xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision ffe53622)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
55 
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
64 
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;	/* uptime of last reset */
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;	/* uptime of last reset */
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 	int		     counted_to_config;	/* busses_to_config */
201 };
202 
203 struct cam_path {
204 	struct cam_periph *periph;
205 	struct cam_eb	  *bus;
206 	struct cam_et	  *target;
207 	struct cam_ed	  *device;
208 };
209 
210 struct xpt_quirk_entry {
211 	struct scsi_inquiry_pattern inq_pat;
212 	u_int8_t quirks;
213 #define	CAM_QUIRK_NOLUNS	0x01
214 #define	CAM_QUIRK_NOSERIAL	0x02
215 #define	CAM_QUIRK_HILUNS	0x04
216 #define	CAM_QUIRK_NOHILUNS	0x08
217 	u_int mintags;
218 	u_int maxtags;
219 };
220 
221 static int cam_srch_hi = 0;
222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
225     sysctl_cam_search_luns, "I",
226     "allow search above LUN 7 for SCSI3 and greater devices");
227 
228 #define	CAM_SCSI2_MAXLUN	8
229 /*
230  * If we're not quirked to search <= the first 8 luns
231  * and we are either quirked to search above lun 8,
232  * or we're > SCSI-2 and we've enabled hilun searching,
233  * or we're > SCSI-2 and the last lun was a success,
234  * we can look for luns above lun 8.
235  */
236 #define	CAN_SRCH_HI_SPARSE(dv)				\
237   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
238   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
239   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
240 
241 #define	CAN_SRCH_HI_DENSE(dv)				\
242   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
243   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
244   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
245 
246 typedef enum {
247 	XPT_FLAG_OPEN		= 0x01
248 } xpt_flags;
249 
250 struct xpt_softc {
251 	xpt_flags		flags;
252 	u_int32_t		xpt_generation;
253 
254 	/* number of high powered commands that can go through right now */
255 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
256 	int			num_highpower;
257 
258 	/* queue for handling async rescan requests. */
259 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
260 	int			ccb_scanq_running;
261 
262 	/* Registered busses */
263 	TAILQ_HEAD(,cam_eb)	xpt_busses;
264 	u_int			bus_generation;
265 
266 	struct intr_config_hook	*xpt_config_hook;
267 
268 	struct lock		xpt_topo_lock;
269 	struct lock		xpt_lock;
270 };
271 
272 static const char quantum[] = "QUANTUM";
273 static const char sony[] = "SONY";
274 static const char west_digital[] = "WDIGTL";
275 static const char samsung[] = "SAMSUNG";
276 static const char seagate[] = "SEAGATE";
277 static const char microp[] = "MICROP";
278 
279 static struct xpt_quirk_entry xpt_quirk_table[] =
280 {
281 	{
282 		/* Reports QUEUE FULL for temporary resource shortages */
283 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
284 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
285 	},
286 	{
287 		/* Reports QUEUE FULL for temporary resource shortages */
288 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
289 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
290 	},
291 	{
292 		/* Reports QUEUE FULL for temporary resource shortages */
293 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
294 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
295 	},
296 	{
297 		/* Broken tagged queuing drive */
298 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
299 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
300 	},
301 	{
302 		/* Broken tagged queuing drive */
303 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
304 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
305 	},
306 	{
307 		/* Broken tagged queuing drive */
308 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
309 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
310 	},
311 	{
312 		/*
313 		 * Unfortunately, the Quantum Atlas III has the same
314 		 * problem as the Atlas II drives above.
315 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
316 		 *
317 		 * For future reference, the drive with the problem was:
318 		 * QUANTUM QM39100TD-SW N1B0
319 		 *
320 		 * It's possible that Quantum will fix the problem in later
321 		 * firmware revisions.  If that happens, the quirk entry
322 		 * will need to be made specific to the firmware revisions
323 		 * with the problem.
324 		 *
325 		 */
326 		/* Reports QUEUE FULL for temporary resource shortages */
327 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
328 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
329 	},
330 	{
331 		/*
332 		 * 18 Gig Atlas III, same problem as the 9G version.
333 		 * Reported by: Andre Albsmeier
334 		 *		<andre.albsmeier@mchp.siemens.de>
335 		 *
336 		 * For future reference, the drive with the problem was:
337 		 * QUANTUM QM318000TD-S N491
338 		 */
339 		/* Reports QUEUE FULL for temporary resource shortages */
340 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
341 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
342 	},
343 	{
344 		/*
345 		 * Broken tagged queuing drive
346 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
347 		 *         and: Martin Renters <martin@tdc.on.ca>
348 		 */
349 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 		/*
353 		 * The Seagate Medalist Pro drives have very poor write
354 		 * performance with anything more than 2 tags.
355 		 *
356 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
357 		 * Drive:  <SEAGATE ST36530N 1444>
358 		 *
359 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
360 		 * Drive:  <SEAGATE ST34520W 1281>
361 		 *
362 		 * No one has actually reported that the 9G version
363 		 * (ST39140*) of the Medalist Pro has the same problem, but
364 		 * we're assuming that it does because the 4G and 6.5G
365 		 * versions of the drive are broken.
366 		 */
367 	{
368 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
369 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
370 	},
371 	{
372 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
373 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
374 	},
375 	{
376 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
377 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
378 	},
379 	{
380 		/*
381 		 * Slow when tagged queueing is enabled.  Write performance
382 		 * steadily drops off with more and more concurrent
383 		 * transactions.  Best sequential write performance with
384 		 * tagged queueing turned off and write caching turned on.
385 		 *
386 		 * PR:  kern/10398
387 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
388 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
389 		 *
390 		 * The drive with the problem had the "S65A" firmware
391 		 * revision, and has also been reported (by Stephen J.
392 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
393 		 * firmware revision.
394 		 *
395 		 * Although no one has reported problems with the 2 gig
396 		 * version of the DCAS drive, the assumption is that it
397 		 * has the same problems as the 4 gig version.  Therefore
398 		 * this quirk entries disables tagged queueing for all
399 		 * DCAS drives.
400 		 */
401 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
402 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
403 	},
404 	{
405 		/* Broken tagged queuing drive */
406 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
407 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
408 	},
409 	{
410 		/* Broken tagged queuing drive */
411 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
412 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
413 	},
414 	{
415 		/* This does not support other than LUN 0 */
416 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
417 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
418 	},
419 	{
420 		/*
421 		 * Broken tagged queuing drive.
422 		 * Submitted by:
423 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
424 		 * in PR kern/9535
425 		 */
426 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
427 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
428 	},
429         {
430 		/*
431 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
432 		 * 8MB/sec.)
433 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
434 		 * Best performance with these drives is achieved with
435 		 * tagged queueing turned off, and write caching turned on.
436 		 */
437 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
438 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
439         },
440         {
441 		/*
442 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
443 		 * 8MB/sec.)
444 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
445 		 * Best performance with these drives is achieved with
446 		 * tagged queueing turned off, and write caching turned on.
447 		 */
448 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
449 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
450         },
451 	{
452 		/*
453 		 * Doesn't handle queue full condition correctly,
454 		 * so we need to limit maxtags to what the device
455 		 * can handle instead of determining this automatically.
456 		 */
457 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
458 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
459 	},
460 	{
461 		/* Really only one LUN */
462 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
463 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
464 	},
465 	{
466 		/* I can't believe we need a quirk for DPT volumes. */
467 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
468 		CAM_QUIRK_NOLUNS,
469 		/*mintags*/0, /*maxtags*/255
470 	},
471 	{
472 		/*
473 		 * Many Sony CDROM drives don't like multi-LUN probing.
474 		 */
475 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
476 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
477 	},
478 	{
479 		/*
480 		 * This drive doesn't like multiple LUN probing.
481 		 * Submitted by:  Parag Patel <parag@cgt.com>
482 		 */
483 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
484 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
485 	},
486 	{
487 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
488 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
489 	},
490 	{
491 		/*
492 		 * The 8200 doesn't like multi-lun probing, and probably
493 		 * don't like serial number requests either.
494 		 */
495 		{
496 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
497 			"EXB-8200*", "*"
498 		},
499 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
500 	},
501 	{
502 		/*
503 		 * Let's try the same as above, but for a drive that says
504 		 * it's an IPL-6860 but is actually an EXB 8200.
505 		 */
506 		{
507 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
508 			"IPL-6860*", "*"
509 		},
510 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
511 	},
512 	{
513 		/*
514 		 * These Hitachi drives don't like multi-lun probing.
515 		 * The PR submitter has a DK319H, but says that the Linux
516 		 * kernel has a similar work-around for the DK312 and DK314,
517 		 * so all DK31* drives are quirked here.
518 		 * PR:            misc/18793
519 		 * Submitted by:  Paul Haddad <paul@pth.com>
520 		 */
521 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
522 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
523 	},
524 	{
525 		/*
526 		 * The Hitachi CJ series with J8A8 firmware apparantly has
527 		 * problems with tagged commands.
528 		 * PR: 23536
529 		 * Reported by: amagai@nue.org
530 		 */
531 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
532 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
533 	},
534 	{
535 		/*
536 		 * These are the large storage arrays.
537 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
538 		 */
539 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
540 		CAM_QUIRK_HILUNS, 2, 1024
541 	},
542 	{
543 		/*
544 		 * This old revision of the TDC3600 is also SCSI-1, and
545 		 * hangs upon serial number probing.
546 		 */
547 		{
548 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
549 			" TDC 3600", "U07:"
550 		},
551 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
552 	},
553 	{
554 		/*
555 		 * Would repond to all LUNs if asked for.
556 		 */
557 		{
558 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
559 			"CP150", "*"
560 		},
561 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
562 	},
563 	{
564 		/*
565 		 * Would repond to all LUNs if asked for.
566 		 */
567 		{
568 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
569 			"96X2*", "*"
570 		},
571 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
572 	},
573 	{
574 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
575 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
576 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
577 	},
578 	{
579 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
580 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
581 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
582 	},
583 	{
584 		/* TeraSolutions special settings for TRC-22 RAID */
585 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
586 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
587 	},
588 	{
589 		/* Veritas Storage Appliance */
590 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
591 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
592 	},
593 	{
594 		/*
595 		 * Would respond to all LUNs.  Device type and removable
596 		 * flag are jumper-selectable.
597 		 */
598 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
599 		  "Tahiti 1", "*"
600 		},
601 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
602 	},
603 	{
604 		/* EasyRAID E5A aka. areca ARC-6010 */
605 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
606 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
607 	},
608 	{
609 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
610 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
611 	},
612 	{
613 		/* Default tagged queuing parameters for all devices */
614 		{
615 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
616 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
617 		},
618 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
619 	},
620 };
621 
622 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
623 
624 typedef enum {
625 	DM_RET_COPY		= 0x01,
626 	DM_RET_FLAG_MASK	= 0x0f,
627 	DM_RET_NONE		= 0x00,
628 	DM_RET_STOP		= 0x10,
629 	DM_RET_DESCEND		= 0x20,
630 	DM_RET_ERROR		= 0x30,
631 	DM_RET_ACTION_MASK	= 0xf0
632 } dev_match_ret;
633 
634 typedef enum {
635 	XPT_DEPTH_BUS,
636 	XPT_DEPTH_TARGET,
637 	XPT_DEPTH_DEVICE,
638 	XPT_DEPTH_PERIPH
639 } xpt_traverse_depth;
640 
641 struct xpt_traverse_config {
642 	xpt_traverse_depth	depth;
643 	void			*tr_func;
644 	void			*tr_arg;
645 };
646 
647 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
648 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
649 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
650 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
651 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
652 
653 /* Transport layer configuration information */
654 static struct xpt_softc xsoftc;
655 
656 /* Queues for our software interrupt handler */
657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
659 static cam_simq_t cam_simq;
660 static struct spinlock cam_simq_spin;
661 
662 struct cam_periph *xpt_periph;
663 
664 static periph_init_t xpt_periph_init;
665 
666 static periph_init_t probe_periph_init;
667 
668 static struct periph_driver xpt_driver =
669 {
670 	xpt_periph_init, "xpt",
671 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
672 };
673 
674 static struct periph_driver probe_driver =
675 {
676 	probe_periph_init, "probe",
677 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
678 };
679 
680 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
681 PERIPHDRIVER_DECLARE(probe, probe_driver);
682 
683 static d_open_t xptopen;
684 static d_close_t xptclose;
685 static d_ioctl_t xptioctl;
686 
687 static struct dev_ops xpt_ops = {
688 	{ "xpt", 0, D_MPSAFE },
689 	.d_open = xptopen,
690 	.d_close = xptclose,
691 	.d_ioctl = xptioctl
692 };
693 
694 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
695 static void dead_sim_poll(struct cam_sim *sim);
696 
697 /* Dummy SIM that is used when the real one has gone. */
698 static struct cam_sim cam_dead_sim;
699 static struct lock    cam_dead_lock;
700 
701 /* Storage for debugging datastructures */
702 #ifdef	CAMDEBUG
703 struct cam_path *cam_dpath;
704 u_int32_t cam_dflags;
705 u_int32_t cam_debug_delay;
706 #endif
707 
708 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
709 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
710 #endif
711 
712 /*
713  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
714  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
715  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
716  */
717 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
718     || defined(CAM_DEBUG_LUN)
719 #ifdef CAMDEBUG
720 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
721     || !defined(CAM_DEBUG_LUN)
722 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
723         and CAM_DEBUG_LUN"
724 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
725 #else /* !CAMDEBUG */
726 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
727 #endif /* CAMDEBUG */
728 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
729 
730 /* Our boot-time initialization hook */
731 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
732 
733 static moduledata_t cam_moduledata = {
734 	"cam",
735 	cam_module_event_handler,
736 	NULL
737 };
738 
739 static int	xpt_init(void *);
740 
741 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
742 MODULE_VERSION(cam, 1);
743 
744 
745 static cam_status	xpt_compile_path(struct cam_path *new_path,
746 					 struct cam_periph *perph,
747 					 path_id_t path_id,
748 					 target_id_t target_id,
749 					 lun_id_t lun_id);
750 
751 static void		xpt_release_path(struct cam_path *path);
752 
753 static void		xpt_async_bcast(struct async_list *async_head,
754 					u_int32_t async_code,
755 					struct cam_path *path,
756 					void *async_arg);
757 static void		xpt_dev_async(u_int32_t async_code,
758 				      struct cam_eb *bus,
759 				      struct cam_et *target,
760 				      struct cam_ed *device,
761 				      void *async_arg);
762 static path_id_t xptnextfreepathid(void);
763 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
764 static union ccb *xpt_get_ccb(struct cam_ed *device);
765 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
766 				  u_int32_t new_priority);
767 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
768 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
769 static timeout_t xpt_release_devq_timeout;
770 static void	 xpt_release_bus(struct cam_eb *bus);
771 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
772 					 int run_queue);
773 static struct cam_et*
774 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
775 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
776 static struct cam_ed*
777 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
778 				  lun_id_t lun_id);
779 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
780 				    struct cam_ed *device);
781 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
782 static struct cam_eb*
783 		 xpt_find_bus(path_id_t path_id);
784 static struct cam_et*
785 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
786 static struct cam_ed*
787 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
788 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
789 static void	 xpt_scan_lun(struct cam_periph *periph,
790 			      struct cam_path *path, cam_flags flags,
791 			      union ccb *ccb);
792 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
793 static xpt_busfunc_t	xptconfigbuscountfunc;
794 static xpt_busfunc_t	xptconfigfunc;
795 static void	 xpt_config(void *arg);
796 static xpt_devicefunc_t xptpassannouncefunc;
797 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
798 static void	 xpt_uncount_bus (struct cam_eb *bus);
799 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
800 static void	 xptpoll(struct cam_sim *sim);
801 static inthand2_t swi_cambio;
802 static void	 camisr(void *);
803 static void	 camisr_runqueue(struct cam_sim *);
804 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
805 				    u_int num_patterns, struct cam_eb *bus);
806 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
807 				       u_int num_patterns,
808 				       struct cam_ed *device);
809 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
810 				       u_int num_patterns,
811 				       struct cam_periph *periph);
812 static xpt_busfunc_t	xptedtbusfunc;
813 static xpt_targetfunc_t	xptedttargetfunc;
814 static xpt_devicefunc_t	xptedtdevicefunc;
815 static xpt_periphfunc_t	xptedtperiphfunc;
816 static xpt_pdrvfunc_t	xptplistpdrvfunc;
817 static xpt_periphfunc_t	xptplistperiphfunc;
818 static int		xptedtmatch(struct ccb_dev_match *cdm);
819 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
820 static int		xptbustraverse(struct cam_eb *start_bus,
821 				       xpt_busfunc_t *tr_func, void *arg);
822 static int		xpttargettraverse(struct cam_eb *bus,
823 					  struct cam_et *start_target,
824 					  xpt_targetfunc_t *tr_func, void *arg);
825 static int		xptdevicetraverse(struct cam_et *target,
826 					  struct cam_ed *start_device,
827 					  xpt_devicefunc_t *tr_func, void *arg);
828 static int		xptperiphtraverse(struct cam_ed *device,
829 					  struct cam_periph *start_periph,
830 					  xpt_periphfunc_t *tr_func, void *arg);
831 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
832 					xpt_pdrvfunc_t *tr_func, void *arg);
833 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
834 					    struct cam_periph *start_periph,
835 					    xpt_periphfunc_t *tr_func,
836 					    void *arg);
837 static xpt_busfunc_t	xptdefbusfunc;
838 static xpt_targetfunc_t	xptdeftargetfunc;
839 static xpt_devicefunc_t	xptdefdevicefunc;
840 static xpt_periphfunc_t	xptdefperiphfunc;
841 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
842 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
843 					    void *arg);
844 static xpt_devicefunc_t	xptsetasyncfunc;
845 static xpt_busfunc_t	xptsetasyncbusfunc;
846 static cam_status	xptregister(struct cam_periph *periph,
847 				    void *arg);
848 static cam_status	proberegister(struct cam_periph *periph,
849 				      void *arg);
850 static void	 probeschedule(struct cam_periph *probe_periph);
851 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
852 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
853 static int       proberequestbackoff(struct cam_periph *periph,
854 				     struct cam_ed *device);
855 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
856 static void	 probecleanup(struct cam_periph *periph);
857 static void	 xpt_find_quirk(struct cam_ed *device);
858 static void	 xpt_devise_transport(struct cam_path *path);
859 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
860 					   struct cam_ed *device,
861 					   int async_update);
862 static void	 xpt_toggle_tags(struct cam_path *path);
863 static void	 xpt_start_tags(struct cam_path *path);
864 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
865 					    struct cam_ed *dev);
866 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
867 					   struct cam_ed *dev);
868 static __inline int periph_is_queued(struct cam_periph *periph);
869 static __inline int device_is_alloc_queued(struct cam_ed *device);
870 static __inline int device_is_send_queued(struct cam_ed *device);
871 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
872 
873 static __inline int
874 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
875 {
876 	int retval;
877 
878 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
879 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
880 			cam_ccbq_resize(&dev->ccbq,
881 					dev->ccbq.dev_openings
882 					+ dev->ccbq.dev_active);
883 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
884 		}
885 		/*
886 		 * The priority of a device waiting for CCB resources
887 		 * is that of the the highest priority peripheral driver
888 		 * enqueued.
889 		 */
890 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
891 					  &dev->alloc_ccb_entry.pinfo,
892 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
893 	} else {
894 		retval = 0;
895 	}
896 
897 	return (retval);
898 }
899 
900 static __inline int
901 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
902 {
903 	int	retval;
904 
905 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
906 		/*
907 		 * The priority of a device waiting for controller
908 		 * resources is that of the the highest priority CCB
909 		 * enqueued.
910 		 */
911 		retval =
912 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
913 				     &dev->send_ccb_entry.pinfo,
914 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
915 	} else {
916 		retval = 0;
917 	}
918 	return (retval);
919 }
920 
921 static __inline int
922 periph_is_queued(struct cam_periph *periph)
923 {
924 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
925 }
926 
927 static __inline int
928 device_is_alloc_queued(struct cam_ed *device)
929 {
930 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
931 }
932 
933 static __inline int
934 device_is_send_queued(struct cam_ed *device)
935 {
936 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
937 }
938 
939 static __inline int
940 dev_allocq_is_runnable(struct cam_devq *devq)
941 {
942 	/*
943 	 * Have work to do.
944 	 * Have space to do more work.
945 	 * Allowed to do work.
946 	 */
947 	return ((devq->alloc_queue.qfrozen_cnt == 0)
948 	     && (devq->alloc_queue.entries > 0)
949 	     && (devq->alloc_openings > 0));
950 }
951 
952 static void
953 xpt_periph_init(void)
954 {
955 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
956 }
957 
958 static void
959 probe_periph_init(void)
960 {
961 }
962 
963 
964 static void
965 xptdone(struct cam_periph *periph, union ccb *done_ccb)
966 {
967 	/* Caller will release the CCB */
968 	wakeup(&done_ccb->ccb_h.cbfcnp);
969 }
970 
971 static int
972 xptopen(struct dev_open_args *ap)
973 {
974 	cdev_t dev = ap->a_head.a_dev;
975 
976 	/*
977 	 * Only allow read-write access.
978 	 */
979 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
980 		return(EPERM);
981 
982 	/*
983 	 * We don't allow nonblocking access.
984 	 */
985 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
986 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
987 		return(ENODEV);
988 	}
989 
990 	/* Mark ourselves open */
991 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
992 	xsoftc.flags |= XPT_FLAG_OPEN;
993 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
994 
995 	return(0);
996 }
997 
998 static int
999 xptclose(struct dev_close_args *ap)
1000 {
1001 
1002 	/* Mark ourselves closed */
1003 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1004 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1005 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1006 
1007 	return(0);
1008 }
1009 
1010 /*
1011  * Don't automatically grab the xpt softc lock here even though this is going
1012  * through the xpt device.  The xpt device is really just a back door for
1013  * accessing other devices and SIMs, so the right thing to do is to grab
1014  * the appropriate SIM lock once the bus/SIM is located.
1015  */
1016 static int
1017 xptioctl(struct dev_ioctl_args *ap)
1018 {
1019 	int error;
1020 
1021 	error = 0;
1022 
1023 	switch(ap->a_cmd) {
1024 	/*
1025 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1026 	 * to accept CCB types that don't quite make sense to send through a
1027 	 * passthrough driver.
1028 	 */
1029 	case CAMIOCOMMAND: {
1030 		union ccb *ccb;
1031 		union ccb *inccb;
1032 		struct cam_eb *bus;
1033 
1034 		inccb = (union ccb *)ap->a_data;
1035 
1036 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1037 		if (bus == NULL) {
1038 			error = EINVAL;
1039 			break;
1040 		}
1041 
1042 		switch(inccb->ccb_h.func_code) {
1043 		case XPT_SCAN_BUS:
1044 		case XPT_RESET_BUS:
1045 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1046 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1047 				error = EINVAL;
1048 				break;
1049 			}
1050 			/* FALLTHROUGH */
1051 		case XPT_PATH_INQ:
1052 		case XPT_ENG_INQ:
1053 		case XPT_SCAN_LUN:
1054 
1055 			ccb = xpt_alloc_ccb();
1056 
1057 			CAM_SIM_LOCK(bus->sim);
1058 
1059 			/*
1060 			 * Create a path using the bus, target, and lun the
1061 			 * user passed in.
1062 			 */
1063 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1064 					    inccb->ccb_h.path_id,
1065 					    inccb->ccb_h.target_id,
1066 					    inccb->ccb_h.target_lun) !=
1067 					    CAM_REQ_CMP){
1068 				error = EINVAL;
1069 				CAM_SIM_UNLOCK(bus->sim);
1070 				xpt_free_ccb(ccb);
1071 				break;
1072 			}
1073 			/* Ensure all of our fields are correct */
1074 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1075 				      inccb->ccb_h.pinfo.priority);
1076 			xpt_merge_ccb(ccb, inccb);
1077 			ccb->ccb_h.cbfcnp = xptdone;
1078 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1079 			bcopy(ccb, inccb, sizeof(union ccb));
1080 			xpt_free_path(ccb->ccb_h.path);
1081 			xpt_free_ccb(ccb);
1082 			CAM_SIM_UNLOCK(bus->sim);
1083 			break;
1084 
1085 		case XPT_DEBUG: {
1086 			union ccb ccb;
1087 
1088 			/*
1089 			 * This is an immediate CCB, so it's okay to
1090 			 * allocate it on the stack.
1091 			 */
1092 
1093 			CAM_SIM_LOCK(bus->sim);
1094 
1095 			/*
1096 			 * Create a path using the bus, target, and lun the
1097 			 * user passed in.
1098 			 */
1099 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1100 					    inccb->ccb_h.path_id,
1101 					    inccb->ccb_h.target_id,
1102 					    inccb->ccb_h.target_lun) !=
1103 					    CAM_REQ_CMP){
1104 				error = EINVAL;
1105 				CAM_SIM_UNLOCK(bus->sim);
1106 				break;
1107 			}
1108 			/* Ensure all of our fields are correct */
1109 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1110 				      inccb->ccb_h.pinfo.priority);
1111 			xpt_merge_ccb(&ccb, inccb);
1112 			ccb.ccb_h.cbfcnp = xptdone;
1113 			xpt_action(&ccb);
1114 			CAM_SIM_UNLOCK(bus->sim);
1115 			bcopy(&ccb, inccb, sizeof(union ccb));
1116 			xpt_free_path(ccb.ccb_h.path);
1117 			break;
1118 
1119 		}
1120 		case XPT_DEV_MATCH: {
1121 			struct cam_periph_map_info mapinfo;
1122 			struct cam_path *old_path;
1123 
1124 			/*
1125 			 * We can't deal with physical addresses for this
1126 			 * type of transaction.
1127 			 */
1128 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1129 				error = EINVAL;
1130 				break;
1131 			}
1132 
1133 			/*
1134 			 * Save this in case the caller had it set to
1135 			 * something in particular.
1136 			 */
1137 			old_path = inccb->ccb_h.path;
1138 
1139 			/*
1140 			 * We really don't need a path for the matching
1141 			 * code.  The path is needed because of the
1142 			 * debugging statements in xpt_action().  They
1143 			 * assume that the CCB has a valid path.
1144 			 */
1145 			inccb->ccb_h.path = xpt_periph->path;
1146 
1147 			bzero(&mapinfo, sizeof(mapinfo));
1148 
1149 			/*
1150 			 * Map the pattern and match buffers into kernel
1151 			 * virtual address space.
1152 			 */
1153 			error = cam_periph_mapmem(inccb, &mapinfo);
1154 
1155 			if (error) {
1156 				inccb->ccb_h.path = old_path;
1157 				break;
1158 			}
1159 
1160 			/*
1161 			 * This is an immediate CCB, we can send it on directly.
1162 			 */
1163 			xpt_action(inccb);
1164 
1165 			/*
1166 			 * Map the buffers back into user space.
1167 			 */
1168 			cam_periph_unmapmem(inccb, &mapinfo);
1169 
1170 			inccb->ccb_h.path = old_path;
1171 
1172 			error = 0;
1173 			break;
1174 		}
1175 		default:
1176 			error = ENOTSUP;
1177 			break;
1178 		}
1179 		xpt_release_bus(bus);
1180 		break;
1181 	}
1182 	/*
1183 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1184 	 * with the periphal driver name and unit name filled in.  The other
1185 	 * fields don't really matter as input.  The passthrough driver name
1186 	 * ("pass"), and unit number are passed back in the ccb.  The current
1187 	 * device generation number, and the index into the device peripheral
1188 	 * driver list, and the status are also passed back.  Note that
1189 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1190 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1191 	 * (or rather should be) impossible for the device peripheral driver
1192 	 * list to change since we look at the whole thing in one pass, and
1193 	 * we do it with lock protection.
1194 	 *
1195 	 */
1196 	case CAMGETPASSTHRU: {
1197 		union ccb *ccb;
1198 		struct cam_periph *periph;
1199 		struct periph_driver **p_drv;
1200 		char   *name;
1201 		u_int unit;
1202 		u_int cur_generation;
1203 		int base_periph_found;
1204 		int splbreaknum;
1205 
1206 		ccb = (union ccb *)ap->a_data;
1207 		unit = ccb->cgdl.unit_number;
1208 		name = ccb->cgdl.periph_name;
1209 		/*
1210 		 * Every 100 devices, we want to drop our lock protection to
1211 		 * give the software interrupt handler a chance to run.
1212 		 * Most systems won't run into this check, but this should
1213 		 * avoid starvation in the software interrupt handler in
1214 		 * large systems.
1215 		 */
1216 		splbreaknum = 100;
1217 
1218 		ccb = (union ccb *)ap->a_data;
1219 
1220 		base_periph_found = 0;
1221 
1222 		/*
1223 		 * Sanity check -- make sure we don't get a null peripheral
1224 		 * driver name.
1225 		 */
1226 		if (*ccb->cgdl.periph_name == '\0') {
1227 			error = EINVAL;
1228 			break;
1229 		}
1230 
1231 		/* Keep the list from changing while we traverse it */
1232 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1233 ptstartover:
1234 		cur_generation = xsoftc.xpt_generation;
1235 
1236 		/* first find our driver in the list of drivers */
1237 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1238 			if (strcmp((*p_drv)->driver_name, name) == 0)
1239 				break;
1240 		}
1241 
1242 		if (*p_drv == NULL) {
1243 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1244 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1245 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1246 			*ccb->cgdl.periph_name = '\0';
1247 			ccb->cgdl.unit_number = 0;
1248 			error = ENOENT;
1249 			break;
1250 		}
1251 
1252 		/*
1253 		 * Run through every peripheral instance of this driver
1254 		 * and check to see whether it matches the unit passed
1255 		 * in by the user.  If it does, get out of the loops and
1256 		 * find the passthrough driver associated with that
1257 		 * peripheral driver.
1258 		 */
1259 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1260 
1261 			if (periph->unit_number == unit) {
1262 				break;
1263 			} else if (--splbreaknum == 0) {
1264 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1265 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1266 				splbreaknum = 100;
1267 				if (cur_generation != xsoftc.xpt_generation)
1268 				       goto ptstartover;
1269 			}
1270 		}
1271 		/*
1272 		 * If we found the peripheral driver that the user passed
1273 		 * in, go through all of the peripheral drivers for that
1274 		 * particular device and look for a passthrough driver.
1275 		 */
1276 		if (periph != NULL) {
1277 			struct cam_ed *device;
1278 			int i;
1279 
1280 			base_periph_found = 1;
1281 			device = periph->path->device;
1282 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1283 			     periph != NULL;
1284 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1285 				/*
1286 				 * Check to see whether we have a
1287 				 * passthrough device or not.
1288 				 */
1289 				if (strcmp(periph->periph_name, "pass") == 0) {
1290 					/*
1291 					 * Fill in the getdevlist fields.
1292 					 */
1293 					strcpy(ccb->cgdl.periph_name,
1294 					       periph->periph_name);
1295 					ccb->cgdl.unit_number =
1296 						periph->unit_number;
1297 					if (SLIST_NEXT(periph, periph_links))
1298 						ccb->cgdl.status =
1299 							CAM_GDEVLIST_MORE_DEVS;
1300 					else
1301 						ccb->cgdl.status =
1302 						       CAM_GDEVLIST_LAST_DEVICE;
1303 					ccb->cgdl.generation =
1304 						device->generation;
1305 					ccb->cgdl.index = i;
1306 					/*
1307 					 * Fill in some CCB header fields
1308 					 * that the user may want.
1309 					 */
1310 					ccb->ccb_h.path_id =
1311 						periph->path->bus->path_id;
1312 					ccb->ccb_h.target_id =
1313 						periph->path->target->target_id;
1314 					ccb->ccb_h.target_lun =
1315 						periph->path->device->lun_id;
1316 					ccb->ccb_h.status = CAM_REQ_CMP;
1317 					break;
1318 				}
1319 			}
1320 		}
1321 
1322 		/*
1323 		 * If the periph is null here, one of two things has
1324 		 * happened.  The first possibility is that we couldn't
1325 		 * find the unit number of the particular peripheral driver
1326 		 * that the user is asking about.  e.g. the user asks for
1327 		 * the passthrough driver for "da11".  We find the list of
1328 		 * "da" peripherals all right, but there is no unit 11.
1329 		 * The other possibility is that we went through the list
1330 		 * of peripheral drivers attached to the device structure,
1331 		 * but didn't find one with the name "pass".  Either way,
1332 		 * we return ENOENT, since we couldn't find something.
1333 		 */
1334 		if (periph == NULL) {
1335 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1336 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1337 			*ccb->cgdl.periph_name = '\0';
1338 			ccb->cgdl.unit_number = 0;
1339 			error = ENOENT;
1340 			/*
1341 			 * It is unfortunate that this is even necessary,
1342 			 * but there are many, many clueless users out there.
1343 			 * If this is true, the user is looking for the
1344 			 * passthrough driver, but doesn't have one in his
1345 			 * kernel.
1346 			 */
1347 			if (base_periph_found == 1) {
1348 				kprintf("xptioctl: pass driver is not in the "
1349 				       "kernel\n");
1350 				kprintf("xptioctl: put \"device pass\" in "
1351 				       "your kernel config file\n");
1352 			}
1353 		}
1354 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1355 		break;
1356 		}
1357 	default:
1358 		error = ENOTTY;
1359 		break;
1360 	}
1361 
1362 	return(error);
1363 }
1364 
1365 static int
1366 cam_module_event_handler(module_t mod, int what, void *arg)
1367 {
1368 	int error;
1369 
1370 	switch (what) {
1371 	case MOD_LOAD:
1372 		if ((error = xpt_init(NULL)) != 0)
1373 			return (error);
1374 		break;
1375 	case MOD_UNLOAD:
1376 		return EBUSY;
1377 	default:
1378 		return EOPNOTSUPP;
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Thread to handle asynchronous main-context requests.
1386  *
1387  * This function is typically used by drivers to perform complex actions
1388  * such as bus scans and engineering requests in a main context instead
1389  * of an interrupt context.
1390  */
1391 static void
1392 xpt_scanner_thread(void *dummy)
1393 {
1394 	union ccb	*ccb;
1395 	struct cam_sim	*sim;
1396 
1397 	for (;;) {
1398 		xpt_lock_buses();
1399 		xsoftc.ccb_scanq_running = 1;
1400 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1401 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1402 				     sim_links.tqe);
1403 			xpt_unlock_buses();
1404 
1405 			sim = ccb->ccb_h.path->bus->sim;
1406 			CAM_SIM_LOCK(sim);
1407 			xpt_action(ccb);
1408 			CAM_SIM_UNLOCK(sim);
1409 
1410 			xpt_lock_buses();
1411 		}
1412 		xsoftc.ccb_scanq_running = 0;
1413 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1414 		xpt_unlock_buses();
1415 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1416 	}
1417 }
1418 
1419 /*
1420  * Issue an asynchronous asction
1421  */
1422 void
1423 xpt_action_async(union ccb *ccb)
1424 {
1425 	xpt_lock_buses();
1426 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1427 	if (xsoftc.ccb_scanq_running == 0) {
1428 		xsoftc.ccb_scanq_running = 1;
1429 		wakeup(&xsoftc.ccb_scanq);
1430 	}
1431 	xpt_unlock_buses();
1432 }
1433 
1434 
1435 /* Functions accessed by the peripheral drivers */
1436 static int
1437 xpt_init(void *dummy)
1438 {
1439 	struct cam_sim *xpt_sim;
1440 	struct cam_path *path;
1441 	struct cam_devq *devq;
1442 	cam_status status;
1443 
1444 	TAILQ_INIT(&xsoftc.xpt_busses);
1445 	TAILQ_INIT(&cam_simq);
1446 	TAILQ_INIT(&xsoftc.ccb_scanq);
1447 	STAILQ_INIT(&xsoftc.highpowerq);
1448 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1449 
1450 	spin_init(&cam_simq_spin, "cam_simq_spin");
1451 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1452 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1453 
1454 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1455 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1456 	spin_init(&cam_dead_sim.sim_spin, "cam_dead_sim");
1457 	cam_dead_sim.sim_action = dead_sim_action;
1458 	cam_dead_sim.sim_poll = dead_sim_poll;
1459 	cam_dead_sim.sim_name = "dead_sim";
1460 	cam_dead_sim.lock = &cam_dead_lock;
1461 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1462 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1463 
1464 	/*
1465 	 * The xpt layer is, itself, the equivelent of a SIM.
1466 	 * Allow 16 ccbs in the ccb pool for it.  This should
1467 	 * give decent parallelism when we probe busses and
1468 	 * perform other XPT functions.
1469 	 */
1470 	devq = cam_simq_alloc(16);
1471 	xpt_sim = cam_sim_alloc(xptaction,
1472 				xptpoll,
1473 				"xpt",
1474 				/*softc*/NULL,
1475 				/*unit*/0,
1476 				/*lock*/&xsoftc.xpt_lock,
1477 				/*max_dev_transactions*/0,
1478 				/*max_tagged_dev_transactions*/0,
1479 				devq);
1480 	cam_simq_release(devq);
1481 	if (xpt_sim == NULL)
1482 		return (ENOMEM);
1483 
1484 	xpt_sim->max_ccbs = 16;
1485 
1486 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1487 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1488 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1489 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1490 		       " failing attach\n", status);
1491 		return (EINVAL);
1492 	}
1493 
1494 	/*
1495 	 * Looking at the XPT from the SIM layer, the XPT is
1496 	 * the equivelent of a peripheral driver.  Allocate
1497 	 * a peripheral driver entry for us.
1498 	 */
1499 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1500 				      CAM_TARGET_WILDCARD,
1501 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1502 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1503 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1504 		       " failing attach\n", status);
1505 		return (EINVAL);
1506 	}
1507 
1508 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1509 			 path, NULL, 0, xpt_sim);
1510 	xpt_free_path(path);
1511 
1512 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1513 
1514 	/*
1515 	 * Register a callback for when interrupts are enabled.
1516 	 */
1517 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1518 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1519 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1520 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1521 	xsoftc.xpt_config_hook->ich_order = 1000;
1522 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1523 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1524 		kprintf("xpt_init: config_intrhook_establish failed "
1525 		       "- failing attach\n");
1526 	}
1527 
1528 	/* fire up rescan thread */
1529 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1530 		kprintf("xpt_init: failed to create rescan thread\n");
1531 	}
1532 	/* Install our software interrupt handlers */
1533 	register_swi_mp(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1534 
1535 	return (0);
1536 }
1537 
1538 static cam_status
1539 xptregister(struct cam_periph *periph, void *arg)
1540 {
1541 	struct cam_sim *xpt_sim;
1542 
1543 	if (periph == NULL) {
1544 		kprintf("xptregister: periph was NULL!!\n");
1545 		return(CAM_REQ_CMP_ERR);
1546 	}
1547 
1548 	xpt_sim = (struct cam_sim *)arg;
1549 	xpt_sim->softc = periph;
1550 	xpt_periph = periph;
1551 	periph->softc = NULL;
1552 
1553 	return(CAM_REQ_CMP);
1554 }
1555 
1556 int32_t
1557 xpt_add_periph(struct cam_periph *periph)
1558 {
1559 	struct cam_ed *device;
1560 	int32_t	 status;
1561 	struct periph_list *periph_head;
1562 
1563 	sim_lock_assert_owned(periph->sim->lock);
1564 
1565 	device = periph->path->device;
1566 
1567 	periph_head = &device->periphs;
1568 
1569 	status = CAM_REQ_CMP;
1570 
1571 	if (device != NULL) {
1572 		/*
1573 		 * Make room for this peripheral
1574 		 * so it will fit in the queue
1575 		 * when it's scheduled to run
1576 		 */
1577 		status = camq_resize(&device->drvq,
1578 				     device->drvq.array_size + 1);
1579 
1580 		device->generation++;
1581 
1582 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1583 	}
1584 
1585 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1586 	xsoftc.xpt_generation++;
1587 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1588 
1589 	return (status);
1590 }
1591 
1592 void
1593 xpt_remove_periph(struct cam_periph *periph)
1594 {
1595 	struct cam_ed *device;
1596 
1597 	sim_lock_assert_owned(periph->sim->lock);
1598 
1599 	device = periph->path->device;
1600 
1601 	if (device != NULL) {
1602 		struct periph_list *periph_head;
1603 
1604 		periph_head = &device->periphs;
1605 
1606 		/* Release the slot for this peripheral */
1607 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1608 
1609 		device->generation++;
1610 
1611 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1612 	}
1613 
1614 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1615 	xsoftc.xpt_generation++;
1616 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1617 }
1618 
1619 void
1620 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1621 {
1622 	struct	ccb_pathinq cpi;
1623 	struct	ccb_trans_settings cts;
1624 	struct	cam_path *path;
1625 	u_int	speed;
1626 	u_int	freq;
1627 	u_int	mb;
1628 
1629 	sim_lock_assert_owned(periph->sim->lock);
1630 
1631 	path = periph->path;
1632 
1633 	/* Report basic attachment and inquiry data */
1634 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1635 	       periph->periph_name, periph->unit_number,
1636 	       path->bus->sim->sim_name,
1637 	       path->bus->sim->unit_number,
1638 	       path->bus->sim->bus_id,
1639 	       path->target->target_id,
1640 	       path->device->lun_id);
1641 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1642 	scsi_print_inquiry(&path->device->inq_data);
1643 
1644 	/* Report serial number */
1645 	if (path->device->serial_num_len > 0) {
1646 		/* Don't wrap the screen  - print only the first 60 chars */
1647 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1648 		       periph->unit_number, path->device->serial_num);
1649 	}
1650 
1651 	/* Acquire and report transfer speed */
1652 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1653 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1654 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1655 	xpt_action((union ccb*)&cts);
1656 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1657 		return;
1658 	}
1659 
1660 	/* Ask the SIM for its base transfer speed */
1661 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1662 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1663 	xpt_action((union ccb *)&cpi);
1664 
1665 	speed = cpi.base_transfer_speed;
1666 	freq = 0;
1667 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1668 		struct	ccb_trans_settings_spi *spi;
1669 
1670 		spi = &cts.xport_specific.spi;
1671 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1672 		  && spi->sync_offset != 0) {
1673 			freq = scsi_calc_syncsrate(spi->sync_period);
1674 			speed = freq;
1675 		}
1676 
1677 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1678 			speed *= (0x01 << spi->bus_width);
1679 	}
1680 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1681 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1682 		if (fc->valid & CTS_FC_VALID_SPEED) {
1683 			speed = fc->bitrate;
1684 		}
1685 	}
1686 
1687 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1688 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1689 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1690 			speed = sas->bitrate;
1691 		}
1692 	}
1693 
1694 	mb = speed / 1000;
1695 	if (mb > 0)
1696 		kprintf("%s%d: %d.%03dMB/s transfers",
1697 		       periph->periph_name, periph->unit_number,
1698 		       mb, speed % 1000);
1699 	else
1700 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1701 		       periph->unit_number, speed);
1702 
1703 	/* Report additional information about SPI connections */
1704 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1705 		struct	ccb_trans_settings_spi *spi;
1706 
1707 		spi = &cts.xport_specific.spi;
1708 		if (freq != 0) {
1709 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1710 			       freq % 1000,
1711 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1712 			     ? " DT" : "",
1713 			       spi->sync_offset);
1714 		}
1715 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1716 		 && spi->bus_width > 0) {
1717 			if (freq != 0) {
1718 				kprintf(", ");
1719 			} else {
1720 				kprintf(" (");
1721 			}
1722 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1723 		} else if (freq != 0) {
1724 			kprintf(")");
1725 		}
1726 	}
1727 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1728 		struct	ccb_trans_settings_fc *fc;
1729 
1730 		fc = &cts.xport_specific.fc;
1731 		if (fc->valid & CTS_FC_VALID_WWNN)
1732 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1733 		if (fc->valid & CTS_FC_VALID_WWPN)
1734 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1735 		if (fc->valid & CTS_FC_VALID_PORT)
1736 			kprintf(" PortID 0x%x", fc->port);
1737 	}
1738 
1739 	if (path->device->inq_flags & SID_CmdQue
1740 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1741 		kprintf("\n%s%d: Command Queueing Enabled",
1742 		       periph->periph_name, periph->unit_number);
1743 	}
1744 	kprintf("\n");
1745 
1746 	/*
1747 	 * We only want to print the caller's announce string if they've
1748 	 * passed one in..
1749 	 */
1750 	if (announce_string != NULL)
1751 		kprintf("%s%d: %s\n", periph->periph_name,
1752 		       periph->unit_number, announce_string);
1753 }
1754 
1755 static dev_match_ret
1756 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1757 	    struct cam_eb *bus)
1758 {
1759 	dev_match_ret retval;
1760 	int i;
1761 
1762 	retval = DM_RET_NONE;
1763 
1764 	/*
1765 	 * If we aren't given something to match against, that's an error.
1766 	 */
1767 	if (bus == NULL)
1768 		return(DM_RET_ERROR);
1769 
1770 	/*
1771 	 * If there are no match entries, then this bus matches no
1772 	 * matter what.
1773 	 */
1774 	if ((patterns == NULL) || (num_patterns == 0))
1775 		return(DM_RET_DESCEND | DM_RET_COPY);
1776 
1777 	for (i = 0; i < num_patterns; i++) {
1778 		struct bus_match_pattern *cur_pattern;
1779 
1780 		/*
1781 		 * If the pattern in question isn't for a bus node, we
1782 		 * aren't interested.  However, we do indicate to the
1783 		 * calling routine that we should continue descending the
1784 		 * tree, since the user wants to match against lower-level
1785 		 * EDT elements.
1786 		 */
1787 		if (patterns[i].type != DEV_MATCH_BUS) {
1788 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1789 				retval |= DM_RET_DESCEND;
1790 			continue;
1791 		}
1792 
1793 		cur_pattern = &patterns[i].pattern.bus_pattern;
1794 
1795 		/*
1796 		 * If they want to match any bus node, we give them any
1797 		 * device node.
1798 		 */
1799 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1800 			/* set the copy flag */
1801 			retval |= DM_RET_COPY;
1802 
1803 			/*
1804 			 * If we've already decided on an action, go ahead
1805 			 * and return.
1806 			 */
1807 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1808 				return(retval);
1809 		}
1810 
1811 		/*
1812 		 * Not sure why someone would do this...
1813 		 */
1814 		if (cur_pattern->flags == BUS_MATCH_NONE)
1815 			continue;
1816 
1817 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1818 		 && (cur_pattern->path_id != bus->path_id))
1819 			continue;
1820 
1821 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1822 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1823 			continue;
1824 
1825 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1826 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1827 			continue;
1828 
1829 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1830 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1831 			     DEV_IDLEN) != 0))
1832 			continue;
1833 
1834 		/*
1835 		 * If we get to this point, the user definitely wants
1836 		 * information on this bus.  So tell the caller to copy the
1837 		 * data out.
1838 		 */
1839 		retval |= DM_RET_COPY;
1840 
1841 		/*
1842 		 * If the return action has been set to descend, then we
1843 		 * know that we've already seen a non-bus matching
1844 		 * expression, therefore we need to further descend the tree.
1845 		 * This won't change by continuing around the loop, so we
1846 		 * go ahead and return.  If we haven't seen a non-bus
1847 		 * matching expression, we keep going around the loop until
1848 		 * we exhaust the matching expressions.  We'll set the stop
1849 		 * flag once we fall out of the loop.
1850 		 */
1851 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1852 			return(retval);
1853 	}
1854 
1855 	/*
1856 	 * If the return action hasn't been set to descend yet, that means
1857 	 * we haven't seen anything other than bus matching patterns.  So
1858 	 * tell the caller to stop descending the tree -- the user doesn't
1859 	 * want to match against lower level tree elements.
1860 	 */
1861 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1862 		retval |= DM_RET_STOP;
1863 
1864 	return(retval);
1865 }
1866 
1867 static dev_match_ret
1868 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1869 	       struct cam_ed *device)
1870 {
1871 	dev_match_ret retval;
1872 	int i;
1873 
1874 	retval = DM_RET_NONE;
1875 
1876 	/*
1877 	 * If we aren't given something to match against, that's an error.
1878 	 */
1879 	if (device == NULL)
1880 		return(DM_RET_ERROR);
1881 
1882 	/*
1883 	 * If there are no match entries, then this device matches no
1884 	 * matter what.
1885 	 */
1886 	if ((patterns == NULL) || (num_patterns == 0))
1887 		return(DM_RET_DESCEND | DM_RET_COPY);
1888 
1889 	for (i = 0; i < num_patterns; i++) {
1890 		struct device_match_pattern *cur_pattern;
1891 
1892 		/*
1893 		 * If the pattern in question isn't for a device node, we
1894 		 * aren't interested.
1895 		 */
1896 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1897 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1898 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1899 				retval |= DM_RET_DESCEND;
1900 			continue;
1901 		}
1902 
1903 		cur_pattern = &patterns[i].pattern.device_pattern;
1904 
1905 		/*
1906 		 * If they want to match any device node, we give them any
1907 		 * device node.
1908 		 */
1909 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1910 			/* set the copy flag */
1911 			retval |= DM_RET_COPY;
1912 
1913 
1914 			/*
1915 			 * If we've already decided on an action, go ahead
1916 			 * and return.
1917 			 */
1918 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1919 				return(retval);
1920 		}
1921 
1922 		/*
1923 		 * Not sure why someone would do this...
1924 		 */
1925 		if (cur_pattern->flags == DEV_MATCH_NONE)
1926 			continue;
1927 
1928 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1929 		 && (cur_pattern->path_id != device->target->bus->path_id))
1930 			continue;
1931 
1932 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1933 		 && (cur_pattern->target_id != device->target->target_id))
1934 			continue;
1935 
1936 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1937 		 && (cur_pattern->target_lun != device->lun_id))
1938 			continue;
1939 
1940 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1941 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1942 				    (caddr_t)&cur_pattern->inq_pat,
1943 				    1, sizeof(cur_pattern->inq_pat),
1944 				    scsi_static_inquiry_match) == NULL))
1945 			continue;
1946 
1947 		/*
1948 		 * If we get to this point, the user definitely wants
1949 		 * information on this device.  So tell the caller to copy
1950 		 * the data out.
1951 		 */
1952 		retval |= DM_RET_COPY;
1953 
1954 		/*
1955 		 * If the return action has been set to descend, then we
1956 		 * know that we've already seen a peripheral matching
1957 		 * expression, therefore we need to further descend the tree.
1958 		 * This won't change by continuing around the loop, so we
1959 		 * go ahead and return.  If we haven't seen a peripheral
1960 		 * matching expression, we keep going around the loop until
1961 		 * we exhaust the matching expressions.  We'll set the stop
1962 		 * flag once we fall out of the loop.
1963 		 */
1964 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1965 			return(retval);
1966 	}
1967 
1968 	/*
1969 	 * If the return action hasn't been set to descend yet, that means
1970 	 * we haven't seen any peripheral matching patterns.  So tell the
1971 	 * caller to stop descending the tree -- the user doesn't want to
1972 	 * match against lower level tree elements.
1973 	 */
1974 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1975 		retval |= DM_RET_STOP;
1976 
1977 	return(retval);
1978 }
1979 
1980 /*
1981  * Match a single peripheral against any number of match patterns.
1982  */
1983 static dev_match_ret
1984 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1985 	       struct cam_periph *periph)
1986 {
1987 	dev_match_ret retval;
1988 	int i;
1989 
1990 	/*
1991 	 * If we aren't given something to match against, that's an error.
1992 	 */
1993 	if (periph == NULL)
1994 		return(DM_RET_ERROR);
1995 
1996 	/*
1997 	 * If there are no match entries, then this peripheral matches no
1998 	 * matter what.
1999 	 */
2000 	if ((patterns == NULL) || (num_patterns == 0))
2001 		return(DM_RET_STOP | DM_RET_COPY);
2002 
2003 	/*
2004 	 * There aren't any nodes below a peripheral node, so there's no
2005 	 * reason to descend the tree any further.
2006 	 */
2007 	retval = DM_RET_STOP;
2008 
2009 	for (i = 0; i < num_patterns; i++) {
2010 		struct periph_match_pattern *cur_pattern;
2011 
2012 		/*
2013 		 * If the pattern in question isn't for a peripheral, we
2014 		 * aren't interested.
2015 		 */
2016 		if (patterns[i].type != DEV_MATCH_PERIPH)
2017 			continue;
2018 
2019 		cur_pattern = &patterns[i].pattern.periph_pattern;
2020 
2021 		/*
2022 		 * If they want to match on anything, then we will do so.
2023 		 */
2024 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2025 			/* set the copy flag */
2026 			retval |= DM_RET_COPY;
2027 
2028 			/*
2029 			 * We've already set the return action to stop,
2030 			 * since there are no nodes below peripherals in
2031 			 * the tree.
2032 			 */
2033 			return(retval);
2034 		}
2035 
2036 		/*
2037 		 * Not sure why someone would do this...
2038 		 */
2039 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2040 			continue;
2041 
2042 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2043 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2044 			continue;
2045 
2046 		/*
2047 		 * For the target and lun id's, we have to make sure the
2048 		 * target and lun pointers aren't NULL.  The xpt peripheral
2049 		 * has a wildcard target and device.
2050 		 */
2051 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2052 		 && ((periph->path->target == NULL)
2053 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2054 			continue;
2055 
2056 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2057 		 && ((periph->path->device == NULL)
2058 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2059 			continue;
2060 
2061 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2062 		 && (cur_pattern->unit_number != periph->unit_number))
2063 			continue;
2064 
2065 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2066 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2067 			     DEV_IDLEN) != 0))
2068 			continue;
2069 
2070 		/*
2071 		 * If we get to this point, the user definitely wants
2072 		 * information on this peripheral.  So tell the caller to
2073 		 * copy the data out.
2074 		 */
2075 		retval |= DM_RET_COPY;
2076 
2077 		/*
2078 		 * The return action has already been set to stop, since
2079 		 * peripherals don't have any nodes below them in the EDT.
2080 		 */
2081 		return(retval);
2082 	}
2083 
2084 	/*
2085 	 * If we get to this point, the peripheral that was passed in
2086 	 * doesn't match any of the patterns.
2087 	 */
2088 	return(retval);
2089 }
2090 
2091 static int
2092 xptedtbusfunc(struct cam_eb *bus, void *arg)
2093 {
2094 	struct ccb_dev_match *cdm;
2095 	dev_match_ret retval;
2096 
2097 	cdm = (struct ccb_dev_match *)arg;
2098 
2099 	/*
2100 	 * If our position is for something deeper in the tree, that means
2101 	 * that we've already seen this node.  So, we keep going down.
2102 	 */
2103 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2104 	 && (cdm->pos.cookie.bus == bus)
2105 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2106 	 && (cdm->pos.cookie.target != NULL))
2107 		retval = DM_RET_DESCEND;
2108 	else
2109 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2110 
2111 	/*
2112 	 * If we got an error, bail out of the search.
2113 	 */
2114 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2115 		cdm->status = CAM_DEV_MATCH_ERROR;
2116 		return(0);
2117 	}
2118 
2119 	/*
2120 	 * If the copy flag is set, copy this bus out.
2121 	 */
2122 	if (retval & DM_RET_COPY) {
2123 		int spaceleft, j;
2124 
2125 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2126 			sizeof(struct dev_match_result));
2127 
2128 		/*
2129 		 * If we don't have enough space to put in another
2130 		 * match result, save our position and tell the
2131 		 * user there are more devices to check.
2132 		 */
2133 		if (spaceleft < sizeof(struct dev_match_result)) {
2134 			bzero(&cdm->pos, sizeof(cdm->pos));
2135 			cdm->pos.position_type =
2136 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2137 
2138 			cdm->pos.cookie.bus = bus;
2139 			cdm->pos.generations[CAM_BUS_GENERATION]=
2140 				xsoftc.bus_generation;
2141 			cdm->status = CAM_DEV_MATCH_MORE;
2142 			return(0);
2143 		}
2144 		j = cdm->num_matches;
2145 		cdm->num_matches++;
2146 		cdm->matches[j].type = DEV_MATCH_BUS;
2147 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2148 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2149 		cdm->matches[j].result.bus_result.unit_number =
2150 			bus->sim->unit_number;
2151 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2152 			bus->sim->sim_name, DEV_IDLEN);
2153 	}
2154 
2155 	/*
2156 	 * If the user is only interested in busses, there's no
2157 	 * reason to descend to the next level in the tree.
2158 	 */
2159 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2160 		return(1);
2161 
2162 	/*
2163 	 * If there is a target generation recorded, check it to
2164 	 * make sure the target list hasn't changed.
2165 	 */
2166 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2167 	 && (bus == cdm->pos.cookie.bus)
2168 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2169 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2170 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2171 	     bus->generation)) {
2172 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2173 		return(0);
2174 	}
2175 
2176 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2177 	 && (cdm->pos.cookie.bus == bus)
2178 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2179 	 && (cdm->pos.cookie.target != NULL))
2180 		return(xpttargettraverse(bus,
2181 					(struct cam_et *)cdm->pos.cookie.target,
2182 					 xptedttargetfunc, arg));
2183 	else
2184 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2185 }
2186 
2187 static int
2188 xptedttargetfunc(struct cam_et *target, void *arg)
2189 {
2190 	struct ccb_dev_match *cdm;
2191 
2192 	cdm = (struct ccb_dev_match *)arg;
2193 
2194 	/*
2195 	 * If there is a device list generation recorded, check it to
2196 	 * make sure the device list hasn't changed.
2197 	 */
2198 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2199 	 && (cdm->pos.cookie.bus == target->bus)
2200 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2201 	 && (cdm->pos.cookie.target == target)
2202 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2203 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2204 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2205 	     target->generation)) {
2206 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2207 		return(0);
2208 	}
2209 
2210 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2211 	 && (cdm->pos.cookie.bus == target->bus)
2212 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2213 	 && (cdm->pos.cookie.target == target)
2214 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2215 	 && (cdm->pos.cookie.device != NULL))
2216 		return(xptdevicetraverse(target,
2217 					(struct cam_ed *)cdm->pos.cookie.device,
2218 					 xptedtdevicefunc, arg));
2219 	else
2220 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2221 }
2222 
2223 static int
2224 xptedtdevicefunc(struct cam_ed *device, void *arg)
2225 {
2226 
2227 	struct ccb_dev_match *cdm;
2228 	dev_match_ret retval;
2229 
2230 	cdm = (struct ccb_dev_match *)arg;
2231 
2232 	/*
2233 	 * If our position is for something deeper in the tree, that means
2234 	 * that we've already seen this node.  So, we keep going down.
2235 	 */
2236 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2237 	 && (cdm->pos.cookie.device == device)
2238 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2239 	 && (cdm->pos.cookie.periph != NULL))
2240 		retval = DM_RET_DESCEND;
2241 	else
2242 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2243 					device);
2244 
2245 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2246 		cdm->status = CAM_DEV_MATCH_ERROR;
2247 		return(0);
2248 	}
2249 
2250 	/*
2251 	 * If the copy flag is set, copy this device out.
2252 	 */
2253 	if (retval & DM_RET_COPY) {
2254 		int spaceleft, j;
2255 
2256 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2257 			sizeof(struct dev_match_result));
2258 
2259 		/*
2260 		 * If we don't have enough space to put in another
2261 		 * match result, save our position and tell the
2262 		 * user there are more devices to check.
2263 		 */
2264 		if (spaceleft < sizeof(struct dev_match_result)) {
2265 			bzero(&cdm->pos, sizeof(cdm->pos));
2266 			cdm->pos.position_type =
2267 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2268 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2269 
2270 			cdm->pos.cookie.bus = device->target->bus;
2271 			cdm->pos.generations[CAM_BUS_GENERATION]=
2272 				xsoftc.bus_generation;
2273 			cdm->pos.cookie.target = device->target;
2274 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2275 				device->target->bus->generation;
2276 			cdm->pos.cookie.device = device;
2277 			cdm->pos.generations[CAM_DEV_GENERATION] =
2278 				device->target->generation;
2279 			cdm->status = CAM_DEV_MATCH_MORE;
2280 			return(0);
2281 		}
2282 		j = cdm->num_matches;
2283 		cdm->num_matches++;
2284 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2285 		cdm->matches[j].result.device_result.path_id =
2286 			device->target->bus->path_id;
2287 		cdm->matches[j].result.device_result.target_id =
2288 			device->target->target_id;
2289 		cdm->matches[j].result.device_result.target_lun =
2290 			device->lun_id;
2291 		bcopy(&device->inq_data,
2292 		      &cdm->matches[j].result.device_result.inq_data,
2293 		      sizeof(struct scsi_inquiry_data));
2294 
2295 		/* Let the user know whether this device is unconfigured */
2296 		if (device->flags & CAM_DEV_UNCONFIGURED)
2297 			cdm->matches[j].result.device_result.flags =
2298 				DEV_RESULT_UNCONFIGURED;
2299 		else
2300 			cdm->matches[j].result.device_result.flags =
2301 				DEV_RESULT_NOFLAG;
2302 	}
2303 
2304 	/*
2305 	 * If the user isn't interested in peripherals, don't descend
2306 	 * the tree any further.
2307 	 */
2308 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2309 		return(1);
2310 
2311 	/*
2312 	 * If there is a peripheral list generation recorded, make sure
2313 	 * it hasn't changed.
2314 	 */
2315 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2316 	 && (device->target->bus == cdm->pos.cookie.bus)
2317 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2318 	 && (device->target == cdm->pos.cookie.target)
2319 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2320 	 && (device == cdm->pos.cookie.device)
2321 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2322 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2323 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2324 	     device->generation)){
2325 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2326 		return(0);
2327 	}
2328 
2329 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2330 	 && (cdm->pos.cookie.bus == device->target->bus)
2331 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2332 	 && (cdm->pos.cookie.target == device->target)
2333 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2334 	 && (cdm->pos.cookie.device == device)
2335 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2336 	 && (cdm->pos.cookie.periph != NULL))
2337 		return(xptperiphtraverse(device,
2338 				(struct cam_periph *)cdm->pos.cookie.periph,
2339 				xptedtperiphfunc, arg));
2340 	else
2341 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2342 }
2343 
2344 static int
2345 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2346 {
2347 	struct ccb_dev_match *cdm;
2348 	dev_match_ret retval;
2349 
2350 	cdm = (struct ccb_dev_match *)arg;
2351 
2352 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2353 
2354 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2355 		cdm->status = CAM_DEV_MATCH_ERROR;
2356 		return(0);
2357 	}
2358 
2359 	/*
2360 	 * If the copy flag is set, copy this peripheral out.
2361 	 */
2362 	if (retval & DM_RET_COPY) {
2363 		int spaceleft, j;
2364 
2365 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2366 			sizeof(struct dev_match_result));
2367 
2368 		/*
2369 		 * If we don't have enough space to put in another
2370 		 * match result, save our position and tell the
2371 		 * user there are more devices to check.
2372 		 */
2373 		if (spaceleft < sizeof(struct dev_match_result)) {
2374 			bzero(&cdm->pos, sizeof(cdm->pos));
2375 			cdm->pos.position_type =
2376 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2377 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2378 				CAM_DEV_POS_PERIPH;
2379 
2380 			cdm->pos.cookie.bus = periph->path->bus;
2381 			cdm->pos.generations[CAM_BUS_GENERATION]=
2382 				xsoftc.bus_generation;
2383 			cdm->pos.cookie.target = periph->path->target;
2384 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2385 				periph->path->bus->generation;
2386 			cdm->pos.cookie.device = periph->path->device;
2387 			cdm->pos.generations[CAM_DEV_GENERATION] =
2388 				periph->path->target->generation;
2389 			cdm->pos.cookie.periph = periph;
2390 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2391 				periph->path->device->generation;
2392 			cdm->status = CAM_DEV_MATCH_MORE;
2393 			return(0);
2394 		}
2395 
2396 		j = cdm->num_matches;
2397 		cdm->num_matches++;
2398 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2399 		cdm->matches[j].result.periph_result.path_id =
2400 			periph->path->bus->path_id;
2401 		cdm->matches[j].result.periph_result.target_id =
2402 			periph->path->target->target_id;
2403 		cdm->matches[j].result.periph_result.target_lun =
2404 			periph->path->device->lun_id;
2405 		cdm->matches[j].result.periph_result.unit_number =
2406 			periph->unit_number;
2407 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2408 			periph->periph_name, DEV_IDLEN);
2409 	}
2410 
2411 	return(1);
2412 }
2413 
2414 static int
2415 xptedtmatch(struct ccb_dev_match *cdm)
2416 {
2417 	int ret;
2418 
2419 	cdm->num_matches = 0;
2420 
2421 	/*
2422 	 * Check the bus list generation.  If it has changed, the user
2423 	 * needs to reset everything and start over.
2424 	 */
2425 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2426 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2427 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2428 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2429 		return(0);
2430 	}
2431 
2432 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2433 	 && (cdm->pos.cookie.bus != NULL))
2434 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2435 				     xptedtbusfunc, cdm);
2436 	else
2437 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2438 
2439 	/*
2440 	 * If we get back 0, that means that we had to stop before fully
2441 	 * traversing the EDT.  It also means that one of the subroutines
2442 	 * has set the status field to the proper value.  If we get back 1,
2443 	 * we've fully traversed the EDT and copied out any matching entries.
2444 	 */
2445 	if (ret == 1)
2446 		cdm->status = CAM_DEV_MATCH_LAST;
2447 
2448 	return(ret);
2449 }
2450 
2451 static int
2452 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2453 {
2454 	struct ccb_dev_match *cdm;
2455 
2456 	cdm = (struct ccb_dev_match *)arg;
2457 
2458 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2459 	 && (cdm->pos.cookie.pdrv == pdrv)
2460 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2461 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2462 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2463 	     (*pdrv)->generation)) {
2464 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2465 		return(0);
2466 	}
2467 
2468 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2469 	 && (cdm->pos.cookie.pdrv == pdrv)
2470 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2471 	 && (cdm->pos.cookie.periph != NULL))
2472 		return(xptpdperiphtraverse(pdrv,
2473 				(struct cam_periph *)cdm->pos.cookie.periph,
2474 				xptplistperiphfunc, arg));
2475 	else
2476 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2477 }
2478 
2479 static int
2480 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2481 {
2482 	struct ccb_dev_match *cdm;
2483 	dev_match_ret retval;
2484 
2485 	cdm = (struct ccb_dev_match *)arg;
2486 
2487 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2488 
2489 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2490 		cdm->status = CAM_DEV_MATCH_ERROR;
2491 		return(0);
2492 	}
2493 
2494 	/*
2495 	 * If the copy flag is set, copy this peripheral out.
2496 	 */
2497 	if (retval & DM_RET_COPY) {
2498 		int spaceleft, j;
2499 
2500 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2501 			sizeof(struct dev_match_result));
2502 
2503 		/*
2504 		 * If we don't have enough space to put in another
2505 		 * match result, save our position and tell the
2506 		 * user there are more devices to check.
2507 		 */
2508 		if (spaceleft < sizeof(struct dev_match_result)) {
2509 			struct periph_driver **pdrv;
2510 
2511 			pdrv = NULL;
2512 			bzero(&cdm->pos, sizeof(cdm->pos));
2513 			cdm->pos.position_type =
2514 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2515 				CAM_DEV_POS_PERIPH;
2516 
2517 			/*
2518 			 * This may look a bit non-sensical, but it is
2519 			 * actually quite logical.  There are very few
2520 			 * peripheral drivers, and bloating every peripheral
2521 			 * structure with a pointer back to its parent
2522 			 * peripheral driver linker set entry would cost
2523 			 * more in the long run than doing this quick lookup.
2524 			 */
2525 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2526 				if (strcmp((*pdrv)->driver_name,
2527 				    periph->periph_name) == 0)
2528 					break;
2529 			}
2530 
2531 			if (*pdrv == NULL) {
2532 				cdm->status = CAM_DEV_MATCH_ERROR;
2533 				return(0);
2534 			}
2535 
2536 			cdm->pos.cookie.pdrv = pdrv;
2537 			/*
2538 			 * The periph generation slot does double duty, as
2539 			 * does the periph pointer slot.  They are used for
2540 			 * both edt and pdrv lookups and positioning.
2541 			 */
2542 			cdm->pos.cookie.periph = periph;
2543 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2544 				(*pdrv)->generation;
2545 			cdm->status = CAM_DEV_MATCH_MORE;
2546 			return(0);
2547 		}
2548 
2549 		j = cdm->num_matches;
2550 		cdm->num_matches++;
2551 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2552 		cdm->matches[j].result.periph_result.path_id =
2553 			periph->path->bus->path_id;
2554 
2555 		/*
2556 		 * The transport layer peripheral doesn't have a target or
2557 		 * lun.
2558 		 */
2559 		if (periph->path->target)
2560 			cdm->matches[j].result.periph_result.target_id =
2561 				periph->path->target->target_id;
2562 		else
2563 			cdm->matches[j].result.periph_result.target_id = -1;
2564 
2565 		if (periph->path->device)
2566 			cdm->matches[j].result.periph_result.target_lun =
2567 				periph->path->device->lun_id;
2568 		else
2569 			cdm->matches[j].result.periph_result.target_lun = -1;
2570 
2571 		cdm->matches[j].result.periph_result.unit_number =
2572 			periph->unit_number;
2573 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2574 			periph->periph_name, DEV_IDLEN);
2575 	}
2576 
2577 	return(1);
2578 }
2579 
2580 static int
2581 xptperiphlistmatch(struct ccb_dev_match *cdm)
2582 {
2583 	int ret;
2584 
2585 	cdm->num_matches = 0;
2586 
2587 	/*
2588 	 * At this point in the edt traversal function, we check the bus
2589 	 * list generation to make sure that no busses have been added or
2590 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2591 	 * For the peripheral driver list traversal function, however, we
2592 	 * don't have to worry about new peripheral driver types coming or
2593 	 * going; they're in a linker set, and therefore can't change
2594 	 * without a recompile.
2595 	 */
2596 
2597 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2598 	 && (cdm->pos.cookie.pdrv != NULL))
2599 		ret = xptpdrvtraverse(
2600 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2601 				xptplistpdrvfunc, cdm);
2602 	else
2603 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2604 
2605 	/*
2606 	 * If we get back 0, that means that we had to stop before fully
2607 	 * traversing the peripheral driver tree.  It also means that one of
2608 	 * the subroutines has set the status field to the proper value.  If
2609 	 * we get back 1, we've fully traversed the EDT and copied out any
2610 	 * matching entries.
2611 	 */
2612 	if (ret == 1)
2613 		cdm->status = CAM_DEV_MATCH_LAST;
2614 
2615 	return(ret);
2616 }
2617 
2618 static int
2619 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2620 {
2621 	struct cam_eb *bus, *next_bus;
2622 	int retval;
2623 
2624 	retval = 1;
2625 
2626 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2627 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2628 	     bus != NULL;
2629 	     bus = next_bus) {
2630 		next_bus = TAILQ_NEXT(bus, links);
2631 
2632 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2633 		CAM_SIM_LOCK(bus->sim);
2634 		retval = tr_func(bus, arg);
2635 		CAM_SIM_UNLOCK(bus->sim);
2636 		if (retval == 0)
2637 			return(retval);
2638 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2639 	}
2640 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2641 
2642 	return(retval);
2643 }
2644 
2645 static int
2646 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2647 		  xpt_targetfunc_t *tr_func, void *arg)
2648 {
2649 	struct cam_et *target, *next_target;
2650 	int retval;
2651 
2652 	retval = 1;
2653 	for (target = (start_target ? start_target :
2654 		       TAILQ_FIRST(&bus->et_entries));
2655 	     target != NULL; target = next_target) {
2656 
2657 		next_target = TAILQ_NEXT(target, links);
2658 
2659 		retval = tr_func(target, arg);
2660 
2661 		if (retval == 0)
2662 			return(retval);
2663 	}
2664 
2665 	return(retval);
2666 }
2667 
2668 static int
2669 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2670 		  xpt_devicefunc_t *tr_func, void *arg)
2671 {
2672 	struct cam_ed *device, *next_device;
2673 	int retval;
2674 
2675 	retval = 1;
2676 	for (device = (start_device ? start_device :
2677 		       TAILQ_FIRST(&target->ed_entries));
2678 	     device != NULL;
2679 	     device = next_device) {
2680 
2681 		next_device = TAILQ_NEXT(device, links);
2682 
2683 		retval = tr_func(device, arg);
2684 
2685 		if (retval == 0)
2686 			return(retval);
2687 	}
2688 
2689 	return(retval);
2690 }
2691 
2692 static int
2693 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2694 		  xpt_periphfunc_t *tr_func, void *arg)
2695 {
2696 	struct cam_periph *periph, *next_periph;
2697 	int retval;
2698 
2699 	retval = 1;
2700 
2701 	for (periph = (start_periph ? start_periph :
2702 		       SLIST_FIRST(&device->periphs));
2703 	     periph != NULL;
2704 	     periph = next_periph) {
2705 
2706 		next_periph = SLIST_NEXT(periph, periph_links);
2707 
2708 		retval = tr_func(periph, arg);
2709 		if (retval == 0)
2710 			return(retval);
2711 	}
2712 
2713 	return(retval);
2714 }
2715 
2716 static int
2717 xptpdrvtraverse(struct periph_driver **start_pdrv,
2718 		xpt_pdrvfunc_t *tr_func, void *arg)
2719 {
2720 	struct periph_driver **pdrv;
2721 	int retval;
2722 
2723 	retval = 1;
2724 
2725 	/*
2726 	 * We don't traverse the peripheral driver list like we do the
2727 	 * other lists, because it is a linker set, and therefore cannot be
2728 	 * changed during runtime.  If the peripheral driver list is ever
2729 	 * re-done to be something other than a linker set (i.e. it can
2730 	 * change while the system is running), the list traversal should
2731 	 * be modified to work like the other traversal functions.
2732 	 */
2733 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2734 	     *pdrv != NULL; pdrv++) {
2735 		retval = tr_func(pdrv, arg);
2736 
2737 		if (retval == 0)
2738 			return(retval);
2739 	}
2740 
2741 	return(retval);
2742 }
2743 
2744 static int
2745 xptpdperiphtraverse(struct periph_driver **pdrv,
2746 		    struct cam_periph *start_periph,
2747 		    xpt_periphfunc_t *tr_func, void *arg)
2748 {
2749 	struct cam_periph *periph, *next_periph;
2750 	int retval;
2751 
2752 	retval = 1;
2753 
2754 	for (periph = (start_periph ? start_periph :
2755 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2756 	     periph = next_periph) {
2757 
2758 		next_periph = TAILQ_NEXT(periph, unit_links);
2759 
2760 		retval = tr_func(periph, arg);
2761 		if (retval == 0)
2762 			return(retval);
2763 	}
2764 	return(retval);
2765 }
2766 
2767 static int
2768 xptdefbusfunc(struct cam_eb *bus, void *arg)
2769 {
2770 	struct xpt_traverse_config *tr_config;
2771 
2772 	tr_config = (struct xpt_traverse_config *)arg;
2773 
2774 	if (tr_config->depth == XPT_DEPTH_BUS) {
2775 		xpt_busfunc_t *tr_func;
2776 
2777 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2778 
2779 		return(tr_func(bus, tr_config->tr_arg));
2780 	} else
2781 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2782 }
2783 
2784 static int
2785 xptdeftargetfunc(struct cam_et *target, void *arg)
2786 {
2787 	struct xpt_traverse_config *tr_config;
2788 
2789 	tr_config = (struct xpt_traverse_config *)arg;
2790 
2791 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2792 		xpt_targetfunc_t *tr_func;
2793 
2794 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2795 
2796 		return(tr_func(target, tr_config->tr_arg));
2797 	} else
2798 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2799 }
2800 
2801 static int
2802 xptdefdevicefunc(struct cam_ed *device, void *arg)
2803 {
2804 	struct xpt_traverse_config *tr_config;
2805 
2806 	tr_config = (struct xpt_traverse_config *)arg;
2807 
2808 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2809 		xpt_devicefunc_t *tr_func;
2810 
2811 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2812 
2813 		return(tr_func(device, tr_config->tr_arg));
2814 	} else
2815 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2816 }
2817 
2818 static int
2819 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2820 {
2821 	struct xpt_traverse_config *tr_config;
2822 	xpt_periphfunc_t *tr_func;
2823 
2824 	tr_config = (struct xpt_traverse_config *)arg;
2825 
2826 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2827 
2828 	/*
2829 	 * Unlike the other default functions, we don't check for depth
2830 	 * here.  The peripheral driver level is the last level in the EDT,
2831 	 * so if we're here, we should execute the function in question.
2832 	 */
2833 	return(tr_func(periph, tr_config->tr_arg));
2834 }
2835 
2836 /*
2837  * Execute the given function for every bus in the EDT.
2838  */
2839 static int
2840 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2841 {
2842 	struct xpt_traverse_config tr_config;
2843 
2844 	tr_config.depth = XPT_DEPTH_BUS;
2845 	tr_config.tr_func = tr_func;
2846 	tr_config.tr_arg = arg;
2847 
2848 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2849 }
2850 
2851 /*
2852  * Execute the given function for every device in the EDT.
2853  */
2854 static int
2855 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2856 {
2857 	struct xpt_traverse_config tr_config;
2858 
2859 	tr_config.depth = XPT_DEPTH_DEVICE;
2860 	tr_config.tr_func = tr_func;
2861 	tr_config.tr_arg = arg;
2862 
2863 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2864 }
2865 
2866 static int
2867 xptsetasyncfunc(struct cam_ed *device, void *arg)
2868 {
2869 	struct cam_path path;
2870 	struct ccb_getdev cgd;
2871 	struct async_node *cur_entry;
2872 
2873 	cur_entry = (struct async_node *)arg;
2874 
2875 	/*
2876 	 * Don't report unconfigured devices (Wildcard devs,
2877 	 * devices only for target mode, device instances
2878 	 * that have been invalidated but are waiting for
2879 	 * their last reference count to be released).
2880 	 */
2881 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2882 		return (1);
2883 
2884 	xpt_compile_path(&path,
2885 			 NULL,
2886 			 device->target->bus->path_id,
2887 			 device->target->target_id,
2888 			 device->lun_id);
2889 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2890 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2891 	xpt_action((union ccb *)&cgd);
2892 	cur_entry->callback(cur_entry->callback_arg,
2893 			    AC_FOUND_DEVICE,
2894 			    &path, &cgd);
2895 	xpt_release_path(&path);
2896 
2897 	return(1);
2898 }
2899 
2900 static int
2901 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2902 {
2903 	struct cam_path path;
2904 	struct ccb_pathinq cpi;
2905 	struct async_node *cur_entry;
2906 
2907 	cur_entry = (struct async_node *)arg;
2908 
2909 	xpt_compile_path(&path, /*periph*/NULL,
2910 			 bus->sim->path_id,
2911 			 CAM_TARGET_WILDCARD,
2912 			 CAM_LUN_WILDCARD);
2913 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2914 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2915 	xpt_action((union ccb *)&cpi);
2916 	cur_entry->callback(cur_entry->callback_arg,
2917 			    AC_PATH_REGISTERED,
2918 			    &path, &cpi);
2919 	xpt_release_path(&path);
2920 
2921 	return(1);
2922 }
2923 
2924 static void
2925 xpt_action_sasync_cb(void *context, int pending)
2926 {
2927 	struct async_node *cur_entry;
2928 	struct xpt_task *task;
2929 	uint32_t added;
2930 
2931 	task = (struct xpt_task *)context;
2932 	cur_entry = (struct async_node *)task->data1;
2933 	added = task->data2;
2934 
2935 	if ((added & AC_FOUND_DEVICE) != 0) {
2936 		/*
2937 		 * Get this peripheral up to date with all
2938 		 * the currently existing devices.
2939 		 */
2940 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2941 	}
2942 	if ((added & AC_PATH_REGISTERED) != 0) {
2943 		/*
2944 		 * Get this peripheral up to date with all
2945 		 * the currently existing busses.
2946 		 */
2947 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2948 	}
2949 	kfree(task, M_CAMXPT);
2950 }
2951 
2952 void
2953 xpt_action(union ccb *start_ccb)
2954 {
2955 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2956 
2957 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2958 
2959 	switch (start_ccb->ccb_h.func_code) {
2960 	case XPT_SCSI_IO:
2961 	case XPT_TRIM:
2962 	{
2963 		struct cam_ed *device;
2964 #ifdef CAMDEBUG
2965 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2966 		struct cam_path *path;
2967 
2968 		path = start_ccb->ccb_h.path;
2969 #endif
2970 
2971 		/*
2972 		 * For the sake of compatibility with SCSI-1
2973 		 * devices that may not understand the identify
2974 		 * message, we include lun information in the
2975 		 * second byte of all commands.  SCSI-1 specifies
2976 		 * that luns are a 3 bit value and reserves only 3
2977 		 * bits for lun information in the CDB.  Later
2978 		 * revisions of the SCSI spec allow for more than 8
2979 		 * luns, but have deprecated lun information in the
2980 		 * CDB.  So, if the lun won't fit, we must omit.
2981 		 *
2982 		 * Also be aware that during initial probing for devices,
2983 		 * the inquiry information is unknown but initialized to 0.
2984 		 * This means that this code will be exercised while probing
2985 		 * devices with an ANSI revision greater than 2.
2986 		 */
2987 		device = start_ccb->ccb_h.path->device;
2988 		if (device->protocol_version <= SCSI_REV_2
2989 		 && start_ccb->ccb_h.target_lun < 8
2990 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2991 
2992 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2993 			    start_ccb->ccb_h.target_lun << 5;
2994 		}
2995 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2996 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2997 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2998 			  	       &path->device->inq_data),
2999 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3000 					  cdb_str, sizeof(cdb_str))));
3001 		/* FALLTHROUGH */
3002 	}
3003 	case XPT_TARGET_IO:
3004 	case XPT_CONT_TARGET_IO:
3005 		start_ccb->csio.sense_resid = 0;
3006 		start_ccb->csio.resid = 0;
3007 		/* FALLTHROUGH */
3008 	case XPT_RESET_DEV:
3009 	case XPT_ENG_EXEC:
3010 	{
3011 		struct cam_path *path;
3012 		struct cam_sim *sim;
3013 		int runq;
3014 
3015 		path = start_ccb->ccb_h.path;
3016 
3017 		sim = path->bus->sim;
3018 		if (sim == &cam_dead_sim) {
3019 			/* The SIM has gone; just execute the CCB directly. */
3020 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3021 			(*(sim->sim_action))(sim, start_ccb);
3022 			break;
3023 		}
3024 
3025 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3026 		if (path->device->qfrozen_cnt == 0)
3027 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3028 		else
3029 			runq = 0;
3030 		if (runq != 0)
3031 			xpt_run_dev_sendq(path->bus);
3032 		break;
3033 	}
3034 	case XPT_SET_TRAN_SETTINGS:
3035 	{
3036 		xpt_set_transfer_settings(&start_ccb->cts,
3037 					  start_ccb->ccb_h.path->device,
3038 					  /*async_update*/FALSE);
3039 		break;
3040 	}
3041 	case XPT_CALC_GEOMETRY:
3042 	{
3043 		struct cam_sim *sim;
3044 
3045 		/* Filter out garbage */
3046 		if (start_ccb->ccg.block_size == 0
3047 		 || start_ccb->ccg.volume_size == 0) {
3048 			start_ccb->ccg.cylinders = 0;
3049 			start_ccb->ccg.heads = 0;
3050 			start_ccb->ccg.secs_per_track = 0;
3051 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 			break;
3053 		}
3054 		sim = start_ccb->ccb_h.path->bus->sim;
3055 		(*(sim->sim_action))(sim, start_ccb);
3056 		break;
3057 	}
3058 	case XPT_ABORT:
3059 	{
3060 		union ccb* abort_ccb;
3061 
3062 		abort_ccb = start_ccb->cab.abort_ccb;
3063 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3064 
3065 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3066 				struct cam_ccbq *ccbq;
3067 
3068 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3069 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3070 				abort_ccb->ccb_h.status =
3071 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3072 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3073 				xpt_done(abort_ccb);
3074 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3075 				break;
3076 			}
3077 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3078 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3079 				/*
3080 				 * We've caught this ccb en route to
3081 				 * the SIM.  Flag it for abort and the
3082 				 * SIM will do so just before starting
3083 				 * real work on the CCB.
3084 				 */
3085 				abort_ccb->ccb_h.status =
3086 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3087 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3088 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3089 				break;
3090 			}
3091 		}
3092 		if (XPT_FC_IS_QUEUED(abort_ccb)
3093 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3094 			/*
3095 			 * It's already completed but waiting
3096 			 * for our SWI to get to it.
3097 			 */
3098 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3099 			break;
3100 		}
3101 		/*
3102 		 * If we weren't able to take care of the abort request
3103 		 * in the XPT, pass the request down to the SIM for processing.
3104 		 */
3105 		/* FALLTHROUGH */
3106 	}
3107 	case XPT_ACCEPT_TARGET_IO:
3108 	case XPT_EN_LUN:
3109 	case XPT_IMMED_NOTIFY:
3110 	case XPT_NOTIFY_ACK:
3111 	case XPT_GET_TRAN_SETTINGS:
3112 	case XPT_RESET_BUS:
3113 	{
3114 		struct cam_sim *sim;
3115 
3116 		sim = start_ccb->ccb_h.path->bus->sim;
3117 		(*(sim->sim_action))(sim, start_ccb);
3118 		break;
3119 	}
3120 	case XPT_PATH_INQ:
3121 	{
3122 		struct cam_sim *sim;
3123 
3124 		sim = start_ccb->ccb_h.path->bus->sim;
3125 		(*(sim->sim_action))(sim, start_ccb);
3126 		break;
3127 	}
3128 	case XPT_PATH_STATS:
3129 		start_ccb->cpis.last_reset =
3130 			start_ccb->ccb_h.path->bus->last_reset;
3131 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3132 		break;
3133 	case XPT_GDEV_TYPE:
3134 	{
3135 		struct cam_ed *dev;
3136 
3137 		dev = start_ccb->ccb_h.path->device;
3138 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3139 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3140 		} else {
3141 			struct ccb_getdev *cgd;
3142 
3143 			cgd = &start_ccb->cgd;
3144 			cgd->inq_data = dev->inq_data;
3145 			cgd->ccb_h.status = CAM_REQ_CMP;
3146 			cgd->serial_num_len = dev->serial_num_len;
3147 			if ((dev->serial_num_len > 0)
3148 			 && (dev->serial_num != NULL))
3149 				bcopy(dev->serial_num, cgd->serial_num,
3150 				      dev->serial_num_len);
3151 		}
3152 		break;
3153 	}
3154 	case XPT_GDEV_STATS:
3155 	{
3156 		struct cam_ed *dev;
3157 
3158 		dev = start_ccb->ccb_h.path->device;
3159 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3160 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3161 		} else {
3162 			struct ccb_getdevstats *cgds;
3163 			struct cam_eb *bus;
3164 			struct cam_et *tar;
3165 
3166 			cgds = &start_ccb->cgds;
3167 			bus = cgds->ccb_h.path->bus;
3168 			tar = cgds->ccb_h.path->target;
3169 			cgds->dev_openings = dev->ccbq.dev_openings;
3170 			cgds->dev_active = dev->ccbq.dev_active;
3171 			cgds->devq_openings = dev->ccbq.devq_openings;
3172 			cgds->devq_queued = dev->ccbq.queue.entries;
3173 			cgds->held = dev->ccbq.held;
3174 			cgds->last_reset = tar->last_reset;
3175 			cgds->maxtags = dev->quirk->maxtags;
3176 			cgds->mintags = dev->quirk->mintags;
3177 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3178 				cgds->last_reset = bus->last_reset;
3179 			cgds->ccb_h.status = CAM_REQ_CMP;
3180 		}
3181 		break;
3182 	}
3183 	case XPT_GDEVLIST:
3184 	{
3185 		struct cam_periph	*nperiph;
3186 		struct periph_list	*periph_head;
3187 		struct ccb_getdevlist	*cgdl;
3188 		u_int			i;
3189 		struct cam_ed		*device;
3190 		int			found;
3191 
3192 
3193 		found = 0;
3194 
3195 		/*
3196 		 * Don't want anyone mucking with our data.
3197 		 */
3198 		device = start_ccb->ccb_h.path->device;
3199 		periph_head = &device->periphs;
3200 		cgdl = &start_ccb->cgdl;
3201 
3202 		/*
3203 		 * Check and see if the list has changed since the user
3204 		 * last requested a list member.  If so, tell them that the
3205 		 * list has changed, and therefore they need to start over
3206 		 * from the beginning.
3207 		 */
3208 		if ((cgdl->index != 0) &&
3209 		    (cgdl->generation != device->generation)) {
3210 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3211 			break;
3212 		}
3213 
3214 		/*
3215 		 * Traverse the list of peripherals and attempt to find
3216 		 * the requested peripheral.
3217 		 */
3218 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3219 		     (nperiph != NULL) && (i <= cgdl->index);
3220 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3221 			if (i == cgdl->index) {
3222 				strncpy(cgdl->periph_name,
3223 					nperiph->periph_name,
3224 					DEV_IDLEN);
3225 				cgdl->unit_number = nperiph->unit_number;
3226 				found = 1;
3227 			}
3228 		}
3229 		if (found == 0) {
3230 			cgdl->status = CAM_GDEVLIST_ERROR;
3231 			break;
3232 		}
3233 
3234 		if (nperiph == NULL)
3235 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3236 		else
3237 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3238 
3239 		cgdl->index++;
3240 		cgdl->generation = device->generation;
3241 
3242 		cgdl->ccb_h.status = CAM_REQ_CMP;
3243 		break;
3244 	}
3245 	case XPT_DEV_MATCH:
3246 	{
3247 		dev_pos_type position_type;
3248 		struct ccb_dev_match *cdm;
3249 		int ret;
3250 
3251 		cdm = &start_ccb->cdm;
3252 
3253 		/*
3254 		 * There are two ways of getting at information in the EDT.
3255 		 * The first way is via the primary EDT tree.  It starts
3256 		 * with a list of busses, then a list of targets on a bus,
3257 		 * then devices/luns on a target, and then peripherals on a
3258 		 * device/lun.  The "other" way is by the peripheral driver
3259 		 * lists.  The peripheral driver lists are organized by
3260 		 * peripheral driver.  (obviously)  So it makes sense to
3261 		 * use the peripheral driver list if the user is looking
3262 		 * for something like "da1", or all "da" devices.  If the
3263 		 * user is looking for something on a particular bus/target
3264 		 * or lun, it's generally better to go through the EDT tree.
3265 		 */
3266 
3267 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3268 			position_type = cdm->pos.position_type;
3269 		else {
3270 			u_int i;
3271 
3272 			position_type = CAM_DEV_POS_NONE;
3273 
3274 			for (i = 0; i < cdm->num_patterns; i++) {
3275 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3276 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3277 					position_type = CAM_DEV_POS_EDT;
3278 					break;
3279 				}
3280 			}
3281 
3282 			if (cdm->num_patterns == 0)
3283 				position_type = CAM_DEV_POS_EDT;
3284 			else if (position_type == CAM_DEV_POS_NONE)
3285 				position_type = CAM_DEV_POS_PDRV;
3286 		}
3287 
3288 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3289 		case CAM_DEV_POS_EDT:
3290 			ret = xptedtmatch(cdm);
3291 			break;
3292 		case CAM_DEV_POS_PDRV:
3293 			ret = xptperiphlistmatch(cdm);
3294 			break;
3295 		default:
3296 			cdm->status = CAM_DEV_MATCH_ERROR;
3297 			break;
3298 		}
3299 
3300 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3301 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3302 		else
3303 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3304 
3305 		break;
3306 	}
3307 	case XPT_SASYNC_CB:
3308 	{
3309 		struct ccb_setasync *csa;
3310 		struct async_node *cur_entry;
3311 		struct async_list *async_head;
3312 		u_int32_t added;
3313 
3314 		csa = &start_ccb->csa;
3315 		added = csa->event_enable;
3316 		async_head = &csa->ccb_h.path->device->asyncs;
3317 
3318 		/*
3319 		 * If there is already an entry for us, simply
3320 		 * update it.
3321 		 */
3322 		cur_entry = SLIST_FIRST(async_head);
3323 		while (cur_entry != NULL) {
3324 			if ((cur_entry->callback_arg == csa->callback_arg)
3325 			 && (cur_entry->callback == csa->callback))
3326 				break;
3327 			cur_entry = SLIST_NEXT(cur_entry, links);
3328 		}
3329 
3330 		if (cur_entry != NULL) {
3331 		 	/*
3332 			 * If the request has no flags set,
3333 			 * remove the entry.
3334 			 */
3335 			added &= ~cur_entry->event_enable;
3336 			if (csa->event_enable == 0) {
3337 				SLIST_REMOVE(async_head, cur_entry,
3338 					     async_node, links);
3339 				atomic_add_int(
3340 					&csa->ccb_h.path->device->refcount, -1);
3341 				kfree(cur_entry, M_CAMXPT);
3342 			} else {
3343 				cur_entry->event_enable = csa->event_enable;
3344 			}
3345 		} else {
3346 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3347 					   M_INTWAIT);
3348 			cur_entry->event_enable = csa->event_enable;
3349 			cur_entry->callback_arg = csa->callback_arg;
3350 			cur_entry->callback = csa->callback;
3351 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3352 			atomic_add_int(&csa->ccb_h.path->device->refcount, 1);
3353 		}
3354 
3355 		/*
3356 		 * Need to decouple this operation via a taskqueue so that
3357 		 * the locking doesn't become a mess.
3358 		 */
3359 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3360 			struct xpt_task *task;
3361 
3362 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3363 				      M_INTWAIT);
3364 
3365 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3366 			task->data1 = cur_entry;
3367 			task->data2 = added;
3368 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3369 					  &task->task);
3370 		}
3371 
3372 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3373 		break;
3374 	}
3375 	case XPT_REL_SIMQ:
3376 	{
3377 		struct ccb_relsim *crs;
3378 		struct cam_ed *dev;
3379 
3380 		crs = &start_ccb->crs;
3381 		dev = crs->ccb_h.path->device;
3382 		if (dev == NULL) {
3383 
3384 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3385 			break;
3386 		}
3387 
3388 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3389 
3390  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3391 				/* Don't ever go below one opening */
3392 				if (crs->openings > 0) {
3393 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3394 							    crs->openings);
3395 
3396 					if (bootverbose) {
3397 						xpt_print(crs->ccb_h.path,
3398 						    "tagged openings now %d\n",
3399 						    crs->openings);
3400 					}
3401 				}
3402 			}
3403 		}
3404 
3405 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3406 
3407 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3408 
3409 				/*
3410 				 * Just extend the old timeout and decrement
3411 				 * the freeze count so that a single timeout
3412 				 * is sufficient for releasing the queue.
3413 				 */
3414 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3415 				callout_stop(&dev->callout);
3416 			} else {
3417 
3418 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3419 			}
3420 
3421 			callout_reset(&dev->callout,
3422 				      (crs->release_timeout * hz) / 1000,
3423 				      xpt_release_devq_timeout, dev);
3424 
3425 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3426 
3427 		}
3428 
3429 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3430 
3431 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3432 				/*
3433 				 * Decrement the freeze count so that a single
3434 				 * completion is still sufficient to unfreeze
3435 				 * the queue.
3436 				 */
3437 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3438 			} else {
3439 
3440 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3441 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3442 			}
3443 		}
3444 
3445 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3446 
3447 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3448 			 || (dev->ccbq.dev_active == 0)) {
3449 
3450 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3451 			} else {
3452 
3453 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3454 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3455 			}
3456 		}
3457 
3458 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3459 
3460 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3461 					 /*run_queue*/TRUE);
3462 		}
3463 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3464 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3465 		break;
3466 	}
3467 	case XPT_SCAN_BUS:
3468 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3469 		break;
3470 	case XPT_SCAN_LUN:
3471 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3472 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3473 			     start_ccb);
3474 		break;
3475 	case XPT_DEBUG: {
3476 #ifdef CAMDEBUG
3477 #ifdef CAM_DEBUG_DELAY
3478 		cam_debug_delay = CAM_DEBUG_DELAY;
3479 #endif
3480 		cam_dflags = start_ccb->cdbg.flags;
3481 		if (cam_dpath != NULL) {
3482 			xpt_free_path(cam_dpath);
3483 			cam_dpath = NULL;
3484 		}
3485 
3486 		if (cam_dflags != CAM_DEBUG_NONE) {
3487 			if (xpt_create_path(&cam_dpath, xpt_periph,
3488 					    start_ccb->ccb_h.path_id,
3489 					    start_ccb->ccb_h.target_id,
3490 					    start_ccb->ccb_h.target_lun) !=
3491 					    CAM_REQ_CMP) {
3492 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3493 				cam_dflags = CAM_DEBUG_NONE;
3494 			} else {
3495 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3496 				xpt_print(cam_dpath, "debugging flags now %x\n",
3497 				    cam_dflags);
3498 			}
3499 		} else {
3500 			cam_dpath = NULL;
3501 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3502 		}
3503 #else /* !CAMDEBUG */
3504 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3505 #endif /* CAMDEBUG */
3506 		break;
3507 	}
3508 	case XPT_NOOP:
3509 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3510 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3511 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3512 		break;
3513 	default:
3514 	case XPT_SDEV_TYPE:
3515 	case XPT_TERM_IO:
3516 	case XPT_ENG_INQ:
3517 		/* XXX Implement */
3518 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3519 		break;
3520 	}
3521 }
3522 
3523 void
3524 xpt_polled_action(union ccb *start_ccb)
3525 {
3526 	u_int32_t timeout;
3527 	struct	  cam_sim *sim;
3528 	struct	  cam_devq *devq;
3529 	struct	  cam_ed *dev;
3530 
3531 	timeout = start_ccb->ccb_h.timeout;
3532 	sim = start_ccb->ccb_h.path->bus->sim;
3533 	devq = sim->devq;
3534 	dev = start_ccb->ccb_h.path->device;
3535 
3536 	sim_lock_assert_owned(sim->lock);
3537 
3538 	/*
3539 	 * Steal an opening so that no other queued requests
3540 	 * can get it before us while we simulate interrupts.
3541 	 */
3542 	dev->ccbq.devq_openings--;
3543 	dev->ccbq.dev_openings--;
3544 
3545 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3546 	   && (--timeout > 0)) {
3547 		DELAY(1000);
3548 		(*(sim->sim_poll))(sim);
3549 		camisr_runqueue(sim);
3550 	}
3551 
3552 	dev->ccbq.devq_openings++;
3553 	dev->ccbq.dev_openings++;
3554 
3555 	if (timeout != 0) {
3556 		xpt_action(start_ccb);
3557 		while(--timeout > 0) {
3558 			(*(sim->sim_poll))(sim);
3559 			camisr_runqueue(sim);
3560 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3561 			    != CAM_REQ_INPROG)
3562 				break;
3563 			DELAY(1000);
3564 		}
3565 		if (timeout == 0) {
3566 			/*
3567 			 * XXX Is it worth adding a sim_timeout entry
3568 			 * point so we can attempt recovery?  If
3569 			 * this is only used for dumps, I don't think
3570 			 * it is.
3571 			 */
3572 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3573 		}
3574 	} else {
3575 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3576 	}
3577 }
3578 
3579 /*
3580  * Schedule a peripheral driver to receive a ccb when it's
3581  * target device has space for more transactions.
3582  */
3583 void
3584 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3585 {
3586 	struct cam_ed *device;
3587 	union ccb *work_ccb;
3588 	int runq;
3589 
3590 	sim_lock_assert_owned(perph->sim->lock);
3591 
3592 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3593 	device = perph->path->device;
3594 	if (periph_is_queued(perph)) {
3595 		/* Simply reorder based on new priority */
3596 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3597 			  ("   change priority to %d\n", new_priority));
3598 		if (new_priority < perph->pinfo.priority) {
3599 			camq_change_priority(&device->drvq,
3600 					     perph->pinfo.index,
3601 					     new_priority);
3602 		}
3603 		runq = 0;
3604 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3605 		/* The SIM is gone so just call periph_start directly. */
3606 		work_ccb = xpt_get_ccb(perph->path->device);
3607 		if (work_ccb == NULL)
3608 			return; /* XXX */
3609 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3610 		perph->pinfo.priority = new_priority;
3611 		perph->periph_start(perph, work_ccb);
3612 		return;
3613 	} else {
3614 		/* New entry on the queue */
3615 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3616 			  ("   added periph to queue\n"));
3617 		perph->pinfo.priority = new_priority;
3618 		perph->pinfo.generation = ++device->drvq.generation;
3619 		camq_insert(&device->drvq, &perph->pinfo);
3620 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3621 	}
3622 	if (runq != 0) {
3623 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3624 			  ("   calling xpt_run_devq\n"));
3625 		xpt_run_dev_allocq(perph->path->bus);
3626 	}
3627 }
3628 
3629 
3630 /*
3631  * Schedule a device to run on a given queue.
3632  * If the device was inserted as a new entry on the queue,
3633  * return 1 meaning the device queue should be run. If we
3634  * were already queued, implying someone else has already
3635  * started the queue, return 0 so the caller doesn't attempt
3636  * to run the queue.
3637  */
3638 static int
3639 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3640 		 u_int32_t new_priority)
3641 {
3642 	int retval;
3643 	u_int32_t old_priority;
3644 
3645 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3646 
3647 	old_priority = pinfo->priority;
3648 
3649 	/*
3650 	 * Are we already queued?
3651 	 */
3652 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3653 		/* Simply reorder based on new priority */
3654 		if (new_priority < old_priority) {
3655 			camq_change_priority(queue, pinfo->index,
3656 					     new_priority);
3657 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3658 					("changed priority to %d\n",
3659 					 new_priority));
3660 		}
3661 		retval = 0;
3662 	} else {
3663 		/* New entry on the queue */
3664 		if (new_priority < old_priority)
3665 			pinfo->priority = new_priority;
3666 
3667 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3668 				("Inserting onto queue\n"));
3669 		pinfo->generation = ++queue->generation;
3670 		camq_insert(queue, pinfo);
3671 		retval = 1;
3672 	}
3673 	return (retval);
3674 }
3675 
3676 static void
3677 xpt_run_dev_allocq(struct cam_eb *bus)
3678 {
3679 	struct	cam_devq *devq;
3680 
3681 	if ((devq = bus->sim->devq) == NULL) {
3682 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3683 		return;
3684 	}
3685 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3686 
3687 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3688 			("   qfrozen_cnt == 0x%x, entries == %d, "
3689 			 "openings == %d, active == %d\n",
3690 			 devq->alloc_queue.qfrozen_cnt,
3691 			 devq->alloc_queue.entries,
3692 			 devq->alloc_openings,
3693 			 devq->alloc_active));
3694 
3695 	devq->alloc_queue.qfrozen_cnt++;
3696 	while ((devq->alloc_queue.entries > 0)
3697 	    && (devq->alloc_openings > 0)
3698 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3699 		struct	cam_ed_qinfo *qinfo;
3700 		struct	cam_ed *device;
3701 		union	ccb *work_ccb;
3702 		struct	cam_periph *drv;
3703 		struct	camq *drvq;
3704 
3705 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3706 							   CAMQ_HEAD);
3707 		device = qinfo->device;
3708 
3709 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3710 				("running device %p\n", device));
3711 
3712 		drvq = &device->drvq;
3713 
3714 #ifdef CAMDEBUG
3715 		if (drvq->entries <= 0) {
3716 			panic("xpt_run_dev_allocq: "
3717 			      "Device on queue without any work to do");
3718 		}
3719 #endif
3720 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3721 			devq->alloc_openings--;
3722 			devq->alloc_active++;
3723 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3724 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3725 				      drv->pinfo.priority);
3726 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3727 					("calling periph start\n"));
3728 			drv->periph_start(drv, work_ccb);
3729 		} else {
3730 			/*
3731 			 * Malloc failure in alloc_ccb
3732 			 */
3733 			/*
3734 			 * XXX add us to a list to be run from free_ccb
3735 			 * if we don't have any ccbs active on this
3736 			 * device queue otherwise we may never get run
3737 			 * again.
3738 			 */
3739 			break;
3740 		}
3741 
3742 		if (drvq->entries > 0) {
3743 			/* We have more work.  Attempt to reschedule */
3744 			xpt_schedule_dev_allocq(bus, device);
3745 		}
3746 	}
3747 	devq->alloc_queue.qfrozen_cnt--;
3748 }
3749 
3750 static void
3751 xpt_run_dev_sendq(struct cam_eb *bus)
3752 {
3753 	struct	cam_devq *devq;
3754 
3755 	if ((devq = bus->sim->devq) == NULL) {
3756 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3757 		return;
3758 	}
3759 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3760 
3761 	devq->send_queue.qfrozen_cnt++;
3762 	while ((devq->send_queue.entries > 0)
3763 	    && (devq->send_openings > 0)) {
3764 		struct	cam_ed_qinfo *qinfo;
3765 		struct	cam_ed *device;
3766 		union ccb *work_ccb;
3767 		struct	cam_sim *sim;
3768 
3769 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3770 			break;
3771 		}
3772 
3773 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3774 							   CAMQ_HEAD);
3775 		device = qinfo->device;
3776 
3777 		/*
3778 		 * If the device has been "frozen", don't attempt
3779 		 * to run it.
3780 		 */
3781 		if (device->qfrozen_cnt > 0) {
3782 			continue;
3783 		}
3784 
3785 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3786 				("running device %p\n", device));
3787 
3788 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3789 		if (work_ccb == NULL) {
3790 			kprintf("device on run queue with no ccbs???\n");
3791 			continue;
3792 		}
3793 
3794 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3795 
3796 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3797 			if (xsoftc.num_highpower <= 0) {
3798 				/*
3799 				 * We got a high power command, but we
3800 				 * don't have any available slots.  Freeze
3801 				 * the device queue until we have a slot
3802 				 * available.
3803 				 */
3804 				device->qfrozen_cnt++;
3805 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3806 						   &work_ccb->ccb_h,
3807 						   xpt_links.stqe);
3808 
3809 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3810 				continue;
3811 			} else {
3812 				/*
3813 				 * Consume a high power slot while
3814 				 * this ccb runs.
3815 				 */
3816 				xsoftc.num_highpower--;
3817 			}
3818 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3819 		}
3820 		devq->active_dev = device;
3821 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3822 
3823 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3824 
3825 		devq->send_openings--;
3826 		devq->send_active++;
3827 
3828 		if (device->ccbq.queue.entries > 0)
3829 			xpt_schedule_dev_sendq(bus, device);
3830 
3831 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3832 			/*
3833 			 * The client wants to freeze the queue
3834 			 * after this CCB is sent.
3835 			 */
3836 			device->qfrozen_cnt++;
3837 		}
3838 
3839 		/* In Target mode, the peripheral driver knows best... */
3840 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3841 			if ((device->inq_flags & SID_CmdQue) != 0
3842 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3843 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3844 			else
3845 				/*
3846 				 * Clear this in case of a retried CCB that
3847 				 * failed due to a rejected tag.
3848 				 */
3849 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3850 		}
3851 
3852 		/*
3853 		 * Device queues can be shared among multiple sim instances
3854 		 * that reside on different busses.  Use the SIM in the queue
3855 		 * CCB's path, rather than the one in the bus that was passed
3856 		 * into this function.
3857 		 */
3858 		sim = work_ccb->ccb_h.path->bus->sim;
3859 		(*(sim->sim_action))(sim, work_ccb);
3860 
3861 		devq->active_dev = NULL;
3862 	}
3863 	devq->send_queue.qfrozen_cnt--;
3864 }
3865 
3866 /*
3867  * This function merges stuff from the slave ccb into the master ccb, while
3868  * keeping important fields in the master ccb constant.
3869  */
3870 void
3871 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3872 {
3873 	/*
3874 	 * Pull fields that are valid for peripheral drivers to set
3875 	 * into the master CCB along with the CCB "payload".
3876 	 */
3877 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3878 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3879 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3880 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3881 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3882 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3883 }
3884 
3885 void
3886 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3887 {
3888 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3889 	callout_init(&ccb_h->timeout_ch);
3890 	ccb_h->pinfo.priority = priority;
3891 	ccb_h->path = path;
3892 	ccb_h->path_id = path->bus->path_id;
3893 	if (path->target)
3894 		ccb_h->target_id = path->target->target_id;
3895 	else
3896 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3897 	if (path->device) {
3898 		ccb_h->target_lun = path->device->lun_id;
3899 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3900 	} else {
3901 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3902 	}
3903 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3904 	ccb_h->flags = 0;
3905 }
3906 
3907 /* Path manipulation functions */
3908 cam_status
3909 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3910 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3911 {
3912 	struct	   cam_path *path;
3913 	cam_status status;
3914 
3915 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3916 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3917 	if (status != CAM_REQ_CMP) {
3918 		kfree(path, M_CAMXPT);
3919 		path = NULL;
3920 	}
3921 	*new_path_ptr = path;
3922 	return (status);
3923 }
3924 
3925 cam_status
3926 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3927 			 struct cam_periph *periph, path_id_t path_id,
3928 			 target_id_t target_id, lun_id_t lun_id)
3929 {
3930 	struct	   cam_path *path;
3931 	struct	   cam_eb *bus = NULL;
3932 	cam_status status;
3933 	int	   need_unlock = 0;
3934 
3935 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3936 
3937 	if (path_id != CAM_BUS_WILDCARD) {
3938 		bus = xpt_find_bus(path_id);
3939 		if (bus != NULL) {
3940 			need_unlock = 1;
3941 			CAM_SIM_LOCK(bus->sim);
3942 		}
3943 	}
3944 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3945 	if (need_unlock)
3946 		CAM_SIM_UNLOCK(bus->sim);
3947 	if (status != CAM_REQ_CMP) {
3948 		kfree(path, M_CAMXPT);
3949 		path = NULL;
3950 	}
3951 	*new_path_ptr = path;
3952 	return (status);
3953 }
3954 
3955 static cam_status
3956 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3957 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3958 {
3959 	struct	     cam_eb *bus;
3960 	struct	     cam_et *target;
3961 	struct	     cam_ed *device;
3962 	cam_status   status;
3963 
3964 	status = CAM_REQ_CMP;	/* Completed without error */
3965 	target = NULL;		/* Wildcarded */
3966 	device = NULL;		/* Wildcarded */
3967 
3968 	/*
3969 	 * We will potentially modify the EDT, so block interrupts
3970 	 * that may attempt to create cam paths.
3971 	 */
3972 	bus = xpt_find_bus(path_id);
3973 	if (bus == NULL) {
3974 		status = CAM_PATH_INVALID;
3975 	} else {
3976 		target = xpt_find_target(bus, target_id);
3977 		if (target == NULL) {
3978 			/* Create one */
3979 			struct cam_et *new_target;
3980 
3981 			new_target = xpt_alloc_target(bus, target_id);
3982 			if (new_target == NULL) {
3983 				status = CAM_RESRC_UNAVAIL;
3984 			} else {
3985 				target = new_target;
3986 			}
3987 		}
3988 		if (target != NULL) {
3989 			device = xpt_find_device(target, lun_id);
3990 			if (device == NULL) {
3991 				/* Create one */
3992 				struct cam_ed *new_device;
3993 
3994 				new_device = xpt_alloc_device(bus,
3995 							      target,
3996 							      lun_id);
3997 				if (new_device == NULL) {
3998 					status = CAM_RESRC_UNAVAIL;
3999 				} else {
4000 					device = new_device;
4001 				}
4002 			}
4003 		}
4004 	}
4005 
4006 	/*
4007 	 * Only touch the user's data if we are successful.
4008 	 */
4009 	if (status == CAM_REQ_CMP) {
4010 		new_path->periph = perph;
4011 		new_path->bus = bus;
4012 		new_path->target = target;
4013 		new_path->device = device;
4014 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4015 	} else {
4016 		if (device != NULL)
4017 			xpt_release_device(bus, target, device);
4018 		if (target != NULL)
4019 			xpt_release_target(bus, target);
4020 		if (bus != NULL)
4021 			xpt_release_bus(bus);
4022 	}
4023 	return (status);
4024 }
4025 
4026 static void
4027 xpt_release_path(struct cam_path *path)
4028 {
4029 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4030 	if (path->device != NULL) {
4031 		xpt_release_device(path->bus, path->target, path->device);
4032 		path->device = NULL;
4033 	}
4034 	if (path->target != NULL) {
4035 		xpt_release_target(path->bus, path->target);
4036 		path->target = NULL;
4037 	}
4038 	if (path->bus != NULL) {
4039 		xpt_release_bus(path->bus);
4040 		path->bus = NULL;
4041 	}
4042 }
4043 
4044 void
4045 xpt_free_path(struct cam_path *path)
4046 {
4047 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4048 	xpt_release_path(path);
4049 	kfree(path, M_CAMXPT);
4050 }
4051 
4052 
4053 /*
4054  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4055  * in path1, 2 for match with wildcards in path2.
4056  */
4057 int
4058 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4059 {
4060 	int retval = 0;
4061 
4062 	if (path1->bus != path2->bus) {
4063 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4064 			retval = 1;
4065 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4066 			retval = 2;
4067 		else
4068 			return (-1);
4069 	}
4070 	if (path1->target != path2->target) {
4071 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4072 			if (retval == 0)
4073 				retval = 1;
4074 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4075 			retval = 2;
4076 		else
4077 			return (-1);
4078 	}
4079 	if (path1->device != path2->device) {
4080 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4081 			if (retval == 0)
4082 				retval = 1;
4083 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4084 			retval = 2;
4085 		else
4086 			return (-1);
4087 	}
4088 	return (retval);
4089 }
4090 
4091 void
4092 xpt_print_path(struct cam_path *path)
4093 {
4094 
4095 	if (path == NULL)
4096 		kprintf("(nopath): ");
4097 	else {
4098 		if (path->periph != NULL)
4099 			kprintf("(%s%d:", path->periph->periph_name,
4100 			       path->periph->unit_number);
4101 		else
4102 			kprintf("(noperiph:");
4103 
4104 		if (path->bus != NULL)
4105 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4106 			       path->bus->sim->unit_number,
4107 			       path->bus->sim->bus_id);
4108 		else
4109 			kprintf("nobus:");
4110 
4111 		if (path->target != NULL)
4112 			kprintf("%d:", path->target->target_id);
4113 		else
4114 			kprintf("X:");
4115 
4116 		if (path->device != NULL)
4117 			kprintf("%d): ", path->device->lun_id);
4118 		else
4119 			kprintf("X): ");
4120 	}
4121 }
4122 
4123 void
4124 xpt_print(struct cam_path *path, const char *fmt, ...)
4125 {
4126 	__va_list ap;
4127 	xpt_print_path(path);
4128 	__va_start(ap, fmt);
4129 	kvprintf(fmt, ap);
4130 	__va_end(ap);
4131 }
4132 
4133 int
4134 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4135 {
4136 	struct sbuf sb;
4137 
4138 	sim_lock_assert_owned(path->bus->sim->lock);
4139 
4140 	sbuf_new(&sb, str, str_len, 0);
4141 
4142 	if (path == NULL)
4143 		sbuf_printf(&sb, "(nopath): ");
4144 	else {
4145 		if (path->periph != NULL)
4146 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4147 				    path->periph->unit_number);
4148 		else
4149 			sbuf_printf(&sb, "(noperiph:");
4150 
4151 		if (path->bus != NULL)
4152 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4153 				    path->bus->sim->unit_number,
4154 				    path->bus->sim->bus_id);
4155 		else
4156 			sbuf_printf(&sb, "nobus:");
4157 
4158 		if (path->target != NULL)
4159 			sbuf_printf(&sb, "%d:", path->target->target_id);
4160 		else
4161 			sbuf_printf(&sb, "X:");
4162 
4163 		if (path->device != NULL)
4164 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4165 		else
4166 			sbuf_printf(&sb, "X): ");
4167 	}
4168 	sbuf_finish(&sb);
4169 
4170 	return(sbuf_len(&sb));
4171 }
4172 
4173 path_id_t
4174 xpt_path_path_id(struct cam_path *path)
4175 {
4176 	sim_lock_assert_owned(path->bus->sim->lock);
4177 
4178 	return(path->bus->path_id);
4179 }
4180 
4181 target_id_t
4182 xpt_path_target_id(struct cam_path *path)
4183 {
4184 	sim_lock_assert_owned(path->bus->sim->lock);
4185 
4186 	if (path->target != NULL)
4187 		return (path->target->target_id);
4188 	else
4189 		return (CAM_TARGET_WILDCARD);
4190 }
4191 
4192 lun_id_t
4193 xpt_path_lun_id(struct cam_path *path)
4194 {
4195 	sim_lock_assert_owned(path->bus->sim->lock);
4196 
4197 	if (path->device != NULL)
4198 		return (path->device->lun_id);
4199 	else
4200 		return (CAM_LUN_WILDCARD);
4201 }
4202 
4203 struct cam_sim *
4204 xpt_path_sim(struct cam_path *path)
4205 {
4206 	return (path->bus->sim);
4207 }
4208 
4209 struct cam_periph*
4210 xpt_path_periph(struct cam_path *path)
4211 {
4212 	sim_lock_assert_owned(path->bus->sim->lock);
4213 
4214 	return (path->periph);
4215 }
4216 
4217 char *
4218 xpt_path_serialno(struct cam_path *path)
4219 {
4220 	return (path->device->serial_num);
4221 }
4222 
4223 /*
4224  * Release a CAM control block for the caller.  Remit the cost of the structure
4225  * to the device referenced by the path.  If the this device had no 'credits'
4226  * and peripheral drivers have registered async callbacks for this notification
4227  * call them now.
4228  */
4229 void
4230 xpt_release_ccb(union ccb *free_ccb)
4231 {
4232 	struct	 cam_path *path;
4233 	struct	 cam_ed *device;
4234 	struct	 cam_eb *bus;
4235 	struct   cam_sim *sim;
4236 
4237 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4238 	path = free_ccb->ccb_h.path;
4239 	device = path->device;
4240 	bus = path->bus;
4241 	sim = bus->sim;
4242 
4243 	sim_lock_assert_owned(sim->lock);
4244 
4245 	cam_ccbq_release_opening(&device->ccbq);
4246 	if (sim->ccb_count > sim->max_ccbs) {
4247 		xpt_free_ccb(free_ccb);
4248 		sim->ccb_count--;
4249 	} else if (sim == &cam_dead_sim) {
4250 		xpt_free_ccb(free_ccb);
4251 	} else  {
4252 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4253 		    xpt_links.sle);
4254 	}
4255 	if (sim->devq == NULL) {
4256 		return;
4257 	}
4258 	sim->devq->alloc_openings++;
4259 	sim->devq->alloc_active--;
4260 	/* XXX Turn this into an inline function - xpt_run_device?? */
4261 	if ((device_is_alloc_queued(device) == 0)
4262 	 && (device->drvq.entries > 0)) {
4263 		xpt_schedule_dev_allocq(bus, device);
4264 	}
4265 	if (dev_allocq_is_runnable(sim->devq))
4266 		xpt_run_dev_allocq(bus);
4267 }
4268 
4269 /* Functions accessed by SIM drivers */
4270 
4271 /*
4272  * A sim structure, listing the SIM entry points and instance
4273  * identification info is passed to xpt_bus_register to hook the SIM
4274  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4275  * for this new bus and places it in the array of busses and assigns
4276  * it a path_id.  The path_id may be influenced by "hard wiring"
4277  * information specified by the user.  Once interrupt services are
4278  * availible, the bus will be probed.
4279  */
4280 int32_t
4281 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4282 {
4283 	struct cam_eb *new_bus;
4284 	struct cam_eb *old_bus;
4285 	struct ccb_pathinq cpi;
4286 
4287 	sim_lock_assert_owned(sim->lock);
4288 
4289 	sim->bus_id = bus;
4290 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4291 
4292 	/*
4293 	 * Must hold topo lock across xptpathid() through installation of
4294 	 * new_bus to avoid duplication due to SMP races.
4295 	 */
4296 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4297 	if (strcmp(sim->sim_name, "xpt") != 0) {
4298 		sim->path_id =
4299 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4300 	}
4301 
4302 	TAILQ_INIT(&new_bus->et_entries);
4303 	new_bus->path_id = sim->path_id;
4304 	new_bus->sim = sim;
4305 	atomic_add_int(&sim->refcount, 1);
4306 	timevalclear(&new_bus->last_reset);
4307 	new_bus->flags = 0;
4308 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4309 	new_bus->generation = 0;
4310 	new_bus->counted_to_config = 0;
4311 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4312 	while (old_bus != NULL && old_bus->path_id < new_bus->path_id)
4313 		old_bus = TAILQ_NEXT(old_bus, links);
4314 	if (old_bus != NULL)
4315 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4316 	else
4317 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4318 	xsoftc.bus_generation++;
4319 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4320 
4321 	/* Notify interested parties */
4322 	if (sim->path_id != CAM_XPT_PATH_ID) {
4323 		struct cam_path path;
4324 
4325 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4326 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4327 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4328 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4329 		xpt_action((union ccb *)&cpi);
4330 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4331 		xpt_release_path(&path);
4332 	}
4333 	return (CAM_SUCCESS);
4334 }
4335 
4336 /*
4337  * Deregister a bus.  We must clean out all transactions pending on the bus.
4338  * This routine is typically called prior to cam_sim_free() (e.g. see
4339  * dev/usbmisc/umass/umass.c)
4340  */
4341 int32_t
4342 xpt_bus_deregister(path_id_t pathid)
4343 {
4344 	struct cam_path bus_path;
4345 	struct cam_et *target;
4346 	struct cam_ed *device;
4347 	struct cam_ed_qinfo *qinfo;
4348 	struct cam_devq *devq;
4349 	struct cam_periph *periph;
4350 	struct cam_sim *ccbsim;
4351 	union ccb *work_ccb;
4352 	cam_status status;
4353 	int retries = 0;
4354 
4355 	status = xpt_compile_path(&bus_path, NULL, pathid,
4356 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4357 	if (status != CAM_REQ_CMP)
4358 		return (status);
4359 
4360 	/*
4361 	 * This should clear out all pending requests and timeouts, but
4362 	 * the ccb's may be queued to a software interrupt.
4363 	 *
4364 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4365 	 * and it really ought to.
4366 	 */
4367 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4368 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4369 
4370 	/*
4371 	 * Mark the SIM as having been deregistered.  This prevents
4372 	 * certain operations from re-queueing to it, stops new devices
4373 	 * from being added, etc.
4374 	 */
4375 	devq = bus_path.bus->sim->devq;
4376 	ccbsim = bus_path.bus->sim;
4377 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4378 
4379 again:
4380 	/*
4381 	 * Execute any pending operations now.
4382 	 */
4383 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4384 	    CAMQ_HEAD)) != NULL ||
4385 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4386 	    CAMQ_HEAD)) != NULL) {
4387 		do {
4388 			device = qinfo->device;
4389 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4390 			if (work_ccb != NULL) {
4391 				devq->active_dev = device;
4392 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4393 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4394 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4395 			}
4396 
4397 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4398 			    CAMQ_HEAD);
4399 			if (periph != NULL)
4400 				xpt_schedule(periph, periph->pinfo.priority);
4401 		} while (work_ccb != NULL || periph != NULL);
4402 	}
4403 
4404 	/*
4405 	 * Make sure all completed CCBs are processed.
4406 	 */
4407 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4408 		camisr_runqueue(ccbsim);
4409 	}
4410 
4411 	/*
4412 	 * Check for requeues, reissues asyncs if necessary
4413 	 */
4414 	if (CAMQ_GET_HEAD(&devq->send_queue))
4415 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4416 			devq->send_queue.entries);
4417 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4418 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4419 			devq->alloc_queue.entries);
4420 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4421 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4422 		if (++retries < 5) {
4423 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4424 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4425 			goto again;
4426 		}
4427 	}
4428 
4429 	/*
4430 	 * Retarget the bus and all cached sim pointers to dead_sim.
4431 	 *
4432 	 * Various CAM subsystems may be holding on to targets, devices,
4433 	 * and/or peripherals and may attempt to use the sim pointer cached
4434 	 * in some of these structures during close.
4435 	 */
4436 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4437 	bus_path.bus->sim = &cam_dead_sim;
4438 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4439 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4440 			device->sim = &cam_dead_sim;
4441 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4442 				periph->sim = &cam_dead_sim;
4443 			}
4444 		}
4445 	}
4446 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4447 
4448 	/*
4449 	 * Repeat the async's for the benefit of any new devices, such as
4450 	 * might be created from completed probes.  Any new device
4451 	 * ops will run on dead_sim.
4452 	 *
4453 	 * XXX There are probably races :-(
4454 	 */
4455 	CAM_SIM_LOCK(&cam_dead_sim);
4456 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4457 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4458 	CAM_SIM_UNLOCK(&cam_dead_sim);
4459 
4460 	/* Release the reference count held while registered. */
4461 	xpt_release_bus(bus_path.bus);
4462 	xpt_release_path(&bus_path);
4463 
4464 	/* Release the ref we got when the bus was registered */
4465 	cam_sim_release(ccbsim, 0);
4466 
4467 	return (CAM_REQ_CMP);
4468 }
4469 
4470 /*
4471  * Must be called with xpt_topo_lock held.
4472  */
4473 static path_id_t
4474 xptnextfreepathid(void)
4475 {
4476 	struct cam_eb *bus;
4477 	path_id_t pathid;
4478 	const char *strval;
4479 
4480 	pathid = 0;
4481 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4482 retry:
4483 	/* Find an unoccupied pathid */
4484 	while (bus != NULL && bus->path_id <= pathid) {
4485 		if (bus->path_id == pathid)
4486 			pathid++;
4487 		bus = TAILQ_NEXT(bus, links);
4488 	}
4489 
4490 	/*
4491 	 * Ensure that this pathid is not reserved for
4492 	 * a bus that may be registered in the future.
4493 	 */
4494 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4495 		++pathid;
4496 		/* Start the search over */
4497 		goto retry;
4498 	}
4499 	return (pathid);
4500 }
4501 
4502 /*
4503  * Must be called with xpt_topo_lock held.
4504  */
4505 static path_id_t
4506 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4507 {
4508 	path_id_t pathid;
4509 	int i, dunit, val;
4510 	char buf[32];
4511 
4512 	pathid = CAM_XPT_PATH_ID;
4513 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4514 	i = -1;
4515 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4516 		if (strcmp(resource_query_name(i), "scbus")) {
4517 			/* Avoid a bit of foot shooting. */
4518 			continue;
4519 		}
4520 		dunit = resource_query_unit(i);
4521 		if (dunit < 0)		/* unwired?! */
4522 			continue;
4523 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4524 			if (sim_bus == val) {
4525 				pathid = dunit;
4526 				break;
4527 			}
4528 		} else if (sim_bus == 0) {
4529 			/* Unspecified matches bus 0 */
4530 			pathid = dunit;
4531 			break;
4532 		} else {
4533 			kprintf("Ambiguous scbus configuration for %s%d "
4534 			       "bus %d, cannot wire down.  The kernel "
4535 			       "config entry for scbus%d should "
4536 			       "specify a controller bus.\n"
4537 			       "Scbus will be assigned dynamically.\n",
4538 			       sim_name, sim_unit, sim_bus, dunit);
4539 			break;
4540 		}
4541 	}
4542 
4543 	if (pathid == CAM_XPT_PATH_ID)
4544 		pathid = xptnextfreepathid();
4545 	return (pathid);
4546 }
4547 
4548 void
4549 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4550 {
4551 	struct cam_eb *bus;
4552 	struct cam_et *target, *next_target;
4553 	struct cam_ed *device, *next_device;
4554 
4555 	sim_lock_assert_owned(path->bus->sim->lock);
4556 
4557 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4558 
4559 	/*
4560 	 * Most async events come from a CAM interrupt context.  In
4561 	 * a few cases, the error recovery code at the peripheral layer,
4562 	 * which may run from our SWI or a process context, may signal
4563 	 * deferred events with a call to xpt_async.
4564 	 */
4565 
4566 	bus = path->bus;
4567 
4568 	if (async_code == AC_BUS_RESET) {
4569 		/* Update our notion of when the last reset occurred */
4570 		microuptime(&bus->last_reset);
4571 	}
4572 
4573 	for (target = TAILQ_FIRST(&bus->et_entries);
4574 	     target != NULL;
4575 	     target = next_target) {
4576 
4577 		next_target = TAILQ_NEXT(target, links);
4578 
4579 		if (path->target != target
4580 		 && path->target->target_id != CAM_TARGET_WILDCARD
4581 		 && target->target_id != CAM_TARGET_WILDCARD)
4582 			continue;
4583 
4584 		if (async_code == AC_SENT_BDR) {
4585 			/* Update our notion of when the last reset occurred */
4586 			microuptime(&path->target->last_reset);
4587 		}
4588 
4589 		for (device = TAILQ_FIRST(&target->ed_entries);
4590 		     device != NULL;
4591 		     device = next_device) {
4592 
4593 			next_device = TAILQ_NEXT(device, links);
4594 
4595 			if (path->device != device
4596 			 && path->device->lun_id != CAM_LUN_WILDCARD
4597 			 && device->lun_id != CAM_LUN_WILDCARD)
4598 				continue;
4599 
4600 			xpt_dev_async(async_code, bus, target,
4601 				      device, async_arg);
4602 
4603 			xpt_async_bcast(&device->asyncs, async_code,
4604 					path, async_arg);
4605 		}
4606 	}
4607 
4608 	/*
4609 	 * If this wasn't a fully wildcarded async, tell all
4610 	 * clients that want all async events.
4611 	 */
4612 	if (bus != xpt_periph->path->bus)
4613 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4614 				path, async_arg);
4615 }
4616 
4617 static void
4618 xpt_async_bcast(struct async_list *async_head,
4619 		u_int32_t async_code,
4620 		struct cam_path *path, void *async_arg)
4621 {
4622 	struct async_node *cur_entry;
4623 
4624 	cur_entry = SLIST_FIRST(async_head);
4625 	while (cur_entry != NULL) {
4626 		struct async_node *next_entry;
4627 		/*
4628 		 * Grab the next list entry before we call the current
4629 		 * entry's callback.  This is because the callback function
4630 		 * can delete its async callback entry.
4631 		 */
4632 		next_entry = SLIST_NEXT(cur_entry, links);
4633 		if ((cur_entry->event_enable & async_code) != 0)
4634 			cur_entry->callback(cur_entry->callback_arg,
4635 					    async_code, path,
4636 					    async_arg);
4637 		cur_entry = next_entry;
4638 	}
4639 }
4640 
4641 /*
4642  * Handle any per-device event notifications that require action by the XPT.
4643  */
4644 static void
4645 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4646 	      struct cam_ed *device, void *async_arg)
4647 {
4648 	cam_status status;
4649 	struct cam_path newpath;
4650 
4651 	/*
4652 	 * We only need to handle events for real devices.
4653 	 */
4654 	if (target->target_id == CAM_TARGET_WILDCARD
4655 	 || device->lun_id == CAM_LUN_WILDCARD)
4656 		return;
4657 
4658 	/*
4659 	 * We need our own path with wildcards expanded to
4660 	 * handle certain types of events.
4661 	 */
4662 	if ((async_code == AC_SENT_BDR)
4663 	 || (async_code == AC_BUS_RESET)
4664 	 || (async_code == AC_INQ_CHANGED))
4665 		status = xpt_compile_path(&newpath, NULL,
4666 					  bus->path_id,
4667 					  target->target_id,
4668 					  device->lun_id);
4669 	else
4670 		status = CAM_REQ_CMP_ERR;
4671 
4672 	if (status == CAM_REQ_CMP) {
4673 
4674 		/*
4675 		 * Allow transfer negotiation to occur in a
4676 		 * tag free environment.
4677 		 */
4678 		if (async_code == AC_SENT_BDR
4679 		 || async_code == AC_BUS_RESET)
4680 			xpt_toggle_tags(&newpath);
4681 
4682 		if (async_code == AC_INQ_CHANGED) {
4683 			/*
4684 			 * We've sent a start unit command, or
4685 			 * something similar to a device that
4686 			 * may have caused its inquiry data to
4687 			 * change. So we re-scan the device to
4688 			 * refresh the inquiry data for it.
4689 			 */
4690 			xpt_scan_lun(newpath.periph, &newpath,
4691 				     CAM_EXPECT_INQ_CHANGE, NULL);
4692 		}
4693 		xpt_release_path(&newpath);
4694 	} else if (async_code == AC_LOST_DEVICE) {
4695 		/*
4696 		 * When we lose a device the device may be about to detach
4697 		 * the sim, we have to clear out all pending timeouts and
4698 		 * requests before that happens.
4699 		 *
4700 		 * This typically happens most often with USB/UMASS devices.
4701 		 *
4702 		 * XXX it would be nice if we could abort the requests
4703 		 * pertaining to the device.
4704 		 */
4705 		xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4706 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4707 			device->flags |= CAM_DEV_UNCONFIGURED;
4708 			xpt_release_device(bus, target, device);
4709 		}
4710 	} else if (async_code == AC_TRANSFER_NEG) {
4711 		struct ccb_trans_settings *settings;
4712 
4713 		settings = (struct ccb_trans_settings *)async_arg;
4714 		xpt_set_transfer_settings(settings, device,
4715 					  /*async_update*/TRUE);
4716 	}
4717 }
4718 
4719 u_int32_t
4720 xpt_freeze_devq(struct cam_path *path, u_int count)
4721 {
4722 	struct ccb_hdr *ccbh;
4723 
4724 	sim_lock_assert_owned(path->bus->sim->lock);
4725 
4726 	path->device->qfrozen_cnt += count;
4727 
4728 	/*
4729 	 * Mark the last CCB in the queue as needing
4730 	 * to be requeued if the driver hasn't
4731 	 * changed it's state yet.  This fixes a race
4732 	 * where a ccb is just about to be queued to
4733 	 * a controller driver when it's interrupt routine
4734 	 * freezes the queue.  To completly close the
4735 	 * hole, controller drives must check to see
4736 	 * if a ccb's status is still CAM_REQ_INPROG
4737 	 * just before they queue
4738 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4739 	 * an example.
4740 	 */
4741 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4742 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4743 		ccbh->status = CAM_REQUEUE_REQ;
4744 	return (path->device->qfrozen_cnt);
4745 }
4746 
4747 u_int32_t
4748 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4749 {
4750 	sim_lock_assert_owned(sim->lock);
4751 
4752 	if (sim->devq == NULL)
4753 		return(count);
4754 	sim->devq->send_queue.qfrozen_cnt += count;
4755 	if (sim->devq->active_dev != NULL) {
4756 		struct ccb_hdr *ccbh;
4757 
4758 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4759 				  ccb_hdr_tailq);
4760 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4761 			ccbh->status = CAM_REQUEUE_REQ;
4762 	}
4763 	return (sim->devq->send_queue.qfrozen_cnt);
4764 }
4765 
4766 /*
4767  * Release the device queue after a timeout has expired, typically used to
4768  * introduce a delay before retrying after an I/O error or other problem.
4769  */
4770 static void
4771 xpt_release_devq_timeout(void *arg)
4772 {
4773 	struct cam_ed *device;
4774 
4775 	device = (struct cam_ed *)arg;
4776 	CAM_SIM_LOCK(device->sim);
4777 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4778 	CAM_SIM_UNLOCK(device->sim);
4779 }
4780 
4781 void
4782 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4783 {
4784 	sim_lock_assert_owned(path->bus->sim->lock);
4785 
4786 	xpt_release_devq_device(path->device, count, run_queue);
4787 }
4788 
4789 static void
4790 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4791 {
4792 	int	rundevq;
4793 
4794 	rundevq = 0;
4795 
4796 	if (dev->qfrozen_cnt > 0) {
4797 
4798 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4799 		dev->qfrozen_cnt -= count;
4800 		if (dev->qfrozen_cnt == 0) {
4801 
4802 			/*
4803 			 * No longer need to wait for a successful
4804 			 * command completion.
4805 			 */
4806 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4807 
4808 			/*
4809 			 * Remove any timeouts that might be scheduled
4810 			 * to release this queue.
4811 			 */
4812 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4813 				callout_stop(&dev->callout);
4814 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4815 			}
4816 
4817 			/*
4818 			 * Now that we are unfrozen schedule the
4819 			 * device so any pending transactions are
4820 			 * run.
4821 			 */
4822 			if ((dev->ccbq.queue.entries > 0)
4823 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4824 			 && (run_queue != 0)) {
4825 				rundevq = 1;
4826 			}
4827 		}
4828 	}
4829 	if (rundevq != 0)
4830 		xpt_run_dev_sendq(dev->target->bus);
4831 }
4832 
4833 void
4834 xpt_release_simq(struct cam_sim *sim, int run_queue)
4835 {
4836 	struct	camq *sendq;
4837 
4838 	sim_lock_assert_owned(sim->lock);
4839 
4840 	if (sim->devq == NULL)
4841 		return;
4842 
4843 	sendq = &(sim->devq->send_queue);
4844 	if (sendq->qfrozen_cnt > 0) {
4845 		sendq->qfrozen_cnt--;
4846 		if (sendq->qfrozen_cnt == 0) {
4847 			struct cam_eb *bus;
4848 
4849 			/*
4850 			 * If there is a timeout scheduled to release this
4851 			 * sim queue, remove it.  The queue frozen count is
4852 			 * already at 0.
4853 			 */
4854 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4855 				callout_stop(&sim->callout);
4856 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4857 			}
4858 			bus = xpt_find_bus(sim->path_id);
4859 
4860 			if (run_queue) {
4861 				/*
4862 				 * Now that we are unfrozen run the send queue.
4863 				 */
4864 				xpt_run_dev_sendq(bus);
4865 			}
4866 			xpt_release_bus(bus);
4867 		}
4868 	}
4869 }
4870 
4871 void
4872 xpt_done(union ccb *done_ccb)
4873 {
4874 	struct cam_sim *sim;
4875 
4876 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4877 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4878 		/*
4879 		 * Queue up the request for handling by our SWI handler
4880 		 * any of the "non-immediate" type of ccbs.
4881 		 */
4882 		sim = done_ccb->ccb_h.path->bus->sim;
4883 		switch (done_ccb->ccb_h.path->periph->type) {
4884 		case CAM_PERIPH_BIO:
4885 			spin_lock(&sim->sim_spin);
4886 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4887 					  sim_links.tqe);
4888 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4889 			spin_unlock(&sim->sim_spin);
4890 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4891 				spin_lock(&cam_simq_spin);
4892 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4893 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4894 							  links);
4895 					sim->flags |= CAM_SIM_ON_DONEQ;
4896 				}
4897 				spin_unlock(&cam_simq_spin);
4898 			}
4899 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4900 				setsoftcambio();
4901 			break;
4902 		default:
4903 			panic("unknown periph type %d",
4904 				done_ccb->ccb_h.path->periph->type);
4905 		}
4906 	}
4907 }
4908 
4909 union ccb *
4910 xpt_alloc_ccb(void)
4911 {
4912 	union ccb *new_ccb;
4913 
4914 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4915 	return (new_ccb);
4916 }
4917 
4918 void
4919 xpt_free_ccb(union ccb *free_ccb)
4920 {
4921 	kfree(free_ccb, M_CAMXPT);
4922 }
4923 
4924 
4925 
4926 /* Private XPT functions */
4927 
4928 /*
4929  * Get a CAM control block for the caller. Charge the structure to the device
4930  * referenced by the path.  If the this device has no 'credits' then the
4931  * device already has the maximum number of outstanding operations under way
4932  * and we return NULL. If we don't have sufficient resources to allocate more
4933  * ccbs, we also return NULL.
4934  */
4935 static union ccb *
4936 xpt_get_ccb(struct cam_ed *device)
4937 {
4938 	union ccb *new_ccb;
4939 	struct cam_sim *sim;
4940 
4941 	sim = device->sim;
4942 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4943 		new_ccb = xpt_alloc_ccb();
4944 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4945 			callout_init(&new_ccb->ccb_h.timeout_ch);
4946 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4947 				  xpt_links.sle);
4948 		sim->ccb_count++;
4949 	}
4950 	cam_ccbq_take_opening(&device->ccbq);
4951 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4952 	return (new_ccb);
4953 }
4954 
4955 static void
4956 xpt_release_bus(struct cam_eb *bus)
4957 {
4958 	for (;;) {
4959 		int count = bus->refcount;
4960 
4961 		cpu_ccfence();
4962 		if (count == 1) {
4963 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4964 			if (atomic_cmpset_int(&bus->refcount, 1, 0)) {
4965 				if (TAILQ_EMPTY(&bus->et_entries)) {
4966 					TAILQ_REMOVE(&xsoftc.xpt_busses,
4967 						     bus, links);
4968 					xsoftc.bus_generation++;
4969 					kfree(bus, M_CAMXPT);
4970 				}
4971 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4972 				return;
4973 			}
4974 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4975 		} else {
4976 			if (atomic_cmpset_int(&bus->refcount, count, count-1)) {
4977 				return;
4978 			}
4979 		}
4980 	}
4981 }
4982 
4983 static struct cam_et *
4984 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4985 {
4986 	struct cam_et *target;
4987 	struct cam_et *cur_target;
4988 
4989 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4990 
4991 	TAILQ_INIT(&target->ed_entries);
4992 	target->bus = bus;
4993 	target->target_id = target_id;
4994 	target->refcount = 1;
4995 	target->generation = 0;
4996 	timevalclear(&target->last_reset);
4997 
4998 	/*
4999 	 * Hold a reference to our parent bus so it
5000 	 * will not go away before we do.
5001 	 */
5002 	atomic_add_int(&bus->refcount, 1);
5003 
5004 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5005 	/* Insertion sort into our bus's target list */
5006 	cur_target = TAILQ_FIRST(&bus->et_entries);
5007 	while (cur_target != NULL && cur_target->target_id < target_id)
5008 		cur_target = TAILQ_NEXT(cur_target, links);
5009 
5010 	if (cur_target != NULL) {
5011 		TAILQ_INSERT_BEFORE(cur_target, target, links);
5012 	} else {
5013 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
5014 	}
5015 	bus->generation++;
5016 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5017 
5018 	return (target);
5019 }
5020 
5021 static void
5022 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5023 {
5024 	for (;;) {
5025 		int count = target->refcount;
5026 
5027 		cpu_ccfence();
5028 		if (count == 1) {
5029 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5030 			if (atomic_cmpset_int(&target->refcount, 1, 0)) {
5031 				KKASSERT(TAILQ_EMPTY(&target->ed_entries));
5032 				TAILQ_REMOVE(&bus->et_entries, target, links);
5033 				bus->generation++;
5034 				kfree(target, M_CAMXPT);
5035 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5036 				xpt_release_bus(bus);
5037 				return;
5038 			}
5039 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5040 		} else {
5041 			if (atomic_cmpset_int(&target->refcount,
5042 					      count, count - 1)) {
5043 				return;
5044 			}
5045 		}
5046 	}
5047 }
5048 
5049 static struct cam_ed *
5050 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5051 {
5052 	struct	   cam_path path;
5053 	struct	   cam_ed *device;
5054 	struct	   cam_devq *devq;
5055 	cam_status status;
5056 
5057 	/*
5058 	 * Disallow new devices while trying to deregister a sim
5059 	 */
5060 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5061 		return (NULL);
5062 
5063 	/*
5064 	 * Make space for us in the device queue on our bus
5065 	 */
5066 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5067 	devq = bus->sim->devq;
5068 	if (devq == NULL) {
5069 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5070 		return(NULL);
5071 	}
5072 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5073 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5074 
5075 	if (status != CAM_REQ_CMP) {
5076 		device = NULL;
5077 	} else {
5078 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5079 	}
5080 
5081 	if (device != NULL) {
5082 		struct cam_ed *cur_device;
5083 
5084 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5085 		device->alloc_ccb_entry.device = device;
5086 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5087 		device->send_ccb_entry.device = device;
5088 		device->target = target;
5089 		device->lun_id = lun_id;
5090 		device->sim = bus->sim;
5091 		/* Initialize our queues */
5092 		if (camq_init(&device->drvq, 0) != 0) {
5093 			kfree(device, M_CAMXPT);
5094 			return (NULL);
5095 		}
5096 		if (cam_ccbq_init(&device->ccbq,
5097 				  bus->sim->max_dev_openings) != 0) {
5098 			camq_fini(&device->drvq);
5099 			kfree(device, M_CAMXPT);
5100 			return (NULL);
5101 		}
5102 		SLIST_INIT(&device->asyncs);
5103 		SLIST_INIT(&device->periphs);
5104 		device->generation = 0;
5105 		device->owner = NULL;
5106 		/*
5107 		 * Take the default quirk entry until we have inquiry
5108 		 * data and can determine a better quirk to use.
5109 		 */
5110 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5111 		bzero(&device->inq_data, sizeof(device->inq_data));
5112 		device->inq_flags = 0;
5113 		device->queue_flags = 0;
5114 		device->serial_num = NULL;
5115 		device->serial_num_len = 0;
5116 		device->qfrozen_cnt = 0;
5117 		device->flags = CAM_DEV_UNCONFIGURED;
5118 		device->tag_delay_count = 0;
5119 		device->tag_saved_openings = 0;
5120 		device->refcount = 1;
5121 		callout_init(&device->callout);
5122 
5123 		/*
5124 		 * Hold a reference to our parent target so it
5125 		 * will not go away before we do.
5126 		 */
5127 		atomic_add_int(&target->refcount, 1);
5128 
5129 		/*
5130 		 * XXX should be limited by number of CCBs this bus can
5131 		 * do.
5132 		 */
5133 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5134 		/* Insertion sort into our target's device list */
5135 		cur_device = TAILQ_FIRST(&target->ed_entries);
5136 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5137 			cur_device = TAILQ_NEXT(cur_device, links);
5138 		if (cur_device != NULL) {
5139 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5140 		} else {
5141 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5142 		}
5143 		target->generation++;
5144 		if (lun_id != CAM_LUN_WILDCARD) {
5145 			xpt_compile_path(&path,
5146 					 NULL,
5147 					 bus->path_id,
5148 					 target->target_id,
5149 					 lun_id);
5150 			xpt_devise_transport(&path);
5151 			xpt_release_path(&path);
5152 		}
5153 	}
5154 	return (device);
5155 }
5156 
5157 static void
5158 xpt_reference_device(struct cam_ed *device)
5159 {
5160 	atomic_add_int(&device->refcount, 1);
5161 }
5162 
5163 static void
5164 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5165 		   struct cam_ed *device)
5166 {
5167 	struct cam_devq *devq;
5168 
5169 	for (;;) {
5170 		int count = device->refcount;
5171 
5172 		if (count == 1) {
5173 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5174 			if (atomic_cmpset_int(&device->refcount, 1, 0)) {
5175 				KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5176 				if (device->alloc_ccb_entry.pinfo.index !=
5177 				     CAM_UNQUEUED_INDEX ||
5178 				    device->send_ccb_entry.pinfo.index !=
5179 				     CAM_UNQUEUED_INDEX) {
5180 					panic("Removing device while "
5181 					      "still queued for ccbs");
5182 				}
5183 				if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5184 					device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5185 					callout_stop(&device->callout);
5186 				}
5187 				TAILQ_REMOVE(&target->ed_entries, device, links);
5188 				target->generation++;
5189 				bus->sim->max_ccbs -= device->ccbq.devq_openings;
5190 				if ((devq = bus->sim->devq) != NULL) {
5191 					/* Release our slot in the devq */
5192 					cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5193 				}
5194 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5195 
5196 				camq_fini(&device->drvq);
5197 				camq_fini(&device->ccbq.queue);
5198 				xpt_release_target(bus, target);
5199 				kfree(device, M_CAMXPT);
5200 				return;
5201 			}
5202 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5203 		} else {
5204 			if (atomic_cmpset_int(&device->refcount,
5205 					      count, count - 1)) {
5206 				return;
5207 			}
5208 		}
5209 	}
5210 }
5211 
5212 static u_int32_t
5213 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5214 {
5215 	int	diff;
5216 	int	result;
5217 	struct	cam_ed *dev;
5218 
5219 	dev = path->device;
5220 
5221 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5222 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5223 	if (result == CAM_REQ_CMP && (diff < 0)) {
5224 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5225 	}
5226 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5227 	 || (dev->inq_flags & SID_CmdQue) != 0)
5228 		dev->tag_saved_openings = newopenings;
5229 	/* Adjust the global limit */
5230 	dev->sim->max_ccbs += diff;
5231 	return (result);
5232 }
5233 
5234 static struct cam_eb *
5235 xpt_find_bus(path_id_t path_id)
5236 {
5237 	struct cam_eb *bus;
5238 
5239 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5240 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5241 		if (bus->path_id == path_id) {
5242 			atomic_add_int(&bus->refcount, 1);
5243 			break;
5244 		}
5245 	}
5246 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5247 
5248 	return (bus);
5249 }
5250 
5251 static struct cam_et *
5252 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5253 {
5254 	struct cam_et *target;
5255 
5256 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5257 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5258 		if (target->target_id == target_id) {
5259 			atomic_add_int(&target->refcount, 1);
5260 			break;
5261 		}
5262 	}
5263 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5264 
5265 	return (target);
5266 }
5267 
5268 static struct cam_ed *
5269 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5270 {
5271 	struct cam_ed *device;
5272 
5273 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5274 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5275 		if (device->lun_id == lun_id) {
5276 			atomic_add_int(&device->refcount, 1);
5277 			break;
5278 		}
5279 	}
5280 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5281 
5282 	return (device);
5283 }
5284 
5285 typedef struct {
5286 	union	ccb *request_ccb;
5287 	struct 	ccb_pathinq *cpi;
5288 	int	counter;
5289 } xpt_scan_bus_info;
5290 
5291 /*
5292  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5293  * As the scan progresses, xpt_scan_bus is used as the
5294  * callback on completion function.
5295  */
5296 static void
5297 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5298 {
5299 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5300 		  ("xpt_scan_bus\n"));
5301 	switch (request_ccb->ccb_h.func_code) {
5302 	case XPT_SCAN_BUS:
5303 	{
5304 		xpt_scan_bus_info *scan_info;
5305 		union	ccb *work_ccb;
5306 		struct	cam_path *path;
5307 		u_int	i;
5308 		u_int	max_target;
5309 		u_int	initiator_id;
5310 
5311 		/* Find out the characteristics of the bus */
5312 		work_ccb = xpt_alloc_ccb();
5313 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5314 			      request_ccb->ccb_h.pinfo.priority);
5315 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5316 		xpt_action(work_ccb);
5317 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5318 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5319 			xpt_free_ccb(work_ccb);
5320 			xpt_done(request_ccb);
5321 			return;
5322 		}
5323 
5324 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5325 			/*
5326 			 * Can't scan the bus on an adapter that
5327 			 * cannot perform the initiator role.
5328 			 */
5329 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5330 			xpt_free_ccb(work_ccb);
5331 			xpt_done(request_ccb);
5332 			return;
5333 		}
5334 
5335 		/* Save some state for use while we probe for devices */
5336 		scan_info = (xpt_scan_bus_info *)
5337 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5338 		scan_info->request_ccb = request_ccb;
5339 		scan_info->cpi = &work_ccb->cpi;
5340 
5341 		/* Cache on our stack so we can work asynchronously */
5342 		max_target = scan_info->cpi->max_target;
5343 		initiator_id = scan_info->cpi->initiator_id;
5344 
5345 
5346 		/*
5347 		 * We can scan all targets in parallel, or do it sequentially.
5348 		 */
5349 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5350 			max_target = 0;
5351 			scan_info->counter = 0;
5352 		} else {
5353 			scan_info->counter = scan_info->cpi->max_target + 1;
5354 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5355 				scan_info->counter--;
5356 			}
5357 		}
5358 
5359 		for (i = 0; i <= max_target; i++) {
5360 			cam_status status;
5361 			if (i == initiator_id)
5362 				continue;
5363 
5364 			status = xpt_create_path(&path, xpt_periph,
5365 						 request_ccb->ccb_h.path_id,
5366 						 i, 0);
5367 			if (status != CAM_REQ_CMP) {
5368 				kprintf("xpt_scan_bus: xpt_create_path failed"
5369 				       " with status %#x, bus scan halted\n",
5370 				       status);
5371 				kfree(scan_info, M_CAMXPT);
5372 				request_ccb->ccb_h.status = status;
5373 				xpt_free_ccb(work_ccb);
5374 				xpt_done(request_ccb);
5375 				break;
5376 			}
5377 			work_ccb = xpt_alloc_ccb();
5378 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5379 				      request_ccb->ccb_h.pinfo.priority);
5380 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5381 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5382 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5383 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5384 			xpt_action(work_ccb);
5385 		}
5386 		break;
5387 	}
5388 	case XPT_SCAN_LUN:
5389 	{
5390 		cam_status status;
5391 		struct cam_path *path;
5392 		xpt_scan_bus_info *scan_info;
5393 		path_id_t path_id;
5394 		target_id_t target_id;
5395 		lun_id_t lun_id;
5396 
5397 		/* Reuse the same CCB to query if a device was really found */
5398 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5399 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5400 			      request_ccb->ccb_h.pinfo.priority);
5401 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5402 
5403 		path_id = request_ccb->ccb_h.path_id;
5404 		target_id = request_ccb->ccb_h.target_id;
5405 		lun_id = request_ccb->ccb_h.target_lun;
5406 		xpt_action(request_ccb);
5407 
5408 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5409 			struct cam_ed *device;
5410 			struct cam_et *target;
5411 			int phl;
5412 
5413 			/*
5414 			 * If we already probed lun 0 successfully, or
5415 			 * we have additional configured luns on this
5416 			 * target that might have "gone away", go onto
5417 			 * the next lun.
5418 			 */
5419 			target = request_ccb->ccb_h.path->target;
5420 			/*
5421 			 * We may touch devices that we don't
5422 			 * hold references too, so ensure they
5423 			 * don't disappear out from under us.
5424 			 * The target above is referenced by the
5425 			 * path in the request ccb.
5426 			 */
5427 			phl = 0;
5428 			device = TAILQ_FIRST(&target->ed_entries);
5429 			if (device != NULL) {
5430 				phl = CAN_SRCH_HI_SPARSE(device);
5431 				if (device->lun_id == 0)
5432 					device = TAILQ_NEXT(device, links);
5433 			}
5434 			if ((lun_id != 0) || (device != NULL)) {
5435 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5436 					lun_id++;
5437 			}
5438 		} else {
5439 			struct cam_ed *device;
5440 
5441 			device = request_ccb->ccb_h.path->device;
5442 
5443 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5444 				/* Try the next lun */
5445 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5446 				  || CAN_SRCH_HI_DENSE(device))
5447 					lun_id++;
5448 			}
5449 		}
5450 
5451 		/*
5452 		 * Free the current request path- we're done with it.
5453 		 */
5454 		xpt_free_path(request_ccb->ccb_h.path);
5455 
5456 		/*
5457 		 * Check to see if we scan any further luns.
5458 		 */
5459 		if (lun_id == request_ccb->ccb_h.target_lun
5460                  || lun_id > scan_info->cpi->max_lun) {
5461 			int done;
5462 
5463  hop_again:
5464 			done = 0;
5465 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5466 				scan_info->counter++;
5467 				if (scan_info->counter ==
5468 				    scan_info->cpi->initiator_id) {
5469 					scan_info->counter++;
5470 				}
5471 				if (scan_info->counter >=
5472 				    scan_info->cpi->max_target+1) {
5473 					done = 1;
5474 				}
5475 			} else {
5476 				scan_info->counter--;
5477 				if (scan_info->counter == 0) {
5478 					done = 1;
5479 				}
5480 			}
5481 			if (done) {
5482 				xpt_free_ccb(request_ccb);
5483 				xpt_free_ccb((union ccb *)scan_info->cpi);
5484 				request_ccb = scan_info->request_ccb;
5485 				kfree(scan_info, M_CAMXPT);
5486 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5487 				xpt_done(request_ccb);
5488 				break;
5489 			}
5490 
5491 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5492 				break;
5493 			}
5494 			status = xpt_create_path(&path, xpt_periph,
5495 			    scan_info->request_ccb->ccb_h.path_id,
5496 			    scan_info->counter, 0);
5497 			if (status != CAM_REQ_CMP) {
5498 				kprintf("xpt_scan_bus: xpt_create_path failed"
5499 				    " with status %#x, bus scan halted\n",
5500 			       	    status);
5501 				xpt_free_ccb(request_ccb);
5502 				xpt_free_ccb((union ccb *)scan_info->cpi);
5503 				request_ccb = scan_info->request_ccb;
5504 				kfree(scan_info, M_CAMXPT);
5505 				request_ccb->ccb_h.status = status;
5506 				xpt_done(request_ccb);
5507 				break;
5508 			}
5509 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5510 			    request_ccb->ccb_h.pinfo.priority);
5511 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5512 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5513 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5514 			request_ccb->crcn.flags =
5515 			    scan_info->request_ccb->crcn.flags;
5516 		} else {
5517 			status = xpt_create_path(&path, xpt_periph,
5518 						 path_id, target_id, lun_id);
5519 			if (status != CAM_REQ_CMP) {
5520 				kprintf("xpt_scan_bus: xpt_create_path failed "
5521 				       "with status %#x, halting LUN scan\n",
5522 			 	       status);
5523 				goto hop_again;
5524 			}
5525 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5526 				      request_ccb->ccb_h.pinfo.priority);
5527 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5528 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5529 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5530 			request_ccb->crcn.flags =
5531 				scan_info->request_ccb->crcn.flags;
5532 		}
5533 		xpt_action(request_ccb);
5534 		break;
5535 	}
5536 	default:
5537 		break;
5538 	}
5539 }
5540 
5541 typedef enum {
5542 	PROBE_TUR,
5543 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5544 	PROBE_FULL_INQUIRY,
5545 	PROBE_MODE_SENSE,
5546 	PROBE_SERIAL_NUM_0,
5547 	PROBE_SERIAL_NUM_1,
5548 	PROBE_TUR_FOR_NEGOTIATION,
5549 	PROBE_INQUIRY_BASIC_DV1,
5550 	PROBE_INQUIRY_BASIC_DV2,
5551 	PROBE_DV_EXIT,
5552 	PROBE_INVALID
5553 } probe_action;
5554 
5555 static char *probe_action_text[] = {
5556 	"PROBE_TUR",
5557 	"PROBE_INQUIRY",
5558 	"PROBE_FULL_INQUIRY",
5559 	"PROBE_MODE_SENSE",
5560 	"PROBE_SERIAL_NUM_0",
5561 	"PROBE_SERIAL_NUM_1",
5562 	"PROBE_TUR_FOR_NEGOTIATION",
5563 	"PROBE_INQUIRY_BASIC_DV1",
5564 	"PROBE_INQUIRY_BASIC_DV2",
5565 	"PROBE_DV_EXIT",
5566 	"PROBE_INVALID"
5567 };
5568 
5569 #define PROBE_SET_ACTION(softc, newaction)	\
5570 do {									\
5571 	char **text;							\
5572 	text = probe_action_text;					\
5573 	CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO,		\
5574 	    ("Probe %s to %s\n", text[(softc)->action],			\
5575 	    text[(newaction)]));					\
5576 	(softc)->action = (newaction);					\
5577 } while(0)
5578 
5579 typedef enum {
5580 	PROBE_INQUIRY_CKSUM	= 0x01,
5581 	PROBE_SERIAL_CKSUM	= 0x02,
5582 	PROBE_NO_ANNOUNCE	= 0x04
5583 } probe_flags;
5584 
5585 typedef struct {
5586 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5587 	probe_action	action;
5588 	union ccb	saved_ccb;
5589 	probe_flags	flags;
5590 	MD5_CTX		context;
5591 	u_int8_t	digest[16];
5592 	struct cam_periph *periph;
5593 } probe_softc;
5594 
5595 static void
5596 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5597 	     cam_flags flags, union ccb *request_ccb)
5598 {
5599 	struct ccb_pathinq cpi;
5600 	cam_status status;
5601 	struct cam_path *new_path;
5602 	struct cam_periph *old_periph;
5603 
5604 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5605 		  ("xpt_scan_lun\n"));
5606 
5607 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5608 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5609 	xpt_action((union ccb *)&cpi);
5610 
5611 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5612 		if (request_ccb != NULL) {
5613 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5614 			xpt_done(request_ccb);
5615 		}
5616 		return;
5617 	}
5618 
5619 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5620 		/*
5621 		 * Can't scan the bus on an adapter that
5622 		 * cannot perform the initiator role.
5623 		 */
5624 		if (request_ccb != NULL) {
5625 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5626 			xpt_done(request_ccb);
5627 		}
5628 		return;
5629 	}
5630 
5631 	if (request_ccb == NULL) {
5632 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5633 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5634 		status = xpt_compile_path(new_path, xpt_periph,
5635 					  path->bus->path_id,
5636 					  path->target->target_id,
5637 					  path->device->lun_id);
5638 
5639 		if (status != CAM_REQ_CMP) {
5640 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5641 			    "can't continue\n");
5642 			kfree(request_ccb, M_CAMXPT);
5643 			kfree(new_path, M_CAMXPT);
5644 			return;
5645 		}
5646 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5647 		request_ccb->ccb_h.cbfcnp = xptscandone;
5648 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5649 		request_ccb->crcn.flags = flags;
5650 	}
5651 
5652 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5653 		probe_softc *softc;
5654 
5655 		softc = (probe_softc *)old_periph->softc;
5656 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5657 				  periph_links.tqe);
5658 	} else {
5659 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5660 					  probestart, "probe",
5661 					  CAM_PERIPH_BIO,
5662 					  request_ccb->ccb_h.path, NULL, 0,
5663 					  request_ccb);
5664 
5665 		if (status != CAM_REQ_CMP) {
5666 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5667 			    "returned an error, can't continue probe\n");
5668 			request_ccb->ccb_h.status = status;
5669 			xpt_done(request_ccb);
5670 		}
5671 	}
5672 }
5673 
5674 static void
5675 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5676 {
5677 	xpt_release_path(done_ccb->ccb_h.path);
5678 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5679 	kfree(done_ccb, M_CAMXPT);
5680 }
5681 
5682 static cam_status
5683 proberegister(struct cam_periph *periph, void *arg)
5684 {
5685 	union ccb *request_ccb;	/* CCB representing the probe request */
5686 	cam_status status;
5687 	probe_softc *softc;
5688 
5689 	request_ccb = (union ccb *)arg;
5690 	if (periph == NULL) {
5691 		kprintf("proberegister: periph was NULL!!\n");
5692 		return(CAM_REQ_CMP_ERR);
5693 	}
5694 
5695 	if (request_ccb == NULL) {
5696 		kprintf("proberegister: no probe CCB, "
5697 		       "can't register device\n");
5698 		return(CAM_REQ_CMP_ERR);
5699 	}
5700 
5701 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5702 	TAILQ_INIT(&softc->request_ccbs);
5703 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5704 			  periph_links.tqe);
5705 	softc->flags = 0;
5706 	periph->softc = softc;
5707 	softc->periph = periph;
5708 	softc->action = PROBE_INVALID;
5709 	status = cam_periph_acquire(periph);
5710 	if (status != CAM_REQ_CMP) {
5711 		return (status);
5712 	}
5713 
5714 
5715 	/*
5716 	 * Ensure we've waited at least a bus settle
5717 	 * delay before attempting to probe the device.
5718 	 * For HBAs that don't do bus resets, this won't make a difference.
5719 	 */
5720 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5721 				      scsi_delay);
5722 	probeschedule(periph);
5723 	return(CAM_REQ_CMP);
5724 }
5725 
5726 static void
5727 probeschedule(struct cam_periph *periph)
5728 {
5729 	struct ccb_pathinq cpi;
5730 	union ccb *ccb;
5731 	probe_softc *softc;
5732 
5733 	softc = (probe_softc *)periph->softc;
5734 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5735 
5736 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5737 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5738 	xpt_action((union ccb *)&cpi);
5739 
5740 	/*
5741 	 * If a device has gone away and another device, or the same one,
5742 	 * is back in the same place, it should have a unit attention
5743 	 * condition pending.  It will not report the unit attention in
5744 	 * response to an inquiry, which may leave invalid transfer
5745 	 * negotiations in effect.  The TUR will reveal the unit attention
5746 	 * condition.  Only send the TUR for lun 0, since some devices
5747 	 * will get confused by commands other than inquiry to non-existent
5748 	 * luns.  If you think a device has gone away start your scan from
5749 	 * lun 0.  This will insure that any bogus transfer settings are
5750 	 * invalidated.
5751 	 *
5752 	 * If we haven't seen the device before and the controller supports
5753 	 * some kind of transfer negotiation, negotiate with the first
5754 	 * sent command if no bus reset was performed at startup.  This
5755 	 * ensures that the device is not confused by transfer negotiation
5756 	 * settings left over by loader or BIOS action.
5757 	 */
5758 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5759 	 && (ccb->ccb_h.target_lun == 0)) {
5760 		PROBE_SET_ACTION(softc, PROBE_TUR);
5761 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5762 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5763 		proberequestdefaultnegotiation(periph);
5764 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5765 	} else {
5766 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5767 	}
5768 
5769 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5770 		softc->flags |= PROBE_NO_ANNOUNCE;
5771 	else
5772 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5773 
5774 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5775 }
5776 
5777 static void
5778 probestart(struct cam_periph *periph, union ccb *start_ccb)
5779 {
5780 	/* Probe the device that our peripheral driver points to */
5781 	struct ccb_scsiio *csio;
5782 	probe_softc *softc;
5783 
5784 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5785 
5786 	softc = (probe_softc *)periph->softc;
5787 	csio = &start_ccb->csio;
5788 
5789 	switch (softc->action) {
5790 	case PROBE_TUR:
5791 	case PROBE_TUR_FOR_NEGOTIATION:
5792 	case PROBE_DV_EXIT:
5793 	{
5794 		scsi_test_unit_ready(csio,
5795 				     /*retries*/4,
5796 				     probedone,
5797 				     MSG_SIMPLE_Q_TAG,
5798 				     SSD_FULL_SIZE,
5799 				     /*timeout*/60000);
5800 		break;
5801 	}
5802 	case PROBE_INQUIRY:
5803 	case PROBE_FULL_INQUIRY:
5804 	case PROBE_INQUIRY_BASIC_DV1:
5805 	case PROBE_INQUIRY_BASIC_DV2:
5806 	{
5807 		u_int inquiry_len;
5808 		struct scsi_inquiry_data *inq_buf;
5809 
5810 		inq_buf = &periph->path->device->inq_data;
5811 
5812 		/*
5813 		 * If the device is currently configured, we calculate an
5814 		 * MD5 checksum of the inquiry data, and if the serial number
5815 		 * length is greater than 0, add the serial number data
5816 		 * into the checksum as well.  Once the inquiry and the
5817 		 * serial number check finish, we attempt to figure out
5818 		 * whether we still have the same device.
5819 		 */
5820 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5821 
5822 			MD5Init(&softc->context);
5823 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5824 				  sizeof(struct scsi_inquiry_data));
5825 			softc->flags |= PROBE_INQUIRY_CKSUM;
5826 			if (periph->path->device->serial_num_len > 0) {
5827 				MD5Update(&softc->context,
5828 					  periph->path->device->serial_num,
5829 					  periph->path->device->serial_num_len);
5830 				softc->flags |= PROBE_SERIAL_CKSUM;
5831 			}
5832 			MD5Final(softc->digest, &softc->context);
5833 		}
5834 
5835 		if (softc->action == PROBE_INQUIRY)
5836 			inquiry_len = SHORT_INQUIRY_LENGTH;
5837 		else
5838 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5839 
5840 		/*
5841 		 * Some parallel SCSI devices fail to send an
5842 		 * ignore wide residue message when dealing with
5843 		 * odd length inquiry requests.  Round up to be
5844 		 * safe.
5845 		 */
5846 		inquiry_len = roundup2(inquiry_len, 2);
5847 
5848 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5849 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5850 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5851 		}
5852 		scsi_inquiry(csio,
5853 			     /*retries*/4,
5854 			     probedone,
5855 			     MSG_SIMPLE_Q_TAG,
5856 			     (u_int8_t *)inq_buf,
5857 			     inquiry_len,
5858 			     /*evpd*/FALSE,
5859 			     /*page_code*/0,
5860 			     SSD_MIN_SIZE,
5861 			     /*timeout*/60 * 1000);
5862 		break;
5863 	}
5864 	case PROBE_MODE_SENSE:
5865 	{
5866 		void  *mode_buf;
5867 		int    mode_buf_len;
5868 
5869 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5870 			     + sizeof(struct scsi_mode_blk_desc)
5871 			     + sizeof(struct scsi_control_page);
5872 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5873 		scsi_mode_sense(csio,
5874 				/*retries*/4,
5875 				probedone,
5876 				MSG_SIMPLE_Q_TAG,
5877 				/*dbd*/FALSE,
5878 				SMS_PAGE_CTRL_CURRENT,
5879 				SMS_CONTROL_MODE_PAGE,
5880 				mode_buf,
5881 				mode_buf_len,
5882 				SSD_FULL_SIZE,
5883 				/*timeout*/60000);
5884 		break;
5885 	}
5886 	case PROBE_SERIAL_NUM_0:
5887 	{
5888 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5889 		struct cam_ed *device;
5890 
5891 		device = periph->path->device;
5892 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5893 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5894 			    M_INTWAIT | M_ZERO);
5895 		}
5896 
5897 		if (vpd_list != NULL) {
5898 			scsi_inquiry(csio,
5899 				     /*retries*/4,
5900 				     probedone,
5901 				     MSG_SIMPLE_Q_TAG,
5902 				     (u_int8_t *)vpd_list,
5903 				     sizeof(*vpd_list),
5904 				     /*evpd*/TRUE,
5905 				     SVPD_SUPPORTED_PAGE_LIST,
5906 				     SSD_MIN_SIZE,
5907 				     /*timeout*/60 * 1000);
5908 			break;
5909 		}
5910 		/*
5911 		 * We'll have to do without, let our probedone
5912 		 * routine finish up for us.
5913 		 */
5914 		start_ccb->csio.data_ptr = NULL;
5915 		probedone(periph, start_ccb);
5916 		return;
5917 	}
5918 	case PROBE_SERIAL_NUM_1:
5919 	{
5920 		struct scsi_vpd_unit_serial_number *serial_buf;
5921 		struct cam_ed* device;
5922 
5923 		serial_buf = NULL;
5924 		device = periph->path->device;
5925 		device->serial_num = NULL;
5926 		device->serial_num_len = 0;
5927 
5928 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5929 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5930 				M_INTWAIT | M_ZERO);
5931 		scsi_inquiry(csio,
5932 			     /*retries*/4,
5933 			     probedone,
5934 			     MSG_SIMPLE_Q_TAG,
5935 			     (u_int8_t *)serial_buf,
5936 			     sizeof(*serial_buf),
5937 			     /*evpd*/TRUE,
5938 			     SVPD_UNIT_SERIAL_NUMBER,
5939 			     SSD_MIN_SIZE,
5940 			     /*timeout*/60 * 1000);
5941 		break;
5942 	}
5943 	case PROBE_INVALID:
5944 		CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5945 		    ("probestart: invalid action state\n"));
5946 	default:
5947 		break;
5948 	}
5949 	xpt_action(start_ccb);
5950 }
5951 
5952 static void
5953 proberequestdefaultnegotiation(struct cam_periph *periph)
5954 {
5955 	struct ccb_trans_settings cts;
5956 
5957 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5958 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5959 	cts.type = CTS_TYPE_USER_SETTINGS;
5960 	xpt_action((union ccb *)&cts);
5961 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5962 		return;
5963 	}
5964 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5965 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5966 	xpt_action((union ccb *)&cts);
5967 }
5968 
5969 /*
5970  * Backoff Negotiation Code- only pertinent for SPI devices.
5971  */
5972 static int
5973 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5974 {
5975 	struct ccb_trans_settings cts;
5976 	struct ccb_trans_settings_spi *spi;
5977 
5978 	memset(&cts, 0, sizeof (cts));
5979 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5980 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5981 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5982 	xpt_action((union ccb *)&cts);
5983 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5984 		if (bootverbose) {
5985 			xpt_print(periph->path,
5986 			    "failed to get current device settings\n");
5987 		}
5988 		return (0);
5989 	}
5990 	if (cts.transport != XPORT_SPI) {
5991 		if (bootverbose) {
5992 			xpt_print(periph->path, "not SPI transport\n");
5993 		}
5994 		return (0);
5995 	}
5996 	spi = &cts.xport_specific.spi;
5997 
5998 	/*
5999 	 * We cannot renegotiate sync rate if we don't have one.
6000 	 */
6001 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
6002 		if (bootverbose) {
6003 			xpt_print(periph->path, "no sync rate known\n");
6004 		}
6005 		return (0);
6006 	}
6007 
6008 	/*
6009 	 * We'll assert that we don't have to touch PPR options- the
6010 	 * SIM will see what we do with period and offset and adjust
6011 	 * the PPR options as appropriate.
6012 	 */
6013 
6014 	/*
6015 	 * A sync rate with unknown or zero offset is nonsensical.
6016 	 * A sync period of zero means Async.
6017 	 */
6018 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
6019 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
6020 		if (bootverbose) {
6021 			xpt_print(periph->path, "no sync rate available\n");
6022 		}
6023 		return (0);
6024 	}
6025 
6026 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
6027 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6028 		    ("hit async: giving up on DV\n"));
6029 		return (0);
6030 	}
6031 
6032 
6033 	/*
6034 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
6035 	 * We don't try to remember 'last' settings to see if the SIM actually
6036 	 * gets into the speed we want to set. We check on the SIM telling
6037 	 * us that a requested speed is bad, but otherwise don't try and
6038 	 * check the speed due to the asynchronous and handshake nature
6039 	 * of speed setting.
6040 	 */
6041 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
6042 	for (;;) {
6043 		spi->sync_period++;
6044 		if (spi->sync_period >= 0xf) {
6045 			spi->sync_period = 0;
6046 			spi->sync_offset = 0;
6047 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6048 			    ("setting to async for DV\n"));
6049 			/*
6050 			 * Once we hit async, we don't want to try
6051 			 * any more settings.
6052 			 */
6053 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
6054 		} else if (bootverbose) {
6055 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6056 			    ("DV: period 0x%x\n", spi->sync_period));
6057 			kprintf("setting period to 0x%x\n", spi->sync_period);
6058 		}
6059 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6060 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
6061 		xpt_action((union ccb *)&cts);
6062 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6063 			break;
6064 		}
6065 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6066 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
6067 		if (spi->sync_period == 0) {
6068 			return (0);
6069 		}
6070 	}
6071 	return (1);
6072 }
6073 
6074 static void
6075 probedone(struct cam_periph *periph, union ccb *done_ccb)
6076 {
6077 	probe_softc *softc;
6078 	struct cam_path *path;
6079 	u_int32_t  priority;
6080 
6081 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6082 
6083 	softc = (probe_softc *)periph->softc;
6084 	path = done_ccb->ccb_h.path;
6085 	priority = done_ccb->ccb_h.pinfo.priority;
6086 
6087 	switch (softc->action) {
6088 	case PROBE_TUR:
6089 	{
6090 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6091 
6092 			if (cam_periph_error(done_ccb, 0,
6093 					     SF_NO_PRINT, NULL) == ERESTART)
6094 				return;
6095 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6096 				/* Don't wedge the queue */
6097 				xpt_release_devq(done_ccb->ccb_h.path,
6098 						 /*count*/1,
6099 						 /*run_queue*/TRUE);
6100 		}
6101 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6102 		xpt_release_ccb(done_ccb);
6103 		xpt_schedule(periph, priority);
6104 		return;
6105 	}
6106 	case PROBE_INQUIRY:
6107 	case PROBE_FULL_INQUIRY:
6108 	{
6109 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6110 			struct scsi_inquiry_data *inq_buf;
6111 			u_int8_t periph_qual;
6112 
6113 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6114 			inq_buf = &path->device->inq_data;
6115 
6116 			periph_qual = SID_QUAL(inq_buf);
6117 
6118 			switch(periph_qual) {
6119 			case SID_QUAL_LU_CONNECTED:
6120 			{
6121 				u_int8_t len;
6122 
6123 				/*
6124 				 * We conservatively request only
6125 				 * SHORT_INQUIRY_LEN bytes of inquiry
6126 				 * information during our first try
6127 				 * at sending an INQUIRY. If the device
6128 				 * has more information to give,
6129 				 * perform a second request specifying
6130 				 * the amount of information the device
6131 				 * is willing to give.
6132 				 */
6133 				len = inq_buf->additional_length
6134 				    + offsetof(struct scsi_inquiry_data,
6135 						additional_length) + 1;
6136 				if (softc->action == PROBE_INQUIRY
6137 				    && len > SHORT_INQUIRY_LENGTH) {
6138 					PROBE_SET_ACTION(softc,
6139 					    PROBE_FULL_INQUIRY);
6140 					xpt_release_ccb(done_ccb);
6141 					xpt_schedule(periph, priority);
6142 					return;
6143 				}
6144 
6145 				xpt_find_quirk(path->device);
6146 
6147 				xpt_devise_transport(path);
6148 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6149 					PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6150 				else
6151 					PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6152 
6153 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6154 				xpt_reference_device(path->device);
6155 
6156 				xpt_release_ccb(done_ccb);
6157 				xpt_schedule(periph, priority);
6158 				return;
6159 			}
6160 			default:
6161 				break;
6162 			}
6163 		} else if (cam_periph_error(done_ccb, 0,
6164 					    done_ccb->ccb_h.target_lun > 0
6165 					    ? SF_RETRY_UA|SF_QUIET_IR|SF_NO_PRINT
6166 					    : SF_RETRY_UA|SF_NO_PRINT,
6167 					    &softc->saved_ccb) == ERESTART) {
6168 			return;
6169 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6170 			/* Don't wedge the queue */
6171 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6172 					 /*run_queue*/TRUE);
6173 		}
6174 		/*
6175 		 * If we get to this point, we got an error status back
6176 		 * from the inquiry and the error status doesn't require
6177 		 * automatically retrying the command.  Therefore, the
6178 		 * inquiry failed.  If we had inquiry information before
6179 		 * for this device, but this latest inquiry command failed,
6180 		 * the device has probably gone away.  If this device isn't
6181 		 * already marked unconfigured, notify the peripheral
6182 		 * drivers that this device is no more.
6183 		 */
6184 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6185 			/* Send the async notification. */
6186 			xpt_async(AC_LOST_DEVICE, path, NULL);
6187 		}
6188 
6189 		xpt_release_ccb(done_ccb);
6190 		break;
6191 	}
6192 	case PROBE_MODE_SENSE:
6193 	{
6194 		struct ccb_scsiio *csio;
6195 		struct scsi_mode_header_6 *mode_hdr;
6196 
6197 		csio = &done_ccb->csio;
6198 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6199 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6200 			struct scsi_control_page *page;
6201 			u_int8_t *offset;
6202 
6203 			offset = ((u_int8_t *)&mode_hdr[1])
6204 			    + mode_hdr->blk_desc_len;
6205 			page = (struct scsi_control_page *)offset;
6206 			path->device->queue_flags = page->queue_flags;
6207 		} else if (cam_periph_error(done_ccb, 0,
6208 					    SF_RETRY_UA|SF_NO_PRINT,
6209 					    &softc->saved_ccb) == ERESTART) {
6210 			return;
6211 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6212 			/* Don't wedge the queue */
6213 			xpt_release_devq(done_ccb->ccb_h.path,
6214 					 /*count*/1, /*run_queue*/TRUE);
6215 		}
6216 		xpt_release_ccb(done_ccb);
6217 		kfree(mode_hdr, M_CAMXPT);
6218 		PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6219 		xpt_schedule(periph, priority);
6220 		return;
6221 	}
6222 	case PROBE_SERIAL_NUM_0:
6223 	{
6224 		struct ccb_scsiio *csio;
6225 		struct scsi_vpd_supported_page_list *page_list;
6226 		int length, serialnum_supported, i;
6227 
6228 		serialnum_supported = 0;
6229 		csio = &done_ccb->csio;
6230 		page_list =
6231 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6232 
6233 		if (page_list == NULL) {
6234 			/*
6235 			 * Don't process the command as it was never sent
6236 			 */
6237 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6238 		    && (page_list->length > 0)) {
6239 			length = min(page_list->length,
6240 			    SVPD_SUPPORTED_PAGES_SIZE);
6241 			for (i = 0; i < length; i++) {
6242 				if (page_list->list[i] ==
6243 				    SVPD_UNIT_SERIAL_NUMBER) {
6244 					serialnum_supported = 1;
6245 					break;
6246 				}
6247 			}
6248 		} else if (cam_periph_error(done_ccb, 0,
6249 					    SF_RETRY_UA|SF_NO_PRINT,
6250 					    &softc->saved_ccb) == ERESTART) {
6251 			return;
6252 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6253 			/* Don't wedge the queue */
6254 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6255 					 /*run_queue*/TRUE);
6256 		}
6257 
6258 		if (page_list != NULL)
6259 			kfree(page_list, M_DEVBUF);
6260 
6261 		if (serialnum_supported) {
6262 			xpt_release_ccb(done_ccb);
6263 			PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6264 			xpt_schedule(periph, priority);
6265 			return;
6266 		}
6267 
6268 		csio->data_ptr = NULL;
6269 		/* FALLTHROUGH */
6270 	}
6271 
6272 	case PROBE_SERIAL_NUM_1:
6273 	{
6274 		struct ccb_scsiio *csio;
6275 		struct scsi_vpd_unit_serial_number *serial_buf;
6276 		u_int32_t  priority;
6277 		int changed;
6278 		int have_serialnum;
6279 
6280 		changed = 1;
6281 		have_serialnum = 0;
6282 		csio = &done_ccb->csio;
6283 		priority = done_ccb->ccb_h.pinfo.priority;
6284 		serial_buf =
6285 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6286 
6287 		/* Clean up from previous instance of this device */
6288 		if (path->device->serial_num != NULL) {
6289 			kfree(path->device->serial_num, M_CAMXPT);
6290 			path->device->serial_num = NULL;
6291 			path->device->serial_num_len = 0;
6292 		}
6293 
6294 		if (serial_buf == NULL) {
6295 			/*
6296 			 * Don't process the command as it was never sent
6297 			 */
6298 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6299 			&& (serial_buf->length > 0)) {
6300 
6301 			have_serialnum = 1;
6302 			path->device->serial_num =
6303 				kmalloc((serial_buf->length + 1),
6304 				       M_CAMXPT, M_INTWAIT);
6305 			bcopy(serial_buf->serial_num,
6306 			      path->device->serial_num,
6307 			      serial_buf->length);
6308 			path->device->serial_num_len = serial_buf->length;
6309 			path->device->serial_num[serial_buf->length] = '\0';
6310 		} else if (cam_periph_error(done_ccb, 0,
6311 					    SF_RETRY_UA|SF_NO_PRINT,
6312 					    &softc->saved_ccb) == ERESTART) {
6313 			return;
6314 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6315 			/* Don't wedge the queue */
6316 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6317 					 /*run_queue*/TRUE);
6318 		}
6319 
6320 		/*
6321 		 * Let's see if we have seen this device before.
6322 		 */
6323 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6324 			MD5_CTX context;
6325 			u_int8_t digest[16];
6326 
6327 			MD5Init(&context);
6328 
6329 			MD5Update(&context,
6330 				  (unsigned char *)&path->device->inq_data,
6331 				  sizeof(struct scsi_inquiry_data));
6332 
6333 			if (have_serialnum)
6334 				MD5Update(&context, serial_buf->serial_num,
6335 					  serial_buf->length);
6336 
6337 			MD5Final(digest, &context);
6338 			if (bcmp(softc->digest, digest, 16) == 0)
6339 				changed = 0;
6340 
6341 			/*
6342 			 * XXX Do we need to do a TUR in order to ensure
6343 			 *     that the device really hasn't changed???
6344 			 */
6345 			if ((changed != 0)
6346 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6347 				xpt_async(AC_LOST_DEVICE, path, NULL);
6348 		}
6349 		if (serial_buf != NULL)
6350 			kfree(serial_buf, M_CAMXPT);
6351 
6352 		if (changed != 0) {
6353 			/*
6354 			 * Now that we have all the necessary
6355 			 * information to safely perform transfer
6356 			 * negotiations... Controllers don't perform
6357 			 * any negotiation or tagged queuing until
6358 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6359 			 * received.  So, on a new device, just retrieve
6360 			 * the user settings, and set them as the current
6361 			 * settings to set the device up.
6362 			 */
6363 			proberequestdefaultnegotiation(periph);
6364 			xpt_release_ccb(done_ccb);
6365 
6366 			/*
6367 			 * Perform a TUR to allow the controller to
6368 			 * perform any necessary transfer negotiation.
6369 			 */
6370 			PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6371 			xpt_schedule(periph, priority);
6372 			return;
6373 		}
6374 		xpt_release_ccb(done_ccb);
6375 		break;
6376 	}
6377 	case PROBE_TUR_FOR_NEGOTIATION:
6378 	case PROBE_DV_EXIT:
6379 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6380 			/* Don't wedge the queue */
6381 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6382 					 /*run_queue*/TRUE);
6383 		}
6384 
6385 		xpt_reference_device(path->device);
6386 		/*
6387 		 * Do Domain Validation for lun 0 on devices that claim
6388 		 * to support Synchronous Transfer modes.
6389 		 */
6390 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6391 		 && done_ccb->ccb_h.target_lun == 0
6392 		 && (path->device->inq_data.flags & SID_Sync) != 0
6393                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6394 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6395 			    ("Begin Domain Validation\n"));
6396 			path->device->flags |= CAM_DEV_IN_DV;
6397 			xpt_release_ccb(done_ccb);
6398 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6399 			xpt_schedule(periph, priority);
6400 			return;
6401 		}
6402 		if (softc->action == PROBE_DV_EXIT) {
6403 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6404 			    ("Leave Domain Validation\n"));
6405 		}
6406 		path->device->flags &=
6407 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6408 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6409 			/* Inform the XPT that a new device has been found */
6410 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6411 			xpt_action(done_ccb);
6412 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6413 				  done_ccb);
6414 		}
6415 		xpt_release_ccb(done_ccb);
6416 		break;
6417 	case PROBE_INQUIRY_BASIC_DV1:
6418 	case PROBE_INQUIRY_BASIC_DV2:
6419 	{
6420 		struct scsi_inquiry_data *nbuf;
6421 		struct ccb_scsiio *csio;
6422 
6423 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6424 			/* Don't wedge the queue */
6425 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6426 					 /*run_queue*/TRUE);
6427 		}
6428 		csio = &done_ccb->csio;
6429 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6430 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6431 			xpt_print(path,
6432 			    "inquiry data fails comparison at DV%d step\n",
6433 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6434 			if (proberequestbackoff(periph, path->device)) {
6435 				path->device->flags &= ~CAM_DEV_IN_DV;
6436 				PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6437 			} else {
6438 				/* give up */
6439 				PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6440 			}
6441 			kfree(nbuf, M_CAMXPT);
6442 			xpt_release_ccb(done_ccb);
6443 			xpt_schedule(periph, priority);
6444 			return;
6445 		}
6446 		kfree(nbuf, M_CAMXPT);
6447 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6448 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6449 			xpt_release_ccb(done_ccb);
6450 			xpt_schedule(periph, priority);
6451 			return;
6452 		}
6453 		if (softc->action == PROBE_DV_EXIT) {
6454 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6455 			    ("Leave Domain Validation Successfully\n"));
6456 		}
6457 		path->device->flags &=
6458 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6459 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6460 			/* Inform the XPT that a new device has been found */
6461 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6462 			xpt_action(done_ccb);
6463 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6464 				  done_ccb);
6465 		}
6466 		xpt_release_ccb(done_ccb);
6467 		break;
6468 	}
6469 	case PROBE_INVALID:
6470 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6471 		    ("probedone: invalid action state\n"));
6472 	default:
6473 		break;
6474 	}
6475 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6476 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6477 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6478 	xpt_done(done_ccb);
6479 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6480 		cam_periph_invalidate(periph);
6481 		cam_periph_release(periph);
6482 	} else {
6483 		probeschedule(periph);
6484 	}
6485 }
6486 
6487 static void
6488 probecleanup(struct cam_periph *periph)
6489 {
6490 	kfree(periph->softc, M_CAMXPT);
6491 }
6492 
6493 static void
6494 xpt_find_quirk(struct cam_ed *device)
6495 {
6496 	caddr_t	match;
6497 
6498 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6499 			       (caddr_t)xpt_quirk_table,
6500 			       NELEM(xpt_quirk_table),
6501 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6502 
6503 	if (match == NULL)
6504 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6505 
6506 	device->quirk = (struct xpt_quirk_entry *)match;
6507 }
6508 
6509 static int
6510 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6511 {
6512 	int error, lbool;
6513 
6514 	lbool = cam_srch_hi;
6515 	error = sysctl_handle_int(oidp, &lbool, 0, req);
6516 	if (error != 0 || req->newptr == NULL)
6517 		return (error);
6518 	if (lbool == 0 || lbool == 1) {
6519 		cam_srch_hi = lbool;
6520 		return (0);
6521 	} else {
6522 		return (EINVAL);
6523 	}
6524 }
6525 
6526 static void
6527 xpt_devise_transport(struct cam_path *path)
6528 {
6529 	struct ccb_pathinq cpi;
6530 	struct ccb_trans_settings cts;
6531 	struct scsi_inquiry_data *inq_buf;
6532 
6533 	/* Get transport information from the SIM */
6534 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6535 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6536 	xpt_action((union ccb *)&cpi);
6537 
6538 	inq_buf = NULL;
6539 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6540 		inq_buf = &path->device->inq_data;
6541 	path->device->protocol = PROTO_SCSI;
6542 	path->device->protocol_version =
6543 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6544 	path->device->transport = cpi.transport;
6545 	path->device->transport_version = cpi.transport_version;
6546 
6547 	/*
6548 	 * Any device not using SPI3 features should
6549 	 * be considered SPI2 or lower.
6550 	 */
6551 	if (inq_buf != NULL) {
6552 		if (path->device->transport == XPORT_SPI
6553 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6554 		 && path->device->transport_version > 2)
6555 			path->device->transport_version = 2;
6556 	} else {
6557 		struct cam_ed* otherdev;
6558 
6559 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6560 		     otherdev != NULL;
6561 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6562 			if (otherdev != path->device)
6563 				break;
6564 		}
6565 
6566 		if (otherdev != NULL) {
6567 			/*
6568 			 * Initially assume the same versioning as
6569 			 * prior luns for this target.
6570 			 */
6571 			path->device->protocol_version =
6572 			    otherdev->protocol_version;
6573 			path->device->transport_version =
6574 			    otherdev->transport_version;
6575 		} else {
6576 			/* Until we know better, opt for safty */
6577 			path->device->protocol_version = 2;
6578 			if (path->device->transport == XPORT_SPI)
6579 				path->device->transport_version = 2;
6580 			else
6581 				path->device->transport_version = 0;
6582 		}
6583 	}
6584 
6585 	/*
6586 	 * XXX
6587 	 * For a device compliant with SPC-2 we should be able
6588 	 * to determine the transport version supported by
6589 	 * scrutinizing the version descriptors in the
6590 	 * inquiry buffer.
6591 	 */
6592 
6593 	/* Tell the controller what we think */
6594 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6595 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6596 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6597 	cts.transport = path->device->transport;
6598 	cts.transport_version = path->device->transport_version;
6599 	cts.protocol = path->device->protocol;
6600 	cts.protocol_version = path->device->protocol_version;
6601 	cts.proto_specific.valid = 0;
6602 	cts.xport_specific.valid = 0;
6603 	xpt_action((union ccb *)&cts);
6604 }
6605 
6606 static void
6607 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6608 			  int async_update)
6609 {
6610 	struct	ccb_pathinq cpi;
6611 	struct	ccb_trans_settings cur_cts;
6612 	struct	ccb_trans_settings_scsi *scsi;
6613 	struct	ccb_trans_settings_scsi *cur_scsi;
6614 	struct	cam_sim *sim;
6615 	struct	scsi_inquiry_data *inq_data;
6616 
6617 	if (device == NULL) {
6618 		cts->ccb_h.status = CAM_PATH_INVALID;
6619 		xpt_done((union ccb *)cts);
6620 		return;
6621 	}
6622 
6623 	if (cts->protocol == PROTO_UNKNOWN
6624 	 || cts->protocol == PROTO_UNSPECIFIED) {
6625 		cts->protocol = device->protocol;
6626 		cts->protocol_version = device->protocol_version;
6627 	}
6628 
6629 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6630 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6631 		cts->protocol_version = device->protocol_version;
6632 
6633 	if (cts->protocol != device->protocol) {
6634 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6635 		       cts->protocol, device->protocol);
6636 		cts->protocol = device->protocol;
6637 	}
6638 
6639 	if (cts->protocol_version > device->protocol_version) {
6640 		if (bootverbose) {
6641 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6642 			    "Version from %d to %d?\n", cts->protocol_version,
6643 			    device->protocol_version);
6644 		}
6645 		cts->protocol_version = device->protocol_version;
6646 	}
6647 
6648 	if (cts->transport == XPORT_UNKNOWN
6649 	 || cts->transport == XPORT_UNSPECIFIED) {
6650 		cts->transport = device->transport;
6651 		cts->transport_version = device->transport_version;
6652 	}
6653 
6654 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6655 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6656 		cts->transport_version = device->transport_version;
6657 
6658 	if (cts->transport != device->transport) {
6659 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6660 		    cts->transport, device->transport);
6661 		cts->transport = device->transport;
6662 	}
6663 
6664 	if (cts->transport_version > device->transport_version) {
6665 		if (bootverbose) {
6666 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6667 			    "Version from %d to %d?\n", cts->transport_version,
6668 			    device->transport_version);
6669 		}
6670 		cts->transport_version = device->transport_version;
6671 	}
6672 
6673 	sim = cts->ccb_h.path->bus->sim;
6674 
6675 	/*
6676 	 * Nothing more of interest to do unless
6677 	 * this is a device connected via the
6678 	 * SCSI protocol.
6679 	 */
6680 	if (cts->protocol != PROTO_SCSI) {
6681 		if (async_update == FALSE)
6682 			(*(sim->sim_action))(sim, (union ccb *)cts);
6683 		return;
6684 	}
6685 
6686 	inq_data = &device->inq_data;
6687 	scsi = &cts->proto_specific.scsi;
6688 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6689 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6690 	xpt_action((union ccb *)&cpi);
6691 
6692 	/* SCSI specific sanity checking */
6693 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6694 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6695 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6696 	 || (device->quirk->mintags == 0)) {
6697 		/*
6698 		 * Can't tag on hardware that doesn't support tags,
6699 		 * doesn't have it enabled, or has broken tag support.
6700 		 */
6701 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6702 	}
6703 
6704 	if (async_update == FALSE) {
6705 		/*
6706 		 * Perform sanity checking against what the
6707 		 * controller and device can do.
6708 		 */
6709 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6710 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6711 		cur_cts.type = cts->type;
6712 		xpt_action((union ccb *)&cur_cts);
6713 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6714 			return;
6715 		}
6716 		cur_scsi = &cur_cts.proto_specific.scsi;
6717 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6718 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6719 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6720 		}
6721 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6722 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6723 	}
6724 
6725 	/* SPI specific sanity checking */
6726 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6727 		u_int spi3caps;
6728 		struct ccb_trans_settings_spi *spi;
6729 		struct ccb_trans_settings_spi *cur_spi;
6730 
6731 		spi = &cts->xport_specific.spi;
6732 
6733 		cur_spi = &cur_cts.xport_specific.spi;
6734 
6735 		/* Fill in any gaps in what the user gave us */
6736 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6737 			spi->sync_period = cur_spi->sync_period;
6738 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6739 			spi->sync_period = 0;
6740 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6741 			spi->sync_offset = cur_spi->sync_offset;
6742 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6743 			spi->sync_offset = 0;
6744 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6745 			spi->ppr_options = cur_spi->ppr_options;
6746 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6747 			spi->ppr_options = 0;
6748 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6749 			spi->bus_width = cur_spi->bus_width;
6750 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6751 			spi->bus_width = 0;
6752 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6753 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6754 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6755 		}
6756 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6757 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6758 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6759 		  && (inq_data->flags & SID_Sync) == 0
6760 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6761 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
6762 			/* Force async */
6763 			spi->sync_period = 0;
6764 			spi->sync_offset = 0;
6765 		}
6766 
6767 		switch (spi->bus_width) {
6768 		case MSG_EXT_WDTR_BUS_32_BIT:
6769 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6770 			  || (inq_data->flags & SID_WBus32) != 0
6771 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6772 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6773 				break;
6774 			/* Fall Through to 16-bit */
6775 		case MSG_EXT_WDTR_BUS_16_BIT:
6776 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6777 			  || (inq_data->flags & SID_WBus16) != 0
6778 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6779 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6780 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6781 				break;
6782 			}
6783 			/* Fall Through to 8-bit */
6784 		default: /* New bus width?? */
6785 		case MSG_EXT_WDTR_BUS_8_BIT:
6786 			/* All targets can do this */
6787 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6788 			break;
6789 		}
6790 
6791 		spi3caps = cpi.xport_specific.spi.ppr_options;
6792 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6793 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6794 			spi3caps &= inq_data->spi3data;
6795 
6796 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6797 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6798 
6799 		if ((spi3caps & SID_SPI_IUS) == 0)
6800 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6801 
6802 		if ((spi3caps & SID_SPI_QAS) == 0)
6803 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6804 
6805 		/* No SPI Transfer settings are allowed unless we are wide */
6806 		if (spi->bus_width == 0)
6807 			spi->ppr_options = 0;
6808 
6809 		if ((spi->valid & CTS_SPI_VALID_DISC)
6810 		 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6811 			/*
6812 			 * Can't tag queue without disconnection.
6813 			 */
6814 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6815 			scsi->valid |= CTS_SCSI_VALID_TQ;
6816 		}
6817 
6818 		/*
6819 		 * If we are currently performing tagged transactions to
6820 		 * this device and want to change its negotiation parameters,
6821 		 * go non-tagged for a bit to give the controller a chance to
6822 		 * negotiate unhampered by tag messages.
6823 		 */
6824 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6825 		 && (device->inq_flags & SID_CmdQue) != 0
6826 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6827 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6828 				   CTS_SPI_VALID_SYNC_OFFSET|
6829 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6830 			xpt_toggle_tags(cts->ccb_h.path);
6831 	}
6832 
6833 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6834 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6835 		int device_tagenb;
6836 
6837 		/*
6838 		 * If we are transitioning from tags to no-tags or
6839 		 * vice-versa, we need to carefully freeze and restart
6840 		 * the queue so that we don't overlap tagged and non-tagged
6841 		 * commands.  We also temporarily stop tags if there is
6842 		 * a change in transfer negotiation settings to allow
6843 		 * "tag-less" negotiation.
6844 		 */
6845 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6846 		 || (device->inq_flags & SID_CmdQue) != 0)
6847 			device_tagenb = TRUE;
6848 		else
6849 			device_tagenb = FALSE;
6850 
6851 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6852 		  && device_tagenb == FALSE)
6853 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6854 		  && device_tagenb == TRUE)) {
6855 
6856 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6857 				/*
6858 				 * Delay change to use tags until after a
6859 				 * few commands have gone to this device so
6860 				 * the controller has time to perform transfer
6861 				 * negotiations without tagged messages getting
6862 				 * in the way.
6863 				 */
6864 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6865 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6866 			} else {
6867 				struct ccb_relsim crs;
6868 
6869 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6870 				device->inq_flags &= ~SID_CmdQue;
6871 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6872 						    sim->max_dev_openings);
6873 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6874 				device->tag_delay_count = 0;
6875 
6876 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6877 					      /*priority*/1);
6878 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6879 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6880 				crs.openings
6881 				    = crs.release_timeout
6882 				    = crs.qfrozen_cnt
6883 				    = 0;
6884 				xpt_action((union ccb *)&crs);
6885 			}
6886 		}
6887 	}
6888 	if (async_update == FALSE)
6889 		(*(sim->sim_action))(sim, (union ccb *)cts);
6890 }
6891 
6892 static void
6893 xpt_toggle_tags(struct cam_path *path)
6894 {
6895 	struct cam_ed *dev;
6896 
6897 	/*
6898 	 * Give controllers a chance to renegotiate
6899 	 * before starting tag operations.  We
6900 	 * "toggle" tagged queuing off then on
6901 	 * which causes the tag enable command delay
6902 	 * counter to come into effect.
6903 	 */
6904 	dev = path->device;
6905 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6906 	 || ((dev->inq_flags & SID_CmdQue) != 0
6907  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6908 		struct ccb_trans_settings cts;
6909 
6910 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6911 		cts.protocol = PROTO_SCSI;
6912 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6913 		cts.transport = XPORT_UNSPECIFIED;
6914 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6915 		cts.proto_specific.scsi.flags = 0;
6916 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6917 		xpt_set_transfer_settings(&cts, path->device,
6918 					  /*async_update*/TRUE);
6919 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6920 		xpt_set_transfer_settings(&cts, path->device,
6921 					  /*async_update*/TRUE);
6922 	}
6923 }
6924 
6925 static void
6926 xpt_start_tags(struct cam_path *path)
6927 {
6928 	struct ccb_relsim crs;
6929 	struct cam_ed *device;
6930 	struct cam_sim *sim;
6931 	int    newopenings;
6932 
6933 	device = path->device;
6934 	sim = path->bus->sim;
6935 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6936 	xpt_freeze_devq(path, /*count*/1);
6937 	device->inq_flags |= SID_CmdQue;
6938 	if (device->tag_saved_openings != 0)
6939 		newopenings = device->tag_saved_openings;
6940 	else
6941 		newopenings = min(device->quirk->maxtags,
6942 				  sim->max_tagged_dev_openings);
6943 	xpt_dev_ccbq_resize(path, newopenings);
6944 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6945 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6946 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6947 	crs.openings
6948 	    = crs.release_timeout
6949 	    = crs.qfrozen_cnt
6950 	    = 0;
6951 	xpt_action((union ccb *)&crs);
6952 }
6953 
6954 static int busses_to_config;
6955 static int busses_to_reset;
6956 
6957 static int
6958 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6959 {
6960 	sim_lock_assert_owned(bus->sim->lock);
6961 
6962 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6963 		struct cam_path path;
6964 		struct ccb_pathinq cpi;
6965 		int can_negotiate;
6966 
6967 		if (bootverbose) {
6968 			kprintf("CAM: Configuring bus:");
6969 			if (bus->sim) {
6970 				kprintf(" %s%d\n",
6971 					bus->sim->sim_name,
6972 					bus->sim->unit_number);
6973 			} else {
6974 				kprintf(" (unknown)\n");
6975 			}
6976 		}
6977 		atomic_add_int(&busses_to_config, 1);
6978 		bus->counted_to_config = 1;
6979 		xpt_compile_path(&path, NULL, bus->path_id,
6980 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6981 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6982 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6983 		xpt_action((union ccb *)&cpi);
6984 		can_negotiate = cpi.hba_inquiry;
6985 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6986 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6987 			busses_to_reset++;
6988 		xpt_release_path(&path);
6989 	} else
6990 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6991 		/* this is our dummy periph/bus */
6992 		atomic_add_int(&busses_to_config, 1);
6993 		bus->counted_to_config = 1;
6994 	}
6995 
6996 	return(1);
6997 }
6998 
6999 static int
7000 xptconfigfunc(struct cam_eb *bus, void *arg)
7001 {
7002 	struct	cam_path *path;
7003 	union	ccb *work_ccb;
7004 
7005 	sim_lock_assert_owned(bus->sim->lock);
7006 
7007 	if (bus->path_id != CAM_XPT_PATH_ID) {
7008 		cam_status status;
7009 		int can_negotiate;
7010 
7011 		work_ccb = xpt_alloc_ccb();
7012 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
7013 					      CAM_TARGET_WILDCARD,
7014 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
7015 			kprintf("xptconfigfunc: xpt_create_path failed with "
7016 			       "status %#x for bus %d\n", status, bus->path_id);
7017 			kprintf("xptconfigfunc: halting bus configuration\n");
7018 			xpt_free_ccb(work_ccb);
7019 			xpt_uncount_bus(bus);
7020 			return(0);
7021 		}
7022 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7023 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
7024 		xpt_action(work_ccb);
7025 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
7026 			kprintf("xptconfigfunc: CPI failed on bus %d "
7027 			       "with status %d\n", bus->path_id,
7028 			       work_ccb->ccb_h.status);
7029 			xpt_finishconfig(xpt_periph, work_ccb);
7030 			return(1);
7031 		}
7032 
7033 		can_negotiate = work_ccb->cpi.hba_inquiry;
7034 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
7035 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
7036 		 && (can_negotiate != 0)) {
7037 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7038 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7039 			work_ccb->ccb_h.cbfcnp = NULL;
7040 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
7041 				  ("Resetting Bus\n"));
7042 			xpt_action(work_ccb);
7043 			xpt_finishconfig(xpt_periph, work_ccb);
7044 		} else {
7045 			/* Act as though we performed a successful BUS RESET */
7046 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7047 			xpt_finishconfig(xpt_periph, work_ccb);
7048 		}
7049 	} else {
7050 		xpt_uncount_bus(bus);
7051 	}
7052 
7053 	return(1);
7054 }
7055 
7056 /*
7057  * Now that interrupts are enabled, go find our devices.
7058  *
7059  * This hook function is called once by run_interrupt_driven_config_hooks().
7060  * XPT is expected to disestablish its hook when done.
7061  */
7062 static void
7063 xpt_config(void *arg)
7064 {
7065 
7066 #ifdef CAMDEBUG
7067 	/* Setup debugging flags and path */
7068 #ifdef CAM_DEBUG_FLAGS
7069 	cam_dflags = CAM_DEBUG_FLAGS;
7070 #else /* !CAM_DEBUG_FLAGS */
7071 	cam_dflags = CAM_DEBUG_NONE;
7072 #endif /* CAM_DEBUG_FLAGS */
7073 #ifdef CAM_DEBUG_BUS
7074 	if (cam_dflags != CAM_DEBUG_NONE) {
7075 		/*
7076 		 * Locking is specifically omitted here.  No SIMs have
7077 		 * registered yet, so xpt_create_path will only be searching
7078 		 * empty lists of targets and devices.
7079 		 */
7080 		if (xpt_create_path(&cam_dpath, xpt_periph,
7081 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
7082 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
7083 			kprintf("xpt_config: xpt_create_path() failed for debug"
7084 			       " target %d:%d:%d, debugging disabled\n",
7085 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
7086 			cam_dflags = CAM_DEBUG_NONE;
7087 		}
7088 	} else {
7089 		cam_dpath = NULL;
7090 	}
7091 #else /* !CAM_DEBUG_BUS */
7092 	cam_dpath = NULL;
7093 #endif /* CAM_DEBUG_BUS */
7094 #endif /* CAMDEBUG */
7095 
7096 	/*
7097 	 * Scan all installed busses.  This will also add a count
7098 	 * for our dummy placeholder (xpt_periph).
7099 	 */
7100 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7101 
7102 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7103 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7104 		kprintf("Waiting %d seconds for SCSI "
7105 			"devices to settle\n",
7106 			scsi_delay/1000);
7107 	}
7108 	xpt_for_all_busses(xptconfigfunc, NULL);
7109 }
7110 
7111 /*
7112  * If the given device only has one peripheral attached to it, and if that
7113  * peripheral is the passthrough driver, announce it.  This insures that the
7114  * user sees some sort of announcement for every peripheral in their system.
7115  */
7116 static int
7117 xptpassannouncefunc(struct cam_ed *device, void *arg)
7118 {
7119 	struct cam_periph *periph;
7120 	int i;
7121 
7122 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7123 	     periph = SLIST_NEXT(periph, periph_links), i++);
7124 
7125 	periph = SLIST_FIRST(&device->periphs);
7126 	if ((i == 1)
7127 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7128 		xpt_announce_periph(periph, NULL);
7129 
7130 	return(1);
7131 }
7132 
7133 static void
7134 xpt_finishconfig_task(void *context, int pending)
7135 {
7136 	struct	periph_driver **p_drv;
7137 	int	i;
7138 
7139 	kprintf("CAM: finished configuring all busses\n");
7140 
7141 	if (busses_to_config == 0) {
7142 		/* Register all the peripheral drivers */
7143 		/* XXX This will have to change when we have loadable modules */
7144 		p_drv = periph_drivers;
7145 		for (i = 0; p_drv[i] != NULL; i++) {
7146 			(*p_drv[i]->init)();
7147 		}
7148 
7149 		/*
7150 		 * Check for devices with no "standard" peripheral driver
7151 		 * attached.  For any devices like that, announce the
7152 		 * passthrough driver so the user will see something.
7153 		 */
7154 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7155 
7156 		/* Release our hook so that the boot can continue. */
7157 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7158 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7159 		xsoftc.xpt_config_hook = NULL;
7160 	}
7161 	kfree(context, M_CAMXPT);
7162 }
7163 
7164 static void
7165 xpt_uncount_bus (struct cam_eb *bus)
7166 {
7167 	struct xpt_task *task;
7168 
7169 	if (bus->counted_to_config) {
7170 		bus->counted_to_config = 0;
7171 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7172 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7173 				       M_INTWAIT | M_ZERO);
7174 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7175 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7176 					  &task->task);
7177 		}
7178 	}
7179 }
7180 
7181 static void
7182 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7183 {
7184 	struct cam_path *path;
7185 
7186 	path = done_ccb->ccb_h.path;
7187 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7188 
7189 	switch(done_ccb->ccb_h.func_code) {
7190 	case XPT_RESET_BUS:
7191 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7192 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7193 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7194 			done_ccb->crcn.flags = 0;
7195 			xpt_action(done_ccb);
7196 			return;
7197 		}
7198 		/* FALLTHROUGH */
7199 	case XPT_SCAN_BUS:
7200 	default:
7201 		if (bootverbose) {
7202 			kprintf("CAM: Finished configuring bus:");
7203 			if (path->bus->sim) {
7204 				kprintf(" %s%d\n",
7205 					path->bus->sim->sim_name,
7206 					path->bus->sim->unit_number);
7207 			} else {
7208 				kprintf(" (unknown)\n");
7209 			}
7210 		}
7211 		xpt_uncount_bus(path->bus);
7212 		xpt_free_path(path);
7213 		xpt_free_ccb(done_ccb);
7214 		break;
7215 	}
7216 }
7217 
7218 cam_status
7219 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7220 		   struct cam_path *path)
7221 {
7222 	struct ccb_setasync csa;
7223 	cam_status status;
7224 	int xptpath = 0;
7225 
7226 	if (path == NULL) {
7227 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7228 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7229 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7230 		if (status != CAM_REQ_CMP) {
7231 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7232 			return (status);
7233 		}
7234 		xptpath = 1;
7235 	}
7236 
7237 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7238 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7239 	csa.event_enable = event;
7240 	csa.callback = cbfunc;
7241 	csa.callback_arg = cbarg;
7242 	xpt_action((union ccb *)&csa);
7243 	status = csa.ccb_h.status;
7244 	if (xptpath) {
7245 		xpt_free_path(path);
7246 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7247 	}
7248 	return (status);
7249 }
7250 
7251 static void
7252 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7253 {
7254 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7255 
7256 	switch (work_ccb->ccb_h.func_code) {
7257 	/* Common cases first */
7258 	case XPT_PATH_INQ:		/* Path routing inquiry */
7259 	{
7260 		struct ccb_pathinq *cpi;
7261 
7262 		cpi = &work_ccb->cpi;
7263 		cpi->version_num = 1; /* XXX??? */
7264 		cpi->hba_inquiry = 0;
7265 		cpi->target_sprt = 0;
7266 		cpi->hba_misc = 0;
7267 		cpi->hba_eng_cnt = 0;
7268 		cpi->max_target = 0;
7269 		cpi->max_lun = 0;
7270 		cpi->initiator_id = 0;
7271 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7272 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7273 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7274 		cpi->unit_number = sim->unit_number;
7275 		cpi->bus_id = sim->bus_id;
7276 		cpi->base_transfer_speed = 0;
7277 		cpi->protocol = PROTO_UNSPECIFIED;
7278 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7279 		cpi->transport = XPORT_UNSPECIFIED;
7280 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7281 		cpi->ccb_h.status = CAM_REQ_CMP;
7282 		xpt_done(work_ccb);
7283 		break;
7284 	}
7285 	default:
7286 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7287 		xpt_done(work_ccb);
7288 		break;
7289 	}
7290 }
7291 
7292 /*
7293  * The xpt as a "controller" has no interrupt sources, so polling
7294  * is a no-op.
7295  */
7296 static void
7297 xptpoll(struct cam_sim *sim)
7298 {
7299 }
7300 
7301 void
7302 xpt_lock_buses(void)
7303 {
7304 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7305 }
7306 
7307 void
7308 xpt_unlock_buses(void)
7309 {
7310 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7311 }
7312 
7313 
7314 /*
7315  * Should only be called by the machine interrupt dispatch routines,
7316  * so put these prototypes here instead of in the header.
7317  */
7318 
7319 static void
7320 swi_cambio(void *arg, void *frame)
7321 {
7322 	camisr(NULL);
7323 }
7324 
7325 static void
7326 camisr(void *dummy)
7327 {
7328 	cam_simq_t queue;
7329 	struct cam_sim *sim;
7330 
7331 	spin_lock(&cam_simq_spin);
7332 	TAILQ_INIT(&queue);
7333 	TAILQ_CONCAT(&queue, &cam_simq, links);
7334 	spin_unlock(&cam_simq_spin);
7335 
7336 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7337 		TAILQ_REMOVE(&queue, sim, links);
7338 		CAM_SIM_LOCK(sim);
7339 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7340 		camisr_runqueue(sim);
7341 		CAM_SIM_UNLOCK(sim);
7342 	}
7343 }
7344 
7345 static void
7346 camisr_runqueue(struct cam_sim *sim)
7347 {
7348 	struct	ccb_hdr *ccb_h;
7349 	int	runq;
7350 
7351 	spin_lock(&sim->sim_spin);
7352 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7353 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7354 		spin_unlock(&sim->sim_spin);
7355 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7356 
7357 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7358 			  ("camisr\n"));
7359 
7360 		runq = FALSE;
7361 
7362 		if (ccb_h->flags & CAM_HIGH_POWER) {
7363 			struct highpowerlist	*hphead;
7364 			union ccb		*send_ccb;
7365 
7366 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7367 			hphead = &xsoftc.highpowerq;
7368 
7369 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7370 
7371 			/*
7372 			 * Increment the count since this command is done.
7373 			 */
7374 			xsoftc.num_highpower++;
7375 
7376 			/*
7377 			 * Any high powered commands queued up?
7378 			 */
7379 			if (send_ccb != NULL) {
7380 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7381 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7382 
7383 				xpt_release_devq(send_ccb->ccb_h.path,
7384 						 /*count*/1, /*runqueue*/TRUE);
7385 			} else
7386 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7387 		}
7388 
7389 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7390 			struct cam_ed *dev;
7391 
7392 			dev = ccb_h->path->device;
7393 
7394 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7395 
7396 			/*
7397 			 * devq may be NULL if this is cam_dead_sim
7398 			 */
7399 			if (ccb_h->path->bus->sim->devq) {
7400 				ccb_h->path->bus->sim->devq->send_active--;
7401 				ccb_h->path->bus->sim->devq->send_openings++;
7402 			}
7403 
7404 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7405 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7406 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7407 			  && (dev->ccbq.dev_active == 0))) {
7408 
7409 				xpt_release_devq(ccb_h->path, /*count*/1,
7410 						 /*run_queue*/TRUE);
7411 			}
7412 
7413 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7414 			 && (--dev->tag_delay_count == 0))
7415 				xpt_start_tags(ccb_h->path);
7416 
7417 			if ((dev->ccbq.queue.entries > 0)
7418 			 && (dev->qfrozen_cnt == 0)
7419 			 && (device_is_send_queued(dev) == 0)) {
7420 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7421 							      dev);
7422 			}
7423 		}
7424 
7425 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7426 			xpt_release_simq(ccb_h->path->bus->sim,
7427 					 /*run_queue*/TRUE);
7428 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7429 			runq = FALSE;
7430 		}
7431 
7432 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7433 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7434 			xpt_release_devq(ccb_h->path, /*count*/1,
7435 					 /*run_queue*/TRUE);
7436 			ccb_h->status &= ~CAM_DEV_QFRZN;
7437 		} else if (runq) {
7438 			xpt_run_dev_sendq(ccb_h->path->bus);
7439 		}
7440 
7441 		/* Call the peripheral driver's callback */
7442 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7443 		spin_lock(&sim->sim_spin);
7444 	}
7445 	spin_unlock(&sim->sim_spin);
7446 }
7447 
7448 /*
7449  * The dead_sim isn't completely hooked into CAM, we have to make sure
7450  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7451  * doesn't block.
7452  */
7453 static void
7454 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7455 {
7456 
7457 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7458 	xpt_done(ccb);
7459 	camisr_runqueue(sim);
7460 }
7461 
7462 static void
7463 dead_sim_poll(struct cam_sim *sim)
7464 {
7465 }
7466