xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision dca3c15d)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.68 2008/08/23 17:13:31 pavalos Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/bus.h>
47 #include <sys/thread.h>
48 #include <sys/lock.h>
49 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
55 
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
64 
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;	/* uptime of last reset */
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;	/* uptime of last reset */
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 	int		     counted_to_config;	/* busses_to_config */
201 };
202 
203 struct cam_path {
204 	struct cam_periph *periph;
205 	struct cam_eb	  *bus;
206 	struct cam_et	  *target;
207 	struct cam_ed	  *device;
208 };
209 
210 struct xpt_quirk_entry {
211 	struct scsi_inquiry_pattern inq_pat;
212 	u_int8_t quirks;
213 #define	CAM_QUIRK_NOLUNS	0x01
214 #define	CAM_QUIRK_NOSERIAL	0x02
215 #define	CAM_QUIRK_HILUNS	0x04
216 #define	CAM_QUIRK_NOHILUNS	0x08
217 	u_int mintags;
218 	u_int maxtags;
219 };
220 
221 static int cam_srch_hi = 0;
222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
225     sysctl_cam_search_luns, "I",
226     "allow search above LUN 7 for SCSI3 and greater devices");
227 
228 #define	CAM_SCSI2_MAXLUN	8
229 /*
230  * If we're not quirked to search <= the first 8 luns
231  * and we are either quirked to search above lun 8,
232  * or we're > SCSI-2 and we've enabled hilun searching,
233  * or we're > SCSI-2 and the last lun was a success,
234  * we can look for luns above lun 8.
235  */
236 #define	CAN_SRCH_HI_SPARSE(dv)				\
237   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
238   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
239   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
240 
241 #define	CAN_SRCH_HI_DENSE(dv)				\
242   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
243   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
244   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
245 
246 typedef enum {
247 	XPT_FLAG_OPEN		= 0x01
248 } xpt_flags;
249 
250 struct xpt_softc {
251 	xpt_flags		flags;
252 	u_int32_t		xpt_generation;
253 
254 	/* number of high powered commands that can go through right now */
255 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
256 	int			num_highpower;
257 
258 	/* queue for handling async rescan requests. */
259 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
260 	int			ccb_scanq_running;
261 
262 	/* Registered busses */
263 	TAILQ_HEAD(,cam_eb)	xpt_busses;
264 	u_int			bus_generation;
265 
266 	struct intr_config_hook	*xpt_config_hook;
267 
268 	struct lock		xpt_topo_lock;
269 	struct lock		xpt_lock;
270 };
271 
272 static const char quantum[] = "QUANTUM";
273 static const char sony[] = "SONY";
274 static const char west_digital[] = "WDIGTL";
275 static const char samsung[] = "SAMSUNG";
276 static const char seagate[] = "SEAGATE";
277 static const char microp[] = "MICROP";
278 
279 static struct xpt_quirk_entry xpt_quirk_table[] =
280 {
281 	{
282 		/* Reports QUEUE FULL for temporary resource shortages */
283 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
284 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
285 	},
286 	{
287 		/* Reports QUEUE FULL for temporary resource shortages */
288 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
289 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
290 	},
291 	{
292 		/* Reports QUEUE FULL for temporary resource shortages */
293 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
294 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
295 	},
296 	{
297 		/* Broken tagged queuing drive */
298 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
299 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
300 	},
301 	{
302 		/* Broken tagged queuing drive */
303 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
304 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
305 	},
306 	{
307 		/* Broken tagged queuing drive */
308 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
309 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
310 	},
311 	{
312 		/*
313 		 * Unfortunately, the Quantum Atlas III has the same
314 		 * problem as the Atlas II drives above.
315 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
316 		 *
317 		 * For future reference, the drive with the problem was:
318 		 * QUANTUM QM39100TD-SW N1B0
319 		 *
320 		 * It's possible that Quantum will fix the problem in later
321 		 * firmware revisions.  If that happens, the quirk entry
322 		 * will need to be made specific to the firmware revisions
323 		 * with the problem.
324 		 *
325 		 */
326 		/* Reports QUEUE FULL for temporary resource shortages */
327 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
328 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
329 	},
330 	{
331 		/*
332 		 * 18 Gig Atlas III, same problem as the 9G version.
333 		 * Reported by: Andre Albsmeier
334 		 *		<andre.albsmeier@mchp.siemens.de>
335 		 *
336 		 * For future reference, the drive with the problem was:
337 		 * QUANTUM QM318000TD-S N491
338 		 */
339 		/* Reports QUEUE FULL for temporary resource shortages */
340 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
341 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
342 	},
343 	{
344 		/*
345 		 * Broken tagged queuing drive
346 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
347 		 *         and: Martin Renters <martin@tdc.on.ca>
348 		 */
349 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 		/*
353 		 * The Seagate Medalist Pro drives have very poor write
354 		 * performance with anything more than 2 tags.
355 		 *
356 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
357 		 * Drive:  <SEAGATE ST36530N 1444>
358 		 *
359 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
360 		 * Drive:  <SEAGATE ST34520W 1281>
361 		 *
362 		 * No one has actually reported that the 9G version
363 		 * (ST39140*) of the Medalist Pro has the same problem, but
364 		 * we're assuming that it does because the 4G and 6.5G
365 		 * versions of the drive are broken.
366 		 */
367 	{
368 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
369 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
370 	},
371 	{
372 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
373 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
374 	},
375 	{
376 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
377 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
378 	},
379 	{
380 		/*
381 		 * Slow when tagged queueing is enabled.  Write performance
382 		 * steadily drops off with more and more concurrent
383 		 * transactions.  Best sequential write performance with
384 		 * tagged queueing turned off and write caching turned on.
385 		 *
386 		 * PR:  kern/10398
387 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
388 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
389 		 *
390 		 * The drive with the problem had the "S65A" firmware
391 		 * revision, and has also been reported (by Stephen J.
392 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
393 		 * firmware revision.
394 		 *
395 		 * Although no one has reported problems with the 2 gig
396 		 * version of the DCAS drive, the assumption is that it
397 		 * has the same problems as the 4 gig version.  Therefore
398 		 * this quirk entries disables tagged queueing for all
399 		 * DCAS drives.
400 		 */
401 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
402 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
403 	},
404 	{
405 		/* Broken tagged queuing drive */
406 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
407 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
408 	},
409 	{
410 		/* Broken tagged queuing drive */
411 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
412 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
413 	},
414 	{
415 		/* This does not support other than LUN 0 */
416 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
417 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
418 	},
419 	{
420 		/*
421 		 * Broken tagged queuing drive.
422 		 * Submitted by:
423 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
424 		 * in PR kern/9535
425 		 */
426 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
427 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
428 	},
429         {
430 		/*
431 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
432 		 * 8MB/sec.)
433 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
434 		 * Best performance with these drives is achieved with
435 		 * tagged queueing turned off, and write caching turned on.
436 		 */
437 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
438 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
439         },
440         {
441 		/*
442 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
443 		 * 8MB/sec.)
444 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
445 		 * Best performance with these drives is achieved with
446 		 * tagged queueing turned off, and write caching turned on.
447 		 */
448 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
449 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
450         },
451 	{
452 		/*
453 		 * Doesn't handle queue full condition correctly,
454 		 * so we need to limit maxtags to what the device
455 		 * can handle instead of determining this automatically.
456 		 */
457 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
458 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
459 	},
460 	{
461 		/* Really only one LUN */
462 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
463 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
464 	},
465 	{
466 		/* I can't believe we need a quirk for DPT volumes. */
467 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
468 		CAM_QUIRK_NOLUNS,
469 		/*mintags*/0, /*maxtags*/255
470 	},
471 	{
472 		/*
473 		 * Many Sony CDROM drives don't like multi-LUN probing.
474 		 */
475 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
476 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
477 	},
478 	{
479 		/*
480 		 * This drive doesn't like multiple LUN probing.
481 		 * Submitted by:  Parag Patel <parag@cgt.com>
482 		 */
483 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
484 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
485 	},
486 	{
487 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
488 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
489 	},
490 	{
491 		/*
492 		 * The 8200 doesn't like multi-lun probing, and probably
493 		 * don't like serial number requests either.
494 		 */
495 		{
496 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
497 			"EXB-8200*", "*"
498 		},
499 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
500 	},
501 	{
502 		/*
503 		 * Let's try the same as above, but for a drive that says
504 		 * it's an IPL-6860 but is actually an EXB 8200.
505 		 */
506 		{
507 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
508 			"IPL-6860*", "*"
509 		},
510 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
511 	},
512 	{
513 		/*
514 		 * These Hitachi drives don't like multi-lun probing.
515 		 * The PR submitter has a DK319H, but says that the Linux
516 		 * kernel has a similar work-around for the DK312 and DK314,
517 		 * so all DK31* drives are quirked here.
518 		 * PR:            misc/18793
519 		 * Submitted by:  Paul Haddad <paul@pth.com>
520 		 */
521 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
522 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
523 	},
524 	{
525 		/*
526 		 * The Hitachi CJ series with J8A8 firmware apparantly has
527 		 * problems with tagged commands.
528 		 * PR: 23536
529 		 * Reported by: amagai@nue.org
530 		 */
531 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
532 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
533 	},
534 	{
535 		/*
536 		 * These are the large storage arrays.
537 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
538 		 */
539 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
540 		CAM_QUIRK_HILUNS, 2, 1024
541 	},
542 	{
543 		/*
544 		 * This old revision of the TDC3600 is also SCSI-1, and
545 		 * hangs upon serial number probing.
546 		 */
547 		{
548 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
549 			" TDC 3600", "U07:"
550 		},
551 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
552 	},
553 	{
554 		/*
555 		 * Would repond to all LUNs if asked for.
556 		 */
557 		{
558 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
559 			"CP150", "*"
560 		},
561 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
562 	},
563 	{
564 		/*
565 		 * Would repond to all LUNs if asked for.
566 		 */
567 		{
568 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
569 			"96X2*", "*"
570 		},
571 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
572 	},
573 	{
574 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
575 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
576 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
577 	},
578 	{
579 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
580 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
581 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
582 	},
583 	{
584 		/* TeraSolutions special settings for TRC-22 RAID */
585 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
586 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
587 	},
588 	{
589 		/* Veritas Storage Appliance */
590 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
591 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
592 	},
593 	{
594 		/*
595 		 * Would respond to all LUNs.  Device type and removable
596 		 * flag are jumper-selectable.
597 		 */
598 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
599 		  "Tahiti 1", "*"
600 		},
601 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
602 	},
603 	{
604 		/* EasyRAID E5A aka. areca ARC-6010 */
605 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
606 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
607 	},
608 	{
609 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
610 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
611 	},
612 	{
613 		/* Default tagged queuing parameters for all devices */
614 		{
615 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
616 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
617 		},
618 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
619 	},
620 };
621 
622 static const int xpt_quirk_table_size =
623 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
624 
625 typedef enum {
626 	DM_RET_COPY		= 0x01,
627 	DM_RET_FLAG_MASK	= 0x0f,
628 	DM_RET_NONE		= 0x00,
629 	DM_RET_STOP		= 0x10,
630 	DM_RET_DESCEND		= 0x20,
631 	DM_RET_ERROR		= 0x30,
632 	DM_RET_ACTION_MASK	= 0xf0
633 } dev_match_ret;
634 
635 typedef enum {
636 	XPT_DEPTH_BUS,
637 	XPT_DEPTH_TARGET,
638 	XPT_DEPTH_DEVICE,
639 	XPT_DEPTH_PERIPH
640 } xpt_traverse_depth;
641 
642 struct xpt_traverse_config {
643 	xpt_traverse_depth	depth;
644 	void			*tr_func;
645 	void			*tr_arg;
646 };
647 
648 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
649 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
650 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
651 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
652 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
653 
654 /* Transport layer configuration information */
655 static struct xpt_softc xsoftc;
656 
657 /* Queues for our software interrupt handler */
658 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
659 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
660 static cam_simq_t cam_simq;
661 static struct spinlock cam_simq_spin;
662 
663 struct cam_periph *xpt_periph;
664 
665 static periph_init_t xpt_periph_init;
666 
667 static periph_init_t probe_periph_init;
668 
669 static struct periph_driver xpt_driver =
670 {
671 	xpt_periph_init, "xpt",
672 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
673 };
674 
675 static struct periph_driver probe_driver =
676 {
677 	probe_periph_init, "probe",
678 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
679 };
680 
681 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
682 PERIPHDRIVER_DECLARE(probe, probe_driver);
683 
684 #define XPT_CDEV_MAJOR 104
685 
686 static d_open_t xptopen;
687 static d_close_t xptclose;
688 static d_ioctl_t xptioctl;
689 
690 static struct dev_ops xpt_ops = {
691 	{ "xpt", XPT_CDEV_MAJOR, 0 },
692 	.d_open = xptopen,
693 	.d_close = xptclose,
694 	.d_ioctl = xptioctl
695 };
696 
697 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
698 static void dead_sim_poll(struct cam_sim *sim);
699 
700 /* Dummy SIM that is used when the real one has gone. */
701 static struct cam_sim cam_dead_sim;
702 static struct lock    cam_dead_lock;
703 
704 /* Storage for debugging datastructures */
705 #ifdef	CAMDEBUG
706 struct cam_path *cam_dpath;
707 u_int32_t cam_dflags;
708 u_int32_t cam_debug_delay;
709 #endif
710 
711 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
712 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
713 #endif
714 
715 /*
716  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
717  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
718  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
719  */
720 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
721     || defined(CAM_DEBUG_LUN)
722 #ifdef CAMDEBUG
723 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
724     || !defined(CAM_DEBUG_LUN)
725 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
726         and CAM_DEBUG_LUN"
727 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
728 #else /* !CAMDEBUG */
729 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
730 #endif /* CAMDEBUG */
731 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
732 
733 /* Our boot-time initialization hook */
734 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
735 
736 static moduledata_t cam_moduledata = {
737 	"cam",
738 	cam_module_event_handler,
739 	NULL
740 };
741 
742 static int	xpt_init(void *);
743 
744 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
745 MODULE_VERSION(cam, 1);
746 
747 
748 static cam_status	xpt_compile_path(struct cam_path *new_path,
749 					 struct cam_periph *perph,
750 					 path_id_t path_id,
751 					 target_id_t target_id,
752 					 lun_id_t lun_id);
753 
754 static void		xpt_release_path(struct cam_path *path);
755 
756 static void		xpt_async_bcast(struct async_list *async_head,
757 					u_int32_t async_code,
758 					struct cam_path *path,
759 					void *async_arg);
760 static void		xpt_dev_async(u_int32_t async_code,
761 				      struct cam_eb *bus,
762 				      struct cam_et *target,
763 				      struct cam_ed *device,
764 				      void *async_arg);
765 static path_id_t xptnextfreepathid(void);
766 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
767 static union ccb *xpt_get_ccb(struct cam_ed *device);
768 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
769 				  u_int32_t new_priority);
770 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
771 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
772 static timeout_t xpt_release_devq_timeout;
773 static void	 xpt_release_bus(struct cam_eb *bus);
774 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
775 					 int run_queue);
776 static struct cam_et*
777 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
778 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
779 static struct cam_ed*
780 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
781 				  lun_id_t lun_id);
782 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
783 				    struct cam_ed *device);
784 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
785 static struct cam_eb*
786 		 xpt_find_bus(path_id_t path_id);
787 static struct cam_et*
788 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
789 static struct cam_ed*
790 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
791 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
792 static void	 xpt_scan_lun(struct cam_periph *periph,
793 			      struct cam_path *path, cam_flags flags,
794 			      union ccb *ccb);
795 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
796 static xpt_busfunc_t	xptconfigbuscountfunc;
797 static xpt_busfunc_t	xptconfigfunc;
798 static void	 xpt_config(void *arg);
799 static xpt_devicefunc_t xptpassannouncefunc;
800 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
801 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
802 static void	 xptpoll(struct cam_sim *sim);
803 static inthand2_t swi_cambio;
804 static void	 camisr(void *);
805 static void	 camisr_runqueue(struct cam_sim *);
806 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
807 				    u_int num_patterns, struct cam_eb *bus);
808 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
809 				       u_int num_patterns,
810 				       struct cam_ed *device);
811 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
812 				       u_int num_patterns,
813 				       struct cam_periph *periph);
814 static xpt_busfunc_t	xptedtbusfunc;
815 static xpt_targetfunc_t	xptedttargetfunc;
816 static xpt_devicefunc_t	xptedtdevicefunc;
817 static xpt_periphfunc_t	xptedtperiphfunc;
818 static xpt_pdrvfunc_t	xptplistpdrvfunc;
819 static xpt_periphfunc_t	xptplistperiphfunc;
820 static int		xptedtmatch(struct ccb_dev_match *cdm);
821 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
822 static int		xptbustraverse(struct cam_eb *start_bus,
823 				       xpt_busfunc_t *tr_func, void *arg);
824 static int		xpttargettraverse(struct cam_eb *bus,
825 					  struct cam_et *start_target,
826 					  xpt_targetfunc_t *tr_func, void *arg);
827 static int		xptdevicetraverse(struct cam_et *target,
828 					  struct cam_ed *start_device,
829 					  xpt_devicefunc_t *tr_func, void *arg);
830 static int		xptperiphtraverse(struct cam_ed *device,
831 					  struct cam_periph *start_periph,
832 					  xpt_periphfunc_t *tr_func, void *arg);
833 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
834 					xpt_pdrvfunc_t *tr_func, void *arg);
835 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
836 					    struct cam_periph *start_periph,
837 					    xpt_periphfunc_t *tr_func,
838 					    void *arg);
839 static xpt_busfunc_t	xptdefbusfunc;
840 static xpt_targetfunc_t	xptdeftargetfunc;
841 static xpt_devicefunc_t	xptdefdevicefunc;
842 static xpt_periphfunc_t	xptdefperiphfunc;
843 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
844 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
845 					    void *arg);
846 static xpt_devicefunc_t	xptsetasyncfunc;
847 static xpt_busfunc_t	xptsetasyncbusfunc;
848 static cam_status	xptregister(struct cam_periph *periph,
849 				    void *arg);
850 static cam_status	proberegister(struct cam_periph *periph,
851 				      void *arg);
852 static void	 probeschedule(struct cam_periph *probe_periph);
853 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
854 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
855 static int       proberequestbackoff(struct cam_periph *periph,
856 				     struct cam_ed *device);
857 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
858 static void	 probecleanup(struct cam_periph *periph);
859 static void	 xpt_find_quirk(struct cam_ed *device);
860 static void	 xpt_devise_transport(struct cam_path *path);
861 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
862 					   struct cam_ed *device,
863 					   int async_update);
864 static void	 xpt_toggle_tags(struct cam_path *path);
865 static void	 xpt_start_tags(struct cam_path *path);
866 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
867 					    struct cam_ed *dev);
868 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
869 					   struct cam_ed *dev);
870 static __inline int periph_is_queued(struct cam_periph *periph);
871 static __inline int device_is_alloc_queued(struct cam_ed *device);
872 static __inline int device_is_send_queued(struct cam_ed *device);
873 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
874 
875 static __inline int
876 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
877 {
878 	int retval;
879 
880 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
881 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
882 			cam_ccbq_resize(&dev->ccbq,
883 					dev->ccbq.dev_openings
884 					+ dev->ccbq.dev_active);
885 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
886 		}
887 		/*
888 		 * The priority of a device waiting for CCB resources
889 		 * is that of the the highest priority peripheral driver
890 		 * enqueued.
891 		 */
892 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
893 					  &dev->alloc_ccb_entry.pinfo,
894 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
895 	} else {
896 		retval = 0;
897 	}
898 
899 	return (retval);
900 }
901 
902 static __inline int
903 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
904 {
905 	int	retval;
906 
907 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
908 		/*
909 		 * The priority of a device waiting for controller
910 		 * resources is that of the the highest priority CCB
911 		 * enqueued.
912 		 */
913 		retval =
914 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
915 				     &dev->send_ccb_entry.pinfo,
916 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
917 	} else {
918 		retval = 0;
919 	}
920 	return (retval);
921 }
922 
923 static __inline int
924 periph_is_queued(struct cam_periph *periph)
925 {
926 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
927 }
928 
929 static __inline int
930 device_is_alloc_queued(struct cam_ed *device)
931 {
932 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
933 }
934 
935 static __inline int
936 device_is_send_queued(struct cam_ed *device)
937 {
938 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
939 }
940 
941 static __inline int
942 dev_allocq_is_runnable(struct cam_devq *devq)
943 {
944 	/*
945 	 * Have work to do.
946 	 * Have space to do more work.
947 	 * Allowed to do work.
948 	 */
949 	return ((devq->alloc_queue.qfrozen_cnt == 0)
950 	     && (devq->alloc_queue.entries > 0)
951 	     && (devq->alloc_openings > 0));
952 }
953 
954 static void
955 xpt_periph_init(void)
956 {
957 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
958 }
959 
960 static void
961 probe_periph_init(void)
962 {
963 }
964 
965 
966 static void
967 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 {
969 	/* Caller will release the CCB */
970 	wakeup(&done_ccb->ccb_h.cbfcnp);
971 }
972 
973 static int
974 xptopen(struct dev_open_args *ap)
975 {
976 	cdev_t dev = ap->a_head.a_dev;
977 
978 	/*
979 	 * Only allow read-write access.
980 	 */
981 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
982 		return(EPERM);
983 
984 	/*
985 	 * We don't allow nonblocking access.
986 	 */
987 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
988 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
989 		return(ENODEV);
990 	}
991 
992 	/* Mark ourselves open */
993 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
994 	xsoftc.flags |= XPT_FLAG_OPEN;
995 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996 
997 	return(0);
998 }
999 
1000 static int
1001 xptclose(struct dev_close_args *ap)
1002 {
1003 
1004 	/* Mark ourselves closed */
1005 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1006 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1007 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008 
1009 	return(0);
1010 }
1011 
1012 /*
1013  * Don't automatically grab the xpt softc lock here even though this is going
1014  * through the xpt device.  The xpt device is really just a back door for
1015  * accessing other devices and SIMs, so the right thing to do is to grab
1016  * the appropriate SIM lock once the bus/SIM is located.
1017  */
1018 static int
1019 xptioctl(struct dev_ioctl_args *ap)
1020 {
1021 	int error;
1022 
1023 	error = 0;
1024 
1025 	switch(ap->a_cmd) {
1026 	/*
1027 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028 	 * to accept CCB types that don't quite make sense to send through a
1029 	 * passthrough driver.
1030 	 */
1031 	case CAMIOCOMMAND: {
1032 		union ccb *ccb;
1033 		union ccb *inccb;
1034 		struct cam_eb *bus;
1035 
1036 		inccb = (union ccb *)ap->a_data;
1037 
1038 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1039 		if (bus == NULL) {
1040 			error = EINVAL;
1041 			break;
1042 		}
1043 
1044 		switch(inccb->ccb_h.func_code) {
1045 		case XPT_SCAN_BUS:
1046 		case XPT_RESET_BUS:
1047 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1048 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1049 				error = EINVAL;
1050 				break;
1051 			}
1052 			/* FALLTHROUGH */
1053 		case XPT_PATH_INQ:
1054 		case XPT_ENG_INQ:
1055 		case XPT_SCAN_LUN:
1056 
1057 			ccb = xpt_alloc_ccb();
1058 
1059 			CAM_SIM_LOCK(bus->sim);
1060 
1061 			/*
1062 			 * Create a path using the bus, target, and lun the
1063 			 * user passed in.
1064 			 */
1065 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1066 					    inccb->ccb_h.path_id,
1067 					    inccb->ccb_h.target_id,
1068 					    inccb->ccb_h.target_lun) !=
1069 					    CAM_REQ_CMP){
1070 				error = EINVAL;
1071 				CAM_SIM_UNLOCK(bus->sim);
1072 				xpt_free_ccb(ccb);
1073 				break;
1074 			}
1075 			/* Ensure all of our fields are correct */
1076 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1077 				      inccb->ccb_h.pinfo.priority);
1078 			xpt_merge_ccb(ccb, inccb);
1079 			ccb->ccb_h.cbfcnp = xptdone;
1080 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1081 			bcopy(ccb, inccb, sizeof(union ccb));
1082 			xpt_free_path(ccb->ccb_h.path);
1083 			xpt_free_ccb(ccb);
1084 			CAM_SIM_UNLOCK(bus->sim);
1085 			break;
1086 
1087 		case XPT_DEBUG: {
1088 			union ccb ccb;
1089 
1090 			/*
1091 			 * This is an immediate CCB, so it's okay to
1092 			 * allocate it on the stack.
1093 			 */
1094 
1095 			CAM_SIM_LOCK(bus->sim);
1096 
1097 			/*
1098 			 * Create a path using the bus, target, and lun the
1099 			 * user passed in.
1100 			 */
1101 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1102 					    inccb->ccb_h.path_id,
1103 					    inccb->ccb_h.target_id,
1104 					    inccb->ccb_h.target_lun) !=
1105 					    CAM_REQ_CMP){
1106 				error = EINVAL;
1107 				CAM_SIM_UNLOCK(bus->sim);
1108 				break;
1109 			}
1110 			/* Ensure all of our fields are correct */
1111 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1112 				      inccb->ccb_h.pinfo.priority);
1113 			xpt_merge_ccb(&ccb, inccb);
1114 			ccb.ccb_h.cbfcnp = xptdone;
1115 			xpt_action(&ccb);
1116 			CAM_SIM_UNLOCK(bus->sim);
1117 			bcopy(&ccb, inccb, sizeof(union ccb));
1118 			xpt_free_path(ccb.ccb_h.path);
1119 			break;
1120 
1121 		}
1122 		case XPT_DEV_MATCH: {
1123 			struct cam_periph_map_info mapinfo;
1124 			struct cam_path *old_path;
1125 
1126 			/*
1127 			 * We can't deal with physical addresses for this
1128 			 * type of transaction.
1129 			 */
1130 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1131 				error = EINVAL;
1132 				break;
1133 			}
1134 
1135 			/*
1136 			 * Save this in case the caller had it set to
1137 			 * something in particular.
1138 			 */
1139 			old_path = inccb->ccb_h.path;
1140 
1141 			/*
1142 			 * We really don't need a path for the matching
1143 			 * code.  The path is needed because of the
1144 			 * debugging statements in xpt_action().  They
1145 			 * assume that the CCB has a valid path.
1146 			 */
1147 			inccb->ccb_h.path = xpt_periph->path;
1148 
1149 			bzero(&mapinfo, sizeof(mapinfo));
1150 
1151 			/*
1152 			 * Map the pattern and match buffers into kernel
1153 			 * virtual address space.
1154 			 */
1155 			error = cam_periph_mapmem(inccb, &mapinfo);
1156 
1157 			if (error) {
1158 				inccb->ccb_h.path = old_path;
1159 				break;
1160 			}
1161 
1162 			/*
1163 			 * This is an immediate CCB, we can send it on directly.
1164 			 */
1165 			xpt_action(inccb);
1166 
1167 			/*
1168 			 * Map the buffers back into user space.
1169 			 */
1170 			cam_periph_unmapmem(inccb, &mapinfo);
1171 
1172 			inccb->ccb_h.path = old_path;
1173 
1174 			error = 0;
1175 			break;
1176 		}
1177 		default:
1178 			error = ENOTSUP;
1179 			break;
1180 		}
1181 		xpt_release_bus(bus);
1182 		break;
1183 	}
1184 	/*
1185 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1186 	 * with the periphal driver name and unit name filled in.  The other
1187 	 * fields don't really matter as input.  The passthrough driver name
1188 	 * ("pass"), and unit number are passed back in the ccb.  The current
1189 	 * device generation number, and the index into the device peripheral
1190 	 * driver list, and the status are also passed back.  Note that
1191 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1192 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1193 	 * (or rather should be) impossible for the device peripheral driver
1194 	 * list to change since we look at the whole thing in one pass, and
1195 	 * we do it with lock protection.
1196 	 *
1197 	 */
1198 	case CAMGETPASSTHRU: {
1199 		union ccb *ccb;
1200 		struct cam_periph *periph;
1201 		struct periph_driver **p_drv;
1202 		char   *name;
1203 		u_int unit;
1204 		u_int cur_generation;
1205 		int base_periph_found;
1206 		int splbreaknum;
1207 
1208 		ccb = (union ccb *)ap->a_data;
1209 		unit = ccb->cgdl.unit_number;
1210 		name = ccb->cgdl.periph_name;
1211 		/*
1212 		 * Every 100 devices, we want to drop our lock protection to
1213 		 * give the software interrupt handler a chance to run.
1214 		 * Most systems won't run into this check, but this should
1215 		 * avoid starvation in the software interrupt handler in
1216 		 * large systems.
1217 		 */
1218 		splbreaknum = 100;
1219 
1220 		ccb = (union ccb *)ap->a_data;
1221 
1222 		base_periph_found = 0;
1223 
1224 		/*
1225 		 * Sanity check -- make sure we don't get a null peripheral
1226 		 * driver name.
1227 		 */
1228 		if (*ccb->cgdl.periph_name == '\0') {
1229 			error = EINVAL;
1230 			break;
1231 		}
1232 
1233 		/* Keep the list from changing while we traverse it */
1234 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1235 ptstartover:
1236 		cur_generation = xsoftc.xpt_generation;
1237 
1238 		/* first find our driver in the list of drivers */
1239 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1240 			if (strcmp((*p_drv)->driver_name, name) == 0)
1241 				break;
1242 		}
1243 
1244 		if (*p_drv == NULL) {
1245 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1246 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1247 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1248 			*ccb->cgdl.periph_name = '\0';
1249 			ccb->cgdl.unit_number = 0;
1250 			error = ENOENT;
1251 			break;
1252 		}
1253 
1254 		/*
1255 		 * Run through every peripheral instance of this driver
1256 		 * and check to see whether it matches the unit passed
1257 		 * in by the user.  If it does, get out of the loops and
1258 		 * find the passthrough driver associated with that
1259 		 * peripheral driver.
1260 		 */
1261 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262 
1263 			if (periph->unit_number == unit) {
1264 				break;
1265 			} else if (--splbreaknum == 0) {
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1267 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1268 				splbreaknum = 100;
1269 				if (cur_generation != xsoftc.xpt_generation)
1270 				       goto ptstartover;
1271 			}
1272 		}
1273 		/*
1274 		 * If we found the peripheral driver that the user passed
1275 		 * in, go through all of the peripheral drivers for that
1276 		 * particular device and look for a passthrough driver.
1277 		 */
1278 		if (periph != NULL) {
1279 			struct cam_ed *device;
1280 			int i;
1281 
1282 			base_periph_found = 1;
1283 			device = periph->path->device;
1284 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1285 			     periph != NULL;
1286 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1287 				/*
1288 				 * Check to see whether we have a
1289 				 * passthrough device or not.
1290 				 */
1291 				if (strcmp(periph->periph_name, "pass") == 0) {
1292 					/*
1293 					 * Fill in the getdevlist fields.
1294 					 */
1295 					strcpy(ccb->cgdl.periph_name,
1296 					       periph->periph_name);
1297 					ccb->cgdl.unit_number =
1298 						periph->unit_number;
1299 					if (SLIST_NEXT(periph, periph_links))
1300 						ccb->cgdl.status =
1301 							CAM_GDEVLIST_MORE_DEVS;
1302 					else
1303 						ccb->cgdl.status =
1304 						       CAM_GDEVLIST_LAST_DEVICE;
1305 					ccb->cgdl.generation =
1306 						device->generation;
1307 					ccb->cgdl.index = i;
1308 					/*
1309 					 * Fill in some CCB header fields
1310 					 * that the user may want.
1311 					 */
1312 					ccb->ccb_h.path_id =
1313 						periph->path->bus->path_id;
1314 					ccb->ccb_h.target_id =
1315 						periph->path->target->target_id;
1316 					ccb->ccb_h.target_lun =
1317 						periph->path->device->lun_id;
1318 					ccb->ccb_h.status = CAM_REQ_CMP;
1319 					break;
1320 				}
1321 			}
1322 		}
1323 
1324 		/*
1325 		 * If the periph is null here, one of two things has
1326 		 * happened.  The first possibility is that we couldn't
1327 		 * find the unit number of the particular peripheral driver
1328 		 * that the user is asking about.  e.g. the user asks for
1329 		 * the passthrough driver for "da11".  We find the list of
1330 		 * "da" peripherals all right, but there is no unit 11.
1331 		 * The other possibility is that we went through the list
1332 		 * of peripheral drivers attached to the device structure,
1333 		 * but didn't find one with the name "pass".  Either way,
1334 		 * we return ENOENT, since we couldn't find something.
1335 		 */
1336 		if (periph == NULL) {
1337 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1338 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1339 			*ccb->cgdl.periph_name = '\0';
1340 			ccb->cgdl.unit_number = 0;
1341 			error = ENOENT;
1342 			/*
1343 			 * It is unfortunate that this is even necessary,
1344 			 * but there are many, many clueless users out there.
1345 			 * If this is true, the user is looking for the
1346 			 * passthrough driver, but doesn't have one in his
1347 			 * kernel.
1348 			 */
1349 			if (base_periph_found == 1) {
1350 				kprintf("xptioctl: pass driver is not in the "
1351 				       "kernel\n");
1352 				kprintf("xptioctl: put \"device pass\" in "
1353 				       "your kernel config file\n");
1354 			}
1355 		}
1356 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1357 		break;
1358 		}
1359 	default:
1360 		error = ENOTTY;
1361 		break;
1362 	}
1363 
1364 	return(error);
1365 }
1366 
1367 static int
1368 cam_module_event_handler(module_t mod, int what, void *arg)
1369 {
1370 	int error;
1371 
1372 	switch (what) {
1373 	case MOD_LOAD:
1374 		if ((error = xpt_init(NULL)) != 0)
1375 			return (error);
1376 		break;
1377 	case MOD_UNLOAD:
1378 		return EBUSY;
1379 	default:
1380 		return EOPNOTSUPP;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Thread to handle asynchronous main-context requests.
1388  *
1389  * This function is typically used by drivers to perform complex actions
1390  * such as bus scans and engineering requests in a main context instead
1391  * of an interrupt context.
1392  */
1393 static void
1394 xpt_scanner_thread(void *dummy)
1395 {
1396 	union ccb	*ccb;
1397 #if 0
1398 	struct cam_sim	*sim;
1399 #endif
1400 
1401 	for (;;) {
1402 		xpt_lock_buses();
1403 		xsoftc.ccb_scanq_running = 1;
1404 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1405 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1406 				     sim_links.tqe);
1407 			xpt_unlock_buses();
1408 #if 0
1409 			sim = ccb->ccb_h.path->bus->sim;
1410 			CAM_SIM_LOCK(sim);
1411 #endif
1412 			xpt_action(ccb);
1413 #if 0
1414 			CAM_SIM_UNLOCK(sim);
1415 			xpt_lock_buses();
1416 #endif
1417 		}
1418 		xsoftc.ccb_scanq_running = 0;
1419 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1420 		xpt_unlock_buses();
1421 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1422 	}
1423 }
1424 
1425 /*
1426  * Issue an asynchronous asction
1427  */
1428 void
1429 xpt_action_async(union ccb *ccb)
1430 {
1431 	xpt_lock_buses();
1432 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1433 	if (xsoftc.ccb_scanq_running == 0) {
1434 		xsoftc.ccb_scanq_running = 1;
1435 		wakeup(&xsoftc.ccb_scanq);
1436 	}
1437 	xpt_unlock_buses();
1438 }
1439 
1440 
1441 /* Functions accessed by the peripheral drivers */
1442 static int
1443 xpt_init(void *dummy)
1444 {
1445 	struct cam_sim *xpt_sim;
1446 	struct cam_path *path;
1447 	struct cam_devq *devq;
1448 	cam_status status;
1449 
1450 	TAILQ_INIT(&xsoftc.xpt_busses);
1451 	TAILQ_INIT(&cam_simq);
1452 	TAILQ_INIT(&xsoftc.ccb_scanq);
1453 	STAILQ_INIT(&xsoftc.highpowerq);
1454 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1455 
1456 	spin_init(&cam_simq_spin);
1457 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1458 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1459 
1460 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1461 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1462 	spin_init(&cam_dead_sim.sim_spin);
1463 	cam_dead_sim.sim_action = dead_sim_action;
1464 	cam_dead_sim.sim_poll = dead_sim_poll;
1465 	cam_dead_sim.sim_name = "dead_sim";
1466 	cam_dead_sim.lock = &cam_dead_lock;
1467 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1468 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1469 
1470 	/*
1471 	 * The xpt layer is, itself, the equivelent of a SIM.
1472 	 * Allow 16 ccbs in the ccb pool for it.  This should
1473 	 * give decent parallelism when we probe busses and
1474 	 * perform other XPT functions.
1475 	 */
1476 	devq = cam_simq_alloc(16);
1477 	xpt_sim = cam_sim_alloc(xptaction,
1478 				xptpoll,
1479 				"xpt",
1480 				/*softc*/NULL,
1481 				/*unit*/0,
1482 				/*lock*/&xsoftc.xpt_lock,
1483 				/*max_dev_transactions*/0,
1484 				/*max_tagged_dev_transactions*/0,
1485 				devq);
1486 	cam_simq_release(devq);
1487 	if (xpt_sim == NULL)
1488 		return (ENOMEM);
1489 
1490 	xpt_sim->max_ccbs = 16;
1491 
1492 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1493 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1508 		       " failing attach\n", status);
1509 		return (EINVAL);
1510 	}
1511 
1512 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1513 			 path, NULL, 0, xpt_sim);
1514 	xpt_free_path(path);
1515 
1516 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1517 
1518 	/*
1519 	 * Register a callback for when interrupts are enabled.
1520 	 */
1521 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1522 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1523 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1524 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1525 	xsoftc.xpt_config_hook->ich_order = 1000;
1526 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1527 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1528 		kprintf("xpt_init: config_intrhook_establish failed "
1529 		       "- failing attach\n");
1530 	}
1531 
1532 	/* fire up rescan thread */
1533 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1534 		kprintf("xpt_init: failed to create rescan thread\n");
1535 	}
1536 	/* Install our software interrupt handlers */
1537 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1538 
1539 	return (0);
1540 }
1541 
1542 static cam_status
1543 xptregister(struct cam_periph *periph, void *arg)
1544 {
1545 	struct cam_sim *xpt_sim;
1546 
1547 	if (periph == NULL) {
1548 		kprintf("xptregister: periph was NULL!!\n");
1549 		return(CAM_REQ_CMP_ERR);
1550 	}
1551 
1552 	xpt_sim = (struct cam_sim *)arg;
1553 	xpt_sim->softc = periph;
1554 	xpt_periph = periph;
1555 	periph->softc = NULL;
1556 
1557 	return(CAM_REQ_CMP);
1558 }
1559 
1560 int32_t
1561 xpt_add_periph(struct cam_periph *periph)
1562 {
1563 	struct cam_ed *device;
1564 	int32_t	 status;
1565 	struct periph_list *periph_head;
1566 
1567 	sim_lock_assert_owned(periph->sim->lock);
1568 
1569 	device = periph->path->device;
1570 
1571 	periph_head = &device->periphs;
1572 
1573 	status = CAM_REQ_CMP;
1574 
1575 	if (device != NULL) {
1576 		/*
1577 		 * Make room for this peripheral
1578 		 * so it will fit in the queue
1579 		 * when it's scheduled to run
1580 		 */
1581 		status = camq_resize(&device->drvq,
1582 				     device->drvq.array_size + 1);
1583 
1584 		device->generation++;
1585 
1586 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1587 	}
1588 
1589 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1590 	xsoftc.xpt_generation++;
1591 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1592 
1593 	return (status);
1594 }
1595 
1596 void
1597 xpt_remove_periph(struct cam_periph *periph)
1598 {
1599 	struct cam_ed *device;
1600 
1601 	sim_lock_assert_owned(periph->sim->lock);
1602 
1603 	device = periph->path->device;
1604 
1605 	if (device != NULL) {
1606 		struct periph_list *periph_head;
1607 
1608 		periph_head = &device->periphs;
1609 
1610 		/* Release the slot for this peripheral */
1611 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1612 
1613 		device->generation++;
1614 
1615 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1616 	}
1617 
1618 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1619 	xsoftc.xpt_generation++;
1620 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1621 }
1622 
1623 void
1624 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1625 {
1626 	struct	ccb_pathinq cpi;
1627 	struct	ccb_trans_settings cts;
1628 	struct	cam_path *path;
1629 	u_int	speed;
1630 	u_int	freq;
1631 	u_int	mb;
1632 
1633 	sim_lock_assert_owned(periph->sim->lock);
1634 
1635 	path = periph->path;
1636 
1637 	/* Report basic attachment and inquiry data */
1638 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1639 	       periph->periph_name, periph->unit_number,
1640 	       path->bus->sim->sim_name,
1641 	       path->bus->sim->unit_number,
1642 	       path->bus->sim->bus_id,
1643 	       path->target->target_id,
1644 	       path->device->lun_id);
1645 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1646 	scsi_print_inquiry(&path->device->inq_data);
1647 
1648 	/* Report serial number */
1649 	if (path->device->serial_num_len > 0) {
1650 		/* Don't wrap the screen  - print only the first 60 chars */
1651 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1652 		       periph->unit_number, path->device->serial_num);
1653 	}
1654 
1655 	/* Acquire and report transfer speed */
1656 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1657 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1658 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1659 	xpt_action((union ccb*)&cts);
1660 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1661 		return;
1662 	}
1663 
1664 	/* Ask the SIM for its base transfer speed */
1665 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1666 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1667 	xpt_action((union ccb *)&cpi);
1668 
1669 	speed = cpi.base_transfer_speed;
1670 	freq = 0;
1671 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1672 		struct	ccb_trans_settings_spi *spi;
1673 
1674 		spi = &cts.xport_specific.spi;
1675 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1676 		  && spi->sync_offset != 0) {
1677 			freq = scsi_calc_syncsrate(spi->sync_period);
1678 			speed = freq;
1679 		}
1680 
1681 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1682 			speed *= (0x01 << spi->bus_width);
1683 	}
1684 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1685 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1686 		if (fc->valid & CTS_FC_VALID_SPEED) {
1687 			speed = fc->bitrate;
1688 		}
1689 	}
1690 
1691 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1692 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1693 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1694 			speed = sas->bitrate;
1695 		}
1696 	}
1697 
1698 	mb = speed / 1000;
1699 	if (mb > 0)
1700 		kprintf("%s%d: %d.%03dMB/s transfers",
1701 		       periph->periph_name, periph->unit_number,
1702 		       mb, speed % 1000);
1703 	else
1704 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1705 		       periph->unit_number, speed);
1706 
1707 	/* Report additional information about SPI connections */
1708 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1709 		struct	ccb_trans_settings_spi *spi;
1710 
1711 		spi = &cts.xport_specific.spi;
1712 		if (freq != 0) {
1713 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1714 			       freq % 1000,
1715 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1716 			     ? " DT" : "",
1717 			       spi->sync_offset);
1718 		}
1719 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1720 		 && spi->bus_width > 0) {
1721 			if (freq != 0) {
1722 				kprintf(", ");
1723 			} else {
1724 				kprintf(" (");
1725 			}
1726 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1727 		} else if (freq != 0) {
1728 			kprintf(")");
1729 		}
1730 	}
1731 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1732 		struct	ccb_trans_settings_fc *fc;
1733 
1734 		fc = &cts.xport_specific.fc;
1735 		if (fc->valid & CTS_FC_VALID_WWNN)
1736 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1737 		if (fc->valid & CTS_FC_VALID_WWPN)
1738 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1739 		if (fc->valid & CTS_FC_VALID_PORT)
1740 			kprintf(" PortID 0x%x", fc->port);
1741 	}
1742 
1743 	if (path->device->inq_flags & SID_CmdQue
1744 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1745 		kprintf("\n%s%d: Command Queueing Enabled",
1746 		       periph->periph_name, periph->unit_number);
1747 	}
1748 	kprintf("\n");
1749 
1750 	/*
1751 	 * We only want to print the caller's announce string if they've
1752 	 * passed one in..
1753 	 */
1754 	if (announce_string != NULL)
1755 		kprintf("%s%d: %s\n", periph->periph_name,
1756 		       periph->unit_number, announce_string);
1757 }
1758 
1759 static dev_match_ret
1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1761 	    struct cam_eb *bus)
1762 {
1763 	dev_match_ret retval;
1764 	int i;
1765 
1766 	retval = DM_RET_NONE;
1767 
1768 	/*
1769 	 * If we aren't given something to match against, that's an error.
1770 	 */
1771 	if (bus == NULL)
1772 		return(DM_RET_ERROR);
1773 
1774 	/*
1775 	 * If there are no match entries, then this bus matches no
1776 	 * matter what.
1777 	 */
1778 	if ((patterns == NULL) || (num_patterns == 0))
1779 		return(DM_RET_DESCEND | DM_RET_COPY);
1780 
1781 	for (i = 0; i < num_patterns; i++) {
1782 		struct bus_match_pattern *cur_pattern;
1783 
1784 		/*
1785 		 * If the pattern in question isn't for a bus node, we
1786 		 * aren't interested.  However, we do indicate to the
1787 		 * calling routine that we should continue descending the
1788 		 * tree, since the user wants to match against lower-level
1789 		 * EDT elements.
1790 		 */
1791 		if (patterns[i].type != DEV_MATCH_BUS) {
1792 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1793 				retval |= DM_RET_DESCEND;
1794 			continue;
1795 		}
1796 
1797 		cur_pattern = &patterns[i].pattern.bus_pattern;
1798 
1799 		/*
1800 		 * If they want to match any bus node, we give them any
1801 		 * device node.
1802 		 */
1803 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1804 			/* set the copy flag */
1805 			retval |= DM_RET_COPY;
1806 
1807 			/*
1808 			 * If we've already decided on an action, go ahead
1809 			 * and return.
1810 			 */
1811 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1812 				return(retval);
1813 		}
1814 
1815 		/*
1816 		 * Not sure why someone would do this...
1817 		 */
1818 		if (cur_pattern->flags == BUS_MATCH_NONE)
1819 			continue;
1820 
1821 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1822 		 && (cur_pattern->path_id != bus->path_id))
1823 			continue;
1824 
1825 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1826 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1827 			continue;
1828 
1829 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1830 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1831 			continue;
1832 
1833 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1834 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1835 			     DEV_IDLEN) != 0))
1836 			continue;
1837 
1838 		/*
1839 		 * If we get to this point, the user definitely wants
1840 		 * information on this bus.  So tell the caller to copy the
1841 		 * data out.
1842 		 */
1843 		retval |= DM_RET_COPY;
1844 
1845 		/*
1846 		 * If the return action has been set to descend, then we
1847 		 * know that we've already seen a non-bus matching
1848 		 * expression, therefore we need to further descend the tree.
1849 		 * This won't change by continuing around the loop, so we
1850 		 * go ahead and return.  If we haven't seen a non-bus
1851 		 * matching expression, we keep going around the loop until
1852 		 * we exhaust the matching expressions.  We'll set the stop
1853 		 * flag once we fall out of the loop.
1854 		 */
1855 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1856 			return(retval);
1857 	}
1858 
1859 	/*
1860 	 * If the return action hasn't been set to descend yet, that means
1861 	 * we haven't seen anything other than bus matching patterns.  So
1862 	 * tell the caller to stop descending the tree -- the user doesn't
1863 	 * want to match against lower level tree elements.
1864 	 */
1865 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1866 		retval |= DM_RET_STOP;
1867 
1868 	return(retval);
1869 }
1870 
1871 static dev_match_ret
1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1873 	       struct cam_ed *device)
1874 {
1875 	dev_match_ret retval;
1876 	int i;
1877 
1878 	retval = DM_RET_NONE;
1879 
1880 	/*
1881 	 * If we aren't given something to match against, that's an error.
1882 	 */
1883 	if (device == NULL)
1884 		return(DM_RET_ERROR);
1885 
1886 	/*
1887 	 * If there are no match entries, then this device matches no
1888 	 * matter what.
1889 	 */
1890 	if ((patterns == NULL) || (num_patterns == 0))
1891 		return(DM_RET_DESCEND | DM_RET_COPY);
1892 
1893 	for (i = 0; i < num_patterns; i++) {
1894 		struct device_match_pattern *cur_pattern;
1895 
1896 		/*
1897 		 * If the pattern in question isn't for a device node, we
1898 		 * aren't interested.
1899 		 */
1900 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1901 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1902 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1903 				retval |= DM_RET_DESCEND;
1904 			continue;
1905 		}
1906 
1907 		cur_pattern = &patterns[i].pattern.device_pattern;
1908 
1909 		/*
1910 		 * If they want to match any device node, we give them any
1911 		 * device node.
1912 		 */
1913 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1914 			/* set the copy flag */
1915 			retval |= DM_RET_COPY;
1916 
1917 
1918 			/*
1919 			 * If we've already decided on an action, go ahead
1920 			 * and return.
1921 			 */
1922 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1923 				return(retval);
1924 		}
1925 
1926 		/*
1927 		 * Not sure why someone would do this...
1928 		 */
1929 		if (cur_pattern->flags == DEV_MATCH_NONE)
1930 			continue;
1931 
1932 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1933 		 && (cur_pattern->path_id != device->target->bus->path_id))
1934 			continue;
1935 
1936 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1937 		 && (cur_pattern->target_id != device->target->target_id))
1938 			continue;
1939 
1940 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1941 		 && (cur_pattern->target_lun != device->lun_id))
1942 			continue;
1943 
1944 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1945 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1946 				    (caddr_t)&cur_pattern->inq_pat,
1947 				    1, sizeof(cur_pattern->inq_pat),
1948 				    scsi_static_inquiry_match) == NULL))
1949 			continue;
1950 
1951 		/*
1952 		 * If we get to this point, the user definitely wants
1953 		 * information on this device.  So tell the caller to copy
1954 		 * the data out.
1955 		 */
1956 		retval |= DM_RET_COPY;
1957 
1958 		/*
1959 		 * If the return action has been set to descend, then we
1960 		 * know that we've already seen a peripheral matching
1961 		 * expression, therefore we need to further descend the tree.
1962 		 * This won't change by continuing around the loop, so we
1963 		 * go ahead and return.  If we haven't seen a peripheral
1964 		 * matching expression, we keep going around the loop until
1965 		 * we exhaust the matching expressions.  We'll set the stop
1966 		 * flag once we fall out of the loop.
1967 		 */
1968 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1969 			return(retval);
1970 	}
1971 
1972 	/*
1973 	 * If the return action hasn't been set to descend yet, that means
1974 	 * we haven't seen any peripheral matching patterns.  So tell the
1975 	 * caller to stop descending the tree -- the user doesn't want to
1976 	 * match against lower level tree elements.
1977 	 */
1978 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1979 		retval |= DM_RET_STOP;
1980 
1981 	return(retval);
1982 }
1983 
1984 /*
1985  * Match a single peripheral against any number of match patterns.
1986  */
1987 static dev_match_ret
1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1989 	       struct cam_periph *periph)
1990 {
1991 	dev_match_ret retval;
1992 	int i;
1993 
1994 	/*
1995 	 * If we aren't given something to match against, that's an error.
1996 	 */
1997 	if (periph == NULL)
1998 		return(DM_RET_ERROR);
1999 
2000 	/*
2001 	 * If there are no match entries, then this peripheral matches no
2002 	 * matter what.
2003 	 */
2004 	if ((patterns == NULL) || (num_patterns == 0))
2005 		return(DM_RET_STOP | DM_RET_COPY);
2006 
2007 	/*
2008 	 * There aren't any nodes below a peripheral node, so there's no
2009 	 * reason to descend the tree any further.
2010 	 */
2011 	retval = DM_RET_STOP;
2012 
2013 	for (i = 0; i < num_patterns; i++) {
2014 		struct periph_match_pattern *cur_pattern;
2015 
2016 		/*
2017 		 * If the pattern in question isn't for a peripheral, we
2018 		 * aren't interested.
2019 		 */
2020 		if (patterns[i].type != DEV_MATCH_PERIPH)
2021 			continue;
2022 
2023 		cur_pattern = &patterns[i].pattern.periph_pattern;
2024 
2025 		/*
2026 		 * If they want to match on anything, then we will do so.
2027 		 */
2028 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2029 			/* set the copy flag */
2030 			retval |= DM_RET_COPY;
2031 
2032 			/*
2033 			 * We've already set the return action to stop,
2034 			 * since there are no nodes below peripherals in
2035 			 * the tree.
2036 			 */
2037 			return(retval);
2038 		}
2039 
2040 		/*
2041 		 * Not sure why someone would do this...
2042 		 */
2043 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2044 			continue;
2045 
2046 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2047 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2048 			continue;
2049 
2050 		/*
2051 		 * For the target and lun id's, we have to make sure the
2052 		 * target and lun pointers aren't NULL.  The xpt peripheral
2053 		 * has a wildcard target and device.
2054 		 */
2055 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2056 		 && ((periph->path->target == NULL)
2057 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2058 			continue;
2059 
2060 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2061 		 && ((periph->path->device == NULL)
2062 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2063 			continue;
2064 
2065 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2066 		 && (cur_pattern->unit_number != periph->unit_number))
2067 			continue;
2068 
2069 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2070 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2071 			     DEV_IDLEN) != 0))
2072 			continue;
2073 
2074 		/*
2075 		 * If we get to this point, the user definitely wants
2076 		 * information on this peripheral.  So tell the caller to
2077 		 * copy the data out.
2078 		 */
2079 		retval |= DM_RET_COPY;
2080 
2081 		/*
2082 		 * The return action has already been set to stop, since
2083 		 * peripherals don't have any nodes below them in the EDT.
2084 		 */
2085 		return(retval);
2086 	}
2087 
2088 	/*
2089 	 * If we get to this point, the peripheral that was passed in
2090 	 * doesn't match any of the patterns.
2091 	 */
2092 	return(retval);
2093 }
2094 
2095 static int
2096 xptedtbusfunc(struct cam_eb *bus, void *arg)
2097 {
2098 	struct ccb_dev_match *cdm;
2099 	dev_match_ret retval;
2100 
2101 	cdm = (struct ccb_dev_match *)arg;
2102 
2103 	/*
2104 	 * If our position is for something deeper in the tree, that means
2105 	 * that we've already seen this node.  So, we keep going down.
2106 	 */
2107 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2108 	 && (cdm->pos.cookie.bus == bus)
2109 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2110 	 && (cdm->pos.cookie.target != NULL))
2111 		retval = DM_RET_DESCEND;
2112 	else
2113 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2114 
2115 	/*
2116 	 * If we got an error, bail out of the search.
2117 	 */
2118 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119 		cdm->status = CAM_DEV_MATCH_ERROR;
2120 		return(0);
2121 	}
2122 
2123 	/*
2124 	 * If the copy flag is set, copy this bus out.
2125 	 */
2126 	if (retval & DM_RET_COPY) {
2127 		int spaceleft, j;
2128 
2129 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130 			sizeof(struct dev_match_result));
2131 
2132 		/*
2133 		 * If we don't have enough space to put in another
2134 		 * match result, save our position and tell the
2135 		 * user there are more devices to check.
2136 		 */
2137 		if (spaceleft < sizeof(struct dev_match_result)) {
2138 			bzero(&cdm->pos, sizeof(cdm->pos));
2139 			cdm->pos.position_type =
2140 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2141 
2142 			cdm->pos.cookie.bus = bus;
2143 			cdm->pos.generations[CAM_BUS_GENERATION]=
2144 				xsoftc.bus_generation;
2145 			cdm->status = CAM_DEV_MATCH_MORE;
2146 			return(0);
2147 		}
2148 		j = cdm->num_matches;
2149 		cdm->num_matches++;
2150 		cdm->matches[j].type = DEV_MATCH_BUS;
2151 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2152 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2153 		cdm->matches[j].result.bus_result.unit_number =
2154 			bus->sim->unit_number;
2155 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2156 			bus->sim->sim_name, DEV_IDLEN);
2157 	}
2158 
2159 	/*
2160 	 * If the user is only interested in busses, there's no
2161 	 * reason to descend to the next level in the tree.
2162 	 */
2163 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2164 		return(1);
2165 
2166 	/*
2167 	 * If there is a target generation recorded, check it to
2168 	 * make sure the target list hasn't changed.
2169 	 */
2170 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2171 	 && (bus == cdm->pos.cookie.bus)
2172 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2173 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2174 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2175 	     bus->generation)) {
2176 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2177 		return(0);
2178 	}
2179 
2180 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2181 	 && (cdm->pos.cookie.bus == bus)
2182 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2183 	 && (cdm->pos.cookie.target != NULL))
2184 		return(xpttargettraverse(bus,
2185 					(struct cam_et *)cdm->pos.cookie.target,
2186 					 xptedttargetfunc, arg));
2187 	else
2188 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2189 }
2190 
2191 static int
2192 xptedttargetfunc(struct cam_et *target, void *arg)
2193 {
2194 	struct ccb_dev_match *cdm;
2195 
2196 	cdm = (struct ccb_dev_match *)arg;
2197 
2198 	/*
2199 	 * If there is a device list generation recorded, check it to
2200 	 * make sure the device list hasn't changed.
2201 	 */
2202 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2203 	 && (cdm->pos.cookie.bus == target->bus)
2204 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2205 	 && (cdm->pos.cookie.target == target)
2206 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2207 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2208 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2209 	     target->generation)) {
2210 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2211 		return(0);
2212 	}
2213 
2214 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2215 	 && (cdm->pos.cookie.bus == target->bus)
2216 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2217 	 && (cdm->pos.cookie.target == target)
2218 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2219 	 && (cdm->pos.cookie.device != NULL))
2220 		return(xptdevicetraverse(target,
2221 					(struct cam_ed *)cdm->pos.cookie.device,
2222 					 xptedtdevicefunc, arg));
2223 	else
2224 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2225 }
2226 
2227 static int
2228 xptedtdevicefunc(struct cam_ed *device, void *arg)
2229 {
2230 
2231 	struct ccb_dev_match *cdm;
2232 	dev_match_ret retval;
2233 
2234 	cdm = (struct ccb_dev_match *)arg;
2235 
2236 	/*
2237 	 * If our position is for something deeper in the tree, that means
2238 	 * that we've already seen this node.  So, we keep going down.
2239 	 */
2240 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2241 	 && (cdm->pos.cookie.device == device)
2242 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2243 	 && (cdm->pos.cookie.periph != NULL))
2244 		retval = DM_RET_DESCEND;
2245 	else
2246 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2247 					device);
2248 
2249 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2250 		cdm->status = CAM_DEV_MATCH_ERROR;
2251 		return(0);
2252 	}
2253 
2254 	/*
2255 	 * If the copy flag is set, copy this device out.
2256 	 */
2257 	if (retval & DM_RET_COPY) {
2258 		int spaceleft, j;
2259 
2260 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2261 			sizeof(struct dev_match_result));
2262 
2263 		/*
2264 		 * If we don't have enough space to put in another
2265 		 * match result, save our position and tell the
2266 		 * user there are more devices to check.
2267 		 */
2268 		if (spaceleft < sizeof(struct dev_match_result)) {
2269 			bzero(&cdm->pos, sizeof(cdm->pos));
2270 			cdm->pos.position_type =
2271 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2272 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2273 
2274 			cdm->pos.cookie.bus = device->target->bus;
2275 			cdm->pos.generations[CAM_BUS_GENERATION]=
2276 				xsoftc.bus_generation;
2277 			cdm->pos.cookie.target = device->target;
2278 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2279 				device->target->bus->generation;
2280 			cdm->pos.cookie.device = device;
2281 			cdm->pos.generations[CAM_DEV_GENERATION] =
2282 				device->target->generation;
2283 			cdm->status = CAM_DEV_MATCH_MORE;
2284 			return(0);
2285 		}
2286 		j = cdm->num_matches;
2287 		cdm->num_matches++;
2288 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2289 		cdm->matches[j].result.device_result.path_id =
2290 			device->target->bus->path_id;
2291 		cdm->matches[j].result.device_result.target_id =
2292 			device->target->target_id;
2293 		cdm->matches[j].result.device_result.target_lun =
2294 			device->lun_id;
2295 		bcopy(&device->inq_data,
2296 		      &cdm->matches[j].result.device_result.inq_data,
2297 		      sizeof(struct scsi_inquiry_data));
2298 
2299 		/* Let the user know whether this device is unconfigured */
2300 		if (device->flags & CAM_DEV_UNCONFIGURED)
2301 			cdm->matches[j].result.device_result.flags =
2302 				DEV_RESULT_UNCONFIGURED;
2303 		else
2304 			cdm->matches[j].result.device_result.flags =
2305 				DEV_RESULT_NOFLAG;
2306 	}
2307 
2308 	/*
2309 	 * If the user isn't interested in peripherals, don't descend
2310 	 * the tree any further.
2311 	 */
2312 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2313 		return(1);
2314 
2315 	/*
2316 	 * If there is a peripheral list generation recorded, make sure
2317 	 * it hasn't changed.
2318 	 */
2319 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2320 	 && (device->target->bus == cdm->pos.cookie.bus)
2321 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2322 	 && (device->target == cdm->pos.cookie.target)
2323 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2324 	 && (device == cdm->pos.cookie.device)
2325 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2326 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2327 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2328 	     device->generation)){
2329 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2330 		return(0);
2331 	}
2332 
2333 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2334 	 && (cdm->pos.cookie.bus == device->target->bus)
2335 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2336 	 && (cdm->pos.cookie.target == device->target)
2337 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2338 	 && (cdm->pos.cookie.device == device)
2339 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2340 	 && (cdm->pos.cookie.periph != NULL))
2341 		return(xptperiphtraverse(device,
2342 				(struct cam_periph *)cdm->pos.cookie.periph,
2343 				xptedtperiphfunc, arg));
2344 	else
2345 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2346 }
2347 
2348 static int
2349 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2350 {
2351 	struct ccb_dev_match *cdm;
2352 	dev_match_ret retval;
2353 
2354 	cdm = (struct ccb_dev_match *)arg;
2355 
2356 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2357 
2358 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2359 		cdm->status = CAM_DEV_MATCH_ERROR;
2360 		return(0);
2361 	}
2362 
2363 	/*
2364 	 * If the copy flag is set, copy this peripheral out.
2365 	 */
2366 	if (retval & DM_RET_COPY) {
2367 		int spaceleft, j;
2368 
2369 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2370 			sizeof(struct dev_match_result));
2371 
2372 		/*
2373 		 * If we don't have enough space to put in another
2374 		 * match result, save our position and tell the
2375 		 * user there are more devices to check.
2376 		 */
2377 		if (spaceleft < sizeof(struct dev_match_result)) {
2378 			bzero(&cdm->pos, sizeof(cdm->pos));
2379 			cdm->pos.position_type =
2380 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2381 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2382 				CAM_DEV_POS_PERIPH;
2383 
2384 			cdm->pos.cookie.bus = periph->path->bus;
2385 			cdm->pos.generations[CAM_BUS_GENERATION]=
2386 				xsoftc.bus_generation;
2387 			cdm->pos.cookie.target = periph->path->target;
2388 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2389 				periph->path->bus->generation;
2390 			cdm->pos.cookie.device = periph->path->device;
2391 			cdm->pos.generations[CAM_DEV_GENERATION] =
2392 				periph->path->target->generation;
2393 			cdm->pos.cookie.periph = periph;
2394 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2395 				periph->path->device->generation;
2396 			cdm->status = CAM_DEV_MATCH_MORE;
2397 			return(0);
2398 		}
2399 
2400 		j = cdm->num_matches;
2401 		cdm->num_matches++;
2402 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2403 		cdm->matches[j].result.periph_result.path_id =
2404 			periph->path->bus->path_id;
2405 		cdm->matches[j].result.periph_result.target_id =
2406 			periph->path->target->target_id;
2407 		cdm->matches[j].result.periph_result.target_lun =
2408 			periph->path->device->lun_id;
2409 		cdm->matches[j].result.periph_result.unit_number =
2410 			periph->unit_number;
2411 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2412 			periph->periph_name, DEV_IDLEN);
2413 	}
2414 
2415 	return(1);
2416 }
2417 
2418 static int
2419 xptedtmatch(struct ccb_dev_match *cdm)
2420 {
2421 	int ret;
2422 
2423 	cdm->num_matches = 0;
2424 
2425 	/*
2426 	 * Check the bus list generation.  If it has changed, the user
2427 	 * needs to reset everything and start over.
2428 	 */
2429 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2430 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2431 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2432 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2433 		return(0);
2434 	}
2435 
2436 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 	 && (cdm->pos.cookie.bus != NULL))
2438 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2439 				     xptedtbusfunc, cdm);
2440 	else
2441 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2442 
2443 	/*
2444 	 * If we get back 0, that means that we had to stop before fully
2445 	 * traversing the EDT.  It also means that one of the subroutines
2446 	 * has set the status field to the proper value.  If we get back 1,
2447 	 * we've fully traversed the EDT and copied out any matching entries.
2448 	 */
2449 	if (ret == 1)
2450 		cdm->status = CAM_DEV_MATCH_LAST;
2451 
2452 	return(ret);
2453 }
2454 
2455 static int
2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2457 {
2458 	struct ccb_dev_match *cdm;
2459 
2460 	cdm = (struct ccb_dev_match *)arg;
2461 
2462 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2463 	 && (cdm->pos.cookie.pdrv == pdrv)
2464 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2465 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2466 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2467 	     (*pdrv)->generation)) {
2468 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2469 		return(0);
2470 	}
2471 
2472 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2473 	 && (cdm->pos.cookie.pdrv == pdrv)
2474 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2475 	 && (cdm->pos.cookie.periph != NULL))
2476 		return(xptpdperiphtraverse(pdrv,
2477 				(struct cam_periph *)cdm->pos.cookie.periph,
2478 				xptplistperiphfunc, arg));
2479 	else
2480 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2481 }
2482 
2483 static int
2484 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2485 {
2486 	struct ccb_dev_match *cdm;
2487 	dev_match_ret retval;
2488 
2489 	cdm = (struct ccb_dev_match *)arg;
2490 
2491 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2492 
2493 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2494 		cdm->status = CAM_DEV_MATCH_ERROR;
2495 		return(0);
2496 	}
2497 
2498 	/*
2499 	 * If the copy flag is set, copy this peripheral out.
2500 	 */
2501 	if (retval & DM_RET_COPY) {
2502 		int spaceleft, j;
2503 
2504 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2505 			sizeof(struct dev_match_result));
2506 
2507 		/*
2508 		 * If we don't have enough space to put in another
2509 		 * match result, save our position and tell the
2510 		 * user there are more devices to check.
2511 		 */
2512 		if (spaceleft < sizeof(struct dev_match_result)) {
2513 			struct periph_driver **pdrv;
2514 
2515 			pdrv = NULL;
2516 			bzero(&cdm->pos, sizeof(cdm->pos));
2517 			cdm->pos.position_type =
2518 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2519 				CAM_DEV_POS_PERIPH;
2520 
2521 			/*
2522 			 * This may look a bit non-sensical, but it is
2523 			 * actually quite logical.  There are very few
2524 			 * peripheral drivers, and bloating every peripheral
2525 			 * structure with a pointer back to its parent
2526 			 * peripheral driver linker set entry would cost
2527 			 * more in the long run than doing this quick lookup.
2528 			 */
2529 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2530 				if (strcmp((*pdrv)->driver_name,
2531 				    periph->periph_name) == 0)
2532 					break;
2533 			}
2534 
2535 			if (*pdrv == NULL) {
2536 				cdm->status = CAM_DEV_MATCH_ERROR;
2537 				return(0);
2538 			}
2539 
2540 			cdm->pos.cookie.pdrv = pdrv;
2541 			/*
2542 			 * The periph generation slot does double duty, as
2543 			 * does the periph pointer slot.  They are used for
2544 			 * both edt and pdrv lookups and positioning.
2545 			 */
2546 			cdm->pos.cookie.periph = periph;
2547 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2548 				(*pdrv)->generation;
2549 			cdm->status = CAM_DEV_MATCH_MORE;
2550 			return(0);
2551 		}
2552 
2553 		j = cdm->num_matches;
2554 		cdm->num_matches++;
2555 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2556 		cdm->matches[j].result.periph_result.path_id =
2557 			periph->path->bus->path_id;
2558 
2559 		/*
2560 		 * The transport layer peripheral doesn't have a target or
2561 		 * lun.
2562 		 */
2563 		if (periph->path->target)
2564 			cdm->matches[j].result.periph_result.target_id =
2565 				periph->path->target->target_id;
2566 		else
2567 			cdm->matches[j].result.periph_result.target_id = -1;
2568 
2569 		if (periph->path->device)
2570 			cdm->matches[j].result.periph_result.target_lun =
2571 				periph->path->device->lun_id;
2572 		else
2573 			cdm->matches[j].result.periph_result.target_lun = -1;
2574 
2575 		cdm->matches[j].result.periph_result.unit_number =
2576 			periph->unit_number;
2577 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2578 			periph->periph_name, DEV_IDLEN);
2579 	}
2580 
2581 	return(1);
2582 }
2583 
2584 static int
2585 xptperiphlistmatch(struct ccb_dev_match *cdm)
2586 {
2587 	int ret;
2588 
2589 	cdm->num_matches = 0;
2590 
2591 	/*
2592 	 * At this point in the edt traversal function, we check the bus
2593 	 * list generation to make sure that no busses have been added or
2594 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2595 	 * For the peripheral driver list traversal function, however, we
2596 	 * don't have to worry about new peripheral driver types coming or
2597 	 * going; they're in a linker set, and therefore can't change
2598 	 * without a recompile.
2599 	 */
2600 
2601 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2602 	 && (cdm->pos.cookie.pdrv != NULL))
2603 		ret = xptpdrvtraverse(
2604 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2605 				xptplistpdrvfunc, cdm);
2606 	else
2607 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2608 
2609 	/*
2610 	 * If we get back 0, that means that we had to stop before fully
2611 	 * traversing the peripheral driver tree.  It also means that one of
2612 	 * the subroutines has set the status field to the proper value.  If
2613 	 * we get back 1, we've fully traversed the EDT and copied out any
2614 	 * matching entries.
2615 	 */
2616 	if (ret == 1)
2617 		cdm->status = CAM_DEV_MATCH_LAST;
2618 
2619 	return(ret);
2620 }
2621 
2622 static int
2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2624 {
2625 	struct cam_eb *bus, *next_bus;
2626 	int retval;
2627 
2628 	retval = 1;
2629 
2630 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2631 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2632 	     bus != NULL;
2633 	     bus = next_bus) {
2634 		next_bus = TAILQ_NEXT(bus, links);
2635 
2636 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2637 		CAM_SIM_LOCK(bus->sim);
2638 		retval = tr_func(bus, arg);
2639 		CAM_SIM_UNLOCK(bus->sim);
2640 		if (retval == 0)
2641 			return(retval);
2642 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2643 	}
2644 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2645 
2646 	return(retval);
2647 }
2648 
2649 static int
2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2651 		  xpt_targetfunc_t *tr_func, void *arg)
2652 {
2653 	struct cam_et *target, *next_target;
2654 	int retval;
2655 
2656 	retval = 1;
2657 	for (target = (start_target ? start_target :
2658 		       TAILQ_FIRST(&bus->et_entries));
2659 	     target != NULL; target = next_target) {
2660 
2661 		next_target = TAILQ_NEXT(target, links);
2662 
2663 		retval = tr_func(target, arg);
2664 
2665 		if (retval == 0)
2666 			return(retval);
2667 	}
2668 
2669 	return(retval);
2670 }
2671 
2672 static int
2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2674 		  xpt_devicefunc_t *tr_func, void *arg)
2675 {
2676 	struct cam_ed *device, *next_device;
2677 	int retval;
2678 
2679 	retval = 1;
2680 	for (device = (start_device ? start_device :
2681 		       TAILQ_FIRST(&target->ed_entries));
2682 	     device != NULL;
2683 	     device = next_device) {
2684 
2685 		next_device = TAILQ_NEXT(device, links);
2686 
2687 		retval = tr_func(device, arg);
2688 
2689 		if (retval == 0)
2690 			return(retval);
2691 	}
2692 
2693 	return(retval);
2694 }
2695 
2696 static int
2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2698 		  xpt_periphfunc_t *tr_func, void *arg)
2699 {
2700 	struct cam_periph *periph, *next_periph;
2701 	int retval;
2702 
2703 	retval = 1;
2704 
2705 	for (periph = (start_periph ? start_periph :
2706 		       SLIST_FIRST(&device->periphs));
2707 	     periph != NULL;
2708 	     periph = next_periph) {
2709 
2710 		next_periph = SLIST_NEXT(periph, periph_links);
2711 
2712 		retval = tr_func(periph, arg);
2713 		if (retval == 0)
2714 			return(retval);
2715 	}
2716 
2717 	return(retval);
2718 }
2719 
2720 static int
2721 xptpdrvtraverse(struct periph_driver **start_pdrv,
2722 		xpt_pdrvfunc_t *tr_func, void *arg)
2723 {
2724 	struct periph_driver **pdrv;
2725 	int retval;
2726 
2727 	retval = 1;
2728 
2729 	/*
2730 	 * We don't traverse the peripheral driver list like we do the
2731 	 * other lists, because it is a linker set, and therefore cannot be
2732 	 * changed during runtime.  If the peripheral driver list is ever
2733 	 * re-done to be something other than a linker set (i.e. it can
2734 	 * change while the system is running), the list traversal should
2735 	 * be modified to work like the other traversal functions.
2736 	 */
2737 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2738 	     *pdrv != NULL; pdrv++) {
2739 		retval = tr_func(pdrv, arg);
2740 
2741 		if (retval == 0)
2742 			return(retval);
2743 	}
2744 
2745 	return(retval);
2746 }
2747 
2748 static int
2749 xptpdperiphtraverse(struct periph_driver **pdrv,
2750 		    struct cam_periph *start_periph,
2751 		    xpt_periphfunc_t *tr_func, void *arg)
2752 {
2753 	struct cam_periph *periph, *next_periph;
2754 	int retval;
2755 
2756 	retval = 1;
2757 
2758 	for (periph = (start_periph ? start_periph :
2759 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2760 	     periph = next_periph) {
2761 
2762 		next_periph = TAILQ_NEXT(periph, unit_links);
2763 
2764 		retval = tr_func(periph, arg);
2765 		if (retval == 0)
2766 			return(retval);
2767 	}
2768 	return(retval);
2769 }
2770 
2771 static int
2772 xptdefbusfunc(struct cam_eb *bus, void *arg)
2773 {
2774 	struct xpt_traverse_config *tr_config;
2775 
2776 	tr_config = (struct xpt_traverse_config *)arg;
2777 
2778 	if (tr_config->depth == XPT_DEPTH_BUS) {
2779 		xpt_busfunc_t *tr_func;
2780 
2781 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2782 
2783 		return(tr_func(bus, tr_config->tr_arg));
2784 	} else
2785 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2786 }
2787 
2788 static int
2789 xptdeftargetfunc(struct cam_et *target, void *arg)
2790 {
2791 	struct xpt_traverse_config *tr_config;
2792 
2793 	tr_config = (struct xpt_traverse_config *)arg;
2794 
2795 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2796 		xpt_targetfunc_t *tr_func;
2797 
2798 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2799 
2800 		return(tr_func(target, tr_config->tr_arg));
2801 	} else
2802 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2803 }
2804 
2805 static int
2806 xptdefdevicefunc(struct cam_ed *device, void *arg)
2807 {
2808 	struct xpt_traverse_config *tr_config;
2809 
2810 	tr_config = (struct xpt_traverse_config *)arg;
2811 
2812 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2813 		xpt_devicefunc_t *tr_func;
2814 
2815 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2816 
2817 		return(tr_func(device, tr_config->tr_arg));
2818 	} else
2819 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2820 }
2821 
2822 static int
2823 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2824 {
2825 	struct xpt_traverse_config *tr_config;
2826 	xpt_periphfunc_t *tr_func;
2827 
2828 	tr_config = (struct xpt_traverse_config *)arg;
2829 
2830 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2831 
2832 	/*
2833 	 * Unlike the other default functions, we don't check for depth
2834 	 * here.  The peripheral driver level is the last level in the EDT,
2835 	 * so if we're here, we should execute the function in question.
2836 	 */
2837 	return(tr_func(periph, tr_config->tr_arg));
2838 }
2839 
2840 /*
2841  * Execute the given function for every bus in the EDT.
2842  */
2843 static int
2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2845 {
2846 	struct xpt_traverse_config tr_config;
2847 
2848 	tr_config.depth = XPT_DEPTH_BUS;
2849 	tr_config.tr_func = tr_func;
2850 	tr_config.tr_arg = arg;
2851 
2852 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2853 }
2854 
2855 /*
2856  * Execute the given function for every device in the EDT.
2857  */
2858 static int
2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2860 {
2861 	struct xpt_traverse_config tr_config;
2862 
2863 	tr_config.depth = XPT_DEPTH_DEVICE;
2864 	tr_config.tr_func = tr_func;
2865 	tr_config.tr_arg = arg;
2866 
2867 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2868 }
2869 
2870 static int
2871 xptsetasyncfunc(struct cam_ed *device, void *arg)
2872 {
2873 	struct cam_path path;
2874 	struct ccb_getdev cgd;
2875 	struct async_node *cur_entry;
2876 
2877 	cur_entry = (struct async_node *)arg;
2878 
2879 	/*
2880 	 * Don't report unconfigured devices (Wildcard devs,
2881 	 * devices only for target mode, device instances
2882 	 * that have been invalidated but are waiting for
2883 	 * their last reference count to be released).
2884 	 */
2885 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2886 		return (1);
2887 
2888 	xpt_compile_path(&path,
2889 			 NULL,
2890 			 device->target->bus->path_id,
2891 			 device->target->target_id,
2892 			 device->lun_id);
2893 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2894 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2895 	xpt_action((union ccb *)&cgd);
2896 	cur_entry->callback(cur_entry->callback_arg,
2897 			    AC_FOUND_DEVICE,
2898 			    &path, &cgd);
2899 	xpt_release_path(&path);
2900 
2901 	return(1);
2902 }
2903 
2904 static int
2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2906 {
2907 	struct cam_path path;
2908 	struct ccb_pathinq cpi;
2909 	struct async_node *cur_entry;
2910 
2911 	cur_entry = (struct async_node *)arg;
2912 
2913 	xpt_compile_path(&path, /*periph*/NULL,
2914 			 bus->sim->path_id,
2915 			 CAM_TARGET_WILDCARD,
2916 			 CAM_LUN_WILDCARD);
2917 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2918 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2919 	xpt_action((union ccb *)&cpi);
2920 	cur_entry->callback(cur_entry->callback_arg,
2921 			    AC_PATH_REGISTERED,
2922 			    &path, &cpi);
2923 	xpt_release_path(&path);
2924 
2925 	return(1);
2926 }
2927 
2928 static void
2929 xpt_action_sasync_cb(void *context, int pending)
2930 {
2931 	struct async_node *cur_entry;
2932 	struct xpt_task *task;
2933 	uint32_t added;
2934 
2935 	get_mplock();
2936 	task = (struct xpt_task *)context;
2937 	cur_entry = (struct async_node *)task->data1;
2938 	added = task->data2;
2939 
2940 	if ((added & AC_FOUND_DEVICE) != 0) {
2941 		/*
2942 		 * Get this peripheral up to date with all
2943 		 * the currently existing devices.
2944 		 */
2945 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946 	}
2947 	if ((added & AC_PATH_REGISTERED) != 0) {
2948 		/*
2949 		 * Get this peripheral up to date with all
2950 		 * the currently existing busses.
2951 		 */
2952 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2953 	}
2954 
2955 	rel_mplock();
2956 	kfree(task, M_CAMXPT);
2957 }
2958 
2959 void
2960 xpt_action(union ccb *start_ccb)
2961 {
2962 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2963 
2964 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2965 
2966 	switch (start_ccb->ccb_h.func_code) {
2967 	case XPT_SCSI_IO:
2968 	{
2969 		struct cam_ed *device;
2970 #ifdef CAMDEBUG
2971 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2972 		struct cam_path *path;
2973 
2974 		path = start_ccb->ccb_h.path;
2975 #endif
2976 
2977 		/*
2978 		 * For the sake of compatibility with SCSI-1
2979 		 * devices that may not understand the identify
2980 		 * message, we include lun information in the
2981 		 * second byte of all commands.  SCSI-1 specifies
2982 		 * that luns are a 3 bit value and reserves only 3
2983 		 * bits for lun information in the CDB.  Later
2984 		 * revisions of the SCSI spec allow for more than 8
2985 		 * luns, but have deprecated lun information in the
2986 		 * CDB.  So, if the lun won't fit, we must omit.
2987 		 *
2988 		 * Also be aware that during initial probing for devices,
2989 		 * the inquiry information is unknown but initialized to 0.
2990 		 * This means that this code will be exercised while probing
2991 		 * devices with an ANSI revision greater than 2.
2992 		 */
2993 		device = start_ccb->ccb_h.path->device;
2994 		if (device->protocol_version <= SCSI_REV_2
2995 		 && start_ccb->ccb_h.target_lun < 8
2996 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2997 
2998 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2999 			    start_ccb->ccb_h.target_lun << 5;
3000 		}
3001 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3002 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3003 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3004 			  	       &path->device->inq_data),
3005 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3006 					  cdb_str, sizeof(cdb_str))));
3007 		/* FALLTHROUGH */
3008 	}
3009 	case XPT_TARGET_IO:
3010 	case XPT_CONT_TARGET_IO:
3011 		start_ccb->csio.sense_resid = 0;
3012 		start_ccb->csio.resid = 0;
3013 		/* FALLTHROUGH */
3014 	case XPT_RESET_DEV:
3015 	case XPT_ENG_EXEC:
3016 	{
3017 		struct cam_path *path;
3018 		struct cam_sim *sim;
3019 		int runq;
3020 
3021 		path = start_ccb->ccb_h.path;
3022 
3023 		sim = path->bus->sim;
3024 		if (sim == &cam_dead_sim) {
3025 			/* The SIM has gone; just execute the CCB directly. */
3026 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3027 			(*(sim->sim_action))(sim, start_ccb);
3028 			break;
3029 		}
3030 
3031 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3032 		if (path->device->qfrozen_cnt == 0)
3033 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3034 		else
3035 			runq = 0;
3036 		if (runq != 0)
3037 			xpt_run_dev_sendq(path->bus);
3038 		break;
3039 	}
3040 	case XPT_SET_TRAN_SETTINGS:
3041 	{
3042 		xpt_set_transfer_settings(&start_ccb->cts,
3043 					  start_ccb->ccb_h.path->device,
3044 					  /*async_update*/FALSE);
3045 		break;
3046 	}
3047 	case XPT_CALC_GEOMETRY:
3048 	{
3049 		struct cam_sim *sim;
3050 
3051 		/* Filter out garbage */
3052 		if (start_ccb->ccg.block_size == 0
3053 		 || start_ccb->ccg.volume_size == 0) {
3054 			start_ccb->ccg.cylinders = 0;
3055 			start_ccb->ccg.heads = 0;
3056 			start_ccb->ccg.secs_per_track = 0;
3057 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3058 			break;
3059 		}
3060 		sim = start_ccb->ccb_h.path->bus->sim;
3061 		(*(sim->sim_action))(sim, start_ccb);
3062 		break;
3063 	}
3064 	case XPT_ABORT:
3065 	{
3066 		union ccb* abort_ccb;
3067 
3068 		abort_ccb = start_ccb->cab.abort_ccb;
3069 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3070 
3071 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3072 				struct cam_ccbq *ccbq;
3073 
3074 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3075 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3076 				abort_ccb->ccb_h.status =
3077 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3078 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3079 				xpt_done(abort_ccb);
3080 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3081 				break;
3082 			}
3083 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3084 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3085 				/*
3086 				 * We've caught this ccb en route to
3087 				 * the SIM.  Flag it for abort and the
3088 				 * SIM will do so just before starting
3089 				 * real work on the CCB.
3090 				 */
3091 				abort_ccb->ccb_h.status =
3092 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3093 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3094 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3095 				break;
3096 			}
3097 		}
3098 		if (XPT_FC_IS_QUEUED(abort_ccb)
3099 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3100 			/*
3101 			 * It's already completed but waiting
3102 			 * for our SWI to get to it.
3103 			 */
3104 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3105 			break;
3106 		}
3107 		/*
3108 		 * If we weren't able to take care of the abort request
3109 		 * in the XPT, pass the request down to the SIM for processing.
3110 		 */
3111 		/* FALLTHROUGH */
3112 	}
3113 	case XPT_ACCEPT_TARGET_IO:
3114 	case XPT_EN_LUN:
3115 	case XPT_IMMED_NOTIFY:
3116 	case XPT_NOTIFY_ACK:
3117 	case XPT_GET_TRAN_SETTINGS:
3118 	case XPT_RESET_BUS:
3119 	{
3120 		struct cam_sim *sim;
3121 
3122 		sim = start_ccb->ccb_h.path->bus->sim;
3123 		(*(sim->sim_action))(sim, start_ccb);
3124 		break;
3125 	}
3126 	case XPT_PATH_INQ:
3127 	{
3128 		struct cam_sim *sim;
3129 
3130 		sim = start_ccb->ccb_h.path->bus->sim;
3131 		(*(sim->sim_action))(sim, start_ccb);
3132 		break;
3133 	}
3134 	case XPT_PATH_STATS:
3135 		start_ccb->cpis.last_reset =
3136 			start_ccb->ccb_h.path->bus->last_reset;
3137 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3138 		break;
3139 	case XPT_GDEV_TYPE:
3140 	{
3141 		struct cam_ed *dev;
3142 
3143 		dev = start_ccb->ccb_h.path->device;
3144 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3145 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3146 		} else {
3147 			struct ccb_getdev *cgd;
3148 			struct cam_eb *bus;
3149 			struct cam_et *tar;
3150 
3151 			cgd = &start_ccb->cgd;
3152 			bus = cgd->ccb_h.path->bus;
3153 			tar = cgd->ccb_h.path->target;
3154 			cgd->inq_data = dev->inq_data;
3155 			cgd->ccb_h.status = CAM_REQ_CMP;
3156 			cgd->serial_num_len = dev->serial_num_len;
3157 			if ((dev->serial_num_len > 0)
3158 			 && (dev->serial_num != NULL))
3159 				bcopy(dev->serial_num, cgd->serial_num,
3160 				      dev->serial_num_len);
3161 		}
3162 		break;
3163 	}
3164 	case XPT_GDEV_STATS:
3165 	{
3166 		struct cam_ed *dev;
3167 
3168 		dev = start_ccb->ccb_h.path->device;
3169 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3170 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3171 		} else {
3172 			struct ccb_getdevstats *cgds;
3173 			struct cam_eb *bus;
3174 			struct cam_et *tar;
3175 
3176 			cgds = &start_ccb->cgds;
3177 			bus = cgds->ccb_h.path->bus;
3178 			tar = cgds->ccb_h.path->target;
3179 			cgds->dev_openings = dev->ccbq.dev_openings;
3180 			cgds->dev_active = dev->ccbq.dev_active;
3181 			cgds->devq_openings = dev->ccbq.devq_openings;
3182 			cgds->devq_queued = dev->ccbq.queue.entries;
3183 			cgds->held = dev->ccbq.held;
3184 			cgds->last_reset = tar->last_reset;
3185 			cgds->maxtags = dev->quirk->maxtags;
3186 			cgds->mintags = dev->quirk->mintags;
3187 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3188 				cgds->last_reset = bus->last_reset;
3189 			cgds->ccb_h.status = CAM_REQ_CMP;
3190 		}
3191 		break;
3192 	}
3193 	case XPT_GDEVLIST:
3194 	{
3195 		struct cam_periph	*nperiph;
3196 		struct periph_list	*periph_head;
3197 		struct ccb_getdevlist	*cgdl;
3198 		u_int			i;
3199 		struct cam_ed		*device;
3200 		int			found;
3201 
3202 
3203 		found = 0;
3204 
3205 		/*
3206 		 * Don't want anyone mucking with our data.
3207 		 */
3208 		device = start_ccb->ccb_h.path->device;
3209 		periph_head = &device->periphs;
3210 		cgdl = &start_ccb->cgdl;
3211 
3212 		/*
3213 		 * Check and see if the list has changed since the user
3214 		 * last requested a list member.  If so, tell them that the
3215 		 * list has changed, and therefore they need to start over
3216 		 * from the beginning.
3217 		 */
3218 		if ((cgdl->index != 0) &&
3219 		    (cgdl->generation != device->generation)) {
3220 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3221 			break;
3222 		}
3223 
3224 		/*
3225 		 * Traverse the list of peripherals and attempt to find
3226 		 * the requested peripheral.
3227 		 */
3228 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3229 		     (nperiph != NULL) && (i <= cgdl->index);
3230 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3231 			if (i == cgdl->index) {
3232 				strncpy(cgdl->periph_name,
3233 					nperiph->periph_name,
3234 					DEV_IDLEN);
3235 				cgdl->unit_number = nperiph->unit_number;
3236 				found = 1;
3237 			}
3238 		}
3239 		if (found == 0) {
3240 			cgdl->status = CAM_GDEVLIST_ERROR;
3241 			break;
3242 		}
3243 
3244 		if (nperiph == NULL)
3245 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3246 		else
3247 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3248 
3249 		cgdl->index++;
3250 		cgdl->generation = device->generation;
3251 
3252 		cgdl->ccb_h.status = CAM_REQ_CMP;
3253 		break;
3254 	}
3255 	case XPT_DEV_MATCH:
3256 	{
3257 		dev_pos_type position_type;
3258 		struct ccb_dev_match *cdm;
3259 		int ret;
3260 
3261 		cdm = &start_ccb->cdm;
3262 
3263 		/*
3264 		 * There are two ways of getting at information in the EDT.
3265 		 * The first way is via the primary EDT tree.  It starts
3266 		 * with a list of busses, then a list of targets on a bus,
3267 		 * then devices/luns on a target, and then peripherals on a
3268 		 * device/lun.  The "other" way is by the peripheral driver
3269 		 * lists.  The peripheral driver lists are organized by
3270 		 * peripheral driver.  (obviously)  So it makes sense to
3271 		 * use the peripheral driver list if the user is looking
3272 		 * for something like "da1", or all "da" devices.  If the
3273 		 * user is looking for something on a particular bus/target
3274 		 * or lun, it's generally better to go through the EDT tree.
3275 		 */
3276 
3277 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3278 			position_type = cdm->pos.position_type;
3279 		else {
3280 			u_int i;
3281 
3282 			position_type = CAM_DEV_POS_NONE;
3283 
3284 			for (i = 0; i < cdm->num_patterns; i++) {
3285 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3286 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3287 					position_type = CAM_DEV_POS_EDT;
3288 					break;
3289 				}
3290 			}
3291 
3292 			if (cdm->num_patterns == 0)
3293 				position_type = CAM_DEV_POS_EDT;
3294 			else if (position_type == CAM_DEV_POS_NONE)
3295 				position_type = CAM_DEV_POS_PDRV;
3296 		}
3297 
3298 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3299 		case CAM_DEV_POS_EDT:
3300 			ret = xptedtmatch(cdm);
3301 			break;
3302 		case CAM_DEV_POS_PDRV:
3303 			ret = xptperiphlistmatch(cdm);
3304 			break;
3305 		default:
3306 			cdm->status = CAM_DEV_MATCH_ERROR;
3307 			break;
3308 		}
3309 
3310 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3311 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3312 		else
3313 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3314 
3315 		break;
3316 	}
3317 	case XPT_SASYNC_CB:
3318 	{
3319 		struct ccb_setasync *csa;
3320 		struct async_node *cur_entry;
3321 		struct async_list *async_head;
3322 		u_int32_t added;
3323 
3324 		csa = &start_ccb->csa;
3325 		added = csa->event_enable;
3326 		async_head = &csa->ccb_h.path->device->asyncs;
3327 
3328 		/*
3329 		 * If there is already an entry for us, simply
3330 		 * update it.
3331 		 */
3332 		cur_entry = SLIST_FIRST(async_head);
3333 		while (cur_entry != NULL) {
3334 			if ((cur_entry->callback_arg == csa->callback_arg)
3335 			 && (cur_entry->callback == csa->callback))
3336 				break;
3337 			cur_entry = SLIST_NEXT(cur_entry, links);
3338 		}
3339 
3340 		if (cur_entry != NULL) {
3341 		 	/*
3342 			 * If the request has no flags set,
3343 			 * remove the entry.
3344 			 */
3345 			added &= ~cur_entry->event_enable;
3346 			if (csa->event_enable == 0) {
3347 				SLIST_REMOVE(async_head, cur_entry,
3348 					     async_node, links);
3349 				csa->ccb_h.path->device->refcount--;
3350 				kfree(cur_entry, M_CAMXPT);
3351 			} else {
3352 				cur_entry->event_enable = csa->event_enable;
3353 			}
3354 		} else {
3355 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3356 					   M_INTWAIT);
3357 			cur_entry->event_enable = csa->event_enable;
3358 			cur_entry->callback_arg = csa->callback_arg;
3359 			cur_entry->callback = csa->callback;
3360 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3361 			csa->ccb_h.path->device->refcount++;
3362 		}
3363 
3364 		/*
3365 		 * Need to decouple this operation via a taskqueue so that
3366 		 * the locking doesn't become a mess.
3367 		 */
3368 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3369 			struct xpt_task *task;
3370 
3371 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3372 				      M_INTWAIT);
3373 
3374 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3375 			task->data1 = cur_entry;
3376 			task->data2 = added;
3377 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3378 					  &task->task);
3379 		}
3380 
3381 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3382 		break;
3383 	}
3384 	case XPT_REL_SIMQ:
3385 	{
3386 		struct ccb_relsim *crs;
3387 		struct cam_ed *dev;
3388 
3389 		crs = &start_ccb->crs;
3390 		dev = crs->ccb_h.path->device;
3391 		if (dev == NULL) {
3392 
3393 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3394 			break;
3395 		}
3396 
3397 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3398 
3399  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3400 				/* Don't ever go below one opening */
3401 				if (crs->openings > 0) {
3402 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3403 							    crs->openings);
3404 
3405 					if (bootverbose) {
3406 						xpt_print(crs->ccb_h.path,
3407 						    "tagged openings now %d\n",
3408 						    crs->openings);
3409 					}
3410 				}
3411 			}
3412 		}
3413 
3414 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3415 
3416 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3417 
3418 				/*
3419 				 * Just extend the old timeout and decrement
3420 				 * the freeze count so that a single timeout
3421 				 * is sufficient for releasing the queue.
3422 				 */
3423 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3424 				callout_stop(&dev->callout);
3425 			} else {
3426 
3427 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3428 			}
3429 
3430 			callout_reset(&dev->callout,
3431 				      (crs->release_timeout * hz) / 1000,
3432 				      xpt_release_devq_timeout, dev);
3433 
3434 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3435 
3436 		}
3437 
3438 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3439 
3440 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3441 				/*
3442 				 * Decrement the freeze count so that a single
3443 				 * completion is still sufficient to unfreeze
3444 				 * the queue.
3445 				 */
3446 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3447 			} else {
3448 
3449 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3450 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3451 			}
3452 		}
3453 
3454 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3455 
3456 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3457 			 || (dev->ccbq.dev_active == 0)) {
3458 
3459 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3460 			} else {
3461 
3462 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3463 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3464 			}
3465 		}
3466 
3467 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3468 
3469 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3470 					 /*run_queue*/TRUE);
3471 		}
3472 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3473 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3474 		break;
3475 	}
3476 	case XPT_SCAN_BUS:
3477 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3478 		break;
3479 	case XPT_SCAN_LUN:
3480 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3481 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3482 			     start_ccb);
3483 		break;
3484 	case XPT_DEBUG: {
3485 #ifdef CAMDEBUG
3486 #ifdef CAM_DEBUG_DELAY
3487 		cam_debug_delay = CAM_DEBUG_DELAY;
3488 #endif
3489 		cam_dflags = start_ccb->cdbg.flags;
3490 		if (cam_dpath != NULL) {
3491 			xpt_free_path(cam_dpath);
3492 			cam_dpath = NULL;
3493 		}
3494 
3495 		if (cam_dflags != CAM_DEBUG_NONE) {
3496 			if (xpt_create_path(&cam_dpath, xpt_periph,
3497 					    start_ccb->ccb_h.path_id,
3498 					    start_ccb->ccb_h.target_id,
3499 					    start_ccb->ccb_h.target_lun) !=
3500 					    CAM_REQ_CMP) {
3501 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3502 				cam_dflags = CAM_DEBUG_NONE;
3503 			} else {
3504 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3505 				xpt_print(cam_dpath, "debugging flags now %x\n",
3506 				    cam_dflags);
3507 			}
3508 		} else {
3509 			cam_dpath = NULL;
3510 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3511 		}
3512 #else /* !CAMDEBUG */
3513 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3514 #endif /* CAMDEBUG */
3515 		break;
3516 	}
3517 	case XPT_NOOP:
3518 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3519 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3520 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3521 		break;
3522 	default:
3523 	case XPT_SDEV_TYPE:
3524 	case XPT_TERM_IO:
3525 	case XPT_ENG_INQ:
3526 		/* XXX Implement */
3527 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3528 		break;
3529 	}
3530 }
3531 
3532 void
3533 xpt_polled_action(union ccb *start_ccb)
3534 {
3535 	u_int32_t timeout;
3536 	struct	  cam_sim *sim;
3537 	struct	  cam_devq *devq;
3538 	struct	  cam_ed *dev;
3539 
3540 	timeout = start_ccb->ccb_h.timeout;
3541 	sim = start_ccb->ccb_h.path->bus->sim;
3542 	devq = sim->devq;
3543 	dev = start_ccb->ccb_h.path->device;
3544 
3545 	sim_lock_assert_owned(sim->lock);
3546 
3547 	/*
3548 	 * Steal an opening so that no other queued requests
3549 	 * can get it before us while we simulate interrupts.
3550 	 */
3551 	dev->ccbq.devq_openings--;
3552 	dev->ccbq.dev_openings--;
3553 
3554 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3555 	   && (--timeout > 0)) {
3556 		DELAY(1000);
3557 		(*(sim->sim_poll))(sim);
3558 		camisr_runqueue(sim);
3559 	}
3560 
3561 	dev->ccbq.devq_openings++;
3562 	dev->ccbq.dev_openings++;
3563 
3564 	if (timeout != 0) {
3565 		xpt_action(start_ccb);
3566 		while(--timeout > 0) {
3567 			(*(sim->sim_poll))(sim);
3568 			camisr_runqueue(sim);
3569 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3570 			    != CAM_REQ_INPROG)
3571 				break;
3572 			DELAY(1000);
3573 		}
3574 		if (timeout == 0) {
3575 			/*
3576 			 * XXX Is it worth adding a sim_timeout entry
3577 			 * point so we can attempt recovery?  If
3578 			 * this is only used for dumps, I don't think
3579 			 * it is.
3580 			 */
3581 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3582 		}
3583 	} else {
3584 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3585 	}
3586 }
3587 
3588 /*
3589  * Schedule a peripheral driver to receive a ccb when it's
3590  * target device has space for more transactions.
3591  */
3592 void
3593 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3594 {
3595 	struct cam_ed *device;
3596 	union ccb *work_ccb;
3597 	int runq;
3598 
3599 	sim_lock_assert_owned(perph->sim->lock);
3600 
3601 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3602 	device = perph->path->device;
3603 	if (periph_is_queued(perph)) {
3604 		/* Simply reorder based on new priority */
3605 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3606 			  ("   change priority to %d\n", new_priority));
3607 		if (new_priority < perph->pinfo.priority) {
3608 			camq_change_priority(&device->drvq,
3609 					     perph->pinfo.index,
3610 					     new_priority);
3611 		}
3612 		runq = 0;
3613 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3614 		/* The SIM is gone so just call periph_start directly. */
3615 		work_ccb = xpt_get_ccb(perph->path->device);
3616 		if (work_ccb == NULL)
3617 			return; /* XXX */
3618 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3619 		perph->pinfo.priority = new_priority;
3620 		perph->periph_start(perph, work_ccb);
3621 		return;
3622 	} else {
3623 		/* New entry on the queue */
3624 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3625 			  ("   added periph to queue\n"));
3626 		perph->pinfo.priority = new_priority;
3627 		perph->pinfo.generation = ++device->drvq.generation;
3628 		camq_insert(&device->drvq, &perph->pinfo);
3629 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3630 	}
3631 	if (runq != 0) {
3632 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3633 			  ("   calling xpt_run_devq\n"));
3634 		xpt_run_dev_allocq(perph->path->bus);
3635 	}
3636 }
3637 
3638 
3639 /*
3640  * Schedule a device to run on a given queue.
3641  * If the device was inserted as a new entry on the queue,
3642  * return 1 meaning the device queue should be run. If we
3643  * were already queued, implying someone else has already
3644  * started the queue, return 0 so the caller doesn't attempt
3645  * to run the queue.
3646  */
3647 static int
3648 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3649 		 u_int32_t new_priority)
3650 {
3651 	int retval;
3652 	u_int32_t old_priority;
3653 
3654 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3655 
3656 	old_priority = pinfo->priority;
3657 
3658 	/*
3659 	 * Are we already queued?
3660 	 */
3661 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3662 		/* Simply reorder based on new priority */
3663 		if (new_priority < old_priority) {
3664 			camq_change_priority(queue, pinfo->index,
3665 					     new_priority);
3666 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3667 					("changed priority to %d\n",
3668 					 new_priority));
3669 		}
3670 		retval = 0;
3671 	} else {
3672 		/* New entry on the queue */
3673 		if (new_priority < old_priority)
3674 			pinfo->priority = new_priority;
3675 
3676 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3677 				("Inserting onto queue\n"));
3678 		pinfo->generation = ++queue->generation;
3679 		camq_insert(queue, pinfo);
3680 		retval = 1;
3681 	}
3682 	return (retval);
3683 }
3684 
3685 static void
3686 xpt_run_dev_allocq(struct cam_eb *bus)
3687 {
3688 	struct	cam_devq *devq;
3689 
3690 	if ((devq = bus->sim->devq) == NULL) {
3691 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3692 		return;
3693 	}
3694 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3695 
3696 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3697 			("   qfrozen_cnt == 0x%x, entries == %d, "
3698 			 "openings == %d, active == %d\n",
3699 			 devq->alloc_queue.qfrozen_cnt,
3700 			 devq->alloc_queue.entries,
3701 			 devq->alloc_openings,
3702 			 devq->alloc_active));
3703 
3704 	devq->alloc_queue.qfrozen_cnt++;
3705 	while ((devq->alloc_queue.entries > 0)
3706 	    && (devq->alloc_openings > 0)
3707 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3708 		struct	cam_ed_qinfo *qinfo;
3709 		struct	cam_ed *device;
3710 		union	ccb *work_ccb;
3711 		struct	cam_periph *drv;
3712 		struct	camq *drvq;
3713 
3714 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3715 							   CAMQ_HEAD);
3716 		device = qinfo->device;
3717 
3718 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3719 				("running device %p\n", device));
3720 
3721 		drvq = &device->drvq;
3722 
3723 #ifdef CAMDEBUG
3724 		if (drvq->entries <= 0) {
3725 			panic("xpt_run_dev_allocq: "
3726 			      "Device on queue without any work to do");
3727 		}
3728 #endif
3729 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3730 			devq->alloc_openings--;
3731 			devq->alloc_active++;
3732 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3733 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3734 				      drv->pinfo.priority);
3735 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3736 					("calling periph start\n"));
3737 			drv->periph_start(drv, work_ccb);
3738 		} else {
3739 			/*
3740 			 * Malloc failure in alloc_ccb
3741 			 */
3742 			/*
3743 			 * XXX add us to a list to be run from free_ccb
3744 			 * if we don't have any ccbs active on this
3745 			 * device queue otherwise we may never get run
3746 			 * again.
3747 			 */
3748 			break;
3749 		}
3750 
3751 		if (drvq->entries > 0) {
3752 			/* We have more work.  Attempt to reschedule */
3753 			xpt_schedule_dev_allocq(bus, device);
3754 		}
3755 	}
3756 	devq->alloc_queue.qfrozen_cnt--;
3757 }
3758 
3759 static void
3760 xpt_run_dev_sendq(struct cam_eb *bus)
3761 {
3762 	struct	cam_devq *devq;
3763 
3764 	if ((devq = bus->sim->devq) == NULL) {
3765 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3766 		return;
3767 	}
3768 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3769 
3770 	devq->send_queue.qfrozen_cnt++;
3771 	while ((devq->send_queue.entries > 0)
3772 	    && (devq->send_openings > 0)) {
3773 		struct	cam_ed_qinfo *qinfo;
3774 		struct	cam_ed *device;
3775 		union ccb *work_ccb;
3776 		struct	cam_sim *sim;
3777 
3778 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3779 			break;
3780 		}
3781 
3782 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3783 							   CAMQ_HEAD);
3784 		device = qinfo->device;
3785 
3786 		/*
3787 		 * If the device has been "frozen", don't attempt
3788 		 * to run it.
3789 		 */
3790 		if (device->qfrozen_cnt > 0) {
3791 			continue;
3792 		}
3793 
3794 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3795 				("running device %p\n", device));
3796 
3797 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3798 		if (work_ccb == NULL) {
3799 			kprintf("device on run queue with no ccbs???\n");
3800 			continue;
3801 		}
3802 
3803 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3804 
3805 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3806 			if (xsoftc.num_highpower <= 0) {
3807 				/*
3808 				 * We got a high power command, but we
3809 				 * don't have any available slots.  Freeze
3810 				 * the device queue until we have a slot
3811 				 * available.
3812 				 */
3813 				device->qfrozen_cnt++;
3814 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3815 						   &work_ccb->ccb_h,
3816 						   xpt_links.stqe);
3817 
3818 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3819 				continue;
3820 			} else {
3821 				/*
3822 				 * Consume a high power slot while
3823 				 * this ccb runs.
3824 				 */
3825 				xsoftc.num_highpower--;
3826 			}
3827 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3828 		}
3829 		devq->active_dev = device;
3830 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3831 
3832 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3833 
3834 		devq->send_openings--;
3835 		devq->send_active++;
3836 
3837 		if (device->ccbq.queue.entries > 0)
3838 			xpt_schedule_dev_sendq(bus, device);
3839 
3840 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3841 			/*
3842 			 * The client wants to freeze the queue
3843 			 * after this CCB is sent.
3844 			 */
3845 			device->qfrozen_cnt++;
3846 		}
3847 
3848 		/* In Target mode, the peripheral driver knows best... */
3849 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3850 			if ((device->inq_flags & SID_CmdQue) != 0
3851 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3852 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3853 			else
3854 				/*
3855 				 * Clear this in case of a retried CCB that
3856 				 * failed due to a rejected tag.
3857 				 */
3858 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3859 		}
3860 
3861 		/*
3862 		 * Device queues can be shared among multiple sim instances
3863 		 * that reside on different busses.  Use the SIM in the queue
3864 		 * CCB's path, rather than the one in the bus that was passed
3865 		 * into this function.
3866 		 */
3867 		sim = work_ccb->ccb_h.path->bus->sim;
3868 		(*(sim->sim_action))(sim, work_ccb);
3869 
3870 		devq->active_dev = NULL;
3871 	}
3872 	devq->send_queue.qfrozen_cnt--;
3873 }
3874 
3875 /*
3876  * This function merges stuff from the slave ccb into the master ccb, while
3877  * keeping important fields in the master ccb constant.
3878  */
3879 void
3880 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3881 {
3882 	/*
3883 	 * Pull fields that are valid for peripheral drivers to set
3884 	 * into the master CCB along with the CCB "payload".
3885 	 */
3886 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3887 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3888 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3889 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3890 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3891 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3892 }
3893 
3894 void
3895 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3896 {
3897 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3898 	callout_init(&ccb_h->timeout_ch);
3899 	ccb_h->pinfo.priority = priority;
3900 	ccb_h->path = path;
3901 	ccb_h->path_id = path->bus->path_id;
3902 	if (path->target)
3903 		ccb_h->target_id = path->target->target_id;
3904 	else
3905 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3906 	if (path->device) {
3907 		ccb_h->target_lun = path->device->lun_id;
3908 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3909 	} else {
3910 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3911 	}
3912 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3913 	ccb_h->flags = 0;
3914 }
3915 
3916 /* Path manipulation functions */
3917 cam_status
3918 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3919 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3920 {
3921 	struct	   cam_path *path;
3922 	cam_status status;
3923 
3924 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3925 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3926 	if (status != CAM_REQ_CMP) {
3927 		kfree(path, M_CAMXPT);
3928 		path = NULL;
3929 	}
3930 	*new_path_ptr = path;
3931 	return (status);
3932 }
3933 
3934 cam_status
3935 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3936 			 struct cam_periph *periph, path_id_t path_id,
3937 			 target_id_t target_id, lun_id_t lun_id)
3938 {
3939 	struct	   cam_path *path;
3940 	struct	   cam_eb *bus = NULL;
3941 	cam_status status;
3942 	int	   need_unlock = 0;
3943 
3944 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3945 
3946 	if (path_id != CAM_BUS_WILDCARD) {
3947 		bus = xpt_find_bus(path_id);
3948 		if (bus != NULL) {
3949 			need_unlock = 1;
3950 			CAM_SIM_LOCK(bus->sim);
3951 		}
3952 	}
3953 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3954 	if (need_unlock)
3955 		CAM_SIM_UNLOCK(bus->sim);
3956 	if (status != CAM_REQ_CMP) {
3957 		kfree(path, M_CAMXPT);
3958 		path = NULL;
3959 	}
3960 	*new_path_ptr = path;
3961 	return (status);
3962 }
3963 
3964 static cam_status
3965 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3966 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3967 {
3968 	struct	     cam_eb *bus;
3969 	struct	     cam_et *target;
3970 	struct	     cam_ed *device;
3971 	cam_status   status;
3972 
3973 	status = CAM_REQ_CMP;	/* Completed without error */
3974 	target = NULL;		/* Wildcarded */
3975 	device = NULL;		/* Wildcarded */
3976 
3977 	/*
3978 	 * We will potentially modify the EDT, so block interrupts
3979 	 * that may attempt to create cam paths.
3980 	 */
3981 	bus = xpt_find_bus(path_id);
3982 	if (bus == NULL) {
3983 		status = CAM_PATH_INVALID;
3984 	} else {
3985 		target = xpt_find_target(bus, target_id);
3986 		if (target == NULL) {
3987 			/* Create one */
3988 			struct cam_et *new_target;
3989 
3990 			new_target = xpt_alloc_target(bus, target_id);
3991 			if (new_target == NULL) {
3992 				status = CAM_RESRC_UNAVAIL;
3993 			} else {
3994 				target = new_target;
3995 			}
3996 		}
3997 		if (target != NULL) {
3998 			device = xpt_find_device(target, lun_id);
3999 			if (device == NULL) {
4000 				/* Create one */
4001 				struct cam_ed *new_device;
4002 
4003 				new_device = xpt_alloc_device(bus,
4004 							      target,
4005 							      lun_id);
4006 				if (new_device == NULL) {
4007 					status = CAM_RESRC_UNAVAIL;
4008 				} else {
4009 					device = new_device;
4010 				}
4011 			}
4012 		}
4013 	}
4014 
4015 	/*
4016 	 * Only touch the user's data if we are successful.
4017 	 */
4018 	if (status == CAM_REQ_CMP) {
4019 		new_path->periph = perph;
4020 		new_path->bus = bus;
4021 		new_path->target = target;
4022 		new_path->device = device;
4023 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4024 	} else {
4025 		if (device != NULL)
4026 			xpt_release_device(bus, target, device);
4027 		if (target != NULL)
4028 			xpt_release_target(bus, target);
4029 		if (bus != NULL)
4030 			xpt_release_bus(bus);
4031 	}
4032 	return (status);
4033 }
4034 
4035 static void
4036 xpt_release_path(struct cam_path *path)
4037 {
4038 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4039 	if (path->device != NULL) {
4040 		xpt_release_device(path->bus, path->target, path->device);
4041 		path->device = NULL;
4042 	}
4043 	if (path->target != NULL) {
4044 		xpt_release_target(path->bus, path->target);
4045 		path->target = NULL;
4046 	}
4047 	if (path->bus != NULL) {
4048 		xpt_release_bus(path->bus);
4049 		path->bus = NULL;
4050 	}
4051 }
4052 
4053 void
4054 xpt_free_path(struct cam_path *path)
4055 {
4056 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4057 	xpt_release_path(path);
4058 	kfree(path, M_CAMXPT);
4059 }
4060 
4061 
4062 /*
4063  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4064  * in path1, 2 for match with wildcards in path2.
4065  */
4066 int
4067 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4068 {
4069 	int retval = 0;
4070 
4071 	if (path1->bus != path2->bus) {
4072 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4073 			retval = 1;
4074 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4075 			retval = 2;
4076 		else
4077 			return (-1);
4078 	}
4079 	if (path1->target != path2->target) {
4080 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4081 			if (retval == 0)
4082 				retval = 1;
4083 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4084 			retval = 2;
4085 		else
4086 			return (-1);
4087 	}
4088 	if (path1->device != path2->device) {
4089 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4090 			if (retval == 0)
4091 				retval = 1;
4092 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4093 			retval = 2;
4094 		else
4095 			return (-1);
4096 	}
4097 	return (retval);
4098 }
4099 
4100 void
4101 xpt_print_path(struct cam_path *path)
4102 {
4103 
4104 	if (path == NULL)
4105 		kprintf("(nopath): ");
4106 	else {
4107 		if (path->periph != NULL)
4108 			kprintf("(%s%d:", path->periph->periph_name,
4109 			       path->periph->unit_number);
4110 		else
4111 			kprintf("(noperiph:");
4112 
4113 		if (path->bus != NULL)
4114 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4115 			       path->bus->sim->unit_number,
4116 			       path->bus->sim->bus_id);
4117 		else
4118 			kprintf("nobus:");
4119 
4120 		if (path->target != NULL)
4121 			kprintf("%d:", path->target->target_id);
4122 		else
4123 			kprintf("X:");
4124 
4125 		if (path->device != NULL)
4126 			kprintf("%d): ", path->device->lun_id);
4127 		else
4128 			kprintf("X): ");
4129 	}
4130 }
4131 
4132 void
4133 xpt_print(struct cam_path *path, const char *fmt, ...)
4134 {
4135 	__va_list ap;
4136 	xpt_print_path(path);
4137 	__va_start(ap, fmt);
4138 	kvprintf(fmt, ap);
4139 	__va_end(ap);
4140 }
4141 
4142 int
4143 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4144 {
4145 	struct sbuf sb;
4146 
4147 	sim_lock_assert_owned(path->bus->sim->lock);
4148 
4149 	sbuf_new(&sb, str, str_len, 0);
4150 
4151 	if (path == NULL)
4152 		sbuf_printf(&sb, "(nopath): ");
4153 	else {
4154 		if (path->periph != NULL)
4155 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4156 				    path->periph->unit_number);
4157 		else
4158 			sbuf_printf(&sb, "(noperiph:");
4159 
4160 		if (path->bus != NULL)
4161 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4162 				    path->bus->sim->unit_number,
4163 				    path->bus->sim->bus_id);
4164 		else
4165 			sbuf_printf(&sb, "nobus:");
4166 
4167 		if (path->target != NULL)
4168 			sbuf_printf(&sb, "%d:", path->target->target_id);
4169 		else
4170 			sbuf_printf(&sb, "X:");
4171 
4172 		if (path->device != NULL)
4173 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4174 		else
4175 			sbuf_printf(&sb, "X): ");
4176 	}
4177 	sbuf_finish(&sb);
4178 
4179 	return(sbuf_len(&sb));
4180 }
4181 
4182 path_id_t
4183 xpt_path_path_id(struct cam_path *path)
4184 {
4185 	sim_lock_assert_owned(path->bus->sim->lock);
4186 
4187 	return(path->bus->path_id);
4188 }
4189 
4190 target_id_t
4191 xpt_path_target_id(struct cam_path *path)
4192 {
4193 	sim_lock_assert_owned(path->bus->sim->lock);
4194 
4195 	if (path->target != NULL)
4196 		return (path->target->target_id);
4197 	else
4198 		return (CAM_TARGET_WILDCARD);
4199 }
4200 
4201 lun_id_t
4202 xpt_path_lun_id(struct cam_path *path)
4203 {
4204 	sim_lock_assert_owned(path->bus->sim->lock);
4205 
4206 	if (path->device != NULL)
4207 		return (path->device->lun_id);
4208 	else
4209 		return (CAM_LUN_WILDCARD);
4210 }
4211 
4212 struct cam_sim *
4213 xpt_path_sim(struct cam_path *path)
4214 {
4215 	return (path->bus->sim);
4216 }
4217 
4218 struct cam_periph*
4219 xpt_path_periph(struct cam_path *path)
4220 {
4221 	sim_lock_assert_owned(path->bus->sim->lock);
4222 
4223 	return (path->periph);
4224 }
4225 
4226 char *
4227 xpt_path_serialno(struct cam_path *path)
4228 {
4229 	return (path->device->serial_num);
4230 }
4231 
4232 /*
4233  * Release a CAM control block for the caller.  Remit the cost of the structure
4234  * to the device referenced by the path.  If the this device had no 'credits'
4235  * and peripheral drivers have registered async callbacks for this notification
4236  * call them now.
4237  */
4238 void
4239 xpt_release_ccb(union ccb *free_ccb)
4240 {
4241 	struct	 cam_path *path;
4242 	struct	 cam_ed *device;
4243 	struct	 cam_eb *bus;
4244 	struct   cam_sim *sim;
4245 
4246 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4247 	path = free_ccb->ccb_h.path;
4248 	device = path->device;
4249 	bus = path->bus;
4250 	sim = bus->sim;
4251 
4252 	sim_lock_assert_owned(sim->lock);
4253 
4254 	cam_ccbq_release_opening(&device->ccbq);
4255 	if (sim->ccb_count > sim->max_ccbs) {
4256 		xpt_free_ccb(free_ccb);
4257 		sim->ccb_count--;
4258 	} else if (sim == &cam_dead_sim) {
4259 		xpt_free_ccb(free_ccb);
4260 	} else  {
4261 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4262 		    xpt_links.sle);
4263 	}
4264 	if (sim->devq == NULL) {
4265 		return;
4266 	}
4267 	sim->devq->alloc_openings++;
4268 	sim->devq->alloc_active--;
4269 	/* XXX Turn this into an inline function - xpt_run_device?? */
4270 	if ((device_is_alloc_queued(device) == 0)
4271 	 && (device->drvq.entries > 0)) {
4272 		xpt_schedule_dev_allocq(bus, device);
4273 	}
4274 	if (dev_allocq_is_runnable(sim->devq))
4275 		xpt_run_dev_allocq(bus);
4276 }
4277 
4278 /* Functions accessed by SIM drivers */
4279 
4280 /*
4281  * A sim structure, listing the SIM entry points and instance
4282  * identification info is passed to xpt_bus_register to hook the SIM
4283  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4284  * for this new bus and places it in the array of busses and assigns
4285  * it a path_id.  The path_id may be influenced by "hard wiring"
4286  * information specified by the user.  Once interrupt services are
4287  * availible, the bus will be probed.
4288  */
4289 int32_t
4290 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4291 {
4292 	struct cam_eb *new_bus;
4293 	struct cam_eb *old_bus;
4294 	struct ccb_pathinq cpi;
4295 
4296 	sim_lock_assert_owned(sim->lock);
4297 
4298 	sim->bus_id = bus;
4299 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4300 
4301 	if (strcmp(sim->sim_name, "xpt") != 0) {
4302 		sim->path_id =
4303 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4304 	}
4305 
4306 	TAILQ_INIT(&new_bus->et_entries);
4307 	new_bus->path_id = sim->path_id;
4308 	new_bus->sim = sim;
4309 	++sim->refcount;
4310 	timevalclear(&new_bus->last_reset);
4311 	new_bus->flags = 0;
4312 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4313 	new_bus->generation = 0;
4314 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4315 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4316 	while (old_bus != NULL
4317 	    && old_bus->path_id < new_bus->path_id)
4318 		old_bus = TAILQ_NEXT(old_bus, links);
4319 	if (old_bus != NULL)
4320 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4321 	else
4322 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4323 	xsoftc.bus_generation++;
4324 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4325 
4326 	/* Notify interested parties */
4327 	if (sim->path_id != CAM_XPT_PATH_ID) {
4328 		struct cam_path path;
4329 
4330 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4331 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4332 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4333 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4334 		xpt_action((union ccb *)&cpi);
4335 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4336 		xpt_release_path(&path);
4337 	}
4338 	return (CAM_SUCCESS);
4339 }
4340 
4341 /*
4342  * Deregister a bus.  We must clean out all transactions pending on the bus.
4343  * This routine is typically called prior to cam_sim_free() (e.g. see
4344  * dev/usbmisc/umass/umass.c)
4345  */
4346 int32_t
4347 xpt_bus_deregister(path_id_t pathid)
4348 {
4349 	struct cam_path bus_path;
4350 	struct cam_et *target;
4351 	struct cam_ed *device;
4352 	struct cam_ed_qinfo *qinfo;
4353 	struct cam_devq *devq;
4354 	struct cam_periph *periph;
4355 	struct cam_sim *ccbsim;
4356 	union ccb *work_ccb;
4357 	cam_status status;
4358 	int retries = 0;
4359 
4360 	status = xpt_compile_path(&bus_path, NULL, pathid,
4361 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4362 	if (status != CAM_REQ_CMP)
4363 		return (status);
4364 
4365 	/*
4366 	 * This should clear out all pending requests and timeouts, but
4367 	 * the ccb's may be queued to a software interrupt.
4368 	 *
4369 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4370 	 * and it really ought to.
4371 	 */
4372 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4373 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4374 
4375 	/*
4376 	 * Mark the SIM as having been deregistered.  This prevents
4377 	 * certain operations from re-queueing to it, stops new devices
4378 	 * from being added, etc.
4379 	 */
4380 	devq = bus_path.bus->sim->devq;
4381 	ccbsim = bus_path.bus->sim;
4382 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4383 
4384 again:
4385 	/*
4386 	 * Execute any pending operations now.
4387 	 */
4388 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4389 	    CAMQ_HEAD)) != NULL ||
4390 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4391 	    CAMQ_HEAD)) != NULL) {
4392 		do {
4393 			device = qinfo->device;
4394 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4395 			if (work_ccb != NULL) {
4396 				devq->active_dev = device;
4397 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4398 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4399 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4400 			}
4401 
4402 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4403 			    CAMQ_HEAD);
4404 			if (periph != NULL)
4405 				xpt_schedule(periph, periph->pinfo.priority);
4406 		} while (work_ccb != NULL || periph != NULL);
4407 	}
4408 
4409 	/*
4410 	 * Make sure all completed CCBs are processed.
4411 	 */
4412 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4413 		camisr_runqueue(ccbsim);
4414 	}
4415 
4416 	/*
4417 	 * Check for requeues, reissues asyncs if necessary
4418 	 */
4419 	if (CAMQ_GET_HEAD(&devq->send_queue))
4420 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4421 			devq->send_queue.entries);
4422 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4423 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4424 			devq->alloc_queue.entries);
4425 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4426 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4427 		if (++retries < 5) {
4428 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4429 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4430 			goto again;
4431 		}
4432 	}
4433 
4434 	/*
4435 	 * Retarget the bus and all cached sim pointers to dead_sim.
4436 	 *
4437 	 * Various CAM subsystems may be holding on to targets, devices,
4438 	 * and/or peripherals and may attempt to use the sim pointer cached
4439 	 * in some of these structures during close.
4440 	 */
4441 	bus_path.bus->sim = &cam_dead_sim;
4442 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4443 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4444 			device->sim = &cam_dead_sim;
4445 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4446 				periph->sim = &cam_dead_sim;
4447 			}
4448 		}
4449 	}
4450 
4451 	/*
4452 	 * Repeat the async's for the benefit of any new devices, such as
4453 	 * might be created from completed probes.  Any new device
4454 	 * ops will run on dead_sim.
4455 	 *
4456 	 * XXX There are probably races :-(
4457 	 */
4458 	CAM_SIM_LOCK(&cam_dead_sim);
4459 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4460 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4461 	CAM_SIM_UNLOCK(&cam_dead_sim);
4462 
4463 	/* Release the reference count held while registered. */
4464 	xpt_release_bus(bus_path.bus);
4465 	xpt_release_path(&bus_path);
4466 
4467 	/* Release the ref we got when the bus was registered */
4468 	cam_sim_release(ccbsim, 0);
4469 
4470 	return (CAM_REQ_CMP);
4471 }
4472 
4473 static path_id_t
4474 xptnextfreepathid(void)
4475 {
4476 	struct cam_eb *bus;
4477 	path_id_t pathid;
4478 	char *strval;
4479 
4480 	pathid = 0;
4481 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4482 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4483 retry:
4484 	/* Find an unoccupied pathid */
4485 	while (bus != NULL && bus->path_id <= pathid) {
4486 		if (bus->path_id == pathid)
4487 			pathid++;
4488 		bus = TAILQ_NEXT(bus, links);
4489 	}
4490 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4491 
4492 	/*
4493 	 * Ensure that this pathid is not reserved for
4494 	 * a bus that may be registered in the future.
4495 	 */
4496 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4497 		++pathid;
4498 		/* Start the search over */
4499 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4500 		goto retry;
4501 	}
4502 	return (pathid);
4503 }
4504 
4505 static path_id_t
4506 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4507 {
4508 	path_id_t pathid;
4509 	int i, dunit, val;
4510 	char buf[32];
4511 
4512 	pathid = CAM_XPT_PATH_ID;
4513 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4514 	i = -1;
4515 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4516 		if (strcmp(resource_query_name(i), "scbus")) {
4517 			/* Avoid a bit of foot shooting. */
4518 			continue;
4519 		}
4520 		dunit = resource_query_unit(i);
4521 		if (dunit < 0)		/* unwired?! */
4522 			continue;
4523 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4524 			if (sim_bus == val) {
4525 				pathid = dunit;
4526 				break;
4527 			}
4528 		} else if (sim_bus == 0) {
4529 			/* Unspecified matches bus 0 */
4530 			pathid = dunit;
4531 			break;
4532 		} else {
4533 			kprintf("Ambiguous scbus configuration for %s%d "
4534 			       "bus %d, cannot wire down.  The kernel "
4535 			       "config entry for scbus%d should "
4536 			       "specify a controller bus.\n"
4537 			       "Scbus will be assigned dynamically.\n",
4538 			       sim_name, sim_unit, sim_bus, dunit);
4539 			break;
4540 		}
4541 	}
4542 
4543 	if (pathid == CAM_XPT_PATH_ID)
4544 		pathid = xptnextfreepathid();
4545 	return (pathid);
4546 }
4547 
4548 void
4549 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4550 {
4551 	struct cam_eb *bus;
4552 	struct cam_et *target, *next_target;
4553 	struct cam_ed *device, *next_device;
4554 
4555 	sim_lock_assert_owned(path->bus->sim->lock);
4556 
4557 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4558 
4559 	/*
4560 	 * Most async events come from a CAM interrupt context.  In
4561 	 * a few cases, the error recovery code at the peripheral layer,
4562 	 * which may run from our SWI or a process context, may signal
4563 	 * deferred events with a call to xpt_async.
4564 	 */
4565 
4566 	bus = path->bus;
4567 
4568 	if (async_code == AC_BUS_RESET) {
4569 		/* Update our notion of when the last reset occurred */
4570 		microuptime(&bus->last_reset);
4571 	}
4572 
4573 	for (target = TAILQ_FIRST(&bus->et_entries);
4574 	     target != NULL;
4575 	     target = next_target) {
4576 
4577 		next_target = TAILQ_NEXT(target, links);
4578 
4579 		if (path->target != target
4580 		 && path->target->target_id != CAM_TARGET_WILDCARD
4581 		 && target->target_id != CAM_TARGET_WILDCARD)
4582 			continue;
4583 
4584 		if (async_code == AC_SENT_BDR) {
4585 			/* Update our notion of when the last reset occurred */
4586 			microuptime(&path->target->last_reset);
4587 		}
4588 
4589 		for (device = TAILQ_FIRST(&target->ed_entries);
4590 		     device != NULL;
4591 		     device = next_device) {
4592 
4593 			next_device = TAILQ_NEXT(device, links);
4594 
4595 			if (path->device != device
4596 			 && path->device->lun_id != CAM_LUN_WILDCARD
4597 			 && device->lun_id != CAM_LUN_WILDCARD)
4598 				continue;
4599 
4600 			xpt_dev_async(async_code, bus, target,
4601 				      device, async_arg);
4602 
4603 			xpt_async_bcast(&device->asyncs, async_code,
4604 					path, async_arg);
4605 		}
4606 	}
4607 
4608 	/*
4609 	 * If this wasn't a fully wildcarded async, tell all
4610 	 * clients that want all async events.
4611 	 */
4612 	if (bus != xpt_periph->path->bus)
4613 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4614 				path, async_arg);
4615 }
4616 
4617 static void
4618 xpt_async_bcast(struct async_list *async_head,
4619 		u_int32_t async_code,
4620 		struct cam_path *path, void *async_arg)
4621 {
4622 	struct async_node *cur_entry;
4623 
4624 	cur_entry = SLIST_FIRST(async_head);
4625 	while (cur_entry != NULL) {
4626 		struct async_node *next_entry;
4627 		/*
4628 		 * Grab the next list entry before we call the current
4629 		 * entry's callback.  This is because the callback function
4630 		 * can delete its async callback entry.
4631 		 */
4632 		next_entry = SLIST_NEXT(cur_entry, links);
4633 		if ((cur_entry->event_enable & async_code) != 0)
4634 			cur_entry->callback(cur_entry->callback_arg,
4635 					    async_code, path,
4636 					    async_arg);
4637 		cur_entry = next_entry;
4638 	}
4639 }
4640 
4641 /*
4642  * Handle any per-device event notifications that require action by the XPT.
4643  */
4644 static void
4645 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4646 	      struct cam_ed *device, void *async_arg)
4647 {
4648 	cam_status status;
4649 	struct cam_path newpath;
4650 
4651 	/*
4652 	 * We only need to handle events for real devices.
4653 	 */
4654 	if (target->target_id == CAM_TARGET_WILDCARD
4655 	 || device->lun_id == CAM_LUN_WILDCARD)
4656 		return;
4657 
4658 	/*
4659 	 * We need our own path with wildcards expanded to
4660 	 * handle certain types of events.
4661 	 */
4662 	if ((async_code == AC_SENT_BDR)
4663 	 || (async_code == AC_BUS_RESET)
4664 	 || (async_code == AC_INQ_CHANGED))
4665 		status = xpt_compile_path(&newpath, NULL,
4666 					  bus->path_id,
4667 					  target->target_id,
4668 					  device->lun_id);
4669 	else
4670 		status = CAM_REQ_CMP_ERR;
4671 
4672 	if (status == CAM_REQ_CMP) {
4673 
4674 		/*
4675 		 * Allow transfer negotiation to occur in a
4676 		 * tag free environment.
4677 		 */
4678 		if (async_code == AC_SENT_BDR
4679 		 || async_code == AC_BUS_RESET)
4680 			xpt_toggle_tags(&newpath);
4681 
4682 		if (async_code == AC_INQ_CHANGED) {
4683 			/*
4684 			 * We've sent a start unit command, or
4685 			 * something similar to a device that
4686 			 * may have caused its inquiry data to
4687 			 * change. So we re-scan the device to
4688 			 * refresh the inquiry data for it.
4689 			 */
4690 			xpt_scan_lun(newpath.periph, &newpath,
4691 				     CAM_EXPECT_INQ_CHANGE, NULL);
4692 		}
4693 		xpt_release_path(&newpath);
4694 	} else if (async_code == AC_LOST_DEVICE) {
4695 		/*
4696 		 * When we lose a device the device may be about to detach
4697 		 * the sim, we have to clear out all pending timeouts and
4698 		 * requests before that happens.  XXX it would be nice if
4699 		 * we could abort the requests pertaining to the device.
4700 		 */
4701 		xpt_release_devq_timeout(device);
4702 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4703 			device->flags |= CAM_DEV_UNCONFIGURED;
4704 			xpt_release_device(bus, target, device);
4705 		}
4706 	} else if (async_code == AC_TRANSFER_NEG) {
4707 		struct ccb_trans_settings *settings;
4708 
4709 		settings = (struct ccb_trans_settings *)async_arg;
4710 		xpt_set_transfer_settings(settings, device,
4711 					  /*async_update*/TRUE);
4712 	}
4713 }
4714 
4715 u_int32_t
4716 xpt_freeze_devq(struct cam_path *path, u_int count)
4717 {
4718 	struct ccb_hdr *ccbh;
4719 
4720 	sim_lock_assert_owned(path->bus->sim->lock);
4721 
4722 	path->device->qfrozen_cnt += count;
4723 
4724 	/*
4725 	 * Mark the last CCB in the queue as needing
4726 	 * to be requeued if the driver hasn't
4727 	 * changed it's state yet.  This fixes a race
4728 	 * where a ccb is just about to be queued to
4729 	 * a controller driver when it's interrupt routine
4730 	 * freezes the queue.  To completly close the
4731 	 * hole, controller drives must check to see
4732 	 * if a ccb's status is still CAM_REQ_INPROG
4733 	 * just before they queue
4734 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4735 	 * an example.
4736 	 */
4737 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4738 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4739 		ccbh->status = CAM_REQUEUE_REQ;
4740 	return (path->device->qfrozen_cnt);
4741 }
4742 
4743 u_int32_t
4744 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4745 {
4746 	sim_lock_assert_owned(sim->lock);
4747 
4748 	if (sim->devq == NULL)
4749 		return(count);
4750 	sim->devq->send_queue.qfrozen_cnt += count;
4751 	if (sim->devq->active_dev != NULL) {
4752 		struct ccb_hdr *ccbh;
4753 
4754 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4755 				  ccb_hdr_tailq);
4756 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4757 			ccbh->status = CAM_REQUEUE_REQ;
4758 	}
4759 	return (sim->devq->send_queue.qfrozen_cnt);
4760 }
4761 
4762 /*
4763  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4764  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4765  * freed, which is not the case here), but the device queue is also freed XXX
4766  * and we have to check that here.
4767  *
4768  * XXX fixme: could we simply not null-out the device queue via
4769  * cam_sim_free()?
4770  */
4771 static void
4772 xpt_release_devq_timeout(void *arg)
4773 {
4774 	struct cam_ed *device;
4775 
4776 	device = (struct cam_ed *)arg;
4777 
4778 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4779 }
4780 
4781 void
4782 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4783 {
4784 	sim_lock_assert_owned(path->bus->sim->lock);
4785 
4786 	xpt_release_devq_device(path->device, count, run_queue);
4787 }
4788 
4789 static void
4790 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4791 {
4792 	int	rundevq;
4793 
4794 	rundevq = 0;
4795 
4796 	if (dev->qfrozen_cnt > 0) {
4797 
4798 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4799 		dev->qfrozen_cnt -= count;
4800 		if (dev->qfrozen_cnt == 0) {
4801 
4802 			/*
4803 			 * No longer need to wait for a successful
4804 			 * command completion.
4805 			 */
4806 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4807 
4808 			/*
4809 			 * Remove any timeouts that might be scheduled
4810 			 * to release this queue.
4811 			 */
4812 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4813 				callout_stop(&dev->callout);
4814 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4815 			}
4816 
4817 			/*
4818 			 * Now that we are unfrozen schedule the
4819 			 * device so any pending transactions are
4820 			 * run.
4821 			 */
4822 			if ((dev->ccbq.queue.entries > 0)
4823 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4824 			 && (run_queue != 0)) {
4825 				rundevq = 1;
4826 			}
4827 		}
4828 	}
4829 	if (rundevq != 0)
4830 		xpt_run_dev_sendq(dev->target->bus);
4831 }
4832 
4833 void
4834 xpt_release_simq(struct cam_sim *sim, int run_queue)
4835 {
4836 	struct	camq *sendq;
4837 
4838 	sim_lock_assert_owned(sim->lock);
4839 
4840 	if (sim->devq == NULL)
4841 		return;
4842 
4843 	sendq = &(sim->devq->send_queue);
4844 	if (sendq->qfrozen_cnt > 0) {
4845 		sendq->qfrozen_cnt--;
4846 		if (sendq->qfrozen_cnt == 0) {
4847 			struct cam_eb *bus;
4848 
4849 			/*
4850 			 * If there is a timeout scheduled to release this
4851 			 * sim queue, remove it.  The queue frozen count is
4852 			 * already at 0.
4853 			 */
4854 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4855 				callout_stop(&sim->callout);
4856 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4857 			}
4858 			bus = xpt_find_bus(sim->path_id);
4859 
4860 			if (run_queue) {
4861 				/*
4862 				 * Now that we are unfrozen run the send queue.
4863 				 */
4864 				xpt_run_dev_sendq(bus);
4865 			}
4866 			xpt_release_bus(bus);
4867 		}
4868 	}
4869 }
4870 
4871 void
4872 xpt_done(union ccb *done_ccb)
4873 {
4874 	struct cam_sim *sim;
4875 
4876 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4877 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4878 		/*
4879 		 * Queue up the request for handling by our SWI handler
4880 		 * any of the "non-immediate" type of ccbs.
4881 		 */
4882 		sim = done_ccb->ccb_h.path->bus->sim;
4883 		switch (done_ccb->ccb_h.path->periph->type) {
4884 		case CAM_PERIPH_BIO:
4885 			spin_lock_wr(&sim->sim_spin);
4886 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4887 					  sim_links.tqe);
4888 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4889 			spin_unlock_wr(&sim->sim_spin);
4890 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4891 				spin_lock_wr(&cam_simq_spin);
4892 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4893 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4894 							  links);
4895 					sim->flags |= CAM_SIM_ON_DONEQ;
4896 				}
4897 				spin_unlock_wr(&cam_simq_spin);
4898 			}
4899 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4900 				setsoftcambio();
4901 			break;
4902 		default:
4903 			panic("unknown periph type %d",
4904 				done_ccb->ccb_h.path->periph->type);
4905 		}
4906 	}
4907 }
4908 
4909 union ccb *
4910 xpt_alloc_ccb(void)
4911 {
4912 	union ccb *new_ccb;
4913 
4914 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4915 	return (new_ccb);
4916 }
4917 
4918 void
4919 xpt_free_ccb(union ccb *free_ccb)
4920 {
4921 	kfree(free_ccb, M_CAMXPT);
4922 }
4923 
4924 
4925 
4926 /* Private XPT functions */
4927 
4928 /*
4929  * Get a CAM control block for the caller. Charge the structure to the device
4930  * referenced by the path.  If the this device has no 'credits' then the
4931  * device already has the maximum number of outstanding operations under way
4932  * and we return NULL. If we don't have sufficient resources to allocate more
4933  * ccbs, we also return NULL.
4934  */
4935 static union ccb *
4936 xpt_get_ccb(struct cam_ed *device)
4937 {
4938 	union ccb *new_ccb;
4939 	struct cam_sim *sim;
4940 
4941 	sim = device->sim;
4942 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4943 		new_ccb = xpt_alloc_ccb();
4944 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4945 			callout_init(&new_ccb->ccb_h.timeout_ch);
4946 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4947 				  xpt_links.sle);
4948 		sim->ccb_count++;
4949 	}
4950 	cam_ccbq_take_opening(&device->ccbq);
4951 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4952 	return (new_ccb);
4953 }
4954 
4955 static void
4956 xpt_release_bus(struct cam_eb *bus)
4957 {
4958 
4959 	if ((--bus->refcount == 0)
4960 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4961 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4962 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4963 		xsoftc.bus_generation++;
4964 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4965 		kfree(bus, M_CAMXPT);
4966 	}
4967 }
4968 
4969 static struct cam_et *
4970 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4971 {
4972 	struct cam_et *target;
4973 	struct cam_et *cur_target;
4974 
4975 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4976 
4977 	TAILQ_INIT(&target->ed_entries);
4978 	target->bus = bus;
4979 	target->target_id = target_id;
4980 	target->refcount = 1;
4981 	target->generation = 0;
4982 	timevalclear(&target->last_reset);
4983 	/*
4984 	 * Hold a reference to our parent bus so it
4985 	 * will not go away before we do.
4986 	 */
4987 	bus->refcount++;
4988 
4989 	/* Insertion sort into our bus's target list */
4990 	cur_target = TAILQ_FIRST(&bus->et_entries);
4991 	while (cur_target != NULL && cur_target->target_id < target_id)
4992 		cur_target = TAILQ_NEXT(cur_target, links);
4993 
4994 	if (cur_target != NULL) {
4995 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4996 	} else {
4997 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4998 	}
4999 	bus->generation++;
5000 	return (target);
5001 }
5002 
5003 static void
5004 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5005 {
5006 	if (target->refcount == 1) {
5007 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5008 		TAILQ_REMOVE(&bus->et_entries, target, links);
5009 		bus->generation++;
5010 		xpt_release_bus(bus);
5011 		KKASSERT(target->refcount == 1);
5012 		kfree(target, M_CAMXPT);
5013 	} else {
5014 		--target->refcount;
5015 	}
5016 }
5017 
5018 static struct cam_ed *
5019 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5020 {
5021 	struct	   cam_path path;
5022 	struct	   cam_ed *device;
5023 	struct	   cam_devq *devq;
5024 	cam_status status;
5025 
5026 	/*
5027 	 * Disallow new devices while trying to deregister a sim
5028 	 */
5029 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5030 		return (NULL);
5031 
5032 	/*
5033 	 * Make space for us in the device queue on our bus
5034 	 */
5035 	devq = bus->sim->devq;
5036 	if (devq == NULL)
5037 		return(NULL);
5038 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5039 
5040 	if (status != CAM_REQ_CMP) {
5041 		device = NULL;
5042 	} else {
5043 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5044 	}
5045 
5046 	if (device != NULL) {
5047 		struct cam_ed *cur_device;
5048 
5049 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5050 		device->alloc_ccb_entry.device = device;
5051 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5052 		device->send_ccb_entry.device = device;
5053 		device->target = target;
5054 		device->lun_id = lun_id;
5055 		device->sim = bus->sim;
5056 		/* Initialize our queues */
5057 		if (camq_init(&device->drvq, 0) != 0) {
5058 			kfree(device, M_CAMXPT);
5059 			return (NULL);
5060 		}
5061 		if (cam_ccbq_init(&device->ccbq,
5062 				  bus->sim->max_dev_openings) != 0) {
5063 			camq_fini(&device->drvq);
5064 			kfree(device, M_CAMXPT);
5065 			return (NULL);
5066 		}
5067 		SLIST_INIT(&device->asyncs);
5068 		SLIST_INIT(&device->periphs);
5069 		device->generation = 0;
5070 		device->owner = NULL;
5071 		/*
5072 		 * Take the default quirk entry until we have inquiry
5073 		 * data and can determine a better quirk to use.
5074 		 */
5075 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5076 		bzero(&device->inq_data, sizeof(device->inq_data));
5077 		device->inq_flags = 0;
5078 		device->queue_flags = 0;
5079 		device->serial_num = NULL;
5080 		device->serial_num_len = 0;
5081 		device->qfrozen_cnt = 0;
5082 		device->flags = CAM_DEV_UNCONFIGURED;
5083 		device->tag_delay_count = 0;
5084 		device->tag_saved_openings = 0;
5085 		device->refcount = 1;
5086 		callout_init(&device->callout);
5087 
5088 		/*
5089 		 * Hold a reference to our parent target so it
5090 		 * will not go away before we do.
5091 		 */
5092 		target->refcount++;
5093 
5094 		/*
5095 		 * XXX should be limited by number of CCBs this bus can
5096 		 * do.
5097 		 */
5098 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5099 		/* Insertion sort into our target's device list */
5100 		cur_device = TAILQ_FIRST(&target->ed_entries);
5101 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5102 			cur_device = TAILQ_NEXT(cur_device, links);
5103 		if (cur_device != NULL) {
5104 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5105 		} else {
5106 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5107 		}
5108 		target->generation++;
5109 		if (lun_id != CAM_LUN_WILDCARD) {
5110 			xpt_compile_path(&path,
5111 					 NULL,
5112 					 bus->path_id,
5113 					 target->target_id,
5114 					 lun_id);
5115 			xpt_devise_transport(&path);
5116 			xpt_release_path(&path);
5117 		}
5118 	}
5119 	return (device);
5120 }
5121 
5122 static void
5123 xpt_reference_device(struct cam_ed *device)
5124 {
5125 	++device->refcount;
5126 }
5127 
5128 static void
5129 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5130 		   struct cam_ed *device)
5131 {
5132 	struct cam_devq *devq;
5133 
5134 	if (device->refcount == 1) {
5135 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5136 
5137 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5138 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5139 			panic("Removing device while still queued for ccbs");
5140 
5141 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5142 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5143 			callout_stop(&device->callout);
5144 		}
5145 
5146 		TAILQ_REMOVE(&target->ed_entries, device,links);
5147 		target->generation++;
5148 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5149 		if ((devq = bus->sim->devq) != NULL) {
5150 			/* Release our slot in the devq */
5151 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5152 		}
5153 		camq_fini(&device->drvq);
5154 		camq_fini(&device->ccbq.queue);
5155 		xpt_release_target(bus, target);
5156 		KKASSERT(device->refcount == 1);
5157 		kfree(device, M_CAMXPT);
5158 	} else {
5159 		--device->refcount;
5160 	}
5161 }
5162 
5163 static u_int32_t
5164 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5165 {
5166 	int	diff;
5167 	int	result;
5168 	struct	cam_ed *dev;
5169 
5170 	dev = path->device;
5171 
5172 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5173 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5174 	if (result == CAM_REQ_CMP && (diff < 0)) {
5175 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5176 	}
5177 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5178 	 || (dev->inq_flags & SID_CmdQue) != 0)
5179 		dev->tag_saved_openings = newopenings;
5180 	/* Adjust the global limit */
5181 	dev->sim->max_ccbs += diff;
5182 	return (result);
5183 }
5184 
5185 static struct cam_eb *
5186 xpt_find_bus(path_id_t path_id)
5187 {
5188 	struct cam_eb *bus;
5189 
5190 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5191 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5192 		if (bus->path_id == path_id) {
5193 			bus->refcount++;
5194 			break;
5195 		}
5196 	}
5197 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5198 	return (bus);
5199 }
5200 
5201 static struct cam_et *
5202 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5203 {
5204 	struct cam_et *target;
5205 
5206 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5207 		if (target->target_id == target_id) {
5208 			target->refcount++;
5209 			break;
5210 		}
5211 	}
5212 	return (target);
5213 }
5214 
5215 static struct cam_ed *
5216 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5217 {
5218 	struct cam_ed *device;
5219 
5220 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5221 		if (device->lun_id == lun_id) {
5222 			device->refcount++;
5223 			break;
5224 		}
5225 	}
5226 	return (device);
5227 }
5228 
5229 typedef struct {
5230 	union	ccb *request_ccb;
5231 	struct 	ccb_pathinq *cpi;
5232 	int	counter;
5233 } xpt_scan_bus_info;
5234 
5235 /*
5236  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5237  * As the scan progresses, xpt_scan_bus is used as the
5238  * callback on completion function.
5239  */
5240 static void
5241 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5242 {
5243 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5244 		  ("xpt_scan_bus\n"));
5245 	switch (request_ccb->ccb_h.func_code) {
5246 	case XPT_SCAN_BUS:
5247 	{
5248 		xpt_scan_bus_info *scan_info;
5249 		union	ccb *work_ccb;
5250 		struct	cam_path *path;
5251 		u_int	i;
5252 		u_int	max_target;
5253 		u_int	initiator_id;
5254 
5255 		/* Find out the characteristics of the bus */
5256 		work_ccb = xpt_alloc_ccb();
5257 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5258 			      request_ccb->ccb_h.pinfo.priority);
5259 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5260 		xpt_action(work_ccb);
5261 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5262 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5263 			xpt_free_ccb(work_ccb);
5264 			xpt_done(request_ccb);
5265 			return;
5266 		}
5267 
5268 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5269 			/*
5270 			 * Can't scan the bus on an adapter that
5271 			 * cannot perform the initiator role.
5272 			 */
5273 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5274 			xpt_free_ccb(work_ccb);
5275 			xpt_done(request_ccb);
5276 			return;
5277 		}
5278 
5279 		/* Save some state for use while we probe for devices */
5280 		scan_info = (xpt_scan_bus_info *)
5281 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5282 		scan_info->request_ccb = request_ccb;
5283 		scan_info->cpi = &work_ccb->cpi;
5284 
5285 		/* Cache on our stack so we can work asynchronously */
5286 		max_target = scan_info->cpi->max_target;
5287 		initiator_id = scan_info->cpi->initiator_id;
5288 
5289 
5290 		/*
5291 		 * We can scan all targets in parallel, or do it sequentially.
5292 		 */
5293 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5294 			max_target = 0;
5295 			scan_info->counter = 0;
5296 		} else {
5297 			scan_info->counter = scan_info->cpi->max_target + 1;
5298 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5299 				scan_info->counter--;
5300 			}
5301 		}
5302 
5303 		for (i = 0; i <= max_target; i++) {
5304 			cam_status status;
5305 			if (i == initiator_id)
5306 				continue;
5307 
5308 			status = xpt_create_path(&path, xpt_periph,
5309 						 request_ccb->ccb_h.path_id,
5310 						 i, 0);
5311 			if (status != CAM_REQ_CMP) {
5312 				kprintf("xpt_scan_bus: xpt_create_path failed"
5313 				       " with status %#x, bus scan halted\n",
5314 				       status);
5315 				kfree(scan_info, M_CAMXPT);
5316 				request_ccb->ccb_h.status = status;
5317 				xpt_free_ccb(work_ccb);
5318 				xpt_done(request_ccb);
5319 				break;
5320 			}
5321 			work_ccb = xpt_alloc_ccb();
5322 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5323 				      request_ccb->ccb_h.pinfo.priority);
5324 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5325 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5326 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5327 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5328 			xpt_action(work_ccb);
5329 		}
5330 		break;
5331 	}
5332 	case XPT_SCAN_LUN:
5333 	{
5334 		cam_status status;
5335 		struct cam_path *path;
5336 		xpt_scan_bus_info *scan_info;
5337 		path_id_t path_id;
5338 		target_id_t target_id;
5339 		lun_id_t lun_id;
5340 
5341 		/* Reuse the same CCB to query if a device was really found */
5342 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5343 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5344 			      request_ccb->ccb_h.pinfo.priority);
5345 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5346 
5347 		path_id = request_ccb->ccb_h.path_id;
5348 		target_id = request_ccb->ccb_h.target_id;
5349 		lun_id = request_ccb->ccb_h.target_lun;
5350 		xpt_action(request_ccb);
5351 
5352 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5353 			struct cam_ed *device;
5354 			struct cam_et *target;
5355 			int phl;
5356 
5357 			/*
5358 			 * If we already probed lun 0 successfully, or
5359 			 * we have additional configured luns on this
5360 			 * target that might have "gone away", go onto
5361 			 * the next lun.
5362 			 */
5363 			target = request_ccb->ccb_h.path->target;
5364 			/*
5365 			 * We may touch devices that we don't
5366 			 * hold references too, so ensure they
5367 			 * don't disappear out from under us.
5368 			 * The target above is referenced by the
5369 			 * path in the request ccb.
5370 			 */
5371 			phl = 0;
5372 			device = TAILQ_FIRST(&target->ed_entries);
5373 			if (device != NULL) {
5374 				phl = CAN_SRCH_HI_SPARSE(device);
5375 				if (device->lun_id == 0)
5376 					device = TAILQ_NEXT(device, links);
5377 			}
5378 			if ((lun_id != 0) || (device != NULL)) {
5379 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5380 					lun_id++;
5381 			}
5382 		} else {
5383 			struct cam_ed *device;
5384 
5385 			device = request_ccb->ccb_h.path->device;
5386 
5387 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5388 				/* Try the next lun */
5389 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5390 				  || CAN_SRCH_HI_DENSE(device))
5391 					lun_id++;
5392 			}
5393 		}
5394 
5395 		/*
5396 		 * Free the current request path- we're done with it.
5397 		 */
5398 		xpt_free_path(request_ccb->ccb_h.path);
5399 
5400 		/*
5401 		 * Check to see if we scan any further luns.
5402 		 */
5403 		if (lun_id == request_ccb->ccb_h.target_lun
5404                  || lun_id > scan_info->cpi->max_lun) {
5405 			int done;
5406 
5407  hop_again:
5408 			done = 0;
5409 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5410 				scan_info->counter++;
5411 				if (scan_info->counter ==
5412 				    scan_info->cpi->initiator_id) {
5413 					scan_info->counter++;
5414 				}
5415 				if (scan_info->counter >=
5416 				    scan_info->cpi->max_target+1) {
5417 					done = 1;
5418 				}
5419 			} else {
5420 				scan_info->counter--;
5421 				if (scan_info->counter == 0) {
5422 					done = 1;
5423 				}
5424 			}
5425 			if (done) {
5426 				xpt_free_ccb(request_ccb);
5427 				xpt_free_ccb((union ccb *)scan_info->cpi);
5428 				request_ccb = scan_info->request_ccb;
5429 				kfree(scan_info, M_CAMXPT);
5430 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5431 				xpt_done(request_ccb);
5432 				break;
5433 			}
5434 
5435 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5436 				break;
5437 			}
5438 			status = xpt_create_path(&path, xpt_periph,
5439 			    scan_info->request_ccb->ccb_h.path_id,
5440 			    scan_info->counter, 0);
5441 			if (status != CAM_REQ_CMP) {
5442 				kprintf("xpt_scan_bus: xpt_create_path failed"
5443 				    " with status %#x, bus scan halted\n",
5444 			       	    status);
5445 				xpt_free_ccb(request_ccb);
5446 				xpt_free_ccb((union ccb *)scan_info->cpi);
5447 				request_ccb = scan_info->request_ccb;
5448 				kfree(scan_info, M_CAMXPT);
5449 				request_ccb->ccb_h.status = status;
5450 				xpt_done(request_ccb);
5451 				break;
5452 			}
5453 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5454 			    request_ccb->ccb_h.pinfo.priority);
5455 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5456 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5457 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5458 			request_ccb->crcn.flags =
5459 			    scan_info->request_ccb->crcn.flags;
5460 		} else {
5461 			status = xpt_create_path(&path, xpt_periph,
5462 						 path_id, target_id, lun_id);
5463 			if (status != CAM_REQ_CMP) {
5464 				kprintf("xpt_scan_bus: xpt_create_path failed "
5465 				       "with status %#x, halting LUN scan\n",
5466 			 	       status);
5467 				goto hop_again;
5468 			}
5469 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5470 				      request_ccb->ccb_h.pinfo.priority);
5471 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5472 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5473 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5474 			request_ccb->crcn.flags =
5475 				scan_info->request_ccb->crcn.flags;
5476 		}
5477 		xpt_action(request_ccb);
5478 		break;
5479 	}
5480 	default:
5481 		break;
5482 	}
5483 }
5484 
5485 typedef enum {
5486 	PROBE_TUR,
5487 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5488 	PROBE_FULL_INQUIRY,
5489 	PROBE_MODE_SENSE,
5490 	PROBE_SERIAL_NUM_0,
5491 	PROBE_SERIAL_NUM_1,
5492 	PROBE_TUR_FOR_NEGOTIATION,
5493 	PROBE_INQUIRY_BASIC_DV1,
5494 	PROBE_INQUIRY_BASIC_DV2,
5495 	PROBE_DV_EXIT
5496 } probe_action;
5497 
5498 typedef enum {
5499 	PROBE_INQUIRY_CKSUM	= 0x01,
5500 	PROBE_SERIAL_CKSUM	= 0x02,
5501 	PROBE_NO_ANNOUNCE	= 0x04
5502 } probe_flags;
5503 
5504 typedef struct {
5505 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5506 	probe_action	action;
5507 	union ccb	saved_ccb;
5508 	probe_flags	flags;
5509 	MD5_CTX		context;
5510 	u_int8_t	digest[16];
5511 } probe_softc;
5512 
5513 static void
5514 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5515 	     cam_flags flags, union ccb *request_ccb)
5516 {
5517 	struct ccb_pathinq cpi;
5518 	cam_status status;
5519 	struct cam_path *new_path;
5520 	struct cam_periph *old_periph;
5521 
5522 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5523 		  ("xpt_scan_lun\n"));
5524 
5525 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5526 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5527 	xpt_action((union ccb *)&cpi);
5528 
5529 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5530 		if (request_ccb != NULL) {
5531 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5532 			xpt_done(request_ccb);
5533 		}
5534 		return;
5535 	}
5536 
5537 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5538 		/*
5539 		 * Can't scan the bus on an adapter that
5540 		 * cannot perform the initiator role.
5541 		 */
5542 		if (request_ccb != NULL) {
5543 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5544 			xpt_done(request_ccb);
5545 		}
5546 		return;
5547 	}
5548 
5549 	if (request_ccb == NULL) {
5550 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5551 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5552 		status = xpt_compile_path(new_path, xpt_periph,
5553 					  path->bus->path_id,
5554 					  path->target->target_id,
5555 					  path->device->lun_id);
5556 
5557 		if (status != CAM_REQ_CMP) {
5558 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5559 			    "can't continue\n");
5560 			kfree(request_ccb, M_CAMXPT);
5561 			kfree(new_path, M_CAMXPT);
5562 			return;
5563 		}
5564 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5565 		request_ccb->ccb_h.cbfcnp = xptscandone;
5566 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5567 		request_ccb->crcn.flags = flags;
5568 	}
5569 
5570 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5571 		probe_softc *softc;
5572 
5573 		softc = (probe_softc *)old_periph->softc;
5574 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5575 				  periph_links.tqe);
5576 	} else {
5577 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5578 					  probestart, "probe",
5579 					  CAM_PERIPH_BIO,
5580 					  request_ccb->ccb_h.path, NULL, 0,
5581 					  request_ccb);
5582 
5583 		if (status != CAM_REQ_CMP) {
5584 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5585 			    "returned an error, can't continue probe\n");
5586 			request_ccb->ccb_h.status = status;
5587 			xpt_done(request_ccb);
5588 		}
5589 	}
5590 }
5591 
5592 static void
5593 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5594 {
5595 	xpt_release_path(done_ccb->ccb_h.path);
5596 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5597 	kfree(done_ccb, M_CAMXPT);
5598 }
5599 
5600 static cam_status
5601 proberegister(struct cam_periph *periph, void *arg)
5602 {
5603 	union ccb *request_ccb;	/* CCB representing the probe request */
5604 	cam_status status;
5605 	probe_softc *softc;
5606 
5607 	request_ccb = (union ccb *)arg;
5608 	if (periph == NULL) {
5609 		kprintf("proberegister: periph was NULL!!\n");
5610 		return(CAM_REQ_CMP_ERR);
5611 	}
5612 
5613 	if (request_ccb == NULL) {
5614 		kprintf("proberegister: no probe CCB, "
5615 		       "can't register device\n");
5616 		return(CAM_REQ_CMP_ERR);
5617 	}
5618 
5619 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5620 	TAILQ_INIT(&softc->request_ccbs);
5621 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5622 			  periph_links.tqe);
5623 	softc->flags = 0;
5624 	periph->softc = softc;
5625 	status = cam_periph_acquire(periph);
5626 	if (status != CAM_REQ_CMP) {
5627 		return (status);
5628 	}
5629 
5630 
5631 	/*
5632 	 * Ensure we've waited at least a bus settle
5633 	 * delay before attempting to probe the device.
5634 	 * For HBAs that don't do bus resets, this won't make a difference.
5635 	 */
5636 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5637 				      scsi_delay);
5638 	probeschedule(periph);
5639 	return(CAM_REQ_CMP);
5640 }
5641 
5642 static void
5643 probeschedule(struct cam_periph *periph)
5644 {
5645 	struct ccb_pathinq cpi;
5646 	union ccb *ccb;
5647 	probe_softc *softc;
5648 
5649 	softc = (probe_softc *)periph->softc;
5650 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5651 
5652 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5653 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5654 	xpt_action((union ccb *)&cpi);
5655 
5656 	/*
5657 	 * If a device has gone away and another device, or the same one,
5658 	 * is back in the same place, it should have a unit attention
5659 	 * condition pending.  It will not report the unit attention in
5660 	 * response to an inquiry, which may leave invalid transfer
5661 	 * negotiations in effect.  The TUR will reveal the unit attention
5662 	 * condition.  Only send the TUR for lun 0, since some devices
5663 	 * will get confused by commands other than inquiry to non-existent
5664 	 * luns.  If you think a device has gone away start your scan from
5665 	 * lun 0.  This will insure that any bogus transfer settings are
5666 	 * invalidated.
5667 	 *
5668 	 * If we haven't seen the device before and the controller supports
5669 	 * some kind of transfer negotiation, negotiate with the first
5670 	 * sent command if no bus reset was performed at startup.  This
5671 	 * ensures that the device is not confused by transfer negotiation
5672 	 * settings left over by loader or BIOS action.
5673 	 */
5674 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5675 	 && (ccb->ccb_h.target_lun == 0)) {
5676 		softc->action = PROBE_TUR;
5677 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5678 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5679 		proberequestdefaultnegotiation(periph);
5680 		softc->action = PROBE_INQUIRY;
5681 	} else {
5682 		softc->action = PROBE_INQUIRY;
5683 	}
5684 
5685 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5686 		softc->flags |= PROBE_NO_ANNOUNCE;
5687 	else
5688 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5689 
5690 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5691 }
5692 
5693 static void
5694 probestart(struct cam_periph *periph, union ccb *start_ccb)
5695 {
5696 	/* Probe the device that our peripheral driver points to */
5697 	struct ccb_scsiio *csio;
5698 	probe_softc *softc;
5699 
5700 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5701 
5702 	softc = (probe_softc *)periph->softc;
5703 	csio = &start_ccb->csio;
5704 
5705 	switch (softc->action) {
5706 	case PROBE_TUR:
5707 	case PROBE_TUR_FOR_NEGOTIATION:
5708 	case PROBE_DV_EXIT:
5709 	{
5710 		scsi_test_unit_ready(csio,
5711 				     /*retries*/4,
5712 				     probedone,
5713 				     MSG_SIMPLE_Q_TAG,
5714 				     SSD_FULL_SIZE,
5715 				     /*timeout*/60000);
5716 		break;
5717 	}
5718 	case PROBE_INQUIRY:
5719 	case PROBE_FULL_INQUIRY:
5720 	case PROBE_INQUIRY_BASIC_DV1:
5721 	case PROBE_INQUIRY_BASIC_DV2:
5722 	{
5723 		u_int inquiry_len;
5724 		struct scsi_inquiry_data *inq_buf;
5725 
5726 		inq_buf = &periph->path->device->inq_data;
5727 
5728 		/*
5729 		 * If the device is currently configured, we calculate an
5730 		 * MD5 checksum of the inquiry data, and if the serial number
5731 		 * length is greater than 0, add the serial number data
5732 		 * into the checksum as well.  Once the inquiry and the
5733 		 * serial number check finish, we attempt to figure out
5734 		 * whether we still have the same device.
5735 		 */
5736 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5737 
5738 			MD5Init(&softc->context);
5739 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5740 				  sizeof(struct scsi_inquiry_data));
5741 			softc->flags |= PROBE_INQUIRY_CKSUM;
5742 			if (periph->path->device->serial_num_len > 0) {
5743 				MD5Update(&softc->context,
5744 					  periph->path->device->serial_num,
5745 					  periph->path->device->serial_num_len);
5746 				softc->flags |= PROBE_SERIAL_CKSUM;
5747 			}
5748 			MD5Final(softc->digest, &softc->context);
5749 		}
5750 
5751 		if (softc->action == PROBE_INQUIRY)
5752 			inquiry_len = SHORT_INQUIRY_LENGTH;
5753 		else
5754 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5755 
5756 		/*
5757 		 * Some parallel SCSI devices fail to send an
5758 		 * ignore wide residue message when dealing with
5759 		 * odd length inquiry requests.  Round up to be
5760 		 * safe.
5761 		 */
5762 		inquiry_len = roundup2(inquiry_len, 2);
5763 
5764 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5765 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5766 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5767 		}
5768 		scsi_inquiry(csio,
5769 			     /*retries*/4,
5770 			     probedone,
5771 			     MSG_SIMPLE_Q_TAG,
5772 			     (u_int8_t *)inq_buf,
5773 			     inquiry_len,
5774 			     /*evpd*/FALSE,
5775 			     /*page_code*/0,
5776 			     SSD_MIN_SIZE,
5777 			     /*timeout*/60 * 1000);
5778 		break;
5779 	}
5780 	case PROBE_MODE_SENSE:
5781 	{
5782 		void  *mode_buf;
5783 		int    mode_buf_len;
5784 
5785 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5786 			     + sizeof(struct scsi_mode_blk_desc)
5787 			     + sizeof(struct scsi_control_page);
5788 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5789 		scsi_mode_sense(csio,
5790 				/*retries*/4,
5791 				probedone,
5792 				MSG_SIMPLE_Q_TAG,
5793 				/*dbd*/FALSE,
5794 				SMS_PAGE_CTRL_CURRENT,
5795 				SMS_CONTROL_MODE_PAGE,
5796 				mode_buf,
5797 				mode_buf_len,
5798 				SSD_FULL_SIZE,
5799 				/*timeout*/60000);
5800 		break;
5801 	}
5802 	case PROBE_SERIAL_NUM_0:
5803 	{
5804 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5805 		struct cam_ed *device;
5806 
5807 		device = periph->path->device;
5808 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5809 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5810 			    M_INTWAIT | M_ZERO);
5811 		}
5812 
5813 		if (vpd_list != NULL) {
5814 			scsi_inquiry(csio,
5815 				     /*retries*/4,
5816 				     probedone,
5817 				     MSG_SIMPLE_Q_TAG,
5818 				     (u_int8_t *)vpd_list,
5819 				     sizeof(*vpd_list),
5820 				     /*evpd*/TRUE,
5821 				     SVPD_SUPPORTED_PAGE_LIST,
5822 				     SSD_MIN_SIZE,
5823 				     /*timeout*/60 * 1000);
5824 			break;
5825 		}
5826 		/*
5827 		 * We'll have to do without, let our probedone
5828 		 * routine finish up for us.
5829 		 */
5830 		start_ccb->csio.data_ptr = NULL;
5831 		probedone(periph, start_ccb);
5832 		return;
5833 	}
5834 	case PROBE_SERIAL_NUM_1:
5835 	{
5836 		struct scsi_vpd_unit_serial_number *serial_buf;
5837 		struct cam_ed* device;
5838 
5839 		serial_buf = NULL;
5840 		device = periph->path->device;
5841 		device->serial_num = NULL;
5842 		device->serial_num_len = 0;
5843 
5844 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5845 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5846 				M_INTWAIT | M_ZERO);
5847 		scsi_inquiry(csio,
5848 			     /*retries*/4,
5849 			     probedone,
5850 			     MSG_SIMPLE_Q_TAG,
5851 			     (u_int8_t *)serial_buf,
5852 			     sizeof(*serial_buf),
5853 			     /*evpd*/TRUE,
5854 			     SVPD_UNIT_SERIAL_NUMBER,
5855 			     SSD_MIN_SIZE,
5856 			     /*timeout*/60 * 1000);
5857 		break;
5858 	}
5859 	}
5860 	xpt_action(start_ccb);
5861 }
5862 
5863 static void
5864 proberequestdefaultnegotiation(struct cam_periph *periph)
5865 {
5866 	struct ccb_trans_settings cts;
5867 
5868 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5869 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5870 	cts.type = CTS_TYPE_USER_SETTINGS;
5871 	xpt_action((union ccb *)&cts);
5872 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5873 		return;
5874 	}
5875 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5876 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5877 	xpt_action((union ccb *)&cts);
5878 }
5879 
5880 /*
5881  * Backoff Negotiation Code- only pertinent for SPI devices.
5882  */
5883 static int
5884 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5885 {
5886 	struct ccb_trans_settings cts;
5887 	struct ccb_trans_settings_spi *spi;
5888 
5889 	memset(&cts, 0, sizeof (cts));
5890 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5891 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5892 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5893 	xpt_action((union ccb *)&cts);
5894 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5895 		if (bootverbose) {
5896 			xpt_print(periph->path,
5897 			    "failed to get current device settings\n");
5898 		}
5899 		return (0);
5900 	}
5901 	if (cts.transport != XPORT_SPI) {
5902 		if (bootverbose) {
5903 			xpt_print(periph->path, "not SPI transport\n");
5904 		}
5905 		return (0);
5906 	}
5907 	spi = &cts.xport_specific.spi;
5908 
5909 	/*
5910 	 * We cannot renegotiate sync rate if we don't have one.
5911 	 */
5912 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5913 		if (bootverbose) {
5914 			xpt_print(periph->path, "no sync rate known\n");
5915 		}
5916 		return (0);
5917 	}
5918 
5919 	/*
5920 	 * We'll assert that we don't have to touch PPR options- the
5921 	 * SIM will see what we do with period and offset and adjust
5922 	 * the PPR options as appropriate.
5923 	 */
5924 
5925 	/*
5926 	 * A sync rate with unknown or zero offset is nonsensical.
5927 	 * A sync period of zero means Async.
5928 	 */
5929 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5930 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5931 		if (bootverbose) {
5932 			xpt_print(periph->path, "no sync rate available\n");
5933 		}
5934 		return (0);
5935 	}
5936 
5937 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5938 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5939 		    ("hit async: giving up on DV\n"));
5940 		return (0);
5941 	}
5942 
5943 
5944 	/*
5945 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5946 	 * We don't try to remember 'last' settings to see if the SIM actually
5947 	 * gets into the speed we want to set. We check on the SIM telling
5948 	 * us that a requested speed is bad, but otherwise don't try and
5949 	 * check the speed due to the asynchronous and handshake nature
5950 	 * of speed setting.
5951 	 */
5952 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5953 	for (;;) {
5954 		spi->sync_period++;
5955 		if (spi->sync_period >= 0xf) {
5956 			spi->sync_period = 0;
5957 			spi->sync_offset = 0;
5958 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5959 			    ("setting to async for DV\n"));
5960 			/*
5961 			 * Once we hit async, we don't want to try
5962 			 * any more settings.
5963 			 */
5964 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5965 		} else if (bootverbose) {
5966 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5967 			    ("DV: period 0x%x\n", spi->sync_period));
5968 			kprintf("setting period to 0x%x\n", spi->sync_period);
5969 		}
5970 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5971 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5972 		xpt_action((union ccb *)&cts);
5973 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5974 			break;
5975 		}
5976 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5977 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5978 		if (spi->sync_period == 0) {
5979 			return (0);
5980 		}
5981 	}
5982 	return (1);
5983 }
5984 
5985 static void
5986 probedone(struct cam_periph *periph, union ccb *done_ccb)
5987 {
5988 	probe_softc *softc;
5989 	struct cam_path *path;
5990 	u_int32_t  priority;
5991 
5992 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5993 
5994 	softc = (probe_softc *)periph->softc;
5995 	path = done_ccb->ccb_h.path;
5996 	priority = done_ccb->ccb_h.pinfo.priority;
5997 
5998 	switch (softc->action) {
5999 	case PROBE_TUR:
6000 	{
6001 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6002 
6003 			if (cam_periph_error(done_ccb, 0,
6004 					     SF_NO_PRINT, NULL) == ERESTART)
6005 				return;
6006 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6007 				/* Don't wedge the queue */
6008 				xpt_release_devq(done_ccb->ccb_h.path,
6009 						 /*count*/1,
6010 						 /*run_queue*/TRUE);
6011 		}
6012 		softc->action = PROBE_INQUIRY;
6013 		xpt_release_ccb(done_ccb);
6014 		xpt_schedule(periph, priority);
6015 		return;
6016 	}
6017 	case PROBE_INQUIRY:
6018 	case PROBE_FULL_INQUIRY:
6019 	{
6020 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6021 			struct scsi_inquiry_data *inq_buf;
6022 			u_int8_t periph_qual;
6023 
6024 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6025 			inq_buf = &path->device->inq_data;
6026 
6027 			periph_qual = SID_QUAL(inq_buf);
6028 
6029 			switch(periph_qual) {
6030 			case SID_QUAL_LU_CONNECTED:
6031 			{
6032 				u_int8_t len;
6033 
6034 				/*
6035 				 * We conservatively request only
6036 				 * SHORT_INQUIRY_LEN bytes of inquiry
6037 				 * information during our first try
6038 				 * at sending an INQUIRY. If the device
6039 				 * has more information to give,
6040 				 * perform a second request specifying
6041 				 * the amount of information the device
6042 				 * is willing to give.
6043 				 */
6044 				len = inq_buf->additional_length
6045 				    + offsetof(struct scsi_inquiry_data,
6046 						additional_length) + 1;
6047 				if (softc->action == PROBE_INQUIRY
6048 				    && len > SHORT_INQUIRY_LENGTH) {
6049 					softc->action = PROBE_FULL_INQUIRY;
6050 					xpt_release_ccb(done_ccb);
6051 					xpt_schedule(periph, priority);
6052 					return;
6053 				}
6054 
6055 				xpt_find_quirk(path->device);
6056 
6057 				xpt_devise_transport(path);
6058 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6059 					softc->action = PROBE_MODE_SENSE;
6060 				else
6061 					softc->action = PROBE_SERIAL_NUM_0;
6062 
6063 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6064 				xpt_reference_device(path->device);
6065 
6066 				xpt_release_ccb(done_ccb);
6067 				xpt_schedule(periph, priority);
6068 				return;
6069 			}
6070 			default:
6071 				break;
6072 			}
6073 		} else if (cam_periph_error(done_ccb, 0,
6074 					    done_ccb->ccb_h.target_lun > 0
6075 					    ? SF_RETRY_UA|SF_QUIET_IR
6076 					    : SF_RETRY_UA,
6077 					    &softc->saved_ccb) == ERESTART) {
6078 			return;
6079 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6080 			/* Don't wedge the queue */
6081 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6082 					 /*run_queue*/TRUE);
6083 		}
6084 		/*
6085 		 * If we get to this point, we got an error status back
6086 		 * from the inquiry and the error status doesn't require
6087 		 * automatically retrying the command.  Therefore, the
6088 		 * inquiry failed.  If we had inquiry information before
6089 		 * for this device, but this latest inquiry command failed,
6090 		 * the device has probably gone away.  If this device isn't
6091 		 * already marked unconfigured, notify the peripheral
6092 		 * drivers that this device is no more.
6093 		 */
6094 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6095 			/* Send the async notification. */
6096 			xpt_async(AC_LOST_DEVICE, path, NULL);
6097 		}
6098 
6099 		xpt_release_ccb(done_ccb);
6100 		break;
6101 	}
6102 	case PROBE_MODE_SENSE:
6103 	{
6104 		struct ccb_scsiio *csio;
6105 		struct scsi_mode_header_6 *mode_hdr;
6106 
6107 		csio = &done_ccb->csio;
6108 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6109 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6110 			struct scsi_control_page *page;
6111 			u_int8_t *offset;
6112 
6113 			offset = ((u_int8_t *)&mode_hdr[1])
6114 			    + mode_hdr->blk_desc_len;
6115 			page = (struct scsi_control_page *)offset;
6116 			path->device->queue_flags = page->queue_flags;
6117 		} else if (cam_periph_error(done_ccb, 0,
6118 					    SF_RETRY_UA|SF_NO_PRINT,
6119 					    &softc->saved_ccb) == ERESTART) {
6120 			return;
6121 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6122 			/* Don't wedge the queue */
6123 			xpt_release_devq(done_ccb->ccb_h.path,
6124 					 /*count*/1, /*run_queue*/TRUE);
6125 		}
6126 		xpt_release_ccb(done_ccb);
6127 		kfree(mode_hdr, M_CAMXPT);
6128 		softc->action = PROBE_SERIAL_NUM_0;
6129 		xpt_schedule(periph, priority);
6130 		return;
6131 	}
6132 	case PROBE_SERIAL_NUM_0:
6133 	{
6134 		struct ccb_scsiio *csio;
6135 		struct scsi_vpd_supported_page_list *page_list;
6136 		int length, serialnum_supported, i;
6137 
6138 		serialnum_supported = 0;
6139 		csio = &done_ccb->csio;
6140 		page_list =
6141 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6142 
6143 		if (page_list == NULL) {
6144 			/*
6145 			 * Don't process the command as it was never sent
6146 			 */
6147 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6148 		    && (page_list->length > 0)) {
6149 			length = min(page_list->length,
6150 			    SVPD_SUPPORTED_PAGES_SIZE);
6151 			for (i = 0; i < length; i++) {
6152 				if (page_list->list[i] ==
6153 				    SVPD_UNIT_SERIAL_NUMBER) {
6154 					serialnum_supported = 1;
6155 					break;
6156 				}
6157 			}
6158 		} else if (cam_periph_error(done_ccb, 0,
6159 					    SF_RETRY_UA|SF_NO_PRINT,
6160 					    &softc->saved_ccb) == ERESTART) {
6161 			return;
6162 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6163 			/* Don't wedge the queue */
6164 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6165 					 /*run_queue*/TRUE);
6166 		}
6167 
6168 		if (page_list != NULL)
6169 			kfree(page_list, M_DEVBUF);
6170 
6171 		if (serialnum_supported) {
6172 			xpt_release_ccb(done_ccb);
6173 			softc->action = PROBE_SERIAL_NUM_1;
6174 			xpt_schedule(periph, priority);
6175 			return;
6176 		}
6177 		xpt_release_ccb(done_ccb);
6178 		softc->action = PROBE_TUR_FOR_NEGOTIATION;
6179 		xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority);
6180 		return;
6181 	}
6182 
6183 	case PROBE_SERIAL_NUM_1:
6184 	{
6185 		struct ccb_scsiio *csio;
6186 		struct scsi_vpd_unit_serial_number *serial_buf;
6187 		u_int32_t  priority;
6188 		int changed;
6189 		int have_serialnum;
6190 
6191 		changed = 1;
6192 		have_serialnum = 0;
6193 		csio = &done_ccb->csio;
6194 		priority = done_ccb->ccb_h.pinfo.priority;
6195 		serial_buf =
6196 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6197 
6198 		/* Clean up from previous instance of this device */
6199 		if (path->device->serial_num != NULL) {
6200 			kfree(path->device->serial_num, M_CAMXPT);
6201 			path->device->serial_num = NULL;
6202 			path->device->serial_num_len = 0;
6203 		}
6204 
6205 		if (serial_buf == NULL) {
6206 			/*
6207 			 * Don't process the command as it was never sent
6208 			 */
6209 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6210 			&& (serial_buf->length > 0)) {
6211 
6212 			have_serialnum = 1;
6213 			path->device->serial_num =
6214 				kmalloc((serial_buf->length + 1),
6215 				       M_CAMXPT, M_INTWAIT);
6216 			bcopy(serial_buf->serial_num,
6217 			      path->device->serial_num,
6218 			      serial_buf->length);
6219 			path->device->serial_num_len = serial_buf->length;
6220 			path->device->serial_num[serial_buf->length] = '\0';
6221 		} else if (cam_periph_error(done_ccb, 0,
6222 					    SF_RETRY_UA|SF_NO_PRINT,
6223 					    &softc->saved_ccb) == ERESTART) {
6224 			return;
6225 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6226 			/* Don't wedge the queue */
6227 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6228 					 /*run_queue*/TRUE);
6229 		}
6230 
6231 		/*
6232 		 * Let's see if we have seen this device before.
6233 		 */
6234 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6235 			MD5_CTX context;
6236 			u_int8_t digest[16];
6237 
6238 			MD5Init(&context);
6239 
6240 			MD5Update(&context,
6241 				  (unsigned char *)&path->device->inq_data,
6242 				  sizeof(struct scsi_inquiry_data));
6243 
6244 			if (have_serialnum)
6245 				MD5Update(&context, serial_buf->serial_num,
6246 					  serial_buf->length);
6247 
6248 			MD5Final(digest, &context);
6249 			if (bcmp(softc->digest, digest, 16) == 0)
6250 				changed = 0;
6251 
6252 			/*
6253 			 * XXX Do we need to do a TUR in order to ensure
6254 			 *     that the device really hasn't changed???
6255 			 */
6256 			if ((changed != 0)
6257 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6258 				xpt_async(AC_LOST_DEVICE, path, NULL);
6259 		}
6260 		if (serial_buf != NULL)
6261 			kfree(serial_buf, M_CAMXPT);
6262 
6263 		if (changed != 0) {
6264 			/*
6265 			 * Now that we have all the necessary
6266 			 * information to safely perform transfer
6267 			 * negotiations... Controllers don't perform
6268 			 * any negotiation or tagged queuing until
6269 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6270 			 * received.  So, on a new device, just retrieve
6271 			 * the user settings, and set them as the current
6272 			 * settings to set the device up.
6273 			 */
6274 			proberequestdefaultnegotiation(periph);
6275 			xpt_release_ccb(done_ccb);
6276 
6277 			/*
6278 			 * Perform a TUR to allow the controller to
6279 			 * perform any necessary transfer negotiation.
6280 			 */
6281 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6282 			xpt_schedule(periph, priority);
6283 			return;
6284 		}
6285 		xpt_release_ccb(done_ccb);
6286 		break;
6287 	}
6288 	case PROBE_TUR_FOR_NEGOTIATION:
6289 	case PROBE_DV_EXIT:
6290 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6291 			/* Don't wedge the queue */
6292 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6293 					 /*run_queue*/TRUE);
6294 		}
6295 
6296 		xpt_reference_device(path->device);
6297 		/*
6298 		 * Do Domain Validation for lun 0 on devices that claim
6299 		 * to support Synchronous Transfer modes.
6300 		 */
6301 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6302 		 && done_ccb->ccb_h.target_lun == 0
6303 		 && (path->device->inq_data.flags & SID_Sync) != 0
6304                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6305 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6306 			    ("Begin Domain Validation\n"));
6307 			path->device->flags |= CAM_DEV_IN_DV;
6308 			xpt_release_ccb(done_ccb);
6309 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6310 			xpt_schedule(periph, priority);
6311 			return;
6312 		}
6313 		if (softc->action == PROBE_DV_EXIT) {
6314 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6315 			    ("Leave Domain Validation\n"));
6316 		}
6317 		path->device->flags &=
6318 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6319 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6320 			/* Inform the XPT that a new device has been found */
6321 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6322 			xpt_action(done_ccb);
6323 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6324 				  done_ccb);
6325 		}
6326 		xpt_release_ccb(done_ccb);
6327 		break;
6328 	case PROBE_INQUIRY_BASIC_DV1:
6329 	case PROBE_INQUIRY_BASIC_DV2:
6330 	{
6331 		struct scsi_inquiry_data *nbuf;
6332 		struct ccb_scsiio *csio;
6333 
6334 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6335 			/* Don't wedge the queue */
6336 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6337 					 /*run_queue*/TRUE);
6338 		}
6339 		csio = &done_ccb->csio;
6340 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6341 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6342 			xpt_print(path,
6343 			    "inquiry data fails comparison at DV%d step\n",
6344 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6345 			if (proberequestbackoff(periph, path->device)) {
6346 				path->device->flags &= ~CAM_DEV_IN_DV;
6347 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6348 			} else {
6349 				/* give up */
6350 				softc->action = PROBE_DV_EXIT;
6351 			}
6352 			kfree(nbuf, M_CAMXPT);
6353 			xpt_release_ccb(done_ccb);
6354 			xpt_schedule(periph, priority);
6355 			return;
6356 		}
6357 		kfree(nbuf, M_CAMXPT);
6358 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6359 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6360 			xpt_release_ccb(done_ccb);
6361 			xpt_schedule(periph, priority);
6362 			return;
6363 		}
6364 		if (softc->action == PROBE_DV_EXIT) {
6365 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6366 			    ("Leave Domain Validation Successfully\n"));
6367 		}
6368 		path->device->flags &=
6369 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6370 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6371 			/* Inform the XPT that a new device has been found */
6372 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6373 			xpt_action(done_ccb);
6374 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6375 				  done_ccb);
6376 		}
6377 		xpt_release_ccb(done_ccb);
6378 		break;
6379 	}
6380 	}
6381 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6382 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6383 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6384 	xpt_done(done_ccb);
6385 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6386 		cam_periph_invalidate(periph);
6387 		cam_periph_release(periph);
6388 	} else {
6389 		probeschedule(periph);
6390 	}
6391 }
6392 
6393 static void
6394 probecleanup(struct cam_periph *periph)
6395 {
6396 	kfree(periph->softc, M_CAMXPT);
6397 }
6398 
6399 static void
6400 xpt_find_quirk(struct cam_ed *device)
6401 {
6402 	caddr_t	match;
6403 
6404 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6405 			       (caddr_t)xpt_quirk_table,
6406 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6407 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6408 
6409 	if (match == NULL)
6410 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6411 
6412 	device->quirk = (struct xpt_quirk_entry *)match;
6413 }
6414 
6415 static int
6416 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6417 {
6418 	int error, bool;
6419 
6420 	bool = cam_srch_hi;
6421 	error = sysctl_handle_int(oidp, &bool, 0, req);
6422 	if (error != 0 || req->newptr == NULL)
6423 		return (error);
6424 	if (bool == 0 || bool == 1) {
6425 		cam_srch_hi = bool;
6426 		return (0);
6427 	} else {
6428 		return (EINVAL);
6429 	}
6430 }
6431 
6432 static void
6433 xpt_devise_transport(struct cam_path *path)
6434 {
6435 	struct ccb_pathinq cpi;
6436 	struct ccb_trans_settings cts;
6437 	struct scsi_inquiry_data *inq_buf;
6438 
6439 	/* Get transport information from the SIM */
6440 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6441 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6442 	xpt_action((union ccb *)&cpi);
6443 
6444 	inq_buf = NULL;
6445 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6446 		inq_buf = &path->device->inq_data;
6447 	path->device->protocol = PROTO_SCSI;
6448 	path->device->protocol_version =
6449 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6450 	path->device->transport = cpi.transport;
6451 	path->device->transport_version = cpi.transport_version;
6452 
6453 	/*
6454 	 * Any device not using SPI3 features should
6455 	 * be considered SPI2 or lower.
6456 	 */
6457 	if (inq_buf != NULL) {
6458 		if (path->device->transport == XPORT_SPI
6459 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6460 		 && path->device->transport_version > 2)
6461 			path->device->transport_version = 2;
6462 	} else {
6463 		struct cam_ed* otherdev;
6464 
6465 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6466 		     otherdev != NULL;
6467 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6468 			if (otherdev != path->device)
6469 				break;
6470 		}
6471 
6472 		if (otherdev != NULL) {
6473 			/*
6474 			 * Initially assume the same versioning as
6475 			 * prior luns for this target.
6476 			 */
6477 			path->device->protocol_version =
6478 			    otherdev->protocol_version;
6479 			path->device->transport_version =
6480 			    otherdev->transport_version;
6481 		} else {
6482 			/* Until we know better, opt for safty */
6483 			path->device->protocol_version = 2;
6484 			if (path->device->transport == XPORT_SPI)
6485 				path->device->transport_version = 2;
6486 			else
6487 				path->device->transport_version = 0;
6488 		}
6489 	}
6490 
6491 	/*
6492 	 * XXX
6493 	 * For a device compliant with SPC-2 we should be able
6494 	 * to determine the transport version supported by
6495 	 * scrutinizing the version descriptors in the
6496 	 * inquiry buffer.
6497 	 */
6498 
6499 	/* Tell the controller what we think */
6500 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6501 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6502 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6503 	cts.transport = path->device->transport;
6504 	cts.transport_version = path->device->transport_version;
6505 	cts.protocol = path->device->protocol;
6506 	cts.protocol_version = path->device->protocol_version;
6507 	cts.proto_specific.valid = 0;
6508 	cts.xport_specific.valid = 0;
6509 	xpt_action((union ccb *)&cts);
6510 }
6511 
6512 static void
6513 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6514 			  int async_update)
6515 {
6516 	struct	ccb_pathinq cpi;
6517 	struct	ccb_trans_settings cur_cts;
6518 	struct	ccb_trans_settings_scsi *scsi;
6519 	struct	ccb_trans_settings_scsi *cur_scsi;
6520 	struct	cam_sim *sim;
6521 	struct	scsi_inquiry_data *inq_data;
6522 
6523 	if (device == NULL) {
6524 		cts->ccb_h.status = CAM_PATH_INVALID;
6525 		xpt_done((union ccb *)cts);
6526 		return;
6527 	}
6528 
6529 	if (cts->protocol == PROTO_UNKNOWN
6530 	 || cts->protocol == PROTO_UNSPECIFIED) {
6531 		cts->protocol = device->protocol;
6532 		cts->protocol_version = device->protocol_version;
6533 	}
6534 
6535 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6536 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6537 		cts->protocol_version = device->protocol_version;
6538 
6539 	if (cts->protocol != device->protocol) {
6540 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6541 		       cts->protocol, device->protocol);
6542 		cts->protocol = device->protocol;
6543 	}
6544 
6545 	if (cts->protocol_version > device->protocol_version) {
6546 		if (bootverbose) {
6547 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6548 			    "Version from %d to %d?\n", cts->protocol_version,
6549 			    device->protocol_version);
6550 		}
6551 		cts->protocol_version = device->protocol_version;
6552 	}
6553 
6554 	if (cts->transport == XPORT_UNKNOWN
6555 	 || cts->transport == XPORT_UNSPECIFIED) {
6556 		cts->transport = device->transport;
6557 		cts->transport_version = device->transport_version;
6558 	}
6559 
6560 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6561 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6562 		cts->transport_version = device->transport_version;
6563 
6564 	if (cts->transport != device->transport) {
6565 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6566 		    cts->transport, device->transport);
6567 		cts->transport = device->transport;
6568 	}
6569 
6570 	if (cts->transport_version > device->transport_version) {
6571 		if (bootverbose) {
6572 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6573 			    "Version from %d to %d?\n", cts->transport_version,
6574 			    device->transport_version);
6575 		}
6576 		cts->transport_version = device->transport_version;
6577 	}
6578 
6579 	sim = cts->ccb_h.path->bus->sim;
6580 
6581 	/*
6582 	 * Nothing more of interest to do unless
6583 	 * this is a device connected via the
6584 	 * SCSI protocol.
6585 	 */
6586 	if (cts->protocol != PROTO_SCSI) {
6587 		if (async_update == FALSE)
6588 			(*(sim->sim_action))(sim, (union ccb *)cts);
6589 		return;
6590 	}
6591 
6592 	inq_data = &device->inq_data;
6593 	scsi = &cts->proto_specific.scsi;
6594 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6595 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6596 	xpt_action((union ccb *)&cpi);
6597 
6598 	/* SCSI specific sanity checking */
6599 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6600 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6601 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6602 	 || (device->quirk->mintags == 0)) {
6603 		/*
6604 		 * Can't tag on hardware that doesn't support tags,
6605 		 * doesn't have it enabled, or has broken tag support.
6606 		 */
6607 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6608 	}
6609 
6610 	if (async_update == FALSE) {
6611 		/*
6612 		 * Perform sanity checking against what the
6613 		 * controller and device can do.
6614 		 */
6615 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6616 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6617 		cur_cts.type = cts->type;
6618 		xpt_action((union ccb *)&cur_cts);
6619 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6620 			return;
6621 		}
6622 		cur_scsi = &cur_cts.proto_specific.scsi;
6623 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6624 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6625 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6626 		}
6627 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6628 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6629 	}
6630 
6631 	/* SPI specific sanity checking */
6632 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6633 		u_int spi3caps;
6634 		struct ccb_trans_settings_spi *spi;
6635 		struct ccb_trans_settings_spi *cur_spi;
6636 
6637 		spi = &cts->xport_specific.spi;
6638 
6639 		cur_spi = &cur_cts.xport_specific.spi;
6640 
6641 		/* Fill in any gaps in what the user gave us */
6642 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6643 			spi->sync_period = cur_spi->sync_period;
6644 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6645 			spi->sync_period = 0;
6646 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6647 			spi->sync_offset = cur_spi->sync_offset;
6648 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6649 			spi->sync_offset = 0;
6650 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6651 			spi->ppr_options = cur_spi->ppr_options;
6652 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6653 			spi->ppr_options = 0;
6654 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6655 			spi->bus_width = cur_spi->bus_width;
6656 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6657 			spi->bus_width = 0;
6658 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6659 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6660 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6661 		}
6662 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6663 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6664 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6665 		  && (inq_data->flags & SID_Sync) == 0
6666 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6667 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6668 		 || (spi->sync_offset == 0)
6669 		 || (spi->sync_period == 0)) {
6670 			/* Force async */
6671 			spi->sync_period = 0;
6672 			spi->sync_offset = 0;
6673 		}
6674 
6675 		switch (spi->bus_width) {
6676 		case MSG_EXT_WDTR_BUS_32_BIT:
6677 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6678 			  || (inq_data->flags & SID_WBus32) != 0
6679 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6680 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6681 				break;
6682 			/* Fall Through to 16-bit */
6683 		case MSG_EXT_WDTR_BUS_16_BIT:
6684 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6685 			  || (inq_data->flags & SID_WBus16) != 0
6686 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6687 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6688 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6689 				break;
6690 			}
6691 			/* Fall Through to 8-bit */
6692 		default: /* New bus width?? */
6693 		case MSG_EXT_WDTR_BUS_8_BIT:
6694 			/* All targets can do this */
6695 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6696 			break;
6697 		}
6698 
6699 		spi3caps = cpi.xport_specific.spi.ppr_options;
6700 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6701 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6702 			spi3caps &= inq_data->spi3data;
6703 
6704 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6705 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6706 
6707 		if ((spi3caps & SID_SPI_IUS) == 0)
6708 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6709 
6710 		if ((spi3caps & SID_SPI_QAS) == 0)
6711 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6712 
6713 		/* No SPI Transfer settings are allowed unless we are wide */
6714 		if (spi->bus_width == 0)
6715 			spi->ppr_options = 0;
6716 
6717 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6718 			/*
6719 			 * Can't tag queue without disconnection.
6720 			 */
6721 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6722 			scsi->valid |= CTS_SCSI_VALID_TQ;
6723 		}
6724 
6725 		/*
6726 		 * If we are currently performing tagged transactions to
6727 		 * this device and want to change its negotiation parameters,
6728 		 * go non-tagged for a bit to give the controller a chance to
6729 		 * negotiate unhampered by tag messages.
6730 		 */
6731 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6732 		 && (device->inq_flags & SID_CmdQue) != 0
6733 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6734 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6735 				   CTS_SPI_VALID_SYNC_OFFSET|
6736 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6737 			xpt_toggle_tags(cts->ccb_h.path);
6738 	}
6739 
6740 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6741 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6742 		int device_tagenb;
6743 
6744 		/*
6745 		 * If we are transitioning from tags to no-tags or
6746 		 * vice-versa, we need to carefully freeze and restart
6747 		 * the queue so that we don't overlap tagged and non-tagged
6748 		 * commands.  We also temporarily stop tags if there is
6749 		 * a change in transfer negotiation settings to allow
6750 		 * "tag-less" negotiation.
6751 		 */
6752 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6753 		 || (device->inq_flags & SID_CmdQue) != 0)
6754 			device_tagenb = TRUE;
6755 		else
6756 			device_tagenb = FALSE;
6757 
6758 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6759 		  && device_tagenb == FALSE)
6760 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6761 		  && device_tagenb == TRUE)) {
6762 
6763 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6764 				/*
6765 				 * Delay change to use tags until after a
6766 				 * few commands have gone to this device so
6767 				 * the controller has time to perform transfer
6768 				 * negotiations without tagged messages getting
6769 				 * in the way.
6770 				 */
6771 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6772 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6773 			} else {
6774 				struct ccb_relsim crs;
6775 
6776 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6777 				device->inq_flags &= ~SID_CmdQue;
6778 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6779 						    sim->max_dev_openings);
6780 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6781 				device->tag_delay_count = 0;
6782 
6783 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6784 					      /*priority*/1);
6785 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6786 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6787 				crs.openings
6788 				    = crs.release_timeout
6789 				    = crs.qfrozen_cnt
6790 				    = 0;
6791 				xpt_action((union ccb *)&crs);
6792 			}
6793 		}
6794 	}
6795 	if (async_update == FALSE)
6796 		(*(sim->sim_action))(sim, (union ccb *)cts);
6797 }
6798 
6799 static void
6800 xpt_toggle_tags(struct cam_path *path)
6801 {
6802 	struct cam_ed *dev;
6803 
6804 	/*
6805 	 * Give controllers a chance to renegotiate
6806 	 * before starting tag operations.  We
6807 	 * "toggle" tagged queuing off then on
6808 	 * which causes the tag enable command delay
6809 	 * counter to come into effect.
6810 	 */
6811 	dev = path->device;
6812 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6813 	 || ((dev->inq_flags & SID_CmdQue) != 0
6814  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6815 		struct ccb_trans_settings cts;
6816 
6817 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6818 		cts.protocol = PROTO_SCSI;
6819 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6820 		cts.transport = XPORT_UNSPECIFIED;
6821 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6822 		cts.proto_specific.scsi.flags = 0;
6823 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6824 		xpt_set_transfer_settings(&cts, path->device,
6825 					  /*async_update*/TRUE);
6826 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6827 		xpt_set_transfer_settings(&cts, path->device,
6828 					  /*async_update*/TRUE);
6829 	}
6830 }
6831 
6832 static void
6833 xpt_start_tags(struct cam_path *path)
6834 {
6835 	struct ccb_relsim crs;
6836 	struct cam_ed *device;
6837 	struct cam_sim *sim;
6838 	int    newopenings;
6839 
6840 	device = path->device;
6841 	sim = path->bus->sim;
6842 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6843 	xpt_freeze_devq(path, /*count*/1);
6844 	device->inq_flags |= SID_CmdQue;
6845 	if (device->tag_saved_openings != 0)
6846 		newopenings = device->tag_saved_openings;
6847 	else
6848 		newopenings = min(device->quirk->maxtags,
6849 				  sim->max_tagged_dev_openings);
6850 	xpt_dev_ccbq_resize(path, newopenings);
6851 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6852 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6853 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6854 	crs.openings
6855 	    = crs.release_timeout
6856 	    = crs.qfrozen_cnt
6857 	    = 0;
6858 	xpt_action((union ccb *)&crs);
6859 }
6860 
6861 static int busses_to_config;
6862 static int busses_to_reset;
6863 
6864 static int
6865 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6866 {
6867 	sim_lock_assert_owned(bus->sim->lock);
6868 
6869 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6870 		struct cam_path path;
6871 		struct ccb_pathinq cpi;
6872 		int can_negotiate;
6873 
6874 		if (bootverbose) {
6875 			kprintf("CAM: Configuring bus:");
6876 			if (bus->sim) {
6877 				kprintf(" %s%d\n",
6878 					bus->sim->sim_name,
6879 					bus->sim->unit_number);
6880 			} else {
6881 				kprintf(" (unknown)\n");
6882 			}
6883 		}
6884 		busses_to_config++;
6885 		bus->counted_to_config = 1;
6886 		xpt_compile_path(&path, NULL, bus->path_id,
6887 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6888 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6889 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6890 		xpt_action((union ccb *)&cpi);
6891 		can_negotiate = cpi.hba_inquiry;
6892 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6893 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6894 			busses_to_reset++;
6895 		xpt_release_path(&path);
6896 	}
6897 
6898 	return(1);
6899 }
6900 
6901 static int
6902 xptconfigfunc(struct cam_eb *bus, void *arg)
6903 {
6904 	struct	cam_path *path;
6905 	union	ccb *work_ccb;
6906 
6907 	sim_lock_assert_owned(bus->sim->lock);
6908 
6909 	if (bus->path_id != CAM_XPT_PATH_ID) {
6910 		cam_status status;
6911 		int can_negotiate;
6912 
6913 		work_ccb = xpt_alloc_ccb();
6914 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6915 					      CAM_TARGET_WILDCARD,
6916 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6917 			kprintf("xptconfigfunc: xpt_create_path failed with "
6918 			       "status %#x for bus %d\n", status, bus->path_id);
6919 			kprintf("xptconfigfunc: halting bus configuration\n");
6920 			xpt_free_ccb(work_ccb);
6921 			if (bus->counted_to_config) {
6922 				bus->counted_to_config = 0;
6923 				busses_to_config--;
6924 			}
6925 			xpt_finishconfig(xpt_periph, NULL);
6926 			return(0);
6927 		}
6928 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6929 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6930 		xpt_action(work_ccb);
6931 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6932 			kprintf("xptconfigfunc: CPI failed on bus %d "
6933 			       "with status %d\n", bus->path_id,
6934 			       work_ccb->ccb_h.status);
6935 			xpt_finishconfig(xpt_periph, work_ccb);
6936 			return(1);
6937 		}
6938 
6939 		can_negotiate = work_ccb->cpi.hba_inquiry;
6940 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6941 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6942 		 && (can_negotiate != 0)) {
6943 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6944 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6945 			work_ccb->ccb_h.cbfcnp = NULL;
6946 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6947 				  ("Resetting Bus\n"));
6948 			xpt_action(work_ccb);
6949 			xpt_finishconfig(xpt_periph, work_ccb);
6950 		} else {
6951 			/* Act as though we performed a successful BUS RESET */
6952 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6953 			xpt_finishconfig(xpt_periph, work_ccb);
6954 		}
6955 	}
6956 
6957 	return(1);
6958 }
6959 
6960 /*
6961  * Now that interrupts are enabled, go find our devices.
6962  *
6963  * This hook function is called once by run_interrupt_driven_config_hooks().
6964  * XPT is expected to disestablish its hook when done.
6965  */
6966 static void
6967 xpt_config(void *arg)
6968 {
6969 
6970 #ifdef CAMDEBUG
6971 	/* Setup debugging flags and path */
6972 #ifdef CAM_DEBUG_FLAGS
6973 	cam_dflags = CAM_DEBUG_FLAGS;
6974 #else /* !CAM_DEBUG_FLAGS */
6975 	cam_dflags = CAM_DEBUG_NONE;
6976 #endif /* CAM_DEBUG_FLAGS */
6977 #ifdef CAM_DEBUG_BUS
6978 	if (cam_dflags != CAM_DEBUG_NONE) {
6979 		/*
6980 		 * Locking is specifically omitted here.  No SIMs have
6981 		 * registered yet, so xpt_create_path will only be searching
6982 		 * empty lists of targets and devices.
6983 		 */
6984 		if (xpt_create_path(&cam_dpath, xpt_periph,
6985 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6986 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6987 			kprintf("xpt_config: xpt_create_path() failed for debug"
6988 			       " target %d:%d:%d, debugging disabled\n",
6989 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6990 			cam_dflags = CAM_DEBUG_NONE;
6991 		}
6992 	} else {
6993 		cam_dpath = NULL;
6994 	}
6995 #else /* !CAM_DEBUG_BUS */
6996 	cam_dpath = NULL;
6997 #endif /* CAM_DEBUG_BUS */
6998 #endif /* CAMDEBUG */
6999 
7000 	/*
7001 	 * Scan all installed busses.
7002 	 */
7003 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7004 
7005 	kprintf("CAM: Configuring %d busses\n", busses_to_config);
7006 
7007 	if (busses_to_config == 0) {
7008 		/* Call manually because we don't have any busses */
7009 		xpt_finishconfig(xpt_periph, NULL);
7010 	} else  {
7011 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
7012 			kprintf("Waiting %d seconds for SCSI "
7013 			       "devices to settle\n", scsi_delay/1000);
7014 		}
7015 		xpt_for_all_busses(xptconfigfunc, NULL);
7016 	}
7017 }
7018 
7019 /*
7020  * If the given device only has one peripheral attached to it, and if that
7021  * peripheral is the passthrough driver, announce it.  This insures that the
7022  * user sees some sort of announcement for every peripheral in their system.
7023  */
7024 static int
7025 xptpassannouncefunc(struct cam_ed *device, void *arg)
7026 {
7027 	struct cam_periph *periph;
7028 	int i;
7029 
7030 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7031 	     periph = SLIST_NEXT(periph, periph_links), i++);
7032 
7033 	periph = SLIST_FIRST(&device->periphs);
7034 	if ((i == 1)
7035 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7036 		xpt_announce_periph(periph, NULL);
7037 
7038 	return(1);
7039 }
7040 
7041 static void
7042 xpt_finishconfig_task(void *context, int pending)
7043 {
7044 	struct	periph_driver **p_drv;
7045 	int	i;
7046 
7047 	get_mplock();
7048 	kprintf("CAM: finished configuring all busses (%d left)\n",
7049 		busses_to_config);
7050 
7051 	if (busses_to_config == 0) {
7052 		/* Register all the peripheral drivers */
7053 		/* XXX This will have to change when we have loadable modules */
7054 		p_drv = periph_drivers;
7055 		for (i = 0; p_drv[i] != NULL; i++) {
7056 			(*p_drv[i]->init)();
7057 		}
7058 
7059 		/*
7060 		 * Check for devices with no "standard" peripheral driver
7061 		 * attached.  For any devices like that, announce the
7062 		 * passthrough driver so the user will see something.
7063 		 */
7064 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7065 
7066 		/* Release our hook so that the boot can continue. */
7067 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7068 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7069 		xsoftc.xpt_config_hook = NULL;
7070 	}
7071 
7072 	rel_mplock();
7073 	kfree(context, M_CAMXPT);
7074 }
7075 
7076 static void
7077 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7078 {
7079 	struct	xpt_task *task;
7080 	struct cam_path *path;
7081 
7082 	if (done_ccb != NULL) {
7083 		path = done_ccb->ccb_h.path;
7084 		CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7085 
7086 		switch(done_ccb->ccb_h.func_code) {
7087 		case XPT_RESET_BUS:
7088 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7089 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7090 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7091 				done_ccb->crcn.flags = 0;
7092 				xpt_action(done_ccb);
7093 				return;
7094 			}
7095 			/* FALLTHROUGH */
7096 		case XPT_SCAN_BUS:
7097 		default:
7098 			if (bootverbose) {
7099 				kprintf("CAM: Finished configuring bus:");
7100 				if (path->bus->sim) {
7101 					kprintf(" %s%d\n",
7102 						path->bus->sim->sim_name,
7103 						path->bus->sim->unit_number);
7104 				} else {
7105 					kprintf(" (unknown)\n");
7106 				}
7107 			}
7108 			if (path->bus->counted_to_config) {
7109 				path->bus->counted_to_config = 0;
7110 				busses_to_config--;
7111 			}
7112 			xpt_free_path(path);
7113 			break;
7114 		}
7115 	}
7116 
7117 	if (busses_to_config == 0) {
7118 		task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7119 			       M_INTWAIT | M_ZERO);
7120 		TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7121 		taskqueue_enqueue(taskqueue_thread[mycpuid], &task->task);
7122 	}
7123 
7124 	if (done_ccb != NULL)
7125 		xpt_free_ccb(done_ccb);
7126 }
7127 
7128 cam_status
7129 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7130 		   struct cam_path *path)
7131 {
7132 	struct ccb_setasync csa;
7133 	cam_status status;
7134 	int xptpath = 0;
7135 
7136 	if (path == NULL) {
7137 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7138 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7139 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7140 		if (status != CAM_REQ_CMP) {
7141 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7142 			return (status);
7143 		}
7144 		xptpath = 1;
7145 	}
7146 
7147 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7148 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7149 	csa.event_enable = event;
7150 	csa.callback = cbfunc;
7151 	csa.callback_arg = cbarg;
7152 	xpt_action((union ccb *)&csa);
7153 	status = csa.ccb_h.status;
7154 	if (xptpath) {
7155 		xpt_free_path(path);
7156 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7157 	}
7158 	return (status);
7159 }
7160 
7161 static void
7162 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7163 {
7164 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7165 
7166 	switch (work_ccb->ccb_h.func_code) {
7167 	/* Common cases first */
7168 	case XPT_PATH_INQ:		/* Path routing inquiry */
7169 	{
7170 		struct ccb_pathinq *cpi;
7171 
7172 		cpi = &work_ccb->cpi;
7173 		cpi->version_num = 1; /* XXX??? */
7174 		cpi->hba_inquiry = 0;
7175 		cpi->target_sprt = 0;
7176 		cpi->hba_misc = 0;
7177 		cpi->hba_eng_cnt = 0;
7178 		cpi->max_target = 0;
7179 		cpi->max_lun = 0;
7180 		cpi->initiator_id = 0;
7181 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7182 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7183 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7184 		cpi->unit_number = sim->unit_number;
7185 		cpi->bus_id = sim->bus_id;
7186 		cpi->base_transfer_speed = 0;
7187 		cpi->protocol = PROTO_UNSPECIFIED;
7188 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7189 		cpi->transport = XPORT_UNSPECIFIED;
7190 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7191 		cpi->ccb_h.status = CAM_REQ_CMP;
7192 		xpt_done(work_ccb);
7193 		break;
7194 	}
7195 	default:
7196 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7197 		xpt_done(work_ccb);
7198 		break;
7199 	}
7200 }
7201 
7202 /*
7203  * The xpt as a "controller" has no interrupt sources, so polling
7204  * is a no-op.
7205  */
7206 static void
7207 xptpoll(struct cam_sim *sim)
7208 {
7209 }
7210 
7211 void
7212 xpt_lock_buses(void)
7213 {
7214 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7215 }
7216 
7217 void
7218 xpt_unlock_buses(void)
7219 {
7220 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7221 }
7222 
7223 
7224 /*
7225  * Should only be called by the machine interrupt dispatch routines,
7226  * so put these prototypes here instead of in the header.
7227  */
7228 
7229 static void
7230 swi_cambio(void *arg, void *frame)
7231 {
7232 	camisr(NULL);
7233 }
7234 
7235 static void
7236 camisr(void *dummy)
7237 {
7238 	cam_simq_t queue;
7239 	struct cam_sim *sim;
7240 
7241 	spin_lock_wr(&cam_simq_spin);
7242 	TAILQ_INIT(&queue);
7243 	TAILQ_CONCAT(&queue, &cam_simq, links);
7244 	spin_unlock_wr(&cam_simq_spin);
7245 
7246 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7247 		TAILQ_REMOVE(&queue, sim, links);
7248 		CAM_SIM_LOCK(sim);
7249 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7250 		camisr_runqueue(sim);
7251 		CAM_SIM_UNLOCK(sim);
7252 	}
7253 }
7254 
7255 static void
7256 camisr_runqueue(struct cam_sim *sim)
7257 {
7258 	struct	ccb_hdr *ccb_h;
7259 	int	runq;
7260 
7261 	spin_lock_wr(&sim->sim_spin);
7262 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7263 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7264 		spin_unlock_wr(&sim->sim_spin);
7265 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7266 
7267 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7268 			  ("camisr\n"));
7269 
7270 		runq = FALSE;
7271 
7272 		if (ccb_h->flags & CAM_HIGH_POWER) {
7273 			struct highpowerlist	*hphead;
7274 			struct cam_ed		*device;
7275 			union ccb		*send_ccb;
7276 
7277 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7278 			hphead = &xsoftc.highpowerq;
7279 
7280 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7281 
7282 			/*
7283 			 * Increment the count since this command is done.
7284 			 */
7285 			xsoftc.num_highpower++;
7286 
7287 			/*
7288 			 * Any high powered commands queued up?
7289 			 */
7290 			if (send_ccb != NULL) {
7291 				device = send_ccb->ccb_h.path->device;
7292 
7293 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7294 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7295 
7296 				xpt_release_devq(send_ccb->ccb_h.path,
7297 						 /*count*/1, /*runqueue*/TRUE);
7298 			} else
7299 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7300 		}
7301 
7302 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7303 			struct cam_ed *dev;
7304 
7305 			dev = ccb_h->path->device;
7306 
7307 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7308 
7309 			/*
7310 			 * devq may be NULL if this is cam_dead_sim
7311 			 */
7312 			if (ccb_h->path->bus->sim->devq) {
7313 				ccb_h->path->bus->sim->devq->send_active--;
7314 				ccb_h->path->bus->sim->devq->send_openings++;
7315 			}
7316 
7317 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7318 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7319 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7320 			  && (dev->ccbq.dev_active == 0))) {
7321 
7322 				xpt_release_devq(ccb_h->path, /*count*/1,
7323 						 /*run_queue*/TRUE);
7324 			}
7325 
7326 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7327 			 && (--dev->tag_delay_count == 0))
7328 				xpt_start_tags(ccb_h->path);
7329 
7330 			if ((dev->ccbq.queue.entries > 0)
7331 			 && (dev->qfrozen_cnt == 0)
7332 			 && (device_is_send_queued(dev) == 0)) {
7333 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7334 							      dev);
7335 			}
7336 		}
7337 
7338 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7339 			xpt_release_simq(ccb_h->path->bus->sim,
7340 					 /*run_queue*/TRUE);
7341 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7342 			runq = FALSE;
7343 		}
7344 
7345 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7346 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7347 			xpt_release_devq(ccb_h->path, /*count*/1,
7348 					 /*run_queue*/TRUE);
7349 			ccb_h->status &= ~CAM_DEV_QFRZN;
7350 		} else if (runq) {
7351 			xpt_run_dev_sendq(ccb_h->path->bus);
7352 		}
7353 
7354 		/* Call the peripheral driver's callback */
7355 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7356 		spin_lock_wr(&sim->sim_spin);
7357 	}
7358 	spin_unlock_wr(&sim->sim_spin);
7359 }
7360 
7361 /*
7362  * The dead_sim isn't completely hooked into CAM, we have to make sure
7363  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7364  * doesn't block.
7365  */
7366 static void
7367 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7368 {
7369 
7370 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7371 	xpt_done(ccb);
7372 	camisr_runqueue(sim);
7373 }
7374 
7375 static void
7376 dead_sim_poll(struct cam_sim *sim)
7377 {
7378 }
7379