * Save this in case the caller had it set to
1074 			 * something in particular.
1075 			 */
1076 			old_path = inccb->ccb_h.path;
1077 
1078 			/*
1079 			 * We really don't need a path for the matching
1080 			 * code.  The path is needed because of the
1081 			 * debugging statements in xpt_action().  They
1082 			 * assume that the CCB has a valid path.
1083 			 */
1084 			inccb->ccb_h.path = xpt_periph->path;
1085 
1086 			bzero(&mapinfo, sizeof(mapinfo));
1087 
1088 			/*
1089 			 * Map the pattern and match buffers into kernel
1090 			 * virtual address space.
1091 			 */
1092 			error = cam_periph_mapmem(inccb, &mapinfo);
1093 
1094 			if (error) {
1095 				inccb->ccb_h.path = old_path;
1096 				break;
1097 			}
1098 
1099 			/*
1100 			 * This is an immediate CCB, we can send it on directly.
1101 			 */
1102 			xpt_action(inccb);
1103 
1104 			/*
1105 			 * Map the buffers back into user space.
1106 			 */
1107 			cam_periph_unmapmem(inccb, &mapinfo);
1108 
1109 			inccb->ccb_h.path = old_path;
1110 
1111 			error = 0;
1112 			break;
1113 		}
1114 		default:
1115 			error = ENOTSUP;
1116 			break;
1117 		}
1118 		break;
1119 	}
1120 	/*
1121 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1122 	 * with the periphal driver name and unit name filled in.  The other
1123 	 * fields don't really matter as input.  The passthrough driver name
1124 	 * ("pass"), and unit number are passed back in the ccb.  The current
1125 	 * device generation number, and the index into the device peripheral
1126 	 * driver list, and the status are also passed back.  Note that
1127 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1128 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1129 	 * (or rather should be) impossible for the device peripheral driver
1130 	 * list to change since we look at the whole thing in one pass, and
1131 	 * we do it with splcam protection.
1132 	 *
1133 	 */
1134 	case CAMGETPASSTHRU: {
1135 		union ccb *ccb;
1136 		struct cam_periph *periph;
1137 		struct periph_driver **p_drv;
1138 		char   *name;
1139 		int unit;
1140 		int cur_generation;
1141 		int base_periph_found;
1142 		int splbreaknum;
1143 		int s;
1144 
1145 		ccb = (union ccb *)addr;
1146 		unit = ccb->cgdl.unit_number;
1147 		name = ccb->cgdl.periph_name;
1148 		/*
1149 		 * Every 100 devices, we want to drop our spl protection to
1150 		 * give the software interrupt handler a chance to run.
1151 		 * Most systems won't run into this check, but this should
1152 		 * avoid starvation in the software interrupt handler in
1153 		 * large systems.
1154 		 */
1155 		splbreaknum = 100;
1156 
1157 		ccb = (union ccb *)addr;
1158 
1159 		base_periph_found = 0;
1160 
1161 		/*
1162 		 * Sanity check -- make sure we don't get a null peripheral
1163 		 * driver name.
1164 		 */
1165 		if (*ccb->cgdl.periph_name == '\0') {
1166 			error = EINVAL;
1167 			break;
1168 		}
1169 
1170 		/* Keep the list from changing while we traverse it */
1171 		s = splcam();
1172 ptstartover:
1173 		cur_generation = xsoftc.generation;
1174 
1175 		/* first find our driver in the list of drivers */
1176 		SET_FOREACH(p_drv, periphdriver_set) {
1177 			if (strcmp((*p_drv)->driver_name, name) == 0)
1178 				break;
1179 		}
1180 
1181 		if (*p_drv == NULL) {
1182 			splx(s);
1183 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1184 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1185 			*ccb->cgdl.periph_name = '\0';
1186 			ccb->cgdl.unit_number = 0;
1187 			error = ENOENT;
1188 			break;
1189 		}
1190 
1191 		/*
1192 		 * Run through every peripheral instance of this driver
1193 		 * and check to see whether it matches the unit passed
1194 		 * in by the user.  If it does, get out of the loops and
1195 		 * find the passthrough driver associated with that
1196 		 * peripheral driver.
1197 		 */
1198 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1199 		     periph = TAILQ_NEXT(periph, unit_links)) {
1200 
1201 			if (periph->unit_number == unit) {
1202 				break;
1203 			} else if (--splbreaknum == 0) {
1204 				splx(s);
1205 				s = splcam();
1206 				splbreaknum = 100;
1207 				if (cur_generation != xsoftc.generation)
1208 				       goto ptstartover;
1209 			}
1210 		}
1211 		/*
1212 		 * If we found the peripheral driver that the user passed
1213 		 * in, go through all of the peripheral drivers for that
1214 		 * particular device and look for a passthrough driver.
1215 		 */
1216 		if (periph != NULL) {
1217 			struct cam_ed *device;
1218 			int i;
1219 
1220 			base_periph_found = 1;
1221 			device = periph->path->device;
1222 			for (i = 0, periph = device->periphs.slh_first;
1223 			     periph != NULL;
1224 			     periph = periph->periph_links.sle_next, i++) {
1225 				/*
1226 				 * Check to see whether we have a
1227 				 * passthrough device or not.
1228 				 */
1229 				if (strcmp(periph->periph_name, "pass") == 0) {
1230 					/*
1231 					 * Fill in the getdevlist fields.
1232 					 */
1233 					strcpy(ccb->cgdl.periph_name,
1234 					       periph->periph_name);
1235 					ccb->cgdl.unit_number =
1236 						periph->unit_number;
1237 					if (periph->periph_links.sle_next)
1238 						ccb->cgdl.status =
1239 							CAM_GDEVLIST_MORE_DEVS;
1240 					else
1241 						ccb->cgdl.status =
1242 						       CAM_GDEVLIST_LAST_DEVICE;
1243 					ccb->cgdl.generation =
1244 						device->generation;
1245 					ccb->cgdl.index = i;
1246 					/*
1247 					 * Fill in some CCB header fields
1248 					 * that the user may want.
1249 					 */
1250 					ccb->ccb_h.path_id =
1251 						periph->path->bus->path_id;
1252 					ccb->ccb_h.target_id =
1253 						periph->path->target->target_id;
1254 					ccb->ccb_h.target_lun =
1255 						periph->path->device->lun_id;
1256 					ccb->ccb_h.status = CAM_REQ_CMP;
1257 					break;
1258 				}
1259 			}
1260 		}
1261 
1262 		/*
1263 		 * If the periph is null here, one of two things has
1264 		 * happened.  The first possibility is that we couldn't
1265 		 * find the unit number of the particular peripheral driver
1266 		 * that the user is asking about.  e.g. the user asks for
1267 		 * the passthrough driver for "da11".  We find the list of
1268 		 * "da" peripherals all right, but there is no unit 11.
1269 		 * The other possibility is that we went through the list
1270 		 * of peripheral drivers attached to the device structure,
1271 		 * but didn't find one with the name "pass".  Either way,
1272 		 * we return ENOENT, since we couldn't find something.
1273 		 */
1274 		if (periph == NULL) {
1275 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1276 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1277 			*ccb->cgdl.periph_name = '\0';
1278 			ccb->cgdl.unit_number = 0;
1279 			error = ENOENT;
1280 			/*
1281 			 * It is unfortunate that this is even necessary,
1282 			 * but there are many, many clueless users out there.
1283 			 * If this is true, the user is looking for the
1284 			 * passthrough driver, but doesn't have one in his
1285 			 * kernel.
1286 			 */
1287 			if (base_periph_found == 1) {
1288 				printf("xptioctl: pass driver is not in the "
1289 				       "kernel\n");
1290 				printf("xptioctl: put \"device pass0\" in "
1291 				       "your kernel config file\n");
1292 			}
1293 		}
1294 		splx(s);
1295 		break;
1296 		}
1297 	default:
1298 		error = ENOTTY;
1299 		break;
1300 	}
1301 
1302 	return(error);
1303 }
1304 
1305 /* Functions accessed by the peripheral drivers */
1306 static void
1307 xpt_init(dummy)
1308 	void *dummy;
1309 {
1310 	struct cam_sim *xpt_sim;
1311 	struct cam_path *path;
1312 	struct cam_devq *devq;
1313 	cam_status status;
1314 
1315 	TAILQ_INIT(&xpt_busses);
1316 	TAILQ_INIT(&cam_bioq);
1317 	TAILQ_INIT(&cam_netq);
1318 	SLIST_INIT(&ccb_freeq);
1319 	STAILQ_INIT(&highpowerq);
1320 
1321 	/*
1322 	 * The xpt layer is, itself, the equivelent of a SIM.
1323 	 * Allow 16 ccbs in the ccb pool for it.  This should
1324 	 * give decent parallelism when we probe busses and
1325 	 * perform other XPT functions.
1326 	 */
1327 	devq = cam_simq_alloc(16);
1328 	xpt_sim = cam_sim_alloc(xptaction,
1329 				xptpoll,
1330 				"xpt",
1331 				/*softc*/NULL,
1332 				/*unit*/0,
1333 				/*max_dev_transactions*/0,
1334 				/*max_tagged_dev_transactions*/0,
1335 				devq);
1336 	xpt_max_ccbs = 16;
1337 
1338 	xpt_bus_register(xpt_sim, /*bus #*/0);
1339 
1340 	/*
1341 	 * Looking at the XPT from the SIM layer, the XPT is
1342 	 * the equivelent of a peripheral driver.  Allocate
1343 	 * a peripheral driver entry for us.
1344 	 */
1345 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1346 				      CAM_TARGET_WILDCARD,
1347 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1348 		printf("xpt_init: xpt_create_path failed with status %#x,"
1349 		       " failing attach\n", status);
1350 		return;
1351 	}
1352 
1353 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1354 			 path, NULL, 0, NULL);
1355 	xpt_free_path(path);
1356 
1357 	xpt_sim->softc = xpt_periph;
1358 
1359 	/*
1360 	 * Register a callback for when interrupts are enabled.
1361 	 */
1362 	xpt_config_hook =
1363 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1364 					      M_TEMP, M_NOWAIT | M_ZERO);
1365 	if (xpt_config_hook == NULL) {
1366 		printf("xpt_init: Cannot malloc config hook "
1367 		       "- failing attach\n");
1368 		return;
1369 	}
1370 
1371 	xpt_config_hook->ich_func = xpt_config;
1372 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1373 		free (xpt_config_hook, M_TEMP);
1374 		printf("xpt_init: config_intrhook_establish failed "
1375 		       "- failing attach\n");
1376 	}
1377 
1378 	/* Install our software interrupt handlers */
1379 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet");
1380 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio");
1381 }
1382 
1383 static cam_status
1384 xptregister(struct cam_periph *periph, void *arg)
1385 {
1386 	if (periph == NULL) {
1387 		printf("xptregister: periph was NULL!!\n");
1388 		return(CAM_REQ_CMP_ERR);
1389 	}
1390 
1391 	periph->softc = NULL;
1392 
1393 	xpt_periph = periph;
1394 
1395 	return(CAM_REQ_CMP);
1396 }
1397 
1398 int32_t
1399 xpt_add_periph(struct cam_periph *periph)
1400 {
1401 	struct cam_ed *device;
1402 	int32_t	 status;
1403 	struct periph_list *periph_head;
1404 
1405 	device = periph->path->device;
1406 
1407 	periph_head = &device->periphs;
1408 
1409 	status = CAM_REQ_CMP;
1410 
1411 	if (device != NULL) {
1412 		int s;
1413 
1414 		/*
1415 		 * Make room for this peripheral
1416 		 * so it will fit in the queue
1417 		 * when it's scheduled to run
1418 		 */
1419 		s = splsoftcam();
1420 		status = camq_resize(&device->drvq,
1421 				     device->drvq.array_size + 1);
1422 
1423 		device->generation++;
1424 
1425 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1426 
1427 		splx(s);
1428 	}
1429 
1430 	xsoftc.generation++;
1431 
1432 	return (status);
1433 }
1434 
1435 void
1436 xpt_remove_periph(struct cam_periph *periph)
1437 {
1438 	struct cam_ed *device;
1439 
1440 	device = periph->path->device;
1441 
1442 	if (device != NULL) {
1443 		int s;
1444 		struct periph_list *periph_head;
1445 
1446 		periph_head = &device->periphs;
1447 
1448 		/* Release the slot for this peripheral */
1449 		s = splsoftcam();
1450 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1451 
1452 		device->generation++;
1453 
1454 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1455 
1456 		splx(s);
1457 	}
1458 
1459 	xsoftc.generation++;
1460 
1461 }
1462 
1463 void
1464 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1465 {
1466 	int s;
1467 	u_int mb;
1468 	struct cam_path *path;
1469 	struct ccb_trans_settings cts;
1470 
1471 	path = periph->path;
1472 	/*
1473 	 * To ensure that this is printed in one piece,
1474 	 * mask out CAM interrupts.
1475 	 */
1476 	s = splsoftcam();
1477 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1478 	       periph->periph_name, periph->unit_number,
1479 	       path->bus->sim->sim_name,
1480 	       path->bus->sim->unit_number,
1481 	       path->bus->sim->bus_id,
1482 	       path->target->target_id,
1483 	       path->device->lun_id);
1484 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1485 	scsi_print_inquiry(&path->device->inq_data);
1486 	if ((bootverbose)
1487 	 && (path->device->serial_num_len > 0)) {
1488 		/* Don't wrap the screen  - print only the first 60 chars */
1489 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1490 		       periph->unit_number, path->device->serial_num);
1491 	}
1492 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1493 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1494 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1495 	xpt_action((union ccb*)&cts);
1496 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1497 		u_int speed;
1498 		u_int freq;
1499 
1500 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1501 		  && cts.sync_offset != 0) {
1502 			freq = scsi_calc_syncsrate(cts.sync_period);
1503 			speed = freq;
1504 		} else {
1505 			struct ccb_pathinq cpi;
1506 
1507 			/* Ask the SIM for its base transfer speed */
1508 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1509 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1510 			xpt_action((union ccb *)&cpi);
1511 
1512 			speed = cpi.base_transfer_speed;
1513 			freq = 0;
1514 		}
1515 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1516 			speed *= (0x01 << cts.bus_width);
1517 		mb = speed / 1000;
1518 		if (mb > 0)
1519 			printf("%s%d: %d.%03dMB/s transfers",
1520 			       periph->periph_name, periph->unit_number,
1521 			       mb, speed % 1000);
1522 		else
1523 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1524 			       periph->unit_number, speed);
1525 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1526 		 && cts.sync_offset != 0) {
1527 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1528 			       freq % 1000, cts.sync_offset);
1529 		}
1530 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1531 		 && cts.bus_width > 0) {
1532 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1533 			 && cts.sync_offset != 0) {
1534 				printf(", ");
1535 			} else {
1536 				printf(" (");
1537 			}
1538 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1539 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1540 			&& cts.sync_offset != 0) {
1541 			printf(")");
1542 		}
1543 
1544 		if (path->device->inq_flags & SID_CmdQue
1545 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1546 			printf(", Tagged Queueing Enabled");
1547 		}
1548 
1549 		printf("\n");
1550 	} else if (path->device->inq_flags & SID_CmdQue
1551    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1552 		printf("%s%d: Tagged Queueing Enabled\n",
1553 		       periph->periph_name, periph->unit_number);
1554 	}
1555 
1556 	/*
1557 	 * We only want to print the caller's announce string if they've
1558 	 * passed one in..
1559 	 */
1560 	if (announce_string != NULL)
1561 		printf("%s%d: %s\n", periph->periph_name,
1562 		       periph->unit_number, announce_string);
1563 	splx(s);
1564 }
1565 
1566 
1567 static dev_match_ret
1568 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1569 	    struct cam_eb *bus)
1570 {
1571 	dev_match_ret retval;
1572 	int i;
1573 
1574 	retval = DM_RET_NONE;
1575 
1576 	/*
1577 	 * If we aren't given something to match against, that's an error.
1578 	 */
1579 	if (bus == NULL)
1580 		return(DM_RET_ERROR);
1581 
1582 	/*
1583 	 * If there are no match entries, then this bus matches no
1584 	 * matter what.
1585 	 */
1586 	if ((patterns == NULL) || (num_patterns == 0))
1587 		return(DM_RET_DESCEND | DM_RET_COPY);
1588 
1589 	for (i = 0; i < num_patterns; i++) {
1590 		struct bus_match_pattern *cur_pattern;
1591 
1592 		/*
1593 		 * If the pattern in question isn't for a bus node, we
1594 		 * aren't interested.  However, we do indicate to the
1595 		 * calling routine that we should continue descending the
1596 		 * tree, since the user wants to match against lower-level
1597 		 * EDT elements.
1598 		 */
1599 		if (patterns[i].type != DEV_MATCH_BUS) {
1600 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1601 				retval |= DM_RET_DESCEND;
1602 			continue;
1603 		}
1604 
1605 		cur_pattern = &patterns[i].pattern.bus_pattern;
1606 
1607 		/*
1608 		 * If they want to match any bus node, we give them any
1609 		 * device node.
1610 		 */
1611 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1612 			/* set the copy flag */
1613 			retval |= DM_RET_COPY;
1614 
1615 			/*
1616 			 * If we've already decided on an action, go ahead
1617 			 * and return.
1618 			 */
1619 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1620 				return(retval);
1621 		}
1622 
1623 		/*
1624 		 * Not sure why someone would do this...
1625 		 */
1626 		if (cur_pattern->flags == BUS_MATCH_NONE)
1627 			continue;
1628 
1629 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1630 		 && (cur_pattern->path_id != bus->path_id))
1631 			continue;
1632 
1633 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1634 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1635 			continue;
1636 
1637 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1638 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1639 			continue;
1640 
1641 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1642 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1643 			     DEV_IDLEN) != 0))
1644 			continue;
1645 
1646 		/*
1647 		 * If we get to this point, the user definitely wants
1648 		 * information on this bus.  So tell the caller to copy the
1649 		 * data out.
1650 		 */
1651 		retval |= DM_RET_COPY;
1652 
1653 		/*
1654 		 * If the return action has been set to descend, then we
1655 		 * know that we've already seen a non-bus matching
1656 		 * expression, therefore we need to further descend the tree.
1657 		 * This won't change by continuing around the loop, so we
1658 		 * go ahead and return.  If we haven't seen a non-bus
1659 		 * matching expression, we keep going around the loop until
1660 		 * we exhaust the matching expressions.  We'll set the stop
1661 		 * flag once we fall out of the loop.
1662 		 */
1663 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1664 			return(retval);
1665 	}
1666 
1667 	/*
1668 	 * If the return action hasn't been set to descend yet, that means
1669 	 * we haven't seen anything other than bus matching patterns.  So
1670 	 * tell the caller to stop descending the tree -- the user doesn't
1671 	 * want to match against lower level tree elements.
1672 	 */
1673 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1674 		retval |= DM_RET_STOP;
1675 
1676 	return(retval);
1677 }
1678 
1679 static dev_match_ret
1680 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1681 	       struct cam_ed *device)
1682 {
1683 	dev_match_ret retval;
1684 	int i;
1685 
1686 	retval = DM_RET_NONE;
1687 
1688 	/*
1689 	 * If we aren't given something to match against, that's an error.
1690 	 */
1691 	if (device == NULL)
1692 		return(DM_RET_ERROR);
1693 
1694 	/*
1695 	 * If there are no match entries, then this device matches no
1696 	 * matter what.
1697 	 */
1698 	if ((patterns == NULL) || (patterns == 0))
1699 		return(DM_RET_DESCEND | DM_RET_COPY);
1700 
1701 	for (i = 0; i < num_patterns; i++) {
1702 		struct device_match_pattern *cur_pattern;
1703 
1704 		/*
1705 		 * If the pattern in question isn't for a device node, we
1706 		 * aren't interested.
1707 		 */
1708 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1709 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1710 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1711 				retval |= DM_RET_DESCEND;
1712 			continue;
1713 		}
1714 
1715 		cur_pattern = &patterns[i].pattern.device_pattern;
1716 
1717 		/*
1718 		 * If they want to match any device node, we give them any
1719 		 * device node.
1720 		 */
1721 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1722 			/* set the copy flag */
1723 			retval |= DM_RET_COPY;
1724 
1725 
1726 			/*
1727 			 * If we've already decided on an action, go ahead
1728 			 * and return.
1729 			 */
1730 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1731 				return(retval);
1732 		}
1733 
1734 		/*
1735 		 * Not sure why someone would do this...
1736 		 */
1737 		if (cur_pattern->flags == DEV_MATCH_NONE)
1738 			continue;
1739 
1740 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1741 		 && (cur_pattern->path_id != device->target->bus->path_id))
1742 			continue;
1743 
1744 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1745 		 && (cur_pattern->target_id != device->target->target_id))
1746 			continue;
1747 
1748 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1749 		 && (cur_pattern->target_lun != device->lun_id))
1750 			continue;
1751 
1752 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1753 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1754 				    (caddr_t)&cur_pattern->inq_pat,
1755 				    1, sizeof(cur_pattern->inq_pat),
1756 				    scsi_static_inquiry_match) == NULL))
1757 			continue;
1758 
1759 		/*
1760 		 * If we get to this point, the user definitely wants
1761 		 * information on this device.  So tell the caller to copy
1762 		 * the data out.
1763 		 */
1764 		retval |= DM_RET_COPY;
1765 
1766 		/*
1767 		 * If the return action has been set to descend, then we
1768 		 * know that we've already seen a peripheral matching
1769 		 * expression, therefore we need to further descend the tree.
1770 		 * This won't change by continuing around the loop, so we
1771 		 * go ahead and return.  If we haven't seen a peripheral
1772 		 * matching expression, we keep going around the loop until
1773 		 * we exhaust the matching expressions.  We'll set the stop
1774 		 * flag once we fall out of the loop.
1775 		 */
1776 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1777 			return(retval);
1778 	}
1779 
1780 	/*
1781 	 * If the return action hasn't been set to descend yet, that means
1782 	 * we haven't seen any peripheral matching patterns.  So tell the
1783 	 * caller to stop descending the tree -- the user doesn't want to
1784 	 * match against lower level tree elements.
1785 	 */
1786 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1787 		retval |= DM_RET_STOP;
1788 
1789 	return(retval);
1790 }
1791 
1792 /*
1793  * Match a single peripheral against any number of match patterns.
1794  */
1795 static dev_match_ret
1796 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1797 	       struct cam_periph *periph)
1798 {
1799 	dev_match_ret retval;
1800 	int i;
1801 
1802 	/*
1803 	 * If we aren't given something to match against, that's an error.
1804 	 */
1805 	if (periph == NULL)
1806 		return(DM_RET_ERROR);
1807 
1808 	/*
1809 	 * If there are no match entries, then this peripheral matches no
1810 	 * matter what.
1811 	 */
1812 	if ((patterns == NULL) || (num_patterns == 0))
1813 		return(DM_RET_STOP | DM_RET_COPY);
1814 
1815 	/*
1816 	 * There aren't any nodes below a peripheral node, so there's no
1817 	 * reason to descend the tree any further.
1818 	 */
1819 	retval = DM_RET_STOP;
1820 
1821 	for (i = 0; i < num_patterns; i++) {
1822 		struct periph_match_pattern *cur_pattern;
1823 
1824 		/*
1825 		 * If the pattern in question isn't for a peripheral, we
1826 		 * aren't interested.
1827 		 */
1828 		if (patterns[i].type != DEV_MATCH_PERIPH)
1829 			continue;
1830 
1831 		cur_pattern = &patterns[i].pattern.periph_pattern;
1832 
1833 		/*
1834 		 * If they want to match on anything, then we will do so.
1835 		 */
1836 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1837 			/* set the copy flag */
1838 			retval |= DM_RET_COPY;
1839 
1840 			/*
1841 			 * We've already set the return action to stop,
1842 			 * since there are no nodes below peripherals in
1843 			 * the tree.
1844 			 */
1845 			return(retval);
1846 		}
1847 
1848 		/*
1849 		 * Not sure why someone would do this...
1850 		 */
1851 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1852 			continue;
1853 
1854 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1855 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1856 			continue;
1857 
1858 		/*
1859 		 * For the target and lun id's, we have to make sure the
1860 		 * target and lun pointers aren't NULL.  The xpt peripheral
1861 		 * has a wildcard target and device.
1862 		 */
1863 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1864 		 && ((periph->path->target == NULL)
1865 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1866 			continue;
1867 
1868 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1869 		 && ((periph->path->device == NULL)
1870 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1871 			continue;
1872 
1873 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1874 		 && (cur_pattern->unit_number != periph->unit_number))
1875 			continue;
1876 
1877 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1878 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1879 			     DEV_IDLEN) != 0))
1880 			continue;
1881 
1882 		/*
1883 		 * If we get to this point, the user definitely wants
1884 		 * information on this peripheral.  So tell the caller to
1885 		 * copy the data out.
1886 		 */
1887 		retval |= DM_RET_COPY;
1888 
1889 		/*
1890 		 * The return action has already been set to stop, since
1891 		 * peripherals don't have any nodes below them in the EDT.
1892 		 */
1893 		return(retval);
1894 	}
1895 
1896 	/*
1897 	 * If we get to this point, the peripheral that was passed in
1898 	 * doesn't match any of the patterns.
1899 	 */
1900 	return(retval);
1901 }
1902 
1903 static int
1904 xptedtbusfunc(struct cam_eb *bus, void *arg)
1905 {
1906 	struct ccb_dev_match *cdm;
1907 	dev_match_ret retval;
1908 
1909 	cdm = (struct ccb_dev_match *)arg;
1910 
1911 	/*
1912 	 * If our position is for something deeper in the tree, that means
1913 	 * that we've already seen this node.  So, we keep going down.
1914 	 */
1915 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1916 	 && (cdm->pos.cookie.bus == bus)
1917 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1918 	 && (cdm->pos.cookie.target != NULL))
1919 		retval = DM_RET_DESCEND;
1920 	else
1921 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1922 
1923 	/*
1924 	 * If we got an error, bail out of the search.
1925 	 */
1926 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1927 		cdm->status = CAM_DEV_MATCH_ERROR;
1928 		return(0);
1929 	}
1930 
1931 	/*
1932 	 * If the copy flag is set, copy this bus out.
1933 	 */
1934 	if (retval & DM_RET_COPY) {
1935 		int spaceleft, j;
1936 
1937 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1938 			sizeof(struct dev_match_result));
1939 
1940 		/*
1941 		 * If we don't have enough space to put in another
1942 		 * match result, save our position and tell the
1943 		 * user there are more devices to check.
1944 		 */
1945 		if (spaceleft < sizeof(struct dev_match_result)) {
1946 			bzero(&cdm->pos, sizeof(cdm->pos));
1947 			cdm->pos.position_type =
1948 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1949 
1950 			cdm->pos.cookie.bus = bus;
1951 			cdm->pos.generations[CAM_BUS_GENERATION]=
1952 				bus_generation;
1953 			cdm->status = CAM_DEV_MATCH_MORE;
1954 			return(0);
1955 		}
1956 		j = cdm->num_matches;
1957 		cdm->num_matches++;
1958 		cdm->matches[j].type = DEV_MATCH_BUS;
1959 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1960 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1961 		cdm->matches[j].result.bus_result.unit_number =
1962 			bus->sim->unit_number;
1963 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1964 			bus->sim->sim_name, DEV_IDLEN);
1965 	}
1966 
1967 	/*
1968 	 * If the user is only interested in busses, there's no
1969 	 * reason to descend to the next level in the tree.
1970 	 */
1971 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1972 		return(1);
1973 
1974 	/*
1975 	 * If there is a target generation recorded, check it to
1976 	 * make sure the target list hasn't changed.
1977 	 */
1978 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1979 	 && (bus == cdm->pos.cookie.bus)
1980 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1981 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1982 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1983 	     bus->generation)) {
1984 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1985 		return(0);
1986 	}
1987 
1988 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1989 	 && (cdm->pos.cookie.bus == bus)
1990 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1991 	 && (cdm->pos.cookie.target != NULL))
1992 		return(xpttargettraverse(bus,
1993 					(struct cam_et *)cdm->pos.cookie.target,
1994 					 xptedttargetfunc, arg));
1995 	else
1996 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1997 }
1998 
1999 static int
2000 xptedttargetfunc(struct cam_et *target, void *arg)
2001 {
2002 	struct ccb_dev_match *cdm;
2003 
2004 	cdm = (struct ccb_dev_match *)arg;
2005 
2006 	/*
2007 	 * If there is a device list generation recorded, check it to
2008 	 * make sure the device list hasn't changed.
2009 	 */
2010 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2011 	 && (cdm->pos.cookie.bus == target->bus)
2012 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2013 	 && (cdm->pos.cookie.target == target)
2014 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2015 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2016 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2017 	     target->generation)) {
2018 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2019 		return(0);
2020 	}
2021 
2022 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2023 	 && (cdm->pos.cookie.bus == target->bus)
2024 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2025 	 && (cdm->pos.cookie.target == target)
2026 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2027 	 && (cdm->pos.cookie.device != NULL))
2028 		return(xptdevicetraverse(target,
2029 					(struct cam_ed *)cdm->pos.cookie.device,
2030 					 xptedtdevicefunc, arg));
2031 	else
2032 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2033 }
2034 
2035 static int
2036 xptedtdevicefunc(struct cam_ed *device, void *arg)
2037 {
2038 
2039 	struct ccb_dev_match *cdm;
2040 	dev_match_ret retval;
2041 
2042 	cdm = (struct ccb_dev_match *)arg;
2043 
2044 	/*
2045 	 * If our position is for something deeper in the tree, that means
2046 	 * that we've already seen this node.  So, we keep going down.
2047 	 */
2048 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2049 	 && (cdm->pos.cookie.device == device)
2050 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2051 	 && (cdm->pos.cookie.periph != NULL))
2052 		retval = DM_RET_DESCEND;
2053 	else
2054 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2055 					device);
2056 
2057 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2058 		cdm->status = CAM_DEV_MATCH_ERROR;
2059 		return(0);
2060 	}
2061 
2062 	/*
2063 	 * If the copy flag is set, copy this device out.
2064 	 */
2065 	if (retval & DM_RET_COPY) {
2066 		int spaceleft, j;
2067 
2068 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2069 			sizeof(struct dev_match_result));
2070 
2071 		/*
2072 		 * If we don't have enough space to put in another
2073 		 * match result, save our position and tell the
2074 		 * user there are more devices to check.
2075 		 */
2076 		if (spaceleft < sizeof(struct dev_match_result)) {
2077 			bzero(&cdm->pos, sizeof(cdm->pos));
2078 			cdm->pos.position_type =
2079 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2080 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2081 
2082 			cdm->pos.cookie.bus = device->target->bus;
2083 			cdm->pos.generations[CAM_BUS_GENERATION]=
2084 				bus_generation;
2085 			cdm->pos.cookie.target = device->target;
2086 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2087 				device->target->bus->generation;
2088 			cdm->pos.cookie.device = device;
2089 			cdm->pos.generations[CAM_DEV_GENERATION] =
2090 				device->target->generation;
2091 			cdm->status = CAM_DEV_MATCH_MORE;
2092 			return(0);
2093 		}
2094 		j = cdm->num_matches;
2095 		cdm->num_matches++;
2096 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2097 		cdm->matches[j].result.device_result.path_id =
2098 			device->target->bus->path_id;
2099 		cdm->matches[j].result.device_result.target_id =
2100 			device->target->target_id;
2101 		cdm->matches[j].result.device_result.target_lun =
2102 			device->lun_id;
2103 		bcopy(&device->inq_data,
2104 		      &cdm->matches[j].result.device_result.inq_data,
2105 		      sizeof(struct scsi_inquiry_data));
2106 
2107 		/* Let the user know whether this device is unconfigured */
2108 		if (device->flags & CAM_DEV_UNCONFIGURED)
2109 			cdm->matches[j].result.device_result.flags =
2110 				DEV_RESULT_UNCONFIGURED;
2111 		else
2112 			cdm->matches[j].result.device_result.flags =
2113 				DEV_RESULT_NOFLAG;
2114 	}
2115 
2116 	/*
2117 	 * If the user isn't interested in peripherals, don't descend
2118 	 * the tree any further.
2119 	 */
2120 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2121 		return(1);
2122 
2123 	/*
2124 	 * If there is a peripheral list generation recorded, make sure
2125 	 * it hasn't changed.
2126 	 */
2127 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2128 	 && (device->target->bus == cdm->pos.cookie.bus)
2129 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2130 	 && (device->target == cdm->pos.cookie.target)
2131 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2132 	 && (device == cdm->pos.cookie.device)
2133 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2134 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2135 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2136 	     device->generation)){
2137 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2138 		return(0);
2139 	}
2140 
2141 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2142 	 && (cdm->pos.cookie.bus == device->target->bus)
2143 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2144 	 && (cdm->pos.cookie.target == device->target)
2145 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2146 	 && (cdm->pos.cookie.device == device)
2147 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2148 	 && (cdm->pos.cookie.periph != NULL))
2149 		return(xptperiphtraverse(device,
2150 				(struct cam_periph *)cdm->pos.cookie.periph,
2151 				xptedtperiphfunc, arg));
2152 	else
2153 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2154 }
2155 
2156 static int
2157 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2158 {
2159 	struct ccb_dev_match *cdm;
2160 	dev_match_ret retval;
2161 
2162 	cdm = (struct ccb_dev_match *)arg;
2163 
2164 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2165 
2166 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2167 		cdm->status = CAM_DEV_MATCH_ERROR;
2168 		return(0);
2169 	}
2170 
2171 	/*
2172 	 * If the copy flag is set, copy this peripheral out.
2173 	 */
2174 	if (retval & DM_RET_COPY) {
2175 		int spaceleft, j;
2176 
2177 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2178 			sizeof(struct dev_match_result));
2179 
2180 		/*
2181 		 * If we don't have enough space to put in another
2182 		 * match result, save our position and tell the
2183 		 * user there are more devices to check.
2184 		 */
2185 		if (spaceleft < sizeof(struct dev_match_result)) {
2186 			bzero(&cdm->pos, sizeof(cdm->pos));
2187 			cdm->pos.position_type =
2188 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2189 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2190 				CAM_DEV_POS_PERIPH;
2191 
2192 			cdm->pos.cookie.bus = periph->path->bus;
2193 			cdm->pos.generations[CAM_BUS_GENERATION]=
2194 				bus_generation;
2195 			cdm->pos.cookie.target = periph->path->target;
2196 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2197 				periph->path->bus->generation;
2198 			cdm->pos.cookie.device = periph->path->device;
2199 			cdm->pos.generations[CAM_DEV_GENERATION] =
2200 				periph->path->target->generation;
2201 			cdm->pos.cookie.periph = periph;
2202 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2203 				periph->path->device->generation;
2204 			cdm->status = CAM_DEV_MATCH_MORE;
2205 			return(0);
2206 		}
2207 
2208 		j = cdm->num_matches;
2209 		cdm->num_matches++;
2210 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2211 		cdm->matches[j].result.periph_result.path_id =
2212 			periph->path->bus->path_id;
2213 		cdm->matches[j].result.periph_result.target_id =
2214 			periph->path->target->target_id;
2215 		cdm->matches[j].result.periph_result.target_lun =
2216 			periph->path->device->lun_id;
2217 		cdm->matches[j].result.periph_result.unit_number =
2218 			periph->unit_number;
2219 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2220 			periph->periph_name, DEV_IDLEN);
2221 	}
2222 
2223 	return(1);
2224 }
2225 
2226 static int
2227 xptedtmatch(struct ccb_dev_match *cdm)
2228 {
2229 	int ret;
2230 
2231 	cdm->num_matches = 0;
2232 
2233 	/*
2234 	 * Check the bus list generation.  If it has changed, the user
2235 	 * needs to reset everything and start over.
2236 	 */
2237 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2238 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2239 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2240 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2241 		return(0);
2242 	}
2243 
2244 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2245 	 && (cdm->pos.cookie.bus != NULL))
2246 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2247 				     xptedtbusfunc, cdm);
2248 	else
2249 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2250 
2251 	/*
2252 	 * If we get back 0, that means that we had to stop before fully
2253 	 * traversing the EDT.  It also means that one of the subroutines
2254 	 * has set the status field to the proper value.  If we get back 1,
2255 	 * we've fully traversed the EDT and copied out any matching entries.
2256 	 */
2257 	if (ret == 1)
2258 		cdm->status = CAM_DEV_MATCH_LAST;
2259 
2260 	return(ret);
2261 }
2262 
2263 static int
2264 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2265 {
2266 	struct ccb_dev_match *cdm;
2267 
2268 	cdm = (struct ccb_dev_match *)arg;
2269 
2270 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2271 	 && (cdm->pos.cookie.pdrv == pdrv)
2272 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2273 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2274 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2275 	     (*pdrv)->generation)) {
2276 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2277 		return(0);
2278 	}
2279 
2280 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2281 	 && (cdm->pos.cookie.pdrv == pdrv)
2282 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2283 	 && (cdm->pos.cookie.periph != NULL))
2284 		return(xptpdperiphtraverse(pdrv,
2285 				(struct cam_periph *)cdm->pos.cookie.periph,
2286 				xptplistperiphfunc, arg));
2287 	else
2288 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2289 }
2290 
2291 static int
2292 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2293 {
2294 	struct ccb_dev_match *cdm;
2295 	dev_match_ret retval;
2296 
2297 	cdm = (struct ccb_dev_match *)arg;
2298 
2299 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2300 
2301 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2302 		cdm->status = CAM_DEV_MATCH_ERROR;
2303 		return(0);
2304 	}
2305 
2306 	/*
2307 	 * If the copy flag is set, copy this peripheral out.
2308 	 */
2309 	if (retval & DM_RET_COPY) {
2310 		int spaceleft, j;
2311 
2312 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2313 			sizeof(struct dev_match_result));
2314 
2315 		/*
2316 		 * If we don't have enough space to put in another
2317 		 * match result, save our position and tell the
2318 		 * user there are more devices to check.
2319 		 */
2320 		if (spaceleft < sizeof(struct dev_match_result)) {
2321 			struct periph_driver **pdrv;
2322 
2323 			pdrv = NULL;
2324 			bzero(&cdm->pos, sizeof(cdm->pos));
2325 			cdm->pos.position_type =
2326 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2327 				CAM_DEV_POS_PERIPH;
2328 
2329 			/*
2330 			 * This may look a bit non-sensical, but it is
2331 			 * actually quite logical.  There are very few
2332 			 * peripheral drivers, and bloating every peripheral
2333 			 * structure with a pointer back to its parent
2334 			 * peripheral driver linker set entry would cost
2335 			 * more in the long run than doing this quick lookup.
2336 			 */
2337 			SET_FOREACH(pdrv, periphdriver_set) {
2338 				if (strcmp((*pdrv)->driver_name,
2339 				    periph->periph_name) == 0)
2340 					break;
2341 			}
2342 
2343 			if (pdrv == NULL) {
2344 				cdm->status = CAM_DEV_MATCH_ERROR;
2345 				return(0);
2346 			}
2347 
2348 			cdm->pos.cookie.pdrv = pdrv;
2349 			/*
2350 			 * The periph generation slot does double duty, as
2351 			 * does the periph pointer slot.  They are used for
2352 			 * both edt and pdrv lookups and positioning.
2353 			 */
2354 			cdm->pos.cookie.periph = periph;
2355 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2356 				(*pdrv)->generation;
2357 			cdm->status = CAM_DEV_MATCH_MORE;
2358 			return(0);
2359 		}
2360 
2361 		j = cdm->num_matches;
2362 		cdm->num_matches++;
2363 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2364 		cdm->matches[j].result.periph_result.path_id =
2365 			periph->path->bus->path_id;
2366 
2367 		/*
2368 		 * The transport layer peripheral doesn't have a target or
2369 		 * lun.
2370 		 */
2371 		if (periph->path->target)
2372 			cdm->matches[j].result.periph_result.target_id =
2373 				periph->path->target->target_id;
2374 		else
2375 			cdm->matches[j].result.periph_result.target_id = -1;
2376 
2377 		if (periph->path->device)
2378 			cdm->matches[j].result.periph_result.target_lun =
2379 				periph->path->device->lun_id;
2380 		else
2381 			cdm->matches[j].result.periph_result.target_lun = -1;
2382 
2383 		cdm->matches[j].result.periph_result.unit_number =
2384 			periph->unit_number;
2385 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2386 			periph->periph_name, DEV_IDLEN);
2387 	}
2388 
2389 	return(1);
2390 }
2391 
2392 static int
2393 xptperiphlistmatch(struct ccb_dev_match *cdm)
2394 {
2395 	int ret;
2396 
2397 	cdm->num_matches = 0;
2398 
2399 	/*
2400 	 * At this point in the edt traversal function, we check the bus
2401 	 * list generation to make sure that no busses have been added or
2402 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2403 	 * For the peripheral driver list traversal function, however, we
2404 	 * don't have to worry about new peripheral driver types coming or
2405 	 * going; they're in a linker set, and therefore can't change
2406 	 * without a recompile.
2407 	 */
2408 
2409 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2410 	 && (cdm->pos.cookie.pdrv != NULL))
2411 		ret = xptpdrvtraverse(
2412 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2413 				xptplistpdrvfunc, cdm);
2414 	else
2415 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2416 
2417 	/*
2418 	 * If we get back 0, that means that we had to stop before fully
2419 	 * traversing the peripheral driver tree.  It also means that one of
2420 	 * the subroutines has set the status field to the proper value.  If
2421 	 * we get back 1, we've fully traversed the EDT and copied out any
2422 	 * matching entries.
2423 	 */
2424 	if (ret == 1)
2425 		cdm->status = CAM_DEV_MATCH_LAST;
2426 
2427 	return(ret);
2428 }
2429 
2430 static int
2431 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2432 {
2433 	struct cam_eb *bus, *next_bus;
2434 	int retval;
2435 
2436 	retval = 1;
2437 
2438 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2439 	     bus != NULL;
2440 	     bus = next_bus) {
2441 		next_bus = TAILQ_NEXT(bus, links);
2442 
2443 		retval = tr_func(bus, arg);
2444 		if (retval == 0)
2445 			return(retval);
2446 	}
2447 
2448 	return(retval);
2449 }
2450 
2451 static int
2452 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2453 		  xpt_targetfunc_t *tr_func, void *arg)
2454 {
2455 	struct cam_et *target, *next_target;
2456 	int retval;
2457 
2458 	retval = 1;
2459 	for (target = (start_target ? start_target :
2460 		       TAILQ_FIRST(&bus->et_entries));
2461 	     target != NULL; target = next_target) {
2462 
2463 		next_target = TAILQ_NEXT(target, links);
2464 
2465 		retval = tr_func(target, arg);
2466 
2467 		if (retval == 0)
2468 			return(retval);
2469 	}
2470 
2471 	return(retval);
2472 }
2473 
2474 static int
2475 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2476 		  xpt_devicefunc_t *tr_func, void *arg)
2477 {
2478 	struct cam_ed *device, *next_device;
2479 	int retval;
2480 
2481 	retval = 1;
2482 	for (device = (start_device ? start_device :
2483 		       TAILQ_FIRST(&target->ed_entries));
2484 	     device != NULL;
2485 	     device = next_device) {
2486 
2487 		next_device = TAILQ_NEXT(device, links);
2488 
2489 		retval = tr_func(device, arg);
2490 
2491 		if (retval == 0)
2492 			return(retval);
2493 	}
2494 
2495 	return(retval);
2496 }
2497 
2498 static int
2499 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2500 		  xpt_periphfunc_t *tr_func, void *arg)
2501 {
2502 	struct cam_periph *periph, *next_periph;
2503 	int retval;
2504 
2505 	retval = 1;
2506 
2507 	for (periph = (start_periph ? start_periph :
2508 		       SLIST_FIRST(&device->periphs));
2509 	     periph != NULL;
2510 	     periph = next_periph) {
2511 
2512 		next_periph = SLIST_NEXT(periph, periph_links);
2513 
2514 		retval = tr_func(periph, arg);
2515 		if (retval == 0)
2516 			return(retval);
2517 	}
2518 
2519 	return(retval);
2520 }
2521 
2522 static int
2523 xptpdrvtraverse(struct periph_driver **start_pdrv,
2524 		xpt_pdrvfunc_t *tr_func, void *arg)
2525 {
2526 	struct periph_driver **pdrv;
2527 	int retval;
2528 
2529 	retval = 1;
2530 
2531 	/*
2532 	 * We don't traverse the peripheral driver list like we do the
2533 	 * other lists, because it is a linker set, and therefore cannot be
2534 	 * changed during runtime.  If the peripheral driver list is ever
2535 	 * re-done to be something other than a linker set (i.e. it can
2536 	 * change while the system is running), the list traversal should
2537 	 * be modified to work like the other traversal functions.
2538 	 */
2539 	SET_FOREACH(pdrv, periphdriver_set) {
2540 		if (start_pdrv == NULL || start_pdrv == pdrv) {
2541 			retval = tr_func(pdrv, arg);
2542 			if (retval == 0)
2543 				return(retval);
2544 			start_pdrv = NULL; /* traverse remainder */
2545 		}
2546 	}
2547 	return(retval);
2548 }
2549 
2550 static int
2551 xptpdperiphtraverse(struct periph_driver **pdrv,
2552 		    struct cam_periph *start_periph,
2553 		    xpt_periphfunc_t *tr_func, void *arg)
2554 {
2555 	struct cam_periph *periph, *next_periph;
2556 	int retval;
2557 
2558 	retval = 1;
2559 
2560 	for (periph = (start_periph ? start_periph :
2561 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2562 	     periph = next_periph) {
2563 
2564 		next_periph = TAILQ_NEXT(periph, unit_links);
2565 
2566 		retval = tr_func(periph, arg);
2567 		if (retval == 0)
2568 			return(retval);
2569 	}
2570 	return(retval);
2571 }
2572 
2573 static int
2574 xptdefbusfunc(struct cam_eb *bus, void *arg)
2575 {
2576 	struct xpt_traverse_config *tr_config;
2577 
2578 	tr_config = (struct xpt_traverse_config *)arg;
2579 
2580 	if (tr_config->depth == XPT_DEPTH_BUS) {
2581 		xpt_busfunc_t *tr_func;
2582 
2583 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2584 
2585 		return(tr_func(bus, tr_config->tr_arg));
2586 	} else
2587 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2588 }
2589 
2590 static int
2591 xptdeftargetfunc(struct cam_et *target, void *arg)
2592 {
2593 	struct xpt_traverse_config *tr_config;
2594 
2595 	tr_config = (struct xpt_traverse_config *)arg;
2596 
2597 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2598 		xpt_targetfunc_t *tr_func;
2599 
2600 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2601 
2602 		return(tr_func(target, tr_config->tr_arg));
2603 	} else
2604 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2605 }
2606 
2607 static int
2608 xptdefdevicefunc(struct cam_ed *device, void *arg)
2609 {
2610 	struct xpt_traverse_config *tr_config;
2611 
2612 	tr_config = (struct xpt_traverse_config *)arg;
2613 
2614 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2615 		xpt_devicefunc_t *tr_func;
2616 
2617 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2618 
2619 		return(tr_func(device, tr_config->tr_arg));
2620 	} else
2621 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2622 }
2623 
2624 static int
2625 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2626 {
2627 	struct xpt_traverse_config *tr_config;
2628 	xpt_periphfunc_t *tr_func;
2629 
2630 	tr_config = (struct xpt_traverse_config *)arg;
2631 
2632 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2633 
2634 	/*
2635 	 * Unlike the other default functions, we don't check for depth
2636 	 * here.  The peripheral driver level is the last level in the EDT,
2637 	 * so if we're here, we should execute the function in question.
2638 	 */
2639 	return(tr_func(periph, tr_config->tr_arg));
2640 }
2641 
2642 /*
2643  * Execute the given function for every bus in the EDT.
2644  */
2645 static int
2646 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2647 {
2648 	struct xpt_traverse_config tr_config;
2649 
2650 	tr_config.depth = XPT_DEPTH_BUS;
2651 	tr_config.tr_func = tr_func;
2652 	tr_config.tr_arg = arg;
2653 
2654 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2655 }
2656 
2657 #ifdef notusedyet
2658 /*
2659  * Execute the given function for every target in the EDT.
2660  */
2661 static int
2662 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2663 {
2664 	struct xpt_traverse_config tr_config;
2665 
2666 	tr_config.depth = XPT_DEPTH_TARGET;
2667 	tr_config.tr_func = tr_func;
2668 	tr_config.tr_arg = arg;
2669 
2670 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2671 }
2672 #endif /* notusedyet */
2673 
2674 /*
2675  * Execute the given function for every device in the EDT.
2676  */
2677 static int
2678 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2679 {
2680 	struct xpt_traverse_config tr_config;
2681 
2682 	tr_config.depth = XPT_DEPTH_DEVICE;
2683 	tr_config.tr_func = tr_func;
2684 	tr_config.tr_arg = arg;
2685 
2686 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2687 }
2688 
2689 #ifdef notusedyet
2690 /*
2691  * Execute the given function for every peripheral in the EDT.
2692  */
2693 static int
2694 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2695 {
2696 	struct xpt_traverse_config tr_config;
2697 
2698 	tr_config.depth = XPT_DEPTH_PERIPH;
2699 	tr_config.tr_func = tr_func;
2700 	tr_config.tr_arg = arg;
2701 
2702 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2703 }
2704 #endif /* notusedyet */
2705 
2706 static int
2707 xptsetasyncfunc(struct cam_ed *device, void *arg)
2708 {
2709 	struct cam_path path;
2710 	struct ccb_getdev cgd;
2711 	struct async_node *cur_entry;
2712 
2713 	cur_entry = (struct async_node *)arg;
2714 
2715 	/*
2716 	 * Don't report unconfigured devices (Wildcard devs,
2717 	 * devices only for target mode, device instances
2718 	 * that have been invalidated but are waiting for
2719 	 * their last reference count to be released).
2720 	 */
2721 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2722 		return (1);
2723 
2724 	xpt_compile_path(&path,
2725 			 NULL,
2726 			 device->target->bus->path_id,
2727 			 device->target->target_id,
2728 			 device->lun_id);
2729 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2730 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2731 	xpt_action((union ccb *)&cgd);
2732 	cur_entry->callback(cur_entry->callback_arg,
2733 			    AC_FOUND_DEVICE,
2734 			    &path, &cgd);
2735 	xpt_release_path(&path);
2736 
2737 	return(1);
2738 }
2739 
2740 static int
2741 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2742 {
2743 	struct cam_path path;
2744 	struct ccb_pathinq cpi;
2745 	struct async_node *cur_entry;
2746 
2747 	cur_entry = (struct async_node *)arg;
2748 
2749 	xpt_compile_path(&path, /*periph*/NULL,
2750 			 bus->sim->path_id,
2751 			 CAM_TARGET_WILDCARD,
2752 			 CAM_LUN_WILDCARD);
2753 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2754 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2755 	xpt_action((union ccb *)&cpi);
2756 	cur_entry->callback(cur_entry->callback_arg,
2757 			    AC_PATH_REGISTERED,
2758 			    &path, &cpi);
2759 	xpt_release_path(&path);
2760 
2761 	return(1);
2762 }
2763 
2764 void
2765 xpt_action(union ccb *start_ccb)
2766 {
2767 	int iopl;
2768 
2769 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2770 
2771 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2772 
2773 	iopl = splsoftcam();
2774 	switch (start_ccb->ccb_h.func_code) {
2775 	case XPT_SCSI_IO:
2776 	{
2777 #ifdef CAMDEBUG
2778 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2779 		struct cam_path *path;
2780 
2781 		path = start_ccb->ccb_h.path;
2782 #endif
2783 
2784 		/*
2785 		 * For the sake of compatibility with SCSI-1
2786 		 * devices that may not understand the identify
2787 		 * message, we include lun information in the
2788 		 * second byte of all commands.  SCSI-1 specifies
2789 		 * that luns are a 3 bit value and reserves only 3
2790 		 * bits for lun information in the CDB.  Later
2791 		 * revisions of the SCSI spec allow for more than 8
2792 		 * luns, but have deprecated lun information in the
2793 		 * CDB.  So, if the lun won't fit, we must omit.
2794 		 *
2795 		 * Also be aware that during initial probing for devices,
2796 		 * the inquiry information is unknown but initialized to 0.
2797 		 * This means that this code will be exercised while probing
2798 		 * devices with an ANSI revision greater than 2.
2799 		 */
2800 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2801 		 && start_ccb->ccb_h.target_lun < 8
2802 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2803 
2804 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2805 			    start_ccb->ccb_h.target_lun << 5;
2806 		}
2807 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2808 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2809 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2810 			  	       &path->device->inq_data),
2811 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2812 					  cdb_str, sizeof(cdb_str))));
2813 		/* FALLTHROUGH */
2814 	}
2815 	case XPT_TARGET_IO:
2816 	case XPT_CONT_TARGET_IO:
2817 		start_ccb->csio.sense_resid = 0;
2818 		start_ccb->csio.resid = 0;
2819 		/* FALLTHROUGH */
2820 	case XPT_RESET_DEV:
2821 	case XPT_ENG_EXEC:
2822 	{
2823 		struct cam_path *path;
2824 		int s;
2825 		int runq;
2826 
2827 		path = start_ccb->ccb_h.path;
2828 		s = splsoftcam();
2829 
2830 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2831 		if (path->device->qfrozen_cnt == 0)
2832 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2833 		else
2834 			runq = 0;
2835 		splx(s);
2836 		if (runq != 0)
2837 			xpt_run_dev_sendq(path->bus);
2838 		break;
2839 	}
2840 	case XPT_SET_TRAN_SETTINGS:
2841 	{
2842 		xpt_set_transfer_settings(&start_ccb->cts,
2843 					  start_ccb->ccb_h.path->device,
2844 					  /*async_update*/FALSE);
2845 		break;
2846 	}
2847 	case XPT_CALC_GEOMETRY:
2848 	{
2849 		struct cam_sim *sim;
2850 
2851 		/* Filter out garbage */
2852 		if (start_ccb->ccg.block_size == 0
2853 		 || start_ccb->ccg.volume_size == 0) {
2854 			start_ccb->ccg.cylinders = 0;
2855 			start_ccb->ccg.heads = 0;
2856 			start_ccb->ccg.secs_per_track = 0;
2857 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2858 			break;
2859 		}
2860 #ifdef PC98
2861 		/*
2862 		 * In a PC-98 system, geometry translation depens on
2863 		 * the "real" device geometry obtained from mode page 4.
2864 		 * SCSI geometry translation is performed in the
2865 		 * initialization routine of the SCSI BIOS and the result
2866 		 * stored in host memory.  If the translation is available
2867 		 * in host memory, use it.  If not, rely on the default
2868 		 * translation the device driver performs.
2869 		 */
2870 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2871 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2872 			break;
2873 		}
2874 #endif
2875 		sim = start_ccb->ccb_h.path->bus->sim;
2876 		(*(sim->sim_action))(sim, start_ccb);
2877 		break;
2878 	}
2879 	case XPT_ABORT:
2880 	{
2881 		union ccb* abort_ccb;
2882 		int s;
2883 
2884 		abort_ccb = start_ccb->cab.abort_ccb;
2885 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2886 
2887 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2888 				struct cam_ccbq *ccbq;
2889 
2890 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2891 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2892 				abort_ccb->ccb_h.status =
2893 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2894 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2895 				s = splcam();
2896 				xpt_done(abort_ccb);
2897 				splx(s);
2898 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2899 				break;
2900 			}
2901 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2902 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2903 				/*
2904 				 * We've caught this ccb en route to
2905 				 * the SIM.  Flag it for abort and the
2906 				 * SIM will do so just before starting
2907 				 * real work on the CCB.
2908 				 */
2909 				abort_ccb->ccb_h.status =
2910 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2911 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2912 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2913 				break;
2914 			}
2915 		}
2916 		if (XPT_FC_IS_QUEUED(abort_ccb)
2917 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2918 			/*
2919 			 * It's already completed but waiting
2920 			 * for our SWI to get to it.
2921 			 */
2922 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2923 			break;
2924 		}
2925 		/*
2926 		 * If we weren't able to take care of the abort request
2927 		 * in the XPT, pass the request down to the SIM for processing.
2928 		 */
2929 		/* FALLTHROUGH */
2930 	}
2931 	case XPT_ACCEPT_TARGET_IO:
2932 	case XPT_EN_LUN:
2933 	case XPT_IMMED_NOTIFY:
2934 	case XPT_NOTIFY_ACK:
2935 	case XPT_GET_TRAN_SETTINGS:
2936 	case XPT_RESET_BUS:
2937 	{
2938 		struct cam_sim *sim;
2939 
2940 		sim = start_ccb->ccb_h.path->bus->sim;
2941 		(*(sim->sim_action))(sim, start_ccb);
2942 		break;
2943 	}
2944 	case XPT_PATH_INQ:
2945 	{
2946 		struct cam_sim *sim;
2947 
2948 		sim = start_ccb->ccb_h.path->bus->sim;
2949 		(*(sim->sim_action))(sim, start_ccb);
2950 		break;
2951 	}
2952 	case XPT_PATH_STATS:
2953 		start_ccb->cpis.last_reset =
2954 			start_ccb->ccb_h.path->bus->last_reset;
2955 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2956 		break;
2957 	case XPT_GDEV_TYPE:
2958 	{
2959 		struct cam_ed *dev;
2960 		int s;
2961 
2962 		dev = start_ccb->ccb_h.path->device;
2963 		s = splcam();
2964 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2965 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2966 		} else {
2967 			struct ccb_getdev *cgd;
2968 			struct cam_eb *bus;
2969 			struct cam_et *tar;
2970 
2971 			cgd = &start_ccb->cgd;
2972 			bus = cgd->ccb_h.path->bus;
2973 			tar = cgd->ccb_h.path->target;
2974 			cgd->inq_data = dev->inq_data;
2975 			cgd->ccb_h.status = CAM_REQ_CMP;
2976 			cgd->serial_num_len = dev->serial_num_len;
2977 			if ((dev->serial_num_len > 0)
2978 			 && (dev->serial_num != NULL))
2979 				bcopy(dev->serial_num, cgd->serial_num,
2980 				      dev->serial_num_len);
2981 		}
2982 		splx(s);
2983 		break;
2984 	}
2985 	case XPT_GDEV_STATS:
2986 	{
2987 		struct cam_ed *dev;
2988 		int s;
2989 
2990 		dev = start_ccb->ccb_h.path->device;
2991 		s = splcam();
2992 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2993 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2994 		} else {
2995 			struct ccb_getdevstats *cgds;
2996 			struct cam_eb *bus;
2997 			struct cam_et *tar;
2998 
2999 			cgds = &start_ccb->cgds;
3000 			bus = cgds->ccb_h.path->bus;
3001 			tar = cgds->ccb_h.path->target;
3002 			cgds->dev_openings = dev->ccbq.dev_openings;
3003 			cgds->dev_active = dev->ccbq.dev_active;
3004 			cgds->devq_openings = dev->ccbq.devq_openings;
3005 			cgds->devq_queued = dev->ccbq.queue.entries;
3006 			cgds->held = dev->ccbq.held;
3007 			cgds->last_reset = tar->last_reset;
3008 			cgds->maxtags = dev->quirk->maxtags;
3009 			cgds->mintags = dev->quirk->mintags;
3010 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3011 				cgds->last_reset = bus->last_reset;
3012 			cgds->ccb_h.status = CAM_REQ_CMP;
3013 		}
3014 		splx(s);
3015 		break;
3016 	}
3017 	case XPT_GDEVLIST:
3018 	{
3019 		struct cam_periph	*nperiph;
3020 		struct periph_list	*periph_head;
3021 		struct ccb_getdevlist	*cgdl;
3022 		int			i;
3023 		int			s;
3024 		struct cam_ed		*device;
3025 		int			found;
3026 
3027 
3028 		found = 0;
3029 
3030 		/*
3031 		 * Don't want anyone mucking with our data.
3032 		 */
3033 		s = splcam();
3034 		device = start_ccb->ccb_h.path->device;
3035 		periph_head = &device->periphs;
3036 		cgdl = &start_ccb->cgdl;
3037 
3038 		/*
3039 		 * Check and see if the list has changed since the user
3040 		 * last requested a list member.  If so, tell them that the
3041 		 * list has changed, and therefore they need to start over
3042 		 * from the beginning.
3043 		 */
3044 		if ((cgdl->index != 0) &&
3045 		    (cgdl->generation != device->generation)) {
3046 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3047 			splx(s);
3048 			break;
3049 		}
3050 
3051 		/*
3052 		 * Traverse the list of peripherals and attempt to find
3053 		 * the requested peripheral.
3054 		 */
3055 		for (nperiph = periph_head->slh_first, i = 0;
3056 		     (nperiph != NULL) && (i <= cgdl->index);
3057 		     nperiph = nperiph->periph_links.sle_next, i++) {
3058 			if (i == cgdl->index) {
3059 				strncpy(cgdl->periph_name,
3060 					nperiph->periph_name,
3061 					DEV_IDLEN);
3062 				cgdl->unit_number = nperiph->unit_number;
3063 				found = 1;
3064 			}
3065 		}
3066 		if (found == 0) {
3067 			cgdl->status = CAM_GDEVLIST_ERROR;
3068 			splx(s);
3069 			break;
3070 		}
3071 
3072 		if (nperiph == NULL)
3073 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3074 		else
3075 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3076 
3077 		cgdl->index++;
3078 		cgdl->generation = device->generation;
3079 
3080 		splx(s);
3081 		cgdl->ccb_h.status = CAM_REQ_CMP;
3082 		break;
3083 	}
3084 	case XPT_DEV_MATCH:
3085 	{
3086 		int s;
3087 		dev_pos_type position_type;
3088 		struct ccb_dev_match *cdm;
3089 		int ret;
3090 
3091 		cdm = &start_ccb->cdm;
3092 
3093 		/*
3094 		 * Prevent EDT changes while we traverse it.
3095 		 */
3096 		s = splcam();
3097 		/*
3098 		 * There are two ways of getting at information in the EDT.
3099 		 * The first way is via the primary EDT tree.  It starts
3100 		 * with a list of busses, then a list of targets on a bus,
3101 		 * then devices/luns on a target, and then peripherals on a
3102 		 * device/lun.  The "other" way is by the peripheral driver
3103 		 * lists.  The peripheral driver lists are organized by
3104 		 * peripheral driver.  (obviously)  So it makes sense to
3105 		 * use the peripheral driver list if the user is looking
3106 		 * for something like "da1", or all "da" devices.  If the
3107 		 * user is looking for something on a particular bus/target
3108 		 * or lun, it's generally better to go through the EDT tree.
3109 		 */
3110 
3111 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3112 			position_type = cdm->pos.position_type;
3113 		else {
3114 			int i;
3115 
3116 			position_type = CAM_DEV_POS_NONE;
3117 
3118 			for (i = 0; i < cdm->num_patterns; i++) {
3119 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3120 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3121 					position_type = CAM_DEV_POS_EDT;
3122 					break;
3123 				}
3124 			}
3125 
3126 			if (cdm->num_patterns == 0)
3127 				position_type = CAM_DEV_POS_EDT;
3128 			else if (position_type == CAM_DEV_POS_NONE)
3129 				position_type = CAM_DEV_POS_PDRV;
3130 		}
3131 
3132 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3133 		case CAM_DEV_POS_EDT:
3134 			ret = xptedtmatch(cdm);
3135 			break;
3136 		case CAM_DEV_POS_PDRV:
3137 			ret = xptperiphlistmatch(cdm);
3138 			break;
3139 		default:
3140 			cdm->status = CAM_DEV_MATCH_ERROR;
3141 			break;
3142 		}
3143 
3144 		splx(s);
3145 
3146 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3147 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3148 		else
3149 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3150 
3151 		break;
3152 	}
3153 	case XPT_SASYNC_CB:
3154 	{
3155 		struct ccb_setasync *csa;
3156 		struct async_node *cur_entry;
3157 		struct async_list *async_head;
3158 		u_int32_t added;
3159 		int s;
3160 
3161 		csa = &start_ccb->csa;
3162 		added = csa->event_enable;
3163 		async_head = &csa->ccb_h.path->device->asyncs;
3164 
3165 		/*
3166 		 * If there is already an entry for us, simply
3167 		 * update it.
3168 		 */
3169 		s = splcam();
3170 		cur_entry = SLIST_FIRST(async_head);
3171 		while (cur_entry != NULL) {
3172 			if ((cur_entry->callback_arg == csa->callback_arg)
3173 			 && (cur_entry->callback == csa->callback))
3174 				break;
3175 			cur_entry = SLIST_NEXT(cur_entry, links);
3176 		}
3177 
3178 		if (cur_entry != NULL) {
3179 		 	/*
3180 			 * If the request has no flags set,
3181 			 * remove the entry.
3182 			 */
3183 			added &= ~cur_entry->event_enable;
3184 			if (csa->event_enable == 0) {
3185 				SLIST_REMOVE(async_head, cur_entry,
3186 					     async_node, links);
3187 				csa->ccb_h.path->device->refcount--;
3188 				free(cur_entry, M_DEVBUF);
3189 			} else {
3190 				cur_entry->event_enable = csa->event_enable;
3191 			}
3192 		} else {
3193 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3194 					   M_NOWAIT);
3195 			if (cur_entry == NULL) {
3196 				splx(s);
3197 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3198 				break;
3199 			}
3200 			cur_entry->event_enable = csa->event_enable;
3201 			cur_entry->callback_arg = csa->callback_arg;
3202 			cur_entry->callback = csa->callback;
3203 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3204 			csa->ccb_h.path->device->refcount++;
3205 		}
3206 
3207 		if ((added & AC_FOUND_DEVICE) != 0) {
3208 			/*
3209 			 * Get this peripheral up to date with all
3210 			 * the currently existing devices.
3211 			 */
3212 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3213 		}
3214 		if ((added & AC_PATH_REGISTERED) != 0) {
3215 			/*
3216 			 * Get this peripheral up to date with all
3217 			 * the currently existing busses.
3218 			 */
3219 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3220 		}
3221 		splx(s);
3222 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3223 		break;
3224 	}
3225 	case XPT_REL_SIMQ:
3226 	{
3227 		struct ccb_relsim *crs;
3228 		struct cam_ed *dev;
3229 		int s;
3230 
3231 		crs = &start_ccb->crs;
3232 		dev = crs->ccb_h.path->device;
3233 		if (dev == NULL) {
3234 
3235 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3236 			break;
3237 		}
3238 
3239 		s = splcam();
3240 
3241 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3242 
3243  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3244 
3245 				/* Don't ever go below one opening */
3246 				if (crs->openings > 0) {
3247 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3248 							    crs->openings);
3249 
3250 					if (bootverbose) {
3251 						xpt_print_path(crs->ccb_h.path);
3252 						printf("tagged openings "
3253 						       "now %d\n",
3254 						       crs->openings);
3255 					}
3256 				}
3257 			}
3258 		}
3259 
3260 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3261 
3262 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3263 
3264 				/*
3265 				 * Just extend the old timeout and decrement
3266 				 * the freeze count so that a single timeout
3267 				 * is sufficient for releasing the queue.
3268 				 */
3269 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3270 				untimeout(xpt_release_devq_timeout,
3271 					  dev, dev->c_handle);
3272 			} else {
3273 
3274 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3275 			}
3276 
3277 			dev->c_handle =
3278 				timeout(xpt_release_devq_timeout,
3279 					dev,
3280 					(crs->release_timeout * hz) / 1000);
3281 
3282 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3283 
3284 		}
3285 
3286 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3287 
3288 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3289 				/*
3290 				 * Decrement the freeze count so that a single
3291 				 * completion is still sufficient to unfreeze
3292 				 * the queue.
3293 				 */
3294 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3295 			} else {
3296 
3297 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3298 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3299 			}
3300 		}
3301 
3302 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3303 
3304 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3305 			 || (dev->ccbq.dev_active == 0)) {
3306 
3307 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3308 			} else {
3309 
3310 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3311 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3312 			}
3313 		}
3314 		splx(s);
3315 
3316 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3317 
3318 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3319 					 /*run_queue*/TRUE);
3320 		}
3321 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3322 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3323 		break;
3324 	}
3325 	case XPT_SCAN_BUS:
3326 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3327 		break;
3328 	case XPT_SCAN_LUN:
3329 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3330 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3331 			     start_ccb);
3332 		break;
3333 	case XPT_DEBUG: {
3334 #ifdef CAMDEBUG
3335 		int s;
3336 
3337 		s = splcam();
3338 #ifdef CAM_DEBUG_DELAY
3339 		cam_debug_delay = CAM_DEBUG_DELAY;
3340 #endif
3341 		cam_dflags = start_ccb->cdbg.flags;
3342 		if (cam_dpath != NULL) {
3343 			xpt_free_path(cam_dpath);
3344 			cam_dpath = NULL;
3345 		}
3346 
3347 		if (cam_dflags != CAM_DEBUG_NONE) {
3348 			if (xpt_create_path(&cam_dpath, xpt_periph,
3349 					    start_ccb->ccb_h.path_id,
3350 					    start_ccb->ccb_h.target_id,
3351 					    start_ccb->ccb_h.target_lun) !=
3352 					    CAM_REQ_CMP) {
3353 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3354 				cam_dflags = CAM_DEBUG_NONE;
3355 			} else {
3356 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3357 				xpt_print_path(cam_dpath);
3358 				printf("debugging flags now %x\n", cam_dflags);
3359 			}
3360 		} else {
3361 			cam_dpath = NULL;
3362 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3363 		}
3364 		splx(s);
3365 #else /* !CAMDEBUG */
3366 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3367 #endif /* CAMDEBUG */
3368 		break;
3369 	}
3370 	case XPT_NOOP:
3371 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3372 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3373 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3374 		break;
3375 	default:
3376 	case XPT_SDEV_TYPE:
3377 	case XPT_TERM_IO:
3378 	case XPT_ENG_INQ:
3379 		/* XXX Implement */
3380 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3381 		break;
3382 	}
3383 	splx(iopl);
3384 }
3385 
3386 void
3387 xpt_polled_action(union ccb *start_ccb)
3388 {
3389 	int	  s;
3390 	u_int32_t timeout;
3391 	struct	  cam_sim *sim;
3392 	struct	  cam_devq *devq;
3393 	struct	  cam_ed *dev;
3394 
3395 	timeout = start_ccb->ccb_h.timeout;
3396 	sim = start_ccb->ccb_h.path->bus->sim;
3397 	devq = sim->devq;
3398 	dev = start_ccb->ccb_h.path->device;
3399 
3400 	s = splcam();
3401 
3402 	/*
3403 	 * Steal an opening so that no other queued requests
3404 	 * can get it before us while we simulate interrupts.
3405 	 */
3406 	dev->ccbq.devq_openings--;
3407 	dev->ccbq.dev_openings--;
3408 
3409 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3410 	   && (--timeout > 0)) {
3411 		DELAY(1000);
3412 		(*(sim->sim_poll))(sim);
3413 		swi_camnet(NULL);
3414 		swi_cambio(NULL);
3415 	}
3416 
3417 	dev->ccbq.devq_openings++;
3418 	dev->ccbq.dev_openings++;
3419 
3420 	if (timeout != 0) {
3421 		xpt_action(start_ccb);
3422 		while(--timeout > 0) {
3423 			(*(sim->sim_poll))(sim);
3424 			swi_camnet(NULL);
3425 			swi_cambio(NULL);
3426 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3427 			    != CAM_REQ_INPROG)
3428 				break;
3429 			DELAY(1000);
3430 		}
3431 		if (timeout == 0) {
3432 			/*
3433 			 * XXX Is it worth adding a sim_timeout entry
3434 			 * point so we can attempt recovery?  If
3435 			 * this is only used for dumps, I don't think
3436 			 * it is.
3437 			 */
3438 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3439 		}
3440 	} else {
3441 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3442 	}
3443 	splx(s);
3444 }
3445 
3446 /*
3447  * Schedule a peripheral driver to receive a ccb when it's
3448  * target device has space for more transactions.
3449  */
3450 void
3451 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3452 {
3453 	struct cam_ed *device;
3454 	int s;
3455 	int runq;
3456 
3457 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3458 	device = perph->path->device;
3459 	s = splsoftcam();
3460 	if (periph_is_queued(perph)) {
3461 		/* Simply reorder based on new priority */
3462 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3463 			  ("   change priority to %d\n", new_priority));
3464 		if (new_priority < perph->pinfo.priority) {
3465 			camq_change_priority(&device->drvq,
3466 					     perph->pinfo.index,
3467 					     new_priority);
3468 		}
3469 		runq = 0;
3470 	} else {
3471 		/* New entry on the queue */
3472 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3473 			  ("   added periph to queue\n"));
3474 		perph->pinfo.priority = new_priority;
3475 		perph->pinfo.generation = ++device->drvq.generation;
3476 		camq_insert(&device->drvq, &perph->pinfo);
3477 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3478 	}
3479 	splx(s);
3480 	if (runq != 0) {
3481 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3482 			  ("   calling xpt_run_devq\n"));
3483 		xpt_run_dev_allocq(perph->path->bus);
3484 	}
3485 }
3486 
3487 
3488 /*
3489  * Schedule a device to run on a given queue.
3490  * If the device was inserted as a new entry on the queue,
3491  * return 1 meaning the device queue should be run. If we
3492  * were already queued, implying someone else has already
3493  * started the queue, return 0 so the caller doesn't attempt
3494  * to run the queue.  Must be run at either splsoftcam
3495  * (or splcam since that encompases splsoftcam).
3496  */
3497 static int
3498 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3499 		 u_int32_t new_priority)
3500 {
3501 	int retval;
3502 	u_int32_t old_priority;
3503 
3504 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3505 
3506 	old_priority = pinfo->priority;
3507 
3508 	/*
3509 	 * Are we already queued?
3510 	 */
3511 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3512 		/* Simply reorder based on new priority */
3513 		if (new_priority < old_priority) {
3514 			camq_change_priority(queue, pinfo->index,
3515 					     new_priority);
3516 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3517 					("changed priority to %d\n",
3518 					 new_priority));
3519 		}
3520 		retval = 0;
3521 	} else {
3522 		/* New entry on the queue */
3523 		if (new_priority < old_priority)
3524 			pinfo->priority = new_priority;
3525 
3526 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3527 				("Inserting onto queue\n"));
3528 		pinfo->generation = ++queue->generation;
3529 		camq_insert(queue, pinfo);
3530 		retval = 1;
3531 	}
3532 	return (retval);
3533 }
3534 
3535 static void
3536 xpt_run_dev_allocq(struct cam_eb *bus)
3537 {
3538 	struct	cam_devq *devq;
3539 	int	s;
3540 
3541 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3542 	devq = bus->sim->devq;
3543 
3544 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3545 			("   qfrozen_cnt == 0x%x, entries == %d, "
3546 			 "openings == %d, active == %d\n",
3547 			 devq->alloc_queue.qfrozen_cnt,
3548 			 devq->alloc_queue.entries,
3549 			 devq->alloc_openings,
3550 			 devq->alloc_active));
3551 
3552 	s = splsoftcam();
3553 	devq->alloc_queue.qfrozen_cnt++;
3554 	while ((devq->alloc_queue.entries > 0)
3555 	    && (devq->alloc_openings > 0)
3556 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3557 		struct	cam_ed_qinfo *qinfo;
3558 		struct	cam_ed *device;
3559 		union	ccb *work_ccb;
3560 		struct	cam_periph *drv;
3561 		struct	camq *drvq;
3562 
3563 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3564 							   CAMQ_HEAD);
3565 		device = qinfo->device;
3566 
3567 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3568 				("running device %p\n", device));
3569 
3570 		drvq = &device->drvq;
3571 
3572 #ifdef CAMDEBUG
3573 		if (drvq->entries <= 0) {
3574 			panic("xpt_run_dev_allocq: "
3575 			      "Device on queue without any work to do");
3576 		}
3577 #endif
3578 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3579 			devq->alloc_openings--;
3580 			devq->alloc_active++;
3581 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3582 			splx(s);
3583 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3584 				      drv->pinfo.priority);
3585 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3586 					("calling periph start\n"));
3587 			drv->periph_start(drv, work_ccb);
3588 		} else {
3589 			/*
3590 			 * Malloc failure in alloc_ccb
3591 			 */
3592 			/*
3593 			 * XXX add us to a list to be run from free_ccb
3594 			 * if we don't have any ccbs active on this
3595 			 * device queue otherwise we may never get run
3596 			 * again.
3597 			 */
3598 			break;
3599 		}
3600 
3601 		/* Raise IPL for possible insertion and test at top of loop */
3602 		s = splsoftcam();
3603 
3604 		if (drvq->entries > 0) {
3605 			/* We have more work.  Attempt to reschedule */
3606 			xpt_schedule_dev_allocq(bus, device);
3607 		}
3608 	}
3609 	devq->alloc_queue.qfrozen_cnt--;
3610 	splx(s);
3611 }
3612 
3613 static void
3614 xpt_run_dev_sendq(struct cam_eb *bus)
3615 {
3616 	struct	cam_devq *devq;
3617 	int	s;
3618 
3619 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3620 
3621 	devq = bus->sim->devq;
3622 
3623 	s = splcam();
3624 	devq->send_queue.qfrozen_cnt++;
3625 	splx(s);
3626 	s = splsoftcam();
3627 	while ((devq->send_queue.entries > 0)
3628 	    && (devq->send_openings > 0)) {
3629 		struct	cam_ed_qinfo *qinfo;
3630 		struct	cam_ed *device;
3631 		union ccb *work_ccb;
3632 		struct	cam_sim *sim;
3633 		int	ospl;
3634 
3635 		ospl = splcam();
3636 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3637 			splx(ospl);
3638 			break;
3639 		}
3640 
3641 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3642 							   CAMQ_HEAD);
3643 		device = qinfo->device;
3644 
3645 		/*
3646 		 * If the device has been "frozen", don't attempt
3647 		 * to run it.
3648 		 */
3649 		if (device->qfrozen_cnt > 0) {
3650 			splx(ospl);
3651 			continue;
3652 		}
3653 
3654 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3655 				("running device %p\n", device));
3656 
3657 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3658 		if (work_ccb == NULL) {
3659 			printf("device on run queue with no ccbs???\n");
3660 			splx(ospl);
3661 			continue;
3662 		}
3663 
3664 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3665 
3666 		 	if (num_highpower <= 0) {
3667 				/*
3668 				 * We got a high power command, but we
3669 				 * don't have any available slots.  Freeze
3670 				 * the device queue until we have a slot
3671 				 * available.
3672 				 */
3673 				device->qfrozen_cnt++;
3674 				STAILQ_INSERT_TAIL(&highpowerq,
3675 						   &work_ccb->ccb_h,
3676 						   xpt_links.stqe);
3677 
3678 				splx(ospl);
3679 				continue;
3680 			} else {
3681 				/*
3682 				 * Consume a high power slot while
3683 				 * this ccb runs.
3684 				 */
3685 				num_highpower--;
3686 			}
3687 		}
3688 		devq->active_dev = device;
3689 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3690 
3691 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3692 		splx(ospl);
3693 
3694 		devq->send_openings--;
3695 		devq->send_active++;
3696 
3697 		if (device->ccbq.queue.entries > 0)
3698 			xpt_schedule_dev_sendq(bus, device);
3699 
3700 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3701 			/*
3702 			 * The client wants to freeze the queue
3703 			 * after this CCB is sent.
3704 			 */
3705 			ospl = splcam();
3706 			device->qfrozen_cnt++;
3707 			splx(ospl);
3708 		}
3709 
3710 		splx(s);
3711 
3712 		/* In Target mode, the peripheral driver knows best... */
3713 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3714 			if ((device->inq_flags & SID_CmdQue) != 0
3715 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3716 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3717 			else
3718 				/*
3719 				 * Clear this in case of a retried CCB that
3720 				 * failed due to a rejected tag.
3721 				 */
3722 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3723 		}
3724 
3725 		/*
3726 		 * Device queues can be shared among multiple sim instances
3727 		 * that reside on different busses.  Use the SIM in the queue
3728 		 * CCB's path, rather than the one in the bus that was passed
3729 		 * into this function.
3730 		 */
3731 		sim = work_ccb->ccb_h.path->bus->sim;
3732 		(*(sim->sim_action))(sim, work_ccb);
3733 
3734 		ospl = splcam();
3735 		devq->active_dev = NULL;
3736 		splx(ospl);
3737 		/* Raise IPL for possible insertion and test at top of loop */
3738 		s = splsoftcam();
3739 	}
3740 	splx(s);
3741 	s = splcam();
3742 	devq->send_queue.qfrozen_cnt--;
3743 	splx(s);
3744 }
3745 
3746 /*
3747  * This function merges stuff from the slave ccb into the master ccb, while
3748  * keeping important fields in the master ccb constant.
3749  */
3750 void
3751 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3752 {
3753 	/*
3754 	 * Pull fields that are valid for peripheral drivers to set
3755 	 * into the master CCB along with the CCB "payload".
3756 	 */
3757 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3758 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3759 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3760 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3761 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3762 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3763 }
3764 
3765 void
3766 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3767 {
3768 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3769 	ccb_h->pinfo.priority = priority;
3770 	ccb_h->path = path;
3771 	ccb_h->path_id = path->bus->path_id;
3772 	if (path->target)
3773 		ccb_h->target_id = path->target->target_id;
3774 	else
3775 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3776 	if (path->device) {
3777 		ccb_h->target_lun = path->device->lun_id;
3778 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3779 	} else {
3780 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3781 	}
3782 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3783 	ccb_h->flags = 0;
3784 }
3785 
3786 /* Path manipulation functions */
3787 cam_status
3788 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3789 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3790 {
3791 	struct	   cam_path *path;
3792 	cam_status status;
3793 
3794 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3795 
3796 	if (path == NULL) {
3797 		status = CAM_RESRC_UNAVAIL;
3798 		return(status);
3799 	}
3800 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3801 	if (status != CAM_REQ_CMP) {
3802 		free(path, M_DEVBUF);
3803 		path = NULL;
3804 	}
3805 	*new_path_ptr = path;
3806 	return (status);
3807 }
3808 
3809 static cam_status
3810 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3811 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3812 {
3813 	struct	     cam_eb *bus;
3814 	struct	     cam_et *target;
3815 	struct	     cam_ed *device;
3816 	cam_status   status;
3817 	int	     s;
3818 
3819 	status = CAM_REQ_CMP;	/* Completed without error */
3820 	target = NULL;		/* Wildcarded */
3821 	device = NULL;		/* Wildcarded */
3822 
3823 	/*
3824 	 * We will potentially modify the EDT, so block interrupts
3825 	 * that may attempt to create cam paths.
3826 	 */
3827 	s = splcam();
3828 	bus = xpt_find_bus(path_id);
3829 	if (bus == NULL) {
3830 		status = CAM_PATH_INVALID;
3831 	} else {
3832 		target = xpt_find_target(bus, target_id);
3833 		if (target == NULL) {
3834 			/* Create one */
3835 			struct cam_et *new_target;
3836 
3837 			new_target = xpt_alloc_target(bus, target_id);
3838 			if (new_target == NULL) {
3839 				status = CAM_RESRC_UNAVAIL;
3840 			} else {
3841 				target = new_target;
3842 			}
3843 		}
3844 		if (target != NULL) {
3845 			device = xpt_find_device(target, lun_id);
3846 			if (device == NULL) {
3847 				/* Create one */
3848 				struct cam_ed *new_device;
3849 
3850 				new_device = xpt_alloc_device(bus,
3851 							      target,
3852 							      lun_id);
3853 				if (new_device == NULL) {
3854 					status = CAM_RESRC_UNAVAIL;
3855 				} else {
3856 					device = new_device;
3857 				}
3858 			}
3859 		}
3860 	}
3861 	splx(s);
3862 
3863 	/*
3864 	 * Only touch the user's data if we are successful.
3865 	 */
3866 	if (status == CAM_REQ_CMP) {
3867 		new_path->periph = perph;
3868 		new_path->bus = bus;
3869 		new_path->target = target;
3870 		new_path->device = device;
3871 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3872 	} else {
3873 		if (device != NULL)
3874 			xpt_release_device(bus, target, device);
3875 		if (target != NULL)
3876 			xpt_release_target(bus, target);
3877 		if (bus != NULL)
3878 			xpt_release_bus(bus);
3879 	}
3880 	return (status);
3881 }
3882 
3883 static void
3884 xpt_release_path(struct cam_path *path)
3885 {
3886 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3887 	if (path->device != NULL) {
3888 		xpt_release_device(path->bus, path->target, path->device);
3889 		path->device = NULL;
3890 	}
3891 	if (path->target != NULL) {
3892 		xpt_release_target(path->bus, path->target);
3893 		path->target = NULL;
3894 	}
3895 	if (path->bus != NULL) {
3896 		xpt_release_bus(path->bus);
3897 		path->bus = NULL;
3898 	}
3899 }
3900 
3901 void
3902 xpt_free_path(struct cam_path *path)
3903 {
3904 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3905 	xpt_release_path(path);
3906 	free(path, M_DEVBUF);
3907 }
3908 
3909 
3910 /*
3911  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3912  * in path1, 2 for match with wildcards in path2.
3913  */
3914 int
3915 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3916 {
3917 	int retval = 0;
3918 
3919 	if (path1->bus != path2->bus) {
3920 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3921 			retval = 1;
3922 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3923 			retval = 2;
3924 		else
3925 			return (-1);
3926 	}
3927 	if (path1->target != path2->target) {
3928 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3929 			if (retval == 0)
3930 				retval = 1;
3931 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3932 			retval = 2;
3933 		else
3934 			return (-1);
3935 	}
3936 	if (path1->device != path2->device) {
3937 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3938 			if (retval == 0)
3939 				retval = 1;
3940 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3941 			retval = 2;
3942 		else
3943 			return (-1);
3944 	}
3945 	return (retval);
3946 }
3947 
3948 void
3949 xpt_print_path(struct cam_path *path)
3950 {
3951 	if (path == NULL)
3952 		printf("(nopath): ");
3953 	else {
3954 		if (path->periph != NULL)
3955 			printf("(%s%d:", path->periph->periph_name,
3956 			       path->periph->unit_number);
3957 		else
3958 			printf("(noperiph:");
3959 
3960 		if (path->bus != NULL)
3961 			printf("%s%d:%d:", path->bus->sim->sim_name,
3962 			       path->bus->sim->unit_number,
3963 			       path->bus->sim->bus_id);
3964 		else
3965 			printf("nobus:");
3966 
3967 		if (path->target != NULL)
3968 			printf("%d:", path->target->target_id);
3969 		else
3970 			printf("X:");
3971 
3972 		if (path->device != NULL)
3973 			printf("%d): ", path->device->lun_id);
3974 		else
3975 			printf("X): ");
3976 	}
3977 }
3978 
3979 path_id_t
3980 xpt_path_path_id(struct cam_path *path)
3981 {
3982 	return(path->bus->path_id);
3983 }
3984 
3985 target_id_t
3986 xpt_path_target_id(struct cam_path *path)
3987 {
3988 	if (path->target != NULL)
3989 		return (path->target->target_id);
3990 	else
3991 		return (CAM_TARGET_WILDCARD);
3992 }
3993 
3994 lun_id_t
3995 xpt_path_lun_id(struct cam_path *path)
3996 {
3997 	if (path->device != NULL)
3998 		return (path->device->lun_id);
3999 	else
4000 		return (CAM_LUN_WILDCARD);
4001 }
4002 
4003 struct cam_sim *
4004 xpt_path_sim(struct cam_path *path)
4005 {
4006 	return (path->bus->sim);
4007 }
4008 
4009 struct cam_periph*
4010 xpt_path_periph(struct cam_path *path)
4011 {
4012 	return (path->periph);
4013 }
4014 
4015 /*
4016  * Release a CAM control block for the caller.  Remit the cost of the structure
4017  * to the device referenced by the path.  If the this device had no 'credits'
4018  * and peripheral drivers have registered async callbacks for this notification
4019  * call them now.
4020  */
4021 void
4022 xpt_release_ccb(union ccb *free_ccb)
4023 {
4024 	int	 s;
4025 	struct	 cam_path *path;
4026 	struct	 cam_ed *device;
4027 	struct	 cam_eb *bus;
4028 
4029 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4030 	path = free_ccb->ccb_h.path;
4031 	device = path->device;
4032 	bus = path->bus;
4033 	s = splsoftcam();
4034 	cam_ccbq_release_opening(&device->ccbq);
4035 	if (xpt_ccb_count > xpt_max_ccbs) {
4036 		xpt_free_ccb(free_ccb);
4037 		xpt_ccb_count--;
4038 	} else {
4039 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4040 	}
4041 	bus->sim->devq->alloc_openings++;
4042 	bus->sim->devq->alloc_active--;
4043 	/* XXX Turn this into an inline function - xpt_run_device?? */
4044 	if ((device_is_alloc_queued(device) == 0)
4045 	 && (device->drvq.entries > 0)) {
4046 		xpt_schedule_dev_allocq(bus, device);
4047 	}
4048 	splx(s);
4049 	if (dev_allocq_is_runnable(bus->sim->devq))
4050 		xpt_run_dev_allocq(bus);
4051 }
4052 
4053 /* Functions accessed by SIM drivers */
4054 
4055 /*
4056  * A sim structure, listing the SIM entry points and instance
4057  * identification info is passed to xpt_bus_register to hook the SIM
4058  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4059  * for this new bus and places it in the array of busses and assigns
4060  * it a path_id.  The path_id may be influenced by "hard wiring"
4061  * information specified by the user.  Once interrupt services are
4062  * availible, the bus will be probed.
4063  */
4064 int32_t
4065 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4066 {
4067 	struct cam_eb *new_bus;
4068 	struct cam_eb *old_bus;
4069 	struct ccb_pathinq cpi;
4070 	int s;
4071 
4072 	sim->bus_id = bus;
4073 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4074 					  M_DEVBUF, M_NOWAIT);
4075 	if (new_bus == NULL) {
4076 		/* Couldn't satisfy request */
4077 		return (CAM_RESRC_UNAVAIL);
4078 	}
4079 
4080 	if (strcmp(sim->sim_name, "xpt") != 0) {
4081 
4082 		sim->path_id =
4083 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4084 	}
4085 
4086 	TAILQ_INIT(&new_bus->et_entries);
4087 	new_bus->path_id = sim->path_id;
4088 	new_bus->sim = sim;
4089 	timevalclear(&new_bus->last_reset);
4090 	new_bus->flags = 0;
4091 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4092 	new_bus->generation = 0;
4093 	s = splcam();
4094 	old_bus = TAILQ_FIRST(&xpt_busses);
4095 	while (old_bus != NULL
4096 	    && old_bus->path_id < new_bus->path_id)
4097 		old_bus = TAILQ_NEXT(old_bus, links);
4098 	if (old_bus != NULL)
4099 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4100 	else
4101 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4102 	bus_generation++;
4103 	splx(s);
4104 
4105 	/* Notify interested parties */
4106 	if (sim->path_id != CAM_XPT_PATH_ID) {
4107 		struct cam_path path;
4108 
4109 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4110 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4111 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4112 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4113 		xpt_action((union ccb *)&cpi);
4114 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4115 		xpt_release_path(&path);
4116 	}
4117 	return (CAM_SUCCESS);
4118 }
4119 
4120 int32_t
4121 xpt_bus_deregister(path_id_t pathid)
4122 {
4123 	struct cam_path bus_path;
4124 	cam_status status;
4125 
4126 	status = xpt_compile_path(&bus_path, NULL, pathid,
4127 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4128 	if (status != CAM_REQ_CMP)
4129 		return (status);
4130 
4131 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4132 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4133 
4134 	/* Release the reference count held while registered. */
4135 	xpt_release_bus(bus_path.bus);
4136 	xpt_release_path(&bus_path);
4137 
4138 	return (CAM_REQ_CMP);
4139 }
4140 
4141 static path_id_t
4142 xptnextfreepathid(void)
4143 {
4144 	struct cam_eb *bus;
4145 	path_id_t pathid;
4146 	char *strval;
4147 
4148 	pathid = 0;
4149 	bus = TAILQ_FIRST(&xpt_busses);
4150 retry:
4151 	/* Find an unoccupied pathid */
4152 	while (bus != NULL
4153 	    && bus->path_id <= pathid) {
4154 		if (bus->path_id == pathid)
4155 			pathid++;
4156 		bus = TAILQ_NEXT(bus, links);
4157 	}
4158 
4159 	/*
4160 	 * Ensure that this pathid is not reserved for
4161 	 * a bus that may be registered in the future.
4162 	 */
4163 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4164 		++pathid;
4165 		/* Start the search over */
4166 		goto retry;
4167 	}
4168 	return (pathid);
4169 }
4170 
4171 static path_id_t
4172 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4173 {
4174 	path_id_t pathid;
4175 	int i, dunit, val;
4176 	char buf[32], *strval;
4177 
4178 	pathid = CAM_XPT_PATH_ID;
4179 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4180 	i = -1;
4181 	while ((i = resource_locate(i, "scbus")) != -1) {
4182 		dunit = resource_query_unit(i);
4183 		if (dunit < 0)		/* unwired?! */
4184 			continue;
4185 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4186 			continue;
4187 		if (strcmp(buf, strval) != 0)
4188 			continue;
4189 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4190 			if (sim_bus == val) {
4191 				pathid = dunit;
4192 				break;
4193 			}
4194 		} else if (sim_bus == 0) {
4195 			/* Unspecified matches bus 0 */
4196 			pathid = dunit;
4197 			break;
4198 		} else {
4199 			printf("Ambiguous scbus configuration for %s%d "
4200 			       "bus %d, cannot wire down.  The kernel "
4201 			       "config entry for scbus%d should "
4202 			       "specify a controller bus.\n"
4203 			       "Scbus will be assigned dynamically.\n",
4204 			       sim_name, sim_unit, sim_bus, dunit);
4205 			break;
4206 		}
4207 	}
4208 
4209 	if (pathid == CAM_XPT_PATH_ID)
4210 		pathid = xptnextfreepathid();
4211 	return (pathid);
4212 }
4213 
4214 void
4215 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4216 {
4217 	struct cam_eb *bus;
4218 	struct cam_et *target, *next_target;
4219 	struct cam_ed *device, *next_device;
4220 	int s;
4221 
4222 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4223 
4224 	/*
4225 	 * Most async events come from a CAM interrupt context.  In
4226 	 * a few cases, the error recovery code at the peripheral layer,
4227 	 * which may run from our SWI or a process context, may signal
4228 	 * deferred events with a call to xpt_async. Ensure async
4229 	 * notifications are serialized by blocking cam interrupts.
4230 	 */
4231 	s = splcam();
4232 
4233 	bus = path->bus;
4234 
4235 	if (async_code == AC_BUS_RESET) {
4236 		/* Update our notion of when the last reset occurred */
4237 		microuptime(&bus->last_reset);
4238 	}
4239 
4240 	for (target = TAILQ_FIRST(&bus->et_entries);
4241 	     target != NULL;
4242 	     target = next_target) {
4243 
4244 		next_target = TAILQ_NEXT(target, links);
4245 
4246 		if (path->target != target
4247 		 && path->target->target_id != CAM_TARGET_WILDCARD
4248 		 && target->target_id != CAM_TARGET_WILDCARD)
4249 			continue;
4250 
4251 		if (async_code == AC_SENT_BDR) {
4252 			/* Update our notion of when the last reset occurred */
4253 			microuptime(&path->target->last_reset);
4254 		}
4255 
4256 		for (device = TAILQ_FIRST(&target->ed_entries);
4257 		     device != NULL;
4258 		     device = next_device) {
4259 
4260 			next_device = TAILQ_NEXT(device, links);
4261 
4262 			if (path->device != device
4263 			 && path->device->lun_id != CAM_LUN_WILDCARD
4264 			 && device->lun_id != CAM_LUN_WILDCARD)
4265 				continue;
4266 
4267 			xpt_dev_async(async_code, bus, target,
4268 				      device, async_arg);
4269 
4270 			xpt_async_bcast(&device->asyncs, async_code,
4271 					path, async_arg);
4272 		}
4273 	}
4274 
4275 	/*
4276 	 * If this wasn't a fully wildcarded async, tell all
4277 	 * clients that want all async events.
4278 	 */
4279 	if (bus != xpt_periph->path->bus)
4280 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4281 				path, async_arg);
4282 	splx(s);
4283 }
4284 
4285 static void
4286 xpt_async_bcast(struct async_list *async_head,
4287 		u_int32_t async_code,
4288 		struct cam_path *path, void *async_arg)
4289 {
4290 	struct async_node *cur_entry;
4291 
4292 	cur_entry = SLIST_FIRST(async_head);
4293 	while (cur_entry != NULL) {
4294 		struct async_node *next_entry;
4295 		/*
4296 		 * Grab the next list entry before we call the current
4297 		 * entry's callback.  This is because the callback function
4298 		 * can delete its async callback entry.
4299 		 */
4300 		next_entry = SLIST_NEXT(cur_entry, links);
4301 		if ((cur_entry->event_enable & async_code) != 0)
4302 			cur_entry->callback(cur_entry->callback_arg,
4303 					    async_code, path,
4304 					    async_arg);
4305 		cur_entry = next_entry;
4306 	}
4307 }
4308 
4309 /*
4310  * Handle any per-device event notifications that require action by the XPT.
4311  */
4312 static void
4313 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4314 	      struct cam_ed *device, void *async_arg)
4315 {
4316 	cam_status status;
4317 	struct cam_path newpath;
4318 
4319 	/*
4320 	 * We only need to handle events for real devices.
4321 	 */
4322 	if (target->target_id == CAM_TARGET_WILDCARD
4323 	 || device->lun_id == CAM_LUN_WILDCARD)
4324 		return;
4325 
4326 	/*
4327 	 * We need our own path with wildcards expanded to
4328 	 * handle certain types of events.
4329 	 */
4330 	if ((async_code == AC_SENT_BDR)
4331 	 || (async_code == AC_BUS_RESET)
4332 	 || (async_code == AC_INQ_CHANGED))
4333 		status = xpt_compile_path(&newpath, NULL,
4334 					  bus->path_id,
4335 					  target->target_id,
4336 					  device->lun_id);
4337 	else
4338 		status = CAM_REQ_CMP_ERR;
4339 
4340 	if (status == CAM_REQ_CMP) {
4341 
4342 		/*
4343 		 * Allow transfer negotiation to occur in a
4344 		 * tag free environment.
4345 		 */
4346 		if (async_code == AC_SENT_BDR
4347 		 || async_code == AC_BUS_RESET)
4348 			xpt_toggle_tags(&newpath);
4349 
4350 		if (async_code == AC_INQ_CHANGED) {
4351 			/*
4352 			 * We've sent a start unit command, or
4353 			 * something similar to a device that
4354 			 * may have caused its inquiry data to
4355 			 * change. So we re-scan the device to
4356 			 * refresh the inquiry data for it.
4357 			 */
4358 			xpt_scan_lun(newpath.periph, &newpath,
4359 				     CAM_EXPECT_INQ_CHANGE, NULL);
4360 		}
4361 		xpt_release_path(&newpath);
4362 	} else if (async_code == AC_LOST_DEVICE) {
4363 		device->flags |= CAM_DEV_UNCONFIGURED;
4364 	} else if (async_code == AC_TRANSFER_NEG) {
4365 		struct ccb_trans_settings *settings;
4366 
4367 		settings = (struct ccb_trans_settings *)async_arg;
4368 		xpt_set_transfer_settings(settings, device,
4369 					  /*async_update*/TRUE);
4370 	}
4371 }
4372 
4373 u_int32_t
4374 xpt_freeze_devq(struct cam_path *path, u_int count)
4375 {
4376 	int s;
4377 	struct ccb_hdr *ccbh;
4378 
4379 	s = splcam();
4380 	path->device->qfrozen_cnt += count;
4381 
4382 	/*
4383 	 * Mark the last CCB in the queue as needing
4384 	 * to be requeued if the driver hasn't
4385 	 * changed it's state yet.  This fixes a race
4386 	 * where a ccb is just about to be queued to
4387 	 * a controller driver when it's interrupt routine
4388 	 * freezes the queue.  To completly close the
4389 	 * hole, controller drives must check to see
4390 	 * if a ccb's status is still CAM_REQ_INPROG
4391 	 * under spl protection just before they queue
4392 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4393 	 * an example.
4394 	 */
4395 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4396 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4397 		ccbh->status = CAM_REQUEUE_REQ;
4398 	splx(s);
4399 	return (path->device->qfrozen_cnt);
4400 }
4401 
4402 u_int32_t
4403 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4404 {
4405 	sim->devq->send_queue.qfrozen_cnt += count;
4406 	if (sim->devq->active_dev != NULL) {
4407 		struct ccb_hdr *ccbh;
4408 
4409 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4410 				  ccb_hdr_tailq);
4411 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4412 			ccbh->status = CAM_REQUEUE_REQ;
4413 	}
4414 	return (sim->devq->send_queue.qfrozen_cnt);
4415 }
4416 
4417 static void
4418 xpt_release_devq_timeout(void *arg)
4419 {
4420 	struct cam_ed *device;
4421 
4422 	device = (struct cam_ed *)arg;
4423 
4424 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4425 }
4426 
4427 void
4428 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4429 {
4430 	xpt_release_devq_device(path->device, count, run_queue);
4431 }
4432 
4433 static void
4434 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4435 {
4436 	int	rundevq;
4437 	int	s0, s1;
4438 
4439 	rundevq = 0;
4440 	s0 = splsoftcam();
4441 	s1 = splcam();
4442 	if (dev->qfrozen_cnt > 0) {
4443 
4444 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4445 		dev->qfrozen_cnt -= count;
4446 		if (dev->qfrozen_cnt == 0) {
4447 
4448 			/*
4449 			 * No longer need to wait for a successful
4450 			 * command completion.
4451 			 */
4452 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4453 
4454 			/*
4455 			 * Remove any timeouts that might be scheduled
4456 			 * to release this queue.
4457 			 */
4458 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4459 				untimeout(xpt_release_devq_timeout, dev,
4460 					  dev->c_handle);
4461 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4462 			}
4463 
4464 			/*
4465 			 * Now that we are unfrozen schedule the
4466 			 * device so any pending transactions are
4467 			 * run.
4468 			 */
4469 			if ((dev->ccbq.queue.entries > 0)
4470 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4471 			 && (run_queue != 0)) {
4472 				rundevq = 1;
4473 			}
4474 		}
4475 	}
4476 	splx(s1);
4477 	if (rundevq != 0)
4478 		xpt_run_dev_sendq(dev->target->bus);
4479 	splx(s0);
4480 }
4481 
4482 void
4483 xpt_release_simq(struct cam_sim *sim, int run_queue)
4484 {
4485 	int	s;
4486 	struct	camq *sendq;
4487 
4488 	sendq = &(sim->devq->send_queue);
4489 	s = splcam();
4490 	if (sendq->qfrozen_cnt > 0) {
4491 
4492 		sendq->qfrozen_cnt--;
4493 		if (sendq->qfrozen_cnt == 0) {
4494 			struct cam_eb *bus;
4495 
4496 			/*
4497 			 * If there is a timeout scheduled to release this
4498 			 * sim queue, remove it.  The queue frozen count is
4499 			 * already at 0.
4500 			 */
4501 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4502 				untimeout(xpt_release_simq_timeout, sim,
4503 					  sim->c_handle);
4504 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4505 			}
4506 			bus = xpt_find_bus(sim->path_id);
4507 			splx(s);
4508 
4509 			if (run_queue) {
4510 				/*
4511 				 * Now that we are unfrozen run the send queue.
4512 				 */
4513 				xpt_run_dev_sendq(bus);
4514 			}
4515 			xpt_release_bus(bus);
4516 		} else
4517 			splx(s);
4518 	} else
4519 		splx(s);
4520 }
4521 
4522 static void
4523 xpt_release_simq_timeout(void *arg)
4524 {
4525 	struct cam_sim *sim;
4526 
4527 	sim = (struct cam_sim *)arg;
4528 	xpt_release_simq(sim, /* run_queue */ TRUE);
4529 }
4530 
4531 void
4532 xpt_done(union ccb *done_ccb)
4533 {
4534 	int s;
4535 
4536 	s = splcam();
4537 
4538 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4539 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4540 		/*
4541 		 * Queue up the request for handling by our SWI handler
4542 		 * any of the "non-immediate" type of ccbs.
4543 		 */
4544 		switch (done_ccb->ccb_h.path->periph->type) {
4545 		case CAM_PERIPH_BIO:
4546 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4547 					  sim_links.tqe);
4548 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4549 			setsoftcambio();
4550 			break;
4551 		case CAM_PERIPH_NET:
4552 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4553 					  sim_links.tqe);
4554 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4555 			setsoftcamnet();
4556 			break;
4557 		}
4558 	}
4559 	splx(s);
4560 }
4561 
4562 union ccb *
4563 xpt_alloc_ccb()
4564 {
4565 	union ccb *new_ccb;
4566 
4567 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4568 	return (new_ccb);
4569 }
4570 
4571 void
4572 xpt_free_ccb(union ccb *free_ccb)
4573 {
4574 	free(free_ccb, M_DEVBUF);
4575 }
4576 
4577 
4578 
4579 /* Private XPT functions */
4580 
4581 /*
4582  * Get a CAM control block for the caller. Charge the structure to the device
4583  * referenced by the path.  If the this device has no 'credits' then the
4584  * device already has the maximum number of outstanding operations under way
4585  * and we return NULL. If we don't have sufficient resources to allocate more
4586  * ccbs, we also return NULL.
4587  */
4588 static union ccb *
4589 xpt_get_ccb(struct cam_ed *device)
4590 {
4591 	union ccb *new_ccb;
4592 	int s;
4593 
4594 	s = splsoftcam();
4595 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4596 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4597                 if (new_ccb == NULL) {
4598 			splx(s);
4599 			return (NULL);
4600 		}
4601 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4602 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4603 				  xpt_links.sle);
4604 		xpt_ccb_count++;
4605 	}
4606 	cam_ccbq_take_opening(&device->ccbq);
4607 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4608 	splx(s);
4609 	return (new_ccb);
4610 }
4611 
4612 static void
4613 xpt_release_bus(struct cam_eb *bus)
4614 {
4615 	int s;
4616 
4617 	s = splcam();
4618 	if ((--bus->refcount == 0)
4619 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4620 		TAILQ_REMOVE(&xpt_busses, bus, links);
4621 		bus_generation++;
4622 		splx(s);
4623 		free(bus, M_DEVBUF);
4624 	} else
4625 		splx(s);
4626 }
4627 
4628 static struct cam_et *
4629 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4630 {
4631 	struct cam_et *target;
4632 
4633 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4634 	if (target != NULL) {
4635 		struct cam_et *cur_target;
4636 
4637 		TAILQ_INIT(&target->ed_entries);
4638 		target->bus = bus;
4639 		target->target_id = target_id;
4640 		target->refcount = 1;
4641 		target->generation = 0;
4642 		timevalclear(&target->last_reset);
4643 		/*
4644 		 * Hold a reference to our parent bus so it
4645 		 * will not go away before we do.
4646 		 */
4647 		bus->refcount++;
4648 
4649 		/* Insertion sort into our bus's target list */
4650 		cur_target = TAILQ_FIRST(&bus->et_entries);
4651 		while (cur_target != NULL && cur_target->target_id < target_id)
4652 			cur_target = TAILQ_NEXT(cur_target, links);
4653 
4654 		if (cur_target != NULL) {
4655 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4656 		} else {
4657 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4658 		}
4659 		bus->generation++;
4660 	}
4661 	return (target);
4662 }
4663 
4664 static void
4665 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4666 {
4667 	int s;
4668 
4669 	s = splcam();
4670 	if ((--target->refcount == 0)
4671 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4672 		TAILQ_REMOVE(&bus->et_entries, target, links);
4673 		bus->generation++;
4674 		splx(s);
4675 		free(target, M_DEVBUF);
4676 		xpt_release_bus(bus);
4677 	} else
4678 		splx(s);
4679 }
4680 
4681 static struct cam_ed *
4682 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4683 {
4684 	struct	   cam_ed *device;
4685 	struct	   cam_devq *devq;
4686 	cam_status status;
4687 
4688 	/* Make space for us in the device queue on our bus */
4689 	devq = bus->sim->devq;
4690 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4691 
4692 	if (status != CAM_REQ_CMP) {
4693 		device = NULL;
4694 	} else {
4695 		device = (struct cam_ed *)malloc(sizeof(*device),
4696 						 M_DEVBUF, M_NOWAIT);
4697 	}
4698 
4699 	if (device != NULL) {
4700 		struct cam_ed *cur_device;
4701 
4702 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4703 		device->alloc_ccb_entry.device = device;
4704 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4705 		device->send_ccb_entry.device = device;
4706 		device->target = target;
4707 		device->lun_id = lun_id;
4708 		/* Initialize our queues */
4709 		if (camq_init(&device->drvq, 0) != 0) {
4710 			free(device, M_DEVBUF);
4711 			return (NULL);
4712 		}
4713 		if (cam_ccbq_init(&device->ccbq,
4714 				  bus->sim->max_dev_openings) != 0) {
4715 			camq_fini(&device->drvq);
4716 			free(device, M_DEVBUF);
4717 			return (NULL);
4718 		}
4719 		SLIST_INIT(&device->asyncs);
4720 		SLIST_INIT(&device->periphs);
4721 		device->generation = 0;
4722 		device->owner = NULL;
4723 		/*
4724 		 * Take the default quirk entry until we have inquiry
4725 		 * data and can determine a better quirk to use.
4726 		 */
4727 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4728 		bzero(&device->inq_data, sizeof(device->inq_data));
4729 		device->inq_flags = 0;
4730 		device->queue_flags = 0;
4731 		device->serial_num = NULL;
4732 		device->serial_num_len = 0;
4733 		device->qfrozen_cnt = 0;
4734 		device->flags = CAM_DEV_UNCONFIGURED;
4735 		device->tag_delay_count = 0;
4736 		device->refcount = 1;
4737 		callout_handle_init(&device->c_handle);
4738 
4739 		/*
4740 		 * Hold a reference to our parent target so it
4741 		 * will not go away before we do.
4742 		 */
4743 		target->refcount++;
4744 
4745 		/*
4746 		 * XXX should be limited by number of CCBs this bus can
4747 		 * do.
4748 		 */
4749 		xpt_max_ccbs += device->ccbq.devq_openings;
4750 		/* Insertion sort into our target's device list */
4751 		cur_device = TAILQ_FIRST(&target->ed_entries);
4752 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4753 			cur_device = TAILQ_NEXT(cur_device, links);
4754 		if (cur_device != NULL) {
4755 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4756 		} else {
4757 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4758 		}
4759 		target->generation++;
4760 	}
4761 	return (device);
4762 }
4763 
4764 static void
4765 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4766 		   struct cam_ed *device)
4767 {
4768 	int s;
4769 
4770 	s = splcam();
4771 	if ((--device->refcount == 0)
4772 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4773 		struct cam_devq *devq;
4774 
4775 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4776 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4777 			panic("Removing device while still queued for ccbs");
4778 
4779 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4780 				untimeout(xpt_release_devq_timeout, device,
4781 					  device->c_handle);
4782 
4783 		TAILQ_REMOVE(&target->ed_entries, device,links);
4784 		target->generation++;
4785 		xpt_max_ccbs -= device->ccbq.devq_openings;
4786 		/* Release our slot in the devq */
4787 		devq = bus->sim->devq;
4788 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4789 		splx(s);
4790 		free(device, M_DEVBUF);
4791 		xpt_release_target(bus, target);
4792 	} else
4793 		splx(s);
4794 }
4795 
4796 static u_int32_t
4797 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4798 {
4799 	int	s;
4800 	int	diff;
4801 	int	result;
4802 	struct	cam_ed *dev;
4803 
4804 	dev = path->device;
4805 	s = splsoftcam();
4806 
4807 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4808 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4809 	if (result == CAM_REQ_CMP && (diff < 0)) {
4810 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4811 	}
4812 	/* Adjust the global limit */
4813 	xpt_max_ccbs += diff;
4814 	splx(s);
4815 	return (result);
4816 }
4817 
4818 static struct cam_eb *
4819 xpt_find_bus(path_id_t path_id)
4820 {
4821 	struct cam_eb *bus;
4822 
4823 	for (bus = TAILQ_FIRST(&xpt_busses);
4824 	     bus != NULL;
4825 	     bus = TAILQ_NEXT(bus, links)) {
4826 		if (bus->path_id == path_id) {
4827 			bus->refcount++;
4828 			break;
4829 		}
4830 	}
4831 	return (bus);
4832 }
4833 
4834 static struct cam_et *
4835 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4836 {
4837 	struct cam_et *target;
4838 
4839 	for (target = TAILQ_FIRST(&bus->et_entries);
4840 	     target != NULL;
4841 	     target = TAILQ_NEXT(target, links)) {
4842 		if (target->target_id == target_id) {
4843 			target->refcount++;
4844 			break;
4845 		}
4846 	}
4847 	return (target);
4848 }
4849 
4850 static struct cam_ed *
4851 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4852 {
4853 	struct cam_ed *device;
4854 
4855 	for (device = TAILQ_FIRST(&target->ed_entries);
4856 	     device != NULL;
4857 	     device = TAILQ_NEXT(device, links)) {
4858 		if (device->lun_id == lun_id) {
4859 			device->refcount++;
4860 			break;
4861 		}
4862 	}
4863 	return (device);
4864 }
4865 
4866 typedef struct {
4867 	union	ccb *request_ccb;
4868 	struct 	ccb_pathinq *cpi;
4869 	int	pending_count;
4870 } xpt_scan_bus_info;
4871 
4872 /*
4873  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4874  * As the scan progresses, xpt_scan_bus is used as the
4875  * callback on completion function.
4876  */
4877 static void
4878 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4879 {
4880 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4881 		  ("xpt_scan_bus\n"));
4882 	switch (request_ccb->ccb_h.func_code) {
4883 	case XPT_SCAN_BUS:
4884 	{
4885 		xpt_scan_bus_info *scan_info;
4886 		union	ccb *work_ccb;
4887 		struct	cam_path *path;
4888 		u_int	i;
4889 		u_int	max_target;
4890 		u_int	initiator_id;
4891 
4892 		/* Find out the characteristics of the bus */
4893 		work_ccb = xpt_alloc_ccb();
4894 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4895 			      request_ccb->ccb_h.pinfo.priority);
4896 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4897 		xpt_action(work_ccb);
4898 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4899 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4900 			xpt_free_ccb(work_ccb);
4901 			xpt_done(request_ccb);
4902 			return;
4903 		}
4904 
4905 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4906 			/*
4907 			 * Can't scan the bus on an adapter that
4908 			 * cannot perform the initiator role.
4909 			 */
4910 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4911 			xpt_free_ccb(work_ccb);
4912 			xpt_done(request_ccb);
4913 			return;
4914 		}
4915 
4916 		/* Save some state for use while we probe for devices */
4917 		scan_info = (xpt_scan_bus_info *)
4918 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4919 		scan_info->request_ccb = request_ccb;
4920 		scan_info->cpi = &work_ccb->cpi;
4921 
4922 		/* Cache on our stack so we can work asynchronously */
4923 		max_target = scan_info->cpi->max_target;
4924 		initiator_id = scan_info->cpi->initiator_id;
4925 
4926 		/*
4927 		 * Don't count the initiator if the
4928 		 * initiator is addressable.
4929 		 */
4930 		scan_info->pending_count = max_target + 1;
4931 		if (initiator_id <= max_target)
4932 			scan_info->pending_count--;
4933 
4934 		for (i = 0; i <= max_target; i++) {
4935 			cam_status status;
4936 		 	if (i == initiator_id)
4937 				continue;
4938 
4939 			status = xpt_create_path(&path, xpt_periph,
4940 						 request_ccb->ccb_h.path_id,
4941 						 i, 0);
4942 			if (status != CAM_REQ_CMP) {
4943 				printf("xpt_scan_bus: xpt_create_path failed"
4944 				       " with status %#x, bus scan halted\n",
4945 				       status);
4946 				break;
4947 			}
4948 			work_ccb = xpt_alloc_ccb();
4949 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4950 				      request_ccb->ccb_h.pinfo.priority);
4951 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4952 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4953 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4954 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4955 #if 0
4956 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4957 				request_ccb->ccb_h.path_id, i, 0);
4958 #endif
4959 			xpt_action(work_ccb);
4960 		}
4961 		break;
4962 	}
4963 	case XPT_SCAN_LUN:
4964 	{
4965 		xpt_scan_bus_info *scan_info;
4966 		path_id_t path_id;
4967 		target_id_t target_id;
4968 		lun_id_t lun_id;
4969 
4970 		/* Reuse the same CCB to query if a device was really found */
4971 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4972 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4973 			      request_ccb->ccb_h.pinfo.priority);
4974 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4975 
4976 		path_id = request_ccb->ccb_h.path_id;
4977 		target_id = request_ccb->ccb_h.target_id;
4978 		lun_id = request_ccb->ccb_h.target_lun;
4979 		xpt_action(request_ccb);
4980 
4981 #if 0
4982 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4983 			path_id, target_id, lun_id);
4984 #endif
4985 
4986 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4987 			struct cam_ed *device;
4988 			struct cam_et *target;
4989 			int s, phl;
4990 
4991 			/*
4992 			 * If we already probed lun 0 successfully, or
4993 			 * we have additional configured luns on this
4994 			 * target that might have "gone away", go onto
4995 			 * the next lun.
4996 			 */
4997 			target = request_ccb->ccb_h.path->target;
4998 			/*
4999 			 * We may touch devices that we don't
5000 			 * hold references too, so ensure they
5001 			 * don't disappear out from under us.
5002 			 * The target above is referenced by the
5003 			 * path in the request ccb.
5004 			 */
5005 			phl = 0;
5006 			s = splcam();
5007 			device = TAILQ_FIRST(&target->ed_entries);
5008 			if (device != NULL) {
5009 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5010 				if (device->lun_id == 0)
5011 					device = TAILQ_NEXT(device, links);
5012 			}
5013 			splx(s);
5014 			if ((lun_id != 0) || (device != NULL)) {
5015 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5016 					lun_id++;
5017 			}
5018 		} else {
5019 			struct cam_ed *device;
5020 
5021 			device = request_ccb->ccb_h.path->device;
5022 
5023 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5024 				/* Try the next lun */
5025 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5026 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5027 					lun_id++;
5028 			}
5029 		}
5030 
5031 		xpt_free_path(request_ccb->ccb_h.path);
5032 
5033 		/* Check Bounds */
5034 		if ((lun_id == request_ccb->ccb_h.target_lun)
5035 		 || lun_id > scan_info->cpi->max_lun) {
5036 			/* We're done */
5037 
5038 			xpt_free_ccb(request_ccb);
5039 			scan_info->pending_count--;
5040 			if (scan_info->pending_count == 0) {
5041 				xpt_free_ccb((union ccb *)scan_info->cpi);
5042 				request_ccb = scan_info->request_ccb;
5043 				free(scan_info, M_TEMP);
5044 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5045 				xpt_done(request_ccb);
5046 			}
5047 		} else {
5048 			/* Try the next device */
5049 			struct cam_path *path;
5050 			cam_status status;
5051 
5052 			path = request_ccb->ccb_h.path;
5053 			status = xpt_create_path(&path, xpt_periph,
5054 						 path_id, target_id, lun_id);
5055 			if (status != CAM_REQ_CMP) {
5056 				printf("xpt_scan_bus: xpt_create_path failed "
5057 				       "with status %#x, halting LUN scan\n",
5058 			 	       status);
5059 				xpt_free_ccb(request_ccb);
5060 				scan_info->pending_count--;
5061 				if (scan_info->pending_count == 0) {
5062 					xpt_free_ccb(
5063 						(union ccb *)scan_info->cpi);
5064 					request_ccb = scan_info->request_ccb;
5065 					free(scan_info, M_TEMP);
5066 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5067 					xpt_done(request_ccb);
5068 					break;
5069 				}
5070 			}
5071 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5072 				      request_ccb->ccb_h.pinfo.priority);
5073 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5074 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5075 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5076 			request_ccb->crcn.flags =
5077 				scan_info->request_ccb->crcn.flags;
5078 #if 0
5079 			xpt_print_path(path);
5080 			printf("xpt_scan bus probing\n");
5081 #endif
5082 			xpt_action(request_ccb);
5083 		}
5084 		break;
5085 	}
5086 	default:
5087 		break;
5088 	}
5089 }
5090 
5091 typedef enum {
5092 	PROBE_TUR,
5093 	PROBE_INQUIRY,
5094 	PROBE_FULL_INQUIRY,
5095 	PROBE_MODE_SENSE,
5096 	PROBE_SERIAL_NUM,
5097 	PROBE_TUR_FOR_NEGOTIATION
5098 } probe_action;
5099 
5100 typedef enum {
5101 	PROBE_INQUIRY_CKSUM	= 0x01,
5102 	PROBE_SERIAL_CKSUM	= 0x02,
5103 	PROBE_NO_ANNOUNCE	= 0x04
5104 } probe_flags;
5105 
5106 typedef struct {
5107 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5108 	probe_action	action;
5109 	union ccb	saved_ccb;
5110 	probe_flags	flags;
5111 	MD5_CTX		context;
5112 	u_int8_t	digest[16];
5113 } probe_softc;
5114 
5115 static void
5116 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5117 	     cam_flags flags, union ccb *request_ccb)
5118 {
5119 	struct ccb_pathinq cpi;
5120 	cam_status status;
5121 	struct cam_path *new_path;
5122 	struct cam_periph *old_periph;
5123 	int s;
5124 
5125 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5126 		  ("xpt_scan_lun\n"));
5127 
5128 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5129 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5130 	xpt_action((union ccb *)&cpi);
5131 
5132 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5133 		if (request_ccb != NULL) {
5134 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5135 			xpt_done(request_ccb);
5136 		}
5137 		return;
5138 	}
5139 
5140 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5141 		/*
5142 		 * Can't scan the bus on an adapter that
5143 		 * cannot perform the initiator role.
5144 		 */
5145 		if (request_ccb != NULL) {
5146 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5147 			xpt_done(request_ccb);
5148 		}
5149 		return;
5150 	}
5151 
5152 	if (request_ccb == NULL) {
5153 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5154 		if (request_ccb == NULL) {
5155 			xpt_print_path(path);
5156 			printf("xpt_scan_lun: can't allocate CCB, can't "
5157 			       "continue\n");
5158 			return;
5159 		}
5160 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5161 		if (new_path == NULL) {
5162 			xpt_print_path(path);
5163 			printf("xpt_scan_lun: can't allocate path, can't "
5164 			       "continue\n");
5165 			free(request_ccb, M_TEMP);
5166 			return;
5167 		}
5168 		status = xpt_compile_path(new_path, xpt_periph,
5169 					  path->bus->path_id,
5170 					  path->target->target_id,
5171 					  path->device->lun_id);
5172 
5173 		if (status != CAM_REQ_CMP) {
5174 			xpt_print_path(path);
5175 			printf("xpt_scan_lun: can't compile path, can't "
5176 			       "continue\n");
5177 			free(request_ccb, M_TEMP);
5178 			free(new_path, M_TEMP);
5179 			return;
5180 		}
5181 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5182 		request_ccb->ccb_h.cbfcnp = xptscandone;
5183 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5184 		request_ccb->crcn.flags = flags;
5185 	}
5186 
5187 	s = splsoftcam();
5188 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5189 		probe_softc *softc;
5190 
5191 		softc = (probe_softc *)old_periph->softc;
5192 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5193 				  periph_links.tqe);
5194 	} else {
5195 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5196 					  probestart, "probe",
5197 					  CAM_PERIPH_BIO,
5198 					  request_ccb->ccb_h.path, NULL, 0,
5199 					  request_ccb);
5200 
5201 		if (status != CAM_REQ_CMP) {
5202 			xpt_print_path(path);
5203 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5204 			       "error, can't continue probe\n");
5205 			request_ccb->ccb_h.status = status;
5206 			xpt_done(request_ccb);
5207 		}
5208 	}
5209 	splx(s);
5210 }
5211 
5212 static void
5213 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5214 {
5215 	xpt_release_path(done_ccb->ccb_h.path);
5216 	free(done_ccb->ccb_h.path, M_TEMP);
5217 	free(done_ccb, M_TEMP);
5218 }
5219 
5220 static cam_status
5221 proberegister(struct cam_periph *periph, void *arg)
5222 {
5223 	union ccb *request_ccb;	/* CCB representing the probe request */
5224 	probe_softc *softc;
5225 
5226 	request_ccb = (union ccb *)arg;
5227 	if (periph == NULL) {
5228 		printf("proberegister: periph was NULL!!\n");
5229 		return(CAM_REQ_CMP_ERR);
5230 	}
5231 
5232 	if (request_ccb == NULL) {
5233 		printf("proberegister: no probe CCB, "
5234 		       "can't register device\n");
5235 		return(CAM_REQ_CMP_ERR);
5236 	}
5237 
5238 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5239 
5240 	if (softc == NULL) {
5241 		printf("proberegister: Unable to probe new device. "
5242 		       "Unable to allocate softc\n");
5243 		return(CAM_REQ_CMP_ERR);
5244 	}
5245 	TAILQ_INIT(&softc->request_ccbs);
5246 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5247 			  periph_links.tqe);
5248 	softc->flags = 0;
5249 	periph->softc = softc;
5250 	cam_periph_acquire(periph);
5251 	/*
5252 	 * Ensure we've waited at least a bus settle
5253 	 * delay before attempting to probe the device.
5254 	 * For HBAs that don't do bus resets, this won't make a difference.
5255 	 */
5256 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5257 				      SCSI_DELAY);
5258 	probeschedule(periph);
5259 	return(CAM_REQ_CMP);
5260 }
5261 
5262 static void
5263 probeschedule(struct cam_periph *periph)
5264 {
5265 	struct ccb_pathinq cpi;
5266 	union ccb *ccb;
5267 	probe_softc *softc;
5268 
5269 	softc = (probe_softc *)periph->softc;
5270 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5271 
5272 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5273 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5274 	xpt_action((union ccb *)&cpi);
5275 
5276 	/*
5277 	 * If a device has gone away and another device, or the same one,
5278 	 * is back in the same place, it should have a unit attention
5279 	 * condition pending.  It will not report the unit attention in
5280 	 * response to an inquiry, which may leave invalid transfer
5281 	 * negotiations in effect.  The TUR will reveal the unit attention
5282 	 * condition.  Only send the TUR for lun 0, since some devices
5283 	 * will get confused by commands other than inquiry to non-existent
5284 	 * luns.  If you think a device has gone away start your scan from
5285 	 * lun 0.  This will insure that any bogus transfer settings are
5286 	 * invalidated.
5287 	 *
5288 	 * If we haven't seen the device before and the controller supports
5289 	 * some kind of transfer negotiation, negotiate with the first
5290 	 * sent command if no bus reset was performed at startup.  This
5291 	 * ensures that the device is not confused by transfer negotiation
5292 	 * settings left over by loader or BIOS action.
5293 	 */
5294 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5295 	 && (ccb->ccb_h.target_lun == 0)) {
5296 		softc->action = PROBE_TUR;
5297 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5298 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5299 		proberequestdefaultnegotiation(periph);
5300 		softc->action = PROBE_INQUIRY;
5301 	} else {
5302 		softc->action = PROBE_INQUIRY;
5303 	}
5304 
5305 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5306 		softc->flags |= PROBE_NO_ANNOUNCE;
5307 	else
5308 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5309 
5310 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5311 }
5312 
5313 static void
5314 probestart(struct cam_periph *periph, union ccb *start_ccb)
5315 {
5316 	/* Probe the device that our peripheral driver points to */
5317 	struct ccb_scsiio *csio;
5318 	probe_softc *softc;
5319 
5320 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5321 
5322 	softc = (probe_softc *)periph->softc;
5323 	csio = &start_ccb->csio;
5324 
5325 	switch (softc->action) {
5326 	case PROBE_TUR:
5327 	case PROBE_TUR_FOR_NEGOTIATION:
5328 	{
5329 		scsi_test_unit_ready(csio,
5330 				     /*retries*/4,
5331 				     probedone,
5332 				     MSG_SIMPLE_Q_TAG,
5333 				     SSD_FULL_SIZE,
5334 				     /*timeout*/60000);
5335 		break;
5336 	}
5337 	case PROBE_INQUIRY:
5338 	case PROBE_FULL_INQUIRY:
5339 	{
5340 		u_int inquiry_len;
5341 		struct scsi_inquiry_data *inq_buf;
5342 
5343 		inq_buf = &periph->path->device->inq_data;
5344 		/*
5345 		 * If the device is currently configured, we calculate an
5346 		 * MD5 checksum of the inquiry data, and if the serial number
5347 		 * length is greater than 0, add the serial number data
5348 		 * into the checksum as well.  Once the inquiry and the
5349 		 * serial number check finish, we attempt to figure out
5350 		 * whether we still have the same device.
5351 		 */
5352 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5353 
5354 			MD5Init(&softc->context);
5355 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5356 				  sizeof(struct scsi_inquiry_data));
5357 			softc->flags |= PROBE_INQUIRY_CKSUM;
5358 			if (periph->path->device->serial_num_len > 0) {
5359 				MD5Update(&softc->context,
5360 					  periph->path->device->serial_num,
5361 					  periph->path->device->serial_num_len);
5362 				softc->flags |= PROBE_SERIAL_CKSUM;
5363 			}
5364 			MD5Final(softc->digest, &softc->context);
5365 		}
5366 
5367 		if (softc->action == PROBE_INQUIRY)
5368 			inquiry_len = SHORT_INQUIRY_LENGTH;
5369 		else
5370 			inquiry_len = inq_buf->additional_length + 5;
5371 
5372 		scsi_inquiry(csio,
5373 			     /*retries*/4,
5374 			     probedone,
5375 			     MSG_SIMPLE_Q_TAG,
5376 			     (u_int8_t *)inq_buf,
5377 			     inquiry_len,
5378 			     /*evpd*/FALSE,
5379 			     /*page_code*/0,
5380 			     SSD_MIN_SIZE,
5381 			     /*timeout*/60 * 1000);
5382 		break;
5383 	}
5384 	case PROBE_MODE_SENSE:
5385 	{
5386 		void  *mode_buf;
5387 		int    mode_buf_len;
5388 
5389 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5390 			     + sizeof(struct scsi_mode_blk_desc)
5391 			     + sizeof(struct scsi_control_page);
5392 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5393 		if (mode_buf != NULL) {
5394 	                scsi_mode_sense(csio,
5395 					/*retries*/4,
5396 					probedone,
5397 					MSG_SIMPLE_Q_TAG,
5398 					/*dbd*/FALSE,
5399 					SMS_PAGE_CTRL_CURRENT,
5400 					SMS_CONTROL_MODE_PAGE,
5401 					mode_buf,
5402 					mode_buf_len,
5403 					SSD_FULL_SIZE,
5404 					/*timeout*/60000);
5405 			break;
5406 		}
5407 		xpt_print_path(periph->path);
5408 		printf("Unable to mode sense control page - malloc failure\n");
5409 		softc->action = PROBE_SERIAL_NUM;
5410 		/* FALLTHROUGH */
5411 	}
5412 	case PROBE_SERIAL_NUM:
5413 	{
5414 		struct scsi_vpd_unit_serial_number *serial_buf;
5415 		struct cam_ed* device;
5416 
5417 		serial_buf = NULL;
5418 		device = periph->path->device;
5419 		device->serial_num = NULL;
5420 		device->serial_num_len = 0;
5421 
5422 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5423 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5424 				malloc(sizeof(*serial_buf), M_TEMP,
5425 					M_NOWAIT | M_ZERO);
5426 
5427 		if (serial_buf != NULL) {
5428 			scsi_inquiry(csio,
5429 				     /*retries*/4,
5430 				     probedone,
5431 				     MSG_SIMPLE_Q_TAG,
5432 				     (u_int8_t *)serial_buf,
5433 				     sizeof(*serial_buf),
5434 				     /*evpd*/TRUE,
5435 				     SVPD_UNIT_SERIAL_NUMBER,
5436 				     SSD_MIN_SIZE,
5437 				     /*timeout*/60 * 1000);
5438 			break;
5439 		}
5440 		/*
5441 		 * We'll have to do without, let our probedone
5442 		 * routine finish up for us.
5443 		 */
5444 		start_ccb->csio.data_ptr = NULL;
5445 		probedone(periph, start_ccb);
5446 		return;
5447 	}
5448 	}
5449 	xpt_action(start_ccb);
5450 }
5451 
5452 static void
5453 proberequestdefaultnegotiation(struct cam_periph *periph)
5454 {
5455 	struct ccb_trans_settings cts;
5456 
5457 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5458 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5459 	cts.flags = CCB_TRANS_USER_SETTINGS;
5460 	xpt_action((union ccb *)&cts);
5461 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5462 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5463 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5464 	xpt_action((union ccb *)&cts);
5465 }
5466 
5467 static void
5468 probedone(struct cam_periph *periph, union ccb *done_ccb)
5469 {
5470 	probe_softc *softc;
5471 	struct cam_path *path;
5472 	u_int32_t  priority;
5473 
5474 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5475 
5476 	softc = (probe_softc *)periph->softc;
5477 	path = done_ccb->ccb_h.path;
5478 	priority = done_ccb->ccb_h.pinfo.priority;
5479 
5480 	switch (softc->action) {
5481 	case PROBE_TUR:
5482 	{
5483 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5484 
5485 			if (cam_periph_error(done_ccb, 0,
5486 					     SF_NO_PRINT, NULL) == ERESTART)
5487 				return;
5488 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5489 				/* Don't wedge the queue */
5490 				xpt_release_devq(done_ccb->ccb_h.path,
5491 						 /*count*/1,
5492 						 /*run_queue*/TRUE);
5493 		}
5494 		softc->action = PROBE_INQUIRY;
5495 		xpt_release_ccb(done_ccb);
5496 		xpt_schedule(periph, priority);
5497 		return;
5498 	}
5499 	case PROBE_INQUIRY:
5500 	case PROBE_FULL_INQUIRY:
5501 	{
5502 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5503 			struct scsi_inquiry_data *inq_buf;
5504 			u_int8_t periph_qual;
5505 
5506 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5507 			inq_buf = &path->device->inq_data;
5508 
5509 			periph_qual = SID_QUAL(inq_buf);
5510 
5511 			switch(periph_qual) {
5512 			case SID_QUAL_LU_CONNECTED:
5513 			{
5514 				u_int8_t alen;
5515 
5516 				/*
5517 				 * We conservatively request only
5518 				 * SHORT_INQUIRY_LEN bytes of inquiry
5519 				 * information during our first try
5520 				 * at sending an INQUIRY. If the device
5521 				 * has more information to give,
5522 				 * perform a second request specifying
5523 				 * the amount of information the device
5524 				 * is willing to give.
5525 				 */
5526 				alen = inq_buf->additional_length;
5527 				if (softc->action == PROBE_INQUIRY
5528 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5529 					softc->action = PROBE_FULL_INQUIRY;
5530 					xpt_release_ccb(done_ccb);
5531 					xpt_schedule(periph, priority);
5532 					return;
5533 				}
5534 
5535 				xpt_find_quirk(path->device);
5536 
5537 				if ((inq_buf->flags & SID_CmdQue) != 0)
5538 					softc->action = PROBE_MODE_SENSE;
5539 				else
5540 					softc->action = PROBE_SERIAL_NUM;
5541 
5542 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5543 
5544 				xpt_release_ccb(done_ccb);
5545 				xpt_schedule(periph, priority);
5546 				return;
5547 			}
5548 			default:
5549 				break;
5550 			}
5551 		} else if (cam_periph_error(done_ccb, 0,
5552 					    done_ccb->ccb_h.target_lun > 0
5553 					    ? SF_RETRY_UA|SF_QUIET_IR
5554 					    : SF_RETRY_UA,
5555 					    &softc->saved_ccb) == ERESTART) {
5556 			return;
5557 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5558 			/* Don't wedge the queue */
5559 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5560 					 /*run_queue*/TRUE);
5561 		}
5562 		/*
5563 		 * If we get to this point, we got an error status back
5564 		 * from the inquiry and the error status doesn't require
5565 		 * automatically retrying the command.  Therefore, the
5566 		 * inquiry failed.  If we had inquiry information before
5567 		 * for this device, but this latest inquiry command failed,
5568 		 * the device has probably gone away.  If this device isn't
5569 		 * already marked unconfigured, notify the peripheral
5570 		 * drivers that this device is no more.
5571 		 */
5572 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5573 			/* Send the async notification. */
5574 			xpt_async(AC_LOST_DEVICE, path, NULL);
5575 
5576 		xpt_release_ccb(done_ccb);
5577 		break;
5578 	}
5579 	case PROBE_MODE_SENSE:
5580 	{
5581 		struct ccb_scsiio *csio;
5582 		struct scsi_mode_header_6 *mode_hdr;
5583 
5584 		csio = &done_ccb->csio;
5585 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5586 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5587 			struct scsi_control_page *page;
5588 			u_int8_t *offset;
5589 
5590 			offset = ((u_int8_t *)&mode_hdr[1])
5591 			    + mode_hdr->blk_desc_len;
5592 			page = (struct scsi_control_page *)offset;
5593 			path->device->queue_flags = page->queue_flags;
5594 		} else if (cam_periph_error(done_ccb, 0,
5595 					    SF_RETRY_UA|SF_NO_PRINT,
5596 					    &softc->saved_ccb) == ERESTART) {
5597 			return;
5598 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5599 			/* Don't wedge the queue */
5600 			xpt_release_devq(done_ccb->ccb_h.path,
5601 					 /*count*/1, /*run_queue*/TRUE);
5602 		}
5603 		xpt_release_ccb(done_ccb);
5604 		free(mode_hdr, M_TEMP);
5605 		softc->action = PROBE_SERIAL_NUM;
5606 		xpt_schedule(periph, priority);
5607 		return;
5608 	}
5609 	case PROBE_SERIAL_NUM:
5610 	{
5611 		struct ccb_scsiio *csio;
5612 		struct scsi_vpd_unit_serial_number *serial_buf;
5613 		u_int32_t  priority;
5614 		int changed;
5615 		int have_serialnum;
5616 
5617 		changed = 1;
5618 		have_serialnum = 0;
5619 		csio = &done_ccb->csio;
5620 		priority = done_ccb->ccb_h.pinfo.priority;
5621 		serial_buf =
5622 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5623 
5624 		/* Clean up from previous instance of this device */
5625 		if (path->device->serial_num != NULL) {
5626 			free(path->device->serial_num, M_DEVBUF);
5627 			path->device->serial_num = NULL;
5628 			path->device->serial_num_len = 0;
5629 		}
5630 
5631 		if (serial_buf == NULL) {
5632 			/*
5633 			 * Don't process the command as it was never sent
5634 			 */
5635 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5636 			&& (serial_buf->length > 0)) {
5637 
5638 			have_serialnum = 1;
5639 			path->device->serial_num =
5640 				(u_int8_t *)malloc((serial_buf->length + 1),
5641 						   M_DEVBUF, M_NOWAIT);
5642 			if (path->device->serial_num != NULL) {
5643 				bcopy(serial_buf->serial_num,
5644 				      path->device->serial_num,
5645 				      serial_buf->length);
5646 				path->device->serial_num_len =
5647 				    serial_buf->length;
5648 				path->device->serial_num[serial_buf->length]
5649 				    = '\0';
5650 			}
5651 		} else if (cam_periph_error(done_ccb, 0,
5652 					    SF_RETRY_UA|SF_NO_PRINT,
5653 					    &softc->saved_ccb) == ERESTART) {
5654 			return;
5655 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5656 			/* Don't wedge the queue */
5657 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5658 					 /*run_queue*/TRUE);
5659 		}
5660 
5661 		/*
5662 		 * Let's see if we have seen this device before.
5663 		 */
5664 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5665 			MD5_CTX context;
5666 			u_int8_t digest[16];
5667 
5668 			MD5Init(&context);
5669 
5670 			MD5Update(&context,
5671 				  (unsigned char *)&path->device->inq_data,
5672 				  sizeof(struct scsi_inquiry_data));
5673 
5674 			if (have_serialnum)
5675 				MD5Update(&context, serial_buf->serial_num,
5676 					  serial_buf->length);
5677 
5678 			MD5Final(digest, &context);
5679 			if (bcmp(softc->digest, digest, 16) == 0)
5680 				changed = 0;
5681 
5682 			/*
5683 			 * XXX Do we need to do a TUR in order to ensure
5684 			 *     that the device really hasn't changed???
5685 			 */
5686 			if ((changed != 0)
5687 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5688 				xpt_async(AC_LOST_DEVICE, path, NULL);
5689 		}
5690 		if (serial_buf != NULL)
5691 			free(serial_buf, M_TEMP);
5692 
5693 		if (changed != 0) {
5694 			/*
5695 			 * Now that we have all the necessary
5696 			 * information to safely perform transfer
5697 			 * negotiations... Controllers don't perform
5698 			 * any negotiation or tagged queuing until
5699 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5700 			 * received.  So, on a new device, just retreive
5701 			 * the user settings, and set them as the current
5702 			 * settings to set the device up.
5703 			 */
5704 			proberequestdefaultnegotiation(periph);
5705 			xpt_release_ccb(done_ccb);
5706 
5707 			/*
5708 			 * Perform a TUR to allow the controller to
5709 			 * perform any necessary transfer negotiation.
5710 			 */
5711 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5712 			xpt_schedule(periph, priority);
5713 			return;
5714 		}
5715 		xpt_release_ccb(done_ccb);
5716 		break;
5717 	}
5718 	case PROBE_TUR_FOR_NEGOTIATION:
5719 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5720 			/* Don't wedge the queue */
5721 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5722 					 /*run_queue*/TRUE);
5723 		}
5724 
5725 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5726 
5727 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5728 			/* Inform the XPT that a new device has been found */
5729 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5730 			xpt_action(done_ccb);
5731 
5732 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5733 		}
5734 		xpt_release_ccb(done_ccb);
5735 		break;
5736 	}
5737 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5738 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5739 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5740 	xpt_done(done_ccb);
5741 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5742 		cam_periph_invalidate(periph);
5743 		cam_periph_release(periph);
5744 	} else {
5745 		probeschedule(periph);
5746 	}
5747 }
5748 
5749 static void
5750 probecleanup(struct cam_periph *periph)
5751 {
5752 	free(periph->softc, M_TEMP);
5753 }
5754 
5755 static void
5756 xpt_find_quirk(struct cam_ed *device)
5757 {
5758 	caddr_t	match;
5759 
5760 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5761 			       (caddr_t)xpt_quirk_table,
5762 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5763 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5764 
5765 	if (match == NULL)
5766 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5767 
5768 	device->quirk = (struct xpt_quirk_entry *)match;
5769 }
5770 
5771 static void
5772 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5773 			  int async_update)
5774 {
5775 	struct	cam_sim *sim;
5776 	int	qfrozen;
5777 
5778 	sim = cts->ccb_h.path->bus->sim;
5779 	if (async_update == FALSE) {
5780 		struct	scsi_inquiry_data *inq_data;
5781 		struct	ccb_pathinq cpi;
5782 		struct	ccb_trans_settings cur_cts;
5783 
5784 		if (device == NULL) {
5785 			cts->ccb_h.status = CAM_PATH_INVALID;
5786 			xpt_done((union ccb *)cts);
5787 			return;
5788 		}
5789 
5790 		/*
5791 		 * Perform sanity checking against what the
5792 		 * controller and device can do.
5793 		 */
5794 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5795 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5796 		xpt_action((union ccb *)&cpi);
5797 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5798 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5799 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5800 		xpt_action((union ccb *)&cur_cts);
5801 		inq_data = &device->inq_data;
5802 
5803 		/* Fill in any gaps in what the user gave us */
5804 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5805 			cts->sync_period = cur_cts.sync_period;
5806 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5807 			cts->sync_offset = cur_cts.sync_offset;
5808 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5809 			cts->bus_width = cur_cts.bus_width;
5810 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5811 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5812 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5813 		}
5814 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5815 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5816 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5817 		}
5818 
5819 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5820 		  && (inq_data->flags & SID_Sync) == 0)
5821 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5822 		 || (cts->sync_offset == 0)
5823 		 || (cts->sync_period == 0)) {
5824 			/* Force async */
5825 			cts->sync_period = 0;
5826 			cts->sync_offset = 0;
5827 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5828 
5829 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5830 			 && cts->sync_period <= 0x9) {
5831 				/*
5832 				 * Don't allow DT transmission rates if the
5833 				 * device does not support it.
5834 				 */
5835 				cts->sync_period = 0xa;
5836 			}
5837 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5838 			 && cts->sync_period <= 0x8) {
5839 				/*
5840 				 * Don't allow PACE transmission rates
5841 				 * if the device does support packetized
5842 				 * transfers.
5843 				 */
5844 				cts->sync_period = 0x9;
5845 			}
5846 		}
5847 
5848 		switch (cts->bus_width) {
5849 		case MSG_EXT_WDTR_BUS_32_BIT:
5850 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5851 			  || (inq_data->flags & SID_WBus32) != 0)
5852 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5853 				break;
5854 			/* Fall Through to 16-bit */
5855 		case MSG_EXT_WDTR_BUS_16_BIT:
5856 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5857 			  || (inq_data->flags & SID_WBus16) != 0)
5858 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5859 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5860 				break;
5861 			}
5862 			/* Fall Through to 8-bit */
5863 		default: /* New bus width?? */
5864 		case MSG_EXT_WDTR_BUS_8_BIT:
5865 			/* All targets can do this */
5866 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5867 			break;
5868 		}
5869 
5870 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5871 			/*
5872 			 * Can't tag queue without disconnection.
5873 			 */
5874 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5875 			cts->valid |= CCB_TRANS_TQ_VALID;
5876 		}
5877 
5878 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5879 		 || (inq_data->flags & SID_CmdQue) == 0
5880 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5881 		 || (device->quirk->mintags == 0)) {
5882 			/*
5883 			 * Can't tag on hardware that doesn't support,
5884 			 * doesn't have it enabled, or has broken tag support.
5885 			 */
5886 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5887 		}
5888 	}
5889 
5890 	qfrozen = FALSE;
5891 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5892 		int device_tagenb;
5893 
5894 		/*
5895 		 * If we are transitioning from tags to no-tags or
5896 		 * vice-versa, we need to carefully freeze and restart
5897 		 * the queue so that we don't overlap tagged and non-tagged
5898 		 * commands.  We also temporarily stop tags if there is
5899 		 * a change in transfer negotiation settings to allow
5900 		 * "tag-less" negotiation.
5901 		 */
5902 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5903 		 || (device->inq_flags & SID_CmdQue) != 0)
5904 			device_tagenb = TRUE;
5905 		else
5906 			device_tagenb = FALSE;
5907 
5908 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5909 		  && device_tagenb == FALSE)
5910 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5911 		  && device_tagenb == TRUE)) {
5912 
5913 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5914 				/*
5915 				 * Delay change to use tags until after a
5916 				 * few commands have gone to this device so
5917 				 * the controller has time to perform transfer
5918 				 * negotiations without tagged messages getting
5919 				 * in the way.
5920 				 */
5921 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5922 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5923 			} else {
5924 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5925 				qfrozen = TRUE;
5926 		  		device->inq_flags &= ~SID_CmdQue;
5927 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5928 						    sim->max_dev_openings);
5929 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5930 				device->tag_delay_count = 0;
5931 			}
5932 		}
5933 	}
5934 
5935 	if (async_update == FALSE) {
5936 		/*
5937 		 * If we are currently performing tagged transactions to
5938 		 * this device and want to change its negotiation parameters,
5939 		 * go non-tagged for a bit to give the controller a chance to
5940 		 * negotiate unhampered by tag messages.
5941 		 */
5942 		if ((device->inq_flags & SID_CmdQue) != 0
5943 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5944 				   CCB_TRANS_SYNC_OFFSET_VALID|
5945 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5946 			xpt_toggle_tags(cts->ccb_h.path);
5947 
5948 		(*(sim->sim_action))(sim, (union ccb *)cts);
5949 	}
5950 
5951 	if (qfrozen) {
5952 		struct ccb_relsim crs;
5953 
5954 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5955 			      /*priority*/1);
5956 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5957 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5958 		crs.openings
5959 		    = crs.release_timeout
5960 		    = crs.qfrozen_cnt
5961 		    = 0;
5962 		xpt_action((union ccb *)&crs);
5963 	}
5964 }
5965 
5966 static void
5967 xpt_toggle_tags(struct cam_path *path)
5968 {
5969 	struct cam_ed *dev;
5970 
5971 	/*
5972 	 * Give controllers a chance to renegotiate
5973 	 * before starting tag operations.  We
5974 	 * "toggle" tagged queuing off then on
5975 	 * which causes the tag enable command delay
5976 	 * counter to come into effect.
5977 	 */
5978 	dev = path->device;
5979 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5980 	 || ((dev->inq_flags & SID_CmdQue) != 0
5981  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5982 		struct ccb_trans_settings cts;
5983 
5984 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5985 		cts.flags = 0;
5986 		cts.valid = CCB_TRANS_TQ_VALID;
5987 		xpt_set_transfer_settings(&cts, path->device,
5988 					  /*async_update*/TRUE);
5989 		cts.flags = CCB_TRANS_TAG_ENB;
5990 		xpt_set_transfer_settings(&cts, path->device,
5991 					  /*async_update*/TRUE);
5992 	}
5993 }
5994 
5995 static void
5996 xpt_start_tags(struct cam_path *path)
5997 {
5998 	struct ccb_relsim crs;
5999 	struct cam_ed *device;
6000 	struct cam_sim *sim;
6001 	int    newopenings;
6002 
6003 	device = path->device;
6004 	sim = path->bus->sim;
6005 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6006 	xpt_freeze_devq(path, /*count*/1);
6007 	device->inq_flags |= SID_CmdQue;
6008 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6009 	xpt_dev_ccbq_resize(path, newopenings);
6010 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6011 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6012 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6013 	crs.openings
6014 	    = crs.release_timeout
6015 	    = crs.qfrozen_cnt
6016 	    = 0;
6017 	xpt_action((union ccb *)&crs);
6018 }
6019 
6020 static int busses_to_config;
6021 static int busses_to_reset;
6022 
6023 static int
6024 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6025 {
6026 	if (bus->path_id != CAM_XPT_PATH_ID) {
6027 		struct cam_path path;
6028 		struct ccb_pathinq cpi;
6029 		int can_negotiate;
6030 
6031 		busses_to_config++;
6032 		xpt_compile_path(&path, NULL, bus->path_id,
6033 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6034 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6035 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6036 		xpt_action((union ccb *)&cpi);
6037 		can_negotiate = cpi.hba_inquiry;
6038 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6039 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6040 		 && can_negotiate)
6041 			busses_to_reset++;
6042 		xpt_release_path(&path);
6043 	}
6044 
6045 	return(1);
6046 }
6047 
6048 static int
6049 xptconfigfunc(struct cam_eb *bus, void *arg)
6050 {
6051 	struct	cam_path *path;
6052 	union	ccb *work_ccb;
6053 
6054 	if (bus->path_id != CAM_XPT_PATH_ID) {
6055 		cam_status status;
6056 		int can_negotiate;
6057 
6058 		work_ccb = xpt_alloc_ccb();
6059 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6060 					      CAM_TARGET_WILDCARD,
6061 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6062 			printf("xptconfigfunc: xpt_create_path failed with "
6063 			       "status %#x for bus %d\n", status, bus->path_id);
6064 			printf("xptconfigfunc: halting bus configuration\n");
6065 			xpt_free_ccb(work_ccb);
6066 			busses_to_config--;
6067 			xpt_finishconfig(xpt_periph, NULL);
6068 			return(0);
6069 		}
6070 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6071 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6072 		xpt_action(work_ccb);
6073 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6074 			printf("xptconfigfunc: CPI failed on bus %d "
6075 			       "with status %d\n", bus->path_id,
6076 			       work_ccb->ccb_h.status);
6077 			xpt_finishconfig(xpt_periph, work_ccb);
6078 			return(1);
6079 		}
6080 
6081 		can_negotiate = work_ccb->cpi.hba_inquiry;
6082 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6083 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6084 		 && (can_negotiate != 0)) {
6085 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6086 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6087 			work_ccb->ccb_h.cbfcnp = NULL;
6088 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6089 				  ("Resetting Bus\n"));
6090 			xpt_action(work_ccb);
6091 			xpt_finishconfig(xpt_periph, work_ccb);
6092 		} else {
6093 			/* Act as though we performed a successful BUS RESET */
6094 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6095 			xpt_finishconfig(xpt_periph, work_ccb);
6096 		}
6097 	}
6098 
6099 	return(1);
6100 }
6101 
6102 static void
6103 xpt_config(void *arg)
6104 {
6105 	/* Now that interrupts are enabled, go find our devices */
6106 
6107 #ifdef CAMDEBUG
6108 	/* Setup debugging flags and path */
6109 #ifdef CAM_DEBUG_FLAGS
6110 	cam_dflags = CAM_DEBUG_FLAGS;
6111 #else /* !CAM_DEBUG_FLAGS */
6112 	cam_dflags = CAM_DEBUG_NONE;
6113 #endif /* CAM_DEBUG_FLAGS */
6114 #ifdef CAM_DEBUG_BUS
6115 	if (cam_dflags != CAM_DEBUG_NONE) {
6116 		if (xpt_create_path(&cam_dpath, xpt_periph,
6117 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6118 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6119 			printf("xpt_config: xpt_create_path() failed for debug"
6120 			       " target %d:%d:%d, debugging disabled\n",
6121 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6122 			cam_dflags = CAM_DEBUG_NONE;
6123 		}
6124 	} else
6125 		cam_dpath = NULL;
6126 #else /* !CAM_DEBUG_BUS */
6127 	cam_dpath = NULL;
6128 #endif /* CAM_DEBUG_BUS */
6129 #endif /* CAMDEBUG */
6130 
6131 	/*
6132 	 * Scan all installed busses.
6133 	 */
6134 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6135 
6136 	if (busses_to_config == 0) {
6137 		/* Call manually because we don't have any busses */
6138 		xpt_finishconfig(xpt_periph, NULL);
6139 	} else  {
6140 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6141 			printf("Waiting %d seconds for SCSI "
6142 			       "devices to settle\n", SCSI_DELAY/1000);
6143 		}
6144 		xpt_for_all_busses(xptconfigfunc, NULL);
6145 	}
6146 }
6147 
6148 /*
6149  * If the given device only has one peripheral attached to it, and if that
6150  * peripheral is the passthrough driver, announce it.  This insures that the
6151  * user sees some sort of announcement for every peripheral in their system.
6152  */
6153 static int
6154 xptpassannouncefunc(struct cam_ed *device, void *arg)
6155 {
6156 	struct cam_periph *periph;
6157 	int i;
6158 
6159 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6160 	     periph = SLIST_NEXT(periph, periph_links), i++);
6161 
6162 	periph = SLIST_FIRST(&device->periphs);
6163 	if ((i == 1)
6164 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6165 		xpt_announce_periph(periph, NULL);
6166 
6167 	return(1);
6168 }
6169 
6170 static void
6171 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6172 {
6173 	struct	periph_driver **p_drv;
6174 
6175 	if (done_ccb != NULL) {
6176 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6177 			  ("xpt_finishconfig\n"));
6178 		switch(done_ccb->ccb_h.func_code) {
6179 		case XPT_RESET_BUS:
6180 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6181 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6182 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6183 				xpt_action(done_ccb);
6184 				return;
6185 			}
6186 			/* FALLTHROUGH */
6187 		case XPT_SCAN_BUS:
6188 		default:
6189 			xpt_free_path(done_ccb->ccb_h.path);
6190 			busses_to_config--;
6191 			break;
6192 		}
6193 	}
6194 
6195 	if (busses_to_config == 0) {
6196 		/* Register all the peripheral drivers */
6197 		/* XXX This will have to change when we have loadable modules */
6198 		SET_FOREACH(p_drv, periphdriver_set) {
6199 			(*p_drv)->init();
6200 		}
6201 
6202 		/*
6203 		 * Check for devices with no "standard" peripheral driver
6204 		 * attached.  For any devices like that, announce the
6205 		 * passthrough driver so the user will see something.
6206 		 */
6207 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6208 
6209 		/* Release our hook so that the boot can continue. */
6210 		config_intrhook_disestablish(xpt_config_hook);
6211 		free(xpt_config_hook, M_TEMP);
6212 		xpt_config_hook = NULL;
6213 	}
6214 	if (done_ccb != NULL)
6215 		xpt_free_ccb(done_ccb);
6216 }
6217 
6218 static void
6219 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6220 {
6221 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6222 
6223 	switch (work_ccb->ccb_h.func_code) {
6224 	/* Common cases first */
6225 	case XPT_PATH_INQ:		/* Path routing inquiry */
6226 	{
6227 		struct ccb_pathinq *cpi;
6228 
6229 		cpi = &work_ccb->cpi;
6230 		cpi->version_num = 1; /* XXX??? */
6231 		cpi->hba_inquiry = 0;
6232 		cpi->target_sprt = 0;
6233 		cpi->hba_misc = 0;
6234 		cpi->hba_eng_cnt = 0;
6235 		cpi->max_target = 0;
6236 		cpi->max_lun = 0;
6237 		cpi->initiator_id = 0;
6238 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6239 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6240 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6241 		cpi->unit_number = sim->unit_number;
6242 		cpi->bus_id = sim->bus_id;
6243 		cpi->base_transfer_speed = 0;
6244 		cpi->ccb_h.status = CAM_REQ_CMP;
6245 		xpt_done(work_ccb);
6246 		break;
6247 	}
6248 	default:
6249 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6250 		xpt_done(work_ccb);
6251 		break;
6252 	}
6253 }
6254 
6255 /*
6256  * The xpt as a "controller" has no interrupt sources, so polling
6257  * is a no-op.
6258  */
6259 static void
6260 xptpoll(struct cam_sim *sim)
6261 {
6262 }
6263 
6264 /*
6265  * Should only be called by the machine interrupt dispatch routines,
6266  * so put these prototypes here instead of in the header.
6267  */
6268 
6269 static void
6270 swi_camnet(void *arg)
6271 {
6272 	camisr(&cam_netq);
6273 }
6274 
6275 static void
6276 swi_cambio(void *arg)
6277 {
6278 	camisr(&cam_bioq);
6279 }
6280 
6281 static void
6282 camisr(cam_isrq_t *queue)
6283 {
6284 	int	s;
6285 	struct	ccb_hdr *ccb_h;
6286 
6287 	s = splcam();
6288 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6289 		int	runq;
6290 
6291 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6292 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6293 		splx(s);
6294 
6295 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6296 			  ("camisr\n"));
6297 
6298 		runq = FALSE;
6299 
6300 		if (ccb_h->flags & CAM_HIGH_POWER) {
6301 			struct highpowerlist	*hphead;
6302 			struct cam_ed		*device;
6303 			union ccb		*send_ccb;
6304 
6305 			hphead = &highpowerq;
6306 
6307 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6308 
6309 			/*
6310 			 * Increment the count since this command is done.
6311 			 */
6312 			num_highpower++;
6313 
6314 			/*
6315 			 * Any high powered commands queued up?
6316 			 */
6317 			if (send_ccb != NULL) {
6318 				device = send_ccb->ccb_h.path->device;
6319 
6320 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6321 
6322 				xpt_release_devq(send_ccb->ccb_h.path,
6323 						 /*count*/1, /*runqueue*/TRUE);
6324 			}
6325 		}
6326 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6327 			struct cam_ed *dev;
6328 
6329 			dev = ccb_h->path->device;
6330 
6331 			s = splcam();
6332 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6333 
6334 			ccb_h->path->bus->sim->devq->send_active--;
6335 			ccb_h->path->bus->sim->devq->send_openings++;
6336 			splx(s);
6337 
6338 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6339 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6340 			  && (dev->ccbq.dev_active == 0))) {
6341 
6342 				xpt_release_devq(ccb_h->path, /*count*/1,
6343 						 /*run_queue*/TRUE);
6344 			}
6345 
6346 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6347 			 && (--dev->tag_delay_count == 0))
6348 				xpt_start_tags(ccb_h->path);
6349 
6350 			if ((dev->ccbq.queue.entries > 0)
6351 			 && (dev->qfrozen_cnt == 0)
6352 			 && (device_is_send_queued(dev) == 0)) {
6353 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6354 							      dev);
6355 			}
6356 		}
6357 
6358 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6359 			xpt_release_simq(ccb_h->path->bus->sim,
6360 					 /*run_queue*/TRUE);
6361 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6362 			runq = FALSE;
6363 		}
6364 
6365 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6366 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6367 			xpt_release_devq(ccb_h->path, /*count*/1,
6368 					 /*run_queue*/TRUE);
6369 			ccb_h->status &= ~CAM_DEV_QFRZN;
6370 		} else if (runq) {
6371 			xpt_run_dev_sendq(ccb_h->path->bus);
6372 		}
6373 
6374 		/* Call the peripheral driver's callback */
6375 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6376 
6377 		/* Raise IPL for while test */
6378 		s = splcam();
6379 	}
6380 	splx(s);
6381 }
6382