xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision d316f7c9)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53 
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56 
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65 
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71 
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77 	struct task	task;
78 	void		*data1;
79 	uintptr_t	data2;
80 };
81 
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87 	SLIST_ENTRY(async_node)	links;
88 	u_int32_t	event_enable;	/* Async Event enables */
89 	void		(*callback)(void *arg, u_int32_t code,
90 				    struct cam_path *path, void *args);
91 	void		*callback_arg;
92 };
93 
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96 
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104 
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111 	cam_pinfo pinfo;
112 	struct	  cam_ed *device;
113 };
114 
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121 	TAILQ_ENTRY(cam_ed) links;
122 	struct	cam_ed_qinfo alloc_ccb_entry;
123 	struct	cam_ed_qinfo send_ccb_entry;
124 	struct	cam_et	 *target;
125 	struct	cam_sim  *sim;
126 	lun_id_t	 lun_id;
127 	struct	camq drvq;		/*
128 					 * Queue of type drivers wanting to do
129 					 * work on this device.
130 					 */
131 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
132 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
133 	struct	periph_list periphs;	/* All attached devices */
134 	u_int	generation;		/* Generation number */
135 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
136 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
137 					/* Storage for the inquiry data */
138 	cam_proto	 protocol;
139 	u_int		 protocol_version;
140 	cam_xport	 transport;
141 	u_int		 transport_version;
142 	struct		 scsi_inquiry_data inq_data;
143 	u_int8_t	 inq_flags;	/*
144 					 * Current settings for inquiry flags.
145 					 * This allows us to override settings
146 					 * like disconnection and tagged
147 					 * queuing for a device.
148 					 */
149 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
150 	u_int8_t	 serial_num_len;
151 	u_int8_t	*serial_num;
152 	u_int32_t	 qfrozen_cnt;
153 	u_int32_t	 flags;
154 #define CAM_DEV_UNCONFIGURED	 	0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
156 #define CAM_DEV_REL_ON_COMPLETE		0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
159 #define CAM_DEV_TAG_AFTER_COUNT		0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
161 #define	CAM_DEV_IN_DV			0x80
162 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
163 	u_int32_t	 tag_delay_count;
164 #define	CAM_TAG_DELAY_COUNT		5
165 	u_int32_t	 tag_saved_openings;
166 	u_int32_t	 refcount;
167 	struct callout	 callout;
168 };
169 
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177 	TAILQ_HEAD(, cam_ed) ed_entries;
178 	TAILQ_ENTRY(cam_et) links;
179 	struct	cam_eb	*bus;
180 	target_id_t	target_id;
181 	u_int32_t	refcount;
182 	u_int		generation;
183 	struct		timeval last_reset;	/* uptime of last reset */
184 };
185 
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192 	TAILQ_HEAD(, cam_et) et_entries;
193 	TAILQ_ENTRY(cam_eb)  links;
194 	path_id_t	     path_id;
195 	struct cam_sim	     *sim;
196 	struct timeval	     last_reset;	/* uptime of last reset */
197 	u_int32_t	     flags;
198 #define	CAM_EB_RUNQ_SCHEDULED	0x01
199 	u_int32_t	     refcount;
200 	u_int		     generation;
201 	int		     counted_to_config;	/* busses_to_config */
202 };
203 
204 struct cam_path {
205 	struct cam_periph *periph;
206 	struct cam_eb	  *bus;
207 	struct cam_et	  *target;
208 	struct cam_ed	  *device;
209 };
210 
211 struct xpt_quirk_entry {
212 	struct scsi_inquiry_pattern inq_pat;
213 	u_int8_t quirks;
214 #define	CAM_QUIRK_NOLUNS	0x01
215 #define	CAM_QUIRK_NOSERIAL	0x02
216 #define	CAM_QUIRK_HILUNS	0x04
217 #define	CAM_QUIRK_NOHILUNS	0x08
218 	u_int mintags;
219 	u_int maxtags;
220 };
221 
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228 
229 #define	CAM_SCSI2_MAXLUN	8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define	CAN_SRCH_HI_SPARSE(dv)				\
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241 
242 #define	CAN_SRCH_HI_DENSE(dv)				\
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246 
247 typedef enum {
248 	XPT_FLAG_OPEN		= 0x01
249 } xpt_flags;
250 
251 struct xpt_softc {
252 	xpt_flags		flags;
253 	u_int32_t		xpt_generation;
254 
255 	/* number of high powered commands that can go through right now */
256 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
257 	int			num_highpower;
258 
259 	/* queue for handling async rescan requests. */
260 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
261 	int			ccb_scanq_running;
262 
263 	/* Registered busses */
264 	TAILQ_HEAD(,cam_eb)	xpt_busses;
265 	u_int			bus_generation;
266 
267 	struct intr_config_hook	*xpt_config_hook;
268 
269 	struct lock		xpt_topo_lock;
270 	struct lock		xpt_lock;
271 };
272 
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279 
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282 	{
283 		/* Reports QUEUE FULL for temporary resource shortages */
284 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
286 	},
287 	{
288 		/* Reports QUEUE FULL for temporary resource shortages */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
291 	},
292 	{
293 		/* Reports QUEUE FULL for temporary resource shortages */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
296 	},
297 	{
298 		/* Broken tagged queuing drive */
299 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
301 	},
302 	{
303 		/* Broken tagged queuing drive */
304 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
306 	},
307 	{
308 		/* Broken tagged queuing drive */
309 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
311 	},
312 	{
313 		/*
314 		 * Unfortunately, the Quantum Atlas III has the same
315 		 * problem as the Atlas II drives above.
316 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
317 		 *
318 		 * For future reference, the drive with the problem was:
319 		 * QUANTUM QM39100TD-SW N1B0
320 		 *
321 		 * It's possible that Quantum will fix the problem in later
322 		 * firmware revisions.  If that happens, the quirk entry
323 		 * will need to be made specific to the firmware revisions
324 		 * with the problem.
325 		 *
326 		 */
327 		/* Reports QUEUE FULL for temporary resource shortages */
328 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
330 	},
331 	{
332 		/*
333 		 * 18 Gig Atlas III, same problem as the 9G version.
334 		 * Reported by: Andre Albsmeier
335 		 *		<andre.albsmeier@mchp.siemens.de>
336 		 *
337 		 * For future reference, the drive with the problem was:
338 		 * QUANTUM QM318000TD-S N491
339 		 */
340 		/* Reports QUEUE FULL for temporary resource shortages */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
343 	},
344 	{
345 		/*
346 		 * Broken tagged queuing drive
347 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 		 *         and: Martin Renters <martin@tdc.on.ca>
349 		 */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 		/*
354 		 * The Seagate Medalist Pro drives have very poor write
355 		 * performance with anything more than 2 tags.
356 		 *
357 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358 		 * Drive:  <SEAGATE ST36530N 1444>
359 		 *
360 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361 		 * Drive:  <SEAGATE ST34520W 1281>
362 		 *
363 		 * No one has actually reported that the 9G version
364 		 * (ST39140*) of the Medalist Pro has the same problem, but
365 		 * we're assuming that it does because the 4G and 6.5G
366 		 * versions of the drive are broken.
367 		 */
368 	{
369 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
371 	},
372 	{
373 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
375 	},
376 	{
377 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
379 	},
380 	{
381 		/*
382 		 * Slow when tagged queueing is enabled.  Write performance
383 		 * steadily drops off with more and more concurrent
384 		 * transactions.  Best sequential write performance with
385 		 * tagged queueing turned off and write caching turned on.
386 		 *
387 		 * PR:  kern/10398
388 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
390 		 *
391 		 * The drive with the problem had the "S65A" firmware
392 		 * revision, and has also been reported (by Stephen J.
393 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
394 		 * firmware revision.
395 		 *
396 		 * Although no one has reported problems with the 2 gig
397 		 * version of the DCAS drive, the assumption is that it
398 		 * has the same problems as the 4 gig version.  Therefore
399 		 * this quirk entries disables tagged queueing for all
400 		 * DCAS drives.
401 		 */
402 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* Broken tagged queuing drive */
407 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
409 	},
410 	{
411 		/* Broken tagged queuing drive */
412 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
414 	},
415 	{
416 		/* This does not support other than LUN 0 */
417 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419 	},
420 	{
421 		/*
422 		 * Broken tagged queuing drive.
423 		 * Submitted by:
424 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425 		 * in PR kern/9535
426 		 */
427 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
429 	},
430         {
431 		/*
432 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
433 		 * 8MB/sec.)
434 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 		 * Best performance with these drives is achieved with
436 		 * tagged queueing turned off, and write caching turned on.
437 		 */
438 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442 		/*
443 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
444 		 * 8MB/sec.)
445 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 		 * Best performance with these drives is achieved with
447 		 * tagged queueing turned off, and write caching turned on.
448 		 */
449 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452 	{
453 		/*
454 		 * Doesn't handle queue full condition correctly,
455 		 * so we need to limit maxtags to what the device
456 		 * can handle instead of determining this automatically.
457 		 */
458 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
460 	},
461 	{
462 		/* Really only one LUN */
463 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465 	},
466 	{
467 		/* I can't believe we need a quirk for DPT volumes. */
468 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469 		CAM_QUIRK_NOLUNS,
470 		/*mintags*/0, /*maxtags*/255
471 	},
472 	{
473 		/*
474 		 * Many Sony CDROM drives don't like multi-LUN probing.
475 		 */
476 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/*
481 		 * This drive doesn't like multiple LUN probing.
482 		 * Submitted by:  Parag Patel <parag@cgt.com>
483 		 */
484 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486 	},
487 	{
488 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490 	},
491 	{
492 		/*
493 		 * The 8200 doesn't like multi-lun probing, and probably
494 		 * don't like serial number requests either.
495 		 */
496 		{
497 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498 			"EXB-8200*", "*"
499 		},
500 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/*
504 		 * Let's try the same as above, but for a drive that says
505 		 * it's an IPL-6860 but is actually an EXB 8200.
506 		 */
507 		{
508 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509 			"IPL-6860*", "*"
510 		},
511 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 	},
513 	{
514 		/*
515 		 * These Hitachi drives don't like multi-lun probing.
516 		 * The PR submitter has a DK319H, but says that the Linux
517 		 * kernel has a similar work-around for the DK312 and DK314,
518 		 * so all DK31* drives are quirked here.
519 		 * PR:            misc/18793
520 		 * Submitted by:  Paul Haddad <paul@pth.com>
521 		 */
522 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524 	},
525 	{
526 		/*
527 		 * The Hitachi CJ series with J8A8 firmware apparantly has
528 		 * problems with tagged commands.
529 		 * PR: 23536
530 		 * Reported by: amagai@nue.org
531 		 */
532 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534 	},
535 	{
536 		/*
537 		 * These are the large storage arrays.
538 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
539 		 */
540 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 		CAM_QUIRK_HILUNS, 2, 1024
542 	},
543 	{
544 		/*
545 		 * This old revision of the TDC3600 is also SCSI-1, and
546 		 * hangs upon serial number probing.
547 		 */
548 		{
549 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550 			" TDC 3600", "U07:"
551 		},
552 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553 	},
554 	{
555 		/*
556 		 * Would repond to all LUNs if asked for.
557 		 */
558 		{
559 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560 			"CP150", "*"
561 		},
562 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563 	},
564 	{
565 		/*
566 		 * Would repond to all LUNs if asked for.
567 		 */
568 		{
569 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570 			"96X2*", "*"
571 		},
572 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573 	},
574 	{
575 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
576 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578 	},
579 	{
580 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
581 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583 	},
584 	{
585 		/* TeraSolutions special settings for TRC-22 RAID */
586 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
588 	},
589 	{
590 		/* Veritas Storage Appliance */
591 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593 	},
594 	{
595 		/*
596 		 * Would respond to all LUNs.  Device type and removable
597 		 * flag are jumper-selectable.
598 		 */
599 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600 		  "Tahiti 1", "*"
601 		},
602 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603 	},
604 	{
605 		/* EasyRAID E5A aka. areca ARC-6010 */
606 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608 	},
609 	{
610 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612 	},
613 	{
614 		/* Default tagged queuing parameters for all devices */
615 		{
616 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
618 		},
619 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
620 	},
621 };
622 
623 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
624 
625 typedef enum {
626 	DM_RET_COPY		= 0x01,
627 	DM_RET_FLAG_MASK	= 0x0f,
628 	DM_RET_NONE		= 0x00,
629 	DM_RET_STOP		= 0x10,
630 	DM_RET_DESCEND		= 0x20,
631 	DM_RET_ERROR		= 0x30,
632 	DM_RET_ACTION_MASK	= 0xf0
633 } dev_match_ret;
634 
635 typedef enum {
636 	XPT_DEPTH_BUS,
637 	XPT_DEPTH_TARGET,
638 	XPT_DEPTH_DEVICE,
639 	XPT_DEPTH_PERIPH
640 } xpt_traverse_depth;
641 
642 struct xpt_traverse_config {
643 	xpt_traverse_depth	depth;
644 	void			*tr_func;
645 	void			*tr_arg;
646 };
647 
648 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
649 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
650 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
651 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
652 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
653 
654 /* Transport layer configuration information */
655 static struct xpt_softc xsoftc;
656 
657 /* Queues for our software interrupt handler */
658 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
659 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
660 static cam_simq_t cam_simq;
661 static struct spinlock cam_simq_spin;
662 
663 struct cam_periph *xpt_periph;
664 
665 static periph_init_t xpt_periph_init;
666 
667 static periph_init_t probe_periph_init;
668 
669 static struct periph_driver xpt_driver =
670 {
671 	xpt_periph_init, "xpt",
672 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
673 };
674 
675 static struct periph_driver probe_driver =
676 {
677 	probe_periph_init, "probe",
678 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
679 };
680 
681 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
682 PERIPHDRIVER_DECLARE(probe, probe_driver);
683 
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
687 
688 static struct dev_ops xpt_ops = {
689 	{ "xpt", 0, 0 },
690 	.d_open = xptopen,
691 	.d_close = xptclose,
692 	.d_ioctl = xptioctl
693 };
694 
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
697 
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock    cam_dead_lock;
701 
702 /* Storage for debugging datastructures */
703 #ifdef	CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
708 
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
712 
713 /*
714  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
716  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
717  */
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719     || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722     || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724         and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
730 
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
733 
734 static moduledata_t cam_moduledata = {
735 	"cam",
736 	cam_module_event_handler,
737 	NULL
738 };
739 
740 static int	xpt_init(void *);
741 
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
744 
745 
746 static cam_status	xpt_compile_path(struct cam_path *new_path,
747 					 struct cam_periph *perph,
748 					 path_id_t path_id,
749 					 target_id_t target_id,
750 					 lun_id_t lun_id);
751 
752 static void		xpt_release_path(struct cam_path *path);
753 
754 static void		xpt_async_bcast(struct async_list *async_head,
755 					u_int32_t async_code,
756 					struct cam_path *path,
757 					void *async_arg);
758 static void		xpt_dev_async(u_int32_t async_code,
759 				      struct cam_eb *bus,
760 				      struct cam_et *target,
761 				      struct cam_ed *device,
762 				      void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767 				  u_int32_t new_priority);
768 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
769 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void	 xpt_release_bus(struct cam_eb *bus);
772 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 					 int run_queue);
774 static struct cam_et*
775 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 				  lun_id_t lun_id);
780 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 				    struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 		 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void	 xpt_scan_lun(struct cam_periph *periph,
791 			      struct cam_path *path, cam_flags flags,
792 			      union ccb *ccb);
793 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t	xptconfigbuscountfunc;
795 static xpt_busfunc_t	xptconfigfunc;
796 static void	 xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void	 xpt_uncount_bus (struct cam_eb *bus);
800 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
801 static void	 xptpoll(struct cam_sim *sim);
802 static inthand2_t swi_cambio;
803 static void	 camisr(void *);
804 static void	 camisr_runqueue(struct cam_sim *);
805 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
806 				    u_int num_patterns, struct cam_eb *bus);
807 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
808 				       u_int num_patterns,
809 				       struct cam_ed *device);
810 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
811 				       u_int num_patterns,
812 				       struct cam_periph *periph);
813 static xpt_busfunc_t	xptedtbusfunc;
814 static xpt_targetfunc_t	xptedttargetfunc;
815 static xpt_devicefunc_t	xptedtdevicefunc;
816 static xpt_periphfunc_t	xptedtperiphfunc;
817 static xpt_pdrvfunc_t	xptplistpdrvfunc;
818 static xpt_periphfunc_t	xptplistperiphfunc;
819 static int		xptedtmatch(struct ccb_dev_match *cdm);
820 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
821 static int		xptbustraverse(struct cam_eb *start_bus,
822 				       xpt_busfunc_t *tr_func, void *arg);
823 static int		xpttargettraverse(struct cam_eb *bus,
824 					  struct cam_et *start_target,
825 					  xpt_targetfunc_t *tr_func, void *arg);
826 static int		xptdevicetraverse(struct cam_et *target,
827 					  struct cam_ed *start_device,
828 					  xpt_devicefunc_t *tr_func, void *arg);
829 static int		xptperiphtraverse(struct cam_ed *device,
830 					  struct cam_periph *start_periph,
831 					  xpt_periphfunc_t *tr_func, void *arg);
832 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
833 					xpt_pdrvfunc_t *tr_func, void *arg);
834 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
835 					    struct cam_periph *start_periph,
836 					    xpt_periphfunc_t *tr_func,
837 					    void *arg);
838 static xpt_busfunc_t	xptdefbusfunc;
839 static xpt_targetfunc_t	xptdeftargetfunc;
840 static xpt_devicefunc_t	xptdefdevicefunc;
841 static xpt_periphfunc_t	xptdefperiphfunc;
842 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
843 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
844 					    void *arg);
845 static xpt_devicefunc_t	xptsetasyncfunc;
846 static xpt_busfunc_t	xptsetasyncbusfunc;
847 static cam_status	xptregister(struct cam_periph *periph,
848 				    void *arg);
849 static cam_status	proberegister(struct cam_periph *periph,
850 				      void *arg);
851 static void	 probeschedule(struct cam_periph *probe_periph);
852 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
853 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
854 static int       proberequestbackoff(struct cam_periph *periph,
855 				     struct cam_ed *device);
856 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
857 static void	 probecleanup(struct cam_periph *periph);
858 static void	 xpt_find_quirk(struct cam_ed *device);
859 static void	 xpt_devise_transport(struct cam_path *path);
860 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
861 					   struct cam_ed *device,
862 					   int async_update);
863 static void	 xpt_toggle_tags(struct cam_path *path);
864 static void	 xpt_start_tags(struct cam_path *path);
865 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
866 					    struct cam_ed *dev);
867 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
868 					   struct cam_ed *dev);
869 static __inline int periph_is_queued(struct cam_periph *periph);
870 static __inline int device_is_alloc_queued(struct cam_ed *device);
871 static __inline int device_is_send_queued(struct cam_ed *device);
872 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873 
874 static __inline int
875 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 {
877 	int retval;
878 
879 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
880 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
881 			cam_ccbq_resize(&dev->ccbq,
882 					dev->ccbq.dev_openings
883 					+ dev->ccbq.dev_active);
884 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
885 		}
886 		/*
887 		 * The priority of a device waiting for CCB resources
888 		 * is that of the the highest priority peripheral driver
889 		 * enqueued.
890 		 */
891 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
892 					  &dev->alloc_ccb_entry.pinfo,
893 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
894 	} else {
895 		retval = 0;
896 	}
897 
898 	return (retval);
899 }
900 
901 static __inline int
902 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 {
904 	int	retval;
905 
906 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907 		/*
908 		 * The priority of a device waiting for controller
909 		 * resources is that of the the highest priority CCB
910 		 * enqueued.
911 		 */
912 		retval =
913 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
914 				     &dev->send_ccb_entry.pinfo,
915 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
916 	} else {
917 		retval = 0;
918 	}
919 	return (retval);
920 }
921 
922 static __inline int
923 periph_is_queued(struct cam_periph *periph)
924 {
925 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
926 }
927 
928 static __inline int
929 device_is_alloc_queued(struct cam_ed *device)
930 {
931 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
932 }
933 
934 static __inline int
935 device_is_send_queued(struct cam_ed *device)
936 {
937 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
938 }
939 
940 static __inline int
941 dev_allocq_is_runnable(struct cam_devq *devq)
942 {
943 	/*
944 	 * Have work to do.
945 	 * Have space to do more work.
946 	 * Allowed to do work.
947 	 */
948 	return ((devq->alloc_queue.qfrozen_cnt == 0)
949 	     && (devq->alloc_queue.entries > 0)
950 	     && (devq->alloc_openings > 0));
951 }
952 
953 static void
954 xpt_periph_init(void)
955 {
956 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
957 }
958 
959 static void
960 probe_periph_init(void)
961 {
962 }
963 
964 
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
967 {
968 	/* Caller will release the CCB */
969 	wakeup(&done_ccb->ccb_h.cbfcnp);
970 }
971 
972 static int
973 xptopen(struct dev_open_args *ap)
974 {
975 	cdev_t dev = ap->a_head.a_dev;
976 
977 	/*
978 	 * Only allow read-write access.
979 	 */
980 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981 		return(EPERM);
982 
983 	/*
984 	 * We don't allow nonblocking access.
985 	 */
986 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
987 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988 		return(ENODEV);
989 	}
990 
991 	/* Mark ourselves open */
992 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993 	xsoftc.flags |= XPT_FLAG_OPEN;
994 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
995 
996 	return(0);
997 }
998 
999 static int
1000 xptclose(struct dev_close_args *ap)
1001 {
1002 
1003 	/* Mark ourselves closed */
1004 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1006 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1007 
1008 	return(0);
1009 }
1010 
1011 /*
1012  * Don't automatically grab the xpt softc lock here even though this is going
1013  * through the xpt device.  The xpt device is really just a back door for
1014  * accessing other devices and SIMs, so the right thing to do is to grab
1015  * the appropriate SIM lock once the bus/SIM is located.
1016  */
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1019 {
1020 	int error;
1021 
1022 	error = 0;
1023 
1024 	switch(ap->a_cmd) {
1025 	/*
1026 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027 	 * to accept CCB types that don't quite make sense to send through a
1028 	 * passthrough driver.
1029 	 */
1030 	case CAMIOCOMMAND: {
1031 		union ccb *ccb;
1032 		union ccb *inccb;
1033 		struct cam_eb *bus;
1034 
1035 		inccb = (union ccb *)ap->a_data;
1036 
1037 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1038 		if (bus == NULL) {
1039 			error = EINVAL;
1040 			break;
1041 		}
1042 
1043 		switch(inccb->ccb_h.func_code) {
1044 		case XPT_SCAN_BUS:
1045 		case XPT_RESET_BUS:
1046 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048 				error = EINVAL;
1049 				break;
1050 			}
1051 			/* FALLTHROUGH */
1052 		case XPT_PATH_INQ:
1053 		case XPT_ENG_INQ:
1054 		case XPT_SCAN_LUN:
1055 
1056 			ccb = xpt_alloc_ccb();
1057 
1058 			CAM_SIM_LOCK(bus->sim);
1059 
1060 			/*
1061 			 * Create a path using the bus, target, and lun the
1062 			 * user passed in.
1063 			 */
1064 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065 					    inccb->ccb_h.path_id,
1066 					    inccb->ccb_h.target_id,
1067 					    inccb->ccb_h.target_lun) !=
1068 					    CAM_REQ_CMP){
1069 				error = EINVAL;
1070 				CAM_SIM_UNLOCK(bus->sim);
1071 				xpt_free_ccb(ccb);
1072 				break;
1073 			}
1074 			/* Ensure all of our fields are correct */
1075 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076 				      inccb->ccb_h.pinfo.priority);
1077 			xpt_merge_ccb(ccb, inccb);
1078 			ccb->ccb_h.cbfcnp = xptdone;
1079 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080 			bcopy(ccb, inccb, sizeof(union ccb));
1081 			xpt_free_path(ccb->ccb_h.path);
1082 			xpt_free_ccb(ccb);
1083 			CAM_SIM_UNLOCK(bus->sim);
1084 			break;
1085 
1086 		case XPT_DEBUG: {
1087 			union ccb ccb;
1088 
1089 			/*
1090 			 * This is an immediate CCB, so it's okay to
1091 			 * allocate it on the stack.
1092 			 */
1093 
1094 			CAM_SIM_LOCK(bus->sim);
1095 
1096 			/*
1097 			 * Create a path using the bus, target, and lun the
1098 			 * user passed in.
1099 			 */
1100 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101 					    inccb->ccb_h.path_id,
1102 					    inccb->ccb_h.target_id,
1103 					    inccb->ccb_h.target_lun) !=
1104 					    CAM_REQ_CMP){
1105 				error = EINVAL;
1106 				CAM_SIM_UNLOCK(bus->sim);
1107 				break;
1108 			}
1109 			/* Ensure all of our fields are correct */
1110 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111 				      inccb->ccb_h.pinfo.priority);
1112 			xpt_merge_ccb(&ccb, inccb);
1113 			ccb.ccb_h.cbfcnp = xptdone;
1114 			xpt_action(&ccb);
1115 			CAM_SIM_UNLOCK(bus->sim);
1116 			bcopy(&ccb, inccb, sizeof(union ccb));
1117 			xpt_free_path(ccb.ccb_h.path);
1118 			break;
1119 
1120 		}
1121 		case XPT_DEV_MATCH: {
1122 			struct cam_periph_map_info mapinfo;
1123 			struct cam_path *old_path;
1124 
1125 			/*
1126 			 * We can't deal with physical addresses for this
1127 			 * type of transaction.
1128 			 */
1129 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130 				error = EINVAL;
1131 				break;
1132 			}
1133 
1134 			/*
1135 			 * Save this in case the caller had it set to
1136 			 * something in particular.
1137 			 */
1138 			old_path = inccb->ccb_h.path;
1139 
1140 			/*
1141 			 * We really don't need a path for the matching
1142 			 * code.  The path is needed because of the
1143 			 * debugging statements in xpt_action().  They
1144 			 * assume that the CCB has a valid path.
1145 			 */
1146 			inccb->ccb_h.path = xpt_periph->path;
1147 
1148 			bzero(&mapinfo, sizeof(mapinfo));
1149 
1150 			/*
1151 			 * Map the pattern and match buffers into kernel
1152 			 * virtual address space.
1153 			 */
1154 			error = cam_periph_mapmem(inccb, &mapinfo);
1155 
1156 			if (error) {
1157 				inccb->ccb_h.path = old_path;
1158 				break;
1159 			}
1160 
1161 			/*
1162 			 * This is an immediate CCB, we can send it on directly.
1163 			 */
1164 			xpt_action(inccb);
1165 
1166 			/*
1167 			 * Map the buffers back into user space.
1168 			 */
1169 			cam_periph_unmapmem(inccb, &mapinfo);
1170 
1171 			inccb->ccb_h.path = old_path;
1172 
1173 			error = 0;
1174 			break;
1175 		}
1176 		default:
1177 			error = ENOTSUP;
1178 			break;
1179 		}
1180 		xpt_release_bus(bus);
1181 		break;
1182 	}
1183 	/*
1184 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185 	 * with the periphal driver name and unit name filled in.  The other
1186 	 * fields don't really matter as input.  The passthrough driver name
1187 	 * ("pass"), and unit number are passed back in the ccb.  The current
1188 	 * device generation number, and the index into the device peripheral
1189 	 * driver list, and the status are also passed back.  Note that
1190 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1192 	 * (or rather should be) impossible for the device peripheral driver
1193 	 * list to change since we look at the whole thing in one pass, and
1194 	 * we do it with lock protection.
1195 	 *
1196 	 */
1197 	case CAMGETPASSTHRU: {
1198 		union ccb *ccb;
1199 		struct cam_periph *periph;
1200 		struct periph_driver **p_drv;
1201 		char   *name;
1202 		u_int unit;
1203 		u_int cur_generation;
1204 		int base_periph_found;
1205 		int splbreaknum;
1206 
1207 		ccb = (union ccb *)ap->a_data;
1208 		unit = ccb->cgdl.unit_number;
1209 		name = ccb->cgdl.periph_name;
1210 		/*
1211 		 * Every 100 devices, we want to drop our lock protection to
1212 		 * give the software interrupt handler a chance to run.
1213 		 * Most systems won't run into this check, but this should
1214 		 * avoid starvation in the software interrupt handler in
1215 		 * large systems.
1216 		 */
1217 		splbreaknum = 100;
1218 
1219 		ccb = (union ccb *)ap->a_data;
1220 
1221 		base_periph_found = 0;
1222 
1223 		/*
1224 		 * Sanity check -- make sure we don't get a null peripheral
1225 		 * driver name.
1226 		 */
1227 		if (*ccb->cgdl.periph_name == '\0') {
1228 			error = EINVAL;
1229 			break;
1230 		}
1231 
1232 		/* Keep the list from changing while we traverse it */
1233 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235 		cur_generation = xsoftc.xpt_generation;
1236 
1237 		/* first find our driver in the list of drivers */
1238 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239 			if (strcmp((*p_drv)->driver_name, name) == 0)
1240 				break;
1241 		}
1242 
1243 		if (*p_drv == NULL) {
1244 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247 			*ccb->cgdl.periph_name = '\0';
1248 			ccb->cgdl.unit_number = 0;
1249 			error = ENOENT;
1250 			break;
1251 		}
1252 
1253 		/*
1254 		 * Run through every peripheral instance of this driver
1255 		 * and check to see whether it matches the unit passed
1256 		 * in by the user.  If it does, get out of the loops and
1257 		 * find the passthrough driver associated with that
1258 		 * peripheral driver.
1259 		 */
1260 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1261 
1262 			if (periph->unit_number == unit) {
1263 				break;
1264 			} else if (--splbreaknum == 0) {
1265 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267 				splbreaknum = 100;
1268 				if (cur_generation != xsoftc.xpt_generation)
1269 				       goto ptstartover;
1270 			}
1271 		}
1272 		/*
1273 		 * If we found the peripheral driver that the user passed
1274 		 * in, go through all of the peripheral drivers for that
1275 		 * particular device and look for a passthrough driver.
1276 		 */
1277 		if (periph != NULL) {
1278 			struct cam_ed *device;
1279 			int i;
1280 
1281 			base_periph_found = 1;
1282 			device = periph->path->device;
1283 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284 			     periph != NULL;
1285 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1286 				/*
1287 				 * Check to see whether we have a
1288 				 * passthrough device or not.
1289 				 */
1290 				if (strcmp(periph->periph_name, "pass") == 0) {
1291 					/*
1292 					 * Fill in the getdevlist fields.
1293 					 */
1294 					strcpy(ccb->cgdl.periph_name,
1295 					       periph->periph_name);
1296 					ccb->cgdl.unit_number =
1297 						periph->unit_number;
1298 					if (SLIST_NEXT(periph, periph_links))
1299 						ccb->cgdl.status =
1300 							CAM_GDEVLIST_MORE_DEVS;
1301 					else
1302 						ccb->cgdl.status =
1303 						       CAM_GDEVLIST_LAST_DEVICE;
1304 					ccb->cgdl.generation =
1305 						device->generation;
1306 					ccb->cgdl.index = i;
1307 					/*
1308 					 * Fill in some CCB header fields
1309 					 * that the user may want.
1310 					 */
1311 					ccb->ccb_h.path_id =
1312 						periph->path->bus->path_id;
1313 					ccb->ccb_h.target_id =
1314 						periph->path->target->target_id;
1315 					ccb->ccb_h.target_lun =
1316 						periph->path->device->lun_id;
1317 					ccb->ccb_h.status = CAM_REQ_CMP;
1318 					break;
1319 				}
1320 			}
1321 		}
1322 
1323 		/*
1324 		 * If the periph is null here, one of two things has
1325 		 * happened.  The first possibility is that we couldn't
1326 		 * find the unit number of the particular peripheral driver
1327 		 * that the user is asking about.  e.g. the user asks for
1328 		 * the passthrough driver for "da11".  We find the list of
1329 		 * "da" peripherals all right, but there is no unit 11.
1330 		 * The other possibility is that we went through the list
1331 		 * of peripheral drivers attached to the device structure,
1332 		 * but didn't find one with the name "pass".  Either way,
1333 		 * we return ENOENT, since we couldn't find something.
1334 		 */
1335 		if (periph == NULL) {
1336 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338 			*ccb->cgdl.periph_name = '\0';
1339 			ccb->cgdl.unit_number = 0;
1340 			error = ENOENT;
1341 			/*
1342 			 * It is unfortunate that this is even necessary,
1343 			 * but there are many, many clueless users out there.
1344 			 * If this is true, the user is looking for the
1345 			 * passthrough driver, but doesn't have one in his
1346 			 * kernel.
1347 			 */
1348 			if (base_periph_found == 1) {
1349 				kprintf("xptioctl: pass driver is not in the "
1350 				       "kernel\n");
1351 				kprintf("xptioctl: put \"device pass\" in "
1352 				       "your kernel config file\n");
1353 			}
1354 		}
1355 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356 		break;
1357 		}
1358 	default:
1359 		error = ENOTTY;
1360 		break;
1361 	}
1362 
1363 	return(error);
1364 }
1365 
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1368 {
1369 	int error;
1370 
1371 	switch (what) {
1372 	case MOD_LOAD:
1373 		if ((error = xpt_init(NULL)) != 0)
1374 			return (error);
1375 		break;
1376 	case MOD_UNLOAD:
1377 		return EBUSY;
1378 	default:
1379 		return EOPNOTSUPP;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /*
1386  * Thread to handle asynchronous main-context requests.
1387  *
1388  * This function is typically used by drivers to perform complex actions
1389  * such as bus scans and engineering requests in a main context instead
1390  * of an interrupt context.
1391  */
1392 static void
1393 xpt_scanner_thread(void *dummy)
1394 {
1395 	union ccb	*ccb;
1396 	struct cam_sim	*sim;
1397 
1398 	get_mplock();
1399 
1400 	for (;;) {
1401 		xpt_lock_buses();
1402 		xsoftc.ccb_scanq_running = 1;
1403 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1404 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1405 				     sim_links.tqe);
1406 			xpt_unlock_buses();
1407 
1408 			sim = ccb->ccb_h.path->bus->sim;
1409 			CAM_SIM_LOCK(sim);
1410 			xpt_action(ccb);
1411 			CAM_SIM_UNLOCK(sim);
1412 
1413 			xpt_lock_buses();
1414 		}
1415 		xsoftc.ccb_scanq_running = 0;
1416 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1417 		xpt_unlock_buses();
1418 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1419 	}
1420 
1421 	rel_mplock();	/* not reached */
1422 }
1423 
1424 /*
1425  * Issue an asynchronous asction
1426  */
1427 void
1428 xpt_action_async(union ccb *ccb)
1429 {
1430 	xpt_lock_buses();
1431 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1432 	if (xsoftc.ccb_scanq_running == 0) {
1433 		xsoftc.ccb_scanq_running = 1;
1434 		wakeup(&xsoftc.ccb_scanq);
1435 	}
1436 	xpt_unlock_buses();
1437 }
1438 
1439 
1440 /* Functions accessed by the peripheral drivers */
1441 static int
1442 xpt_init(void *dummy)
1443 {
1444 	struct cam_sim *xpt_sim;
1445 	struct cam_path *path;
1446 	struct cam_devq *devq;
1447 	cam_status status;
1448 
1449 	TAILQ_INIT(&xsoftc.xpt_busses);
1450 	TAILQ_INIT(&cam_simq);
1451 	TAILQ_INIT(&xsoftc.ccb_scanq);
1452 	STAILQ_INIT(&xsoftc.highpowerq);
1453 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1454 
1455 	spin_init(&cam_simq_spin);
1456 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1457 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1458 
1459 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1460 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1461 	spin_init(&cam_dead_sim.sim_spin);
1462 	cam_dead_sim.sim_action = dead_sim_action;
1463 	cam_dead_sim.sim_poll = dead_sim_poll;
1464 	cam_dead_sim.sim_name = "dead_sim";
1465 	cam_dead_sim.lock = &cam_dead_lock;
1466 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1467 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1468 
1469 	/*
1470 	 * The xpt layer is, itself, the equivelent of a SIM.
1471 	 * Allow 16 ccbs in the ccb pool for it.  This should
1472 	 * give decent parallelism when we probe busses and
1473 	 * perform other XPT functions.
1474 	 */
1475 	devq = cam_simq_alloc(16);
1476 	xpt_sim = cam_sim_alloc(xptaction,
1477 				xptpoll,
1478 				"xpt",
1479 				/*softc*/NULL,
1480 				/*unit*/0,
1481 				/*lock*/&xsoftc.xpt_lock,
1482 				/*max_dev_transactions*/0,
1483 				/*max_tagged_dev_transactions*/0,
1484 				devq);
1485 	cam_simq_release(devq);
1486 	if (xpt_sim == NULL)
1487 		return (ENOMEM);
1488 
1489 	xpt_sim->max_ccbs = 16;
1490 
1491 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1492 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1493 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1508 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1509 		       " failing attach\n", status);
1510 		return (EINVAL);
1511 	}
1512 
1513 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1514 			 path, NULL, 0, xpt_sim);
1515 	xpt_free_path(path);
1516 
1517 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1518 
1519 	/*
1520 	 * Register a callback for when interrupts are enabled.
1521 	 */
1522 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1523 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1524 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1525 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1526 	xsoftc.xpt_config_hook->ich_order = 1000;
1527 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1528 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1529 		kprintf("xpt_init: config_intrhook_establish failed "
1530 		       "- failing attach\n");
1531 	}
1532 
1533 	/* fire up rescan thread */
1534 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1535 		kprintf("xpt_init: failed to create rescan thread\n");
1536 	}
1537 	/* Install our software interrupt handlers */
1538 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1539 
1540 	return (0);
1541 }
1542 
1543 static cam_status
1544 xptregister(struct cam_periph *periph, void *arg)
1545 {
1546 	struct cam_sim *xpt_sim;
1547 
1548 	if (periph == NULL) {
1549 		kprintf("xptregister: periph was NULL!!\n");
1550 		return(CAM_REQ_CMP_ERR);
1551 	}
1552 
1553 	xpt_sim = (struct cam_sim *)arg;
1554 	xpt_sim->softc = periph;
1555 	xpt_periph = periph;
1556 	periph->softc = NULL;
1557 
1558 	return(CAM_REQ_CMP);
1559 }
1560 
1561 int32_t
1562 xpt_add_periph(struct cam_periph *periph)
1563 {
1564 	struct cam_ed *device;
1565 	int32_t	 status;
1566 	struct periph_list *periph_head;
1567 
1568 	sim_lock_assert_owned(periph->sim->lock);
1569 
1570 	device = periph->path->device;
1571 
1572 	periph_head = &device->periphs;
1573 
1574 	status = CAM_REQ_CMP;
1575 
1576 	if (device != NULL) {
1577 		/*
1578 		 * Make room for this peripheral
1579 		 * so it will fit in the queue
1580 		 * when it's scheduled to run
1581 		 */
1582 		status = camq_resize(&device->drvq,
1583 				     device->drvq.array_size + 1);
1584 
1585 		device->generation++;
1586 
1587 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1588 	}
1589 
1590 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1591 	xsoftc.xpt_generation++;
1592 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1593 
1594 	return (status);
1595 }
1596 
1597 void
1598 xpt_remove_periph(struct cam_periph *periph)
1599 {
1600 	struct cam_ed *device;
1601 
1602 	sim_lock_assert_owned(periph->sim->lock);
1603 
1604 	device = periph->path->device;
1605 
1606 	if (device != NULL) {
1607 		struct periph_list *periph_head;
1608 
1609 		periph_head = &device->periphs;
1610 
1611 		/* Release the slot for this peripheral */
1612 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1613 
1614 		device->generation++;
1615 
1616 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1617 	}
1618 
1619 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1620 	xsoftc.xpt_generation++;
1621 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1622 }
1623 
1624 void
1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 {
1627 	struct	ccb_pathinq cpi;
1628 	struct	ccb_trans_settings cts;
1629 	struct	cam_path *path;
1630 	u_int	speed;
1631 	u_int	freq;
1632 	u_int	mb;
1633 
1634 	sim_lock_assert_owned(periph->sim->lock);
1635 
1636 	path = periph->path;
1637 
1638 	/* Report basic attachment and inquiry data */
1639 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1640 	       periph->periph_name, periph->unit_number,
1641 	       path->bus->sim->sim_name,
1642 	       path->bus->sim->unit_number,
1643 	       path->bus->sim->bus_id,
1644 	       path->target->target_id,
1645 	       path->device->lun_id);
1646 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1647 	scsi_print_inquiry(&path->device->inq_data);
1648 
1649 	/* Report serial number */
1650 	if (path->device->serial_num_len > 0) {
1651 		/* Don't wrap the screen  - print only the first 60 chars */
1652 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1653 		       periph->unit_number, path->device->serial_num);
1654 	}
1655 
1656 	/* Acquire and report transfer speed */
1657 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1658 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1659 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1660 	xpt_action((union ccb*)&cts);
1661 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1662 		return;
1663 	}
1664 
1665 	/* Ask the SIM for its base transfer speed */
1666 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1667 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1668 	xpt_action((union ccb *)&cpi);
1669 
1670 	speed = cpi.base_transfer_speed;
1671 	freq = 0;
1672 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1673 		struct	ccb_trans_settings_spi *spi;
1674 
1675 		spi = &cts.xport_specific.spi;
1676 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1677 		  && spi->sync_offset != 0) {
1678 			freq = scsi_calc_syncsrate(spi->sync_period);
1679 			speed = freq;
1680 		}
1681 
1682 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1683 			speed *= (0x01 << spi->bus_width);
1684 	}
1685 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1686 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1687 		if (fc->valid & CTS_FC_VALID_SPEED) {
1688 			speed = fc->bitrate;
1689 		}
1690 	}
1691 
1692 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1693 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1694 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1695 			speed = sas->bitrate;
1696 		}
1697 	}
1698 
1699 	mb = speed / 1000;
1700 	if (mb > 0)
1701 		kprintf("%s%d: %d.%03dMB/s transfers",
1702 		       periph->periph_name, periph->unit_number,
1703 		       mb, speed % 1000);
1704 	else
1705 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1706 		       periph->unit_number, speed);
1707 
1708 	/* Report additional information about SPI connections */
1709 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1710 		struct	ccb_trans_settings_spi *spi;
1711 
1712 		spi = &cts.xport_specific.spi;
1713 		if (freq != 0) {
1714 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1715 			       freq % 1000,
1716 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1717 			     ? " DT" : "",
1718 			       spi->sync_offset);
1719 		}
1720 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1721 		 && spi->bus_width > 0) {
1722 			if (freq != 0) {
1723 				kprintf(", ");
1724 			} else {
1725 				kprintf(" (");
1726 			}
1727 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1728 		} else if (freq != 0) {
1729 			kprintf(")");
1730 		}
1731 	}
1732 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1733 		struct	ccb_trans_settings_fc *fc;
1734 
1735 		fc = &cts.xport_specific.fc;
1736 		if (fc->valid & CTS_FC_VALID_WWNN)
1737 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1738 		if (fc->valid & CTS_FC_VALID_WWPN)
1739 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1740 		if (fc->valid & CTS_FC_VALID_PORT)
1741 			kprintf(" PortID 0x%x", fc->port);
1742 	}
1743 
1744 	if (path->device->inq_flags & SID_CmdQue
1745 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1746 		kprintf("\n%s%d: Command Queueing Enabled",
1747 		       periph->periph_name, periph->unit_number);
1748 	}
1749 	kprintf("\n");
1750 
1751 	/*
1752 	 * We only want to print the caller's announce string if they've
1753 	 * passed one in..
1754 	 */
1755 	if (announce_string != NULL)
1756 		kprintf("%s%d: %s\n", periph->periph_name,
1757 		       periph->unit_number, announce_string);
1758 }
1759 
1760 static dev_match_ret
1761 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1762 	    struct cam_eb *bus)
1763 {
1764 	dev_match_ret retval;
1765 	int i;
1766 
1767 	retval = DM_RET_NONE;
1768 
1769 	/*
1770 	 * If we aren't given something to match against, that's an error.
1771 	 */
1772 	if (bus == NULL)
1773 		return(DM_RET_ERROR);
1774 
1775 	/*
1776 	 * If there are no match entries, then this bus matches no
1777 	 * matter what.
1778 	 */
1779 	if ((patterns == NULL) || (num_patterns == 0))
1780 		return(DM_RET_DESCEND | DM_RET_COPY);
1781 
1782 	for (i = 0; i < num_patterns; i++) {
1783 		struct bus_match_pattern *cur_pattern;
1784 
1785 		/*
1786 		 * If the pattern in question isn't for a bus node, we
1787 		 * aren't interested.  However, we do indicate to the
1788 		 * calling routine that we should continue descending the
1789 		 * tree, since the user wants to match against lower-level
1790 		 * EDT elements.
1791 		 */
1792 		if (patterns[i].type != DEV_MATCH_BUS) {
1793 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1794 				retval |= DM_RET_DESCEND;
1795 			continue;
1796 		}
1797 
1798 		cur_pattern = &patterns[i].pattern.bus_pattern;
1799 
1800 		/*
1801 		 * If they want to match any bus node, we give them any
1802 		 * device node.
1803 		 */
1804 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1805 			/* set the copy flag */
1806 			retval |= DM_RET_COPY;
1807 
1808 			/*
1809 			 * If we've already decided on an action, go ahead
1810 			 * and return.
1811 			 */
1812 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1813 				return(retval);
1814 		}
1815 
1816 		/*
1817 		 * Not sure why someone would do this...
1818 		 */
1819 		if (cur_pattern->flags == BUS_MATCH_NONE)
1820 			continue;
1821 
1822 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1823 		 && (cur_pattern->path_id != bus->path_id))
1824 			continue;
1825 
1826 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1827 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1828 			continue;
1829 
1830 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1831 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1832 			continue;
1833 
1834 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1835 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1836 			     DEV_IDLEN) != 0))
1837 			continue;
1838 
1839 		/*
1840 		 * If we get to this point, the user definitely wants
1841 		 * information on this bus.  So tell the caller to copy the
1842 		 * data out.
1843 		 */
1844 		retval |= DM_RET_COPY;
1845 
1846 		/*
1847 		 * If the return action has been set to descend, then we
1848 		 * know that we've already seen a non-bus matching
1849 		 * expression, therefore we need to further descend the tree.
1850 		 * This won't change by continuing around the loop, so we
1851 		 * go ahead and return.  If we haven't seen a non-bus
1852 		 * matching expression, we keep going around the loop until
1853 		 * we exhaust the matching expressions.  We'll set the stop
1854 		 * flag once we fall out of the loop.
1855 		 */
1856 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1857 			return(retval);
1858 	}
1859 
1860 	/*
1861 	 * If the return action hasn't been set to descend yet, that means
1862 	 * we haven't seen anything other than bus matching patterns.  So
1863 	 * tell the caller to stop descending the tree -- the user doesn't
1864 	 * want to match against lower level tree elements.
1865 	 */
1866 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1867 		retval |= DM_RET_STOP;
1868 
1869 	return(retval);
1870 }
1871 
1872 static dev_match_ret
1873 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1874 	       struct cam_ed *device)
1875 {
1876 	dev_match_ret retval;
1877 	int i;
1878 
1879 	retval = DM_RET_NONE;
1880 
1881 	/*
1882 	 * If we aren't given something to match against, that's an error.
1883 	 */
1884 	if (device == NULL)
1885 		return(DM_RET_ERROR);
1886 
1887 	/*
1888 	 * If there are no match entries, then this device matches no
1889 	 * matter what.
1890 	 */
1891 	if ((patterns == NULL) || (num_patterns == 0))
1892 		return(DM_RET_DESCEND | DM_RET_COPY);
1893 
1894 	for (i = 0; i < num_patterns; i++) {
1895 		struct device_match_pattern *cur_pattern;
1896 
1897 		/*
1898 		 * If the pattern in question isn't for a device node, we
1899 		 * aren't interested.
1900 		 */
1901 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1902 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1903 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1904 				retval |= DM_RET_DESCEND;
1905 			continue;
1906 		}
1907 
1908 		cur_pattern = &patterns[i].pattern.device_pattern;
1909 
1910 		/*
1911 		 * If they want to match any device node, we give them any
1912 		 * device node.
1913 		 */
1914 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1915 			/* set the copy flag */
1916 			retval |= DM_RET_COPY;
1917 
1918 
1919 			/*
1920 			 * If we've already decided on an action, go ahead
1921 			 * and return.
1922 			 */
1923 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1924 				return(retval);
1925 		}
1926 
1927 		/*
1928 		 * Not sure why someone would do this...
1929 		 */
1930 		if (cur_pattern->flags == DEV_MATCH_NONE)
1931 			continue;
1932 
1933 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1934 		 && (cur_pattern->path_id != device->target->bus->path_id))
1935 			continue;
1936 
1937 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1938 		 && (cur_pattern->target_id != device->target->target_id))
1939 			continue;
1940 
1941 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1942 		 && (cur_pattern->target_lun != device->lun_id))
1943 			continue;
1944 
1945 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1946 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1947 				    (caddr_t)&cur_pattern->inq_pat,
1948 				    1, sizeof(cur_pattern->inq_pat),
1949 				    scsi_static_inquiry_match) == NULL))
1950 			continue;
1951 
1952 		/*
1953 		 * If we get to this point, the user definitely wants
1954 		 * information on this device.  So tell the caller to copy
1955 		 * the data out.
1956 		 */
1957 		retval |= DM_RET_COPY;
1958 
1959 		/*
1960 		 * If the return action has been set to descend, then we
1961 		 * know that we've already seen a peripheral matching
1962 		 * expression, therefore we need to further descend the tree.
1963 		 * This won't change by continuing around the loop, so we
1964 		 * go ahead and return.  If we haven't seen a peripheral
1965 		 * matching expression, we keep going around the loop until
1966 		 * we exhaust the matching expressions.  We'll set the stop
1967 		 * flag once we fall out of the loop.
1968 		 */
1969 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1970 			return(retval);
1971 	}
1972 
1973 	/*
1974 	 * If the return action hasn't been set to descend yet, that means
1975 	 * we haven't seen any peripheral matching patterns.  So tell the
1976 	 * caller to stop descending the tree -- the user doesn't want to
1977 	 * match against lower level tree elements.
1978 	 */
1979 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1980 		retval |= DM_RET_STOP;
1981 
1982 	return(retval);
1983 }
1984 
1985 /*
1986  * Match a single peripheral against any number of match patterns.
1987  */
1988 static dev_match_ret
1989 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1990 	       struct cam_periph *periph)
1991 {
1992 	dev_match_ret retval;
1993 	int i;
1994 
1995 	/*
1996 	 * If we aren't given something to match against, that's an error.
1997 	 */
1998 	if (periph == NULL)
1999 		return(DM_RET_ERROR);
2000 
2001 	/*
2002 	 * If there are no match entries, then this peripheral matches no
2003 	 * matter what.
2004 	 */
2005 	if ((patterns == NULL) || (num_patterns == 0))
2006 		return(DM_RET_STOP | DM_RET_COPY);
2007 
2008 	/*
2009 	 * There aren't any nodes below a peripheral node, so there's no
2010 	 * reason to descend the tree any further.
2011 	 */
2012 	retval = DM_RET_STOP;
2013 
2014 	for (i = 0; i < num_patterns; i++) {
2015 		struct periph_match_pattern *cur_pattern;
2016 
2017 		/*
2018 		 * If the pattern in question isn't for a peripheral, we
2019 		 * aren't interested.
2020 		 */
2021 		if (patterns[i].type != DEV_MATCH_PERIPH)
2022 			continue;
2023 
2024 		cur_pattern = &patterns[i].pattern.periph_pattern;
2025 
2026 		/*
2027 		 * If they want to match on anything, then we will do so.
2028 		 */
2029 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2030 			/* set the copy flag */
2031 			retval |= DM_RET_COPY;
2032 
2033 			/*
2034 			 * We've already set the return action to stop,
2035 			 * since there are no nodes below peripherals in
2036 			 * the tree.
2037 			 */
2038 			return(retval);
2039 		}
2040 
2041 		/*
2042 		 * Not sure why someone would do this...
2043 		 */
2044 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2045 			continue;
2046 
2047 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2048 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2049 			continue;
2050 
2051 		/*
2052 		 * For the target and lun id's, we have to make sure the
2053 		 * target and lun pointers aren't NULL.  The xpt peripheral
2054 		 * has a wildcard target and device.
2055 		 */
2056 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2057 		 && ((periph->path->target == NULL)
2058 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2059 			continue;
2060 
2061 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2062 		 && ((periph->path->device == NULL)
2063 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2064 			continue;
2065 
2066 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2067 		 && (cur_pattern->unit_number != periph->unit_number))
2068 			continue;
2069 
2070 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2071 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2072 			     DEV_IDLEN) != 0))
2073 			continue;
2074 
2075 		/*
2076 		 * If we get to this point, the user definitely wants
2077 		 * information on this peripheral.  So tell the caller to
2078 		 * copy the data out.
2079 		 */
2080 		retval |= DM_RET_COPY;
2081 
2082 		/*
2083 		 * The return action has already been set to stop, since
2084 		 * peripherals don't have any nodes below them in the EDT.
2085 		 */
2086 		return(retval);
2087 	}
2088 
2089 	/*
2090 	 * If we get to this point, the peripheral that was passed in
2091 	 * doesn't match any of the patterns.
2092 	 */
2093 	return(retval);
2094 }
2095 
2096 static int
2097 xptedtbusfunc(struct cam_eb *bus, void *arg)
2098 {
2099 	struct ccb_dev_match *cdm;
2100 	dev_match_ret retval;
2101 
2102 	cdm = (struct ccb_dev_match *)arg;
2103 
2104 	/*
2105 	 * If our position is for something deeper in the tree, that means
2106 	 * that we've already seen this node.  So, we keep going down.
2107 	 */
2108 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2109 	 && (cdm->pos.cookie.bus == bus)
2110 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2111 	 && (cdm->pos.cookie.target != NULL))
2112 		retval = DM_RET_DESCEND;
2113 	else
2114 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2115 
2116 	/*
2117 	 * If we got an error, bail out of the search.
2118 	 */
2119 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2120 		cdm->status = CAM_DEV_MATCH_ERROR;
2121 		return(0);
2122 	}
2123 
2124 	/*
2125 	 * If the copy flag is set, copy this bus out.
2126 	 */
2127 	if (retval & DM_RET_COPY) {
2128 		int spaceleft, j;
2129 
2130 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2131 			sizeof(struct dev_match_result));
2132 
2133 		/*
2134 		 * If we don't have enough space to put in another
2135 		 * match result, save our position and tell the
2136 		 * user there are more devices to check.
2137 		 */
2138 		if (spaceleft < sizeof(struct dev_match_result)) {
2139 			bzero(&cdm->pos, sizeof(cdm->pos));
2140 			cdm->pos.position_type =
2141 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2142 
2143 			cdm->pos.cookie.bus = bus;
2144 			cdm->pos.generations[CAM_BUS_GENERATION]=
2145 				xsoftc.bus_generation;
2146 			cdm->status = CAM_DEV_MATCH_MORE;
2147 			return(0);
2148 		}
2149 		j = cdm->num_matches;
2150 		cdm->num_matches++;
2151 		cdm->matches[j].type = DEV_MATCH_BUS;
2152 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2153 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2154 		cdm->matches[j].result.bus_result.unit_number =
2155 			bus->sim->unit_number;
2156 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2157 			bus->sim->sim_name, DEV_IDLEN);
2158 	}
2159 
2160 	/*
2161 	 * If the user is only interested in busses, there's no
2162 	 * reason to descend to the next level in the tree.
2163 	 */
2164 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2165 		return(1);
2166 
2167 	/*
2168 	 * If there is a target generation recorded, check it to
2169 	 * make sure the target list hasn't changed.
2170 	 */
2171 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2172 	 && (bus == cdm->pos.cookie.bus)
2173 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2174 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2175 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2176 	     bus->generation)) {
2177 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2178 		return(0);
2179 	}
2180 
2181 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2182 	 && (cdm->pos.cookie.bus == bus)
2183 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2184 	 && (cdm->pos.cookie.target != NULL))
2185 		return(xpttargettraverse(bus,
2186 					(struct cam_et *)cdm->pos.cookie.target,
2187 					 xptedttargetfunc, arg));
2188 	else
2189 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2190 }
2191 
2192 static int
2193 xptedttargetfunc(struct cam_et *target, void *arg)
2194 {
2195 	struct ccb_dev_match *cdm;
2196 
2197 	cdm = (struct ccb_dev_match *)arg;
2198 
2199 	/*
2200 	 * If there is a device list generation recorded, check it to
2201 	 * make sure the device list hasn't changed.
2202 	 */
2203 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2204 	 && (cdm->pos.cookie.bus == target->bus)
2205 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2206 	 && (cdm->pos.cookie.target == target)
2207 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2208 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2209 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2210 	     target->generation)) {
2211 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2212 		return(0);
2213 	}
2214 
2215 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2216 	 && (cdm->pos.cookie.bus == target->bus)
2217 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2218 	 && (cdm->pos.cookie.target == target)
2219 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2220 	 && (cdm->pos.cookie.device != NULL))
2221 		return(xptdevicetraverse(target,
2222 					(struct cam_ed *)cdm->pos.cookie.device,
2223 					 xptedtdevicefunc, arg));
2224 	else
2225 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2226 }
2227 
2228 static int
2229 xptedtdevicefunc(struct cam_ed *device, void *arg)
2230 {
2231 
2232 	struct ccb_dev_match *cdm;
2233 	dev_match_ret retval;
2234 
2235 	cdm = (struct ccb_dev_match *)arg;
2236 
2237 	/*
2238 	 * If our position is for something deeper in the tree, that means
2239 	 * that we've already seen this node.  So, we keep going down.
2240 	 */
2241 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2242 	 && (cdm->pos.cookie.device == device)
2243 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2244 	 && (cdm->pos.cookie.periph != NULL))
2245 		retval = DM_RET_DESCEND;
2246 	else
2247 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2248 					device);
2249 
2250 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2251 		cdm->status = CAM_DEV_MATCH_ERROR;
2252 		return(0);
2253 	}
2254 
2255 	/*
2256 	 * If the copy flag is set, copy this device out.
2257 	 */
2258 	if (retval & DM_RET_COPY) {
2259 		int spaceleft, j;
2260 
2261 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2262 			sizeof(struct dev_match_result));
2263 
2264 		/*
2265 		 * If we don't have enough space to put in another
2266 		 * match result, save our position and tell the
2267 		 * user there are more devices to check.
2268 		 */
2269 		if (spaceleft < sizeof(struct dev_match_result)) {
2270 			bzero(&cdm->pos, sizeof(cdm->pos));
2271 			cdm->pos.position_type =
2272 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2273 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2274 
2275 			cdm->pos.cookie.bus = device->target->bus;
2276 			cdm->pos.generations[CAM_BUS_GENERATION]=
2277 				xsoftc.bus_generation;
2278 			cdm->pos.cookie.target = device->target;
2279 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2280 				device->target->bus->generation;
2281 			cdm->pos.cookie.device = device;
2282 			cdm->pos.generations[CAM_DEV_GENERATION] =
2283 				device->target->generation;
2284 			cdm->status = CAM_DEV_MATCH_MORE;
2285 			return(0);
2286 		}
2287 		j = cdm->num_matches;
2288 		cdm->num_matches++;
2289 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2290 		cdm->matches[j].result.device_result.path_id =
2291 			device->target->bus->path_id;
2292 		cdm->matches[j].result.device_result.target_id =
2293 			device->target->target_id;
2294 		cdm->matches[j].result.device_result.target_lun =
2295 			device->lun_id;
2296 		bcopy(&device->inq_data,
2297 		      &cdm->matches[j].result.device_result.inq_data,
2298 		      sizeof(struct scsi_inquiry_data));
2299 
2300 		/* Let the user know whether this device is unconfigured */
2301 		if (device->flags & CAM_DEV_UNCONFIGURED)
2302 			cdm->matches[j].result.device_result.flags =
2303 				DEV_RESULT_UNCONFIGURED;
2304 		else
2305 			cdm->matches[j].result.device_result.flags =
2306 				DEV_RESULT_NOFLAG;
2307 	}
2308 
2309 	/*
2310 	 * If the user isn't interested in peripherals, don't descend
2311 	 * the tree any further.
2312 	 */
2313 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2314 		return(1);
2315 
2316 	/*
2317 	 * If there is a peripheral list generation recorded, make sure
2318 	 * it hasn't changed.
2319 	 */
2320 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2321 	 && (device->target->bus == cdm->pos.cookie.bus)
2322 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2323 	 && (device->target == cdm->pos.cookie.target)
2324 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2325 	 && (device == cdm->pos.cookie.device)
2326 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2327 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2328 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2329 	     device->generation)){
2330 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2331 		return(0);
2332 	}
2333 
2334 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2335 	 && (cdm->pos.cookie.bus == device->target->bus)
2336 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2337 	 && (cdm->pos.cookie.target == device->target)
2338 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2339 	 && (cdm->pos.cookie.device == device)
2340 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2341 	 && (cdm->pos.cookie.periph != NULL))
2342 		return(xptperiphtraverse(device,
2343 				(struct cam_periph *)cdm->pos.cookie.periph,
2344 				xptedtperiphfunc, arg));
2345 	else
2346 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2347 }
2348 
2349 static int
2350 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2351 {
2352 	struct ccb_dev_match *cdm;
2353 	dev_match_ret retval;
2354 
2355 	cdm = (struct ccb_dev_match *)arg;
2356 
2357 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2358 
2359 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2360 		cdm->status = CAM_DEV_MATCH_ERROR;
2361 		return(0);
2362 	}
2363 
2364 	/*
2365 	 * If the copy flag is set, copy this peripheral out.
2366 	 */
2367 	if (retval & DM_RET_COPY) {
2368 		int spaceleft, j;
2369 
2370 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2371 			sizeof(struct dev_match_result));
2372 
2373 		/*
2374 		 * If we don't have enough space to put in another
2375 		 * match result, save our position and tell the
2376 		 * user there are more devices to check.
2377 		 */
2378 		if (spaceleft < sizeof(struct dev_match_result)) {
2379 			bzero(&cdm->pos, sizeof(cdm->pos));
2380 			cdm->pos.position_type =
2381 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2382 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2383 				CAM_DEV_POS_PERIPH;
2384 
2385 			cdm->pos.cookie.bus = periph->path->bus;
2386 			cdm->pos.generations[CAM_BUS_GENERATION]=
2387 				xsoftc.bus_generation;
2388 			cdm->pos.cookie.target = periph->path->target;
2389 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2390 				periph->path->bus->generation;
2391 			cdm->pos.cookie.device = periph->path->device;
2392 			cdm->pos.generations[CAM_DEV_GENERATION] =
2393 				periph->path->target->generation;
2394 			cdm->pos.cookie.periph = periph;
2395 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2396 				periph->path->device->generation;
2397 			cdm->status = CAM_DEV_MATCH_MORE;
2398 			return(0);
2399 		}
2400 
2401 		j = cdm->num_matches;
2402 		cdm->num_matches++;
2403 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2404 		cdm->matches[j].result.periph_result.path_id =
2405 			periph->path->bus->path_id;
2406 		cdm->matches[j].result.periph_result.target_id =
2407 			periph->path->target->target_id;
2408 		cdm->matches[j].result.periph_result.target_lun =
2409 			periph->path->device->lun_id;
2410 		cdm->matches[j].result.periph_result.unit_number =
2411 			periph->unit_number;
2412 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2413 			periph->periph_name, DEV_IDLEN);
2414 	}
2415 
2416 	return(1);
2417 }
2418 
2419 static int
2420 xptedtmatch(struct ccb_dev_match *cdm)
2421 {
2422 	int ret;
2423 
2424 	cdm->num_matches = 0;
2425 
2426 	/*
2427 	 * Check the bus list generation.  If it has changed, the user
2428 	 * needs to reset everything and start over.
2429 	 */
2430 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2431 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2432 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2433 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2434 		return(0);
2435 	}
2436 
2437 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2438 	 && (cdm->pos.cookie.bus != NULL))
2439 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2440 				     xptedtbusfunc, cdm);
2441 	else
2442 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2443 
2444 	/*
2445 	 * If we get back 0, that means that we had to stop before fully
2446 	 * traversing the EDT.  It also means that one of the subroutines
2447 	 * has set the status field to the proper value.  If we get back 1,
2448 	 * we've fully traversed the EDT and copied out any matching entries.
2449 	 */
2450 	if (ret == 1)
2451 		cdm->status = CAM_DEV_MATCH_LAST;
2452 
2453 	return(ret);
2454 }
2455 
2456 static int
2457 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2458 {
2459 	struct ccb_dev_match *cdm;
2460 
2461 	cdm = (struct ccb_dev_match *)arg;
2462 
2463 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2464 	 && (cdm->pos.cookie.pdrv == pdrv)
2465 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2466 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2467 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2468 	     (*pdrv)->generation)) {
2469 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2470 		return(0);
2471 	}
2472 
2473 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2474 	 && (cdm->pos.cookie.pdrv == pdrv)
2475 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2476 	 && (cdm->pos.cookie.periph != NULL))
2477 		return(xptpdperiphtraverse(pdrv,
2478 				(struct cam_periph *)cdm->pos.cookie.periph,
2479 				xptplistperiphfunc, arg));
2480 	else
2481 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2482 }
2483 
2484 static int
2485 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2486 {
2487 	struct ccb_dev_match *cdm;
2488 	dev_match_ret retval;
2489 
2490 	cdm = (struct ccb_dev_match *)arg;
2491 
2492 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2493 
2494 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2495 		cdm->status = CAM_DEV_MATCH_ERROR;
2496 		return(0);
2497 	}
2498 
2499 	/*
2500 	 * If the copy flag is set, copy this peripheral out.
2501 	 */
2502 	if (retval & DM_RET_COPY) {
2503 		int spaceleft, j;
2504 
2505 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2506 			sizeof(struct dev_match_result));
2507 
2508 		/*
2509 		 * If we don't have enough space to put in another
2510 		 * match result, save our position and tell the
2511 		 * user there are more devices to check.
2512 		 */
2513 		if (spaceleft < sizeof(struct dev_match_result)) {
2514 			struct periph_driver **pdrv;
2515 
2516 			pdrv = NULL;
2517 			bzero(&cdm->pos, sizeof(cdm->pos));
2518 			cdm->pos.position_type =
2519 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2520 				CAM_DEV_POS_PERIPH;
2521 
2522 			/*
2523 			 * This may look a bit non-sensical, but it is
2524 			 * actually quite logical.  There are very few
2525 			 * peripheral drivers, and bloating every peripheral
2526 			 * structure with a pointer back to its parent
2527 			 * peripheral driver linker set entry would cost
2528 			 * more in the long run than doing this quick lookup.
2529 			 */
2530 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2531 				if (strcmp((*pdrv)->driver_name,
2532 				    periph->periph_name) == 0)
2533 					break;
2534 			}
2535 
2536 			if (*pdrv == NULL) {
2537 				cdm->status = CAM_DEV_MATCH_ERROR;
2538 				return(0);
2539 			}
2540 
2541 			cdm->pos.cookie.pdrv = pdrv;
2542 			/*
2543 			 * The periph generation slot does double duty, as
2544 			 * does the periph pointer slot.  They are used for
2545 			 * both edt and pdrv lookups and positioning.
2546 			 */
2547 			cdm->pos.cookie.periph = periph;
2548 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2549 				(*pdrv)->generation;
2550 			cdm->status = CAM_DEV_MATCH_MORE;
2551 			return(0);
2552 		}
2553 
2554 		j = cdm->num_matches;
2555 		cdm->num_matches++;
2556 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2557 		cdm->matches[j].result.periph_result.path_id =
2558 			periph->path->bus->path_id;
2559 
2560 		/*
2561 		 * The transport layer peripheral doesn't have a target or
2562 		 * lun.
2563 		 */
2564 		if (periph->path->target)
2565 			cdm->matches[j].result.periph_result.target_id =
2566 				periph->path->target->target_id;
2567 		else
2568 			cdm->matches[j].result.periph_result.target_id = -1;
2569 
2570 		if (periph->path->device)
2571 			cdm->matches[j].result.periph_result.target_lun =
2572 				periph->path->device->lun_id;
2573 		else
2574 			cdm->matches[j].result.periph_result.target_lun = -1;
2575 
2576 		cdm->matches[j].result.periph_result.unit_number =
2577 			periph->unit_number;
2578 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2579 			periph->periph_name, DEV_IDLEN);
2580 	}
2581 
2582 	return(1);
2583 }
2584 
2585 static int
2586 xptperiphlistmatch(struct ccb_dev_match *cdm)
2587 {
2588 	int ret;
2589 
2590 	cdm->num_matches = 0;
2591 
2592 	/*
2593 	 * At this point in the edt traversal function, we check the bus
2594 	 * list generation to make sure that no busses have been added or
2595 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2596 	 * For the peripheral driver list traversal function, however, we
2597 	 * don't have to worry about new peripheral driver types coming or
2598 	 * going; they're in a linker set, and therefore can't change
2599 	 * without a recompile.
2600 	 */
2601 
2602 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2603 	 && (cdm->pos.cookie.pdrv != NULL))
2604 		ret = xptpdrvtraverse(
2605 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2606 				xptplistpdrvfunc, cdm);
2607 	else
2608 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2609 
2610 	/*
2611 	 * If we get back 0, that means that we had to stop before fully
2612 	 * traversing the peripheral driver tree.  It also means that one of
2613 	 * the subroutines has set the status field to the proper value.  If
2614 	 * we get back 1, we've fully traversed the EDT and copied out any
2615 	 * matching entries.
2616 	 */
2617 	if (ret == 1)
2618 		cdm->status = CAM_DEV_MATCH_LAST;
2619 
2620 	return(ret);
2621 }
2622 
2623 static int
2624 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2625 {
2626 	struct cam_eb *bus, *next_bus;
2627 	int retval;
2628 
2629 	retval = 1;
2630 
2631 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2632 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2633 	     bus != NULL;
2634 	     bus = next_bus) {
2635 		next_bus = TAILQ_NEXT(bus, links);
2636 
2637 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2638 		CAM_SIM_LOCK(bus->sim);
2639 		retval = tr_func(bus, arg);
2640 		CAM_SIM_UNLOCK(bus->sim);
2641 		if (retval == 0)
2642 			return(retval);
2643 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2644 	}
2645 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2646 
2647 	return(retval);
2648 }
2649 
2650 static int
2651 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2652 		  xpt_targetfunc_t *tr_func, void *arg)
2653 {
2654 	struct cam_et *target, *next_target;
2655 	int retval;
2656 
2657 	retval = 1;
2658 	for (target = (start_target ? start_target :
2659 		       TAILQ_FIRST(&bus->et_entries));
2660 	     target != NULL; target = next_target) {
2661 
2662 		next_target = TAILQ_NEXT(target, links);
2663 
2664 		retval = tr_func(target, arg);
2665 
2666 		if (retval == 0)
2667 			return(retval);
2668 	}
2669 
2670 	return(retval);
2671 }
2672 
2673 static int
2674 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2675 		  xpt_devicefunc_t *tr_func, void *arg)
2676 {
2677 	struct cam_ed *device, *next_device;
2678 	int retval;
2679 
2680 	retval = 1;
2681 	for (device = (start_device ? start_device :
2682 		       TAILQ_FIRST(&target->ed_entries));
2683 	     device != NULL;
2684 	     device = next_device) {
2685 
2686 		next_device = TAILQ_NEXT(device, links);
2687 
2688 		retval = tr_func(device, arg);
2689 
2690 		if (retval == 0)
2691 			return(retval);
2692 	}
2693 
2694 	return(retval);
2695 }
2696 
2697 static int
2698 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2699 		  xpt_periphfunc_t *tr_func, void *arg)
2700 {
2701 	struct cam_periph *periph, *next_periph;
2702 	int retval;
2703 
2704 	retval = 1;
2705 
2706 	for (periph = (start_periph ? start_periph :
2707 		       SLIST_FIRST(&device->periphs));
2708 	     periph != NULL;
2709 	     periph = next_periph) {
2710 
2711 		next_periph = SLIST_NEXT(periph, periph_links);
2712 
2713 		retval = tr_func(periph, arg);
2714 		if (retval == 0)
2715 			return(retval);
2716 	}
2717 
2718 	return(retval);
2719 }
2720 
2721 static int
2722 xptpdrvtraverse(struct periph_driver **start_pdrv,
2723 		xpt_pdrvfunc_t *tr_func, void *arg)
2724 {
2725 	struct periph_driver **pdrv;
2726 	int retval;
2727 
2728 	retval = 1;
2729 
2730 	/*
2731 	 * We don't traverse the peripheral driver list like we do the
2732 	 * other lists, because it is a linker set, and therefore cannot be
2733 	 * changed during runtime.  If the peripheral driver list is ever
2734 	 * re-done to be something other than a linker set (i.e. it can
2735 	 * change while the system is running), the list traversal should
2736 	 * be modified to work like the other traversal functions.
2737 	 */
2738 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2739 	     *pdrv != NULL; pdrv++) {
2740 		retval = tr_func(pdrv, arg);
2741 
2742 		if (retval == 0)
2743 			return(retval);
2744 	}
2745 
2746 	return(retval);
2747 }
2748 
2749 static int
2750 xptpdperiphtraverse(struct periph_driver **pdrv,
2751 		    struct cam_periph *start_periph,
2752 		    xpt_periphfunc_t *tr_func, void *arg)
2753 {
2754 	struct cam_periph *periph, *next_periph;
2755 	int retval;
2756 
2757 	retval = 1;
2758 
2759 	for (periph = (start_periph ? start_periph :
2760 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2761 	     periph = next_periph) {
2762 
2763 		next_periph = TAILQ_NEXT(periph, unit_links);
2764 
2765 		retval = tr_func(periph, arg);
2766 		if (retval == 0)
2767 			return(retval);
2768 	}
2769 	return(retval);
2770 }
2771 
2772 static int
2773 xptdefbusfunc(struct cam_eb *bus, void *arg)
2774 {
2775 	struct xpt_traverse_config *tr_config;
2776 
2777 	tr_config = (struct xpt_traverse_config *)arg;
2778 
2779 	if (tr_config->depth == XPT_DEPTH_BUS) {
2780 		xpt_busfunc_t *tr_func;
2781 
2782 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2783 
2784 		return(tr_func(bus, tr_config->tr_arg));
2785 	} else
2786 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2787 }
2788 
2789 static int
2790 xptdeftargetfunc(struct cam_et *target, void *arg)
2791 {
2792 	struct xpt_traverse_config *tr_config;
2793 
2794 	tr_config = (struct xpt_traverse_config *)arg;
2795 
2796 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2797 		xpt_targetfunc_t *tr_func;
2798 
2799 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2800 
2801 		return(tr_func(target, tr_config->tr_arg));
2802 	} else
2803 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2804 }
2805 
2806 static int
2807 xptdefdevicefunc(struct cam_ed *device, void *arg)
2808 {
2809 	struct xpt_traverse_config *tr_config;
2810 
2811 	tr_config = (struct xpt_traverse_config *)arg;
2812 
2813 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2814 		xpt_devicefunc_t *tr_func;
2815 
2816 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2817 
2818 		return(tr_func(device, tr_config->tr_arg));
2819 	} else
2820 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2821 }
2822 
2823 static int
2824 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2825 {
2826 	struct xpt_traverse_config *tr_config;
2827 	xpt_periphfunc_t *tr_func;
2828 
2829 	tr_config = (struct xpt_traverse_config *)arg;
2830 
2831 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2832 
2833 	/*
2834 	 * Unlike the other default functions, we don't check for depth
2835 	 * here.  The peripheral driver level is the last level in the EDT,
2836 	 * so if we're here, we should execute the function in question.
2837 	 */
2838 	return(tr_func(periph, tr_config->tr_arg));
2839 }
2840 
2841 /*
2842  * Execute the given function for every bus in the EDT.
2843  */
2844 static int
2845 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2846 {
2847 	struct xpt_traverse_config tr_config;
2848 
2849 	tr_config.depth = XPT_DEPTH_BUS;
2850 	tr_config.tr_func = tr_func;
2851 	tr_config.tr_arg = arg;
2852 
2853 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2854 }
2855 
2856 /*
2857  * Execute the given function for every device in the EDT.
2858  */
2859 static int
2860 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2861 {
2862 	struct xpt_traverse_config tr_config;
2863 
2864 	tr_config.depth = XPT_DEPTH_DEVICE;
2865 	tr_config.tr_func = tr_func;
2866 	tr_config.tr_arg = arg;
2867 
2868 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2869 }
2870 
2871 static int
2872 xptsetasyncfunc(struct cam_ed *device, void *arg)
2873 {
2874 	struct cam_path path;
2875 	struct ccb_getdev cgd;
2876 	struct async_node *cur_entry;
2877 
2878 	cur_entry = (struct async_node *)arg;
2879 
2880 	/*
2881 	 * Don't report unconfigured devices (Wildcard devs,
2882 	 * devices only for target mode, device instances
2883 	 * that have been invalidated but are waiting for
2884 	 * their last reference count to be released).
2885 	 */
2886 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2887 		return (1);
2888 
2889 	xpt_compile_path(&path,
2890 			 NULL,
2891 			 device->target->bus->path_id,
2892 			 device->target->target_id,
2893 			 device->lun_id);
2894 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2895 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2896 	xpt_action((union ccb *)&cgd);
2897 	cur_entry->callback(cur_entry->callback_arg,
2898 			    AC_FOUND_DEVICE,
2899 			    &path, &cgd);
2900 	xpt_release_path(&path);
2901 
2902 	return(1);
2903 }
2904 
2905 static int
2906 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2907 {
2908 	struct cam_path path;
2909 	struct ccb_pathinq cpi;
2910 	struct async_node *cur_entry;
2911 
2912 	cur_entry = (struct async_node *)arg;
2913 
2914 	xpt_compile_path(&path, /*periph*/NULL,
2915 			 bus->sim->path_id,
2916 			 CAM_TARGET_WILDCARD,
2917 			 CAM_LUN_WILDCARD);
2918 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2919 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2920 	xpt_action((union ccb *)&cpi);
2921 	cur_entry->callback(cur_entry->callback_arg,
2922 			    AC_PATH_REGISTERED,
2923 			    &path, &cpi);
2924 	xpt_release_path(&path);
2925 
2926 	return(1);
2927 }
2928 
2929 static void
2930 xpt_action_sasync_cb(void *context, int pending)
2931 {
2932 	struct async_node *cur_entry;
2933 	struct xpt_task *task;
2934 	uint32_t added;
2935 
2936 	task = (struct xpt_task *)context;
2937 	cur_entry = (struct async_node *)task->data1;
2938 	added = task->data2;
2939 
2940 	if ((added & AC_FOUND_DEVICE) != 0) {
2941 		/*
2942 		 * Get this peripheral up to date with all
2943 		 * the currently existing devices.
2944 		 */
2945 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946 	}
2947 	if ((added & AC_PATH_REGISTERED) != 0) {
2948 		/*
2949 		 * Get this peripheral up to date with all
2950 		 * the currently existing busses.
2951 		 */
2952 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2953 	}
2954 	kfree(task, M_CAMXPT);
2955 }
2956 
2957 void
2958 xpt_action(union ccb *start_ccb)
2959 {
2960 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2961 
2962 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2963 
2964 	switch (start_ccb->ccb_h.func_code) {
2965 	case XPT_SCSI_IO:
2966 	case XPT_TRIM:
2967 	{
2968 		struct cam_ed *device;
2969 #ifdef CAMDEBUG
2970 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2971 		struct cam_path *path;
2972 
2973 		path = start_ccb->ccb_h.path;
2974 #endif
2975 
2976 		/*
2977 		 * For the sake of compatibility with SCSI-1
2978 		 * devices that may not understand the identify
2979 		 * message, we include lun information in the
2980 		 * second byte of all commands.  SCSI-1 specifies
2981 		 * that luns are a 3 bit value and reserves only 3
2982 		 * bits for lun information in the CDB.  Later
2983 		 * revisions of the SCSI spec allow for more than 8
2984 		 * luns, but have deprecated lun information in the
2985 		 * CDB.  So, if the lun won't fit, we must omit.
2986 		 *
2987 		 * Also be aware that during initial probing for devices,
2988 		 * the inquiry information is unknown but initialized to 0.
2989 		 * This means that this code will be exercised while probing
2990 		 * devices with an ANSI revision greater than 2.
2991 		 */
2992 		device = start_ccb->ccb_h.path->device;
2993 		if (device->protocol_version <= SCSI_REV_2
2994 		 && start_ccb->ccb_h.target_lun < 8
2995 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2996 
2997 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2998 			    start_ccb->ccb_h.target_lun << 5;
2999 		}
3000 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3001 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3002 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3003 			  	       &path->device->inq_data),
3004 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3005 					  cdb_str, sizeof(cdb_str))));
3006 		/* FALLTHROUGH */
3007 	}
3008 	case XPT_TARGET_IO:
3009 	case XPT_CONT_TARGET_IO:
3010 		start_ccb->csio.sense_resid = 0;
3011 		start_ccb->csio.resid = 0;
3012 		/* FALLTHROUGH */
3013 	case XPT_RESET_DEV:
3014 	case XPT_ENG_EXEC:
3015 	{
3016 		struct cam_path *path;
3017 		struct cam_sim *sim;
3018 		int runq;
3019 
3020 		path = start_ccb->ccb_h.path;
3021 
3022 		sim = path->bus->sim;
3023 		if (sim == &cam_dead_sim) {
3024 			/* The SIM has gone; just execute the CCB directly. */
3025 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3026 			(*(sim->sim_action))(sim, start_ccb);
3027 			break;
3028 		}
3029 
3030 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3031 		if (path->device->qfrozen_cnt == 0)
3032 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3033 		else
3034 			runq = 0;
3035 		if (runq != 0)
3036 			xpt_run_dev_sendq(path->bus);
3037 		break;
3038 	}
3039 	case XPT_SET_TRAN_SETTINGS:
3040 	{
3041 		xpt_set_transfer_settings(&start_ccb->cts,
3042 					  start_ccb->ccb_h.path->device,
3043 					  /*async_update*/FALSE);
3044 		break;
3045 	}
3046 	case XPT_CALC_GEOMETRY:
3047 	{
3048 		struct cam_sim *sim;
3049 
3050 		/* Filter out garbage */
3051 		if (start_ccb->ccg.block_size == 0
3052 		 || start_ccb->ccg.volume_size == 0) {
3053 			start_ccb->ccg.cylinders = 0;
3054 			start_ccb->ccg.heads = 0;
3055 			start_ccb->ccg.secs_per_track = 0;
3056 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3057 			break;
3058 		}
3059 		sim = start_ccb->ccb_h.path->bus->sim;
3060 		(*(sim->sim_action))(sim, start_ccb);
3061 		break;
3062 	}
3063 	case XPT_ABORT:
3064 	{
3065 		union ccb* abort_ccb;
3066 
3067 		abort_ccb = start_ccb->cab.abort_ccb;
3068 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3069 
3070 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3071 				struct cam_ccbq *ccbq;
3072 
3073 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3074 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3075 				abort_ccb->ccb_h.status =
3076 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3077 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3078 				xpt_done(abort_ccb);
3079 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3080 				break;
3081 			}
3082 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3083 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3084 				/*
3085 				 * We've caught this ccb en route to
3086 				 * the SIM.  Flag it for abort and the
3087 				 * SIM will do so just before starting
3088 				 * real work on the CCB.
3089 				 */
3090 				abort_ccb->ccb_h.status =
3091 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3092 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3093 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3094 				break;
3095 			}
3096 		}
3097 		if (XPT_FC_IS_QUEUED(abort_ccb)
3098 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3099 			/*
3100 			 * It's already completed but waiting
3101 			 * for our SWI to get to it.
3102 			 */
3103 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3104 			break;
3105 		}
3106 		/*
3107 		 * If we weren't able to take care of the abort request
3108 		 * in the XPT, pass the request down to the SIM for processing.
3109 		 */
3110 		/* FALLTHROUGH */
3111 	}
3112 	case XPT_ACCEPT_TARGET_IO:
3113 	case XPT_EN_LUN:
3114 	case XPT_IMMED_NOTIFY:
3115 	case XPT_NOTIFY_ACK:
3116 	case XPT_GET_TRAN_SETTINGS:
3117 	case XPT_RESET_BUS:
3118 	{
3119 		struct cam_sim *sim;
3120 
3121 		sim = start_ccb->ccb_h.path->bus->sim;
3122 		(*(sim->sim_action))(sim, start_ccb);
3123 		break;
3124 	}
3125 	case XPT_PATH_INQ:
3126 	{
3127 		struct cam_sim *sim;
3128 
3129 		sim = start_ccb->ccb_h.path->bus->sim;
3130 		(*(sim->sim_action))(sim, start_ccb);
3131 		break;
3132 	}
3133 	case XPT_PATH_STATS:
3134 		start_ccb->cpis.last_reset =
3135 			start_ccb->ccb_h.path->bus->last_reset;
3136 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3137 		break;
3138 	case XPT_GDEV_TYPE:
3139 	{
3140 		struct cam_ed *dev;
3141 
3142 		dev = start_ccb->ccb_h.path->device;
3143 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3144 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3145 		} else {
3146 			struct ccb_getdev *cgd;
3147 
3148 			cgd = &start_ccb->cgd;
3149 			cgd->inq_data = dev->inq_data;
3150 			cgd->ccb_h.status = CAM_REQ_CMP;
3151 			cgd->serial_num_len = dev->serial_num_len;
3152 			if ((dev->serial_num_len > 0)
3153 			 && (dev->serial_num != NULL))
3154 				bcopy(dev->serial_num, cgd->serial_num,
3155 				      dev->serial_num_len);
3156 		}
3157 		break;
3158 	}
3159 	case XPT_GDEV_STATS:
3160 	{
3161 		struct cam_ed *dev;
3162 
3163 		dev = start_ccb->ccb_h.path->device;
3164 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3165 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3166 		} else {
3167 			struct ccb_getdevstats *cgds;
3168 			struct cam_eb *bus;
3169 			struct cam_et *tar;
3170 
3171 			cgds = &start_ccb->cgds;
3172 			bus = cgds->ccb_h.path->bus;
3173 			tar = cgds->ccb_h.path->target;
3174 			cgds->dev_openings = dev->ccbq.dev_openings;
3175 			cgds->dev_active = dev->ccbq.dev_active;
3176 			cgds->devq_openings = dev->ccbq.devq_openings;
3177 			cgds->devq_queued = dev->ccbq.queue.entries;
3178 			cgds->held = dev->ccbq.held;
3179 			cgds->last_reset = tar->last_reset;
3180 			cgds->maxtags = dev->quirk->maxtags;
3181 			cgds->mintags = dev->quirk->mintags;
3182 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3183 				cgds->last_reset = bus->last_reset;
3184 			cgds->ccb_h.status = CAM_REQ_CMP;
3185 		}
3186 		break;
3187 	}
3188 	case XPT_GDEVLIST:
3189 	{
3190 		struct cam_periph	*nperiph;
3191 		struct periph_list	*periph_head;
3192 		struct ccb_getdevlist	*cgdl;
3193 		u_int			i;
3194 		struct cam_ed		*device;
3195 		int			found;
3196 
3197 
3198 		found = 0;
3199 
3200 		/*
3201 		 * Don't want anyone mucking with our data.
3202 		 */
3203 		device = start_ccb->ccb_h.path->device;
3204 		periph_head = &device->periphs;
3205 		cgdl = &start_ccb->cgdl;
3206 
3207 		/*
3208 		 * Check and see if the list has changed since the user
3209 		 * last requested a list member.  If so, tell them that the
3210 		 * list has changed, and therefore they need to start over
3211 		 * from the beginning.
3212 		 */
3213 		if ((cgdl->index != 0) &&
3214 		    (cgdl->generation != device->generation)) {
3215 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3216 			break;
3217 		}
3218 
3219 		/*
3220 		 * Traverse the list of peripherals and attempt to find
3221 		 * the requested peripheral.
3222 		 */
3223 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3224 		     (nperiph != NULL) && (i <= cgdl->index);
3225 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3226 			if (i == cgdl->index) {
3227 				strncpy(cgdl->periph_name,
3228 					nperiph->periph_name,
3229 					DEV_IDLEN);
3230 				cgdl->unit_number = nperiph->unit_number;
3231 				found = 1;
3232 			}
3233 		}
3234 		if (found == 0) {
3235 			cgdl->status = CAM_GDEVLIST_ERROR;
3236 			break;
3237 		}
3238 
3239 		if (nperiph == NULL)
3240 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3241 		else
3242 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3243 
3244 		cgdl->index++;
3245 		cgdl->generation = device->generation;
3246 
3247 		cgdl->ccb_h.status = CAM_REQ_CMP;
3248 		break;
3249 	}
3250 	case XPT_DEV_MATCH:
3251 	{
3252 		dev_pos_type position_type;
3253 		struct ccb_dev_match *cdm;
3254 		int ret;
3255 
3256 		cdm = &start_ccb->cdm;
3257 
3258 		/*
3259 		 * There are two ways of getting at information in the EDT.
3260 		 * The first way is via the primary EDT tree.  It starts
3261 		 * with a list of busses, then a list of targets on a bus,
3262 		 * then devices/luns on a target, and then peripherals on a
3263 		 * device/lun.  The "other" way is by the peripheral driver
3264 		 * lists.  The peripheral driver lists are organized by
3265 		 * peripheral driver.  (obviously)  So it makes sense to
3266 		 * use the peripheral driver list if the user is looking
3267 		 * for something like "da1", or all "da" devices.  If the
3268 		 * user is looking for something on a particular bus/target
3269 		 * or lun, it's generally better to go through the EDT tree.
3270 		 */
3271 
3272 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3273 			position_type = cdm->pos.position_type;
3274 		else {
3275 			u_int i;
3276 
3277 			position_type = CAM_DEV_POS_NONE;
3278 
3279 			for (i = 0; i < cdm->num_patterns; i++) {
3280 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3281 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3282 					position_type = CAM_DEV_POS_EDT;
3283 					break;
3284 				}
3285 			}
3286 
3287 			if (cdm->num_patterns == 0)
3288 				position_type = CAM_DEV_POS_EDT;
3289 			else if (position_type == CAM_DEV_POS_NONE)
3290 				position_type = CAM_DEV_POS_PDRV;
3291 		}
3292 
3293 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3294 		case CAM_DEV_POS_EDT:
3295 			ret = xptedtmatch(cdm);
3296 			break;
3297 		case CAM_DEV_POS_PDRV:
3298 			ret = xptperiphlistmatch(cdm);
3299 			break;
3300 		default:
3301 			cdm->status = CAM_DEV_MATCH_ERROR;
3302 			break;
3303 		}
3304 
3305 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3306 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3307 		else
3308 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3309 
3310 		break;
3311 	}
3312 	case XPT_SASYNC_CB:
3313 	{
3314 		struct ccb_setasync *csa;
3315 		struct async_node *cur_entry;
3316 		struct async_list *async_head;
3317 		u_int32_t added;
3318 
3319 		csa = &start_ccb->csa;
3320 		added = csa->event_enable;
3321 		async_head = &csa->ccb_h.path->device->asyncs;
3322 
3323 		/*
3324 		 * If there is already an entry for us, simply
3325 		 * update it.
3326 		 */
3327 		cur_entry = SLIST_FIRST(async_head);
3328 		while (cur_entry != NULL) {
3329 			if ((cur_entry->callback_arg == csa->callback_arg)
3330 			 && (cur_entry->callback == csa->callback))
3331 				break;
3332 			cur_entry = SLIST_NEXT(cur_entry, links);
3333 		}
3334 
3335 		if (cur_entry != NULL) {
3336 		 	/*
3337 			 * If the request has no flags set,
3338 			 * remove the entry.
3339 			 */
3340 			added &= ~cur_entry->event_enable;
3341 			if (csa->event_enable == 0) {
3342 				SLIST_REMOVE(async_head, cur_entry,
3343 					     async_node, links);
3344 				csa->ccb_h.path->device->refcount--;
3345 				kfree(cur_entry, M_CAMXPT);
3346 			} else {
3347 				cur_entry->event_enable = csa->event_enable;
3348 			}
3349 		} else {
3350 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3351 					   M_INTWAIT);
3352 			cur_entry->event_enable = csa->event_enable;
3353 			cur_entry->callback_arg = csa->callback_arg;
3354 			cur_entry->callback = csa->callback;
3355 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3356 			csa->ccb_h.path->device->refcount++;
3357 		}
3358 
3359 		/*
3360 		 * Need to decouple this operation via a taskqueue so that
3361 		 * the locking doesn't become a mess.
3362 		 */
3363 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3364 			struct xpt_task *task;
3365 
3366 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3367 				      M_INTWAIT);
3368 
3369 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3370 			task->data1 = cur_entry;
3371 			task->data2 = added;
3372 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3373 					  &task->task);
3374 		}
3375 
3376 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3377 		break;
3378 	}
3379 	case XPT_REL_SIMQ:
3380 	{
3381 		struct ccb_relsim *crs;
3382 		struct cam_ed *dev;
3383 
3384 		crs = &start_ccb->crs;
3385 		dev = crs->ccb_h.path->device;
3386 		if (dev == NULL) {
3387 
3388 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3389 			break;
3390 		}
3391 
3392 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3393 
3394  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3395 				/* Don't ever go below one opening */
3396 				if (crs->openings > 0) {
3397 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3398 							    crs->openings);
3399 
3400 					if (bootverbose) {
3401 						xpt_print(crs->ccb_h.path,
3402 						    "tagged openings now %d\n",
3403 						    crs->openings);
3404 					}
3405 				}
3406 			}
3407 		}
3408 
3409 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3410 
3411 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3412 
3413 				/*
3414 				 * Just extend the old timeout and decrement
3415 				 * the freeze count so that a single timeout
3416 				 * is sufficient for releasing the queue.
3417 				 */
3418 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3419 				callout_stop(&dev->callout);
3420 			} else {
3421 
3422 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3423 			}
3424 
3425 			callout_reset(&dev->callout,
3426 				      (crs->release_timeout * hz) / 1000,
3427 				      xpt_release_devq_timeout, dev);
3428 
3429 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3430 
3431 		}
3432 
3433 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3434 
3435 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3436 				/*
3437 				 * Decrement the freeze count so that a single
3438 				 * completion is still sufficient to unfreeze
3439 				 * the queue.
3440 				 */
3441 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3442 			} else {
3443 
3444 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3445 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3446 			}
3447 		}
3448 
3449 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3450 
3451 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3452 			 || (dev->ccbq.dev_active == 0)) {
3453 
3454 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3455 			} else {
3456 
3457 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3458 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3459 			}
3460 		}
3461 
3462 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3463 
3464 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3465 					 /*run_queue*/TRUE);
3466 		}
3467 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3468 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3469 		break;
3470 	}
3471 	case XPT_SCAN_BUS:
3472 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3473 		break;
3474 	case XPT_SCAN_LUN:
3475 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3476 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3477 			     start_ccb);
3478 		break;
3479 	case XPT_DEBUG: {
3480 #ifdef CAMDEBUG
3481 #ifdef CAM_DEBUG_DELAY
3482 		cam_debug_delay = CAM_DEBUG_DELAY;
3483 #endif
3484 		cam_dflags = start_ccb->cdbg.flags;
3485 		if (cam_dpath != NULL) {
3486 			xpt_free_path(cam_dpath);
3487 			cam_dpath = NULL;
3488 		}
3489 
3490 		if (cam_dflags != CAM_DEBUG_NONE) {
3491 			if (xpt_create_path(&cam_dpath, xpt_periph,
3492 					    start_ccb->ccb_h.path_id,
3493 					    start_ccb->ccb_h.target_id,
3494 					    start_ccb->ccb_h.target_lun) !=
3495 					    CAM_REQ_CMP) {
3496 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3497 				cam_dflags = CAM_DEBUG_NONE;
3498 			} else {
3499 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3500 				xpt_print(cam_dpath, "debugging flags now %x\n",
3501 				    cam_dflags);
3502 			}
3503 		} else {
3504 			cam_dpath = NULL;
3505 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3506 		}
3507 #else /* !CAMDEBUG */
3508 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3509 #endif /* CAMDEBUG */
3510 		break;
3511 	}
3512 	case XPT_NOOP:
3513 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3514 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3515 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3516 		break;
3517 	default:
3518 	case XPT_SDEV_TYPE:
3519 	case XPT_TERM_IO:
3520 	case XPT_ENG_INQ:
3521 		/* XXX Implement */
3522 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3523 		break;
3524 	}
3525 }
3526 
3527 void
3528 xpt_polled_action(union ccb *start_ccb)
3529 {
3530 	u_int32_t timeout;
3531 	struct	  cam_sim *sim;
3532 	struct	  cam_devq *devq;
3533 	struct	  cam_ed *dev;
3534 
3535 	timeout = start_ccb->ccb_h.timeout;
3536 	sim = start_ccb->ccb_h.path->bus->sim;
3537 	devq = sim->devq;
3538 	dev = start_ccb->ccb_h.path->device;
3539 
3540 	sim_lock_assert_owned(sim->lock);
3541 
3542 	/*
3543 	 * Steal an opening so that no other queued requests
3544 	 * can get it before us while we simulate interrupts.
3545 	 */
3546 	dev->ccbq.devq_openings--;
3547 	dev->ccbq.dev_openings--;
3548 
3549 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3550 	   && (--timeout > 0)) {
3551 		DELAY(1000);
3552 		(*(sim->sim_poll))(sim);
3553 		camisr_runqueue(sim);
3554 	}
3555 
3556 	dev->ccbq.devq_openings++;
3557 	dev->ccbq.dev_openings++;
3558 
3559 	if (timeout != 0) {
3560 		xpt_action(start_ccb);
3561 		while(--timeout > 0) {
3562 			(*(sim->sim_poll))(sim);
3563 			camisr_runqueue(sim);
3564 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3565 			    != CAM_REQ_INPROG)
3566 				break;
3567 			DELAY(1000);
3568 		}
3569 		if (timeout == 0) {
3570 			/*
3571 			 * XXX Is it worth adding a sim_timeout entry
3572 			 * point so we can attempt recovery?  If
3573 			 * this is only used for dumps, I don't think
3574 			 * it is.
3575 			 */
3576 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3577 		}
3578 	} else {
3579 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3580 	}
3581 }
3582 
3583 /*
3584  * Schedule a peripheral driver to receive a ccb when it's
3585  * target device has space for more transactions.
3586  */
3587 void
3588 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3589 {
3590 	struct cam_ed *device;
3591 	union ccb *work_ccb;
3592 	int runq;
3593 
3594 	sim_lock_assert_owned(perph->sim->lock);
3595 
3596 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3597 	device = perph->path->device;
3598 	if (periph_is_queued(perph)) {
3599 		/* Simply reorder based on new priority */
3600 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3601 			  ("   change priority to %d\n", new_priority));
3602 		if (new_priority < perph->pinfo.priority) {
3603 			camq_change_priority(&device->drvq,
3604 					     perph->pinfo.index,
3605 					     new_priority);
3606 		}
3607 		runq = 0;
3608 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3609 		/* The SIM is gone so just call periph_start directly. */
3610 		work_ccb = xpt_get_ccb(perph->path->device);
3611 		if (work_ccb == NULL)
3612 			return; /* XXX */
3613 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3614 		perph->pinfo.priority = new_priority;
3615 		perph->periph_start(perph, work_ccb);
3616 		return;
3617 	} else {
3618 		/* New entry on the queue */
3619 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3620 			  ("   added periph to queue\n"));
3621 		perph->pinfo.priority = new_priority;
3622 		perph->pinfo.generation = ++device->drvq.generation;
3623 		camq_insert(&device->drvq, &perph->pinfo);
3624 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3625 	}
3626 	if (runq != 0) {
3627 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3628 			  ("   calling xpt_run_devq\n"));
3629 		xpt_run_dev_allocq(perph->path->bus);
3630 	}
3631 }
3632 
3633 
3634 /*
3635  * Schedule a device to run on a given queue.
3636  * If the device was inserted as a new entry on the queue,
3637  * return 1 meaning the device queue should be run. If we
3638  * were already queued, implying someone else has already
3639  * started the queue, return 0 so the caller doesn't attempt
3640  * to run the queue.
3641  */
3642 static int
3643 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3644 		 u_int32_t new_priority)
3645 {
3646 	int retval;
3647 	u_int32_t old_priority;
3648 
3649 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3650 
3651 	old_priority = pinfo->priority;
3652 
3653 	/*
3654 	 * Are we already queued?
3655 	 */
3656 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3657 		/* Simply reorder based on new priority */
3658 		if (new_priority < old_priority) {
3659 			camq_change_priority(queue, pinfo->index,
3660 					     new_priority);
3661 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3662 					("changed priority to %d\n",
3663 					 new_priority));
3664 		}
3665 		retval = 0;
3666 	} else {
3667 		/* New entry on the queue */
3668 		if (new_priority < old_priority)
3669 			pinfo->priority = new_priority;
3670 
3671 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3672 				("Inserting onto queue\n"));
3673 		pinfo->generation = ++queue->generation;
3674 		camq_insert(queue, pinfo);
3675 		retval = 1;
3676 	}
3677 	return (retval);
3678 }
3679 
3680 static void
3681 xpt_run_dev_allocq(struct cam_eb *bus)
3682 {
3683 	struct	cam_devq *devq;
3684 
3685 	if ((devq = bus->sim->devq) == NULL) {
3686 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3687 		return;
3688 	}
3689 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3690 
3691 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3692 			("   qfrozen_cnt == 0x%x, entries == %d, "
3693 			 "openings == %d, active == %d\n",
3694 			 devq->alloc_queue.qfrozen_cnt,
3695 			 devq->alloc_queue.entries,
3696 			 devq->alloc_openings,
3697 			 devq->alloc_active));
3698 
3699 	devq->alloc_queue.qfrozen_cnt++;
3700 	while ((devq->alloc_queue.entries > 0)
3701 	    && (devq->alloc_openings > 0)
3702 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3703 		struct	cam_ed_qinfo *qinfo;
3704 		struct	cam_ed *device;
3705 		union	ccb *work_ccb;
3706 		struct	cam_periph *drv;
3707 		struct	camq *drvq;
3708 
3709 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3710 							   CAMQ_HEAD);
3711 		device = qinfo->device;
3712 
3713 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3714 				("running device %p\n", device));
3715 
3716 		drvq = &device->drvq;
3717 
3718 #ifdef CAMDEBUG
3719 		if (drvq->entries <= 0) {
3720 			panic("xpt_run_dev_allocq: "
3721 			      "Device on queue without any work to do");
3722 		}
3723 #endif
3724 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3725 			devq->alloc_openings--;
3726 			devq->alloc_active++;
3727 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3728 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3729 				      drv->pinfo.priority);
3730 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3731 					("calling periph start\n"));
3732 			drv->periph_start(drv, work_ccb);
3733 		} else {
3734 			/*
3735 			 * Malloc failure in alloc_ccb
3736 			 */
3737 			/*
3738 			 * XXX add us to a list to be run from free_ccb
3739 			 * if we don't have any ccbs active on this
3740 			 * device queue otherwise we may never get run
3741 			 * again.
3742 			 */
3743 			break;
3744 		}
3745 
3746 		if (drvq->entries > 0) {
3747 			/* We have more work.  Attempt to reschedule */
3748 			xpt_schedule_dev_allocq(bus, device);
3749 		}
3750 	}
3751 	devq->alloc_queue.qfrozen_cnt--;
3752 }
3753 
3754 static void
3755 xpt_run_dev_sendq(struct cam_eb *bus)
3756 {
3757 	struct	cam_devq *devq;
3758 
3759 	if ((devq = bus->sim->devq) == NULL) {
3760 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3761 		return;
3762 	}
3763 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3764 
3765 	devq->send_queue.qfrozen_cnt++;
3766 	while ((devq->send_queue.entries > 0)
3767 	    && (devq->send_openings > 0)) {
3768 		struct	cam_ed_qinfo *qinfo;
3769 		struct	cam_ed *device;
3770 		union ccb *work_ccb;
3771 		struct	cam_sim *sim;
3772 
3773 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3774 			break;
3775 		}
3776 
3777 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3778 							   CAMQ_HEAD);
3779 		device = qinfo->device;
3780 
3781 		/*
3782 		 * If the device has been "frozen", don't attempt
3783 		 * to run it.
3784 		 */
3785 		if (device->qfrozen_cnt > 0) {
3786 			continue;
3787 		}
3788 
3789 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3790 				("running device %p\n", device));
3791 
3792 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3793 		if (work_ccb == NULL) {
3794 			kprintf("device on run queue with no ccbs???\n");
3795 			continue;
3796 		}
3797 
3798 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3799 
3800 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3801 			if (xsoftc.num_highpower <= 0) {
3802 				/*
3803 				 * We got a high power command, but we
3804 				 * don't have any available slots.  Freeze
3805 				 * the device queue until we have a slot
3806 				 * available.
3807 				 */
3808 				device->qfrozen_cnt++;
3809 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3810 						   &work_ccb->ccb_h,
3811 						   xpt_links.stqe);
3812 
3813 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3814 				continue;
3815 			} else {
3816 				/*
3817 				 * Consume a high power slot while
3818 				 * this ccb runs.
3819 				 */
3820 				xsoftc.num_highpower--;
3821 			}
3822 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3823 		}
3824 		devq->active_dev = device;
3825 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3826 
3827 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3828 
3829 		devq->send_openings--;
3830 		devq->send_active++;
3831 
3832 		if (device->ccbq.queue.entries > 0)
3833 			xpt_schedule_dev_sendq(bus, device);
3834 
3835 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3836 			/*
3837 			 * The client wants to freeze the queue
3838 			 * after this CCB is sent.
3839 			 */
3840 			device->qfrozen_cnt++;
3841 		}
3842 
3843 		/* In Target mode, the peripheral driver knows best... */
3844 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3845 			if ((device->inq_flags & SID_CmdQue) != 0
3846 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3847 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3848 			else
3849 				/*
3850 				 * Clear this in case of a retried CCB that
3851 				 * failed due to a rejected tag.
3852 				 */
3853 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3854 		}
3855 
3856 		/*
3857 		 * Device queues can be shared among multiple sim instances
3858 		 * that reside on different busses.  Use the SIM in the queue
3859 		 * CCB's path, rather than the one in the bus that was passed
3860 		 * into this function.
3861 		 */
3862 		sim = work_ccb->ccb_h.path->bus->sim;
3863 		(*(sim->sim_action))(sim, work_ccb);
3864 
3865 		devq->active_dev = NULL;
3866 	}
3867 	devq->send_queue.qfrozen_cnt--;
3868 }
3869 
3870 /*
3871  * This function merges stuff from the slave ccb into the master ccb, while
3872  * keeping important fields in the master ccb constant.
3873  */
3874 void
3875 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3876 {
3877 	/*
3878 	 * Pull fields that are valid for peripheral drivers to set
3879 	 * into the master CCB along with the CCB "payload".
3880 	 */
3881 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3882 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3883 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3884 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3885 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3886 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3887 }
3888 
3889 void
3890 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3891 {
3892 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3893 	callout_init(&ccb_h->timeout_ch);
3894 	ccb_h->pinfo.priority = priority;
3895 	ccb_h->path = path;
3896 	ccb_h->path_id = path->bus->path_id;
3897 	if (path->target)
3898 		ccb_h->target_id = path->target->target_id;
3899 	else
3900 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3901 	if (path->device) {
3902 		ccb_h->target_lun = path->device->lun_id;
3903 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3904 	} else {
3905 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3906 	}
3907 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3908 	ccb_h->flags = 0;
3909 }
3910 
3911 /* Path manipulation functions */
3912 cam_status
3913 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3914 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3915 {
3916 	struct	   cam_path *path;
3917 	cam_status status;
3918 
3919 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3920 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3921 	if (status != CAM_REQ_CMP) {
3922 		kfree(path, M_CAMXPT);
3923 		path = NULL;
3924 	}
3925 	*new_path_ptr = path;
3926 	return (status);
3927 }
3928 
3929 cam_status
3930 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3931 			 struct cam_periph *periph, path_id_t path_id,
3932 			 target_id_t target_id, lun_id_t lun_id)
3933 {
3934 	struct	   cam_path *path;
3935 	struct	   cam_eb *bus = NULL;
3936 	cam_status status;
3937 	int	   need_unlock = 0;
3938 
3939 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3940 
3941 	if (path_id != CAM_BUS_WILDCARD) {
3942 		bus = xpt_find_bus(path_id);
3943 		if (bus != NULL) {
3944 			need_unlock = 1;
3945 			CAM_SIM_LOCK(bus->sim);
3946 		}
3947 	}
3948 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3949 	if (need_unlock)
3950 		CAM_SIM_UNLOCK(bus->sim);
3951 	if (status != CAM_REQ_CMP) {
3952 		kfree(path, M_CAMXPT);
3953 		path = NULL;
3954 	}
3955 	*new_path_ptr = path;
3956 	return (status);
3957 }
3958 
3959 static cam_status
3960 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3961 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3962 {
3963 	struct	     cam_eb *bus;
3964 	struct	     cam_et *target;
3965 	struct	     cam_ed *device;
3966 	cam_status   status;
3967 
3968 	status = CAM_REQ_CMP;	/* Completed without error */
3969 	target = NULL;		/* Wildcarded */
3970 	device = NULL;		/* Wildcarded */
3971 
3972 	/*
3973 	 * We will potentially modify the EDT, so block interrupts
3974 	 * that may attempt to create cam paths.
3975 	 */
3976 	bus = xpt_find_bus(path_id);
3977 	if (bus == NULL) {
3978 		status = CAM_PATH_INVALID;
3979 	} else {
3980 		target = xpt_find_target(bus, target_id);
3981 		if (target == NULL) {
3982 			/* Create one */
3983 			struct cam_et *new_target;
3984 
3985 			new_target = xpt_alloc_target(bus, target_id);
3986 			if (new_target == NULL) {
3987 				status = CAM_RESRC_UNAVAIL;
3988 			} else {
3989 				target = new_target;
3990 			}
3991 		}
3992 		if (target != NULL) {
3993 			device = xpt_find_device(target, lun_id);
3994 			if (device == NULL) {
3995 				/* Create one */
3996 				struct cam_ed *new_device;
3997 
3998 				new_device = xpt_alloc_device(bus,
3999 							      target,
4000 							      lun_id);
4001 				if (new_device == NULL) {
4002 					status = CAM_RESRC_UNAVAIL;
4003 				} else {
4004 					device = new_device;
4005 				}
4006 			}
4007 		}
4008 	}
4009 
4010 	/*
4011 	 * Only touch the user's data if we are successful.
4012 	 */
4013 	if (status == CAM_REQ_CMP) {
4014 		new_path->periph = perph;
4015 		new_path->bus = bus;
4016 		new_path->target = target;
4017 		new_path->device = device;
4018 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4019 	} else {
4020 		if (device != NULL)
4021 			xpt_release_device(bus, target, device);
4022 		if (target != NULL)
4023 			xpt_release_target(bus, target);
4024 		if (bus != NULL)
4025 			xpt_release_bus(bus);
4026 	}
4027 	return (status);
4028 }
4029 
4030 static void
4031 xpt_release_path(struct cam_path *path)
4032 {
4033 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4034 	if (path->device != NULL) {
4035 		xpt_release_device(path->bus, path->target, path->device);
4036 		path->device = NULL;
4037 	}
4038 	if (path->target != NULL) {
4039 		xpt_release_target(path->bus, path->target);
4040 		path->target = NULL;
4041 	}
4042 	if (path->bus != NULL) {
4043 		xpt_release_bus(path->bus);
4044 		path->bus = NULL;
4045 	}
4046 }
4047 
4048 void
4049 xpt_free_path(struct cam_path *path)
4050 {
4051 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4052 	xpt_release_path(path);
4053 	kfree(path, M_CAMXPT);
4054 }
4055 
4056 
4057 /*
4058  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4059  * in path1, 2 for match with wildcards in path2.
4060  */
4061 int
4062 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4063 {
4064 	int retval = 0;
4065 
4066 	if (path1->bus != path2->bus) {
4067 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4068 			retval = 1;
4069 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4070 			retval = 2;
4071 		else
4072 			return (-1);
4073 	}
4074 	if (path1->target != path2->target) {
4075 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4076 			if (retval == 0)
4077 				retval = 1;
4078 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4079 			retval = 2;
4080 		else
4081 			return (-1);
4082 	}
4083 	if (path1->device != path2->device) {
4084 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4085 			if (retval == 0)
4086 				retval = 1;
4087 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4088 			retval = 2;
4089 		else
4090 			return (-1);
4091 	}
4092 	return (retval);
4093 }
4094 
4095 void
4096 xpt_print_path(struct cam_path *path)
4097 {
4098 
4099 	if (path == NULL)
4100 		kprintf("(nopath): ");
4101 	else {
4102 		if (path->periph != NULL)
4103 			kprintf("(%s%d:", path->periph->periph_name,
4104 			       path->periph->unit_number);
4105 		else
4106 			kprintf("(noperiph:");
4107 
4108 		if (path->bus != NULL)
4109 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4110 			       path->bus->sim->unit_number,
4111 			       path->bus->sim->bus_id);
4112 		else
4113 			kprintf("nobus:");
4114 
4115 		if (path->target != NULL)
4116 			kprintf("%d:", path->target->target_id);
4117 		else
4118 			kprintf("X:");
4119 
4120 		if (path->device != NULL)
4121 			kprintf("%d): ", path->device->lun_id);
4122 		else
4123 			kprintf("X): ");
4124 	}
4125 }
4126 
4127 void
4128 xpt_print(struct cam_path *path, const char *fmt, ...)
4129 {
4130 	__va_list ap;
4131 	xpt_print_path(path);
4132 	__va_start(ap, fmt);
4133 	kvprintf(fmt, ap);
4134 	__va_end(ap);
4135 }
4136 
4137 int
4138 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4139 {
4140 	struct sbuf sb;
4141 
4142 	sim_lock_assert_owned(path->bus->sim->lock);
4143 
4144 	sbuf_new(&sb, str, str_len, 0);
4145 
4146 	if (path == NULL)
4147 		sbuf_printf(&sb, "(nopath): ");
4148 	else {
4149 		if (path->periph != NULL)
4150 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4151 				    path->periph->unit_number);
4152 		else
4153 			sbuf_printf(&sb, "(noperiph:");
4154 
4155 		if (path->bus != NULL)
4156 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4157 				    path->bus->sim->unit_number,
4158 				    path->bus->sim->bus_id);
4159 		else
4160 			sbuf_printf(&sb, "nobus:");
4161 
4162 		if (path->target != NULL)
4163 			sbuf_printf(&sb, "%d:", path->target->target_id);
4164 		else
4165 			sbuf_printf(&sb, "X:");
4166 
4167 		if (path->device != NULL)
4168 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4169 		else
4170 			sbuf_printf(&sb, "X): ");
4171 	}
4172 	sbuf_finish(&sb);
4173 
4174 	return(sbuf_len(&sb));
4175 }
4176 
4177 path_id_t
4178 xpt_path_path_id(struct cam_path *path)
4179 {
4180 	sim_lock_assert_owned(path->bus->sim->lock);
4181 
4182 	return(path->bus->path_id);
4183 }
4184 
4185 target_id_t
4186 xpt_path_target_id(struct cam_path *path)
4187 {
4188 	sim_lock_assert_owned(path->bus->sim->lock);
4189 
4190 	if (path->target != NULL)
4191 		return (path->target->target_id);
4192 	else
4193 		return (CAM_TARGET_WILDCARD);
4194 }
4195 
4196 lun_id_t
4197 xpt_path_lun_id(struct cam_path *path)
4198 {
4199 	sim_lock_assert_owned(path->bus->sim->lock);
4200 
4201 	if (path->device != NULL)
4202 		return (path->device->lun_id);
4203 	else
4204 		return (CAM_LUN_WILDCARD);
4205 }
4206 
4207 struct cam_sim *
4208 xpt_path_sim(struct cam_path *path)
4209 {
4210 	return (path->bus->sim);
4211 }
4212 
4213 struct cam_periph*
4214 xpt_path_periph(struct cam_path *path)
4215 {
4216 	sim_lock_assert_owned(path->bus->sim->lock);
4217 
4218 	return (path->periph);
4219 }
4220 
4221 char *
4222 xpt_path_serialno(struct cam_path *path)
4223 {
4224 	return (path->device->serial_num);
4225 }
4226 
4227 /*
4228  * Release a CAM control block for the caller.  Remit the cost of the structure
4229  * to the device referenced by the path.  If the this device had no 'credits'
4230  * and peripheral drivers have registered async callbacks for this notification
4231  * call them now.
4232  */
4233 void
4234 xpt_release_ccb(union ccb *free_ccb)
4235 {
4236 	struct	 cam_path *path;
4237 	struct	 cam_ed *device;
4238 	struct	 cam_eb *bus;
4239 	struct   cam_sim *sim;
4240 
4241 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4242 	path = free_ccb->ccb_h.path;
4243 	device = path->device;
4244 	bus = path->bus;
4245 	sim = bus->sim;
4246 
4247 	sim_lock_assert_owned(sim->lock);
4248 
4249 	cam_ccbq_release_opening(&device->ccbq);
4250 	if (sim->ccb_count > sim->max_ccbs) {
4251 		xpt_free_ccb(free_ccb);
4252 		sim->ccb_count--;
4253 	} else if (sim == &cam_dead_sim) {
4254 		xpt_free_ccb(free_ccb);
4255 	} else  {
4256 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4257 		    xpt_links.sle);
4258 	}
4259 	if (sim->devq == NULL) {
4260 		return;
4261 	}
4262 	sim->devq->alloc_openings++;
4263 	sim->devq->alloc_active--;
4264 	/* XXX Turn this into an inline function - xpt_run_device?? */
4265 	if ((device_is_alloc_queued(device) == 0)
4266 	 && (device->drvq.entries > 0)) {
4267 		xpt_schedule_dev_allocq(bus, device);
4268 	}
4269 	if (dev_allocq_is_runnable(sim->devq))
4270 		xpt_run_dev_allocq(bus);
4271 }
4272 
4273 /* Functions accessed by SIM drivers */
4274 
4275 /*
4276  * A sim structure, listing the SIM entry points and instance
4277  * identification info is passed to xpt_bus_register to hook the SIM
4278  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4279  * for this new bus and places it in the array of busses and assigns
4280  * it a path_id.  The path_id may be influenced by "hard wiring"
4281  * information specified by the user.  Once interrupt services are
4282  * availible, the bus will be probed.
4283  */
4284 int32_t
4285 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4286 {
4287 	struct cam_eb *new_bus;
4288 	struct cam_eb *old_bus;
4289 	struct ccb_pathinq cpi;
4290 
4291 	sim_lock_assert_owned(sim->lock);
4292 
4293 	sim->bus_id = bus;
4294 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4295 
4296 	if (strcmp(sim->sim_name, "xpt") != 0) {
4297 		sim->path_id =
4298 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4299 	}
4300 
4301 	TAILQ_INIT(&new_bus->et_entries);
4302 	new_bus->path_id = sim->path_id;
4303 	new_bus->sim = sim;
4304 	++sim->refcount;
4305 	timevalclear(&new_bus->last_reset);
4306 	new_bus->flags = 0;
4307 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4308 	new_bus->generation = 0;
4309 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4310 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4311 	while (old_bus != NULL
4312 	    && old_bus->path_id < new_bus->path_id)
4313 		old_bus = TAILQ_NEXT(old_bus, links);
4314 	if (old_bus != NULL)
4315 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4316 	else
4317 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4318 	xsoftc.bus_generation++;
4319 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4320 
4321 	/* Notify interested parties */
4322 	if (sim->path_id != CAM_XPT_PATH_ID) {
4323 		struct cam_path path;
4324 
4325 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4326 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4327 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4328 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4329 		xpt_action((union ccb *)&cpi);
4330 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4331 		xpt_release_path(&path);
4332 	}
4333 	return (CAM_SUCCESS);
4334 }
4335 
4336 /*
4337  * Deregister a bus.  We must clean out all transactions pending on the bus.
4338  * This routine is typically called prior to cam_sim_free() (e.g. see
4339  * dev/usbmisc/umass/umass.c)
4340  */
4341 int32_t
4342 xpt_bus_deregister(path_id_t pathid)
4343 {
4344 	struct cam_path bus_path;
4345 	struct cam_et *target;
4346 	struct cam_ed *device;
4347 	struct cam_ed_qinfo *qinfo;
4348 	struct cam_devq *devq;
4349 	struct cam_periph *periph;
4350 	struct cam_sim *ccbsim;
4351 	union ccb *work_ccb;
4352 	cam_status status;
4353 	int retries = 0;
4354 
4355 	status = xpt_compile_path(&bus_path, NULL, pathid,
4356 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4357 	if (status != CAM_REQ_CMP)
4358 		return (status);
4359 
4360 	/*
4361 	 * This should clear out all pending requests and timeouts, but
4362 	 * the ccb's may be queued to a software interrupt.
4363 	 *
4364 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4365 	 * and it really ought to.
4366 	 */
4367 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4368 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4369 
4370 	/*
4371 	 * Mark the SIM as having been deregistered.  This prevents
4372 	 * certain operations from re-queueing to it, stops new devices
4373 	 * from being added, etc.
4374 	 */
4375 	devq = bus_path.bus->sim->devq;
4376 	ccbsim = bus_path.bus->sim;
4377 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4378 
4379 again:
4380 	/*
4381 	 * Execute any pending operations now.
4382 	 */
4383 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4384 	    CAMQ_HEAD)) != NULL ||
4385 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4386 	    CAMQ_HEAD)) != NULL) {
4387 		do {
4388 			device = qinfo->device;
4389 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4390 			if (work_ccb != NULL) {
4391 				devq->active_dev = device;
4392 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4393 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4394 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4395 			}
4396 
4397 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4398 			    CAMQ_HEAD);
4399 			if (periph != NULL)
4400 				xpt_schedule(periph, periph->pinfo.priority);
4401 		} while (work_ccb != NULL || periph != NULL);
4402 	}
4403 
4404 	/*
4405 	 * Make sure all completed CCBs are processed.
4406 	 */
4407 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4408 		camisr_runqueue(ccbsim);
4409 	}
4410 
4411 	/*
4412 	 * Check for requeues, reissues asyncs if necessary
4413 	 */
4414 	if (CAMQ_GET_HEAD(&devq->send_queue))
4415 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4416 			devq->send_queue.entries);
4417 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4418 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4419 			devq->alloc_queue.entries);
4420 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4421 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4422 		if (++retries < 5) {
4423 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4424 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4425 			goto again;
4426 		}
4427 	}
4428 
4429 	/*
4430 	 * Retarget the bus and all cached sim pointers to dead_sim.
4431 	 *
4432 	 * Various CAM subsystems may be holding on to targets, devices,
4433 	 * and/or peripherals and may attempt to use the sim pointer cached
4434 	 * in some of these structures during close.
4435 	 */
4436 	bus_path.bus->sim = &cam_dead_sim;
4437 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4438 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4439 			device->sim = &cam_dead_sim;
4440 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4441 				periph->sim = &cam_dead_sim;
4442 			}
4443 		}
4444 	}
4445 
4446 	/*
4447 	 * Repeat the async's for the benefit of any new devices, such as
4448 	 * might be created from completed probes.  Any new device
4449 	 * ops will run on dead_sim.
4450 	 *
4451 	 * XXX There are probably races :-(
4452 	 */
4453 	CAM_SIM_LOCK(&cam_dead_sim);
4454 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4455 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4456 	CAM_SIM_UNLOCK(&cam_dead_sim);
4457 
4458 	/* Release the reference count held while registered. */
4459 	xpt_release_bus(bus_path.bus);
4460 	xpt_release_path(&bus_path);
4461 
4462 	/* Release the ref we got when the bus was registered */
4463 	cam_sim_release(ccbsim, 0);
4464 
4465 	return (CAM_REQ_CMP);
4466 }
4467 
4468 static path_id_t
4469 xptnextfreepathid(void)
4470 {
4471 	struct cam_eb *bus;
4472 	path_id_t pathid;
4473 	const char *strval;
4474 
4475 	pathid = 0;
4476 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4477 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4478 retry:
4479 	/* Find an unoccupied pathid */
4480 	while (bus != NULL && bus->path_id <= pathid) {
4481 		if (bus->path_id == pathid)
4482 			pathid++;
4483 		bus = TAILQ_NEXT(bus, links);
4484 	}
4485 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4486 
4487 	/*
4488 	 * Ensure that this pathid is not reserved for
4489 	 * a bus that may be registered in the future.
4490 	 */
4491 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4492 		++pathid;
4493 		/* Start the search over */
4494 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4495 		goto retry;
4496 	}
4497 	return (pathid);
4498 }
4499 
4500 static path_id_t
4501 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4502 {
4503 	path_id_t pathid;
4504 	int i, dunit, val;
4505 	char buf[32];
4506 
4507 	pathid = CAM_XPT_PATH_ID;
4508 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4509 	i = -1;
4510 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4511 		if (strcmp(resource_query_name(i), "scbus")) {
4512 			/* Avoid a bit of foot shooting. */
4513 			continue;
4514 		}
4515 		dunit = resource_query_unit(i);
4516 		if (dunit < 0)		/* unwired?! */
4517 			continue;
4518 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4519 			if (sim_bus == val) {
4520 				pathid = dunit;
4521 				break;
4522 			}
4523 		} else if (sim_bus == 0) {
4524 			/* Unspecified matches bus 0 */
4525 			pathid = dunit;
4526 			break;
4527 		} else {
4528 			kprintf("Ambiguous scbus configuration for %s%d "
4529 			       "bus %d, cannot wire down.  The kernel "
4530 			       "config entry for scbus%d should "
4531 			       "specify a controller bus.\n"
4532 			       "Scbus will be assigned dynamically.\n",
4533 			       sim_name, sim_unit, sim_bus, dunit);
4534 			break;
4535 		}
4536 	}
4537 
4538 	if (pathid == CAM_XPT_PATH_ID)
4539 		pathid = xptnextfreepathid();
4540 	return (pathid);
4541 }
4542 
4543 void
4544 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4545 {
4546 	struct cam_eb *bus;
4547 	struct cam_et *target, *next_target;
4548 	struct cam_ed *device, *next_device;
4549 
4550 	sim_lock_assert_owned(path->bus->sim->lock);
4551 
4552 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4553 
4554 	/*
4555 	 * Most async events come from a CAM interrupt context.  In
4556 	 * a few cases, the error recovery code at the peripheral layer,
4557 	 * which may run from our SWI or a process context, may signal
4558 	 * deferred events with a call to xpt_async.
4559 	 */
4560 
4561 	bus = path->bus;
4562 
4563 	if (async_code == AC_BUS_RESET) {
4564 		/* Update our notion of when the last reset occurred */
4565 		microuptime(&bus->last_reset);
4566 	}
4567 
4568 	for (target = TAILQ_FIRST(&bus->et_entries);
4569 	     target != NULL;
4570 	     target = next_target) {
4571 
4572 		next_target = TAILQ_NEXT(target, links);
4573 
4574 		if (path->target != target
4575 		 && path->target->target_id != CAM_TARGET_WILDCARD
4576 		 && target->target_id != CAM_TARGET_WILDCARD)
4577 			continue;
4578 
4579 		if (async_code == AC_SENT_BDR) {
4580 			/* Update our notion of when the last reset occurred */
4581 			microuptime(&path->target->last_reset);
4582 		}
4583 
4584 		for (device = TAILQ_FIRST(&target->ed_entries);
4585 		     device != NULL;
4586 		     device = next_device) {
4587 
4588 			next_device = TAILQ_NEXT(device, links);
4589 
4590 			if (path->device != device
4591 			 && path->device->lun_id != CAM_LUN_WILDCARD
4592 			 && device->lun_id != CAM_LUN_WILDCARD)
4593 				continue;
4594 
4595 			xpt_dev_async(async_code, bus, target,
4596 				      device, async_arg);
4597 
4598 			xpt_async_bcast(&device->asyncs, async_code,
4599 					path, async_arg);
4600 		}
4601 	}
4602 
4603 	/*
4604 	 * If this wasn't a fully wildcarded async, tell all
4605 	 * clients that want all async events.
4606 	 */
4607 	if (bus != xpt_periph->path->bus)
4608 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4609 				path, async_arg);
4610 }
4611 
4612 static void
4613 xpt_async_bcast(struct async_list *async_head,
4614 		u_int32_t async_code,
4615 		struct cam_path *path, void *async_arg)
4616 {
4617 	struct async_node *cur_entry;
4618 
4619 	cur_entry = SLIST_FIRST(async_head);
4620 	while (cur_entry != NULL) {
4621 		struct async_node *next_entry;
4622 		/*
4623 		 * Grab the next list entry before we call the current
4624 		 * entry's callback.  This is because the callback function
4625 		 * can delete its async callback entry.
4626 		 */
4627 		next_entry = SLIST_NEXT(cur_entry, links);
4628 		if ((cur_entry->event_enable & async_code) != 0)
4629 			cur_entry->callback(cur_entry->callback_arg,
4630 					    async_code, path,
4631 					    async_arg);
4632 		cur_entry = next_entry;
4633 	}
4634 }
4635 
4636 /*
4637  * Handle any per-device event notifications that require action by the XPT.
4638  */
4639 static void
4640 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4641 	      struct cam_ed *device, void *async_arg)
4642 {
4643 	cam_status status;
4644 	struct cam_path newpath;
4645 
4646 	/*
4647 	 * We only need to handle events for real devices.
4648 	 */
4649 	if (target->target_id == CAM_TARGET_WILDCARD
4650 	 || device->lun_id == CAM_LUN_WILDCARD)
4651 		return;
4652 
4653 	/*
4654 	 * We need our own path with wildcards expanded to
4655 	 * handle certain types of events.
4656 	 */
4657 	if ((async_code == AC_SENT_BDR)
4658 	 || (async_code == AC_BUS_RESET)
4659 	 || (async_code == AC_INQ_CHANGED))
4660 		status = xpt_compile_path(&newpath, NULL,
4661 					  bus->path_id,
4662 					  target->target_id,
4663 					  device->lun_id);
4664 	else
4665 		status = CAM_REQ_CMP_ERR;
4666 
4667 	if (status == CAM_REQ_CMP) {
4668 
4669 		/*
4670 		 * Allow transfer negotiation to occur in a
4671 		 * tag free environment.
4672 		 */
4673 		if (async_code == AC_SENT_BDR
4674 		 || async_code == AC_BUS_RESET)
4675 			xpt_toggle_tags(&newpath);
4676 
4677 		if (async_code == AC_INQ_CHANGED) {
4678 			/*
4679 			 * We've sent a start unit command, or
4680 			 * something similar to a device that
4681 			 * may have caused its inquiry data to
4682 			 * change. So we re-scan the device to
4683 			 * refresh the inquiry data for it.
4684 			 */
4685 			xpt_scan_lun(newpath.periph, &newpath,
4686 				     CAM_EXPECT_INQ_CHANGE, NULL);
4687 		}
4688 		xpt_release_path(&newpath);
4689 	} else if (async_code == AC_LOST_DEVICE) {
4690 		/*
4691 		 * When we lose a device the device may be about to detach
4692 		 * the sim, we have to clear out all pending timeouts and
4693 		 * requests before that happens.
4694 		 *
4695 		 * This typically happens most often with USB/UMASS devices.
4696 		 *
4697 		 * XXX it would be nice if we could abort the requests
4698 		 * pertaining to the device.
4699 		 */
4700 		xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4701 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4702 			device->flags |= CAM_DEV_UNCONFIGURED;
4703 			xpt_release_device(bus, target, device);
4704 		}
4705 	} else if (async_code == AC_TRANSFER_NEG) {
4706 		struct ccb_trans_settings *settings;
4707 
4708 		settings = (struct ccb_trans_settings *)async_arg;
4709 		xpt_set_transfer_settings(settings, device,
4710 					  /*async_update*/TRUE);
4711 	}
4712 }
4713 
4714 u_int32_t
4715 xpt_freeze_devq(struct cam_path *path, u_int count)
4716 {
4717 	struct ccb_hdr *ccbh;
4718 
4719 	sim_lock_assert_owned(path->bus->sim->lock);
4720 
4721 	path->device->qfrozen_cnt += count;
4722 
4723 	/*
4724 	 * Mark the last CCB in the queue as needing
4725 	 * to be requeued if the driver hasn't
4726 	 * changed it's state yet.  This fixes a race
4727 	 * where a ccb is just about to be queued to
4728 	 * a controller driver when it's interrupt routine
4729 	 * freezes the queue.  To completly close the
4730 	 * hole, controller drives must check to see
4731 	 * if a ccb's status is still CAM_REQ_INPROG
4732 	 * just before they queue
4733 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4734 	 * an example.
4735 	 */
4736 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4737 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4738 		ccbh->status = CAM_REQUEUE_REQ;
4739 	return (path->device->qfrozen_cnt);
4740 }
4741 
4742 u_int32_t
4743 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4744 {
4745 	sim_lock_assert_owned(sim->lock);
4746 
4747 	if (sim->devq == NULL)
4748 		return(count);
4749 	sim->devq->send_queue.qfrozen_cnt += count;
4750 	if (sim->devq->active_dev != NULL) {
4751 		struct ccb_hdr *ccbh;
4752 
4753 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4754 				  ccb_hdr_tailq);
4755 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4756 			ccbh->status = CAM_REQUEUE_REQ;
4757 	}
4758 	return (sim->devq->send_queue.qfrozen_cnt);
4759 }
4760 
4761 /*
4762  * Release the device queue after a timeout has expired, typically used to
4763  * introduce a delay before retrying after an I/O error or other problem.
4764  */
4765 static void
4766 xpt_release_devq_timeout(void *arg)
4767 {
4768 	struct cam_ed *device;
4769 
4770 	device = (struct cam_ed *)arg;
4771 	CAM_SIM_LOCK(device->sim);
4772 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4773 	CAM_SIM_UNLOCK(device->sim);
4774 }
4775 
4776 void
4777 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4778 {
4779 	sim_lock_assert_owned(path->bus->sim->lock);
4780 
4781 	xpt_release_devq_device(path->device, count, run_queue);
4782 }
4783 
4784 static void
4785 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4786 {
4787 	int	rundevq;
4788 
4789 	rundevq = 0;
4790 
4791 	if (dev->qfrozen_cnt > 0) {
4792 
4793 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4794 		dev->qfrozen_cnt -= count;
4795 		if (dev->qfrozen_cnt == 0) {
4796 
4797 			/*
4798 			 * No longer need to wait for a successful
4799 			 * command completion.
4800 			 */
4801 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4802 
4803 			/*
4804 			 * Remove any timeouts that might be scheduled
4805 			 * to release this queue.
4806 			 */
4807 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4808 				callout_stop(&dev->callout);
4809 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4810 			}
4811 
4812 			/*
4813 			 * Now that we are unfrozen schedule the
4814 			 * device so any pending transactions are
4815 			 * run.
4816 			 */
4817 			if ((dev->ccbq.queue.entries > 0)
4818 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4819 			 && (run_queue != 0)) {
4820 				rundevq = 1;
4821 			}
4822 		}
4823 	}
4824 	if (rundevq != 0)
4825 		xpt_run_dev_sendq(dev->target->bus);
4826 }
4827 
4828 void
4829 xpt_release_simq(struct cam_sim *sim, int run_queue)
4830 {
4831 	struct	camq *sendq;
4832 
4833 	sim_lock_assert_owned(sim->lock);
4834 
4835 	if (sim->devq == NULL)
4836 		return;
4837 
4838 	sendq = &(sim->devq->send_queue);
4839 	if (sendq->qfrozen_cnt > 0) {
4840 		sendq->qfrozen_cnt--;
4841 		if (sendq->qfrozen_cnt == 0) {
4842 			struct cam_eb *bus;
4843 
4844 			/*
4845 			 * If there is a timeout scheduled to release this
4846 			 * sim queue, remove it.  The queue frozen count is
4847 			 * already at 0.
4848 			 */
4849 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4850 				callout_stop(&sim->callout);
4851 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4852 			}
4853 			bus = xpt_find_bus(sim->path_id);
4854 
4855 			if (run_queue) {
4856 				/*
4857 				 * Now that we are unfrozen run the send queue.
4858 				 */
4859 				xpt_run_dev_sendq(bus);
4860 			}
4861 			xpt_release_bus(bus);
4862 		}
4863 	}
4864 }
4865 
4866 void
4867 xpt_done(union ccb *done_ccb)
4868 {
4869 	struct cam_sim *sim;
4870 
4871 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4872 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4873 		/*
4874 		 * Queue up the request for handling by our SWI handler
4875 		 * any of the "non-immediate" type of ccbs.
4876 		 */
4877 		sim = done_ccb->ccb_h.path->bus->sim;
4878 		switch (done_ccb->ccb_h.path->periph->type) {
4879 		case CAM_PERIPH_BIO:
4880 			spin_lock(&sim->sim_spin);
4881 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4882 					  sim_links.tqe);
4883 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4884 			spin_unlock(&sim->sim_spin);
4885 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4886 				spin_lock(&cam_simq_spin);
4887 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4888 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4889 							  links);
4890 					sim->flags |= CAM_SIM_ON_DONEQ;
4891 				}
4892 				spin_unlock(&cam_simq_spin);
4893 			}
4894 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4895 				setsoftcambio();
4896 			break;
4897 		default:
4898 			panic("unknown periph type %d",
4899 				done_ccb->ccb_h.path->periph->type);
4900 		}
4901 	}
4902 }
4903 
4904 union ccb *
4905 xpt_alloc_ccb(void)
4906 {
4907 	union ccb *new_ccb;
4908 
4909 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4910 	return (new_ccb);
4911 }
4912 
4913 void
4914 xpt_free_ccb(union ccb *free_ccb)
4915 {
4916 	kfree(free_ccb, M_CAMXPT);
4917 }
4918 
4919 
4920 
4921 /* Private XPT functions */
4922 
4923 /*
4924  * Get a CAM control block for the caller. Charge the structure to the device
4925  * referenced by the path.  If the this device has no 'credits' then the
4926  * device already has the maximum number of outstanding operations under way
4927  * and we return NULL. If we don't have sufficient resources to allocate more
4928  * ccbs, we also return NULL.
4929  */
4930 static union ccb *
4931 xpt_get_ccb(struct cam_ed *device)
4932 {
4933 	union ccb *new_ccb;
4934 	struct cam_sim *sim;
4935 
4936 	sim = device->sim;
4937 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4938 		new_ccb = xpt_alloc_ccb();
4939 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4940 			callout_init(&new_ccb->ccb_h.timeout_ch);
4941 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4942 				  xpt_links.sle);
4943 		sim->ccb_count++;
4944 	}
4945 	cam_ccbq_take_opening(&device->ccbq);
4946 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4947 	return (new_ccb);
4948 }
4949 
4950 static void
4951 xpt_release_bus(struct cam_eb *bus)
4952 {
4953 
4954 	if ((--bus->refcount == 0)
4955 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4956 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4957 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4958 		xsoftc.bus_generation++;
4959 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4960 		kfree(bus, M_CAMXPT);
4961 	}
4962 }
4963 
4964 static struct cam_et *
4965 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4966 {
4967 	struct cam_et *target;
4968 	struct cam_et *cur_target;
4969 
4970 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4971 
4972 	TAILQ_INIT(&target->ed_entries);
4973 	target->bus = bus;
4974 	target->target_id = target_id;
4975 	target->refcount = 1;
4976 	target->generation = 0;
4977 	timevalclear(&target->last_reset);
4978 	/*
4979 	 * Hold a reference to our parent bus so it
4980 	 * will not go away before we do.
4981 	 */
4982 	bus->refcount++;
4983 
4984 	/* Insertion sort into our bus's target list */
4985 	cur_target = TAILQ_FIRST(&bus->et_entries);
4986 	while (cur_target != NULL && cur_target->target_id < target_id)
4987 		cur_target = TAILQ_NEXT(cur_target, links);
4988 
4989 	if (cur_target != NULL) {
4990 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4991 	} else {
4992 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4993 	}
4994 	bus->generation++;
4995 	return (target);
4996 }
4997 
4998 static void
4999 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5000 {
5001 	if (target->refcount == 1) {
5002 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5003 		TAILQ_REMOVE(&bus->et_entries, target, links);
5004 		bus->generation++;
5005 		xpt_release_bus(bus);
5006 		KKASSERT(target->refcount == 1);
5007 		kfree(target, M_CAMXPT);
5008 	} else {
5009 		--target->refcount;
5010 	}
5011 }
5012 
5013 static struct cam_ed *
5014 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5015 {
5016 	struct	   cam_path path;
5017 	struct	   cam_ed *device;
5018 	struct	   cam_devq *devq;
5019 	cam_status status;
5020 
5021 	/*
5022 	 * Disallow new devices while trying to deregister a sim
5023 	 */
5024 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5025 		return (NULL);
5026 
5027 	/*
5028 	 * Make space for us in the device queue on our bus
5029 	 */
5030 	devq = bus->sim->devq;
5031 	if (devq == NULL)
5032 		return(NULL);
5033 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5034 
5035 	if (status != CAM_REQ_CMP) {
5036 		device = NULL;
5037 	} else {
5038 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5039 	}
5040 
5041 	if (device != NULL) {
5042 		struct cam_ed *cur_device;
5043 
5044 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5045 		device->alloc_ccb_entry.device = device;
5046 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5047 		device->send_ccb_entry.device = device;
5048 		device->target = target;
5049 		device->lun_id = lun_id;
5050 		device->sim = bus->sim;
5051 		/* Initialize our queues */
5052 		if (camq_init(&device->drvq, 0) != 0) {
5053 			kfree(device, M_CAMXPT);
5054 			return (NULL);
5055 		}
5056 		if (cam_ccbq_init(&device->ccbq,
5057 				  bus->sim->max_dev_openings) != 0) {
5058 			camq_fini(&device->drvq);
5059 			kfree(device, M_CAMXPT);
5060 			return (NULL);
5061 		}
5062 		SLIST_INIT(&device->asyncs);
5063 		SLIST_INIT(&device->periphs);
5064 		device->generation = 0;
5065 		device->owner = NULL;
5066 		/*
5067 		 * Take the default quirk entry until we have inquiry
5068 		 * data and can determine a better quirk to use.
5069 		 */
5070 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5071 		bzero(&device->inq_data, sizeof(device->inq_data));
5072 		device->inq_flags = 0;
5073 		device->queue_flags = 0;
5074 		device->serial_num = NULL;
5075 		device->serial_num_len = 0;
5076 		device->qfrozen_cnt = 0;
5077 		device->flags = CAM_DEV_UNCONFIGURED;
5078 		device->tag_delay_count = 0;
5079 		device->tag_saved_openings = 0;
5080 		device->refcount = 1;
5081 		callout_init(&device->callout);
5082 
5083 		/*
5084 		 * Hold a reference to our parent target so it
5085 		 * will not go away before we do.
5086 		 */
5087 		target->refcount++;
5088 
5089 		/*
5090 		 * XXX should be limited by number of CCBs this bus can
5091 		 * do.
5092 		 */
5093 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5094 		/* Insertion sort into our target's device list */
5095 		cur_device = TAILQ_FIRST(&target->ed_entries);
5096 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5097 			cur_device = TAILQ_NEXT(cur_device, links);
5098 		if (cur_device != NULL) {
5099 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5100 		} else {
5101 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5102 		}
5103 		target->generation++;
5104 		if (lun_id != CAM_LUN_WILDCARD) {
5105 			xpt_compile_path(&path,
5106 					 NULL,
5107 					 bus->path_id,
5108 					 target->target_id,
5109 					 lun_id);
5110 			xpt_devise_transport(&path);
5111 			xpt_release_path(&path);
5112 		}
5113 	}
5114 	return (device);
5115 }
5116 
5117 static void
5118 xpt_reference_device(struct cam_ed *device)
5119 {
5120 	++device->refcount;
5121 }
5122 
5123 static void
5124 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5125 		   struct cam_ed *device)
5126 {
5127 	struct cam_devq *devq;
5128 
5129 	if (device->refcount == 1) {
5130 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5131 
5132 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5133 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5134 			panic("Removing device while still queued for ccbs");
5135 
5136 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5137 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5138 			callout_stop(&device->callout);
5139 		}
5140 
5141 		TAILQ_REMOVE(&target->ed_entries, device,links);
5142 		target->generation++;
5143 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5144 		if ((devq = bus->sim->devq) != NULL) {
5145 			/* Release our slot in the devq */
5146 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5147 		}
5148 		camq_fini(&device->drvq);
5149 		camq_fini(&device->ccbq.queue);
5150 		xpt_release_target(bus, target);
5151 		KKASSERT(device->refcount == 1);
5152 		kfree(device, M_CAMXPT);
5153 	} else {
5154 		--device->refcount;
5155 	}
5156 }
5157 
5158 static u_int32_t
5159 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5160 {
5161 	int	diff;
5162 	int	result;
5163 	struct	cam_ed *dev;
5164 
5165 	dev = path->device;
5166 
5167 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5168 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5169 	if (result == CAM_REQ_CMP && (diff < 0)) {
5170 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5171 	}
5172 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5173 	 || (dev->inq_flags & SID_CmdQue) != 0)
5174 		dev->tag_saved_openings = newopenings;
5175 	/* Adjust the global limit */
5176 	dev->sim->max_ccbs += diff;
5177 	return (result);
5178 }
5179 
5180 static struct cam_eb *
5181 xpt_find_bus(path_id_t path_id)
5182 {
5183 	struct cam_eb *bus;
5184 
5185 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5186 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5187 		if (bus->path_id == path_id) {
5188 			bus->refcount++;
5189 			break;
5190 		}
5191 	}
5192 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5193 	return (bus);
5194 }
5195 
5196 static struct cam_et *
5197 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5198 {
5199 	struct cam_et *target;
5200 
5201 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5202 		if (target->target_id == target_id) {
5203 			target->refcount++;
5204 			break;
5205 		}
5206 	}
5207 	return (target);
5208 }
5209 
5210 static struct cam_ed *
5211 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5212 {
5213 	struct cam_ed *device;
5214 
5215 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5216 		if (device->lun_id == lun_id) {
5217 			device->refcount++;
5218 			break;
5219 		}
5220 	}
5221 	return (device);
5222 }
5223 
5224 typedef struct {
5225 	union	ccb *request_ccb;
5226 	struct 	ccb_pathinq *cpi;
5227 	int	counter;
5228 } xpt_scan_bus_info;
5229 
5230 /*
5231  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5232  * As the scan progresses, xpt_scan_bus is used as the
5233  * callback on completion function.
5234  */
5235 static void
5236 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5237 {
5238 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5239 		  ("xpt_scan_bus\n"));
5240 	switch (request_ccb->ccb_h.func_code) {
5241 	case XPT_SCAN_BUS:
5242 	{
5243 		xpt_scan_bus_info *scan_info;
5244 		union	ccb *work_ccb;
5245 		struct	cam_path *path;
5246 		u_int	i;
5247 		u_int	max_target;
5248 		u_int	initiator_id;
5249 
5250 		/* Find out the characteristics of the bus */
5251 		work_ccb = xpt_alloc_ccb();
5252 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5253 			      request_ccb->ccb_h.pinfo.priority);
5254 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5255 		xpt_action(work_ccb);
5256 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5257 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5258 			xpt_free_ccb(work_ccb);
5259 			xpt_done(request_ccb);
5260 			return;
5261 		}
5262 
5263 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5264 			/*
5265 			 * Can't scan the bus on an adapter that
5266 			 * cannot perform the initiator role.
5267 			 */
5268 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5269 			xpt_free_ccb(work_ccb);
5270 			xpt_done(request_ccb);
5271 			return;
5272 		}
5273 
5274 		/* Save some state for use while we probe for devices */
5275 		scan_info = (xpt_scan_bus_info *)
5276 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5277 		scan_info->request_ccb = request_ccb;
5278 		scan_info->cpi = &work_ccb->cpi;
5279 
5280 		/* Cache on our stack so we can work asynchronously */
5281 		max_target = scan_info->cpi->max_target;
5282 		initiator_id = scan_info->cpi->initiator_id;
5283 
5284 
5285 		/*
5286 		 * We can scan all targets in parallel, or do it sequentially.
5287 		 */
5288 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5289 			max_target = 0;
5290 			scan_info->counter = 0;
5291 		} else {
5292 			scan_info->counter = scan_info->cpi->max_target + 1;
5293 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5294 				scan_info->counter--;
5295 			}
5296 		}
5297 
5298 		for (i = 0; i <= max_target; i++) {
5299 			cam_status status;
5300 			if (i == initiator_id)
5301 				continue;
5302 
5303 			status = xpt_create_path(&path, xpt_periph,
5304 						 request_ccb->ccb_h.path_id,
5305 						 i, 0);
5306 			if (status != CAM_REQ_CMP) {
5307 				kprintf("xpt_scan_bus: xpt_create_path failed"
5308 				       " with status %#x, bus scan halted\n",
5309 				       status);
5310 				kfree(scan_info, M_CAMXPT);
5311 				request_ccb->ccb_h.status = status;
5312 				xpt_free_ccb(work_ccb);
5313 				xpt_done(request_ccb);
5314 				break;
5315 			}
5316 			work_ccb = xpt_alloc_ccb();
5317 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5318 				      request_ccb->ccb_h.pinfo.priority);
5319 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5320 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5321 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5322 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5323 			xpt_action(work_ccb);
5324 		}
5325 		break;
5326 	}
5327 	case XPT_SCAN_LUN:
5328 	{
5329 		cam_status status;
5330 		struct cam_path *path;
5331 		xpt_scan_bus_info *scan_info;
5332 		path_id_t path_id;
5333 		target_id_t target_id;
5334 		lun_id_t lun_id;
5335 
5336 		/* Reuse the same CCB to query if a device was really found */
5337 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5338 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5339 			      request_ccb->ccb_h.pinfo.priority);
5340 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5341 
5342 		path_id = request_ccb->ccb_h.path_id;
5343 		target_id = request_ccb->ccb_h.target_id;
5344 		lun_id = request_ccb->ccb_h.target_lun;
5345 		xpt_action(request_ccb);
5346 
5347 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5348 			struct cam_ed *device;
5349 			struct cam_et *target;
5350 			int phl;
5351 
5352 			/*
5353 			 * If we already probed lun 0 successfully, or
5354 			 * we have additional configured luns on this
5355 			 * target that might have "gone away", go onto
5356 			 * the next lun.
5357 			 */
5358 			target = request_ccb->ccb_h.path->target;
5359 			/*
5360 			 * We may touch devices that we don't
5361 			 * hold references too, so ensure they
5362 			 * don't disappear out from under us.
5363 			 * The target above is referenced by the
5364 			 * path in the request ccb.
5365 			 */
5366 			phl = 0;
5367 			device = TAILQ_FIRST(&target->ed_entries);
5368 			if (device != NULL) {
5369 				phl = CAN_SRCH_HI_SPARSE(device);
5370 				if (device->lun_id == 0)
5371 					device = TAILQ_NEXT(device, links);
5372 			}
5373 			if ((lun_id != 0) || (device != NULL)) {
5374 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5375 					lun_id++;
5376 			}
5377 		} else {
5378 			struct cam_ed *device;
5379 
5380 			device = request_ccb->ccb_h.path->device;
5381 
5382 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5383 				/* Try the next lun */
5384 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5385 				  || CAN_SRCH_HI_DENSE(device))
5386 					lun_id++;
5387 			}
5388 		}
5389 
5390 		/*
5391 		 * Free the current request path- we're done with it.
5392 		 */
5393 		xpt_free_path(request_ccb->ccb_h.path);
5394 
5395 		/*
5396 		 * Check to see if we scan any further luns.
5397 		 */
5398 		if (lun_id == request_ccb->ccb_h.target_lun
5399                  || lun_id > scan_info->cpi->max_lun) {
5400 			int done;
5401 
5402  hop_again:
5403 			done = 0;
5404 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5405 				scan_info->counter++;
5406 				if (scan_info->counter ==
5407 				    scan_info->cpi->initiator_id) {
5408 					scan_info->counter++;
5409 				}
5410 				if (scan_info->counter >=
5411 				    scan_info->cpi->max_target+1) {
5412 					done = 1;
5413 				}
5414 			} else {
5415 				scan_info->counter--;
5416 				if (scan_info->counter == 0) {
5417 					done = 1;
5418 				}
5419 			}
5420 			if (done) {
5421 				xpt_free_ccb(request_ccb);
5422 				xpt_free_ccb((union ccb *)scan_info->cpi);
5423 				request_ccb = scan_info->request_ccb;
5424 				kfree(scan_info, M_CAMXPT);
5425 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5426 				xpt_done(request_ccb);
5427 				break;
5428 			}
5429 
5430 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5431 				break;
5432 			}
5433 			status = xpt_create_path(&path, xpt_periph,
5434 			    scan_info->request_ccb->ccb_h.path_id,
5435 			    scan_info->counter, 0);
5436 			if (status != CAM_REQ_CMP) {
5437 				kprintf("xpt_scan_bus: xpt_create_path failed"
5438 				    " with status %#x, bus scan halted\n",
5439 			       	    status);
5440 				xpt_free_ccb(request_ccb);
5441 				xpt_free_ccb((union ccb *)scan_info->cpi);
5442 				request_ccb = scan_info->request_ccb;
5443 				kfree(scan_info, M_CAMXPT);
5444 				request_ccb->ccb_h.status = status;
5445 				xpt_done(request_ccb);
5446 				break;
5447 			}
5448 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5449 			    request_ccb->ccb_h.pinfo.priority);
5450 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5451 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5452 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5453 			request_ccb->crcn.flags =
5454 			    scan_info->request_ccb->crcn.flags;
5455 		} else {
5456 			status = xpt_create_path(&path, xpt_periph,
5457 						 path_id, target_id, lun_id);
5458 			if (status != CAM_REQ_CMP) {
5459 				kprintf("xpt_scan_bus: xpt_create_path failed "
5460 				       "with status %#x, halting LUN scan\n",
5461 			 	       status);
5462 				goto hop_again;
5463 			}
5464 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5465 				      request_ccb->ccb_h.pinfo.priority);
5466 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5467 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5468 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5469 			request_ccb->crcn.flags =
5470 				scan_info->request_ccb->crcn.flags;
5471 		}
5472 		xpt_action(request_ccb);
5473 		break;
5474 	}
5475 	default:
5476 		break;
5477 	}
5478 }
5479 
5480 typedef enum {
5481 	PROBE_TUR,
5482 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5483 	PROBE_FULL_INQUIRY,
5484 	PROBE_MODE_SENSE,
5485 	PROBE_SERIAL_NUM_0,
5486 	PROBE_SERIAL_NUM_1,
5487 	PROBE_TUR_FOR_NEGOTIATION,
5488 	PROBE_INQUIRY_BASIC_DV1,
5489 	PROBE_INQUIRY_BASIC_DV2,
5490 	PROBE_DV_EXIT,
5491 	PROBE_INVALID
5492 } probe_action;
5493 
5494 static char *probe_action_text[] = {
5495 	"PROBE_TUR",
5496 	"PROBE_INQUIRY",
5497 	"PROBE_FULL_INQUIRY",
5498 	"PROBE_MODE_SENSE",
5499 	"PROBE_SERIAL_NUM_0",
5500 	"PROBE_SERIAL_NUM_1",
5501 	"PROBE_TUR_FOR_NEGOTIATION",
5502 	"PROBE_INQUIRY_BASIC_DV1",
5503 	"PROBE_INQUIRY_BASIC_DV2",
5504 	"PROBE_DV_EXIT",
5505 	"PROBE_INVALID"
5506 };
5507 
5508 #define PROBE_SET_ACTION(softc, newaction)	\
5509 do {									\
5510 	char **text;							\
5511 	text = probe_action_text;					\
5512 	CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO,		\
5513 	    ("Probe %s to %s\n", text[(softc)->action],			\
5514 	    text[(newaction)]));					\
5515 	(softc)->action = (newaction);					\
5516 } while(0)
5517 
5518 typedef enum {
5519 	PROBE_INQUIRY_CKSUM	= 0x01,
5520 	PROBE_SERIAL_CKSUM	= 0x02,
5521 	PROBE_NO_ANNOUNCE	= 0x04
5522 } probe_flags;
5523 
5524 typedef struct {
5525 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5526 	probe_action	action;
5527 	union ccb	saved_ccb;
5528 	probe_flags	flags;
5529 	MD5_CTX		context;
5530 	u_int8_t	digest[16];
5531 	struct cam_periph *periph;
5532 } probe_softc;
5533 
5534 static void
5535 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5536 	     cam_flags flags, union ccb *request_ccb)
5537 {
5538 	struct ccb_pathinq cpi;
5539 	cam_status status;
5540 	struct cam_path *new_path;
5541 	struct cam_periph *old_periph;
5542 
5543 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5544 		  ("xpt_scan_lun\n"));
5545 
5546 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5547 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5548 	xpt_action((union ccb *)&cpi);
5549 
5550 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5551 		if (request_ccb != NULL) {
5552 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5553 			xpt_done(request_ccb);
5554 		}
5555 		return;
5556 	}
5557 
5558 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5559 		/*
5560 		 * Can't scan the bus on an adapter that
5561 		 * cannot perform the initiator role.
5562 		 */
5563 		if (request_ccb != NULL) {
5564 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5565 			xpt_done(request_ccb);
5566 		}
5567 		return;
5568 	}
5569 
5570 	if (request_ccb == NULL) {
5571 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5572 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5573 		status = xpt_compile_path(new_path, xpt_periph,
5574 					  path->bus->path_id,
5575 					  path->target->target_id,
5576 					  path->device->lun_id);
5577 
5578 		if (status != CAM_REQ_CMP) {
5579 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5580 			    "can't continue\n");
5581 			kfree(request_ccb, M_CAMXPT);
5582 			kfree(new_path, M_CAMXPT);
5583 			return;
5584 		}
5585 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5586 		request_ccb->ccb_h.cbfcnp = xptscandone;
5587 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5588 		request_ccb->crcn.flags = flags;
5589 	}
5590 
5591 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5592 		probe_softc *softc;
5593 
5594 		softc = (probe_softc *)old_periph->softc;
5595 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5596 				  periph_links.tqe);
5597 	} else {
5598 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5599 					  probestart, "probe",
5600 					  CAM_PERIPH_BIO,
5601 					  request_ccb->ccb_h.path, NULL, 0,
5602 					  request_ccb);
5603 
5604 		if (status != CAM_REQ_CMP) {
5605 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5606 			    "returned an error, can't continue probe\n");
5607 			request_ccb->ccb_h.status = status;
5608 			xpt_done(request_ccb);
5609 		}
5610 	}
5611 }
5612 
5613 static void
5614 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5615 {
5616 	xpt_release_path(done_ccb->ccb_h.path);
5617 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5618 	kfree(done_ccb, M_CAMXPT);
5619 }
5620 
5621 static cam_status
5622 proberegister(struct cam_periph *periph, void *arg)
5623 {
5624 	union ccb *request_ccb;	/* CCB representing the probe request */
5625 	cam_status status;
5626 	probe_softc *softc;
5627 
5628 	request_ccb = (union ccb *)arg;
5629 	if (periph == NULL) {
5630 		kprintf("proberegister: periph was NULL!!\n");
5631 		return(CAM_REQ_CMP_ERR);
5632 	}
5633 
5634 	if (request_ccb == NULL) {
5635 		kprintf("proberegister: no probe CCB, "
5636 		       "can't register device\n");
5637 		return(CAM_REQ_CMP_ERR);
5638 	}
5639 
5640 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5641 	TAILQ_INIT(&softc->request_ccbs);
5642 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5643 			  periph_links.tqe);
5644 	softc->flags = 0;
5645 	periph->softc = softc;
5646 	softc->periph = periph;
5647 	softc->action = PROBE_INVALID;
5648 	status = cam_periph_acquire(periph);
5649 	if (status != CAM_REQ_CMP) {
5650 		return (status);
5651 	}
5652 
5653 
5654 	/*
5655 	 * Ensure we've waited at least a bus settle
5656 	 * delay before attempting to probe the device.
5657 	 * For HBAs that don't do bus resets, this won't make a difference.
5658 	 */
5659 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5660 				      scsi_delay);
5661 	probeschedule(periph);
5662 	return(CAM_REQ_CMP);
5663 }
5664 
5665 static void
5666 probeschedule(struct cam_periph *periph)
5667 {
5668 	struct ccb_pathinq cpi;
5669 	union ccb *ccb;
5670 	probe_softc *softc;
5671 
5672 	softc = (probe_softc *)periph->softc;
5673 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5674 
5675 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5676 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5677 	xpt_action((union ccb *)&cpi);
5678 
5679 	/*
5680 	 * If a device has gone away and another device, or the same one,
5681 	 * is back in the same place, it should have a unit attention
5682 	 * condition pending.  It will not report the unit attention in
5683 	 * response to an inquiry, which may leave invalid transfer
5684 	 * negotiations in effect.  The TUR will reveal the unit attention
5685 	 * condition.  Only send the TUR for lun 0, since some devices
5686 	 * will get confused by commands other than inquiry to non-existent
5687 	 * luns.  If you think a device has gone away start your scan from
5688 	 * lun 0.  This will insure that any bogus transfer settings are
5689 	 * invalidated.
5690 	 *
5691 	 * If we haven't seen the device before and the controller supports
5692 	 * some kind of transfer negotiation, negotiate with the first
5693 	 * sent command if no bus reset was performed at startup.  This
5694 	 * ensures that the device is not confused by transfer negotiation
5695 	 * settings left over by loader or BIOS action.
5696 	 */
5697 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5698 	 && (ccb->ccb_h.target_lun == 0)) {
5699 		PROBE_SET_ACTION(softc, PROBE_TUR);
5700 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5701 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5702 		proberequestdefaultnegotiation(periph);
5703 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5704 	} else {
5705 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5706 	}
5707 
5708 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5709 		softc->flags |= PROBE_NO_ANNOUNCE;
5710 	else
5711 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5712 
5713 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5714 }
5715 
5716 static void
5717 probestart(struct cam_periph *periph, union ccb *start_ccb)
5718 {
5719 	/* Probe the device that our peripheral driver points to */
5720 	struct ccb_scsiio *csio;
5721 	probe_softc *softc;
5722 
5723 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5724 
5725 	softc = (probe_softc *)periph->softc;
5726 	csio = &start_ccb->csio;
5727 
5728 	switch (softc->action) {
5729 	case PROBE_TUR:
5730 	case PROBE_TUR_FOR_NEGOTIATION:
5731 	case PROBE_DV_EXIT:
5732 	{
5733 		scsi_test_unit_ready(csio,
5734 				     /*retries*/4,
5735 				     probedone,
5736 				     MSG_SIMPLE_Q_TAG,
5737 				     SSD_FULL_SIZE,
5738 				     /*timeout*/60000);
5739 		break;
5740 	}
5741 	case PROBE_INQUIRY:
5742 	case PROBE_FULL_INQUIRY:
5743 	case PROBE_INQUIRY_BASIC_DV1:
5744 	case PROBE_INQUIRY_BASIC_DV2:
5745 	{
5746 		u_int inquiry_len;
5747 		struct scsi_inquiry_data *inq_buf;
5748 
5749 		inq_buf = &periph->path->device->inq_data;
5750 
5751 		/*
5752 		 * If the device is currently configured, we calculate an
5753 		 * MD5 checksum of the inquiry data, and if the serial number
5754 		 * length is greater than 0, add the serial number data
5755 		 * into the checksum as well.  Once the inquiry and the
5756 		 * serial number check finish, we attempt to figure out
5757 		 * whether we still have the same device.
5758 		 */
5759 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5760 
5761 			MD5Init(&softc->context);
5762 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5763 				  sizeof(struct scsi_inquiry_data));
5764 			softc->flags |= PROBE_INQUIRY_CKSUM;
5765 			if (periph->path->device->serial_num_len > 0) {
5766 				MD5Update(&softc->context,
5767 					  periph->path->device->serial_num,
5768 					  periph->path->device->serial_num_len);
5769 				softc->flags |= PROBE_SERIAL_CKSUM;
5770 			}
5771 			MD5Final(softc->digest, &softc->context);
5772 		}
5773 
5774 		if (softc->action == PROBE_INQUIRY)
5775 			inquiry_len = SHORT_INQUIRY_LENGTH;
5776 		else
5777 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5778 
5779 		/*
5780 		 * Some parallel SCSI devices fail to send an
5781 		 * ignore wide residue message when dealing with
5782 		 * odd length inquiry requests.  Round up to be
5783 		 * safe.
5784 		 */
5785 		inquiry_len = roundup2(inquiry_len, 2);
5786 
5787 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5788 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5789 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5790 		}
5791 		scsi_inquiry(csio,
5792 			     /*retries*/4,
5793 			     probedone,
5794 			     MSG_SIMPLE_Q_TAG,
5795 			     (u_int8_t *)inq_buf,
5796 			     inquiry_len,
5797 			     /*evpd*/FALSE,
5798 			     /*page_code*/0,
5799 			     SSD_MIN_SIZE,
5800 			     /*timeout*/60 * 1000);
5801 		break;
5802 	}
5803 	case PROBE_MODE_SENSE:
5804 	{
5805 		void  *mode_buf;
5806 		int    mode_buf_len;
5807 
5808 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5809 			     + sizeof(struct scsi_mode_blk_desc)
5810 			     + sizeof(struct scsi_control_page);
5811 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5812 		scsi_mode_sense(csio,
5813 				/*retries*/4,
5814 				probedone,
5815 				MSG_SIMPLE_Q_TAG,
5816 				/*dbd*/FALSE,
5817 				SMS_PAGE_CTRL_CURRENT,
5818 				SMS_CONTROL_MODE_PAGE,
5819 				mode_buf,
5820 				mode_buf_len,
5821 				SSD_FULL_SIZE,
5822 				/*timeout*/60000);
5823 		break;
5824 	}
5825 	case PROBE_SERIAL_NUM_0:
5826 	{
5827 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5828 		struct cam_ed *device;
5829 
5830 		device = periph->path->device;
5831 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5832 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5833 			    M_INTWAIT | M_ZERO);
5834 		}
5835 
5836 		if (vpd_list != NULL) {
5837 			scsi_inquiry(csio,
5838 				     /*retries*/4,
5839 				     probedone,
5840 				     MSG_SIMPLE_Q_TAG,
5841 				     (u_int8_t *)vpd_list,
5842 				     sizeof(*vpd_list),
5843 				     /*evpd*/TRUE,
5844 				     SVPD_SUPPORTED_PAGE_LIST,
5845 				     SSD_MIN_SIZE,
5846 				     /*timeout*/60 * 1000);
5847 			break;
5848 		}
5849 		/*
5850 		 * We'll have to do without, let our probedone
5851 		 * routine finish up for us.
5852 		 */
5853 		start_ccb->csio.data_ptr = NULL;
5854 		probedone(periph, start_ccb);
5855 		return;
5856 	}
5857 	case PROBE_SERIAL_NUM_1:
5858 	{
5859 		struct scsi_vpd_unit_serial_number *serial_buf;
5860 		struct cam_ed* device;
5861 
5862 		serial_buf = NULL;
5863 		device = periph->path->device;
5864 		device->serial_num = NULL;
5865 		device->serial_num_len = 0;
5866 
5867 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5868 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5869 				M_INTWAIT | M_ZERO);
5870 		scsi_inquiry(csio,
5871 			     /*retries*/4,
5872 			     probedone,
5873 			     MSG_SIMPLE_Q_TAG,
5874 			     (u_int8_t *)serial_buf,
5875 			     sizeof(*serial_buf),
5876 			     /*evpd*/TRUE,
5877 			     SVPD_UNIT_SERIAL_NUMBER,
5878 			     SSD_MIN_SIZE,
5879 			     /*timeout*/60 * 1000);
5880 		break;
5881 	}
5882 	case PROBE_INVALID:
5883 		CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5884 		    ("probestart: invalid action state\n"));
5885 	default:
5886 		break;
5887 	}
5888 	xpt_action(start_ccb);
5889 }
5890 
5891 static void
5892 proberequestdefaultnegotiation(struct cam_periph *periph)
5893 {
5894 	struct ccb_trans_settings cts;
5895 
5896 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5897 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5898 	cts.type = CTS_TYPE_USER_SETTINGS;
5899 	xpt_action((union ccb *)&cts);
5900 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5901 		return;
5902 	}
5903 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5904 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5905 	xpt_action((union ccb *)&cts);
5906 }
5907 
5908 /*
5909  * Backoff Negotiation Code- only pertinent for SPI devices.
5910  */
5911 static int
5912 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5913 {
5914 	struct ccb_trans_settings cts;
5915 	struct ccb_trans_settings_spi *spi;
5916 
5917 	memset(&cts, 0, sizeof (cts));
5918 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5919 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5920 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5921 	xpt_action((union ccb *)&cts);
5922 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5923 		if (bootverbose) {
5924 			xpt_print(periph->path,
5925 			    "failed to get current device settings\n");
5926 		}
5927 		return (0);
5928 	}
5929 	if (cts.transport != XPORT_SPI) {
5930 		if (bootverbose) {
5931 			xpt_print(periph->path, "not SPI transport\n");
5932 		}
5933 		return (0);
5934 	}
5935 	spi = &cts.xport_specific.spi;
5936 
5937 	/*
5938 	 * We cannot renegotiate sync rate if we don't have one.
5939 	 */
5940 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5941 		if (bootverbose) {
5942 			xpt_print(periph->path, "no sync rate known\n");
5943 		}
5944 		return (0);
5945 	}
5946 
5947 	/*
5948 	 * We'll assert that we don't have to touch PPR options- the
5949 	 * SIM will see what we do with period and offset and adjust
5950 	 * the PPR options as appropriate.
5951 	 */
5952 
5953 	/*
5954 	 * A sync rate with unknown or zero offset is nonsensical.
5955 	 * A sync period of zero means Async.
5956 	 */
5957 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5958 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5959 		if (bootverbose) {
5960 			xpt_print(periph->path, "no sync rate available\n");
5961 		}
5962 		return (0);
5963 	}
5964 
5965 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5966 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5967 		    ("hit async: giving up on DV\n"));
5968 		return (0);
5969 	}
5970 
5971 
5972 	/*
5973 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5974 	 * We don't try to remember 'last' settings to see if the SIM actually
5975 	 * gets into the speed we want to set. We check on the SIM telling
5976 	 * us that a requested speed is bad, but otherwise don't try and
5977 	 * check the speed due to the asynchronous and handshake nature
5978 	 * of speed setting.
5979 	 */
5980 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5981 	for (;;) {
5982 		spi->sync_period++;
5983 		if (spi->sync_period >= 0xf) {
5984 			spi->sync_period = 0;
5985 			spi->sync_offset = 0;
5986 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5987 			    ("setting to async for DV\n"));
5988 			/*
5989 			 * Once we hit async, we don't want to try
5990 			 * any more settings.
5991 			 */
5992 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5993 		} else if (bootverbose) {
5994 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5995 			    ("DV: period 0x%x\n", spi->sync_period));
5996 			kprintf("setting period to 0x%x\n", spi->sync_period);
5997 		}
5998 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5999 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
6000 		xpt_action((union ccb *)&cts);
6001 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6002 			break;
6003 		}
6004 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6005 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
6006 		if (spi->sync_period == 0) {
6007 			return (0);
6008 		}
6009 	}
6010 	return (1);
6011 }
6012 
6013 static void
6014 probedone(struct cam_periph *periph, union ccb *done_ccb)
6015 {
6016 	probe_softc *softc;
6017 	struct cam_path *path;
6018 	u_int32_t  priority;
6019 
6020 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6021 
6022 	softc = (probe_softc *)periph->softc;
6023 	path = done_ccb->ccb_h.path;
6024 	priority = done_ccb->ccb_h.pinfo.priority;
6025 
6026 	switch (softc->action) {
6027 	case PROBE_TUR:
6028 	{
6029 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6030 
6031 			if (cam_periph_error(done_ccb, 0,
6032 					     SF_NO_PRINT, NULL) == ERESTART)
6033 				return;
6034 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6035 				/* Don't wedge the queue */
6036 				xpt_release_devq(done_ccb->ccb_h.path,
6037 						 /*count*/1,
6038 						 /*run_queue*/TRUE);
6039 		}
6040 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6041 		xpt_release_ccb(done_ccb);
6042 		xpt_schedule(periph, priority);
6043 		return;
6044 	}
6045 	case PROBE_INQUIRY:
6046 	case PROBE_FULL_INQUIRY:
6047 	{
6048 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6049 			struct scsi_inquiry_data *inq_buf;
6050 			u_int8_t periph_qual;
6051 
6052 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6053 			inq_buf = &path->device->inq_data;
6054 
6055 			periph_qual = SID_QUAL(inq_buf);
6056 
6057 			switch(periph_qual) {
6058 			case SID_QUAL_LU_CONNECTED:
6059 			{
6060 				u_int8_t len;
6061 
6062 				/*
6063 				 * We conservatively request only
6064 				 * SHORT_INQUIRY_LEN bytes of inquiry
6065 				 * information during our first try
6066 				 * at sending an INQUIRY. If the device
6067 				 * has more information to give,
6068 				 * perform a second request specifying
6069 				 * the amount of information the device
6070 				 * is willing to give.
6071 				 */
6072 				len = inq_buf->additional_length
6073 				    + offsetof(struct scsi_inquiry_data,
6074 						additional_length) + 1;
6075 				if (softc->action == PROBE_INQUIRY
6076 				    && len > SHORT_INQUIRY_LENGTH) {
6077 					PROBE_SET_ACTION(softc,
6078 					    PROBE_FULL_INQUIRY);
6079 					xpt_release_ccb(done_ccb);
6080 					xpt_schedule(periph, priority);
6081 					return;
6082 				}
6083 
6084 				xpt_find_quirk(path->device);
6085 
6086 				xpt_devise_transport(path);
6087 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6088 					PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6089 				else
6090 					PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6091 
6092 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6093 				xpt_reference_device(path->device);
6094 
6095 				xpt_release_ccb(done_ccb);
6096 				xpt_schedule(periph, priority);
6097 				return;
6098 			}
6099 			default:
6100 				break;
6101 			}
6102 		} else if (cam_periph_error(done_ccb, 0,
6103 					    done_ccb->ccb_h.target_lun > 0
6104 					    ? SF_RETRY_UA|SF_QUIET_IR
6105 					    : SF_RETRY_UA,
6106 					    &softc->saved_ccb) == ERESTART) {
6107 			return;
6108 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6109 			/* Don't wedge the queue */
6110 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6111 					 /*run_queue*/TRUE);
6112 		}
6113 		/*
6114 		 * If we get to this point, we got an error status back
6115 		 * from the inquiry and the error status doesn't require
6116 		 * automatically retrying the command.  Therefore, the
6117 		 * inquiry failed.  If we had inquiry information before
6118 		 * for this device, but this latest inquiry command failed,
6119 		 * the device has probably gone away.  If this device isn't
6120 		 * already marked unconfigured, notify the peripheral
6121 		 * drivers that this device is no more.
6122 		 */
6123 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6124 			/* Send the async notification. */
6125 			xpt_async(AC_LOST_DEVICE, path, NULL);
6126 		}
6127 
6128 		xpt_release_ccb(done_ccb);
6129 		break;
6130 	}
6131 	case PROBE_MODE_SENSE:
6132 	{
6133 		struct ccb_scsiio *csio;
6134 		struct scsi_mode_header_6 *mode_hdr;
6135 
6136 		csio = &done_ccb->csio;
6137 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6138 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6139 			struct scsi_control_page *page;
6140 			u_int8_t *offset;
6141 
6142 			offset = ((u_int8_t *)&mode_hdr[1])
6143 			    + mode_hdr->blk_desc_len;
6144 			page = (struct scsi_control_page *)offset;
6145 			path->device->queue_flags = page->queue_flags;
6146 		} else if (cam_periph_error(done_ccb, 0,
6147 					    SF_RETRY_UA|SF_NO_PRINT,
6148 					    &softc->saved_ccb) == ERESTART) {
6149 			return;
6150 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6151 			/* Don't wedge the queue */
6152 			xpt_release_devq(done_ccb->ccb_h.path,
6153 					 /*count*/1, /*run_queue*/TRUE);
6154 		}
6155 		xpt_release_ccb(done_ccb);
6156 		kfree(mode_hdr, M_CAMXPT);
6157 		PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6158 		xpt_schedule(periph, priority);
6159 		return;
6160 	}
6161 	case PROBE_SERIAL_NUM_0:
6162 	{
6163 		struct ccb_scsiio *csio;
6164 		struct scsi_vpd_supported_page_list *page_list;
6165 		int length, serialnum_supported, i;
6166 
6167 		serialnum_supported = 0;
6168 		csio = &done_ccb->csio;
6169 		page_list =
6170 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6171 
6172 		if (page_list == NULL) {
6173 			/*
6174 			 * Don't process the command as it was never sent
6175 			 */
6176 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6177 		    && (page_list->length > 0)) {
6178 			length = min(page_list->length,
6179 			    SVPD_SUPPORTED_PAGES_SIZE);
6180 			for (i = 0; i < length; i++) {
6181 				if (page_list->list[i] ==
6182 				    SVPD_UNIT_SERIAL_NUMBER) {
6183 					serialnum_supported = 1;
6184 					break;
6185 				}
6186 			}
6187 		} else if (cam_periph_error(done_ccb, 0,
6188 					    SF_RETRY_UA|SF_NO_PRINT,
6189 					    &softc->saved_ccb) == ERESTART) {
6190 			return;
6191 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6192 			/* Don't wedge the queue */
6193 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6194 					 /*run_queue*/TRUE);
6195 		}
6196 
6197 		if (page_list != NULL)
6198 			kfree(page_list, M_DEVBUF);
6199 
6200 		if (serialnum_supported) {
6201 			xpt_release_ccb(done_ccb);
6202 			PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6203 			xpt_schedule(periph, priority);
6204 			return;
6205 		}
6206 
6207 		csio->data_ptr = NULL;
6208 		/* FALLTHROUGH */
6209 	}
6210 
6211 	case PROBE_SERIAL_NUM_1:
6212 	{
6213 		struct ccb_scsiio *csio;
6214 		struct scsi_vpd_unit_serial_number *serial_buf;
6215 		u_int32_t  priority;
6216 		int changed;
6217 		int have_serialnum;
6218 
6219 		changed = 1;
6220 		have_serialnum = 0;
6221 		csio = &done_ccb->csio;
6222 		priority = done_ccb->ccb_h.pinfo.priority;
6223 		serial_buf =
6224 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6225 
6226 		/* Clean up from previous instance of this device */
6227 		if (path->device->serial_num != NULL) {
6228 			kfree(path->device->serial_num, M_CAMXPT);
6229 			path->device->serial_num = NULL;
6230 			path->device->serial_num_len = 0;
6231 		}
6232 
6233 		if (serial_buf == NULL) {
6234 			/*
6235 			 * Don't process the command as it was never sent
6236 			 */
6237 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6238 			&& (serial_buf->length > 0)) {
6239 
6240 			have_serialnum = 1;
6241 			path->device->serial_num =
6242 				kmalloc((serial_buf->length + 1),
6243 				       M_CAMXPT, M_INTWAIT);
6244 			bcopy(serial_buf->serial_num,
6245 			      path->device->serial_num,
6246 			      serial_buf->length);
6247 			path->device->serial_num_len = serial_buf->length;
6248 			path->device->serial_num[serial_buf->length] = '\0';
6249 		} else if (cam_periph_error(done_ccb, 0,
6250 					    SF_RETRY_UA|SF_NO_PRINT,
6251 					    &softc->saved_ccb) == ERESTART) {
6252 			return;
6253 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6254 			/* Don't wedge the queue */
6255 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6256 					 /*run_queue*/TRUE);
6257 		}
6258 
6259 		/*
6260 		 * Let's see if we have seen this device before.
6261 		 */
6262 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6263 			MD5_CTX context;
6264 			u_int8_t digest[16];
6265 
6266 			MD5Init(&context);
6267 
6268 			MD5Update(&context,
6269 				  (unsigned char *)&path->device->inq_data,
6270 				  sizeof(struct scsi_inquiry_data));
6271 
6272 			if (have_serialnum)
6273 				MD5Update(&context, serial_buf->serial_num,
6274 					  serial_buf->length);
6275 
6276 			MD5Final(digest, &context);
6277 			if (bcmp(softc->digest, digest, 16) == 0)
6278 				changed = 0;
6279 
6280 			/*
6281 			 * XXX Do we need to do a TUR in order to ensure
6282 			 *     that the device really hasn't changed???
6283 			 */
6284 			if ((changed != 0)
6285 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6286 				xpt_async(AC_LOST_DEVICE, path, NULL);
6287 		}
6288 		if (serial_buf != NULL)
6289 			kfree(serial_buf, M_CAMXPT);
6290 
6291 		if (changed != 0) {
6292 			/*
6293 			 * Now that we have all the necessary
6294 			 * information to safely perform transfer
6295 			 * negotiations... Controllers don't perform
6296 			 * any negotiation or tagged queuing until
6297 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6298 			 * received.  So, on a new device, just retrieve
6299 			 * the user settings, and set them as the current
6300 			 * settings to set the device up.
6301 			 */
6302 			proberequestdefaultnegotiation(periph);
6303 			xpt_release_ccb(done_ccb);
6304 
6305 			/*
6306 			 * Perform a TUR to allow the controller to
6307 			 * perform any necessary transfer negotiation.
6308 			 */
6309 			PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6310 			xpt_schedule(periph, priority);
6311 			return;
6312 		}
6313 		xpt_release_ccb(done_ccb);
6314 		break;
6315 	}
6316 	case PROBE_TUR_FOR_NEGOTIATION:
6317 	case PROBE_DV_EXIT:
6318 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6319 			/* Don't wedge the queue */
6320 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6321 					 /*run_queue*/TRUE);
6322 		}
6323 
6324 		xpt_reference_device(path->device);
6325 		/*
6326 		 * Do Domain Validation for lun 0 on devices that claim
6327 		 * to support Synchronous Transfer modes.
6328 		 */
6329 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6330 		 && done_ccb->ccb_h.target_lun == 0
6331 		 && (path->device->inq_data.flags & SID_Sync) != 0
6332                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6333 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6334 			    ("Begin Domain Validation\n"));
6335 			path->device->flags |= CAM_DEV_IN_DV;
6336 			xpt_release_ccb(done_ccb);
6337 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6338 			xpt_schedule(periph, priority);
6339 			return;
6340 		}
6341 		if (softc->action == PROBE_DV_EXIT) {
6342 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6343 			    ("Leave Domain Validation\n"));
6344 		}
6345 		path->device->flags &=
6346 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6347 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6348 			/* Inform the XPT that a new device has been found */
6349 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6350 			xpt_action(done_ccb);
6351 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6352 				  done_ccb);
6353 		}
6354 		xpt_release_ccb(done_ccb);
6355 		break;
6356 	case PROBE_INQUIRY_BASIC_DV1:
6357 	case PROBE_INQUIRY_BASIC_DV2:
6358 	{
6359 		struct scsi_inquiry_data *nbuf;
6360 		struct ccb_scsiio *csio;
6361 
6362 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6363 			/* Don't wedge the queue */
6364 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6365 					 /*run_queue*/TRUE);
6366 		}
6367 		csio = &done_ccb->csio;
6368 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6369 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6370 			xpt_print(path,
6371 			    "inquiry data fails comparison at DV%d step\n",
6372 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6373 			if (proberequestbackoff(periph, path->device)) {
6374 				path->device->flags &= ~CAM_DEV_IN_DV;
6375 				PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6376 			} else {
6377 				/* give up */
6378 				PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6379 			}
6380 			kfree(nbuf, M_CAMXPT);
6381 			xpt_release_ccb(done_ccb);
6382 			xpt_schedule(periph, priority);
6383 			return;
6384 		}
6385 		kfree(nbuf, M_CAMXPT);
6386 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6387 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6388 			xpt_release_ccb(done_ccb);
6389 			xpt_schedule(periph, priority);
6390 			return;
6391 		}
6392 		if (softc->action == PROBE_DV_EXIT) {
6393 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6394 			    ("Leave Domain Validation Successfully\n"));
6395 		}
6396 		path->device->flags &=
6397 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6398 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6399 			/* Inform the XPT that a new device has been found */
6400 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6401 			xpt_action(done_ccb);
6402 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6403 				  done_ccb);
6404 		}
6405 		xpt_release_ccb(done_ccb);
6406 		break;
6407 	}
6408 	case PROBE_INVALID:
6409 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6410 		    ("probedone: invalid action state\n"));
6411 	default:
6412 		break;
6413 	}
6414 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6415 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6416 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6417 	xpt_done(done_ccb);
6418 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6419 		cam_periph_invalidate(periph);
6420 		cam_periph_release(periph);
6421 	} else {
6422 		probeschedule(periph);
6423 	}
6424 }
6425 
6426 static void
6427 probecleanup(struct cam_periph *periph)
6428 {
6429 	kfree(periph->softc, M_CAMXPT);
6430 }
6431 
6432 static void
6433 xpt_find_quirk(struct cam_ed *device)
6434 {
6435 	caddr_t	match;
6436 
6437 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6438 			       (caddr_t)xpt_quirk_table,
6439 			       NELEM(xpt_quirk_table),
6440 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6441 
6442 	if (match == NULL)
6443 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6444 
6445 	device->quirk = (struct xpt_quirk_entry *)match;
6446 }
6447 
6448 static int
6449 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6450 {
6451 	int error, lbool;
6452 
6453 	lbool = cam_srch_hi;
6454 	error = sysctl_handle_int(oidp, &lbool, 0, req);
6455 	if (error != 0 || req->newptr == NULL)
6456 		return (error);
6457 	if (lbool == 0 || lbool == 1) {
6458 		cam_srch_hi = lbool;
6459 		return (0);
6460 	} else {
6461 		return (EINVAL);
6462 	}
6463 }
6464 
6465 static void
6466 xpt_devise_transport(struct cam_path *path)
6467 {
6468 	struct ccb_pathinq cpi;
6469 	struct ccb_trans_settings cts;
6470 	struct scsi_inquiry_data *inq_buf;
6471 
6472 	/* Get transport information from the SIM */
6473 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6474 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6475 	xpt_action((union ccb *)&cpi);
6476 
6477 	inq_buf = NULL;
6478 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6479 		inq_buf = &path->device->inq_data;
6480 	path->device->protocol = PROTO_SCSI;
6481 	path->device->protocol_version =
6482 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6483 	path->device->transport = cpi.transport;
6484 	path->device->transport_version = cpi.transport_version;
6485 
6486 	/*
6487 	 * Any device not using SPI3 features should
6488 	 * be considered SPI2 or lower.
6489 	 */
6490 	if (inq_buf != NULL) {
6491 		if (path->device->transport == XPORT_SPI
6492 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6493 		 && path->device->transport_version > 2)
6494 			path->device->transport_version = 2;
6495 	} else {
6496 		struct cam_ed* otherdev;
6497 
6498 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6499 		     otherdev != NULL;
6500 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6501 			if (otherdev != path->device)
6502 				break;
6503 		}
6504 
6505 		if (otherdev != NULL) {
6506 			/*
6507 			 * Initially assume the same versioning as
6508 			 * prior luns for this target.
6509 			 */
6510 			path->device->protocol_version =
6511 			    otherdev->protocol_version;
6512 			path->device->transport_version =
6513 			    otherdev->transport_version;
6514 		} else {
6515 			/* Until we know better, opt for safty */
6516 			path->device->protocol_version = 2;
6517 			if (path->device->transport == XPORT_SPI)
6518 				path->device->transport_version = 2;
6519 			else
6520 				path->device->transport_version = 0;
6521 		}
6522 	}
6523 
6524 	/*
6525 	 * XXX
6526 	 * For a device compliant with SPC-2 we should be able
6527 	 * to determine the transport version supported by
6528 	 * scrutinizing the version descriptors in the
6529 	 * inquiry buffer.
6530 	 */
6531 
6532 	/* Tell the controller what we think */
6533 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6534 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6535 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6536 	cts.transport = path->device->transport;
6537 	cts.transport_version = path->device->transport_version;
6538 	cts.protocol = path->device->protocol;
6539 	cts.protocol_version = path->device->protocol_version;
6540 	cts.proto_specific.valid = 0;
6541 	cts.xport_specific.valid = 0;
6542 	xpt_action((union ccb *)&cts);
6543 }
6544 
6545 static void
6546 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6547 			  int async_update)
6548 {
6549 	struct	ccb_pathinq cpi;
6550 	struct	ccb_trans_settings cur_cts;
6551 	struct	ccb_trans_settings_scsi *scsi;
6552 	struct	ccb_trans_settings_scsi *cur_scsi;
6553 	struct	cam_sim *sim;
6554 	struct	scsi_inquiry_data *inq_data;
6555 
6556 	if (device == NULL) {
6557 		cts->ccb_h.status = CAM_PATH_INVALID;
6558 		xpt_done((union ccb *)cts);
6559 		return;
6560 	}
6561 
6562 	if (cts->protocol == PROTO_UNKNOWN
6563 	 || cts->protocol == PROTO_UNSPECIFIED) {
6564 		cts->protocol = device->protocol;
6565 		cts->protocol_version = device->protocol_version;
6566 	}
6567 
6568 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6569 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6570 		cts->protocol_version = device->protocol_version;
6571 
6572 	if (cts->protocol != device->protocol) {
6573 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6574 		       cts->protocol, device->protocol);
6575 		cts->protocol = device->protocol;
6576 	}
6577 
6578 	if (cts->protocol_version > device->protocol_version) {
6579 		if (bootverbose) {
6580 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6581 			    "Version from %d to %d?\n", cts->protocol_version,
6582 			    device->protocol_version);
6583 		}
6584 		cts->protocol_version = device->protocol_version;
6585 	}
6586 
6587 	if (cts->transport == XPORT_UNKNOWN
6588 	 || cts->transport == XPORT_UNSPECIFIED) {
6589 		cts->transport = device->transport;
6590 		cts->transport_version = device->transport_version;
6591 	}
6592 
6593 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6594 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6595 		cts->transport_version = device->transport_version;
6596 
6597 	if (cts->transport != device->transport) {
6598 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6599 		    cts->transport, device->transport);
6600 		cts->transport = device->transport;
6601 	}
6602 
6603 	if (cts->transport_version > device->transport_version) {
6604 		if (bootverbose) {
6605 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6606 			    "Version from %d to %d?\n", cts->transport_version,
6607 			    device->transport_version);
6608 		}
6609 		cts->transport_version = device->transport_version;
6610 	}
6611 
6612 	sim = cts->ccb_h.path->bus->sim;
6613 
6614 	/*
6615 	 * Nothing more of interest to do unless
6616 	 * this is a device connected via the
6617 	 * SCSI protocol.
6618 	 */
6619 	if (cts->protocol != PROTO_SCSI) {
6620 		if (async_update == FALSE)
6621 			(*(sim->sim_action))(sim, (union ccb *)cts);
6622 		return;
6623 	}
6624 
6625 	inq_data = &device->inq_data;
6626 	scsi = &cts->proto_specific.scsi;
6627 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6628 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6629 	xpt_action((union ccb *)&cpi);
6630 
6631 	/* SCSI specific sanity checking */
6632 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6633 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6634 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6635 	 || (device->quirk->mintags == 0)) {
6636 		/*
6637 		 * Can't tag on hardware that doesn't support tags,
6638 		 * doesn't have it enabled, or has broken tag support.
6639 		 */
6640 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6641 	}
6642 
6643 	if (async_update == FALSE) {
6644 		/*
6645 		 * Perform sanity checking against what the
6646 		 * controller and device can do.
6647 		 */
6648 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6649 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6650 		cur_cts.type = cts->type;
6651 		xpt_action((union ccb *)&cur_cts);
6652 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6653 			return;
6654 		}
6655 		cur_scsi = &cur_cts.proto_specific.scsi;
6656 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6657 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6658 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6659 		}
6660 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6661 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6662 	}
6663 
6664 	/* SPI specific sanity checking */
6665 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6666 		u_int spi3caps;
6667 		struct ccb_trans_settings_spi *spi;
6668 		struct ccb_trans_settings_spi *cur_spi;
6669 
6670 		spi = &cts->xport_specific.spi;
6671 
6672 		cur_spi = &cur_cts.xport_specific.spi;
6673 
6674 		/* Fill in any gaps in what the user gave us */
6675 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6676 			spi->sync_period = cur_spi->sync_period;
6677 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6678 			spi->sync_period = 0;
6679 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6680 			spi->sync_offset = cur_spi->sync_offset;
6681 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6682 			spi->sync_offset = 0;
6683 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6684 			spi->ppr_options = cur_spi->ppr_options;
6685 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6686 			spi->ppr_options = 0;
6687 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6688 			spi->bus_width = cur_spi->bus_width;
6689 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6690 			spi->bus_width = 0;
6691 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6692 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6693 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6694 		}
6695 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6696 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6697 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6698 		  && (inq_data->flags & SID_Sync) == 0
6699 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6700 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
6701 			/* Force async */
6702 			spi->sync_period = 0;
6703 			spi->sync_offset = 0;
6704 		}
6705 
6706 		switch (spi->bus_width) {
6707 		case MSG_EXT_WDTR_BUS_32_BIT:
6708 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6709 			  || (inq_data->flags & SID_WBus32) != 0
6710 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6711 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6712 				break;
6713 			/* Fall Through to 16-bit */
6714 		case MSG_EXT_WDTR_BUS_16_BIT:
6715 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6716 			  || (inq_data->flags & SID_WBus16) != 0
6717 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6718 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6719 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6720 				break;
6721 			}
6722 			/* Fall Through to 8-bit */
6723 		default: /* New bus width?? */
6724 		case MSG_EXT_WDTR_BUS_8_BIT:
6725 			/* All targets can do this */
6726 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6727 			break;
6728 		}
6729 
6730 		spi3caps = cpi.xport_specific.spi.ppr_options;
6731 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6732 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6733 			spi3caps &= inq_data->spi3data;
6734 
6735 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6736 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6737 
6738 		if ((spi3caps & SID_SPI_IUS) == 0)
6739 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6740 
6741 		if ((spi3caps & SID_SPI_QAS) == 0)
6742 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6743 
6744 		/* No SPI Transfer settings are allowed unless we are wide */
6745 		if (spi->bus_width == 0)
6746 			spi->ppr_options = 0;
6747 
6748 		if ((spi->valid & CTS_SPI_VALID_DISC)
6749 		 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6750 			/*
6751 			 * Can't tag queue without disconnection.
6752 			 */
6753 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6754 			scsi->valid |= CTS_SCSI_VALID_TQ;
6755 		}
6756 
6757 		/*
6758 		 * If we are currently performing tagged transactions to
6759 		 * this device and want to change its negotiation parameters,
6760 		 * go non-tagged for a bit to give the controller a chance to
6761 		 * negotiate unhampered by tag messages.
6762 		 */
6763 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6764 		 && (device->inq_flags & SID_CmdQue) != 0
6765 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6766 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6767 				   CTS_SPI_VALID_SYNC_OFFSET|
6768 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6769 			xpt_toggle_tags(cts->ccb_h.path);
6770 	}
6771 
6772 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6773 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6774 		int device_tagenb;
6775 
6776 		/*
6777 		 * If we are transitioning from tags to no-tags or
6778 		 * vice-versa, we need to carefully freeze and restart
6779 		 * the queue so that we don't overlap tagged and non-tagged
6780 		 * commands.  We also temporarily stop tags if there is
6781 		 * a change in transfer negotiation settings to allow
6782 		 * "tag-less" negotiation.
6783 		 */
6784 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6785 		 || (device->inq_flags & SID_CmdQue) != 0)
6786 			device_tagenb = TRUE;
6787 		else
6788 			device_tagenb = FALSE;
6789 
6790 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6791 		  && device_tagenb == FALSE)
6792 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6793 		  && device_tagenb == TRUE)) {
6794 
6795 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6796 				/*
6797 				 * Delay change to use tags until after a
6798 				 * few commands have gone to this device so
6799 				 * the controller has time to perform transfer
6800 				 * negotiations without tagged messages getting
6801 				 * in the way.
6802 				 */
6803 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6804 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6805 			} else {
6806 				struct ccb_relsim crs;
6807 
6808 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6809 				device->inq_flags &= ~SID_CmdQue;
6810 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6811 						    sim->max_dev_openings);
6812 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6813 				device->tag_delay_count = 0;
6814 
6815 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6816 					      /*priority*/1);
6817 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6818 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6819 				crs.openings
6820 				    = crs.release_timeout
6821 				    = crs.qfrozen_cnt
6822 				    = 0;
6823 				xpt_action((union ccb *)&crs);
6824 			}
6825 		}
6826 	}
6827 	if (async_update == FALSE)
6828 		(*(sim->sim_action))(sim, (union ccb *)cts);
6829 }
6830 
6831 static void
6832 xpt_toggle_tags(struct cam_path *path)
6833 {
6834 	struct cam_ed *dev;
6835 
6836 	/*
6837 	 * Give controllers a chance to renegotiate
6838 	 * before starting tag operations.  We
6839 	 * "toggle" tagged queuing off then on
6840 	 * which causes the tag enable command delay
6841 	 * counter to come into effect.
6842 	 */
6843 	dev = path->device;
6844 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6845 	 || ((dev->inq_flags & SID_CmdQue) != 0
6846  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6847 		struct ccb_trans_settings cts;
6848 
6849 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6850 		cts.protocol = PROTO_SCSI;
6851 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6852 		cts.transport = XPORT_UNSPECIFIED;
6853 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6854 		cts.proto_specific.scsi.flags = 0;
6855 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6856 		xpt_set_transfer_settings(&cts, path->device,
6857 					  /*async_update*/TRUE);
6858 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6859 		xpt_set_transfer_settings(&cts, path->device,
6860 					  /*async_update*/TRUE);
6861 	}
6862 }
6863 
6864 static void
6865 xpt_start_tags(struct cam_path *path)
6866 {
6867 	struct ccb_relsim crs;
6868 	struct cam_ed *device;
6869 	struct cam_sim *sim;
6870 	int    newopenings;
6871 
6872 	device = path->device;
6873 	sim = path->bus->sim;
6874 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6875 	xpt_freeze_devq(path, /*count*/1);
6876 	device->inq_flags |= SID_CmdQue;
6877 	if (device->tag_saved_openings != 0)
6878 		newopenings = device->tag_saved_openings;
6879 	else
6880 		newopenings = min(device->quirk->maxtags,
6881 				  sim->max_tagged_dev_openings);
6882 	xpt_dev_ccbq_resize(path, newopenings);
6883 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6884 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6885 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6886 	crs.openings
6887 	    = crs.release_timeout
6888 	    = crs.qfrozen_cnt
6889 	    = 0;
6890 	xpt_action((union ccb *)&crs);
6891 }
6892 
6893 static int busses_to_config;
6894 static int busses_to_reset;
6895 
6896 static int
6897 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6898 {
6899 	sim_lock_assert_owned(bus->sim->lock);
6900 
6901 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6902 		struct cam_path path;
6903 		struct ccb_pathinq cpi;
6904 		int can_negotiate;
6905 
6906 		if (bootverbose) {
6907 			kprintf("CAM: Configuring bus:");
6908 			if (bus->sim) {
6909 				kprintf(" %s%d\n",
6910 					bus->sim->sim_name,
6911 					bus->sim->unit_number);
6912 			} else {
6913 				kprintf(" (unknown)\n");
6914 			}
6915 		}
6916 		atomic_add_int(&busses_to_config, 1);
6917 		bus->counted_to_config = 1;
6918 		xpt_compile_path(&path, NULL, bus->path_id,
6919 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6920 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6921 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6922 		xpt_action((union ccb *)&cpi);
6923 		can_negotiate = cpi.hba_inquiry;
6924 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6925 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6926 			busses_to_reset++;
6927 		xpt_release_path(&path);
6928 	} else
6929 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6930 		/* this is our dummy periph/bus */
6931 		atomic_add_int(&busses_to_config, 1);
6932 		bus->counted_to_config = 1;
6933 	}
6934 
6935 	return(1);
6936 }
6937 
6938 static int
6939 xptconfigfunc(struct cam_eb *bus, void *arg)
6940 {
6941 	struct	cam_path *path;
6942 	union	ccb *work_ccb;
6943 
6944 	sim_lock_assert_owned(bus->sim->lock);
6945 
6946 	if (bus->path_id != CAM_XPT_PATH_ID) {
6947 		cam_status status;
6948 		int can_negotiate;
6949 
6950 		work_ccb = xpt_alloc_ccb();
6951 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6952 					      CAM_TARGET_WILDCARD,
6953 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6954 			kprintf("xptconfigfunc: xpt_create_path failed with "
6955 			       "status %#x for bus %d\n", status, bus->path_id);
6956 			kprintf("xptconfigfunc: halting bus configuration\n");
6957 			xpt_free_ccb(work_ccb);
6958 			xpt_uncount_bus(bus);
6959 			return(0);
6960 		}
6961 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6962 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6963 		xpt_action(work_ccb);
6964 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6965 			kprintf("xptconfigfunc: CPI failed on bus %d "
6966 			       "with status %d\n", bus->path_id,
6967 			       work_ccb->ccb_h.status);
6968 			xpt_finishconfig(xpt_periph, work_ccb);
6969 			return(1);
6970 		}
6971 
6972 		can_negotiate = work_ccb->cpi.hba_inquiry;
6973 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6974 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6975 		 && (can_negotiate != 0)) {
6976 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6977 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6978 			work_ccb->ccb_h.cbfcnp = NULL;
6979 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6980 				  ("Resetting Bus\n"));
6981 			xpt_action(work_ccb);
6982 			xpt_finishconfig(xpt_periph, work_ccb);
6983 		} else {
6984 			/* Act as though we performed a successful BUS RESET */
6985 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6986 			xpt_finishconfig(xpt_periph, work_ccb);
6987 		}
6988 	} else {
6989 		xpt_uncount_bus(bus);
6990 	}
6991 
6992 	return(1);
6993 }
6994 
6995 /*
6996  * Now that interrupts are enabled, go find our devices.
6997  *
6998  * This hook function is called once by run_interrupt_driven_config_hooks().
6999  * XPT is expected to disestablish its hook when done.
7000  */
7001 static void
7002 xpt_config(void *arg)
7003 {
7004 
7005 #ifdef CAMDEBUG
7006 	/* Setup debugging flags and path */
7007 #ifdef CAM_DEBUG_FLAGS
7008 	cam_dflags = CAM_DEBUG_FLAGS;
7009 #else /* !CAM_DEBUG_FLAGS */
7010 	cam_dflags = CAM_DEBUG_NONE;
7011 #endif /* CAM_DEBUG_FLAGS */
7012 #ifdef CAM_DEBUG_BUS
7013 	if (cam_dflags != CAM_DEBUG_NONE) {
7014 		/*
7015 		 * Locking is specifically omitted here.  No SIMs have
7016 		 * registered yet, so xpt_create_path will only be searching
7017 		 * empty lists of targets and devices.
7018 		 */
7019 		if (xpt_create_path(&cam_dpath, xpt_periph,
7020 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
7021 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
7022 			kprintf("xpt_config: xpt_create_path() failed for debug"
7023 			       " target %d:%d:%d, debugging disabled\n",
7024 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
7025 			cam_dflags = CAM_DEBUG_NONE;
7026 		}
7027 	} else {
7028 		cam_dpath = NULL;
7029 	}
7030 #else /* !CAM_DEBUG_BUS */
7031 	cam_dpath = NULL;
7032 #endif /* CAM_DEBUG_BUS */
7033 #endif /* CAMDEBUG */
7034 
7035 	/*
7036 	 * Scan all installed busses.  This will also add a count
7037 	 * for our dummy placeholder (xpt_periph).
7038 	 */
7039 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7040 
7041 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7042 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7043 		kprintf("Waiting %d seconds for SCSI "
7044 			"devices to settle\n",
7045 			scsi_delay/1000);
7046 	}
7047 	xpt_for_all_busses(xptconfigfunc, NULL);
7048 }
7049 
7050 /*
7051  * If the given device only has one peripheral attached to it, and if that
7052  * peripheral is the passthrough driver, announce it.  This insures that the
7053  * user sees some sort of announcement for every peripheral in their system.
7054  */
7055 static int
7056 xptpassannouncefunc(struct cam_ed *device, void *arg)
7057 {
7058 	struct cam_periph *periph;
7059 	int i;
7060 
7061 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7062 	     periph = SLIST_NEXT(periph, periph_links), i++);
7063 
7064 	periph = SLIST_FIRST(&device->periphs);
7065 	if ((i == 1)
7066 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7067 		xpt_announce_periph(periph, NULL);
7068 
7069 	return(1);
7070 }
7071 
7072 static void
7073 xpt_finishconfig_task(void *context, int pending)
7074 {
7075 	struct	periph_driver **p_drv;
7076 	int	i;
7077 
7078 	kprintf("CAM: finished configuring all busses\n");
7079 
7080 	if (busses_to_config == 0) {
7081 		/* Register all the peripheral drivers */
7082 		/* XXX This will have to change when we have loadable modules */
7083 		p_drv = periph_drivers;
7084 		for (i = 0; p_drv[i] != NULL; i++) {
7085 			(*p_drv[i]->init)();
7086 		}
7087 
7088 		/*
7089 		 * Check for devices with no "standard" peripheral driver
7090 		 * attached.  For any devices like that, announce the
7091 		 * passthrough driver so the user will see something.
7092 		 */
7093 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7094 
7095 		/* Release our hook so that the boot can continue. */
7096 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7097 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7098 		xsoftc.xpt_config_hook = NULL;
7099 	}
7100 	kfree(context, M_CAMXPT);
7101 }
7102 
7103 static void
7104 xpt_uncount_bus (struct cam_eb *bus)
7105 {
7106 	struct xpt_task *task;
7107 
7108 	if (bus->counted_to_config) {
7109 		bus->counted_to_config = 0;
7110 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7111 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7112 				       M_INTWAIT | M_ZERO);
7113 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7114 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7115 					  &task->task);
7116 		}
7117 	}
7118 }
7119 
7120 static void
7121 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7122 {
7123 	struct cam_path *path;
7124 
7125 	path = done_ccb->ccb_h.path;
7126 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7127 
7128 	switch(done_ccb->ccb_h.func_code) {
7129 	case XPT_RESET_BUS:
7130 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7131 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7132 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7133 			done_ccb->crcn.flags = 0;
7134 			xpt_action(done_ccb);
7135 			return;
7136 		}
7137 		/* FALLTHROUGH */
7138 	case XPT_SCAN_BUS:
7139 	default:
7140 		if (bootverbose) {
7141 			kprintf("CAM: Finished configuring bus:");
7142 			if (path->bus->sim) {
7143 				kprintf(" %s%d\n",
7144 					path->bus->sim->sim_name,
7145 					path->bus->sim->unit_number);
7146 			} else {
7147 				kprintf(" (unknown)\n");
7148 			}
7149 		}
7150 		xpt_uncount_bus(path->bus);
7151 		xpt_free_path(path);
7152 		xpt_free_ccb(done_ccb);
7153 		break;
7154 	}
7155 }
7156 
7157 cam_status
7158 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7159 		   struct cam_path *path)
7160 {
7161 	struct ccb_setasync csa;
7162 	cam_status status;
7163 	int xptpath = 0;
7164 
7165 	if (path == NULL) {
7166 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7167 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7168 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7169 		if (status != CAM_REQ_CMP) {
7170 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7171 			return (status);
7172 		}
7173 		xptpath = 1;
7174 	}
7175 
7176 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7177 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7178 	csa.event_enable = event;
7179 	csa.callback = cbfunc;
7180 	csa.callback_arg = cbarg;
7181 	xpt_action((union ccb *)&csa);
7182 	status = csa.ccb_h.status;
7183 	if (xptpath) {
7184 		xpt_free_path(path);
7185 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7186 	}
7187 	return (status);
7188 }
7189 
7190 static void
7191 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7192 {
7193 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7194 
7195 	switch (work_ccb->ccb_h.func_code) {
7196 	/* Common cases first */
7197 	case XPT_PATH_INQ:		/* Path routing inquiry */
7198 	{
7199 		struct ccb_pathinq *cpi;
7200 
7201 		cpi = &work_ccb->cpi;
7202 		cpi->version_num = 1; /* XXX??? */
7203 		cpi->hba_inquiry = 0;
7204 		cpi->target_sprt = 0;
7205 		cpi->hba_misc = 0;
7206 		cpi->hba_eng_cnt = 0;
7207 		cpi->max_target = 0;
7208 		cpi->max_lun = 0;
7209 		cpi->initiator_id = 0;
7210 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7211 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7212 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7213 		cpi->unit_number = sim->unit_number;
7214 		cpi->bus_id = sim->bus_id;
7215 		cpi->base_transfer_speed = 0;
7216 		cpi->protocol = PROTO_UNSPECIFIED;
7217 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7218 		cpi->transport = XPORT_UNSPECIFIED;
7219 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7220 		cpi->ccb_h.status = CAM_REQ_CMP;
7221 		xpt_done(work_ccb);
7222 		break;
7223 	}
7224 	default:
7225 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7226 		xpt_done(work_ccb);
7227 		break;
7228 	}
7229 }
7230 
7231 /*
7232  * The xpt as a "controller" has no interrupt sources, so polling
7233  * is a no-op.
7234  */
7235 static void
7236 xptpoll(struct cam_sim *sim)
7237 {
7238 }
7239 
7240 void
7241 xpt_lock_buses(void)
7242 {
7243 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7244 }
7245 
7246 void
7247 xpt_unlock_buses(void)
7248 {
7249 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7250 }
7251 
7252 
7253 /*
7254  * Should only be called by the machine interrupt dispatch routines,
7255  * so put these prototypes here instead of in the header.
7256  */
7257 
7258 static void
7259 swi_cambio(void *arg, void *frame)
7260 {
7261 	camisr(NULL);
7262 }
7263 
7264 static void
7265 camisr(void *dummy)
7266 {
7267 	cam_simq_t queue;
7268 	struct cam_sim *sim;
7269 
7270 	spin_lock(&cam_simq_spin);
7271 	TAILQ_INIT(&queue);
7272 	TAILQ_CONCAT(&queue, &cam_simq, links);
7273 	spin_unlock(&cam_simq_spin);
7274 
7275 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7276 		TAILQ_REMOVE(&queue, sim, links);
7277 		CAM_SIM_LOCK(sim);
7278 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7279 		camisr_runqueue(sim);
7280 		CAM_SIM_UNLOCK(sim);
7281 	}
7282 }
7283 
7284 static void
7285 camisr_runqueue(struct cam_sim *sim)
7286 {
7287 	struct	ccb_hdr *ccb_h;
7288 	int	runq;
7289 
7290 	spin_lock(&sim->sim_spin);
7291 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7292 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7293 		spin_unlock(&sim->sim_spin);
7294 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7295 
7296 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7297 			  ("camisr\n"));
7298 
7299 		runq = FALSE;
7300 
7301 		if (ccb_h->flags & CAM_HIGH_POWER) {
7302 			struct highpowerlist	*hphead;
7303 			union ccb		*send_ccb;
7304 
7305 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7306 			hphead = &xsoftc.highpowerq;
7307 
7308 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7309 
7310 			/*
7311 			 * Increment the count since this command is done.
7312 			 */
7313 			xsoftc.num_highpower++;
7314 
7315 			/*
7316 			 * Any high powered commands queued up?
7317 			 */
7318 			if (send_ccb != NULL) {
7319 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7320 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7321 
7322 				xpt_release_devq(send_ccb->ccb_h.path,
7323 						 /*count*/1, /*runqueue*/TRUE);
7324 			} else
7325 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7326 		}
7327 
7328 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7329 			struct cam_ed *dev;
7330 
7331 			dev = ccb_h->path->device;
7332 
7333 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7334 
7335 			/*
7336 			 * devq may be NULL if this is cam_dead_sim
7337 			 */
7338 			if (ccb_h->path->bus->sim->devq) {
7339 				ccb_h->path->bus->sim->devq->send_active--;
7340 				ccb_h->path->bus->sim->devq->send_openings++;
7341 			}
7342 
7343 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7344 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7345 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7346 			  && (dev->ccbq.dev_active == 0))) {
7347 
7348 				xpt_release_devq(ccb_h->path, /*count*/1,
7349 						 /*run_queue*/TRUE);
7350 			}
7351 
7352 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7353 			 && (--dev->tag_delay_count == 0))
7354 				xpt_start_tags(ccb_h->path);
7355 
7356 			if ((dev->ccbq.queue.entries > 0)
7357 			 && (dev->qfrozen_cnt == 0)
7358 			 && (device_is_send_queued(dev) == 0)) {
7359 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7360 							      dev);
7361 			}
7362 		}
7363 
7364 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7365 			xpt_release_simq(ccb_h->path->bus->sim,
7366 					 /*run_queue*/TRUE);
7367 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7368 			runq = FALSE;
7369 		}
7370 
7371 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7372 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7373 			xpt_release_devq(ccb_h->path, /*count*/1,
7374 					 /*run_queue*/TRUE);
7375 			ccb_h->status &= ~CAM_DEV_QFRZN;
7376 		} else if (runq) {
7377 			xpt_run_dev_sendq(ccb_h->path->bus);
7378 		}
7379 
7380 		/* Call the peripheral driver's callback */
7381 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7382 		spin_lock(&sim->sim_spin);
7383 	}
7384 	spin_unlock(&sim->sim_spin);
7385 }
7386 
7387 /*
7388  * The dead_sim isn't completely hooked into CAM, we have to make sure
7389  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7390  * doesn't block.
7391  */
7392 static void
7393 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7394 {
7395 
7396 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7397 	xpt_done(ccb);
7398 	camisr_runqueue(sim);
7399 }
7400 
7401 static void
7402 dead_sim_poll(struct cam_sim *sim)
7403 {
7404 }
7405