xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision a563ca70)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53 
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56 
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65 
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71 
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77 	struct task	task;
78 	void		*data1;
79 	uintptr_t	data2;
80 };
81 
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87 	SLIST_ENTRY(async_node)	links;
88 	u_int32_t	event_enable;	/* Async Event enables */
89 	void		(*callback)(void *arg, u_int32_t code,
90 				    struct cam_path *path, void *args);
91 	void		*callback_arg;
92 };
93 
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96 
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104 
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111 	cam_pinfo pinfo;
112 	struct	  cam_ed *device;
113 };
114 
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121 	TAILQ_ENTRY(cam_ed) links;
122 	struct	cam_ed_qinfo alloc_ccb_entry;
123 	struct	cam_ed_qinfo send_ccb_entry;
124 	struct	cam_et	 *target;
125 	struct	cam_sim  *sim;
126 	lun_id_t	 lun_id;
127 	struct	camq drvq;		/*
128 					 * Queue of type drivers wanting to do
129 					 * work on this device.
130 					 */
131 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
132 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
133 	struct	periph_list periphs;	/* All attached devices */
134 	u_int	generation;		/* Generation number */
135 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
136 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
137 					/* Storage for the inquiry data */
138 	cam_proto	 protocol;
139 	u_int		 protocol_version;
140 	cam_xport	 transport;
141 	u_int		 transport_version;
142 	struct		 scsi_inquiry_data inq_data;
143 	u_int8_t	 inq_flags;	/*
144 					 * Current settings for inquiry flags.
145 					 * This allows us to override settings
146 					 * like disconnection and tagged
147 					 * queuing for a device.
148 					 */
149 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
150 	u_int8_t	 serial_num_len;
151 	u_int8_t	*serial_num;
152 	u_int32_t	 qfrozen_cnt;
153 	u_int32_t	 flags;
154 #define CAM_DEV_UNCONFIGURED	 	0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
156 #define CAM_DEV_REL_ON_COMPLETE		0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
159 #define CAM_DEV_TAG_AFTER_COUNT		0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
161 #define	CAM_DEV_IN_DV			0x80
162 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
163 	u_int32_t	 tag_delay_count;
164 #define	CAM_TAG_DELAY_COUNT		5
165 	u_int32_t	 tag_saved_openings;
166 	u_int32_t	 refcount;
167 	struct callout	 callout;
168 };
169 
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177 	TAILQ_HEAD(, cam_ed) ed_entries;
178 	TAILQ_ENTRY(cam_et) links;
179 	struct	cam_eb	*bus;
180 	target_id_t	target_id;
181 	u_int32_t	refcount;
182 	u_int		generation;
183 	struct		timeval last_reset;	/* uptime of last reset */
184 };
185 
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192 	TAILQ_HEAD(, cam_et) et_entries;
193 	TAILQ_ENTRY(cam_eb)  links;
194 	path_id_t	     path_id;
195 	struct cam_sim	     *sim;
196 	struct timeval	     last_reset;	/* uptime of last reset */
197 	u_int32_t	     flags;
198 #define	CAM_EB_RUNQ_SCHEDULED	0x01
199 	u_int32_t	     refcount;
200 	u_int		     generation;
201 	int		     counted_to_config;	/* busses_to_config */
202 };
203 
204 struct cam_path {
205 	struct cam_periph *periph;
206 	struct cam_eb	  *bus;
207 	struct cam_et	  *target;
208 	struct cam_ed	  *device;
209 };
210 
211 struct xpt_quirk_entry {
212 	struct scsi_inquiry_pattern inq_pat;
213 	u_int8_t quirks;
214 #define	CAM_QUIRK_NOLUNS	0x01
215 #define	CAM_QUIRK_NOSERIAL	0x02
216 #define	CAM_QUIRK_HILUNS	0x04
217 #define	CAM_QUIRK_NOHILUNS	0x08
218 	u_int mintags;
219 	u_int maxtags;
220 };
221 
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228 
229 #define	CAM_SCSI2_MAXLUN	8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define	CAN_SRCH_HI_SPARSE(dv)				\
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241 
242 #define	CAN_SRCH_HI_DENSE(dv)				\
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246 
247 typedef enum {
248 	XPT_FLAG_OPEN		= 0x01
249 } xpt_flags;
250 
251 struct xpt_softc {
252 	xpt_flags		flags;
253 	u_int32_t		xpt_generation;
254 
255 	/* number of high powered commands that can go through right now */
256 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
257 	int			num_highpower;
258 
259 	/* queue for handling async rescan requests. */
260 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
261 	int			ccb_scanq_running;
262 
263 	/* Registered busses */
264 	TAILQ_HEAD(,cam_eb)	xpt_busses;
265 	u_int			bus_generation;
266 
267 	struct intr_config_hook	*xpt_config_hook;
268 
269 	struct lock		xpt_topo_lock;
270 	struct lock		xpt_lock;
271 };
272 
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279 
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282 	{
283 		/* Reports QUEUE FULL for temporary resource shortages */
284 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
286 	},
287 	{
288 		/* Reports QUEUE FULL for temporary resource shortages */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
291 	},
292 	{
293 		/* Reports QUEUE FULL for temporary resource shortages */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
296 	},
297 	{
298 		/* Broken tagged queuing drive */
299 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
301 	},
302 	{
303 		/* Broken tagged queuing drive */
304 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
306 	},
307 	{
308 		/* Broken tagged queuing drive */
309 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
311 	},
312 	{
313 		/*
314 		 * Unfortunately, the Quantum Atlas III has the same
315 		 * problem as the Atlas II drives above.
316 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
317 		 *
318 		 * For future reference, the drive with the problem was:
319 		 * QUANTUM QM39100TD-SW N1B0
320 		 *
321 		 * It's possible that Quantum will fix the problem in later
322 		 * firmware revisions.  If that happens, the quirk entry
323 		 * will need to be made specific to the firmware revisions
324 		 * with the problem.
325 		 *
326 		 */
327 		/* Reports QUEUE FULL for temporary resource shortages */
328 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
330 	},
331 	{
332 		/*
333 		 * 18 Gig Atlas III, same problem as the 9G version.
334 		 * Reported by: Andre Albsmeier
335 		 *		<andre.albsmeier@mchp.siemens.de>
336 		 *
337 		 * For future reference, the drive with the problem was:
338 		 * QUANTUM QM318000TD-S N491
339 		 */
340 		/* Reports QUEUE FULL for temporary resource shortages */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
343 	},
344 	{
345 		/*
346 		 * Broken tagged queuing drive
347 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 		 *         and: Martin Renters <martin@tdc.on.ca>
349 		 */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 		/*
354 		 * The Seagate Medalist Pro drives have very poor write
355 		 * performance with anything more than 2 tags.
356 		 *
357 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358 		 * Drive:  <SEAGATE ST36530N 1444>
359 		 *
360 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361 		 * Drive:  <SEAGATE ST34520W 1281>
362 		 *
363 		 * No one has actually reported that the 9G version
364 		 * (ST39140*) of the Medalist Pro has the same problem, but
365 		 * we're assuming that it does because the 4G and 6.5G
366 		 * versions of the drive are broken.
367 		 */
368 	{
369 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
371 	},
372 	{
373 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
375 	},
376 	{
377 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
379 	},
380 	{
381 		/*
382 		 * Slow when tagged queueing is enabled.  Write performance
383 		 * steadily drops off with more and more concurrent
384 		 * transactions.  Best sequential write performance with
385 		 * tagged queueing turned off and write caching turned on.
386 		 *
387 		 * PR:  kern/10398
388 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
390 		 *
391 		 * The drive with the problem had the "S65A" firmware
392 		 * revision, and has also been reported (by Stephen J.
393 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
394 		 * firmware revision.
395 		 *
396 		 * Although no one has reported problems with the 2 gig
397 		 * version of the DCAS drive, the assumption is that it
398 		 * has the same problems as the 4 gig version.  Therefore
399 		 * this quirk entries disables tagged queueing for all
400 		 * DCAS drives.
401 		 */
402 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* Broken tagged queuing drive */
407 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
409 	},
410 	{
411 		/* Broken tagged queuing drive */
412 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
414 	},
415 	{
416 		/* This does not support other than LUN 0 */
417 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419 	},
420 	{
421 		/*
422 		 * Broken tagged queuing drive.
423 		 * Submitted by:
424 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425 		 * in PR kern/9535
426 		 */
427 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
429 	},
430         {
431 		/*
432 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
433 		 * 8MB/sec.)
434 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 		 * Best performance with these drives is achieved with
436 		 * tagged queueing turned off, and write caching turned on.
437 		 */
438 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442 		/*
443 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
444 		 * 8MB/sec.)
445 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 		 * Best performance with these drives is achieved with
447 		 * tagged queueing turned off, and write caching turned on.
448 		 */
449 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452 	{
453 		/*
454 		 * Doesn't handle queue full condition correctly,
455 		 * so we need to limit maxtags to what the device
456 		 * can handle instead of determining this automatically.
457 		 */
458 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
460 	},
461 	{
462 		/* Really only one LUN */
463 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465 	},
466 	{
467 		/* I can't believe we need a quirk for DPT volumes. */
468 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469 		CAM_QUIRK_NOLUNS,
470 		/*mintags*/0, /*maxtags*/255
471 	},
472 	{
473 		/*
474 		 * Many Sony CDROM drives don't like multi-LUN probing.
475 		 */
476 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/*
481 		 * This drive doesn't like multiple LUN probing.
482 		 * Submitted by:  Parag Patel <parag@cgt.com>
483 		 */
484 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486 	},
487 	{
488 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490 	},
491 	{
492 		/*
493 		 * The 8200 doesn't like multi-lun probing, and probably
494 		 * don't like serial number requests either.
495 		 */
496 		{
497 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498 			"EXB-8200*", "*"
499 		},
500 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/*
504 		 * Let's try the same as above, but for a drive that says
505 		 * it's an IPL-6860 but is actually an EXB 8200.
506 		 */
507 		{
508 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509 			"IPL-6860*", "*"
510 		},
511 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 	},
513 	{
514 		/*
515 		 * These Hitachi drives don't like multi-lun probing.
516 		 * The PR submitter has a DK319H, but says that the Linux
517 		 * kernel has a similar work-around for the DK312 and DK314,
518 		 * so all DK31* drives are quirked here.
519 		 * PR:            misc/18793
520 		 * Submitted by:  Paul Haddad <paul@pth.com>
521 		 */
522 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524 	},
525 	{
526 		/*
527 		 * The Hitachi CJ series with J8A8 firmware apparantly has
528 		 * problems with tagged commands.
529 		 * PR: 23536
530 		 * Reported by: amagai@nue.org
531 		 */
532 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534 	},
535 	{
536 		/*
537 		 * These are the large storage arrays.
538 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
539 		 */
540 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 		CAM_QUIRK_HILUNS, 2, 1024
542 	},
543 	{
544 		/*
545 		 * This old revision of the TDC3600 is also SCSI-1, and
546 		 * hangs upon serial number probing.
547 		 */
548 		{
549 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550 			" TDC 3600", "U07:"
551 		},
552 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553 	},
554 	{
555 		/*
556 		 * Would repond to all LUNs if asked for.
557 		 */
558 		{
559 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560 			"CP150", "*"
561 		},
562 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563 	},
564 	{
565 		/*
566 		 * Would repond to all LUNs if asked for.
567 		 */
568 		{
569 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570 			"96X2*", "*"
571 		},
572 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573 	},
574 	{
575 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
576 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578 	},
579 	{
580 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
581 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583 	},
584 	{
585 		/* TeraSolutions special settings for TRC-22 RAID */
586 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
588 	},
589 	{
590 		/* Veritas Storage Appliance */
591 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593 	},
594 	{
595 		/*
596 		 * Would respond to all LUNs.  Device type and removable
597 		 * flag are jumper-selectable.
598 		 */
599 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600 		  "Tahiti 1", "*"
601 		},
602 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603 	},
604 	{
605 		/* EasyRAID E5A aka. areca ARC-6010 */
606 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608 	},
609 	{
610 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612 	},
613 	{
614 		/* Default tagged queuing parameters for all devices */
615 		{
616 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
618 		},
619 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
620 	},
621 };
622 
623 static const int xpt_quirk_table_size =
624 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
625 
626 typedef enum {
627 	DM_RET_COPY		= 0x01,
628 	DM_RET_FLAG_MASK	= 0x0f,
629 	DM_RET_NONE		= 0x00,
630 	DM_RET_STOP		= 0x10,
631 	DM_RET_DESCEND		= 0x20,
632 	DM_RET_ERROR		= 0x30,
633 	DM_RET_ACTION_MASK	= 0xf0
634 } dev_match_ret;
635 
636 typedef enum {
637 	XPT_DEPTH_BUS,
638 	XPT_DEPTH_TARGET,
639 	XPT_DEPTH_DEVICE,
640 	XPT_DEPTH_PERIPH
641 } xpt_traverse_depth;
642 
643 struct xpt_traverse_config {
644 	xpt_traverse_depth	depth;
645 	void			*tr_func;
646 	void			*tr_arg;
647 };
648 
649 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
650 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
651 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
652 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
653 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
654 
655 /* Transport layer configuration information */
656 static struct xpt_softc xsoftc;
657 
658 /* Queues for our software interrupt handler */
659 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
660 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
661 static cam_simq_t cam_simq;
662 static struct spinlock cam_simq_spin;
663 
664 struct cam_periph *xpt_periph;
665 
666 static periph_init_t xpt_periph_init;
667 
668 static periph_init_t probe_periph_init;
669 
670 static struct periph_driver xpt_driver =
671 {
672 	xpt_periph_init, "xpt",
673 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
674 };
675 
676 static struct periph_driver probe_driver =
677 {
678 	probe_periph_init, "probe",
679 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
680 };
681 
682 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
683 PERIPHDRIVER_DECLARE(probe, probe_driver);
684 
685 static d_open_t xptopen;
686 static d_close_t xptclose;
687 static d_ioctl_t xptioctl;
688 
689 static struct dev_ops xpt_ops = {
690 	{ "xpt", 0, 0 },
691 	.d_open = xptopen,
692 	.d_close = xptclose,
693 	.d_ioctl = xptioctl
694 };
695 
696 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
697 static void dead_sim_poll(struct cam_sim *sim);
698 
699 /* Dummy SIM that is used when the real one has gone. */
700 static struct cam_sim cam_dead_sim;
701 static struct lock    cam_dead_lock;
702 
703 /* Storage for debugging datastructures */
704 #ifdef	CAMDEBUG
705 struct cam_path *cam_dpath;
706 u_int32_t cam_dflags;
707 u_int32_t cam_debug_delay;
708 #endif
709 
710 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
711 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
712 #endif
713 
714 /*
715  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
716  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
717  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
718  */
719 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
720     || defined(CAM_DEBUG_LUN)
721 #ifdef CAMDEBUG
722 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
723     || !defined(CAM_DEBUG_LUN)
724 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
725         and CAM_DEBUG_LUN"
726 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
727 #else /* !CAMDEBUG */
728 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
729 #endif /* CAMDEBUG */
730 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
731 
732 /* Our boot-time initialization hook */
733 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
734 
735 static moduledata_t cam_moduledata = {
736 	"cam",
737 	cam_module_event_handler,
738 	NULL
739 };
740 
741 static int	xpt_init(void *);
742 
743 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
744 MODULE_VERSION(cam, 1);
745 
746 
747 static cam_status	xpt_compile_path(struct cam_path *new_path,
748 					 struct cam_periph *perph,
749 					 path_id_t path_id,
750 					 target_id_t target_id,
751 					 lun_id_t lun_id);
752 
753 static void		xpt_release_path(struct cam_path *path);
754 
755 static void		xpt_async_bcast(struct async_list *async_head,
756 					u_int32_t async_code,
757 					struct cam_path *path,
758 					void *async_arg);
759 static void		xpt_dev_async(u_int32_t async_code,
760 				      struct cam_eb *bus,
761 				      struct cam_et *target,
762 				      struct cam_ed *device,
763 				      void *async_arg);
764 static path_id_t xptnextfreepathid(void);
765 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
766 static union ccb *xpt_get_ccb(struct cam_ed *device);
767 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
768 				  u_int32_t new_priority);
769 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
770 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
771 static timeout_t xpt_release_devq_timeout;
772 static void	 xpt_release_bus(struct cam_eb *bus);
773 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
774 					 int run_queue);
775 static struct cam_et*
776 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
777 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
778 static struct cam_ed*
779 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
780 				  lun_id_t lun_id);
781 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
782 				    struct cam_ed *device);
783 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
784 static struct cam_eb*
785 		 xpt_find_bus(path_id_t path_id);
786 static struct cam_et*
787 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
788 static struct cam_ed*
789 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
790 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
791 static void	 xpt_scan_lun(struct cam_periph *periph,
792 			      struct cam_path *path, cam_flags flags,
793 			      union ccb *ccb);
794 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
795 static xpt_busfunc_t	xptconfigbuscountfunc;
796 static xpt_busfunc_t	xptconfigfunc;
797 static void	 xpt_config(void *arg);
798 static xpt_devicefunc_t xptpassannouncefunc;
799 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
800 static void	 xpt_uncount_bus (struct cam_eb *bus);
801 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
802 static void	 xptpoll(struct cam_sim *sim);
803 static inthand2_t swi_cambio;
804 static void	 camisr(void *);
805 static void	 camisr_runqueue(struct cam_sim *);
806 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
807 				    u_int num_patterns, struct cam_eb *bus);
808 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
809 				       u_int num_patterns,
810 				       struct cam_ed *device);
811 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
812 				       u_int num_patterns,
813 				       struct cam_periph *periph);
814 static xpt_busfunc_t	xptedtbusfunc;
815 static xpt_targetfunc_t	xptedttargetfunc;
816 static xpt_devicefunc_t	xptedtdevicefunc;
817 static xpt_periphfunc_t	xptedtperiphfunc;
818 static xpt_pdrvfunc_t	xptplistpdrvfunc;
819 static xpt_periphfunc_t	xptplistperiphfunc;
820 static int		xptedtmatch(struct ccb_dev_match *cdm);
821 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
822 static int		xptbustraverse(struct cam_eb *start_bus,
823 				       xpt_busfunc_t *tr_func, void *arg);
824 static int		xpttargettraverse(struct cam_eb *bus,
825 					  struct cam_et *start_target,
826 					  xpt_targetfunc_t *tr_func, void *arg);
827 static int		xptdevicetraverse(struct cam_et *target,
828 					  struct cam_ed *start_device,
829 					  xpt_devicefunc_t *tr_func, void *arg);
830 static int		xptperiphtraverse(struct cam_ed *device,
831 					  struct cam_periph *start_periph,
832 					  xpt_periphfunc_t *tr_func, void *arg);
833 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
834 					xpt_pdrvfunc_t *tr_func, void *arg);
835 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
836 					    struct cam_periph *start_periph,
837 					    xpt_periphfunc_t *tr_func,
838 					    void *arg);
839 static xpt_busfunc_t	xptdefbusfunc;
840 static xpt_targetfunc_t	xptdeftargetfunc;
841 static xpt_devicefunc_t	xptdefdevicefunc;
842 static xpt_periphfunc_t	xptdefperiphfunc;
843 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
844 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
845 					    void *arg);
846 static xpt_devicefunc_t	xptsetasyncfunc;
847 static xpt_busfunc_t	xptsetasyncbusfunc;
848 static cam_status	xptregister(struct cam_periph *periph,
849 				    void *arg);
850 static cam_status	proberegister(struct cam_periph *periph,
851 				      void *arg);
852 static void	 probeschedule(struct cam_periph *probe_periph);
853 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
854 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
855 static int       proberequestbackoff(struct cam_periph *periph,
856 				     struct cam_ed *device);
857 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
858 static void	 probecleanup(struct cam_periph *periph);
859 static void	 xpt_find_quirk(struct cam_ed *device);
860 static void	 xpt_devise_transport(struct cam_path *path);
861 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
862 					   struct cam_ed *device,
863 					   int async_update);
864 static void	 xpt_toggle_tags(struct cam_path *path);
865 static void	 xpt_start_tags(struct cam_path *path);
866 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
867 					    struct cam_ed *dev);
868 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
869 					   struct cam_ed *dev);
870 static __inline int periph_is_queued(struct cam_periph *periph);
871 static __inline int device_is_alloc_queued(struct cam_ed *device);
872 static __inline int device_is_send_queued(struct cam_ed *device);
873 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
874 
875 static __inline int
876 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
877 {
878 	int retval;
879 
880 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
881 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
882 			cam_ccbq_resize(&dev->ccbq,
883 					dev->ccbq.dev_openings
884 					+ dev->ccbq.dev_active);
885 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
886 		}
887 		/*
888 		 * The priority of a device waiting for CCB resources
889 		 * is that of the the highest priority peripheral driver
890 		 * enqueued.
891 		 */
892 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
893 					  &dev->alloc_ccb_entry.pinfo,
894 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
895 	} else {
896 		retval = 0;
897 	}
898 
899 	return (retval);
900 }
901 
902 static __inline int
903 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
904 {
905 	int	retval;
906 
907 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
908 		/*
909 		 * The priority of a device waiting for controller
910 		 * resources is that of the the highest priority CCB
911 		 * enqueued.
912 		 */
913 		retval =
914 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
915 				     &dev->send_ccb_entry.pinfo,
916 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
917 	} else {
918 		retval = 0;
919 	}
920 	return (retval);
921 }
922 
923 static __inline int
924 periph_is_queued(struct cam_periph *periph)
925 {
926 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
927 }
928 
929 static __inline int
930 device_is_alloc_queued(struct cam_ed *device)
931 {
932 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
933 }
934 
935 static __inline int
936 device_is_send_queued(struct cam_ed *device)
937 {
938 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
939 }
940 
941 static __inline int
942 dev_allocq_is_runnable(struct cam_devq *devq)
943 {
944 	/*
945 	 * Have work to do.
946 	 * Have space to do more work.
947 	 * Allowed to do work.
948 	 */
949 	return ((devq->alloc_queue.qfrozen_cnt == 0)
950 	     && (devq->alloc_queue.entries > 0)
951 	     && (devq->alloc_openings > 0));
952 }
953 
954 static void
955 xpt_periph_init(void)
956 {
957 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
958 }
959 
960 static void
961 probe_periph_init(void)
962 {
963 }
964 
965 
966 static void
967 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 {
969 	/* Caller will release the CCB */
970 	wakeup(&done_ccb->ccb_h.cbfcnp);
971 }
972 
973 static int
974 xptopen(struct dev_open_args *ap)
975 {
976 	cdev_t dev = ap->a_head.a_dev;
977 
978 	/*
979 	 * Only allow read-write access.
980 	 */
981 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
982 		return(EPERM);
983 
984 	/*
985 	 * We don't allow nonblocking access.
986 	 */
987 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
988 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
989 		return(ENODEV);
990 	}
991 
992 	/* Mark ourselves open */
993 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
994 	xsoftc.flags |= XPT_FLAG_OPEN;
995 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996 
997 	return(0);
998 }
999 
1000 static int
1001 xptclose(struct dev_close_args *ap)
1002 {
1003 
1004 	/* Mark ourselves closed */
1005 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1006 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1007 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008 
1009 	return(0);
1010 }
1011 
1012 /*
1013  * Don't automatically grab the xpt softc lock here even though this is going
1014  * through the xpt device.  The xpt device is really just a back door for
1015  * accessing other devices and SIMs, so the right thing to do is to grab
1016  * the appropriate SIM lock once the bus/SIM is located.
1017  */
1018 static int
1019 xptioctl(struct dev_ioctl_args *ap)
1020 {
1021 	int error;
1022 
1023 	error = 0;
1024 
1025 	switch(ap->a_cmd) {
1026 	/*
1027 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028 	 * to accept CCB types that don't quite make sense to send through a
1029 	 * passthrough driver.
1030 	 */
1031 	case CAMIOCOMMAND: {
1032 		union ccb *ccb;
1033 		union ccb *inccb;
1034 		struct cam_eb *bus;
1035 
1036 		inccb = (union ccb *)ap->a_data;
1037 
1038 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1039 		if (bus == NULL) {
1040 			error = EINVAL;
1041 			break;
1042 		}
1043 
1044 		switch(inccb->ccb_h.func_code) {
1045 		case XPT_SCAN_BUS:
1046 		case XPT_RESET_BUS:
1047 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1048 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1049 				error = EINVAL;
1050 				break;
1051 			}
1052 			/* FALLTHROUGH */
1053 		case XPT_PATH_INQ:
1054 		case XPT_ENG_INQ:
1055 		case XPT_SCAN_LUN:
1056 
1057 			ccb = xpt_alloc_ccb();
1058 
1059 			CAM_SIM_LOCK(bus->sim);
1060 
1061 			/*
1062 			 * Create a path using the bus, target, and lun the
1063 			 * user passed in.
1064 			 */
1065 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1066 					    inccb->ccb_h.path_id,
1067 					    inccb->ccb_h.target_id,
1068 					    inccb->ccb_h.target_lun) !=
1069 					    CAM_REQ_CMP){
1070 				error = EINVAL;
1071 				CAM_SIM_UNLOCK(bus->sim);
1072 				xpt_free_ccb(ccb);
1073 				break;
1074 			}
1075 			/* Ensure all of our fields are correct */
1076 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1077 				      inccb->ccb_h.pinfo.priority);
1078 			xpt_merge_ccb(ccb, inccb);
1079 			ccb->ccb_h.cbfcnp = xptdone;
1080 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1081 			bcopy(ccb, inccb, sizeof(union ccb));
1082 			xpt_free_path(ccb->ccb_h.path);
1083 			xpt_free_ccb(ccb);
1084 			CAM_SIM_UNLOCK(bus->sim);
1085 			break;
1086 
1087 		case XPT_DEBUG: {
1088 			union ccb ccb;
1089 
1090 			/*
1091 			 * This is an immediate CCB, so it's okay to
1092 			 * allocate it on the stack.
1093 			 */
1094 
1095 			CAM_SIM_LOCK(bus->sim);
1096 
1097 			/*
1098 			 * Create a path using the bus, target, and lun the
1099 			 * user passed in.
1100 			 */
1101 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1102 					    inccb->ccb_h.path_id,
1103 					    inccb->ccb_h.target_id,
1104 					    inccb->ccb_h.target_lun) !=
1105 					    CAM_REQ_CMP){
1106 				error = EINVAL;
1107 				CAM_SIM_UNLOCK(bus->sim);
1108 				break;
1109 			}
1110 			/* Ensure all of our fields are correct */
1111 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1112 				      inccb->ccb_h.pinfo.priority);
1113 			xpt_merge_ccb(&ccb, inccb);
1114 			ccb.ccb_h.cbfcnp = xptdone;
1115 			xpt_action(&ccb);
1116 			CAM_SIM_UNLOCK(bus->sim);
1117 			bcopy(&ccb, inccb, sizeof(union ccb));
1118 			xpt_free_path(ccb.ccb_h.path);
1119 			break;
1120 
1121 		}
1122 		case XPT_DEV_MATCH: {
1123 			struct cam_periph_map_info mapinfo;
1124 			struct cam_path *old_path;
1125 
1126 			/*
1127 			 * We can't deal with physical addresses for this
1128 			 * type of transaction.
1129 			 */
1130 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1131 				error = EINVAL;
1132 				break;
1133 			}
1134 
1135 			/*
1136 			 * Save this in case the caller had it set to
1137 			 * something in particular.
1138 			 */
1139 			old_path = inccb->ccb_h.path;
1140 
1141 			/*
1142 			 * We really don't need a path for the matching
1143 			 * code.  The path is needed because of the
1144 			 * debugging statements in xpt_action().  They
1145 			 * assume that the CCB has a valid path.
1146 			 */
1147 			inccb->ccb_h.path = xpt_periph->path;
1148 
1149 			bzero(&mapinfo, sizeof(mapinfo));
1150 
1151 			/*
1152 			 * Map the pattern and match buffers into kernel
1153 			 * virtual address space.
1154 			 */
1155 			error = cam_periph_mapmem(inccb, &mapinfo);
1156 
1157 			if (error) {
1158 				inccb->ccb_h.path = old_path;
1159 				break;
1160 			}
1161 
1162 			/*
1163 			 * This is an immediate CCB, we can send it on directly.
1164 			 */
1165 			xpt_action(inccb);
1166 
1167 			/*
1168 			 * Map the buffers back into user space.
1169 			 */
1170 			cam_periph_unmapmem(inccb, &mapinfo);
1171 
1172 			inccb->ccb_h.path = old_path;
1173 
1174 			error = 0;
1175 			break;
1176 		}
1177 		default:
1178 			error = ENOTSUP;
1179 			break;
1180 		}
1181 		xpt_release_bus(bus);
1182 		break;
1183 	}
1184 	/*
1185 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1186 	 * with the periphal driver name and unit name filled in.  The other
1187 	 * fields don't really matter as input.  The passthrough driver name
1188 	 * ("pass"), and unit number are passed back in the ccb.  The current
1189 	 * device generation number, and the index into the device peripheral
1190 	 * driver list, and the status are also passed back.  Note that
1191 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1192 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1193 	 * (or rather should be) impossible for the device peripheral driver
1194 	 * list to change since we look at the whole thing in one pass, and
1195 	 * we do it with lock protection.
1196 	 *
1197 	 */
1198 	case CAMGETPASSTHRU: {
1199 		union ccb *ccb;
1200 		struct cam_periph *periph;
1201 		struct periph_driver **p_drv;
1202 		char   *name;
1203 		u_int unit;
1204 		u_int cur_generation;
1205 		int base_periph_found;
1206 		int splbreaknum;
1207 
1208 		ccb = (union ccb *)ap->a_data;
1209 		unit = ccb->cgdl.unit_number;
1210 		name = ccb->cgdl.periph_name;
1211 		/*
1212 		 * Every 100 devices, we want to drop our lock protection to
1213 		 * give the software interrupt handler a chance to run.
1214 		 * Most systems won't run into this check, but this should
1215 		 * avoid starvation in the software interrupt handler in
1216 		 * large systems.
1217 		 */
1218 		splbreaknum = 100;
1219 
1220 		ccb = (union ccb *)ap->a_data;
1221 
1222 		base_periph_found = 0;
1223 
1224 		/*
1225 		 * Sanity check -- make sure we don't get a null peripheral
1226 		 * driver name.
1227 		 */
1228 		if (*ccb->cgdl.periph_name == '\0') {
1229 			error = EINVAL;
1230 			break;
1231 		}
1232 
1233 		/* Keep the list from changing while we traverse it */
1234 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1235 ptstartover:
1236 		cur_generation = xsoftc.xpt_generation;
1237 
1238 		/* first find our driver in the list of drivers */
1239 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1240 			if (strcmp((*p_drv)->driver_name, name) == 0)
1241 				break;
1242 		}
1243 
1244 		if (*p_drv == NULL) {
1245 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1246 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1247 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1248 			*ccb->cgdl.periph_name = '\0';
1249 			ccb->cgdl.unit_number = 0;
1250 			error = ENOENT;
1251 			break;
1252 		}
1253 
1254 		/*
1255 		 * Run through every peripheral instance of this driver
1256 		 * and check to see whether it matches the unit passed
1257 		 * in by the user.  If it does, get out of the loops and
1258 		 * find the passthrough driver associated with that
1259 		 * peripheral driver.
1260 		 */
1261 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262 
1263 			if (periph->unit_number == unit) {
1264 				break;
1265 			} else if (--splbreaknum == 0) {
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1267 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1268 				splbreaknum = 100;
1269 				if (cur_generation != xsoftc.xpt_generation)
1270 				       goto ptstartover;
1271 			}
1272 		}
1273 		/*
1274 		 * If we found the peripheral driver that the user passed
1275 		 * in, go through all of the peripheral drivers for that
1276 		 * particular device and look for a passthrough driver.
1277 		 */
1278 		if (periph != NULL) {
1279 			struct cam_ed *device;
1280 			int i;
1281 
1282 			base_periph_found = 1;
1283 			device = periph->path->device;
1284 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1285 			     periph != NULL;
1286 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1287 				/*
1288 				 * Check to see whether we have a
1289 				 * passthrough device or not.
1290 				 */
1291 				if (strcmp(periph->periph_name, "pass") == 0) {
1292 					/*
1293 					 * Fill in the getdevlist fields.
1294 					 */
1295 					strcpy(ccb->cgdl.periph_name,
1296 					       periph->periph_name);
1297 					ccb->cgdl.unit_number =
1298 						periph->unit_number;
1299 					if (SLIST_NEXT(periph, periph_links))
1300 						ccb->cgdl.status =
1301 							CAM_GDEVLIST_MORE_DEVS;
1302 					else
1303 						ccb->cgdl.status =
1304 						       CAM_GDEVLIST_LAST_DEVICE;
1305 					ccb->cgdl.generation =
1306 						device->generation;
1307 					ccb->cgdl.index = i;
1308 					/*
1309 					 * Fill in some CCB header fields
1310 					 * that the user may want.
1311 					 */
1312 					ccb->ccb_h.path_id =
1313 						periph->path->bus->path_id;
1314 					ccb->ccb_h.target_id =
1315 						periph->path->target->target_id;
1316 					ccb->ccb_h.target_lun =
1317 						periph->path->device->lun_id;
1318 					ccb->ccb_h.status = CAM_REQ_CMP;
1319 					break;
1320 				}
1321 			}
1322 		}
1323 
1324 		/*
1325 		 * If the periph is null here, one of two things has
1326 		 * happened.  The first possibility is that we couldn't
1327 		 * find the unit number of the particular peripheral driver
1328 		 * that the user is asking about.  e.g. the user asks for
1329 		 * the passthrough driver for "da11".  We find the list of
1330 		 * "da" peripherals all right, but there is no unit 11.
1331 		 * The other possibility is that we went through the list
1332 		 * of peripheral drivers attached to the device structure,
1333 		 * but didn't find one with the name "pass".  Either way,
1334 		 * we return ENOENT, since we couldn't find something.
1335 		 */
1336 		if (periph == NULL) {
1337 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1338 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1339 			*ccb->cgdl.periph_name = '\0';
1340 			ccb->cgdl.unit_number = 0;
1341 			error = ENOENT;
1342 			/*
1343 			 * It is unfortunate that this is even necessary,
1344 			 * but there are many, many clueless users out there.
1345 			 * If this is true, the user is looking for the
1346 			 * passthrough driver, but doesn't have one in his
1347 			 * kernel.
1348 			 */
1349 			if (base_periph_found == 1) {
1350 				kprintf("xptioctl: pass driver is not in the "
1351 				       "kernel\n");
1352 				kprintf("xptioctl: put \"device pass\" in "
1353 				       "your kernel config file\n");
1354 			}
1355 		}
1356 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1357 		break;
1358 		}
1359 	default:
1360 		error = ENOTTY;
1361 		break;
1362 	}
1363 
1364 	return(error);
1365 }
1366 
1367 static int
1368 cam_module_event_handler(module_t mod, int what, void *arg)
1369 {
1370 	int error;
1371 
1372 	switch (what) {
1373 	case MOD_LOAD:
1374 		if ((error = xpt_init(NULL)) != 0)
1375 			return (error);
1376 		break;
1377 	case MOD_UNLOAD:
1378 		return EBUSY;
1379 	default:
1380 		return EOPNOTSUPP;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Thread to handle asynchronous main-context requests.
1388  *
1389  * This function is typically used by drivers to perform complex actions
1390  * such as bus scans and engineering requests in a main context instead
1391  * of an interrupt context.
1392  */
1393 static void
1394 xpt_scanner_thread(void *dummy)
1395 {
1396 	union ccb	*ccb;
1397 	struct cam_sim	*sim;
1398 
1399 	get_mplock();
1400 
1401 	for (;;) {
1402 		xpt_lock_buses();
1403 		xsoftc.ccb_scanq_running = 1;
1404 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1405 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1406 				     sim_links.tqe);
1407 			xpt_unlock_buses();
1408 
1409 			sim = ccb->ccb_h.path->bus->sim;
1410 			CAM_SIM_LOCK(sim);
1411 			xpt_action(ccb);
1412 			CAM_SIM_UNLOCK(sim);
1413 
1414 			xpt_lock_buses();
1415 		}
1416 		xsoftc.ccb_scanq_running = 0;
1417 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1418 		xpt_unlock_buses();
1419 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1420 	}
1421 
1422 	rel_mplock();	/* not reached */
1423 }
1424 
1425 /*
1426  * Issue an asynchronous asction
1427  */
1428 void
1429 xpt_action_async(union ccb *ccb)
1430 {
1431 	xpt_lock_buses();
1432 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1433 	if (xsoftc.ccb_scanq_running == 0) {
1434 		xsoftc.ccb_scanq_running = 1;
1435 		wakeup(&xsoftc.ccb_scanq);
1436 	}
1437 	xpt_unlock_buses();
1438 }
1439 
1440 
1441 /* Functions accessed by the peripheral drivers */
1442 static int
1443 xpt_init(void *dummy)
1444 {
1445 	struct cam_sim *xpt_sim;
1446 	struct cam_path *path;
1447 	struct cam_devq *devq;
1448 	cam_status status;
1449 
1450 	TAILQ_INIT(&xsoftc.xpt_busses);
1451 	TAILQ_INIT(&cam_simq);
1452 	TAILQ_INIT(&xsoftc.ccb_scanq);
1453 	STAILQ_INIT(&xsoftc.highpowerq);
1454 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1455 
1456 	spin_init(&cam_simq_spin);
1457 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1458 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1459 
1460 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1461 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1462 	spin_init(&cam_dead_sim.sim_spin);
1463 	cam_dead_sim.sim_action = dead_sim_action;
1464 	cam_dead_sim.sim_poll = dead_sim_poll;
1465 	cam_dead_sim.sim_name = "dead_sim";
1466 	cam_dead_sim.lock = &cam_dead_lock;
1467 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1468 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1469 
1470 	/*
1471 	 * The xpt layer is, itself, the equivelent of a SIM.
1472 	 * Allow 16 ccbs in the ccb pool for it.  This should
1473 	 * give decent parallelism when we probe busses and
1474 	 * perform other XPT functions.
1475 	 */
1476 	devq = cam_simq_alloc(16);
1477 	xpt_sim = cam_sim_alloc(xptaction,
1478 				xptpoll,
1479 				"xpt",
1480 				/*softc*/NULL,
1481 				/*unit*/0,
1482 				/*lock*/&xsoftc.xpt_lock,
1483 				/*max_dev_transactions*/0,
1484 				/*max_tagged_dev_transactions*/0,
1485 				devq);
1486 	cam_simq_release(devq);
1487 	if (xpt_sim == NULL)
1488 		return (ENOMEM);
1489 
1490 	xpt_sim->max_ccbs = 16;
1491 
1492 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1493 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1508 		       " failing attach\n", status);
1509 		return (EINVAL);
1510 	}
1511 
1512 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1513 			 path, NULL, 0, xpt_sim);
1514 	xpt_free_path(path);
1515 
1516 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1517 
1518 	/*
1519 	 * Register a callback for when interrupts are enabled.
1520 	 */
1521 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1522 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1523 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1524 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1525 	xsoftc.xpt_config_hook->ich_order = 1000;
1526 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1527 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1528 		kprintf("xpt_init: config_intrhook_establish failed "
1529 		       "- failing attach\n");
1530 	}
1531 
1532 	/* fire up rescan thread */
1533 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1534 		kprintf("xpt_init: failed to create rescan thread\n");
1535 	}
1536 	/* Install our software interrupt handlers */
1537 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1538 
1539 	return (0);
1540 }
1541 
1542 static cam_status
1543 xptregister(struct cam_periph *periph, void *arg)
1544 {
1545 	struct cam_sim *xpt_sim;
1546 
1547 	if (periph == NULL) {
1548 		kprintf("xptregister: periph was NULL!!\n");
1549 		return(CAM_REQ_CMP_ERR);
1550 	}
1551 
1552 	xpt_sim = (struct cam_sim *)arg;
1553 	xpt_sim->softc = periph;
1554 	xpt_periph = periph;
1555 	periph->softc = NULL;
1556 
1557 	return(CAM_REQ_CMP);
1558 }
1559 
1560 int32_t
1561 xpt_add_periph(struct cam_periph *periph)
1562 {
1563 	struct cam_ed *device;
1564 	int32_t	 status;
1565 	struct periph_list *periph_head;
1566 
1567 	sim_lock_assert_owned(periph->sim->lock);
1568 
1569 	device = periph->path->device;
1570 
1571 	periph_head = &device->periphs;
1572 
1573 	status = CAM_REQ_CMP;
1574 
1575 	if (device != NULL) {
1576 		/*
1577 		 * Make room for this peripheral
1578 		 * so it will fit in the queue
1579 		 * when it's scheduled to run
1580 		 */
1581 		status = camq_resize(&device->drvq,
1582 				     device->drvq.array_size + 1);
1583 
1584 		device->generation++;
1585 
1586 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1587 	}
1588 
1589 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1590 	xsoftc.xpt_generation++;
1591 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1592 
1593 	return (status);
1594 }
1595 
1596 void
1597 xpt_remove_periph(struct cam_periph *periph)
1598 {
1599 	struct cam_ed *device;
1600 
1601 	sim_lock_assert_owned(periph->sim->lock);
1602 
1603 	device = periph->path->device;
1604 
1605 	if (device != NULL) {
1606 		struct periph_list *periph_head;
1607 
1608 		periph_head = &device->periphs;
1609 
1610 		/* Release the slot for this peripheral */
1611 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1612 
1613 		device->generation++;
1614 
1615 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1616 	}
1617 
1618 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1619 	xsoftc.xpt_generation++;
1620 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1621 }
1622 
1623 void
1624 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1625 {
1626 	struct	ccb_pathinq cpi;
1627 	struct	ccb_trans_settings cts;
1628 	struct	cam_path *path;
1629 	u_int	speed;
1630 	u_int	freq;
1631 	u_int	mb;
1632 
1633 	sim_lock_assert_owned(periph->sim->lock);
1634 
1635 	path = periph->path;
1636 
1637 	/* Report basic attachment and inquiry data */
1638 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1639 	       periph->periph_name, periph->unit_number,
1640 	       path->bus->sim->sim_name,
1641 	       path->bus->sim->unit_number,
1642 	       path->bus->sim->bus_id,
1643 	       path->target->target_id,
1644 	       path->device->lun_id);
1645 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1646 	scsi_print_inquiry(&path->device->inq_data);
1647 
1648 	/* Report serial number */
1649 	if (path->device->serial_num_len > 0) {
1650 		/* Don't wrap the screen  - print only the first 60 chars */
1651 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1652 		       periph->unit_number, path->device->serial_num);
1653 	}
1654 
1655 	/* Acquire and report transfer speed */
1656 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1657 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1658 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1659 	xpt_action((union ccb*)&cts);
1660 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1661 		return;
1662 	}
1663 
1664 	/* Ask the SIM for its base transfer speed */
1665 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1666 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1667 	xpt_action((union ccb *)&cpi);
1668 
1669 	speed = cpi.base_transfer_speed;
1670 	freq = 0;
1671 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1672 		struct	ccb_trans_settings_spi *spi;
1673 
1674 		spi = &cts.xport_specific.spi;
1675 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1676 		  && spi->sync_offset != 0) {
1677 			freq = scsi_calc_syncsrate(spi->sync_period);
1678 			speed = freq;
1679 		}
1680 
1681 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1682 			speed *= (0x01 << spi->bus_width);
1683 	}
1684 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1685 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1686 		if (fc->valid & CTS_FC_VALID_SPEED) {
1687 			speed = fc->bitrate;
1688 		}
1689 	}
1690 
1691 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1692 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1693 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1694 			speed = sas->bitrate;
1695 		}
1696 	}
1697 
1698 	mb = speed / 1000;
1699 	if (mb > 0)
1700 		kprintf("%s%d: %d.%03dMB/s transfers",
1701 		       periph->periph_name, periph->unit_number,
1702 		       mb, speed % 1000);
1703 	else
1704 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1705 		       periph->unit_number, speed);
1706 
1707 	/* Report additional information about SPI connections */
1708 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1709 		struct	ccb_trans_settings_spi *spi;
1710 
1711 		spi = &cts.xport_specific.spi;
1712 		if (freq != 0) {
1713 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1714 			       freq % 1000,
1715 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1716 			     ? " DT" : "",
1717 			       spi->sync_offset);
1718 		}
1719 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1720 		 && spi->bus_width > 0) {
1721 			if (freq != 0) {
1722 				kprintf(", ");
1723 			} else {
1724 				kprintf(" (");
1725 			}
1726 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1727 		} else if (freq != 0) {
1728 			kprintf(")");
1729 		}
1730 	}
1731 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1732 		struct	ccb_trans_settings_fc *fc;
1733 
1734 		fc = &cts.xport_specific.fc;
1735 		if (fc->valid & CTS_FC_VALID_WWNN)
1736 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1737 		if (fc->valid & CTS_FC_VALID_WWPN)
1738 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1739 		if (fc->valid & CTS_FC_VALID_PORT)
1740 			kprintf(" PortID 0x%x", fc->port);
1741 	}
1742 
1743 	if (path->device->inq_flags & SID_CmdQue
1744 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1745 		kprintf("\n%s%d: Command Queueing Enabled",
1746 		       periph->periph_name, periph->unit_number);
1747 	}
1748 	kprintf("\n");
1749 
1750 	/*
1751 	 * We only want to print the caller's announce string if they've
1752 	 * passed one in..
1753 	 */
1754 	if (announce_string != NULL)
1755 		kprintf("%s%d: %s\n", periph->periph_name,
1756 		       periph->unit_number, announce_string);
1757 }
1758 
1759 static dev_match_ret
1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1761 	    struct cam_eb *bus)
1762 {
1763 	dev_match_ret retval;
1764 	int i;
1765 
1766 	retval = DM_RET_NONE;
1767 
1768 	/*
1769 	 * If we aren't given something to match against, that's an error.
1770 	 */
1771 	if (bus == NULL)
1772 		return(DM_RET_ERROR);
1773 
1774 	/*
1775 	 * If there are no match entries, then this bus matches no
1776 	 * matter what.
1777 	 */
1778 	if ((patterns == NULL) || (num_patterns == 0))
1779 		return(DM_RET_DESCEND | DM_RET_COPY);
1780 
1781 	for (i = 0; i < num_patterns; i++) {
1782 		struct bus_match_pattern *cur_pattern;
1783 
1784 		/*
1785 		 * If the pattern in question isn't for a bus node, we
1786 		 * aren't interested.  However, we do indicate to the
1787 		 * calling routine that we should continue descending the
1788 		 * tree, since the user wants to match against lower-level
1789 		 * EDT elements.
1790 		 */
1791 		if (patterns[i].type != DEV_MATCH_BUS) {
1792 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1793 				retval |= DM_RET_DESCEND;
1794 			continue;
1795 		}
1796 
1797 		cur_pattern = &patterns[i].pattern.bus_pattern;
1798 
1799 		/*
1800 		 * If they want to match any bus node, we give them any
1801 		 * device node.
1802 		 */
1803 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1804 			/* set the copy flag */
1805 			retval |= DM_RET_COPY;
1806 
1807 			/*
1808 			 * If we've already decided on an action, go ahead
1809 			 * and return.
1810 			 */
1811 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1812 				return(retval);
1813 		}
1814 
1815 		/*
1816 		 * Not sure why someone would do this...
1817 		 */
1818 		if (cur_pattern->flags == BUS_MATCH_NONE)
1819 			continue;
1820 
1821 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1822 		 && (cur_pattern->path_id != bus->path_id))
1823 			continue;
1824 
1825 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1826 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1827 			continue;
1828 
1829 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1830 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1831 			continue;
1832 
1833 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1834 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1835 			     DEV_IDLEN) != 0))
1836 			continue;
1837 
1838 		/*
1839 		 * If we get to this point, the user definitely wants
1840 		 * information on this bus.  So tell the caller to copy the
1841 		 * data out.
1842 		 */
1843 		retval |= DM_RET_COPY;
1844 
1845 		/*
1846 		 * If the return action has been set to descend, then we
1847 		 * know that we've already seen a non-bus matching
1848 		 * expression, therefore we need to further descend the tree.
1849 		 * This won't change by continuing around the loop, so we
1850 		 * go ahead and return.  If we haven't seen a non-bus
1851 		 * matching expression, we keep going around the loop until
1852 		 * we exhaust the matching expressions.  We'll set the stop
1853 		 * flag once we fall out of the loop.
1854 		 */
1855 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1856 			return(retval);
1857 	}
1858 
1859 	/*
1860 	 * If the return action hasn't been set to descend yet, that means
1861 	 * we haven't seen anything other than bus matching patterns.  So
1862 	 * tell the caller to stop descending the tree -- the user doesn't
1863 	 * want to match against lower level tree elements.
1864 	 */
1865 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1866 		retval |= DM_RET_STOP;
1867 
1868 	return(retval);
1869 }
1870 
1871 static dev_match_ret
1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1873 	       struct cam_ed *device)
1874 {
1875 	dev_match_ret retval;
1876 	int i;
1877 
1878 	retval = DM_RET_NONE;
1879 
1880 	/*
1881 	 * If we aren't given something to match against, that's an error.
1882 	 */
1883 	if (device == NULL)
1884 		return(DM_RET_ERROR);
1885 
1886 	/*
1887 	 * If there are no match entries, then this device matches no
1888 	 * matter what.
1889 	 */
1890 	if ((patterns == NULL) || (num_patterns == 0))
1891 		return(DM_RET_DESCEND | DM_RET_COPY);
1892 
1893 	for (i = 0; i < num_patterns; i++) {
1894 		struct device_match_pattern *cur_pattern;
1895 
1896 		/*
1897 		 * If the pattern in question isn't for a device node, we
1898 		 * aren't interested.
1899 		 */
1900 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1901 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1902 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1903 				retval |= DM_RET_DESCEND;
1904 			continue;
1905 		}
1906 
1907 		cur_pattern = &patterns[i].pattern.device_pattern;
1908 
1909 		/*
1910 		 * If they want to match any device node, we give them any
1911 		 * device node.
1912 		 */
1913 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1914 			/* set the copy flag */
1915 			retval |= DM_RET_COPY;
1916 
1917 
1918 			/*
1919 			 * If we've already decided on an action, go ahead
1920 			 * and return.
1921 			 */
1922 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1923 				return(retval);
1924 		}
1925 
1926 		/*
1927 		 * Not sure why someone would do this...
1928 		 */
1929 		if (cur_pattern->flags == DEV_MATCH_NONE)
1930 			continue;
1931 
1932 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1933 		 && (cur_pattern->path_id != device->target->bus->path_id))
1934 			continue;
1935 
1936 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1937 		 && (cur_pattern->target_id != device->target->target_id))
1938 			continue;
1939 
1940 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1941 		 && (cur_pattern->target_lun != device->lun_id))
1942 			continue;
1943 
1944 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1945 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1946 				    (caddr_t)&cur_pattern->inq_pat,
1947 				    1, sizeof(cur_pattern->inq_pat),
1948 				    scsi_static_inquiry_match) == NULL))
1949 			continue;
1950 
1951 		/*
1952 		 * If we get to this point, the user definitely wants
1953 		 * information on this device.  So tell the caller to copy
1954 		 * the data out.
1955 		 */
1956 		retval |= DM_RET_COPY;
1957 
1958 		/*
1959 		 * If the return action has been set to descend, then we
1960 		 * know that we've already seen a peripheral matching
1961 		 * expression, therefore we need to further descend the tree.
1962 		 * This won't change by continuing around the loop, so we
1963 		 * go ahead and return.  If we haven't seen a peripheral
1964 		 * matching expression, we keep going around the loop until
1965 		 * we exhaust the matching expressions.  We'll set the stop
1966 		 * flag once we fall out of the loop.
1967 		 */
1968 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1969 			return(retval);
1970 	}
1971 
1972 	/*
1973 	 * If the return action hasn't been set to descend yet, that means
1974 	 * we haven't seen any peripheral matching patterns.  So tell the
1975 	 * caller to stop descending the tree -- the user doesn't want to
1976 	 * match against lower level tree elements.
1977 	 */
1978 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1979 		retval |= DM_RET_STOP;
1980 
1981 	return(retval);
1982 }
1983 
1984 /*
1985  * Match a single peripheral against any number of match patterns.
1986  */
1987 static dev_match_ret
1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1989 	       struct cam_periph *periph)
1990 {
1991 	dev_match_ret retval;
1992 	int i;
1993 
1994 	/*
1995 	 * If we aren't given something to match against, that's an error.
1996 	 */
1997 	if (periph == NULL)
1998 		return(DM_RET_ERROR);
1999 
2000 	/*
2001 	 * If there are no match entries, then this peripheral matches no
2002 	 * matter what.
2003 	 */
2004 	if ((patterns == NULL) || (num_patterns == 0))
2005 		return(DM_RET_STOP | DM_RET_COPY);
2006 
2007 	/*
2008 	 * There aren't any nodes below a peripheral node, so there's no
2009 	 * reason to descend the tree any further.
2010 	 */
2011 	retval = DM_RET_STOP;
2012 
2013 	for (i = 0; i < num_patterns; i++) {
2014 		struct periph_match_pattern *cur_pattern;
2015 
2016 		/*
2017 		 * If the pattern in question isn't for a peripheral, we
2018 		 * aren't interested.
2019 		 */
2020 		if (patterns[i].type != DEV_MATCH_PERIPH)
2021 			continue;
2022 
2023 		cur_pattern = &patterns[i].pattern.periph_pattern;
2024 
2025 		/*
2026 		 * If they want to match on anything, then we will do so.
2027 		 */
2028 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2029 			/* set the copy flag */
2030 			retval |= DM_RET_COPY;
2031 
2032 			/*
2033 			 * We've already set the return action to stop,
2034 			 * since there are no nodes below peripherals in
2035 			 * the tree.
2036 			 */
2037 			return(retval);
2038 		}
2039 
2040 		/*
2041 		 * Not sure why someone would do this...
2042 		 */
2043 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2044 			continue;
2045 
2046 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2047 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2048 			continue;
2049 
2050 		/*
2051 		 * For the target and lun id's, we have to make sure the
2052 		 * target and lun pointers aren't NULL.  The xpt peripheral
2053 		 * has a wildcard target and device.
2054 		 */
2055 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2056 		 && ((periph->path->target == NULL)
2057 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2058 			continue;
2059 
2060 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2061 		 && ((periph->path->device == NULL)
2062 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2063 			continue;
2064 
2065 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2066 		 && (cur_pattern->unit_number != periph->unit_number))
2067 			continue;
2068 
2069 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2070 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2071 			     DEV_IDLEN) != 0))
2072 			continue;
2073 
2074 		/*
2075 		 * If we get to this point, the user definitely wants
2076 		 * information on this peripheral.  So tell the caller to
2077 		 * copy the data out.
2078 		 */
2079 		retval |= DM_RET_COPY;
2080 
2081 		/*
2082 		 * The return action has already been set to stop, since
2083 		 * peripherals don't have any nodes below them in the EDT.
2084 		 */
2085 		return(retval);
2086 	}
2087 
2088 	/*
2089 	 * If we get to this point, the peripheral that was passed in
2090 	 * doesn't match any of the patterns.
2091 	 */
2092 	return(retval);
2093 }
2094 
2095 static int
2096 xptedtbusfunc(struct cam_eb *bus, void *arg)
2097 {
2098 	struct ccb_dev_match *cdm;
2099 	dev_match_ret retval;
2100 
2101 	cdm = (struct ccb_dev_match *)arg;
2102 
2103 	/*
2104 	 * If our position is for something deeper in the tree, that means
2105 	 * that we've already seen this node.  So, we keep going down.
2106 	 */
2107 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2108 	 && (cdm->pos.cookie.bus == bus)
2109 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2110 	 && (cdm->pos.cookie.target != NULL))
2111 		retval = DM_RET_DESCEND;
2112 	else
2113 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2114 
2115 	/*
2116 	 * If we got an error, bail out of the search.
2117 	 */
2118 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119 		cdm->status = CAM_DEV_MATCH_ERROR;
2120 		return(0);
2121 	}
2122 
2123 	/*
2124 	 * If the copy flag is set, copy this bus out.
2125 	 */
2126 	if (retval & DM_RET_COPY) {
2127 		int spaceleft, j;
2128 
2129 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130 			sizeof(struct dev_match_result));
2131 
2132 		/*
2133 		 * If we don't have enough space to put in another
2134 		 * match result, save our position and tell the
2135 		 * user there are more devices to check.
2136 		 */
2137 		if (spaceleft < sizeof(struct dev_match_result)) {
2138 			bzero(&cdm->pos, sizeof(cdm->pos));
2139 			cdm->pos.position_type =
2140 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2141 
2142 			cdm->pos.cookie.bus = bus;
2143 			cdm->pos.generations[CAM_BUS_GENERATION]=
2144 				xsoftc.bus_generation;
2145 			cdm->status = CAM_DEV_MATCH_MORE;
2146 			return(0);
2147 		}
2148 		j = cdm->num_matches;
2149 		cdm->num_matches++;
2150 		cdm->matches[j].type = DEV_MATCH_BUS;
2151 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2152 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2153 		cdm->matches[j].result.bus_result.unit_number =
2154 			bus->sim->unit_number;
2155 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2156 			bus->sim->sim_name, DEV_IDLEN);
2157 	}
2158 
2159 	/*
2160 	 * If the user is only interested in busses, there's no
2161 	 * reason to descend to the next level in the tree.
2162 	 */
2163 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2164 		return(1);
2165 
2166 	/*
2167 	 * If there is a target generation recorded, check it to
2168 	 * make sure the target list hasn't changed.
2169 	 */
2170 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2171 	 && (bus == cdm->pos.cookie.bus)
2172 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2173 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2174 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2175 	     bus->generation)) {
2176 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2177 		return(0);
2178 	}
2179 
2180 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2181 	 && (cdm->pos.cookie.bus == bus)
2182 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2183 	 && (cdm->pos.cookie.target != NULL))
2184 		return(xpttargettraverse(bus,
2185 					(struct cam_et *)cdm->pos.cookie.target,
2186 					 xptedttargetfunc, arg));
2187 	else
2188 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2189 }
2190 
2191 static int
2192 xptedttargetfunc(struct cam_et *target, void *arg)
2193 {
2194 	struct ccb_dev_match *cdm;
2195 
2196 	cdm = (struct ccb_dev_match *)arg;
2197 
2198 	/*
2199 	 * If there is a device list generation recorded, check it to
2200 	 * make sure the device list hasn't changed.
2201 	 */
2202 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2203 	 && (cdm->pos.cookie.bus == target->bus)
2204 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2205 	 && (cdm->pos.cookie.target == target)
2206 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2207 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2208 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2209 	     target->generation)) {
2210 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2211 		return(0);
2212 	}
2213 
2214 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2215 	 && (cdm->pos.cookie.bus == target->bus)
2216 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2217 	 && (cdm->pos.cookie.target == target)
2218 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2219 	 && (cdm->pos.cookie.device != NULL))
2220 		return(xptdevicetraverse(target,
2221 					(struct cam_ed *)cdm->pos.cookie.device,
2222 					 xptedtdevicefunc, arg));
2223 	else
2224 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2225 }
2226 
2227 static int
2228 xptedtdevicefunc(struct cam_ed *device, void *arg)
2229 {
2230 
2231 	struct ccb_dev_match *cdm;
2232 	dev_match_ret retval;
2233 
2234 	cdm = (struct ccb_dev_match *)arg;
2235 
2236 	/*
2237 	 * If our position is for something deeper in the tree, that means
2238 	 * that we've already seen this node.  So, we keep going down.
2239 	 */
2240 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2241 	 && (cdm->pos.cookie.device == device)
2242 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2243 	 && (cdm->pos.cookie.periph != NULL))
2244 		retval = DM_RET_DESCEND;
2245 	else
2246 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2247 					device);
2248 
2249 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2250 		cdm->status = CAM_DEV_MATCH_ERROR;
2251 		return(0);
2252 	}
2253 
2254 	/*
2255 	 * If the copy flag is set, copy this device out.
2256 	 */
2257 	if (retval & DM_RET_COPY) {
2258 		int spaceleft, j;
2259 
2260 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2261 			sizeof(struct dev_match_result));
2262 
2263 		/*
2264 		 * If we don't have enough space to put in another
2265 		 * match result, save our position and tell the
2266 		 * user there are more devices to check.
2267 		 */
2268 		if (spaceleft < sizeof(struct dev_match_result)) {
2269 			bzero(&cdm->pos, sizeof(cdm->pos));
2270 			cdm->pos.position_type =
2271 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2272 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2273 
2274 			cdm->pos.cookie.bus = device->target->bus;
2275 			cdm->pos.generations[CAM_BUS_GENERATION]=
2276 				xsoftc.bus_generation;
2277 			cdm->pos.cookie.target = device->target;
2278 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2279 				device->target->bus->generation;
2280 			cdm->pos.cookie.device = device;
2281 			cdm->pos.generations[CAM_DEV_GENERATION] =
2282 				device->target->generation;
2283 			cdm->status = CAM_DEV_MATCH_MORE;
2284 			return(0);
2285 		}
2286 		j = cdm->num_matches;
2287 		cdm->num_matches++;
2288 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2289 		cdm->matches[j].result.device_result.path_id =
2290 			device->target->bus->path_id;
2291 		cdm->matches[j].result.device_result.target_id =
2292 			device->target->target_id;
2293 		cdm->matches[j].result.device_result.target_lun =
2294 			device->lun_id;
2295 		bcopy(&device->inq_data,
2296 		      &cdm->matches[j].result.device_result.inq_data,
2297 		      sizeof(struct scsi_inquiry_data));
2298 
2299 		/* Let the user know whether this device is unconfigured */
2300 		if (device->flags & CAM_DEV_UNCONFIGURED)
2301 			cdm->matches[j].result.device_result.flags =
2302 				DEV_RESULT_UNCONFIGURED;
2303 		else
2304 			cdm->matches[j].result.device_result.flags =
2305 				DEV_RESULT_NOFLAG;
2306 	}
2307 
2308 	/*
2309 	 * If the user isn't interested in peripherals, don't descend
2310 	 * the tree any further.
2311 	 */
2312 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2313 		return(1);
2314 
2315 	/*
2316 	 * If there is a peripheral list generation recorded, make sure
2317 	 * it hasn't changed.
2318 	 */
2319 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2320 	 && (device->target->bus == cdm->pos.cookie.bus)
2321 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2322 	 && (device->target == cdm->pos.cookie.target)
2323 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2324 	 && (device == cdm->pos.cookie.device)
2325 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2326 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2327 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2328 	     device->generation)){
2329 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2330 		return(0);
2331 	}
2332 
2333 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2334 	 && (cdm->pos.cookie.bus == device->target->bus)
2335 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2336 	 && (cdm->pos.cookie.target == device->target)
2337 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2338 	 && (cdm->pos.cookie.device == device)
2339 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2340 	 && (cdm->pos.cookie.periph != NULL))
2341 		return(xptperiphtraverse(device,
2342 				(struct cam_periph *)cdm->pos.cookie.periph,
2343 				xptedtperiphfunc, arg));
2344 	else
2345 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2346 }
2347 
2348 static int
2349 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2350 {
2351 	struct ccb_dev_match *cdm;
2352 	dev_match_ret retval;
2353 
2354 	cdm = (struct ccb_dev_match *)arg;
2355 
2356 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2357 
2358 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2359 		cdm->status = CAM_DEV_MATCH_ERROR;
2360 		return(0);
2361 	}
2362 
2363 	/*
2364 	 * If the copy flag is set, copy this peripheral out.
2365 	 */
2366 	if (retval & DM_RET_COPY) {
2367 		int spaceleft, j;
2368 
2369 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2370 			sizeof(struct dev_match_result));
2371 
2372 		/*
2373 		 * If we don't have enough space to put in another
2374 		 * match result, save our position and tell the
2375 		 * user there are more devices to check.
2376 		 */
2377 		if (spaceleft < sizeof(struct dev_match_result)) {
2378 			bzero(&cdm->pos, sizeof(cdm->pos));
2379 			cdm->pos.position_type =
2380 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2381 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2382 				CAM_DEV_POS_PERIPH;
2383 
2384 			cdm->pos.cookie.bus = periph->path->bus;
2385 			cdm->pos.generations[CAM_BUS_GENERATION]=
2386 				xsoftc.bus_generation;
2387 			cdm->pos.cookie.target = periph->path->target;
2388 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2389 				periph->path->bus->generation;
2390 			cdm->pos.cookie.device = periph->path->device;
2391 			cdm->pos.generations[CAM_DEV_GENERATION] =
2392 				periph->path->target->generation;
2393 			cdm->pos.cookie.periph = periph;
2394 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2395 				periph->path->device->generation;
2396 			cdm->status = CAM_DEV_MATCH_MORE;
2397 			return(0);
2398 		}
2399 
2400 		j = cdm->num_matches;
2401 		cdm->num_matches++;
2402 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2403 		cdm->matches[j].result.periph_result.path_id =
2404 			periph->path->bus->path_id;
2405 		cdm->matches[j].result.periph_result.target_id =
2406 			periph->path->target->target_id;
2407 		cdm->matches[j].result.periph_result.target_lun =
2408 			periph->path->device->lun_id;
2409 		cdm->matches[j].result.periph_result.unit_number =
2410 			periph->unit_number;
2411 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2412 			periph->periph_name, DEV_IDLEN);
2413 	}
2414 
2415 	return(1);
2416 }
2417 
2418 static int
2419 xptedtmatch(struct ccb_dev_match *cdm)
2420 {
2421 	int ret;
2422 
2423 	cdm->num_matches = 0;
2424 
2425 	/*
2426 	 * Check the bus list generation.  If it has changed, the user
2427 	 * needs to reset everything and start over.
2428 	 */
2429 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2430 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2431 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2432 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2433 		return(0);
2434 	}
2435 
2436 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 	 && (cdm->pos.cookie.bus != NULL))
2438 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2439 				     xptedtbusfunc, cdm);
2440 	else
2441 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2442 
2443 	/*
2444 	 * If we get back 0, that means that we had to stop before fully
2445 	 * traversing the EDT.  It also means that one of the subroutines
2446 	 * has set the status field to the proper value.  If we get back 1,
2447 	 * we've fully traversed the EDT and copied out any matching entries.
2448 	 */
2449 	if (ret == 1)
2450 		cdm->status = CAM_DEV_MATCH_LAST;
2451 
2452 	return(ret);
2453 }
2454 
2455 static int
2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2457 {
2458 	struct ccb_dev_match *cdm;
2459 
2460 	cdm = (struct ccb_dev_match *)arg;
2461 
2462 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2463 	 && (cdm->pos.cookie.pdrv == pdrv)
2464 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2465 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2466 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2467 	     (*pdrv)->generation)) {
2468 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2469 		return(0);
2470 	}
2471 
2472 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2473 	 && (cdm->pos.cookie.pdrv == pdrv)
2474 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2475 	 && (cdm->pos.cookie.periph != NULL))
2476 		return(xptpdperiphtraverse(pdrv,
2477 				(struct cam_periph *)cdm->pos.cookie.periph,
2478 				xptplistperiphfunc, arg));
2479 	else
2480 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2481 }
2482 
2483 static int
2484 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2485 {
2486 	struct ccb_dev_match *cdm;
2487 	dev_match_ret retval;
2488 
2489 	cdm = (struct ccb_dev_match *)arg;
2490 
2491 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2492 
2493 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2494 		cdm->status = CAM_DEV_MATCH_ERROR;
2495 		return(0);
2496 	}
2497 
2498 	/*
2499 	 * If the copy flag is set, copy this peripheral out.
2500 	 */
2501 	if (retval & DM_RET_COPY) {
2502 		int spaceleft, j;
2503 
2504 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2505 			sizeof(struct dev_match_result));
2506 
2507 		/*
2508 		 * If we don't have enough space to put in another
2509 		 * match result, save our position and tell the
2510 		 * user there are more devices to check.
2511 		 */
2512 		if (spaceleft < sizeof(struct dev_match_result)) {
2513 			struct periph_driver **pdrv;
2514 
2515 			pdrv = NULL;
2516 			bzero(&cdm->pos, sizeof(cdm->pos));
2517 			cdm->pos.position_type =
2518 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2519 				CAM_DEV_POS_PERIPH;
2520 
2521 			/*
2522 			 * This may look a bit non-sensical, but it is
2523 			 * actually quite logical.  There are very few
2524 			 * peripheral drivers, and bloating every peripheral
2525 			 * structure with a pointer back to its parent
2526 			 * peripheral driver linker set entry would cost
2527 			 * more in the long run than doing this quick lookup.
2528 			 */
2529 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2530 				if (strcmp((*pdrv)->driver_name,
2531 				    periph->periph_name) == 0)
2532 					break;
2533 			}
2534 
2535 			if (*pdrv == NULL) {
2536 				cdm->status = CAM_DEV_MATCH_ERROR;
2537 				return(0);
2538 			}
2539 
2540 			cdm->pos.cookie.pdrv = pdrv;
2541 			/*
2542 			 * The periph generation slot does double duty, as
2543 			 * does the periph pointer slot.  They are used for
2544 			 * both edt and pdrv lookups and positioning.
2545 			 */
2546 			cdm->pos.cookie.periph = periph;
2547 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2548 				(*pdrv)->generation;
2549 			cdm->status = CAM_DEV_MATCH_MORE;
2550 			return(0);
2551 		}
2552 
2553 		j = cdm->num_matches;
2554 		cdm->num_matches++;
2555 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2556 		cdm->matches[j].result.periph_result.path_id =
2557 			periph->path->bus->path_id;
2558 
2559 		/*
2560 		 * The transport layer peripheral doesn't have a target or
2561 		 * lun.
2562 		 */
2563 		if (periph->path->target)
2564 			cdm->matches[j].result.periph_result.target_id =
2565 				periph->path->target->target_id;
2566 		else
2567 			cdm->matches[j].result.periph_result.target_id = -1;
2568 
2569 		if (periph->path->device)
2570 			cdm->matches[j].result.periph_result.target_lun =
2571 				periph->path->device->lun_id;
2572 		else
2573 			cdm->matches[j].result.periph_result.target_lun = -1;
2574 
2575 		cdm->matches[j].result.periph_result.unit_number =
2576 			periph->unit_number;
2577 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2578 			periph->periph_name, DEV_IDLEN);
2579 	}
2580 
2581 	return(1);
2582 }
2583 
2584 static int
2585 xptperiphlistmatch(struct ccb_dev_match *cdm)
2586 {
2587 	int ret;
2588 
2589 	cdm->num_matches = 0;
2590 
2591 	/*
2592 	 * At this point in the edt traversal function, we check the bus
2593 	 * list generation to make sure that no busses have been added or
2594 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2595 	 * For the peripheral driver list traversal function, however, we
2596 	 * don't have to worry about new peripheral driver types coming or
2597 	 * going; they're in a linker set, and therefore can't change
2598 	 * without a recompile.
2599 	 */
2600 
2601 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2602 	 && (cdm->pos.cookie.pdrv != NULL))
2603 		ret = xptpdrvtraverse(
2604 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2605 				xptplistpdrvfunc, cdm);
2606 	else
2607 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2608 
2609 	/*
2610 	 * If we get back 0, that means that we had to stop before fully
2611 	 * traversing the peripheral driver tree.  It also means that one of
2612 	 * the subroutines has set the status field to the proper value.  If
2613 	 * we get back 1, we've fully traversed the EDT and copied out any
2614 	 * matching entries.
2615 	 */
2616 	if (ret == 1)
2617 		cdm->status = CAM_DEV_MATCH_LAST;
2618 
2619 	return(ret);
2620 }
2621 
2622 static int
2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2624 {
2625 	struct cam_eb *bus, *next_bus;
2626 	int retval;
2627 
2628 	retval = 1;
2629 
2630 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2631 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2632 	     bus != NULL;
2633 	     bus = next_bus) {
2634 		next_bus = TAILQ_NEXT(bus, links);
2635 
2636 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2637 		CAM_SIM_LOCK(bus->sim);
2638 		retval = tr_func(bus, arg);
2639 		CAM_SIM_UNLOCK(bus->sim);
2640 		if (retval == 0)
2641 			return(retval);
2642 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2643 	}
2644 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2645 
2646 	return(retval);
2647 }
2648 
2649 static int
2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2651 		  xpt_targetfunc_t *tr_func, void *arg)
2652 {
2653 	struct cam_et *target, *next_target;
2654 	int retval;
2655 
2656 	retval = 1;
2657 	for (target = (start_target ? start_target :
2658 		       TAILQ_FIRST(&bus->et_entries));
2659 	     target != NULL; target = next_target) {
2660 
2661 		next_target = TAILQ_NEXT(target, links);
2662 
2663 		retval = tr_func(target, arg);
2664 
2665 		if (retval == 0)
2666 			return(retval);
2667 	}
2668 
2669 	return(retval);
2670 }
2671 
2672 static int
2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2674 		  xpt_devicefunc_t *tr_func, void *arg)
2675 {
2676 	struct cam_ed *device, *next_device;
2677 	int retval;
2678 
2679 	retval = 1;
2680 	for (device = (start_device ? start_device :
2681 		       TAILQ_FIRST(&target->ed_entries));
2682 	     device != NULL;
2683 	     device = next_device) {
2684 
2685 		next_device = TAILQ_NEXT(device, links);
2686 
2687 		retval = tr_func(device, arg);
2688 
2689 		if (retval == 0)
2690 			return(retval);
2691 	}
2692 
2693 	return(retval);
2694 }
2695 
2696 static int
2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2698 		  xpt_periphfunc_t *tr_func, void *arg)
2699 {
2700 	struct cam_periph *periph, *next_periph;
2701 	int retval;
2702 
2703 	retval = 1;
2704 
2705 	for (periph = (start_periph ? start_periph :
2706 		       SLIST_FIRST(&device->periphs));
2707 	     periph != NULL;
2708 	     periph = next_periph) {
2709 
2710 		next_periph = SLIST_NEXT(periph, periph_links);
2711 
2712 		retval = tr_func(periph, arg);
2713 		if (retval == 0)
2714 			return(retval);
2715 	}
2716 
2717 	return(retval);
2718 }
2719 
2720 static int
2721 xptpdrvtraverse(struct periph_driver **start_pdrv,
2722 		xpt_pdrvfunc_t *tr_func, void *arg)
2723 {
2724 	struct periph_driver **pdrv;
2725 	int retval;
2726 
2727 	retval = 1;
2728 
2729 	/*
2730 	 * We don't traverse the peripheral driver list like we do the
2731 	 * other lists, because it is a linker set, and therefore cannot be
2732 	 * changed during runtime.  If the peripheral driver list is ever
2733 	 * re-done to be something other than a linker set (i.e. it can
2734 	 * change while the system is running), the list traversal should
2735 	 * be modified to work like the other traversal functions.
2736 	 */
2737 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2738 	     *pdrv != NULL; pdrv++) {
2739 		retval = tr_func(pdrv, arg);
2740 
2741 		if (retval == 0)
2742 			return(retval);
2743 	}
2744 
2745 	return(retval);
2746 }
2747 
2748 static int
2749 xptpdperiphtraverse(struct periph_driver **pdrv,
2750 		    struct cam_periph *start_periph,
2751 		    xpt_periphfunc_t *tr_func, void *arg)
2752 {
2753 	struct cam_periph *periph, *next_periph;
2754 	int retval;
2755 
2756 	retval = 1;
2757 
2758 	for (periph = (start_periph ? start_periph :
2759 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2760 	     periph = next_periph) {
2761 
2762 		next_periph = TAILQ_NEXT(periph, unit_links);
2763 
2764 		retval = tr_func(periph, arg);
2765 		if (retval == 0)
2766 			return(retval);
2767 	}
2768 	return(retval);
2769 }
2770 
2771 static int
2772 xptdefbusfunc(struct cam_eb *bus, void *arg)
2773 {
2774 	struct xpt_traverse_config *tr_config;
2775 
2776 	tr_config = (struct xpt_traverse_config *)arg;
2777 
2778 	if (tr_config->depth == XPT_DEPTH_BUS) {
2779 		xpt_busfunc_t *tr_func;
2780 
2781 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2782 
2783 		return(tr_func(bus, tr_config->tr_arg));
2784 	} else
2785 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2786 }
2787 
2788 static int
2789 xptdeftargetfunc(struct cam_et *target, void *arg)
2790 {
2791 	struct xpt_traverse_config *tr_config;
2792 
2793 	tr_config = (struct xpt_traverse_config *)arg;
2794 
2795 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2796 		xpt_targetfunc_t *tr_func;
2797 
2798 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2799 
2800 		return(tr_func(target, tr_config->tr_arg));
2801 	} else
2802 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2803 }
2804 
2805 static int
2806 xptdefdevicefunc(struct cam_ed *device, void *arg)
2807 {
2808 	struct xpt_traverse_config *tr_config;
2809 
2810 	tr_config = (struct xpt_traverse_config *)arg;
2811 
2812 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2813 		xpt_devicefunc_t *tr_func;
2814 
2815 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2816 
2817 		return(tr_func(device, tr_config->tr_arg));
2818 	} else
2819 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2820 }
2821 
2822 static int
2823 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2824 {
2825 	struct xpt_traverse_config *tr_config;
2826 	xpt_periphfunc_t *tr_func;
2827 
2828 	tr_config = (struct xpt_traverse_config *)arg;
2829 
2830 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2831 
2832 	/*
2833 	 * Unlike the other default functions, we don't check for depth
2834 	 * here.  The peripheral driver level is the last level in the EDT,
2835 	 * so if we're here, we should execute the function in question.
2836 	 */
2837 	return(tr_func(periph, tr_config->tr_arg));
2838 }
2839 
2840 /*
2841  * Execute the given function for every bus in the EDT.
2842  */
2843 static int
2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2845 {
2846 	struct xpt_traverse_config tr_config;
2847 
2848 	tr_config.depth = XPT_DEPTH_BUS;
2849 	tr_config.tr_func = tr_func;
2850 	tr_config.tr_arg = arg;
2851 
2852 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2853 }
2854 
2855 /*
2856  * Execute the given function for every device in the EDT.
2857  */
2858 static int
2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2860 {
2861 	struct xpt_traverse_config tr_config;
2862 
2863 	tr_config.depth = XPT_DEPTH_DEVICE;
2864 	tr_config.tr_func = tr_func;
2865 	tr_config.tr_arg = arg;
2866 
2867 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2868 }
2869 
2870 static int
2871 xptsetasyncfunc(struct cam_ed *device, void *arg)
2872 {
2873 	struct cam_path path;
2874 	struct ccb_getdev cgd;
2875 	struct async_node *cur_entry;
2876 
2877 	cur_entry = (struct async_node *)arg;
2878 
2879 	/*
2880 	 * Don't report unconfigured devices (Wildcard devs,
2881 	 * devices only for target mode, device instances
2882 	 * that have been invalidated but are waiting for
2883 	 * their last reference count to be released).
2884 	 */
2885 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2886 		return (1);
2887 
2888 	xpt_compile_path(&path,
2889 			 NULL,
2890 			 device->target->bus->path_id,
2891 			 device->target->target_id,
2892 			 device->lun_id);
2893 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2894 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2895 	xpt_action((union ccb *)&cgd);
2896 	cur_entry->callback(cur_entry->callback_arg,
2897 			    AC_FOUND_DEVICE,
2898 			    &path, &cgd);
2899 	xpt_release_path(&path);
2900 
2901 	return(1);
2902 }
2903 
2904 static int
2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2906 {
2907 	struct cam_path path;
2908 	struct ccb_pathinq cpi;
2909 	struct async_node *cur_entry;
2910 
2911 	cur_entry = (struct async_node *)arg;
2912 
2913 	xpt_compile_path(&path, /*periph*/NULL,
2914 			 bus->sim->path_id,
2915 			 CAM_TARGET_WILDCARD,
2916 			 CAM_LUN_WILDCARD);
2917 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2918 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2919 	xpt_action((union ccb *)&cpi);
2920 	cur_entry->callback(cur_entry->callback_arg,
2921 			    AC_PATH_REGISTERED,
2922 			    &path, &cpi);
2923 	xpt_release_path(&path);
2924 
2925 	return(1);
2926 }
2927 
2928 static void
2929 xpt_action_sasync_cb(void *context, int pending)
2930 {
2931 	struct async_node *cur_entry;
2932 	struct xpt_task *task;
2933 	uint32_t added;
2934 
2935 	task = (struct xpt_task *)context;
2936 	cur_entry = (struct async_node *)task->data1;
2937 	added = task->data2;
2938 
2939 	if ((added & AC_FOUND_DEVICE) != 0) {
2940 		/*
2941 		 * Get this peripheral up to date with all
2942 		 * the currently existing devices.
2943 		 */
2944 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2945 	}
2946 	if ((added & AC_PATH_REGISTERED) != 0) {
2947 		/*
2948 		 * Get this peripheral up to date with all
2949 		 * the currently existing busses.
2950 		 */
2951 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2952 	}
2953 	kfree(task, M_CAMXPT);
2954 }
2955 
2956 void
2957 xpt_action(union ccb *start_ccb)
2958 {
2959 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2960 
2961 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2962 
2963 	switch (start_ccb->ccb_h.func_code) {
2964 	case XPT_SCSI_IO:
2965 	case XPT_TRIM:
2966 	{
2967 		struct cam_ed *device;
2968 #ifdef CAMDEBUG
2969 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2970 		struct cam_path *path;
2971 
2972 		path = start_ccb->ccb_h.path;
2973 #endif
2974 
2975 		/*
2976 		 * For the sake of compatibility with SCSI-1
2977 		 * devices that may not understand the identify
2978 		 * message, we include lun information in the
2979 		 * second byte of all commands.  SCSI-1 specifies
2980 		 * that luns are a 3 bit value and reserves only 3
2981 		 * bits for lun information in the CDB.  Later
2982 		 * revisions of the SCSI spec allow for more than 8
2983 		 * luns, but have deprecated lun information in the
2984 		 * CDB.  So, if the lun won't fit, we must omit.
2985 		 *
2986 		 * Also be aware that during initial probing for devices,
2987 		 * the inquiry information is unknown but initialized to 0.
2988 		 * This means that this code will be exercised while probing
2989 		 * devices with an ANSI revision greater than 2.
2990 		 */
2991 		device = start_ccb->ccb_h.path->device;
2992 		if (device->protocol_version <= SCSI_REV_2
2993 		 && start_ccb->ccb_h.target_lun < 8
2994 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2995 
2996 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2997 			    start_ccb->ccb_h.target_lun << 5;
2998 		}
2999 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3000 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3001 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3002 			  	       &path->device->inq_data),
3003 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3004 					  cdb_str, sizeof(cdb_str))));
3005 		/* FALLTHROUGH */
3006 	}
3007 	case XPT_TARGET_IO:
3008 	case XPT_CONT_TARGET_IO:
3009 		start_ccb->csio.sense_resid = 0;
3010 		start_ccb->csio.resid = 0;
3011 		/* FALLTHROUGH */
3012 	case XPT_RESET_DEV:
3013 	case XPT_ENG_EXEC:
3014 	{
3015 		struct cam_path *path;
3016 		struct cam_sim *sim;
3017 		int runq;
3018 
3019 		path = start_ccb->ccb_h.path;
3020 
3021 		sim = path->bus->sim;
3022 		if (sim == &cam_dead_sim) {
3023 			/* The SIM has gone; just execute the CCB directly. */
3024 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3025 			(*(sim->sim_action))(sim, start_ccb);
3026 			break;
3027 		}
3028 
3029 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3030 		if (path->device->qfrozen_cnt == 0)
3031 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3032 		else
3033 			runq = 0;
3034 		if (runq != 0)
3035 			xpt_run_dev_sendq(path->bus);
3036 		break;
3037 	}
3038 	case XPT_SET_TRAN_SETTINGS:
3039 	{
3040 		xpt_set_transfer_settings(&start_ccb->cts,
3041 					  start_ccb->ccb_h.path->device,
3042 					  /*async_update*/FALSE);
3043 		break;
3044 	}
3045 	case XPT_CALC_GEOMETRY:
3046 	{
3047 		struct cam_sim *sim;
3048 
3049 		/* Filter out garbage */
3050 		if (start_ccb->ccg.block_size == 0
3051 		 || start_ccb->ccg.volume_size == 0) {
3052 			start_ccb->ccg.cylinders = 0;
3053 			start_ccb->ccg.heads = 0;
3054 			start_ccb->ccg.secs_per_track = 0;
3055 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3056 			break;
3057 		}
3058 		sim = start_ccb->ccb_h.path->bus->sim;
3059 		(*(sim->sim_action))(sim, start_ccb);
3060 		break;
3061 	}
3062 	case XPT_ABORT:
3063 	{
3064 		union ccb* abort_ccb;
3065 
3066 		abort_ccb = start_ccb->cab.abort_ccb;
3067 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3068 
3069 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3070 				struct cam_ccbq *ccbq;
3071 
3072 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3073 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3074 				abort_ccb->ccb_h.status =
3075 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3076 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3077 				xpt_done(abort_ccb);
3078 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3079 				break;
3080 			}
3081 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3082 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3083 				/*
3084 				 * We've caught this ccb en route to
3085 				 * the SIM.  Flag it for abort and the
3086 				 * SIM will do so just before starting
3087 				 * real work on the CCB.
3088 				 */
3089 				abort_ccb->ccb_h.status =
3090 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3091 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3092 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3093 				break;
3094 			}
3095 		}
3096 		if (XPT_FC_IS_QUEUED(abort_ccb)
3097 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3098 			/*
3099 			 * It's already completed but waiting
3100 			 * for our SWI to get to it.
3101 			 */
3102 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3103 			break;
3104 		}
3105 		/*
3106 		 * If we weren't able to take care of the abort request
3107 		 * in the XPT, pass the request down to the SIM for processing.
3108 		 */
3109 		/* FALLTHROUGH */
3110 	}
3111 	case XPT_ACCEPT_TARGET_IO:
3112 	case XPT_EN_LUN:
3113 	case XPT_IMMED_NOTIFY:
3114 	case XPT_NOTIFY_ACK:
3115 	case XPT_GET_TRAN_SETTINGS:
3116 	case XPT_RESET_BUS:
3117 	{
3118 		struct cam_sim *sim;
3119 
3120 		sim = start_ccb->ccb_h.path->bus->sim;
3121 		(*(sim->sim_action))(sim, start_ccb);
3122 		break;
3123 	}
3124 	case XPT_PATH_INQ:
3125 	{
3126 		struct cam_sim *sim;
3127 
3128 		sim = start_ccb->ccb_h.path->bus->sim;
3129 		(*(sim->sim_action))(sim, start_ccb);
3130 		break;
3131 	}
3132 	case XPT_PATH_STATS:
3133 		start_ccb->cpis.last_reset =
3134 			start_ccb->ccb_h.path->bus->last_reset;
3135 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3136 		break;
3137 	case XPT_GDEV_TYPE:
3138 	{
3139 		struct cam_ed *dev;
3140 
3141 		dev = start_ccb->ccb_h.path->device;
3142 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3143 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3144 		} else {
3145 			struct ccb_getdev *cgd;
3146 			struct cam_eb *bus;
3147 			struct cam_et *tar;
3148 
3149 			cgd = &start_ccb->cgd;
3150 			bus = cgd->ccb_h.path->bus;
3151 			tar = cgd->ccb_h.path->target;
3152 			cgd->inq_data = dev->inq_data;
3153 			cgd->ccb_h.status = CAM_REQ_CMP;
3154 			cgd->serial_num_len = dev->serial_num_len;
3155 			if ((dev->serial_num_len > 0)
3156 			 && (dev->serial_num != NULL))
3157 				bcopy(dev->serial_num, cgd->serial_num,
3158 				      dev->serial_num_len);
3159 		}
3160 		break;
3161 	}
3162 	case XPT_GDEV_STATS:
3163 	{
3164 		struct cam_ed *dev;
3165 
3166 		dev = start_ccb->ccb_h.path->device;
3167 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3168 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3169 		} else {
3170 			struct ccb_getdevstats *cgds;
3171 			struct cam_eb *bus;
3172 			struct cam_et *tar;
3173 
3174 			cgds = &start_ccb->cgds;
3175 			bus = cgds->ccb_h.path->bus;
3176 			tar = cgds->ccb_h.path->target;
3177 			cgds->dev_openings = dev->ccbq.dev_openings;
3178 			cgds->dev_active = dev->ccbq.dev_active;
3179 			cgds->devq_openings = dev->ccbq.devq_openings;
3180 			cgds->devq_queued = dev->ccbq.queue.entries;
3181 			cgds->held = dev->ccbq.held;
3182 			cgds->last_reset = tar->last_reset;
3183 			cgds->maxtags = dev->quirk->maxtags;
3184 			cgds->mintags = dev->quirk->mintags;
3185 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3186 				cgds->last_reset = bus->last_reset;
3187 			cgds->ccb_h.status = CAM_REQ_CMP;
3188 		}
3189 		break;
3190 	}
3191 	case XPT_GDEVLIST:
3192 	{
3193 		struct cam_periph	*nperiph;
3194 		struct periph_list	*periph_head;
3195 		struct ccb_getdevlist	*cgdl;
3196 		u_int			i;
3197 		struct cam_ed		*device;
3198 		int			found;
3199 
3200 
3201 		found = 0;
3202 
3203 		/*
3204 		 * Don't want anyone mucking with our data.
3205 		 */
3206 		device = start_ccb->ccb_h.path->device;
3207 		periph_head = &device->periphs;
3208 		cgdl = &start_ccb->cgdl;
3209 
3210 		/*
3211 		 * Check and see if the list has changed since the user
3212 		 * last requested a list member.  If so, tell them that the
3213 		 * list has changed, and therefore they need to start over
3214 		 * from the beginning.
3215 		 */
3216 		if ((cgdl->index != 0) &&
3217 		    (cgdl->generation != device->generation)) {
3218 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3219 			break;
3220 		}
3221 
3222 		/*
3223 		 * Traverse the list of peripherals and attempt to find
3224 		 * the requested peripheral.
3225 		 */
3226 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3227 		     (nperiph != NULL) && (i <= cgdl->index);
3228 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3229 			if (i == cgdl->index) {
3230 				strncpy(cgdl->periph_name,
3231 					nperiph->periph_name,
3232 					DEV_IDLEN);
3233 				cgdl->unit_number = nperiph->unit_number;
3234 				found = 1;
3235 			}
3236 		}
3237 		if (found == 0) {
3238 			cgdl->status = CAM_GDEVLIST_ERROR;
3239 			break;
3240 		}
3241 
3242 		if (nperiph == NULL)
3243 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3244 		else
3245 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3246 
3247 		cgdl->index++;
3248 		cgdl->generation = device->generation;
3249 
3250 		cgdl->ccb_h.status = CAM_REQ_CMP;
3251 		break;
3252 	}
3253 	case XPT_DEV_MATCH:
3254 	{
3255 		dev_pos_type position_type;
3256 		struct ccb_dev_match *cdm;
3257 		int ret;
3258 
3259 		cdm = &start_ccb->cdm;
3260 
3261 		/*
3262 		 * There are two ways of getting at information in the EDT.
3263 		 * The first way is via the primary EDT tree.  It starts
3264 		 * with a list of busses, then a list of targets on a bus,
3265 		 * then devices/luns on a target, and then peripherals on a
3266 		 * device/lun.  The "other" way is by the peripheral driver
3267 		 * lists.  The peripheral driver lists are organized by
3268 		 * peripheral driver.  (obviously)  So it makes sense to
3269 		 * use the peripheral driver list if the user is looking
3270 		 * for something like "da1", or all "da" devices.  If the
3271 		 * user is looking for something on a particular bus/target
3272 		 * or lun, it's generally better to go through the EDT tree.
3273 		 */
3274 
3275 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3276 			position_type = cdm->pos.position_type;
3277 		else {
3278 			u_int i;
3279 
3280 			position_type = CAM_DEV_POS_NONE;
3281 
3282 			for (i = 0; i < cdm->num_patterns; i++) {
3283 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3284 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3285 					position_type = CAM_DEV_POS_EDT;
3286 					break;
3287 				}
3288 			}
3289 
3290 			if (cdm->num_patterns == 0)
3291 				position_type = CAM_DEV_POS_EDT;
3292 			else if (position_type == CAM_DEV_POS_NONE)
3293 				position_type = CAM_DEV_POS_PDRV;
3294 		}
3295 
3296 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3297 		case CAM_DEV_POS_EDT:
3298 			ret = xptedtmatch(cdm);
3299 			break;
3300 		case CAM_DEV_POS_PDRV:
3301 			ret = xptperiphlistmatch(cdm);
3302 			break;
3303 		default:
3304 			cdm->status = CAM_DEV_MATCH_ERROR;
3305 			break;
3306 		}
3307 
3308 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3309 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3310 		else
3311 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3312 
3313 		break;
3314 	}
3315 	case XPT_SASYNC_CB:
3316 	{
3317 		struct ccb_setasync *csa;
3318 		struct async_node *cur_entry;
3319 		struct async_list *async_head;
3320 		u_int32_t added;
3321 
3322 		csa = &start_ccb->csa;
3323 		added = csa->event_enable;
3324 		async_head = &csa->ccb_h.path->device->asyncs;
3325 
3326 		/*
3327 		 * If there is already an entry for us, simply
3328 		 * update it.
3329 		 */
3330 		cur_entry = SLIST_FIRST(async_head);
3331 		while (cur_entry != NULL) {
3332 			if ((cur_entry->callback_arg == csa->callback_arg)
3333 			 && (cur_entry->callback == csa->callback))
3334 				break;
3335 			cur_entry = SLIST_NEXT(cur_entry, links);
3336 		}
3337 
3338 		if (cur_entry != NULL) {
3339 		 	/*
3340 			 * If the request has no flags set,
3341 			 * remove the entry.
3342 			 */
3343 			added &= ~cur_entry->event_enable;
3344 			if (csa->event_enable == 0) {
3345 				SLIST_REMOVE(async_head, cur_entry,
3346 					     async_node, links);
3347 				csa->ccb_h.path->device->refcount--;
3348 				kfree(cur_entry, M_CAMXPT);
3349 			} else {
3350 				cur_entry->event_enable = csa->event_enable;
3351 			}
3352 		} else {
3353 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3354 					   M_INTWAIT);
3355 			cur_entry->event_enable = csa->event_enable;
3356 			cur_entry->callback_arg = csa->callback_arg;
3357 			cur_entry->callback = csa->callback;
3358 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3359 			csa->ccb_h.path->device->refcount++;
3360 		}
3361 
3362 		/*
3363 		 * Need to decouple this operation via a taskqueue so that
3364 		 * the locking doesn't become a mess.
3365 		 */
3366 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3367 			struct xpt_task *task;
3368 
3369 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3370 				      M_INTWAIT);
3371 
3372 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3373 			task->data1 = cur_entry;
3374 			task->data2 = added;
3375 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3376 					  &task->task);
3377 		}
3378 
3379 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3380 		break;
3381 	}
3382 	case XPT_REL_SIMQ:
3383 	{
3384 		struct ccb_relsim *crs;
3385 		struct cam_ed *dev;
3386 
3387 		crs = &start_ccb->crs;
3388 		dev = crs->ccb_h.path->device;
3389 		if (dev == NULL) {
3390 
3391 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3392 			break;
3393 		}
3394 
3395 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3396 
3397  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3398 				/* Don't ever go below one opening */
3399 				if (crs->openings > 0) {
3400 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3401 							    crs->openings);
3402 
3403 					if (bootverbose) {
3404 						xpt_print(crs->ccb_h.path,
3405 						    "tagged openings now %d\n",
3406 						    crs->openings);
3407 					}
3408 				}
3409 			}
3410 		}
3411 
3412 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3413 
3414 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3415 
3416 				/*
3417 				 * Just extend the old timeout and decrement
3418 				 * the freeze count so that a single timeout
3419 				 * is sufficient for releasing the queue.
3420 				 */
3421 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3422 				callout_stop(&dev->callout);
3423 			} else {
3424 
3425 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3426 			}
3427 
3428 			callout_reset(&dev->callout,
3429 				      (crs->release_timeout * hz) / 1000,
3430 				      xpt_release_devq_timeout, dev);
3431 
3432 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3433 
3434 		}
3435 
3436 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3437 
3438 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3439 				/*
3440 				 * Decrement the freeze count so that a single
3441 				 * completion is still sufficient to unfreeze
3442 				 * the queue.
3443 				 */
3444 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3445 			} else {
3446 
3447 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3448 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3449 			}
3450 		}
3451 
3452 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3453 
3454 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3455 			 || (dev->ccbq.dev_active == 0)) {
3456 
3457 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3458 			} else {
3459 
3460 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3461 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3462 			}
3463 		}
3464 
3465 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3466 
3467 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3468 					 /*run_queue*/TRUE);
3469 		}
3470 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3471 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3472 		break;
3473 	}
3474 	case XPT_SCAN_BUS:
3475 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3476 		break;
3477 	case XPT_SCAN_LUN:
3478 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3479 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3480 			     start_ccb);
3481 		break;
3482 	case XPT_DEBUG: {
3483 #ifdef CAMDEBUG
3484 #ifdef CAM_DEBUG_DELAY
3485 		cam_debug_delay = CAM_DEBUG_DELAY;
3486 #endif
3487 		cam_dflags = start_ccb->cdbg.flags;
3488 		if (cam_dpath != NULL) {
3489 			xpt_free_path(cam_dpath);
3490 			cam_dpath = NULL;
3491 		}
3492 
3493 		if (cam_dflags != CAM_DEBUG_NONE) {
3494 			if (xpt_create_path(&cam_dpath, xpt_periph,
3495 					    start_ccb->ccb_h.path_id,
3496 					    start_ccb->ccb_h.target_id,
3497 					    start_ccb->ccb_h.target_lun) !=
3498 					    CAM_REQ_CMP) {
3499 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3500 				cam_dflags = CAM_DEBUG_NONE;
3501 			} else {
3502 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3503 				xpt_print(cam_dpath, "debugging flags now %x\n",
3504 				    cam_dflags);
3505 			}
3506 		} else {
3507 			cam_dpath = NULL;
3508 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3509 		}
3510 #else /* !CAMDEBUG */
3511 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3512 #endif /* CAMDEBUG */
3513 		break;
3514 	}
3515 	case XPT_NOOP:
3516 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3517 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3518 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3519 		break;
3520 	default:
3521 	case XPT_SDEV_TYPE:
3522 	case XPT_TERM_IO:
3523 	case XPT_ENG_INQ:
3524 		/* XXX Implement */
3525 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3526 		break;
3527 	}
3528 }
3529 
3530 void
3531 xpt_polled_action(union ccb *start_ccb)
3532 {
3533 	u_int32_t timeout;
3534 	struct	  cam_sim *sim;
3535 	struct	  cam_devq *devq;
3536 	struct	  cam_ed *dev;
3537 
3538 	timeout = start_ccb->ccb_h.timeout;
3539 	sim = start_ccb->ccb_h.path->bus->sim;
3540 	devq = sim->devq;
3541 	dev = start_ccb->ccb_h.path->device;
3542 
3543 	sim_lock_assert_owned(sim->lock);
3544 
3545 	/*
3546 	 * Steal an opening so that no other queued requests
3547 	 * can get it before us while we simulate interrupts.
3548 	 */
3549 	dev->ccbq.devq_openings--;
3550 	dev->ccbq.dev_openings--;
3551 
3552 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3553 	   && (--timeout > 0)) {
3554 		DELAY(1000);
3555 		(*(sim->sim_poll))(sim);
3556 		camisr_runqueue(sim);
3557 	}
3558 
3559 	dev->ccbq.devq_openings++;
3560 	dev->ccbq.dev_openings++;
3561 
3562 	if (timeout != 0) {
3563 		xpt_action(start_ccb);
3564 		while(--timeout > 0) {
3565 			(*(sim->sim_poll))(sim);
3566 			camisr_runqueue(sim);
3567 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3568 			    != CAM_REQ_INPROG)
3569 				break;
3570 			DELAY(1000);
3571 		}
3572 		if (timeout == 0) {
3573 			/*
3574 			 * XXX Is it worth adding a sim_timeout entry
3575 			 * point so we can attempt recovery?  If
3576 			 * this is only used for dumps, I don't think
3577 			 * it is.
3578 			 */
3579 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3580 		}
3581 	} else {
3582 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3583 	}
3584 }
3585 
3586 /*
3587  * Schedule a peripheral driver to receive a ccb when it's
3588  * target device has space for more transactions.
3589  */
3590 void
3591 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3592 {
3593 	struct cam_ed *device;
3594 	union ccb *work_ccb;
3595 	int runq;
3596 
3597 	sim_lock_assert_owned(perph->sim->lock);
3598 
3599 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3600 	device = perph->path->device;
3601 	if (periph_is_queued(perph)) {
3602 		/* Simply reorder based on new priority */
3603 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3604 			  ("   change priority to %d\n", new_priority));
3605 		if (new_priority < perph->pinfo.priority) {
3606 			camq_change_priority(&device->drvq,
3607 					     perph->pinfo.index,
3608 					     new_priority);
3609 		}
3610 		runq = 0;
3611 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3612 		/* The SIM is gone so just call periph_start directly. */
3613 		work_ccb = xpt_get_ccb(perph->path->device);
3614 		if (work_ccb == NULL)
3615 			return; /* XXX */
3616 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3617 		perph->pinfo.priority = new_priority;
3618 		perph->periph_start(perph, work_ccb);
3619 		return;
3620 	} else {
3621 		/* New entry on the queue */
3622 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3623 			  ("   added periph to queue\n"));
3624 		perph->pinfo.priority = new_priority;
3625 		perph->pinfo.generation = ++device->drvq.generation;
3626 		camq_insert(&device->drvq, &perph->pinfo);
3627 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3628 	}
3629 	if (runq != 0) {
3630 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3631 			  ("   calling xpt_run_devq\n"));
3632 		xpt_run_dev_allocq(perph->path->bus);
3633 	}
3634 }
3635 
3636 
3637 /*
3638  * Schedule a device to run on a given queue.
3639  * If the device was inserted as a new entry on the queue,
3640  * return 1 meaning the device queue should be run. If we
3641  * were already queued, implying someone else has already
3642  * started the queue, return 0 so the caller doesn't attempt
3643  * to run the queue.
3644  */
3645 static int
3646 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3647 		 u_int32_t new_priority)
3648 {
3649 	int retval;
3650 	u_int32_t old_priority;
3651 
3652 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3653 
3654 	old_priority = pinfo->priority;
3655 
3656 	/*
3657 	 * Are we already queued?
3658 	 */
3659 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3660 		/* Simply reorder based on new priority */
3661 		if (new_priority < old_priority) {
3662 			camq_change_priority(queue, pinfo->index,
3663 					     new_priority);
3664 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3665 					("changed priority to %d\n",
3666 					 new_priority));
3667 		}
3668 		retval = 0;
3669 	} else {
3670 		/* New entry on the queue */
3671 		if (new_priority < old_priority)
3672 			pinfo->priority = new_priority;
3673 
3674 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3675 				("Inserting onto queue\n"));
3676 		pinfo->generation = ++queue->generation;
3677 		camq_insert(queue, pinfo);
3678 		retval = 1;
3679 	}
3680 	return (retval);
3681 }
3682 
3683 static void
3684 xpt_run_dev_allocq(struct cam_eb *bus)
3685 {
3686 	struct	cam_devq *devq;
3687 
3688 	if ((devq = bus->sim->devq) == NULL) {
3689 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3690 		return;
3691 	}
3692 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3693 
3694 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3695 			("   qfrozen_cnt == 0x%x, entries == %d, "
3696 			 "openings == %d, active == %d\n",
3697 			 devq->alloc_queue.qfrozen_cnt,
3698 			 devq->alloc_queue.entries,
3699 			 devq->alloc_openings,
3700 			 devq->alloc_active));
3701 
3702 	devq->alloc_queue.qfrozen_cnt++;
3703 	while ((devq->alloc_queue.entries > 0)
3704 	    && (devq->alloc_openings > 0)
3705 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3706 		struct	cam_ed_qinfo *qinfo;
3707 		struct	cam_ed *device;
3708 		union	ccb *work_ccb;
3709 		struct	cam_periph *drv;
3710 		struct	camq *drvq;
3711 
3712 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3713 							   CAMQ_HEAD);
3714 		device = qinfo->device;
3715 
3716 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3717 				("running device %p\n", device));
3718 
3719 		drvq = &device->drvq;
3720 
3721 #ifdef CAMDEBUG
3722 		if (drvq->entries <= 0) {
3723 			panic("xpt_run_dev_allocq: "
3724 			      "Device on queue without any work to do");
3725 		}
3726 #endif
3727 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3728 			devq->alloc_openings--;
3729 			devq->alloc_active++;
3730 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3731 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3732 				      drv->pinfo.priority);
3733 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3734 					("calling periph start\n"));
3735 			drv->periph_start(drv, work_ccb);
3736 		} else {
3737 			/*
3738 			 * Malloc failure in alloc_ccb
3739 			 */
3740 			/*
3741 			 * XXX add us to a list to be run from free_ccb
3742 			 * if we don't have any ccbs active on this
3743 			 * device queue otherwise we may never get run
3744 			 * again.
3745 			 */
3746 			break;
3747 		}
3748 
3749 		if (drvq->entries > 0) {
3750 			/* We have more work.  Attempt to reschedule */
3751 			xpt_schedule_dev_allocq(bus, device);
3752 		}
3753 	}
3754 	devq->alloc_queue.qfrozen_cnt--;
3755 }
3756 
3757 static void
3758 xpt_run_dev_sendq(struct cam_eb *bus)
3759 {
3760 	struct	cam_devq *devq;
3761 
3762 	if ((devq = bus->sim->devq) == NULL) {
3763 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3764 		return;
3765 	}
3766 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3767 
3768 	devq->send_queue.qfrozen_cnt++;
3769 	while ((devq->send_queue.entries > 0)
3770 	    && (devq->send_openings > 0)) {
3771 		struct	cam_ed_qinfo *qinfo;
3772 		struct	cam_ed *device;
3773 		union ccb *work_ccb;
3774 		struct	cam_sim *sim;
3775 
3776 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3777 			break;
3778 		}
3779 
3780 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3781 							   CAMQ_HEAD);
3782 		device = qinfo->device;
3783 
3784 		/*
3785 		 * If the device has been "frozen", don't attempt
3786 		 * to run it.
3787 		 */
3788 		if (device->qfrozen_cnt > 0) {
3789 			continue;
3790 		}
3791 
3792 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3793 				("running device %p\n", device));
3794 
3795 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3796 		if (work_ccb == NULL) {
3797 			kprintf("device on run queue with no ccbs???\n");
3798 			continue;
3799 		}
3800 
3801 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3802 
3803 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3804 			if (xsoftc.num_highpower <= 0) {
3805 				/*
3806 				 * We got a high power command, but we
3807 				 * don't have any available slots.  Freeze
3808 				 * the device queue until we have a slot
3809 				 * available.
3810 				 */
3811 				device->qfrozen_cnt++;
3812 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3813 						   &work_ccb->ccb_h,
3814 						   xpt_links.stqe);
3815 
3816 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3817 				continue;
3818 			} else {
3819 				/*
3820 				 * Consume a high power slot while
3821 				 * this ccb runs.
3822 				 */
3823 				xsoftc.num_highpower--;
3824 			}
3825 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3826 		}
3827 		devq->active_dev = device;
3828 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3829 
3830 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3831 
3832 		devq->send_openings--;
3833 		devq->send_active++;
3834 
3835 		if (device->ccbq.queue.entries > 0)
3836 			xpt_schedule_dev_sendq(bus, device);
3837 
3838 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3839 			/*
3840 			 * The client wants to freeze the queue
3841 			 * after this CCB is sent.
3842 			 */
3843 			device->qfrozen_cnt++;
3844 		}
3845 
3846 		/* In Target mode, the peripheral driver knows best... */
3847 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3848 			if ((device->inq_flags & SID_CmdQue) != 0
3849 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3850 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3851 			else
3852 				/*
3853 				 * Clear this in case of a retried CCB that
3854 				 * failed due to a rejected tag.
3855 				 */
3856 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3857 		}
3858 
3859 		/*
3860 		 * Device queues can be shared among multiple sim instances
3861 		 * that reside on different busses.  Use the SIM in the queue
3862 		 * CCB's path, rather than the one in the bus that was passed
3863 		 * into this function.
3864 		 */
3865 		sim = work_ccb->ccb_h.path->bus->sim;
3866 		(*(sim->sim_action))(sim, work_ccb);
3867 
3868 		devq->active_dev = NULL;
3869 	}
3870 	devq->send_queue.qfrozen_cnt--;
3871 }
3872 
3873 /*
3874  * This function merges stuff from the slave ccb into the master ccb, while
3875  * keeping important fields in the master ccb constant.
3876  */
3877 void
3878 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3879 {
3880 	/*
3881 	 * Pull fields that are valid for peripheral drivers to set
3882 	 * into the master CCB along with the CCB "payload".
3883 	 */
3884 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3885 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3886 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3887 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3888 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3889 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3890 }
3891 
3892 void
3893 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3894 {
3895 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3896 	callout_init(&ccb_h->timeout_ch);
3897 	ccb_h->pinfo.priority = priority;
3898 	ccb_h->path = path;
3899 	ccb_h->path_id = path->bus->path_id;
3900 	if (path->target)
3901 		ccb_h->target_id = path->target->target_id;
3902 	else
3903 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3904 	if (path->device) {
3905 		ccb_h->target_lun = path->device->lun_id;
3906 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3907 	} else {
3908 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3909 	}
3910 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3911 	ccb_h->flags = 0;
3912 }
3913 
3914 /* Path manipulation functions */
3915 cam_status
3916 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3917 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3918 {
3919 	struct	   cam_path *path;
3920 	cam_status status;
3921 
3922 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3923 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3924 	if (status != CAM_REQ_CMP) {
3925 		kfree(path, M_CAMXPT);
3926 		path = NULL;
3927 	}
3928 	*new_path_ptr = path;
3929 	return (status);
3930 }
3931 
3932 cam_status
3933 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3934 			 struct cam_periph *periph, path_id_t path_id,
3935 			 target_id_t target_id, lun_id_t lun_id)
3936 {
3937 	struct	   cam_path *path;
3938 	struct	   cam_eb *bus = NULL;
3939 	cam_status status;
3940 	int	   need_unlock = 0;
3941 
3942 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3943 
3944 	if (path_id != CAM_BUS_WILDCARD) {
3945 		bus = xpt_find_bus(path_id);
3946 		if (bus != NULL) {
3947 			need_unlock = 1;
3948 			CAM_SIM_LOCK(bus->sim);
3949 		}
3950 	}
3951 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3952 	if (need_unlock)
3953 		CAM_SIM_UNLOCK(bus->sim);
3954 	if (status != CAM_REQ_CMP) {
3955 		kfree(path, M_CAMXPT);
3956 		path = NULL;
3957 	}
3958 	*new_path_ptr = path;
3959 	return (status);
3960 }
3961 
3962 static cam_status
3963 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3964 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3965 {
3966 	struct	     cam_eb *bus;
3967 	struct	     cam_et *target;
3968 	struct	     cam_ed *device;
3969 	cam_status   status;
3970 
3971 	status = CAM_REQ_CMP;	/* Completed without error */
3972 	target = NULL;		/* Wildcarded */
3973 	device = NULL;		/* Wildcarded */
3974 
3975 	/*
3976 	 * We will potentially modify the EDT, so block interrupts
3977 	 * that may attempt to create cam paths.
3978 	 */
3979 	bus = xpt_find_bus(path_id);
3980 	if (bus == NULL) {
3981 		status = CAM_PATH_INVALID;
3982 	} else {
3983 		target = xpt_find_target(bus, target_id);
3984 		if (target == NULL) {
3985 			/* Create one */
3986 			struct cam_et *new_target;
3987 
3988 			new_target = xpt_alloc_target(bus, target_id);
3989 			if (new_target == NULL) {
3990 				status = CAM_RESRC_UNAVAIL;
3991 			} else {
3992 				target = new_target;
3993 			}
3994 		}
3995 		if (target != NULL) {
3996 			device = xpt_find_device(target, lun_id);
3997 			if (device == NULL) {
3998 				/* Create one */
3999 				struct cam_ed *new_device;
4000 
4001 				new_device = xpt_alloc_device(bus,
4002 							      target,
4003 							      lun_id);
4004 				if (new_device == NULL) {
4005 					status = CAM_RESRC_UNAVAIL;
4006 				} else {
4007 					device = new_device;
4008 				}
4009 			}
4010 		}
4011 	}
4012 
4013 	/*
4014 	 * Only touch the user's data if we are successful.
4015 	 */
4016 	if (status == CAM_REQ_CMP) {
4017 		new_path->periph = perph;
4018 		new_path->bus = bus;
4019 		new_path->target = target;
4020 		new_path->device = device;
4021 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4022 	} else {
4023 		if (device != NULL)
4024 			xpt_release_device(bus, target, device);
4025 		if (target != NULL)
4026 			xpt_release_target(bus, target);
4027 		if (bus != NULL)
4028 			xpt_release_bus(bus);
4029 	}
4030 	return (status);
4031 }
4032 
4033 static void
4034 xpt_release_path(struct cam_path *path)
4035 {
4036 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4037 	if (path->device != NULL) {
4038 		xpt_release_device(path->bus, path->target, path->device);
4039 		path->device = NULL;
4040 	}
4041 	if (path->target != NULL) {
4042 		xpt_release_target(path->bus, path->target);
4043 		path->target = NULL;
4044 	}
4045 	if (path->bus != NULL) {
4046 		xpt_release_bus(path->bus);
4047 		path->bus = NULL;
4048 	}
4049 }
4050 
4051 void
4052 xpt_free_path(struct cam_path *path)
4053 {
4054 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4055 	xpt_release_path(path);
4056 	kfree(path, M_CAMXPT);
4057 }
4058 
4059 
4060 /*
4061  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4062  * in path1, 2 for match with wildcards in path2.
4063  */
4064 int
4065 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4066 {
4067 	int retval = 0;
4068 
4069 	if (path1->bus != path2->bus) {
4070 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4071 			retval = 1;
4072 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4073 			retval = 2;
4074 		else
4075 			return (-1);
4076 	}
4077 	if (path1->target != path2->target) {
4078 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4079 			if (retval == 0)
4080 				retval = 1;
4081 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4082 			retval = 2;
4083 		else
4084 			return (-1);
4085 	}
4086 	if (path1->device != path2->device) {
4087 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4088 			if (retval == 0)
4089 				retval = 1;
4090 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4091 			retval = 2;
4092 		else
4093 			return (-1);
4094 	}
4095 	return (retval);
4096 }
4097 
4098 void
4099 xpt_print_path(struct cam_path *path)
4100 {
4101 
4102 	if (path == NULL)
4103 		kprintf("(nopath): ");
4104 	else {
4105 		if (path->periph != NULL)
4106 			kprintf("(%s%d:", path->periph->periph_name,
4107 			       path->periph->unit_number);
4108 		else
4109 			kprintf("(noperiph:");
4110 
4111 		if (path->bus != NULL)
4112 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4113 			       path->bus->sim->unit_number,
4114 			       path->bus->sim->bus_id);
4115 		else
4116 			kprintf("nobus:");
4117 
4118 		if (path->target != NULL)
4119 			kprintf("%d:", path->target->target_id);
4120 		else
4121 			kprintf("X:");
4122 
4123 		if (path->device != NULL)
4124 			kprintf("%d): ", path->device->lun_id);
4125 		else
4126 			kprintf("X): ");
4127 	}
4128 }
4129 
4130 void
4131 xpt_print(struct cam_path *path, const char *fmt, ...)
4132 {
4133 	__va_list ap;
4134 	xpt_print_path(path);
4135 	__va_start(ap, fmt);
4136 	kvprintf(fmt, ap);
4137 	__va_end(ap);
4138 }
4139 
4140 int
4141 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4142 {
4143 	struct sbuf sb;
4144 
4145 	sim_lock_assert_owned(path->bus->sim->lock);
4146 
4147 	sbuf_new(&sb, str, str_len, 0);
4148 
4149 	if (path == NULL)
4150 		sbuf_printf(&sb, "(nopath): ");
4151 	else {
4152 		if (path->periph != NULL)
4153 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4154 				    path->periph->unit_number);
4155 		else
4156 			sbuf_printf(&sb, "(noperiph:");
4157 
4158 		if (path->bus != NULL)
4159 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4160 				    path->bus->sim->unit_number,
4161 				    path->bus->sim->bus_id);
4162 		else
4163 			sbuf_printf(&sb, "nobus:");
4164 
4165 		if (path->target != NULL)
4166 			sbuf_printf(&sb, "%d:", path->target->target_id);
4167 		else
4168 			sbuf_printf(&sb, "X:");
4169 
4170 		if (path->device != NULL)
4171 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4172 		else
4173 			sbuf_printf(&sb, "X): ");
4174 	}
4175 	sbuf_finish(&sb);
4176 
4177 	return(sbuf_len(&sb));
4178 }
4179 
4180 path_id_t
4181 xpt_path_path_id(struct cam_path *path)
4182 {
4183 	sim_lock_assert_owned(path->bus->sim->lock);
4184 
4185 	return(path->bus->path_id);
4186 }
4187 
4188 target_id_t
4189 xpt_path_target_id(struct cam_path *path)
4190 {
4191 	sim_lock_assert_owned(path->bus->sim->lock);
4192 
4193 	if (path->target != NULL)
4194 		return (path->target->target_id);
4195 	else
4196 		return (CAM_TARGET_WILDCARD);
4197 }
4198 
4199 lun_id_t
4200 xpt_path_lun_id(struct cam_path *path)
4201 {
4202 	sim_lock_assert_owned(path->bus->sim->lock);
4203 
4204 	if (path->device != NULL)
4205 		return (path->device->lun_id);
4206 	else
4207 		return (CAM_LUN_WILDCARD);
4208 }
4209 
4210 struct cam_sim *
4211 xpt_path_sim(struct cam_path *path)
4212 {
4213 	return (path->bus->sim);
4214 }
4215 
4216 struct cam_periph*
4217 xpt_path_periph(struct cam_path *path)
4218 {
4219 	sim_lock_assert_owned(path->bus->sim->lock);
4220 
4221 	return (path->periph);
4222 }
4223 
4224 char *
4225 xpt_path_serialno(struct cam_path *path)
4226 {
4227 	return (path->device->serial_num);
4228 }
4229 
4230 /*
4231  * Release a CAM control block for the caller.  Remit the cost of the structure
4232  * to the device referenced by the path.  If the this device had no 'credits'
4233  * and peripheral drivers have registered async callbacks for this notification
4234  * call them now.
4235  */
4236 void
4237 xpt_release_ccb(union ccb *free_ccb)
4238 {
4239 	struct	 cam_path *path;
4240 	struct	 cam_ed *device;
4241 	struct	 cam_eb *bus;
4242 	struct   cam_sim *sim;
4243 
4244 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4245 	path = free_ccb->ccb_h.path;
4246 	device = path->device;
4247 	bus = path->bus;
4248 	sim = bus->sim;
4249 
4250 	sim_lock_assert_owned(sim->lock);
4251 
4252 	cam_ccbq_release_opening(&device->ccbq);
4253 	if (sim->ccb_count > sim->max_ccbs) {
4254 		xpt_free_ccb(free_ccb);
4255 		sim->ccb_count--;
4256 	} else if (sim == &cam_dead_sim) {
4257 		xpt_free_ccb(free_ccb);
4258 	} else  {
4259 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4260 		    xpt_links.sle);
4261 	}
4262 	if (sim->devq == NULL) {
4263 		return;
4264 	}
4265 	sim->devq->alloc_openings++;
4266 	sim->devq->alloc_active--;
4267 	/* XXX Turn this into an inline function - xpt_run_device?? */
4268 	if ((device_is_alloc_queued(device) == 0)
4269 	 && (device->drvq.entries > 0)) {
4270 		xpt_schedule_dev_allocq(bus, device);
4271 	}
4272 	if (dev_allocq_is_runnable(sim->devq))
4273 		xpt_run_dev_allocq(bus);
4274 }
4275 
4276 /* Functions accessed by SIM drivers */
4277 
4278 /*
4279  * A sim structure, listing the SIM entry points and instance
4280  * identification info is passed to xpt_bus_register to hook the SIM
4281  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4282  * for this new bus and places it in the array of busses and assigns
4283  * it a path_id.  The path_id may be influenced by "hard wiring"
4284  * information specified by the user.  Once interrupt services are
4285  * availible, the bus will be probed.
4286  */
4287 int32_t
4288 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4289 {
4290 	struct cam_eb *new_bus;
4291 	struct cam_eb *old_bus;
4292 	struct ccb_pathinq cpi;
4293 
4294 	sim_lock_assert_owned(sim->lock);
4295 
4296 	sim->bus_id = bus;
4297 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4298 
4299 	if (strcmp(sim->sim_name, "xpt") != 0) {
4300 		sim->path_id =
4301 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4302 	}
4303 
4304 	TAILQ_INIT(&new_bus->et_entries);
4305 	new_bus->path_id = sim->path_id;
4306 	new_bus->sim = sim;
4307 	++sim->refcount;
4308 	timevalclear(&new_bus->last_reset);
4309 	new_bus->flags = 0;
4310 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4311 	new_bus->generation = 0;
4312 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4313 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4314 	while (old_bus != NULL
4315 	    && old_bus->path_id < new_bus->path_id)
4316 		old_bus = TAILQ_NEXT(old_bus, links);
4317 	if (old_bus != NULL)
4318 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4319 	else
4320 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4321 	xsoftc.bus_generation++;
4322 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4323 
4324 	/* Notify interested parties */
4325 	if (sim->path_id != CAM_XPT_PATH_ID) {
4326 		struct cam_path path;
4327 
4328 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4329 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4330 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4331 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4332 		xpt_action((union ccb *)&cpi);
4333 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4334 		xpt_release_path(&path);
4335 	}
4336 	return (CAM_SUCCESS);
4337 }
4338 
4339 /*
4340  * Deregister a bus.  We must clean out all transactions pending on the bus.
4341  * This routine is typically called prior to cam_sim_free() (e.g. see
4342  * dev/usbmisc/umass/umass.c)
4343  */
4344 int32_t
4345 xpt_bus_deregister(path_id_t pathid)
4346 {
4347 	struct cam_path bus_path;
4348 	struct cam_et *target;
4349 	struct cam_ed *device;
4350 	struct cam_ed_qinfo *qinfo;
4351 	struct cam_devq *devq;
4352 	struct cam_periph *periph;
4353 	struct cam_sim *ccbsim;
4354 	union ccb *work_ccb;
4355 	cam_status status;
4356 	int retries = 0;
4357 
4358 	status = xpt_compile_path(&bus_path, NULL, pathid,
4359 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4360 	if (status != CAM_REQ_CMP)
4361 		return (status);
4362 
4363 	/*
4364 	 * This should clear out all pending requests and timeouts, but
4365 	 * the ccb's may be queued to a software interrupt.
4366 	 *
4367 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4368 	 * and it really ought to.
4369 	 */
4370 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4371 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4372 
4373 	/*
4374 	 * Mark the SIM as having been deregistered.  This prevents
4375 	 * certain operations from re-queueing to it, stops new devices
4376 	 * from being added, etc.
4377 	 */
4378 	devq = bus_path.bus->sim->devq;
4379 	ccbsim = bus_path.bus->sim;
4380 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4381 
4382 again:
4383 	/*
4384 	 * Execute any pending operations now.
4385 	 */
4386 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4387 	    CAMQ_HEAD)) != NULL ||
4388 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4389 	    CAMQ_HEAD)) != NULL) {
4390 		do {
4391 			device = qinfo->device;
4392 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4393 			if (work_ccb != NULL) {
4394 				devq->active_dev = device;
4395 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4396 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4397 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4398 			}
4399 
4400 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4401 			    CAMQ_HEAD);
4402 			if (periph != NULL)
4403 				xpt_schedule(periph, periph->pinfo.priority);
4404 		} while (work_ccb != NULL || periph != NULL);
4405 	}
4406 
4407 	/*
4408 	 * Make sure all completed CCBs are processed.
4409 	 */
4410 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4411 		camisr_runqueue(ccbsim);
4412 	}
4413 
4414 	/*
4415 	 * Check for requeues, reissues asyncs if necessary
4416 	 */
4417 	if (CAMQ_GET_HEAD(&devq->send_queue))
4418 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4419 			devq->send_queue.entries);
4420 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4421 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4422 			devq->alloc_queue.entries);
4423 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4424 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4425 		if (++retries < 5) {
4426 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4427 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4428 			goto again;
4429 		}
4430 	}
4431 
4432 	/*
4433 	 * Retarget the bus and all cached sim pointers to dead_sim.
4434 	 *
4435 	 * Various CAM subsystems may be holding on to targets, devices,
4436 	 * and/or peripherals and may attempt to use the sim pointer cached
4437 	 * in some of these structures during close.
4438 	 */
4439 	bus_path.bus->sim = &cam_dead_sim;
4440 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4441 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4442 			device->sim = &cam_dead_sim;
4443 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4444 				periph->sim = &cam_dead_sim;
4445 			}
4446 		}
4447 	}
4448 
4449 	/*
4450 	 * Repeat the async's for the benefit of any new devices, such as
4451 	 * might be created from completed probes.  Any new device
4452 	 * ops will run on dead_sim.
4453 	 *
4454 	 * XXX There are probably races :-(
4455 	 */
4456 	CAM_SIM_LOCK(&cam_dead_sim);
4457 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4458 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4459 	CAM_SIM_UNLOCK(&cam_dead_sim);
4460 
4461 	/* Release the reference count held while registered. */
4462 	xpt_release_bus(bus_path.bus);
4463 	xpt_release_path(&bus_path);
4464 
4465 	/* Release the ref we got when the bus was registered */
4466 	cam_sim_release(ccbsim, 0);
4467 
4468 	return (CAM_REQ_CMP);
4469 }
4470 
4471 static path_id_t
4472 xptnextfreepathid(void)
4473 {
4474 	struct cam_eb *bus;
4475 	path_id_t pathid;
4476 	char *strval;
4477 
4478 	pathid = 0;
4479 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4480 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4481 retry:
4482 	/* Find an unoccupied pathid */
4483 	while (bus != NULL && bus->path_id <= pathid) {
4484 		if (bus->path_id == pathid)
4485 			pathid++;
4486 		bus = TAILQ_NEXT(bus, links);
4487 	}
4488 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4489 
4490 	/*
4491 	 * Ensure that this pathid is not reserved for
4492 	 * a bus that may be registered in the future.
4493 	 */
4494 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4495 		++pathid;
4496 		/* Start the search over */
4497 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4498 		goto retry;
4499 	}
4500 	return (pathid);
4501 }
4502 
4503 static path_id_t
4504 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4505 {
4506 	path_id_t pathid;
4507 	int i, dunit, val;
4508 	char buf[32];
4509 
4510 	pathid = CAM_XPT_PATH_ID;
4511 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4512 	i = -1;
4513 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4514 		if (strcmp(resource_query_name(i), "scbus")) {
4515 			/* Avoid a bit of foot shooting. */
4516 			continue;
4517 		}
4518 		dunit = resource_query_unit(i);
4519 		if (dunit < 0)		/* unwired?! */
4520 			continue;
4521 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4522 			if (sim_bus == val) {
4523 				pathid = dunit;
4524 				break;
4525 			}
4526 		} else if (sim_bus == 0) {
4527 			/* Unspecified matches bus 0 */
4528 			pathid = dunit;
4529 			break;
4530 		} else {
4531 			kprintf("Ambiguous scbus configuration for %s%d "
4532 			       "bus %d, cannot wire down.  The kernel "
4533 			       "config entry for scbus%d should "
4534 			       "specify a controller bus.\n"
4535 			       "Scbus will be assigned dynamically.\n",
4536 			       sim_name, sim_unit, sim_bus, dunit);
4537 			break;
4538 		}
4539 	}
4540 
4541 	if (pathid == CAM_XPT_PATH_ID)
4542 		pathid = xptnextfreepathid();
4543 	return (pathid);
4544 }
4545 
4546 void
4547 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4548 {
4549 	struct cam_eb *bus;
4550 	struct cam_et *target, *next_target;
4551 	struct cam_ed *device, *next_device;
4552 
4553 	sim_lock_assert_owned(path->bus->sim->lock);
4554 
4555 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4556 
4557 	/*
4558 	 * Most async events come from a CAM interrupt context.  In
4559 	 * a few cases, the error recovery code at the peripheral layer,
4560 	 * which may run from our SWI or a process context, may signal
4561 	 * deferred events with a call to xpt_async.
4562 	 */
4563 
4564 	bus = path->bus;
4565 
4566 	if (async_code == AC_BUS_RESET) {
4567 		/* Update our notion of when the last reset occurred */
4568 		microuptime(&bus->last_reset);
4569 	}
4570 
4571 	for (target = TAILQ_FIRST(&bus->et_entries);
4572 	     target != NULL;
4573 	     target = next_target) {
4574 
4575 		next_target = TAILQ_NEXT(target, links);
4576 
4577 		if (path->target != target
4578 		 && path->target->target_id != CAM_TARGET_WILDCARD
4579 		 && target->target_id != CAM_TARGET_WILDCARD)
4580 			continue;
4581 
4582 		if (async_code == AC_SENT_BDR) {
4583 			/* Update our notion of when the last reset occurred */
4584 			microuptime(&path->target->last_reset);
4585 		}
4586 
4587 		for (device = TAILQ_FIRST(&target->ed_entries);
4588 		     device != NULL;
4589 		     device = next_device) {
4590 
4591 			next_device = TAILQ_NEXT(device, links);
4592 
4593 			if (path->device != device
4594 			 && path->device->lun_id != CAM_LUN_WILDCARD
4595 			 && device->lun_id != CAM_LUN_WILDCARD)
4596 				continue;
4597 
4598 			xpt_dev_async(async_code, bus, target,
4599 				      device, async_arg);
4600 
4601 			xpt_async_bcast(&device->asyncs, async_code,
4602 					path, async_arg);
4603 		}
4604 	}
4605 
4606 	/*
4607 	 * If this wasn't a fully wildcarded async, tell all
4608 	 * clients that want all async events.
4609 	 */
4610 	if (bus != xpt_periph->path->bus)
4611 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4612 				path, async_arg);
4613 }
4614 
4615 static void
4616 xpt_async_bcast(struct async_list *async_head,
4617 		u_int32_t async_code,
4618 		struct cam_path *path, void *async_arg)
4619 {
4620 	struct async_node *cur_entry;
4621 
4622 	cur_entry = SLIST_FIRST(async_head);
4623 	while (cur_entry != NULL) {
4624 		struct async_node *next_entry;
4625 		/*
4626 		 * Grab the next list entry before we call the current
4627 		 * entry's callback.  This is because the callback function
4628 		 * can delete its async callback entry.
4629 		 */
4630 		next_entry = SLIST_NEXT(cur_entry, links);
4631 		if ((cur_entry->event_enable & async_code) != 0)
4632 			cur_entry->callback(cur_entry->callback_arg,
4633 					    async_code, path,
4634 					    async_arg);
4635 		cur_entry = next_entry;
4636 	}
4637 }
4638 
4639 /*
4640  * Handle any per-device event notifications that require action by the XPT.
4641  */
4642 static void
4643 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4644 	      struct cam_ed *device, void *async_arg)
4645 {
4646 	cam_status status;
4647 	struct cam_path newpath;
4648 
4649 	/*
4650 	 * We only need to handle events for real devices.
4651 	 */
4652 	if (target->target_id == CAM_TARGET_WILDCARD
4653 	 || device->lun_id == CAM_LUN_WILDCARD)
4654 		return;
4655 
4656 	/*
4657 	 * We need our own path with wildcards expanded to
4658 	 * handle certain types of events.
4659 	 */
4660 	if ((async_code == AC_SENT_BDR)
4661 	 || (async_code == AC_BUS_RESET)
4662 	 || (async_code == AC_INQ_CHANGED))
4663 		status = xpt_compile_path(&newpath, NULL,
4664 					  bus->path_id,
4665 					  target->target_id,
4666 					  device->lun_id);
4667 	else
4668 		status = CAM_REQ_CMP_ERR;
4669 
4670 	if (status == CAM_REQ_CMP) {
4671 
4672 		/*
4673 		 * Allow transfer negotiation to occur in a
4674 		 * tag free environment.
4675 		 */
4676 		if (async_code == AC_SENT_BDR
4677 		 || async_code == AC_BUS_RESET)
4678 			xpt_toggle_tags(&newpath);
4679 
4680 		if (async_code == AC_INQ_CHANGED) {
4681 			/*
4682 			 * We've sent a start unit command, or
4683 			 * something similar to a device that
4684 			 * may have caused its inquiry data to
4685 			 * change. So we re-scan the device to
4686 			 * refresh the inquiry data for it.
4687 			 */
4688 			xpt_scan_lun(newpath.periph, &newpath,
4689 				     CAM_EXPECT_INQ_CHANGE, NULL);
4690 		}
4691 		xpt_release_path(&newpath);
4692 	} else if (async_code == AC_LOST_DEVICE) {
4693 		/*
4694 		 * When we lose a device the device may be about to detach
4695 		 * the sim, we have to clear out all pending timeouts and
4696 		 * requests before that happens.  XXX it would be nice if
4697 		 * we could abort the requests pertaining to the device.
4698 		 */
4699 		xpt_release_devq_timeout(device);
4700 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4701 			device->flags |= CAM_DEV_UNCONFIGURED;
4702 			xpt_release_device(bus, target, device);
4703 		}
4704 	} else if (async_code == AC_TRANSFER_NEG) {
4705 		struct ccb_trans_settings *settings;
4706 
4707 		settings = (struct ccb_trans_settings *)async_arg;
4708 		xpt_set_transfer_settings(settings, device,
4709 					  /*async_update*/TRUE);
4710 	}
4711 }
4712 
4713 u_int32_t
4714 xpt_freeze_devq(struct cam_path *path, u_int count)
4715 {
4716 	struct ccb_hdr *ccbh;
4717 
4718 	sim_lock_assert_owned(path->bus->sim->lock);
4719 
4720 	path->device->qfrozen_cnt += count;
4721 
4722 	/*
4723 	 * Mark the last CCB in the queue as needing
4724 	 * to be requeued if the driver hasn't
4725 	 * changed it's state yet.  This fixes a race
4726 	 * where a ccb is just about to be queued to
4727 	 * a controller driver when it's interrupt routine
4728 	 * freezes the queue.  To completly close the
4729 	 * hole, controller drives must check to see
4730 	 * if a ccb's status is still CAM_REQ_INPROG
4731 	 * just before they queue
4732 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4733 	 * an example.
4734 	 */
4735 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4736 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4737 		ccbh->status = CAM_REQUEUE_REQ;
4738 	return (path->device->qfrozen_cnt);
4739 }
4740 
4741 u_int32_t
4742 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4743 {
4744 	sim_lock_assert_owned(sim->lock);
4745 
4746 	if (sim->devq == NULL)
4747 		return(count);
4748 	sim->devq->send_queue.qfrozen_cnt += count;
4749 	if (sim->devq->active_dev != NULL) {
4750 		struct ccb_hdr *ccbh;
4751 
4752 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4753 				  ccb_hdr_tailq);
4754 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4755 			ccbh->status = CAM_REQUEUE_REQ;
4756 	}
4757 	return (sim->devq->send_queue.qfrozen_cnt);
4758 }
4759 
4760 /*
4761  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4762  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4763  * freed, which is not the case here), but the device queue is also freed XXX
4764  * and we have to check that here.
4765  *
4766  * XXX fixme: could we simply not null-out the device queue via
4767  * cam_sim_free()?
4768  */
4769 static void
4770 xpt_release_devq_timeout(void *arg)
4771 {
4772 	struct cam_ed *device;
4773 
4774 	device = (struct cam_ed *)arg;
4775 
4776 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4777 }
4778 
4779 void
4780 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4781 {
4782 	sim_lock_assert_owned(path->bus->sim->lock);
4783 
4784 	xpt_release_devq_device(path->device, count, run_queue);
4785 }
4786 
4787 static void
4788 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4789 {
4790 	int	rundevq;
4791 
4792 	rundevq = 0;
4793 
4794 	if (dev->qfrozen_cnt > 0) {
4795 
4796 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4797 		dev->qfrozen_cnt -= count;
4798 		if (dev->qfrozen_cnt == 0) {
4799 
4800 			/*
4801 			 * No longer need to wait for a successful
4802 			 * command completion.
4803 			 */
4804 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4805 
4806 			/*
4807 			 * Remove any timeouts that might be scheduled
4808 			 * to release this queue.
4809 			 */
4810 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4811 				callout_stop(&dev->callout);
4812 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4813 			}
4814 
4815 			/*
4816 			 * Now that we are unfrozen schedule the
4817 			 * device so any pending transactions are
4818 			 * run.
4819 			 */
4820 			if ((dev->ccbq.queue.entries > 0)
4821 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4822 			 && (run_queue != 0)) {
4823 				rundevq = 1;
4824 			}
4825 		}
4826 	}
4827 	if (rundevq != 0)
4828 		xpt_run_dev_sendq(dev->target->bus);
4829 }
4830 
4831 void
4832 xpt_release_simq(struct cam_sim *sim, int run_queue)
4833 {
4834 	struct	camq *sendq;
4835 
4836 	sim_lock_assert_owned(sim->lock);
4837 
4838 	if (sim->devq == NULL)
4839 		return;
4840 
4841 	sendq = &(sim->devq->send_queue);
4842 	if (sendq->qfrozen_cnt > 0) {
4843 		sendq->qfrozen_cnt--;
4844 		if (sendq->qfrozen_cnt == 0) {
4845 			struct cam_eb *bus;
4846 
4847 			/*
4848 			 * If there is a timeout scheduled to release this
4849 			 * sim queue, remove it.  The queue frozen count is
4850 			 * already at 0.
4851 			 */
4852 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4853 				callout_stop(&sim->callout);
4854 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4855 			}
4856 			bus = xpt_find_bus(sim->path_id);
4857 
4858 			if (run_queue) {
4859 				/*
4860 				 * Now that we are unfrozen run the send queue.
4861 				 */
4862 				xpt_run_dev_sendq(bus);
4863 			}
4864 			xpt_release_bus(bus);
4865 		}
4866 	}
4867 }
4868 
4869 void
4870 xpt_done(union ccb *done_ccb)
4871 {
4872 	struct cam_sim *sim;
4873 
4874 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4875 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4876 		/*
4877 		 * Queue up the request for handling by our SWI handler
4878 		 * any of the "non-immediate" type of ccbs.
4879 		 */
4880 		sim = done_ccb->ccb_h.path->bus->sim;
4881 		switch (done_ccb->ccb_h.path->periph->type) {
4882 		case CAM_PERIPH_BIO:
4883 			spin_lock(&sim->sim_spin);
4884 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4885 					  sim_links.tqe);
4886 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4887 			spin_unlock(&sim->sim_spin);
4888 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4889 				spin_lock(&cam_simq_spin);
4890 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4891 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4892 							  links);
4893 					sim->flags |= CAM_SIM_ON_DONEQ;
4894 				}
4895 				spin_unlock(&cam_simq_spin);
4896 			}
4897 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4898 				setsoftcambio();
4899 			break;
4900 		default:
4901 			panic("unknown periph type %d",
4902 				done_ccb->ccb_h.path->periph->type);
4903 		}
4904 	}
4905 }
4906 
4907 union ccb *
4908 xpt_alloc_ccb(void)
4909 {
4910 	union ccb *new_ccb;
4911 
4912 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4913 	return (new_ccb);
4914 }
4915 
4916 void
4917 xpt_free_ccb(union ccb *free_ccb)
4918 {
4919 	kfree(free_ccb, M_CAMXPT);
4920 }
4921 
4922 
4923 
4924 /* Private XPT functions */
4925 
4926 /*
4927  * Get a CAM control block for the caller. Charge the structure to the device
4928  * referenced by the path.  If the this device has no 'credits' then the
4929  * device already has the maximum number of outstanding operations under way
4930  * and we return NULL. If we don't have sufficient resources to allocate more
4931  * ccbs, we also return NULL.
4932  */
4933 static union ccb *
4934 xpt_get_ccb(struct cam_ed *device)
4935 {
4936 	union ccb *new_ccb;
4937 	struct cam_sim *sim;
4938 
4939 	sim = device->sim;
4940 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4941 		new_ccb = xpt_alloc_ccb();
4942 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4943 			callout_init(&new_ccb->ccb_h.timeout_ch);
4944 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4945 				  xpt_links.sle);
4946 		sim->ccb_count++;
4947 	}
4948 	cam_ccbq_take_opening(&device->ccbq);
4949 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4950 	return (new_ccb);
4951 }
4952 
4953 static void
4954 xpt_release_bus(struct cam_eb *bus)
4955 {
4956 
4957 	if ((--bus->refcount == 0)
4958 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4959 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4960 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4961 		xsoftc.bus_generation++;
4962 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4963 		kfree(bus, M_CAMXPT);
4964 	}
4965 }
4966 
4967 static struct cam_et *
4968 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4969 {
4970 	struct cam_et *target;
4971 	struct cam_et *cur_target;
4972 
4973 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4974 
4975 	TAILQ_INIT(&target->ed_entries);
4976 	target->bus = bus;
4977 	target->target_id = target_id;
4978 	target->refcount = 1;
4979 	target->generation = 0;
4980 	timevalclear(&target->last_reset);
4981 	/*
4982 	 * Hold a reference to our parent bus so it
4983 	 * will not go away before we do.
4984 	 */
4985 	bus->refcount++;
4986 
4987 	/* Insertion sort into our bus's target list */
4988 	cur_target = TAILQ_FIRST(&bus->et_entries);
4989 	while (cur_target != NULL && cur_target->target_id < target_id)
4990 		cur_target = TAILQ_NEXT(cur_target, links);
4991 
4992 	if (cur_target != NULL) {
4993 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4994 	} else {
4995 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4996 	}
4997 	bus->generation++;
4998 	return (target);
4999 }
5000 
5001 static void
5002 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5003 {
5004 	if (target->refcount == 1) {
5005 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5006 		TAILQ_REMOVE(&bus->et_entries, target, links);
5007 		bus->generation++;
5008 		xpt_release_bus(bus);
5009 		KKASSERT(target->refcount == 1);
5010 		kfree(target, M_CAMXPT);
5011 	} else {
5012 		--target->refcount;
5013 	}
5014 }
5015 
5016 static struct cam_ed *
5017 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5018 {
5019 	struct	   cam_path path;
5020 	struct	   cam_ed *device;
5021 	struct	   cam_devq *devq;
5022 	cam_status status;
5023 
5024 	/*
5025 	 * Disallow new devices while trying to deregister a sim
5026 	 */
5027 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5028 		return (NULL);
5029 
5030 	/*
5031 	 * Make space for us in the device queue on our bus
5032 	 */
5033 	devq = bus->sim->devq;
5034 	if (devq == NULL)
5035 		return(NULL);
5036 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5037 
5038 	if (status != CAM_REQ_CMP) {
5039 		device = NULL;
5040 	} else {
5041 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5042 	}
5043 
5044 	if (device != NULL) {
5045 		struct cam_ed *cur_device;
5046 
5047 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5048 		device->alloc_ccb_entry.device = device;
5049 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5050 		device->send_ccb_entry.device = device;
5051 		device->target = target;
5052 		device->lun_id = lun_id;
5053 		device->sim = bus->sim;
5054 		/* Initialize our queues */
5055 		if (camq_init(&device->drvq, 0) != 0) {
5056 			kfree(device, M_CAMXPT);
5057 			return (NULL);
5058 		}
5059 		if (cam_ccbq_init(&device->ccbq,
5060 				  bus->sim->max_dev_openings) != 0) {
5061 			camq_fini(&device->drvq);
5062 			kfree(device, M_CAMXPT);
5063 			return (NULL);
5064 		}
5065 		SLIST_INIT(&device->asyncs);
5066 		SLIST_INIT(&device->periphs);
5067 		device->generation = 0;
5068 		device->owner = NULL;
5069 		/*
5070 		 * Take the default quirk entry until we have inquiry
5071 		 * data and can determine a better quirk to use.
5072 		 */
5073 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5074 		bzero(&device->inq_data, sizeof(device->inq_data));
5075 		device->inq_flags = 0;
5076 		device->queue_flags = 0;
5077 		device->serial_num = NULL;
5078 		device->serial_num_len = 0;
5079 		device->qfrozen_cnt = 0;
5080 		device->flags = CAM_DEV_UNCONFIGURED;
5081 		device->tag_delay_count = 0;
5082 		device->tag_saved_openings = 0;
5083 		device->refcount = 1;
5084 		callout_init(&device->callout);
5085 
5086 		/*
5087 		 * Hold a reference to our parent target so it
5088 		 * will not go away before we do.
5089 		 */
5090 		target->refcount++;
5091 
5092 		/*
5093 		 * XXX should be limited by number of CCBs this bus can
5094 		 * do.
5095 		 */
5096 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5097 		/* Insertion sort into our target's device list */
5098 		cur_device = TAILQ_FIRST(&target->ed_entries);
5099 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5100 			cur_device = TAILQ_NEXT(cur_device, links);
5101 		if (cur_device != NULL) {
5102 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5103 		} else {
5104 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5105 		}
5106 		target->generation++;
5107 		if (lun_id != CAM_LUN_WILDCARD) {
5108 			xpt_compile_path(&path,
5109 					 NULL,
5110 					 bus->path_id,
5111 					 target->target_id,
5112 					 lun_id);
5113 			xpt_devise_transport(&path);
5114 			xpt_release_path(&path);
5115 		}
5116 	}
5117 	return (device);
5118 }
5119 
5120 static void
5121 xpt_reference_device(struct cam_ed *device)
5122 {
5123 	++device->refcount;
5124 }
5125 
5126 static void
5127 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5128 		   struct cam_ed *device)
5129 {
5130 	struct cam_devq *devq;
5131 
5132 	if (device->refcount == 1) {
5133 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5134 
5135 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5136 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5137 			panic("Removing device while still queued for ccbs");
5138 
5139 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5140 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5141 			callout_stop(&device->callout);
5142 		}
5143 
5144 		TAILQ_REMOVE(&target->ed_entries, device,links);
5145 		target->generation++;
5146 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5147 		if ((devq = bus->sim->devq) != NULL) {
5148 			/* Release our slot in the devq */
5149 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5150 		}
5151 		camq_fini(&device->drvq);
5152 		camq_fini(&device->ccbq.queue);
5153 		xpt_release_target(bus, target);
5154 		KKASSERT(device->refcount == 1);
5155 		kfree(device, M_CAMXPT);
5156 	} else {
5157 		--device->refcount;
5158 	}
5159 }
5160 
5161 static u_int32_t
5162 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5163 {
5164 	int	diff;
5165 	int	result;
5166 	struct	cam_ed *dev;
5167 
5168 	dev = path->device;
5169 
5170 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5171 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5172 	if (result == CAM_REQ_CMP && (diff < 0)) {
5173 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5174 	}
5175 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5176 	 || (dev->inq_flags & SID_CmdQue) != 0)
5177 		dev->tag_saved_openings = newopenings;
5178 	/* Adjust the global limit */
5179 	dev->sim->max_ccbs += diff;
5180 	return (result);
5181 }
5182 
5183 static struct cam_eb *
5184 xpt_find_bus(path_id_t path_id)
5185 {
5186 	struct cam_eb *bus;
5187 
5188 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5189 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5190 		if (bus->path_id == path_id) {
5191 			bus->refcount++;
5192 			break;
5193 		}
5194 	}
5195 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5196 	return (bus);
5197 }
5198 
5199 static struct cam_et *
5200 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5201 {
5202 	struct cam_et *target;
5203 
5204 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5205 		if (target->target_id == target_id) {
5206 			target->refcount++;
5207 			break;
5208 		}
5209 	}
5210 	return (target);
5211 }
5212 
5213 static struct cam_ed *
5214 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5215 {
5216 	struct cam_ed *device;
5217 
5218 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5219 		if (device->lun_id == lun_id) {
5220 			device->refcount++;
5221 			break;
5222 		}
5223 	}
5224 	return (device);
5225 }
5226 
5227 typedef struct {
5228 	union	ccb *request_ccb;
5229 	struct 	ccb_pathinq *cpi;
5230 	int	counter;
5231 } xpt_scan_bus_info;
5232 
5233 /*
5234  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5235  * As the scan progresses, xpt_scan_bus is used as the
5236  * callback on completion function.
5237  */
5238 static void
5239 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5240 {
5241 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5242 		  ("xpt_scan_bus\n"));
5243 	switch (request_ccb->ccb_h.func_code) {
5244 	case XPT_SCAN_BUS:
5245 	{
5246 		xpt_scan_bus_info *scan_info;
5247 		union	ccb *work_ccb;
5248 		struct	cam_path *path;
5249 		u_int	i;
5250 		u_int	max_target;
5251 		u_int	initiator_id;
5252 
5253 		/* Find out the characteristics of the bus */
5254 		work_ccb = xpt_alloc_ccb();
5255 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5256 			      request_ccb->ccb_h.pinfo.priority);
5257 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5258 		xpt_action(work_ccb);
5259 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5260 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5261 			xpt_free_ccb(work_ccb);
5262 			xpt_done(request_ccb);
5263 			return;
5264 		}
5265 
5266 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5267 			/*
5268 			 * Can't scan the bus on an adapter that
5269 			 * cannot perform the initiator role.
5270 			 */
5271 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5272 			xpt_free_ccb(work_ccb);
5273 			xpt_done(request_ccb);
5274 			return;
5275 		}
5276 
5277 		/* Save some state for use while we probe for devices */
5278 		scan_info = (xpt_scan_bus_info *)
5279 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5280 		scan_info->request_ccb = request_ccb;
5281 		scan_info->cpi = &work_ccb->cpi;
5282 
5283 		/* Cache on our stack so we can work asynchronously */
5284 		max_target = scan_info->cpi->max_target;
5285 		initiator_id = scan_info->cpi->initiator_id;
5286 
5287 
5288 		/*
5289 		 * We can scan all targets in parallel, or do it sequentially.
5290 		 */
5291 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5292 			max_target = 0;
5293 			scan_info->counter = 0;
5294 		} else {
5295 			scan_info->counter = scan_info->cpi->max_target + 1;
5296 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5297 				scan_info->counter--;
5298 			}
5299 		}
5300 
5301 		for (i = 0; i <= max_target; i++) {
5302 			cam_status status;
5303 			if (i == initiator_id)
5304 				continue;
5305 
5306 			status = xpt_create_path(&path, xpt_periph,
5307 						 request_ccb->ccb_h.path_id,
5308 						 i, 0);
5309 			if (status != CAM_REQ_CMP) {
5310 				kprintf("xpt_scan_bus: xpt_create_path failed"
5311 				       " with status %#x, bus scan halted\n",
5312 				       status);
5313 				kfree(scan_info, M_CAMXPT);
5314 				request_ccb->ccb_h.status = status;
5315 				xpt_free_ccb(work_ccb);
5316 				xpt_done(request_ccb);
5317 				break;
5318 			}
5319 			work_ccb = xpt_alloc_ccb();
5320 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5321 				      request_ccb->ccb_h.pinfo.priority);
5322 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5323 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5324 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5325 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5326 			xpt_action(work_ccb);
5327 		}
5328 		break;
5329 	}
5330 	case XPT_SCAN_LUN:
5331 	{
5332 		cam_status status;
5333 		struct cam_path *path;
5334 		xpt_scan_bus_info *scan_info;
5335 		path_id_t path_id;
5336 		target_id_t target_id;
5337 		lun_id_t lun_id;
5338 
5339 		/* Reuse the same CCB to query if a device was really found */
5340 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5341 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5342 			      request_ccb->ccb_h.pinfo.priority);
5343 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5344 
5345 		path_id = request_ccb->ccb_h.path_id;
5346 		target_id = request_ccb->ccb_h.target_id;
5347 		lun_id = request_ccb->ccb_h.target_lun;
5348 		xpt_action(request_ccb);
5349 
5350 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5351 			struct cam_ed *device;
5352 			struct cam_et *target;
5353 			int phl;
5354 
5355 			/*
5356 			 * If we already probed lun 0 successfully, or
5357 			 * we have additional configured luns on this
5358 			 * target that might have "gone away", go onto
5359 			 * the next lun.
5360 			 */
5361 			target = request_ccb->ccb_h.path->target;
5362 			/*
5363 			 * We may touch devices that we don't
5364 			 * hold references too, so ensure they
5365 			 * don't disappear out from under us.
5366 			 * The target above is referenced by the
5367 			 * path in the request ccb.
5368 			 */
5369 			phl = 0;
5370 			device = TAILQ_FIRST(&target->ed_entries);
5371 			if (device != NULL) {
5372 				phl = CAN_SRCH_HI_SPARSE(device);
5373 				if (device->lun_id == 0)
5374 					device = TAILQ_NEXT(device, links);
5375 			}
5376 			if ((lun_id != 0) || (device != NULL)) {
5377 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5378 					lun_id++;
5379 			}
5380 		} else {
5381 			struct cam_ed *device;
5382 
5383 			device = request_ccb->ccb_h.path->device;
5384 
5385 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5386 				/* Try the next lun */
5387 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5388 				  || CAN_SRCH_HI_DENSE(device))
5389 					lun_id++;
5390 			}
5391 		}
5392 
5393 		/*
5394 		 * Free the current request path- we're done with it.
5395 		 */
5396 		xpt_free_path(request_ccb->ccb_h.path);
5397 
5398 		/*
5399 		 * Check to see if we scan any further luns.
5400 		 */
5401 		if (lun_id == request_ccb->ccb_h.target_lun
5402                  || lun_id > scan_info->cpi->max_lun) {
5403 			int done;
5404 
5405  hop_again:
5406 			done = 0;
5407 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5408 				scan_info->counter++;
5409 				if (scan_info->counter ==
5410 				    scan_info->cpi->initiator_id) {
5411 					scan_info->counter++;
5412 				}
5413 				if (scan_info->counter >=
5414 				    scan_info->cpi->max_target+1) {
5415 					done = 1;
5416 				}
5417 			} else {
5418 				scan_info->counter--;
5419 				if (scan_info->counter == 0) {
5420 					done = 1;
5421 				}
5422 			}
5423 			if (done) {
5424 				xpt_free_ccb(request_ccb);
5425 				xpt_free_ccb((union ccb *)scan_info->cpi);
5426 				request_ccb = scan_info->request_ccb;
5427 				kfree(scan_info, M_CAMXPT);
5428 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5429 				xpt_done(request_ccb);
5430 				break;
5431 			}
5432 
5433 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5434 				break;
5435 			}
5436 			status = xpt_create_path(&path, xpt_periph,
5437 			    scan_info->request_ccb->ccb_h.path_id,
5438 			    scan_info->counter, 0);
5439 			if (status != CAM_REQ_CMP) {
5440 				kprintf("xpt_scan_bus: xpt_create_path failed"
5441 				    " with status %#x, bus scan halted\n",
5442 			       	    status);
5443 				xpt_free_ccb(request_ccb);
5444 				xpt_free_ccb((union ccb *)scan_info->cpi);
5445 				request_ccb = scan_info->request_ccb;
5446 				kfree(scan_info, M_CAMXPT);
5447 				request_ccb->ccb_h.status = status;
5448 				xpt_done(request_ccb);
5449 				break;
5450 			}
5451 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5452 			    request_ccb->ccb_h.pinfo.priority);
5453 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5454 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5455 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5456 			request_ccb->crcn.flags =
5457 			    scan_info->request_ccb->crcn.flags;
5458 		} else {
5459 			status = xpt_create_path(&path, xpt_periph,
5460 						 path_id, target_id, lun_id);
5461 			if (status != CAM_REQ_CMP) {
5462 				kprintf("xpt_scan_bus: xpt_create_path failed "
5463 				       "with status %#x, halting LUN scan\n",
5464 			 	       status);
5465 				goto hop_again;
5466 			}
5467 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5468 				      request_ccb->ccb_h.pinfo.priority);
5469 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5470 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5471 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5472 			request_ccb->crcn.flags =
5473 				scan_info->request_ccb->crcn.flags;
5474 		}
5475 		xpt_action(request_ccb);
5476 		break;
5477 	}
5478 	default:
5479 		break;
5480 	}
5481 }
5482 
5483 typedef enum {
5484 	PROBE_TUR,
5485 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5486 	PROBE_FULL_INQUIRY,
5487 	PROBE_MODE_SENSE,
5488 	PROBE_SERIAL_NUM_0,
5489 	PROBE_SERIAL_NUM_1,
5490 	PROBE_TUR_FOR_NEGOTIATION,
5491 	PROBE_INQUIRY_BASIC_DV1,
5492 	PROBE_INQUIRY_BASIC_DV2,
5493 	PROBE_DV_EXIT
5494 } probe_action;
5495 
5496 typedef enum {
5497 	PROBE_INQUIRY_CKSUM	= 0x01,
5498 	PROBE_SERIAL_CKSUM	= 0x02,
5499 	PROBE_NO_ANNOUNCE	= 0x04
5500 } probe_flags;
5501 
5502 typedef struct {
5503 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5504 	probe_action	action;
5505 	union ccb	saved_ccb;
5506 	probe_flags	flags;
5507 	MD5_CTX		context;
5508 	u_int8_t	digest[16];
5509 }probe_softc;
5510 
5511 static void
5512 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5513 	     cam_flags flags, union ccb *request_ccb)
5514 {
5515 	struct ccb_pathinq cpi;
5516 	cam_status status;
5517 	struct cam_path *new_path;
5518 	struct cam_periph *old_periph;
5519 
5520 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5521 		  ("xpt_scan_lun\n"));
5522 
5523 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5524 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5525 	xpt_action((union ccb *)&cpi);
5526 
5527 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5528 		if (request_ccb != NULL) {
5529 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5530 			xpt_done(request_ccb);
5531 		}
5532 		return;
5533 	}
5534 
5535 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5536 		/*
5537 		 * Can't scan the bus on an adapter that
5538 		 * cannot perform the initiator role.
5539 		 */
5540 		if (request_ccb != NULL) {
5541 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5542 			xpt_done(request_ccb);
5543 		}
5544 		return;
5545 	}
5546 
5547 	if (request_ccb == NULL) {
5548 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5549 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5550 		status = xpt_compile_path(new_path, xpt_periph,
5551 					  path->bus->path_id,
5552 					  path->target->target_id,
5553 					  path->device->lun_id);
5554 
5555 		if (status != CAM_REQ_CMP) {
5556 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5557 			    "can't continue\n");
5558 			kfree(request_ccb, M_CAMXPT);
5559 			kfree(new_path, M_CAMXPT);
5560 			return;
5561 		}
5562 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5563 		request_ccb->ccb_h.cbfcnp = xptscandone;
5564 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5565 		request_ccb->crcn.flags = flags;
5566 	}
5567 
5568 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5569 		probe_softc *softc;
5570 
5571 		softc = (probe_softc *)old_periph->softc;
5572 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5573 				  periph_links.tqe);
5574 	} else {
5575 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5576 					  probestart, "probe",
5577 					  CAM_PERIPH_BIO,
5578 					  request_ccb->ccb_h.path, NULL, 0,
5579 					  request_ccb);
5580 
5581 		if (status != CAM_REQ_CMP) {
5582 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5583 			    "returned an error, can't continue probe\n");
5584 			request_ccb->ccb_h.status = status;
5585 			xpt_done(request_ccb);
5586 		}
5587 	}
5588 }
5589 
5590 static void
5591 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5592 {
5593 	xpt_release_path(done_ccb->ccb_h.path);
5594 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5595 	kfree(done_ccb, M_CAMXPT);
5596 }
5597 
5598 static cam_status
5599 proberegister(struct cam_periph *periph, void *arg)
5600 {
5601 	union ccb *request_ccb;	/* CCB representing the probe request */
5602 	cam_status status;
5603 	probe_softc *softc;
5604 
5605 	request_ccb = (union ccb *)arg;
5606 	if (periph == NULL) {
5607 		kprintf("proberegister: periph was NULL!!\n");
5608 		return(CAM_REQ_CMP_ERR);
5609 	}
5610 
5611 	if (request_ccb == NULL) {
5612 		kprintf("proberegister: no probe CCB, "
5613 		       "can't register device\n");
5614 		return(CAM_REQ_CMP_ERR);
5615 	}
5616 
5617 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5618 	TAILQ_INIT(&softc->request_ccbs);
5619 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5620 			  periph_links.tqe);
5621 	softc->flags = 0;
5622 	periph->softc = softc;
5623 	status = cam_periph_acquire(periph);
5624 	if (status != CAM_REQ_CMP) {
5625 		return (status);
5626 	}
5627 
5628 
5629 	/*
5630 	 * Ensure we've waited at least a bus settle
5631 	 * delay before attempting to probe the device.
5632 	 * For HBAs that don't do bus resets, this won't make a difference.
5633 	 */
5634 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5635 				      scsi_delay);
5636 	probeschedule(periph);
5637 	return(CAM_REQ_CMP);
5638 }
5639 
5640 static void
5641 probeschedule(struct cam_periph *periph)
5642 {
5643 	struct ccb_pathinq cpi;
5644 	union ccb *ccb;
5645 	probe_softc *softc;
5646 
5647 	softc = (probe_softc *)periph->softc;
5648 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5649 
5650 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5651 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5652 	xpt_action((union ccb *)&cpi);
5653 
5654 	/*
5655 	 * If a device has gone away and another device, or the same one,
5656 	 * is back in the same place, it should have a unit attention
5657 	 * condition pending.  It will not report the unit attention in
5658 	 * response to an inquiry, which may leave invalid transfer
5659 	 * negotiations in effect.  The TUR will reveal the unit attention
5660 	 * condition.  Only send the TUR for lun 0, since some devices
5661 	 * will get confused by commands other than inquiry to non-existent
5662 	 * luns.  If you think a device has gone away start your scan from
5663 	 * lun 0.  This will insure that any bogus transfer settings are
5664 	 * invalidated.
5665 	 *
5666 	 * If we haven't seen the device before and the controller supports
5667 	 * some kind of transfer negotiation, negotiate with the first
5668 	 * sent command if no bus reset was performed at startup.  This
5669 	 * ensures that the device is not confused by transfer negotiation
5670 	 * settings left over by loader or BIOS action.
5671 	 */
5672 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5673 	 && (ccb->ccb_h.target_lun == 0)) {
5674 		softc->action = PROBE_TUR;
5675 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5676 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5677 		proberequestdefaultnegotiation(periph);
5678 		softc->action = PROBE_INQUIRY;
5679 	} else {
5680 		softc->action = PROBE_INQUIRY;
5681 	}
5682 
5683 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5684 		softc->flags |= PROBE_NO_ANNOUNCE;
5685 	else
5686 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5687 
5688 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5689 }
5690 
5691 static void
5692 probestart(struct cam_periph *periph, union ccb *start_ccb)
5693 {
5694 	/* Probe the device that our peripheral driver points to */
5695 	struct ccb_scsiio *csio;
5696 	probe_softc *softc;
5697 
5698 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5699 
5700 	softc = (probe_softc *)periph->softc;
5701 	csio = &start_ccb->csio;
5702 
5703 	switch (softc->action) {
5704 	case PROBE_TUR:
5705 	case PROBE_TUR_FOR_NEGOTIATION:
5706 	case PROBE_DV_EXIT:
5707 	{
5708 		scsi_test_unit_ready(csio,
5709 				     /*retries*/4,
5710 				     probedone,
5711 				     MSG_SIMPLE_Q_TAG,
5712 				     SSD_FULL_SIZE,
5713 				     /*timeout*/60000);
5714 		break;
5715 	}
5716 	case PROBE_INQUIRY:
5717 	case PROBE_FULL_INQUIRY:
5718 	case PROBE_INQUIRY_BASIC_DV1:
5719 	case PROBE_INQUIRY_BASIC_DV2:
5720 	{
5721 		u_int inquiry_len;
5722 		struct scsi_inquiry_data *inq_buf;
5723 
5724 		inq_buf = &periph->path->device->inq_data;
5725 
5726 		/*
5727 		 * If the device is currently configured, we calculate an
5728 		 * MD5 checksum of the inquiry data, and if the serial number
5729 		 * length is greater than 0, add the serial number data
5730 		 * into the checksum as well.  Once the inquiry and the
5731 		 * serial number check finish, we attempt to figure out
5732 		 * whether we still have the same device.
5733 		 */
5734 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5735 
5736 			MD5Init(&softc->context);
5737 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5738 				  sizeof(struct scsi_inquiry_data));
5739 			softc->flags |= PROBE_INQUIRY_CKSUM;
5740 			if (periph->path->device->serial_num_len > 0) {
5741 				MD5Update(&softc->context,
5742 					  periph->path->device->serial_num,
5743 					  periph->path->device->serial_num_len);
5744 				softc->flags |= PROBE_SERIAL_CKSUM;
5745 			}
5746 			MD5Final(softc->digest, &softc->context);
5747 		}
5748 
5749 		if (softc->action == PROBE_INQUIRY)
5750 			inquiry_len = SHORT_INQUIRY_LENGTH;
5751 		else
5752 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5753 
5754 		/*
5755 		 * Some parallel SCSI devices fail to send an
5756 		 * ignore wide residue message when dealing with
5757 		 * odd length inquiry requests.  Round up to be
5758 		 * safe.
5759 		 */
5760 		inquiry_len = roundup2(inquiry_len, 2);
5761 
5762 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5763 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5764 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5765 		}
5766 		scsi_inquiry(csio,
5767 			     /*retries*/4,
5768 			     probedone,
5769 			     MSG_SIMPLE_Q_TAG,
5770 			     (u_int8_t *)inq_buf,
5771 			     inquiry_len,
5772 			     /*evpd*/FALSE,
5773 			     /*page_code*/0,
5774 			     SSD_MIN_SIZE,
5775 			     /*timeout*/60 * 1000);
5776 		break;
5777 	}
5778 	case PROBE_MODE_SENSE:
5779 	{
5780 		void  *mode_buf;
5781 		int    mode_buf_len;
5782 
5783 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5784 			     + sizeof(struct scsi_mode_blk_desc)
5785 			     + sizeof(struct scsi_control_page);
5786 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5787 		scsi_mode_sense(csio,
5788 				/*retries*/4,
5789 				probedone,
5790 				MSG_SIMPLE_Q_TAG,
5791 				/*dbd*/FALSE,
5792 				SMS_PAGE_CTRL_CURRENT,
5793 				SMS_CONTROL_MODE_PAGE,
5794 				mode_buf,
5795 				mode_buf_len,
5796 				SSD_FULL_SIZE,
5797 				/*timeout*/60000);
5798 		break;
5799 	}
5800 	case PROBE_SERIAL_NUM_0:
5801 	{
5802 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5803 		struct cam_ed *device;
5804 
5805 		device = periph->path->device;
5806 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5807 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5808 			    M_INTWAIT | M_ZERO);
5809 		}
5810 
5811 		if (vpd_list != NULL) {
5812 			scsi_inquiry(csio,
5813 				     /*retries*/4,
5814 				     probedone,
5815 				     MSG_SIMPLE_Q_TAG,
5816 				     (u_int8_t *)vpd_list,
5817 				     sizeof(*vpd_list),
5818 				     /*evpd*/TRUE,
5819 				     SVPD_SUPPORTED_PAGE_LIST,
5820 				     SSD_MIN_SIZE,
5821 				     /*timeout*/60 * 1000);
5822 			break;
5823 		}
5824 		/*
5825 		 * We'll have to do without, let our probedone
5826 		 * routine finish up for us.
5827 		 */
5828 		start_ccb->csio.data_ptr = NULL;
5829 		probedone(periph, start_ccb);
5830 		return;
5831 	}
5832 	case PROBE_SERIAL_NUM_1:
5833 	{
5834 		struct scsi_vpd_unit_serial_number *serial_buf;
5835 		struct cam_ed* device;
5836 
5837 		serial_buf = NULL;
5838 		device = periph->path->device;
5839 		device->serial_num = NULL;
5840 		device->serial_num_len = 0;
5841 
5842 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5843 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5844 				M_INTWAIT | M_ZERO);
5845 		scsi_inquiry(csio,
5846 			     /*retries*/4,
5847 			     probedone,
5848 			     MSG_SIMPLE_Q_TAG,
5849 			     (u_int8_t *)serial_buf,
5850 			     sizeof(*serial_buf),
5851 			     /*evpd*/TRUE,
5852 			     SVPD_UNIT_SERIAL_NUMBER,
5853 			     SSD_MIN_SIZE,
5854 			     /*timeout*/60 * 1000);
5855 		break;
5856 	}
5857 	}
5858 	xpt_action(start_ccb);
5859 }
5860 
5861 static void
5862 proberequestdefaultnegotiation(struct cam_periph *periph)
5863 {
5864 	struct ccb_trans_settings cts;
5865 
5866 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5867 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5868 	cts.type = CTS_TYPE_USER_SETTINGS;
5869 	xpt_action((union ccb *)&cts);
5870 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5871 		return;
5872 	}
5873 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5874 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5875 	xpt_action((union ccb *)&cts);
5876 }
5877 
5878 /*
5879  * Backoff Negotiation Code- only pertinent for SPI devices.
5880  */
5881 static int
5882 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5883 {
5884 	struct ccb_trans_settings cts;
5885 	struct ccb_trans_settings_spi *spi;
5886 
5887 	memset(&cts, 0, sizeof (cts));
5888 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5889 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5890 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5891 	xpt_action((union ccb *)&cts);
5892 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5893 		if (bootverbose) {
5894 			xpt_print(periph->path,
5895 			    "failed to get current device settings\n");
5896 		}
5897 		return (0);
5898 	}
5899 	if (cts.transport != XPORT_SPI) {
5900 		if (bootverbose) {
5901 			xpt_print(periph->path, "not SPI transport\n");
5902 		}
5903 		return (0);
5904 	}
5905 	spi = &cts.xport_specific.spi;
5906 
5907 	/*
5908 	 * We cannot renegotiate sync rate if we don't have one.
5909 	 */
5910 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5911 		if (bootverbose) {
5912 			xpt_print(periph->path, "no sync rate known\n");
5913 		}
5914 		return (0);
5915 	}
5916 
5917 	/*
5918 	 * We'll assert that we don't have to touch PPR options- the
5919 	 * SIM will see what we do with period and offset and adjust
5920 	 * the PPR options as appropriate.
5921 	 */
5922 
5923 	/*
5924 	 * A sync rate with unknown or zero offset is nonsensical.
5925 	 * A sync period of zero means Async.
5926 	 */
5927 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5928 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5929 		if (bootverbose) {
5930 			xpt_print(periph->path, "no sync rate available\n");
5931 		}
5932 		return (0);
5933 	}
5934 
5935 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5936 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5937 		    ("hit async: giving up on DV\n"));
5938 		return (0);
5939 	}
5940 
5941 
5942 	/*
5943 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5944 	 * We don't try to remember 'last' settings to see if the SIM actually
5945 	 * gets into the speed we want to set. We check on the SIM telling
5946 	 * us that a requested speed is bad, but otherwise don't try and
5947 	 * check the speed due to the asynchronous and handshake nature
5948 	 * of speed setting.
5949 	 */
5950 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5951 	for (;;) {
5952 		spi->sync_period++;
5953 		if (spi->sync_period >= 0xf) {
5954 			spi->sync_period = 0;
5955 			spi->sync_offset = 0;
5956 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5957 			    ("setting to async for DV\n"));
5958 			/*
5959 			 * Once we hit async, we don't want to try
5960 			 * any more settings.
5961 			 */
5962 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5963 		} else if (bootverbose) {
5964 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5965 			    ("DV: period 0x%x\n", spi->sync_period));
5966 			kprintf("setting period to 0x%x\n", spi->sync_period);
5967 		}
5968 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5969 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5970 		xpt_action((union ccb *)&cts);
5971 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5972 			break;
5973 		}
5974 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5975 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5976 		if (spi->sync_period == 0) {
5977 			return (0);
5978 		}
5979 	}
5980 	return (1);
5981 }
5982 
5983 static void
5984 probedone(struct cam_periph *periph, union ccb *done_ccb)
5985 {
5986 	probe_softc *softc;
5987 	struct cam_path *path;
5988 	u_int32_t  priority;
5989 
5990 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5991 
5992 	softc = (probe_softc *)periph->softc;
5993 	path = done_ccb->ccb_h.path;
5994 	priority = done_ccb->ccb_h.pinfo.priority;
5995 
5996 	switch (softc->action) {
5997 	case PROBE_TUR:
5998 	{
5999 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6000 
6001 			if (cam_periph_error(done_ccb, 0,
6002 					     SF_NO_PRINT, NULL) == ERESTART)
6003 				return;
6004 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6005 				/* Don't wedge the queue */
6006 				xpt_release_devq(done_ccb->ccb_h.path,
6007 						 /*count*/1,
6008 						 /*run_queue*/TRUE);
6009 		}
6010 		softc->action = PROBE_INQUIRY;
6011 		xpt_release_ccb(done_ccb);
6012 		xpt_schedule(periph, priority);
6013 		return;
6014 	}
6015 	case PROBE_INQUIRY:
6016 	case PROBE_FULL_INQUIRY:
6017 	{
6018 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6019 			struct scsi_inquiry_data *inq_buf;
6020 			u_int8_t periph_qual;
6021 
6022 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6023 			inq_buf = &path->device->inq_data;
6024 
6025 			periph_qual = SID_QUAL(inq_buf);
6026 
6027 			switch(periph_qual) {
6028 			case SID_QUAL_LU_CONNECTED:
6029 			{
6030 				u_int8_t len;
6031 
6032 				/*
6033 				 * We conservatively request only
6034 				 * SHORT_INQUIRY_LEN bytes of inquiry
6035 				 * information during our first try
6036 				 * at sending an INQUIRY. If the device
6037 				 * has more information to give,
6038 				 * perform a second request specifying
6039 				 * the amount of information the device
6040 				 * is willing to give.
6041 				 */
6042 				len = inq_buf->additional_length
6043 				    + offsetof(struct scsi_inquiry_data,
6044 						additional_length) + 1;
6045 				if (softc->action == PROBE_INQUIRY
6046 				    && len > SHORT_INQUIRY_LENGTH) {
6047 					softc->action = PROBE_FULL_INQUIRY;
6048 					xpt_release_ccb(done_ccb);
6049 					xpt_schedule(periph, priority);
6050 					return;
6051 				}
6052 
6053 				xpt_find_quirk(path->device);
6054 
6055 				xpt_devise_transport(path);
6056 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6057 					softc->action = PROBE_MODE_SENSE;
6058 				else
6059 					softc->action = PROBE_SERIAL_NUM_0;
6060 
6061 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6062 				xpt_reference_device(path->device);
6063 
6064 				xpt_release_ccb(done_ccb);
6065 				xpt_schedule(periph, priority);
6066 				return;
6067 			}
6068 			default:
6069 				break;
6070 			}
6071 		} else if (cam_periph_error(done_ccb, 0,
6072 					    done_ccb->ccb_h.target_lun > 0
6073 					    ? SF_RETRY_UA|SF_QUIET_IR
6074 					    : SF_RETRY_UA,
6075 					    &softc->saved_ccb) == ERESTART) {
6076 			return;
6077 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6078 			/* Don't wedge the queue */
6079 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6080 					 /*run_queue*/TRUE);
6081 		}
6082 		/*
6083 		 * If we get to this point, we got an error status back
6084 		 * from the inquiry and the error status doesn't require
6085 		 * automatically retrying the command.  Therefore, the
6086 		 * inquiry failed.  If we had inquiry information before
6087 		 * for this device, but this latest inquiry command failed,
6088 		 * the device has probably gone away.  If this device isn't
6089 		 * already marked unconfigured, notify the peripheral
6090 		 * drivers that this device is no more.
6091 		 */
6092 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6093 			/* Send the async notification. */
6094 			xpt_async(AC_LOST_DEVICE, path, NULL);
6095 		}
6096 
6097 		xpt_release_ccb(done_ccb);
6098 		break;
6099 	}
6100 	case PROBE_MODE_SENSE:
6101 	{
6102 		struct ccb_scsiio *csio;
6103 		struct scsi_mode_header_6 *mode_hdr;
6104 
6105 		csio = &done_ccb->csio;
6106 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6107 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6108 			struct scsi_control_page *page;
6109 			u_int8_t *offset;
6110 
6111 			offset = ((u_int8_t *)&mode_hdr[1])
6112 			    + mode_hdr->blk_desc_len;
6113 			page = (struct scsi_control_page *)offset;
6114 			path->device->queue_flags = page->queue_flags;
6115 		} else if (cam_periph_error(done_ccb, 0,
6116 					    SF_RETRY_UA|SF_NO_PRINT,
6117 					    &softc->saved_ccb) == ERESTART) {
6118 			return;
6119 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6120 			/* Don't wedge the queue */
6121 			xpt_release_devq(done_ccb->ccb_h.path,
6122 					 /*count*/1, /*run_queue*/TRUE);
6123 		}
6124 		xpt_release_ccb(done_ccb);
6125 		kfree(mode_hdr, M_CAMXPT);
6126 		softc->action = PROBE_SERIAL_NUM_0;
6127 		xpt_schedule(periph, priority);
6128 		return;
6129 	}
6130 	case PROBE_SERIAL_NUM_0:
6131 	{
6132 		struct ccb_scsiio *csio;
6133 		struct scsi_vpd_supported_page_list *page_list;
6134 		int length, serialnum_supported, i;
6135 
6136 		serialnum_supported = 0;
6137 		csio = &done_ccb->csio;
6138 		page_list =
6139 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6140 
6141 		if (page_list == NULL) {
6142 			/*
6143 			 * Don't process the command as it was never sent
6144 			 */
6145 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6146 		    && (page_list->length > 0)) {
6147 			length = min(page_list->length,
6148 			    SVPD_SUPPORTED_PAGES_SIZE);
6149 			for (i = 0; i < length; i++) {
6150 				if (page_list->list[i] ==
6151 				    SVPD_UNIT_SERIAL_NUMBER) {
6152 					serialnum_supported = 1;
6153 					break;
6154 				}
6155 			}
6156 		} else if (cam_periph_error(done_ccb, 0,
6157 					    SF_RETRY_UA|SF_NO_PRINT,
6158 					    &softc->saved_ccb) == ERESTART) {
6159 			return;
6160 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6161 			/* Don't wedge the queue */
6162 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6163 					 /*run_queue*/TRUE);
6164 		}
6165 
6166 		if (page_list != NULL)
6167 			kfree(page_list, M_DEVBUF);
6168 
6169 		if (serialnum_supported) {
6170 			xpt_release_ccb(done_ccb);
6171 			softc->action = PROBE_SERIAL_NUM_1;
6172 			xpt_schedule(periph, priority);
6173 			return;
6174 		}
6175 		xpt_release_ccb(done_ccb);
6176 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6177 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6178 		return;
6179 	}
6180 
6181 	case PROBE_SERIAL_NUM_1:
6182 	{
6183 		struct ccb_scsiio *csio;
6184 		struct scsi_vpd_unit_serial_number *serial_buf;
6185 		u_int32_t  priority;
6186 		int changed;
6187 		int have_serialnum;
6188 
6189 		changed = 1;
6190 		have_serialnum = 0;
6191 		csio = &done_ccb->csio;
6192 		priority = done_ccb->ccb_h.pinfo.priority;
6193 		serial_buf =
6194 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6195 
6196 		/* Clean up from previous instance of this device */
6197 		if (path->device->serial_num != NULL) {
6198 			kfree(path->device->serial_num, M_CAMXPT);
6199 			path->device->serial_num = NULL;
6200 			path->device->serial_num_len = 0;
6201 		}
6202 
6203 		if (serial_buf == NULL) {
6204 			/*
6205 			 * Don't process the command as it was never sent
6206 			 */
6207 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6208 			&& (serial_buf->length > 0)) {
6209 
6210 			have_serialnum = 1;
6211 			path->device->serial_num =
6212 				kmalloc((serial_buf->length + 1),
6213 				       M_CAMXPT, M_INTWAIT);
6214 			bcopy(serial_buf->serial_num,
6215 			      path->device->serial_num,
6216 			      serial_buf->length);
6217 			path->device->serial_num_len = serial_buf->length;
6218 			path->device->serial_num[serial_buf->length] = '\0';
6219 		} else if (cam_periph_error(done_ccb, 0,
6220 					    SF_RETRY_UA|SF_NO_PRINT,
6221 					    &softc->saved_ccb) == ERESTART) {
6222 			return;
6223 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6224 			/* Don't wedge the queue */
6225 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6226 					 /*run_queue*/TRUE);
6227 		}
6228 
6229 		/*
6230 		 * Let's see if we have seen this device before.
6231 		 */
6232 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6233 			MD5_CTX context;
6234 			u_int8_t digest[16];
6235 
6236 			MD5Init(&context);
6237 
6238 			MD5Update(&context,
6239 				  (unsigned char *)&path->device->inq_data,
6240 				  sizeof(struct scsi_inquiry_data));
6241 
6242 			if (have_serialnum)
6243 				MD5Update(&context, serial_buf->serial_num,
6244 					  serial_buf->length);
6245 
6246 			MD5Final(digest, &context);
6247 			if (bcmp(softc->digest, digest, 16) == 0)
6248 				changed = 0;
6249 
6250 			/*
6251 			 * XXX Do we need to do a TUR in order to ensure
6252 			 *     that the device really hasn't changed???
6253 			 */
6254 			if ((changed != 0)
6255 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6256 				xpt_async(AC_LOST_DEVICE, path, NULL);
6257 		}
6258 		if (serial_buf != NULL)
6259 			kfree(serial_buf, M_CAMXPT);
6260 
6261 		if (changed != 0) {
6262 			/*
6263 			 * Now that we have all the necessary
6264 			 * information to safely perform transfer
6265 			 * negotiations... Controllers don't perform
6266 			 * any negotiation or tagged queuing until
6267 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6268 			 * received.  So, on a new device, just retrieve
6269 			 * the user settings, and set them as the current
6270 			 * settings to set the device up.
6271 			 */
6272 			proberequestdefaultnegotiation(periph);
6273 			xpt_release_ccb(done_ccb);
6274 
6275 			/*
6276 			 * Perform a TUR to allow the controller to
6277 			 * perform any necessary transfer negotiation.
6278 			 */
6279 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6280 			xpt_schedule(periph, priority);
6281 			return;
6282 		}
6283 		xpt_release_ccb(done_ccb);
6284 		break;
6285 	}
6286 	case PROBE_TUR_FOR_NEGOTIATION:
6287 	case PROBE_DV_EXIT:
6288 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6289 			/* Don't wedge the queue */
6290 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6291 					 /*run_queue*/TRUE);
6292 		}
6293 
6294 		xpt_reference_device(path->device);
6295 		/*
6296 		 * Do Domain Validation for lun 0 on devices that claim
6297 		 * to support Synchronous Transfer modes.
6298 		 */
6299 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6300 		 && done_ccb->ccb_h.target_lun == 0
6301 		 && (path->device->inq_data.flags & SID_Sync) != 0
6302                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6303 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6304 			    ("Begin Domain Validation\n"));
6305 			path->device->flags |= CAM_DEV_IN_DV;
6306 			xpt_release_ccb(done_ccb);
6307 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6308 			xpt_schedule(periph, priority);
6309 			return;
6310 		}
6311 		if (softc->action == PROBE_DV_EXIT) {
6312 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6313 			    ("Leave Domain Validation\n"));
6314 		}
6315 		path->device->flags &=
6316 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6317 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6318 			/* Inform the XPT that a new device has been found */
6319 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6320 			xpt_action(done_ccb);
6321 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6322 				  done_ccb);
6323 		}
6324 		xpt_release_ccb(done_ccb);
6325 		break;
6326 	case PROBE_INQUIRY_BASIC_DV1:
6327 	case PROBE_INQUIRY_BASIC_DV2:
6328 	{
6329 		struct scsi_inquiry_data *nbuf;
6330 		struct ccb_scsiio *csio;
6331 
6332 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6333 			/* Don't wedge the queue */
6334 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6335 					 /*run_queue*/TRUE);
6336 		}
6337 		csio = &done_ccb->csio;
6338 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6339 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6340 			xpt_print(path,
6341 			    "inquiry data fails comparison at DV%d step\n",
6342 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6343 			if (proberequestbackoff(periph, path->device)) {
6344 				path->device->flags &= ~CAM_DEV_IN_DV;
6345 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6346 			} else {
6347 				/* give up */
6348 				softc->action = PROBE_DV_EXIT;
6349 			}
6350 			kfree(nbuf, M_CAMXPT);
6351 			xpt_release_ccb(done_ccb);
6352 			xpt_schedule(periph, priority);
6353 			return;
6354 		}
6355 		kfree(nbuf, M_CAMXPT);
6356 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6357 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6358 			xpt_release_ccb(done_ccb);
6359 			xpt_schedule(periph, priority);
6360 			return;
6361 		}
6362 		if (softc->action == PROBE_DV_EXIT) {
6363 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6364 			    ("Leave Domain Validation Successfully\n"));
6365 		}
6366 		path->device->flags &=
6367 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6368 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6369 			/* Inform the XPT that a new device has been found */
6370 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6371 			xpt_action(done_ccb);
6372 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6373 				  done_ccb);
6374 		}
6375 		xpt_release_ccb(done_ccb);
6376 		break;
6377 	}
6378 	}
6379 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6380 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6381 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6382 	xpt_done(done_ccb);
6383 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6384 		cam_periph_invalidate(periph);
6385 		cam_periph_release(periph);
6386 	} else {
6387 		probeschedule(periph);
6388 	}
6389 }
6390 
6391 static void
6392 probecleanup(struct cam_periph *periph)
6393 {
6394 	kfree(periph->softc, M_CAMXPT);
6395 }
6396 
6397 static void
6398 xpt_find_quirk(struct cam_ed *device)
6399 {
6400 	caddr_t	match;
6401 
6402 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6403 			       (caddr_t)xpt_quirk_table,
6404 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6405 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6406 
6407 	if (match == NULL)
6408 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6409 
6410 	device->quirk = (struct xpt_quirk_entry *)match;
6411 }
6412 
6413 static int
6414 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6415 {
6416 	int error, bool;
6417 
6418 	bool = cam_srch_hi;
6419 	error = sysctl_handle_int(oidp, &bool, 0, req);
6420 	if (error != 0 || req->newptr == NULL)
6421 		return (error);
6422 	if (bool == 0 || bool == 1) {
6423 		cam_srch_hi = bool;
6424 		return (0);
6425 	} else {
6426 		return (EINVAL);
6427 	}
6428 }
6429 
6430 static void
6431 xpt_devise_transport(struct cam_path *path)
6432 {
6433 	struct ccb_pathinq cpi;
6434 	struct ccb_trans_settings cts;
6435 	struct scsi_inquiry_data *inq_buf;
6436 
6437 	/* Get transport information from the SIM */
6438 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6439 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6440 	xpt_action((union ccb *)&cpi);
6441 
6442 	inq_buf = NULL;
6443 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6444 		inq_buf = &path->device->inq_data;
6445 	path->device->protocol = PROTO_SCSI;
6446 	path->device->protocol_version =
6447 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6448 	path->device->transport = cpi.transport;
6449 	path->device->transport_version = cpi.transport_version;
6450 
6451 	/*
6452 	 * Any device not using SPI3 features should
6453 	 * be considered SPI2 or lower.
6454 	 */
6455 	if (inq_buf != NULL) {
6456 		if (path->device->transport == XPORT_SPI
6457 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6458 		 && path->device->transport_version > 2)
6459 			path->device->transport_version = 2;
6460 	} else {
6461 		struct cam_ed* otherdev;
6462 
6463 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6464 		     otherdev != NULL;
6465 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6466 			if (otherdev != path->device)
6467 				break;
6468 		}
6469 
6470 		if (otherdev != NULL) {
6471 			/*
6472 			 * Initially assume the same versioning as
6473 			 * prior luns for this target.
6474 			 */
6475 			path->device->protocol_version =
6476 			    otherdev->protocol_version;
6477 			path->device->transport_version =
6478 			    otherdev->transport_version;
6479 		} else {
6480 			/* Until we know better, opt for safty */
6481 			path->device->protocol_version = 2;
6482 			if (path->device->transport == XPORT_SPI)
6483 				path->device->transport_version = 2;
6484 			else
6485 				path->device->transport_version = 0;
6486 		}
6487 	}
6488 
6489 	/*
6490 	 * XXX
6491 	 * For a device compliant with SPC-2 we should be able
6492 	 * to determine the transport version supported by
6493 	 * scrutinizing the version descriptors in the
6494 	 * inquiry buffer.
6495 	 */
6496 
6497 	/* Tell the controller what we think */
6498 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6499 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6500 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6501 	cts.transport = path->device->transport;
6502 	cts.transport_version = path->device->transport_version;
6503 	cts.protocol = path->device->protocol;
6504 	cts.protocol_version = path->device->protocol_version;
6505 	cts.proto_specific.valid = 0;
6506 	cts.xport_specific.valid = 0;
6507 	xpt_action((union ccb *)&cts);
6508 }
6509 
6510 static void
6511 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6512 			  int async_update)
6513 {
6514 	struct	ccb_pathinq cpi;
6515 	struct	ccb_trans_settings cur_cts;
6516 	struct	ccb_trans_settings_scsi *scsi;
6517 	struct	ccb_trans_settings_scsi *cur_scsi;
6518 	struct	cam_sim *sim;
6519 	struct	scsi_inquiry_data *inq_data;
6520 
6521 	if (device == NULL) {
6522 		cts->ccb_h.status = CAM_PATH_INVALID;
6523 		xpt_done((union ccb *)cts);
6524 		return;
6525 	}
6526 
6527 	if (cts->protocol == PROTO_UNKNOWN
6528 	 || cts->protocol == PROTO_UNSPECIFIED) {
6529 		cts->protocol = device->protocol;
6530 		cts->protocol_version = device->protocol_version;
6531 	}
6532 
6533 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6534 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6535 		cts->protocol_version = device->protocol_version;
6536 
6537 	if (cts->protocol != device->protocol) {
6538 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6539 		       cts->protocol, device->protocol);
6540 		cts->protocol = device->protocol;
6541 	}
6542 
6543 	if (cts->protocol_version > device->protocol_version) {
6544 		if (bootverbose) {
6545 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6546 			    "Version from %d to %d?\n", cts->protocol_version,
6547 			    device->protocol_version);
6548 		}
6549 		cts->protocol_version = device->protocol_version;
6550 	}
6551 
6552 	if (cts->transport == XPORT_UNKNOWN
6553 	 || cts->transport == XPORT_UNSPECIFIED) {
6554 		cts->transport = device->transport;
6555 		cts->transport_version = device->transport_version;
6556 	}
6557 
6558 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6559 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6560 		cts->transport_version = device->transport_version;
6561 
6562 	if (cts->transport != device->transport) {
6563 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6564 		    cts->transport, device->transport);
6565 		cts->transport = device->transport;
6566 	}
6567 
6568 	if (cts->transport_version > device->transport_version) {
6569 		if (bootverbose) {
6570 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6571 			    "Version from %d to %d?\n", cts->transport_version,
6572 			    device->transport_version);
6573 		}
6574 		cts->transport_version = device->transport_version;
6575 	}
6576 
6577 	sim = cts->ccb_h.path->bus->sim;
6578 
6579 	/*
6580 	 * Nothing more of interest to do unless
6581 	 * this is a device connected via the
6582 	 * SCSI protocol.
6583 	 */
6584 	if (cts->protocol != PROTO_SCSI) {
6585 		if (async_update == FALSE)
6586 			(*(sim->sim_action))(sim, (union ccb *)cts);
6587 		return;
6588 	}
6589 
6590 	inq_data = &device->inq_data;
6591 	scsi = &cts->proto_specific.scsi;
6592 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6593 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6594 	xpt_action((union ccb *)&cpi);
6595 
6596 	/* SCSI specific sanity checking */
6597 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6598 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6599 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6600 	 || (device->quirk->mintags == 0)) {
6601 		/*
6602 		 * Can't tag on hardware that doesn't support tags,
6603 		 * doesn't have it enabled, or has broken tag support.
6604 		 */
6605 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6606 	}
6607 
6608 	if (async_update == FALSE) {
6609 		/*
6610 		 * Perform sanity checking against what the
6611 		 * controller and device can do.
6612 		 */
6613 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6614 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6615 		cur_cts.type = cts->type;
6616 		xpt_action((union ccb *)&cur_cts);
6617 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6618 			return;
6619 		}
6620 		cur_scsi = &cur_cts.proto_specific.scsi;
6621 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6622 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6623 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6624 		}
6625 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6626 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6627 	}
6628 
6629 	/* SPI specific sanity checking */
6630 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6631 		u_int spi3caps;
6632 		struct ccb_trans_settings_spi *spi;
6633 		struct ccb_trans_settings_spi *cur_spi;
6634 
6635 		spi = &cts->xport_specific.spi;
6636 
6637 		cur_spi = &cur_cts.xport_specific.spi;
6638 
6639 		/* Fill in any gaps in what the user gave us */
6640 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6641 			spi->sync_period = cur_spi->sync_period;
6642 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6643 			spi->sync_period = 0;
6644 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6645 			spi->sync_offset = cur_spi->sync_offset;
6646 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6647 			spi->sync_offset = 0;
6648 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6649 			spi->ppr_options = cur_spi->ppr_options;
6650 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6651 			spi->ppr_options = 0;
6652 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6653 			spi->bus_width = cur_spi->bus_width;
6654 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6655 			spi->bus_width = 0;
6656 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6657 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6658 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6659 		}
6660 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6661 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6662 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6663 		  && (inq_data->flags & SID_Sync) == 0
6664 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6665 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6666 		 || (spi->sync_offset == 0)
6667 		 || (spi->sync_period == 0)) {
6668 			/* Force async */
6669 			spi->sync_period = 0;
6670 			spi->sync_offset = 0;
6671 		}
6672 
6673 		switch (spi->bus_width) {
6674 		case MSG_EXT_WDTR_BUS_32_BIT:
6675 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6676 			  || (inq_data->flags & SID_WBus32) != 0
6677 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6678 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6679 				break;
6680 			/* Fall Through to 16-bit */
6681 		case MSG_EXT_WDTR_BUS_16_BIT:
6682 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6683 			  || (inq_data->flags & SID_WBus16) != 0
6684 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6685 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6686 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6687 				break;
6688 			}
6689 			/* Fall Through to 8-bit */
6690 		default: /* New bus width?? */
6691 		case MSG_EXT_WDTR_BUS_8_BIT:
6692 			/* All targets can do this */
6693 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6694 			break;
6695 		}
6696 
6697 		spi3caps = cpi.xport_specific.spi.ppr_options;
6698 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6699 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6700 			spi3caps &= inq_data->spi3data;
6701 
6702 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6703 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6704 
6705 		if ((spi3caps & SID_SPI_IUS) == 0)
6706 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6707 
6708 		if ((spi3caps & SID_SPI_QAS) == 0)
6709 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6710 
6711 		/* No SPI Transfer settings are allowed unless we are wide */
6712 		if (spi->bus_width == 0)
6713 			spi->ppr_options = 0;
6714 
6715 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6716 			/*
6717 			 * Can't tag queue without disconnection.
6718 			 */
6719 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6720 			scsi->valid |= CTS_SCSI_VALID_TQ;
6721 		}
6722 
6723 		/*
6724 		 * If we are currently performing tagged transactions to
6725 		 * this device and want to change its negotiation parameters,
6726 		 * go non-tagged for a bit to give the controller a chance to
6727 		 * negotiate unhampered by tag messages.
6728 		 */
6729 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6730 		 && (device->inq_flags & SID_CmdQue) != 0
6731 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6732 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6733 				   CTS_SPI_VALID_SYNC_OFFSET|
6734 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6735 			xpt_toggle_tags(cts->ccb_h.path);
6736 	}
6737 
6738 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6739 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6740 		int device_tagenb;
6741 
6742 		/*
6743 		 * If we are transitioning from tags to no-tags or
6744 		 * vice-versa, we need to carefully freeze and restart
6745 		 * the queue so that we don't overlap tagged and non-tagged
6746 		 * commands.  We also temporarily stop tags if there is
6747 		 * a change in transfer negotiation settings to allow
6748 		 * "tag-less" negotiation.
6749 		 */
6750 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6751 		 || (device->inq_flags & SID_CmdQue) != 0)
6752 			device_tagenb = TRUE;
6753 		else
6754 			device_tagenb = FALSE;
6755 
6756 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6757 		  && device_tagenb == FALSE)
6758 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6759 		  && device_tagenb == TRUE)) {
6760 
6761 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6762 				/*
6763 				 * Delay change to use tags until after a
6764 				 * few commands have gone to this device so
6765 				 * the controller has time to perform transfer
6766 				 * negotiations without tagged messages getting
6767 				 * in the way.
6768 				 */
6769 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6770 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6771 			} else {
6772 				struct ccb_relsim crs;
6773 
6774 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6775 				device->inq_flags &= ~SID_CmdQue;
6776 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6777 						    sim->max_dev_openings);
6778 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6779 				device->tag_delay_count = 0;
6780 
6781 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6782 					      /*priority*/1);
6783 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6784 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6785 				crs.openings
6786 				    = crs.release_timeout
6787 				    = crs.qfrozen_cnt
6788 				    = 0;
6789 				xpt_action((union ccb *)&crs);
6790 			}
6791 		}
6792 	}
6793 	if (async_update == FALSE)
6794 		(*(sim->sim_action))(sim, (union ccb *)cts);
6795 }
6796 
6797 static void
6798 xpt_toggle_tags(struct cam_path *path)
6799 {
6800 	struct cam_ed *dev;
6801 
6802 	/*
6803 	 * Give controllers a chance to renegotiate
6804 	 * before starting tag operations.  We
6805 	 * "toggle" tagged queuing off then on
6806 	 * which causes the tag enable command delay
6807 	 * counter to come into effect.
6808 	 */
6809 	dev = path->device;
6810 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6811 	 || ((dev->inq_flags & SID_CmdQue) != 0
6812  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6813 		struct ccb_trans_settings cts;
6814 
6815 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6816 		cts.protocol = PROTO_SCSI;
6817 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6818 		cts.transport = XPORT_UNSPECIFIED;
6819 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6820 		cts.proto_specific.scsi.flags = 0;
6821 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6822 		xpt_set_transfer_settings(&cts, path->device,
6823 					  /*async_update*/TRUE);
6824 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6825 		xpt_set_transfer_settings(&cts, path->device,
6826 					  /*async_update*/TRUE);
6827 	}
6828 }
6829 
6830 static void
6831 xpt_start_tags(struct cam_path *path)
6832 {
6833 	struct ccb_relsim crs;
6834 	struct cam_ed *device;
6835 	struct cam_sim *sim;
6836 	int    newopenings;
6837 
6838 	device = path->device;
6839 	sim = path->bus->sim;
6840 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6841 	xpt_freeze_devq(path, /*count*/1);
6842 	device->inq_flags |= SID_CmdQue;
6843 	if (device->tag_saved_openings != 0)
6844 		newopenings = device->tag_saved_openings;
6845 	else
6846 		newopenings = min(device->quirk->maxtags,
6847 				  sim->max_tagged_dev_openings);
6848 	xpt_dev_ccbq_resize(path, newopenings);
6849 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6850 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6851 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6852 	crs.openings
6853 	    = crs.release_timeout
6854 	    = crs.qfrozen_cnt
6855 	    = 0;
6856 	xpt_action((union ccb *)&crs);
6857 }
6858 
6859 static int busses_to_config;
6860 static int busses_to_reset;
6861 
6862 static int
6863 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6864 {
6865 	sim_lock_assert_owned(bus->sim->lock);
6866 
6867 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6868 		struct cam_path path;
6869 		struct ccb_pathinq cpi;
6870 		int can_negotiate;
6871 
6872 		if (bootverbose) {
6873 			kprintf("CAM: Configuring bus:");
6874 			if (bus->sim) {
6875 				kprintf(" %s%d\n",
6876 					bus->sim->sim_name,
6877 					bus->sim->unit_number);
6878 			} else {
6879 				kprintf(" (unknown)\n");
6880 			}
6881 		}
6882 		atomic_add_int(&busses_to_config, 1);
6883 		bus->counted_to_config = 1;
6884 		xpt_compile_path(&path, NULL, bus->path_id,
6885 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6886 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6887 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6888 		xpt_action((union ccb *)&cpi);
6889 		can_negotiate = cpi.hba_inquiry;
6890 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6891 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6892 			busses_to_reset++;
6893 		xpt_release_path(&path);
6894 	} else
6895 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6896 		/* this is our dummy periph/bus */
6897 		atomic_add_int(&busses_to_config, 1);
6898 		bus->counted_to_config = 1;
6899 	}
6900 
6901 	return(1);
6902 }
6903 
6904 static int
6905 xptconfigfunc(struct cam_eb *bus, void *arg)
6906 {
6907 	struct	cam_path *path;
6908 	union	ccb *work_ccb;
6909 
6910 	sim_lock_assert_owned(bus->sim->lock);
6911 
6912 	if (bus->path_id != CAM_XPT_PATH_ID) {
6913 		cam_status status;
6914 		int can_negotiate;
6915 
6916 		work_ccb = xpt_alloc_ccb();
6917 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6918 					      CAM_TARGET_WILDCARD,
6919 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6920 			kprintf("xptconfigfunc: xpt_create_path failed with "
6921 			       "status %#x for bus %d\n", status, bus->path_id);
6922 			kprintf("xptconfigfunc: halting bus configuration\n");
6923 			xpt_free_ccb(work_ccb);
6924 			xpt_uncount_bus(bus);
6925 			return(0);
6926 		}
6927 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6928 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6929 		xpt_action(work_ccb);
6930 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6931 			kprintf("xptconfigfunc: CPI failed on bus %d "
6932 			       "with status %d\n", bus->path_id,
6933 			       work_ccb->ccb_h.status);
6934 			xpt_finishconfig(xpt_periph, work_ccb);
6935 			return(1);
6936 		}
6937 
6938 		can_negotiate = work_ccb->cpi.hba_inquiry;
6939 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6940 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6941 		 && (can_negotiate != 0)) {
6942 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6943 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6944 			work_ccb->ccb_h.cbfcnp = NULL;
6945 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6946 				  ("Resetting Bus\n"));
6947 			xpt_action(work_ccb);
6948 			xpt_finishconfig(xpt_periph, work_ccb);
6949 		} else {
6950 			/* Act as though we performed a successful BUS RESET */
6951 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6952 			xpt_finishconfig(xpt_periph, work_ccb);
6953 		}
6954 	} else {
6955 		xpt_uncount_bus(bus);
6956 	}
6957 
6958 	return(1);
6959 }
6960 
6961 /*
6962  * Now that interrupts are enabled, go find our devices.
6963  *
6964  * This hook function is called once by run_interrupt_driven_config_hooks().
6965  * XPT is expected to disestablish its hook when done.
6966  */
6967 static void
6968 xpt_config(void *arg)
6969 {
6970 
6971 #ifdef CAMDEBUG
6972 	/* Setup debugging flags and path */
6973 #ifdef CAM_DEBUG_FLAGS
6974 	cam_dflags = CAM_DEBUG_FLAGS;
6975 #else /* !CAM_DEBUG_FLAGS */
6976 	cam_dflags = CAM_DEBUG_NONE;
6977 #endif /* CAM_DEBUG_FLAGS */
6978 #ifdef CAM_DEBUG_BUS
6979 	if (cam_dflags != CAM_DEBUG_NONE) {
6980 		/*
6981 		 * Locking is specifically omitted here.  No SIMs have
6982 		 * registered yet, so xpt_create_path will only be searching
6983 		 * empty lists of targets and devices.
6984 		 */
6985 		if (xpt_create_path(&cam_dpath, xpt_periph,
6986 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6987 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6988 			kprintf("xpt_config: xpt_create_path() failed for debug"
6989 			       " target %d:%d:%d, debugging disabled\n",
6990 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6991 			cam_dflags = CAM_DEBUG_NONE;
6992 		}
6993 	} else {
6994 		cam_dpath = NULL;
6995 	}
6996 #else /* !CAM_DEBUG_BUS */
6997 	cam_dpath = NULL;
6998 #endif /* CAM_DEBUG_BUS */
6999 #endif /* CAMDEBUG */
7000 
7001 	/*
7002 	 * Scan all installed busses.  This will also add a count
7003 	 * for our dummy placeholder (xpt_periph).
7004 	 */
7005 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7006 
7007 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7008 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7009 		kprintf("Waiting %d seconds for SCSI "
7010 			"devices to settle\n",
7011 			scsi_delay/1000);
7012 	}
7013 	xpt_for_all_busses(xptconfigfunc, NULL);
7014 }
7015 
7016 /*
7017  * If the given device only has one peripheral attached to it, and if that
7018  * peripheral is the passthrough driver, announce it.  This insures that the
7019  * user sees some sort of announcement for every peripheral in their system.
7020  */
7021 static int
7022 xptpassannouncefunc(struct cam_ed *device, void *arg)
7023 {
7024 	struct cam_periph *periph;
7025 	int i;
7026 
7027 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7028 	     periph = SLIST_NEXT(periph, periph_links), i++);
7029 
7030 	periph = SLIST_FIRST(&device->periphs);
7031 	if ((i == 1)
7032 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7033 		xpt_announce_periph(periph, NULL);
7034 
7035 	return(1);
7036 }
7037 
7038 static void
7039 xpt_finishconfig_task(void *context, int pending)
7040 {
7041 	struct	periph_driver **p_drv;
7042 	int	i;
7043 
7044 	kprintf("CAM: finished configuring all busses\n");
7045 
7046 	if (busses_to_config == 0) {
7047 		/* Register all the peripheral drivers */
7048 		/* XXX This will have to change when we have loadable modules */
7049 		p_drv = periph_drivers;
7050 		for (i = 0; p_drv[i] != NULL; i++) {
7051 			(*p_drv[i]->init)();
7052 		}
7053 
7054 		/*
7055 		 * Check for devices with no "standard" peripheral driver
7056 		 * attached.  For any devices like that, announce the
7057 		 * passthrough driver so the user will see something.
7058 		 */
7059 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7060 
7061 		/* Release our hook so that the boot can continue. */
7062 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7063 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7064 		xsoftc.xpt_config_hook = NULL;
7065 	}
7066 	kfree(context, M_CAMXPT);
7067 }
7068 
7069 static void
7070 xpt_uncount_bus (struct cam_eb *bus)
7071 {
7072 	struct xpt_task *task;
7073 
7074 	if (bus->counted_to_config) {
7075 		bus->counted_to_config = 0;
7076 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7077 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7078 				       M_INTWAIT | M_ZERO);
7079 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7080 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7081 					  &task->task);
7082 		}
7083 	}
7084 }
7085 
7086 static void
7087 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7088 {
7089 	struct cam_path *path;
7090 
7091 	path = done_ccb->ccb_h.path;
7092 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7093 
7094 	switch(done_ccb->ccb_h.func_code) {
7095 	case XPT_RESET_BUS:
7096 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7097 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7098 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7099 			done_ccb->crcn.flags = 0;
7100 			xpt_action(done_ccb);
7101 			return;
7102 		}
7103 		/* FALLTHROUGH */
7104 	case XPT_SCAN_BUS:
7105 	default:
7106 		if (bootverbose) {
7107 			kprintf("CAM: Finished configuring bus:");
7108 			if (path->bus->sim) {
7109 				kprintf(" %s%d\n",
7110 					path->bus->sim->sim_name,
7111 					path->bus->sim->unit_number);
7112 			} else {
7113 				kprintf(" (unknown)\n");
7114 			}
7115 		}
7116 		xpt_uncount_bus(path->bus);
7117 		xpt_free_path(path);
7118 		xpt_free_ccb(done_ccb);
7119 		break;
7120 	}
7121 }
7122 
7123 cam_status
7124 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7125 		   struct cam_path *path)
7126 {
7127 	struct ccb_setasync csa;
7128 	cam_status status;
7129 	int xptpath = 0;
7130 
7131 	if (path == NULL) {
7132 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7133 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7134 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7135 		if (status != CAM_REQ_CMP) {
7136 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7137 			return (status);
7138 		}
7139 		xptpath = 1;
7140 	}
7141 
7142 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7143 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7144 	csa.event_enable = event;
7145 	csa.callback = cbfunc;
7146 	csa.callback_arg = cbarg;
7147 	xpt_action((union ccb *)&csa);
7148 	status = csa.ccb_h.status;
7149 	if (xptpath) {
7150 		xpt_free_path(path);
7151 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7152 	}
7153 	return (status);
7154 }
7155 
7156 static void
7157 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7158 {
7159 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7160 
7161 	switch (work_ccb->ccb_h.func_code) {
7162 	/* Common cases first */
7163 	case XPT_PATH_INQ:		/* Path routing inquiry */
7164 	{
7165 		struct ccb_pathinq *cpi;
7166 
7167 		cpi = &work_ccb->cpi;
7168 		cpi->version_num = 1; /* XXX??? */
7169 		cpi->hba_inquiry = 0;
7170 		cpi->target_sprt = 0;
7171 		cpi->hba_misc = 0;
7172 		cpi->hba_eng_cnt = 0;
7173 		cpi->max_target = 0;
7174 		cpi->max_lun = 0;
7175 		cpi->initiator_id = 0;
7176 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7177 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7178 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7179 		cpi->unit_number = sim->unit_number;
7180 		cpi->bus_id = sim->bus_id;
7181 		cpi->base_transfer_speed = 0;
7182 		cpi->protocol = PROTO_UNSPECIFIED;
7183 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7184 		cpi->transport = XPORT_UNSPECIFIED;
7185 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7186 		cpi->ccb_h.status = CAM_REQ_CMP;
7187 		xpt_done(work_ccb);
7188 		break;
7189 	}
7190 	default:
7191 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7192 		xpt_done(work_ccb);
7193 		break;
7194 	}
7195 }
7196 
7197 /*
7198  * The xpt as a "controller" has no interrupt sources, so polling
7199  * is a no-op.
7200  */
7201 static void
7202 xptpoll(struct cam_sim *sim)
7203 {
7204 }
7205 
7206 void
7207 xpt_lock_buses(void)
7208 {
7209 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7210 }
7211 
7212 void
7213 xpt_unlock_buses(void)
7214 {
7215 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7216 }
7217 
7218 
7219 /*
7220  * Should only be called by the machine interrupt dispatch routines,
7221  * so put these prototypes here instead of in the header.
7222  */
7223 
7224 static void
7225 swi_cambio(void *arg, void *frame)
7226 {
7227 	camisr(NULL);
7228 }
7229 
7230 static void
7231 camisr(void *dummy)
7232 {
7233 	cam_simq_t queue;
7234 	struct cam_sim *sim;
7235 
7236 	spin_lock(&cam_simq_spin);
7237 	TAILQ_INIT(&queue);
7238 	TAILQ_CONCAT(&queue, &cam_simq, links);
7239 	spin_unlock(&cam_simq_spin);
7240 
7241 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7242 		TAILQ_REMOVE(&queue, sim, links);
7243 		CAM_SIM_LOCK(sim);
7244 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7245 		camisr_runqueue(sim);
7246 		CAM_SIM_UNLOCK(sim);
7247 	}
7248 }
7249 
7250 static void
7251 camisr_runqueue(struct cam_sim *sim)
7252 {
7253 	struct	ccb_hdr *ccb_h;
7254 	int	runq;
7255 
7256 	spin_lock(&sim->sim_spin);
7257 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7258 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7259 		spin_unlock(&sim->sim_spin);
7260 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7261 
7262 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7263 			  ("camisr\n"));
7264 
7265 		runq = FALSE;
7266 
7267 		if (ccb_h->flags & CAM_HIGH_POWER) {
7268 			struct highpowerlist	*hphead;
7269 			struct cam_ed		*device;
7270 			union ccb		*send_ccb;
7271 
7272 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7273 			hphead = &xsoftc.highpowerq;
7274 
7275 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7276 
7277 			/*
7278 			 * Increment the count since this command is done.
7279 			 */
7280 			xsoftc.num_highpower++;
7281 
7282 			/*
7283 			 * Any high powered commands queued up?
7284 			 */
7285 			if (send_ccb != NULL) {
7286 				device = send_ccb->ccb_h.path->device;
7287 
7288 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7289 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7290 
7291 				xpt_release_devq(send_ccb->ccb_h.path,
7292 						 /*count*/1, /*runqueue*/TRUE);
7293 			} else
7294 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7295 		}
7296 
7297 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7298 			struct cam_ed *dev;
7299 
7300 			dev = ccb_h->path->device;
7301 
7302 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7303 
7304 			/*
7305 			 * devq may be NULL if this is cam_dead_sim
7306 			 */
7307 			if (ccb_h->path->bus->sim->devq) {
7308 				ccb_h->path->bus->sim->devq->send_active--;
7309 				ccb_h->path->bus->sim->devq->send_openings++;
7310 			}
7311 
7312 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7313 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7314 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7315 			  && (dev->ccbq.dev_active == 0))) {
7316 
7317 				xpt_release_devq(ccb_h->path, /*count*/1,
7318 						 /*run_queue*/TRUE);
7319 			}
7320 
7321 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7322 			 && (--dev->tag_delay_count == 0))
7323 				xpt_start_tags(ccb_h->path);
7324 
7325 			if ((dev->ccbq.queue.entries > 0)
7326 			 && (dev->qfrozen_cnt == 0)
7327 			 && (device_is_send_queued(dev) == 0)) {
7328 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7329 							      dev);
7330 			}
7331 		}
7332 
7333 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7334 			xpt_release_simq(ccb_h->path->bus->sim,
7335 					 /*run_queue*/TRUE);
7336 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7337 			runq = FALSE;
7338 		}
7339 
7340 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7341 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7342 			xpt_release_devq(ccb_h->path, /*count*/1,
7343 					 /*run_queue*/TRUE);
7344 			ccb_h->status &= ~CAM_DEV_QFRZN;
7345 		} else if (runq) {
7346 			xpt_run_dev_sendq(ccb_h->path->bus);
7347 		}
7348 
7349 		/* Call the peripheral driver's callback */
7350 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7351 		spin_lock(&sim->sim_spin);
7352 	}
7353 	spin_unlock(&sim->sim_spin);
7354 }
7355 
7356 /*
7357  * The dead_sim isn't completely hooked into CAM, we have to make sure
7358  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7359  * doesn't block.
7360  */
7361 static void
7362 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7363 {
7364 
7365 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7366 	xpt_done(ccb);
7367 	camisr_runqueue(sim);
7368 }
7369 
7370 static void
7371 dead_sim_poll(struct cam_sim *sim)
7372 {
7373 }
7374