xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision 0bb9290e)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.16 2006/08/03 16:40:46 swildner Exp $ */
3 /*
4  * Copyright (c) 2000 Matthew Jacob
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/fcntl.h>
36 #include <sys/stat.h>
37 #include <sys/conf.h>
38 #include <sys/buf.h>
39 #include <sys/errno.h>
40 #include <sys/devicestat.h>
41 #include <sys/thread2.h>
42 #include <machine/stdarg.h>
43 
44 #include "../cam.h"
45 #include "../cam_ccb.h"
46 #include "../cam_extend.h"
47 #include "../cam_periph.h"
48 #include "../cam_xpt_periph.h"
49 #include "../cam_queue.h"
50 #include "../cam_debug.h"
51 
52 #include "scsi_all.h"
53 #include "scsi_message.h"
54 #include <sys/ioccom.h>
55 #include "scsi_ses.h"
56 
57 #include <opt_ses.h>
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init)(ses_softc_t *, int);
75 	int (*init_enc)(ses_softc_t *);
76 	int (*get_encstat)(ses_softc_t *, int);
77 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 
97 static enctyp ses_type(void *, int);
98 
99 
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107 
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114 
115 /*
116  * Platform implementation defines/functions for SES internal kernel stuff
117  */
118 
119 #define	STRNCMP			strncmp
120 #define	PRINTF			printf
121 #define	SES_LOG			ses_log
122 #ifdef	DEBUG
123 #define	SES_DLOG		ses_log
124 #else
125 #define	SES_DLOG		if (0) ses_log
126 #endif
127 #define	SES_VLOG		if (bootverbose) ses_log
128 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_INTWAIT)
129 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
130 #define	MEMZERO			bzero
131 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
132 
133 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
134 static void ses_log(struct ses_softc *, const char *, ...);
135 
136 /*
137  * Gerenal FreeBSD kernel stuff.
138  */
139 
140 
141 #define ccb_state	ppriv_field0
142 #define ccb_bio		ppriv_ptr1
143 
144 struct ses_softc {
145 	enctyp		ses_type;	/* type of enclosure */
146 	encvec		ses_vec;	/* vector to handlers */
147 	void *		ses_private;	/* per-type private data */
148 	encobj *	ses_objmap;	/* objects */
149 	u_int32_t	ses_nobjects;	/* number of objects */
150 	ses_encstat	ses_encstat;	/* overall status */
151 	u_int8_t	ses_flags;
152 	union ccb	ses_saved_ccb;
153 	struct cam_periph *periph;
154 };
155 #define	SES_FLAG_INVALID	0x01
156 #define	SES_FLAG_OPEN		0x02
157 #define	SES_FLAG_INITIALIZED	0x04
158 
159 #define SESUNIT(x)       (minor((x)))
160 #define SES_CDEV_MAJOR	110
161 
162 static	d_open_t	sesopen;
163 static	d_close_t	sesclose;
164 static	d_ioctl_t	sesioctl;
165 static	periph_init_t	sesinit;
166 static  periph_ctor_t	sesregister;
167 static	periph_oninv_t	sesoninvalidate;
168 static  periph_dtor_t   sescleanup;
169 static  periph_start_t  sesstart;
170 
171 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
172 static void sesdone(struct cam_periph *, union ccb *);
173 static int seserror(union ccb *, u_int32_t, u_int32_t);
174 
175 static struct periph_driver sesdriver = {
176 	sesinit, "ses",
177 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
178 };
179 
180 DATA_SET(periphdriver_set, sesdriver);
181 
182 static struct dev_ops ses_ops = {
183 	{ "ses", SES_CDEV_MAJOR, 0 },
184 	.d_open =	sesopen,
185 	.d_close =	sesclose,
186 	.d_ioctl =	sesioctl,
187 };
188 static struct extend_array *sesperiphs;
189 
190 void
191 sesinit(void)
192 {
193 	cam_status status;
194 	struct cam_path *path;
195 
196 	/*
197 	 * Create our extend array for storing the devices we attach to.
198 	 */
199 	sesperiphs = cam_extend_new();
200 	if (sesperiphs == NULL) {
201 		printf("ses: Failed to alloc extend array!\n");
202 		return;
203 	}
204 
205 	/*
206 	 * Install a global async callback.  This callback will
207 	 * receive async callbacks like "new device found".
208 	 */
209 	status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
210 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
211 
212 	if (status == CAM_REQ_CMP) {
213 		struct ccb_setasync csa;
214 
215                 xpt_setup_ccb(&csa.ccb_h, path, 5);
216                 csa.ccb_h.func_code = XPT_SASYNC_CB;
217                 csa.event_enable = AC_FOUND_DEVICE;
218                 csa.callback = sesasync;
219                 csa.callback_arg = NULL;
220                 xpt_action((union ccb *)&csa);
221 		status = csa.ccb_h.status;
222                 xpt_free_path(path);
223         }
224 
225 	if (status != CAM_REQ_CMP) {
226 		printf("ses: Failed to attach master async callback "
227 		       "due to status 0x%x!\n", status);
228 	}
229 }
230 
231 static void
232 sesoninvalidate(struct cam_periph *periph)
233 {
234 	struct ses_softc *softc;
235 	struct ccb_setasync csa;
236 
237 	softc = (struct ses_softc *)periph->softc;
238 
239 	/*
240 	 * Unregister any async callbacks.
241 	 */
242 	xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
243 	csa.ccb_h.func_code = XPT_SASYNC_CB;
244 	csa.event_enable = 0;
245 	csa.callback = sesasync;
246 	csa.callback_arg = periph;
247 	xpt_action((union ccb *)&csa);
248 
249 	softc->ses_flags |= SES_FLAG_INVALID;
250 
251 	xpt_print_path(periph->path);
252 	printf("lost device\n");
253 }
254 
255 static void
256 sescleanup(struct cam_periph *periph)
257 {
258 	struct ses_softc *softc;
259 
260 	softc = (struct ses_softc *)periph->softc;
261 
262 	cam_extend_release(sesperiphs, periph->unit_number);
263 	xpt_print_path(periph->path);
264 	printf("removing device entry\n");
265 	dev_ops_remove(&ses_ops, -1, periph->unit_number);
266 	free(softc, M_DEVBUF);
267 }
268 
269 static void
270 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
271 {
272 	struct cam_periph *periph;
273 
274 	periph = (struct cam_periph *)callback_arg;
275 
276 	switch(code) {
277 	case AC_FOUND_DEVICE:
278 	{
279 		cam_status status;
280 		struct ccb_getdev *cgd;
281 
282 		cgd = (struct ccb_getdev *)arg;
283 
284 		/*
285 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
286 		 * PROBLEM: IS A SAF-TE DEVICE.
287 		 */
288 		switch (ses_type(&cgd->inq_data, cgd->inq_len)) {
289 		case SES_SES:
290 		case SES_SES_SCSI2:
291 		case SES_SES_PASSTHROUGH:
292 		case SES_SEN:
293 		case SES_SAFT:
294 			break;
295 		default:
296 			return;
297 		}
298 
299 		status = cam_periph_alloc(sesregister, sesoninvalidate,
300 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
301 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
302 
303 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
304 			printf("sesasync: Unable to probe new device due to "
305 			    "status 0x%x\n", status);
306 		}
307 		break;
308 	}
309 	default:
310 		cam_periph_async(periph, code, path, arg);
311 		break;
312 	}
313 }
314 
315 static cam_status
316 sesregister(struct cam_periph *periph, void *arg)
317 {
318 	struct ses_softc *softc;
319 	struct ccb_setasync csa;
320 	struct ccb_getdev *cgd;
321 	char *tname;
322 
323 	cgd = (struct ccb_getdev *)arg;
324 	if (periph == NULL) {
325 		printf("sesregister: periph was NULL!!\n");
326 		return (CAM_REQ_CMP_ERR);
327 	}
328 
329 	if (cgd == NULL) {
330 		printf("sesregister: no getdev CCB, can't register device\n");
331 		return (CAM_REQ_CMP_ERR);
332 	}
333 
334 	softc = malloc(sizeof (struct ses_softc), M_DEVBUF, M_INTWAIT | M_ZERO);
335 	periph->softc = softc;
336 	softc->periph = periph;
337 
338 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
339 
340 	switch (softc->ses_type) {
341 	case SES_SES:
342 	case SES_SES_SCSI2:
343         case SES_SES_PASSTHROUGH:
344 		softc->ses_vec.softc_init = ses_softc_init;
345 		softc->ses_vec.init_enc = ses_init_enc;
346 		softc->ses_vec.get_encstat = ses_get_encstat;
347 		softc->ses_vec.set_encstat = ses_set_encstat;
348 		softc->ses_vec.get_objstat = ses_get_objstat;
349 		softc->ses_vec.set_objstat = ses_set_objstat;
350 		break;
351         case SES_SAFT:
352 		softc->ses_vec.softc_init = safte_softc_init;
353 		softc->ses_vec.init_enc = safte_init_enc;
354 		softc->ses_vec.get_encstat = safte_get_encstat;
355 		softc->ses_vec.set_encstat = safte_set_encstat;
356 		softc->ses_vec.get_objstat = safte_get_objstat;
357 		softc->ses_vec.set_objstat = safte_set_objstat;
358 		break;
359         case SES_SEN:
360 		break;
361 	case SES_NONE:
362 	default:
363 		free(softc, M_DEVBUF);
364 		return (CAM_REQ_CMP_ERR);
365 	}
366 
367 	cam_extend_set(sesperiphs, periph->unit_number, periph);
368 
369 	dev_ops_add(&ses_ops, -1, periph->unit_number);
370 	make_dev(&ses_ops, periph->unit_number,
371 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
372 		    periph->periph_name, periph->unit_number);
373 
374 	/*
375 	 * Add an async callback so that we get
376 	 * notified if this device goes away.
377 	 */
378 	xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
379 	csa.ccb_h.func_code = XPT_SASYNC_CB;
380 	csa.event_enable = AC_LOST_DEVICE;
381 	csa.callback = sesasync;
382 	csa.callback_arg = periph;
383 	xpt_action((union ccb *)&csa);
384 
385 	switch (softc->ses_type) {
386 	default:
387 	case SES_NONE:
388 		tname = "No SES device";
389 		break;
390 	case SES_SES_SCSI2:
391 		tname = "SCSI-2 SES Device";
392 		break;
393 	case SES_SES:
394 		tname = "SCSI-3 SES Device";
395 		break;
396         case SES_SES_PASSTHROUGH:
397 		tname = "SES Passthrough Device";
398 		break;
399         case SES_SEN:
400 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
401 		break;
402         case SES_SAFT:
403 		tname = "SAF-TE Compliant Device";
404 		break;
405 	}
406 	xpt_announce_periph(periph, tname);
407 	return (CAM_REQ_CMP);
408 }
409 
410 static int
411 sesopen(struct dev_open_args *ap)
412 {
413 	dev_t dev = ap->a_head.a_dev;
414 	struct cam_periph *periph;
415 	struct ses_softc *softc;
416 	int error;
417 
418 	crit_enter();
419 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
420 	if (periph == NULL) {
421 		crit_exit();
422 		return (ENXIO);
423 	}
424 	if ((error = cam_periph_lock(periph, PCATCH)) != 0) {
425 		crit_exit();
426 		return (error);
427 	}
428 	crit_exit();
429 
430 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
431 		cam_periph_unlock(periph);
432 		return (ENXIO);
433 	}
434 
435 	softc = (struct ses_softc *)periph->softc;
436 
437 	if (softc->ses_flags & SES_FLAG_INVALID) {
438 		error = ENXIO;
439 		goto out;
440 	}
441 	if (softc->ses_flags & SES_FLAG_OPEN) {
442 		error = EBUSY;
443 		goto out;
444 	}
445 	if (softc->ses_vec.softc_init == NULL) {
446 		error = ENXIO;
447 		goto out;
448 	}
449 
450 	softc->ses_flags |= SES_FLAG_OPEN;
451 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
452 		error = (*softc->ses_vec.softc_init)(softc, 1);
453 		if (error)
454 			softc->ses_flags &= ~SES_FLAG_OPEN;
455 		else
456 			softc->ses_flags |= SES_FLAG_INITIALIZED;
457 	}
458 
459 out:
460 	if (error) {
461 		cam_periph_release(periph);
462 	}
463 	cam_periph_unlock(periph);
464 	return (error);
465 }
466 
467 static int
468 sesclose(struct dev_close_args *ap)
469 {
470 	dev_t dev = ap->a_head.a_dev;
471 	struct cam_periph *periph;
472 	struct ses_softc *softc;
473 	int unit, error;
474 
475 	error = 0;
476 
477 	unit = SESUNIT(dev);
478 	periph = cam_extend_get(sesperiphs, unit);
479 	if (periph == NULL)
480 		return (ENXIO);
481 
482 	softc = (struct ses_softc *)periph->softc;
483 
484 	if ((error = cam_periph_lock(periph, 0)) != 0)
485 		return (error);
486 
487 	softc->ses_flags &= ~SES_FLAG_OPEN;
488 
489 	cam_periph_unlock(periph);
490 	cam_periph_release(periph);
491 
492 	return (0);
493 }
494 
495 static void
496 sesstart(struct cam_periph *p, union ccb *sccb)
497 {
498 	crit_enter();
499 	if (p->immediate_priority <= p->pinfo.priority) {
500 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
501 		p->immediate_priority = CAM_PRIORITY_NONE;
502 		wakeup(&p->ccb_list);
503 	}
504 	crit_exit();
505 }
506 
507 static void
508 sesdone(struct cam_periph *periph, union ccb *dccb)
509 {
510 	wakeup(&dccb->ccb_h.cbfcnp);
511 }
512 
513 static int
514 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
515 {
516 	struct ses_softc *softc;
517 	struct cam_periph *periph;
518 
519 	periph = xpt_path_periph(ccb->ccb_h.path);
520 	softc = (struct ses_softc *)periph->softc;
521 
522 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
523 }
524 
525 static int
526 sesioctl(struct dev_ioctl_args *ap)
527 {
528 	dev_t dev = ap->a_head.a_dev;
529 	struct cam_periph *periph;
530 	ses_encstat tmp;
531 	ses_objstat objs;
532 	ses_object obj, *uobj;
533 	struct ses_softc *ssc;
534 	void *addr;
535 	int error, i;
536 
537 
538 	if (ap->a_data)
539 		addr = *((caddr_t *)ap->a_data);
540 	else
541 		addr = NULL;
542 
543 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
544 	if (periph == NULL)
545 		return (ENXIO);
546 
547 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
548 
549 	ssc = (struct ses_softc *)periph->softc;
550 
551 	/*
552 	 * Now check to see whether we're initialized or not.
553 	 */
554 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
555 		return (ENXIO);
556 	}
557 
558 	error = 0;
559 
560 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
561 	    ("trying to do ioctl %#lx\n", ap->a_cmd));
562 
563 	/*
564 	 * If this command can change the device's state,
565 	 * we must have the device open for writing.
566 	 */
567 	switch (ap->a_cmd) {
568 	case SESIOC_GETNOBJ:
569 	case SESIOC_GETOBJMAP:
570 	case SESIOC_GETENCSTAT:
571 	case SESIOC_GETOBJSTAT:
572 		break;
573 	default:
574 		if ((ap->a_fflag & FWRITE) == 0) {
575 			return (EBADF);
576 		}
577 	}
578 
579 	switch (ap->a_cmd) {
580 	case SESIOC_GETNOBJ:
581 		error = copyout(&ssc->ses_nobjects, addr,
582 		    sizeof (ssc->ses_nobjects));
583 		break;
584 
585 	case SESIOC_GETOBJMAP:
586 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
587 			obj.obj_id = i;
588 			obj.subencid = ssc->ses_objmap[i].subenclosure;
589 			obj.object_type = ssc->ses_objmap[i].enctype;
590 			error = copyout(&obj, uobj, sizeof (ses_object));
591 			if (error) {
592 				break;
593 			}
594 		}
595 		break;
596 
597 	case SESIOC_GETENCSTAT:
598 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
599 		if (error)
600 			break;
601 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
602 		error = copyout(&tmp, addr, sizeof (ses_encstat));
603 		ssc->ses_encstat = tmp;
604 		break;
605 
606 	case SESIOC_SETENCSTAT:
607 		error = copyin(addr, &tmp, sizeof (ses_encstat));
608 		if (error)
609 			break;
610 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
611 		break;
612 
613 	case SESIOC_GETOBJSTAT:
614 		error = copyin(addr, &objs, sizeof (ses_objstat));
615 		if (error)
616 			break;
617 		if (objs.obj_id >= ssc->ses_nobjects) {
618 			error = EINVAL;
619 			break;
620 		}
621 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
622 		if (error)
623 			break;
624 		error = copyout(&objs, addr, sizeof (ses_objstat));
625 		/*
626 		 * Always (for now) invalidate entry.
627 		 */
628 		ssc->ses_objmap[objs.obj_id].svalid = 0;
629 		break;
630 
631 	case SESIOC_SETOBJSTAT:
632 		error = copyin(addr, &objs, sizeof (ses_objstat));
633 		if (error)
634 			break;
635 
636 		if (objs.obj_id >= ssc->ses_nobjects) {
637 			error = EINVAL;
638 			break;
639 		}
640 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
641 
642 		/*
643 		 * Always (for now) invalidate entry.
644 		 */
645 		ssc->ses_objmap[objs.obj_id].svalid = 0;
646 		break;
647 
648 	case SESIOC_INIT:
649 
650 		error = (*ssc->ses_vec.init_enc)(ssc);
651 		break;
652 
653 	default:
654 		error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
655 		break;
656 	}
657 	return (error);
658 }
659 
660 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_SELTO | SF_RETRY_UA
661 static int
662 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
663 {
664 	int error, dlen;
665 	ccb_flags ddf;
666 	union ccb *ccb;
667 
668 	if (dptr) {
669 		if ((dlen = *dlenp) < 0) {
670 			dlen = -dlen;
671 			ddf = CAM_DIR_OUT;
672 		} else {
673 			ddf = CAM_DIR_IN;
674 		}
675 	} else {
676 		dlen = 0;
677 		ddf = CAM_DIR_NONE;
678 	}
679 
680 	if (cdbl > IOCDBLEN) {
681 		cdbl = IOCDBLEN;
682 	}
683 
684 	ccb = cam_periph_getccb(ssc->periph, 1);
685 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
686 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
687 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
688 
689 	error = cam_periph_runccb(ccb, seserror, 0, SES_FLAGS, NULL);
690 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
691 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
692 	if (error) {
693 		if (dptr) {
694 			*dlenp = dlen;
695 		}
696 	} else {
697 		if (dptr) {
698 			*dlenp = ccb->csio.resid;
699 		}
700 	}
701 	xpt_release_ccb(ccb);
702 	return (error);
703 }
704 
705 static void
706 ses_log(struct ses_softc *ssc, const char *fmt, ...)
707 {
708 	__va_list ap;
709 
710 	printf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
711 	__va_start(ap, fmt);
712 	vprintf(fmt, ap);
713 	__va_end(ap);
714 }
715 
716 /*
717  * The code after this point runs on many platforms,
718  * so forgive the slightly awkward and nonconforming
719  * appearance.
720  */
721 
722 /*
723  * Is this a device that supports enclosure services?
724  *
725  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
726  * an SES device. If it happens to be an old UNISYS SEN device, we can
727  * handle that too.
728  */
729 
730 #define	SAFTE_START	44
731 #define	SAFTE_END	50
732 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
733 
734 static enctyp
735 ses_type(void *buf, int buflen)
736 {
737 	unsigned char *iqd = buf;
738 
739 	if (buflen == 0)
740 		buflen = 256;	/* per SPC-2 */
741 
742 	if (buflen < 8+SEN_ID_LEN)
743 		return (SES_NONE);
744 
745 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
746 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
747 			return (SES_SEN);
748 		} else if ((iqd[2] & 0x7) > 2) {
749 			return (SES_SES);
750 		} else {
751 			return (SES_SES_SCSI2);
752 		}
753 		return (SES_NONE);
754 	}
755 
756 #ifdef	SES_ENABLE_PASSTHROUGH
757 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
758 		/*
759 		 * PassThrough Device.
760 		 */
761 		return (SES_SES_PASSTHROUGH);
762 	}
763 #endif
764 
765 	/*
766 	 * The comparison is short for a reason-
767 	 * some vendors were chopping it short.
768 	 */
769 
770 	if (buflen < SAFTE_END - 2) {
771 		return (SES_NONE);
772 	}
773 
774 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
775 		return (SES_SAFT);
776 	}
777 	return (SES_NONE);
778 }
779 
780 /*
781  * SES Native Type Device Support
782  */
783 
784 /*
785  * SES Diagnostic Page Codes
786  */
787 
788 typedef enum {
789 	SesConfigPage = 0x1,
790 	SesControlPage,
791 #define	SesStatusPage SesControlPage
792 	SesHelpTxt,
793 	SesStringOut,
794 #define	SesStringIn	SesStringOut
795 	SesThresholdOut,
796 #define	SesThresholdIn SesThresholdOut
797 	SesArrayControl,
798 #define	SesArrayStatus	SesArrayControl
799 	SesElementDescriptor,
800 	SesShortStatus
801 } SesDiagPageCodes;
802 
803 /*
804  * minimal amounts
805  */
806 
807 /*
808  * Minimum amount of data, starting from byte 0, to have
809  * the config header.
810  */
811 #define	SES_CFGHDR_MINLEN	12
812 
813 /*
814  * Minimum amount of data, starting from byte 0, to have
815  * the config header and one enclosure header.
816  */
817 #define	SES_ENCHDR_MINLEN	48
818 
819 /*
820  * Take this value, subtract it from VEnclen and you know
821  * the length of the vendor unique bytes.
822  */
823 #define	SES_ENCHDR_VMIN		36
824 
825 /*
826  * SES Data Structures
827  */
828 
829 typedef struct {
830 	uint32_t GenCode;	/* Generation Code */
831 	uint8_t	Nsubenc;	/* Number of Subenclosures */
832 } SesCfgHdr;
833 
834 typedef struct {
835 	uint8_t	Subencid;	/* SubEnclosure Identifier */
836 	uint8_t	Ntypes;		/* # of supported types */
837 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
838 } SesEncHdr;
839 
840 typedef struct {
841 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
842 	uint8_t	encVid[8];
843 	uint8_t	encPid[16];
844 	uint8_t	encRev[4];
845 	uint8_t	encVen[1];
846 } SesEncDesc;
847 
848 typedef struct {
849 	uint8_t	enc_type;		/* type of element */
850 	uint8_t	enc_maxelt;		/* maximum supported */
851 	uint8_t	enc_subenc;		/* in SubEnc # N */
852 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
853 } SesThdr;
854 
855 typedef struct {
856 	uint8_t	comstatus;
857 	uint8_t	comstat[3];
858 } SesComStat;
859 
860 struct typidx {
861 	int ses_tidx;
862 	int ses_oidx;
863 };
864 
865 struct sscfg {
866 	uint8_t ses_ntypes;	/* total number of types supported */
867 
868 	/*
869 	 * We need to keep a type index as well as an
870 	 * object index for each object in an enclosure.
871 	 */
872 	struct typidx *ses_typidx;
873 
874 	/*
875 	 * We also need to keep track of the number of elements
876 	 * per type of element. This is needed later so that we
877 	 * can find precisely in the returned status data the
878 	 * status for the Nth element of the Kth type.
879 	 */
880 	uint8_t *	ses_eltmap;
881 };
882 
883 
884 /*
885  * (de)canonicalization defines
886  */
887 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
888 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
889 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
890 
891 #define	sset16(outp, idx, sval)	\
892 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
893 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
894 
895 
896 #define	sset24(outp, idx, sval)	\
897 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
898 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
899 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
900 
901 
902 #define	sset32(outp, idx, sval)	\
903 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
904 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
905 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
906 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
907 
908 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
909 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
910 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
911 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
912 
913 #define	sget16(inp, idx, lval)	\
914 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
915 		(((uint8_t *)(inp))[idx+1]), idx += 2
916 
917 #define	gget16(inp, idx, lval)	\
918 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
919 		(((uint8_t *)(inp))[idx+1])
920 
921 #define	sget24(inp, idx, lval)	\
922 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
923 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
924 			(((uint8_t *)(inp))[idx+2]), idx += 3
925 
926 #define	gget24(inp, idx, lval)	\
927 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
928 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
929 			(((uint8_t *)(inp))[idx+2])
930 
931 #define	sget32(inp, idx, lval)	\
932 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
933 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
934 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
935 			(((uint8_t *)(inp))[idx+3]), idx += 4
936 
937 #define	gget32(inp, idx, lval)	\
938 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
939 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
940 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
941 			(((uint8_t *)(inp))[idx+3])
942 
943 #define	SCSZ	0x2000
944 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
945 
946 /*
947  * Routines specific && private to SES only
948  */
949 
950 static int ses_getconfig(ses_softc_t *);
951 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
952 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
953 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
954 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
955 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
956 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
957 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
958 
959 static int
960 ses_softc_init(ses_softc_t *ssc, int doinit)
961 {
962 	if (doinit == 0) {
963 		struct sscfg *cc;
964 		if (ssc->ses_nobjects) {
965 			SES_FREE(ssc->ses_objmap,
966 			    ssc->ses_nobjects * sizeof (encobj));
967 			ssc->ses_objmap = NULL;
968 		}
969 		if ((cc = ssc->ses_private) != NULL) {
970 			if (cc->ses_eltmap && cc->ses_ntypes) {
971 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
972 				cc->ses_eltmap = NULL;
973 				cc->ses_ntypes = 0;
974 			}
975 			if (cc->ses_typidx && ssc->ses_nobjects) {
976 				SES_FREE(cc->ses_typidx,
977 				    ssc->ses_nobjects * sizeof (struct typidx));
978 				cc->ses_typidx = NULL;
979 			}
980 			SES_FREE(cc, sizeof (struct sscfg));
981 			ssc->ses_private = NULL;
982 		}
983 		ssc->ses_nobjects = 0;
984 		return (0);
985 	}
986 	if (ssc->ses_private == NULL) {
987 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
988 	}
989 	if (ssc->ses_private == NULL) {
990 		return (ENOMEM);
991 	}
992 	ssc->ses_nobjects = 0;
993 	ssc->ses_encstat = 0;
994 	return (ses_getconfig(ssc));
995 }
996 
997 static int
998 ses_init_enc(ses_softc_t *ssc)
999 {
1000 	return (0);
1001 }
1002 
1003 static int
1004 ses_get_encstat(ses_softc_t *ssc, int slpflag)
1005 {
1006 	SesComStat ComStat;
1007 	int status;
1008 
1009 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1010 		return (status);
1011 	}
1012 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1013 	return (0);
1014 }
1015 
1016 static int
1017 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1018 {
1019 	SesComStat ComStat;
1020 	int status;
1021 
1022 	ComStat.comstatus = encstat & 0xf;
1023 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1024 		return (status);
1025 	}
1026 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1027 	return (0);
1028 }
1029 
1030 static int
1031 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1032 {
1033 	int i = (int)obp->obj_id;
1034 
1035 	if (ssc->ses_objmap[i].svalid == 0) {
1036 		SesComStat ComStat;
1037 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1038 		if (err)
1039 			return (err);
1040 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1041 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1042 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1043 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1044 		ssc->ses_objmap[i].svalid = 1;
1045 	}
1046 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1047 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1048 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1049 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1050 	return (0);
1051 }
1052 
1053 static int
1054 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1055 {
1056 	SesComStat ComStat;
1057 	int err;
1058 	/*
1059 	 * If this is clear, we don't do diddly.
1060 	 */
1061 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1062 		return (0);
1063 	}
1064 	ComStat.comstatus = obp->cstat[0];
1065 	ComStat.comstat[0] = obp->cstat[1];
1066 	ComStat.comstat[1] = obp->cstat[2];
1067 	ComStat.comstat[2] = obp->cstat[3];
1068 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1069 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1070 	return (err);
1071 }
1072 
1073 static int
1074 ses_getconfig(ses_softc_t *ssc)
1075 {
1076 	struct sscfg *cc;
1077 	SesCfgHdr cf;
1078 	SesEncHdr hd;
1079 	SesEncDesc *cdp;
1080 	SesThdr thdr;
1081 	int err, amt, i, nobj, ntype, maxima;
1082 	char storage[CFLEN], *sdata;
1083 	static char cdb[6] = {
1084 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1085 	};
1086 
1087 	cc = ssc->ses_private;
1088 	if (cc == NULL) {
1089 		return (ENXIO);
1090 	}
1091 
1092 	sdata = SES_MALLOC(SCSZ);
1093 	if (sdata == NULL)
1094 		return (ENOMEM);
1095 
1096 	amt = SCSZ;
1097 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1098 	if (err) {
1099 		SES_FREE(sdata, SCSZ);
1100 		return (err);
1101 	}
1102 	amt = SCSZ - amt;
1103 
1104 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1105 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1106 		SES_FREE(sdata, SCSZ);
1107 		return (EIO);
1108 	}
1109 	if (amt < SES_ENCHDR_MINLEN) {
1110 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1111 		SES_FREE(sdata, SCSZ);
1112 		return (EIO);
1113 	}
1114 
1115 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1116 
1117 	/*
1118 	 * Now waltz through all the subenclosures toting up the
1119 	 * number of types available in each. For this, we only
1120 	 * really need the enclosure header. However, we get the
1121 	 * enclosure descriptor for debug purposes, as well
1122 	 * as self-consistency checking purposes.
1123 	 */
1124 
1125 	maxima = cf.Nsubenc + 1;
1126 	cdp = (SesEncDesc *) storage;
1127 	for (ntype = i = 0; i < maxima; i++) {
1128 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1129 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1130 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1131 			SES_FREE(sdata, SCSZ);
1132 			return (EIO);
1133 		}
1134 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1135 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1136 
1137 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1138 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1139 			SES_FREE(sdata, SCSZ);
1140 			return (EIO);
1141 		}
1142 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1143 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1144 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1145 		    cdp->encWWN[6], cdp->encWWN[7]);
1146 		ntype += hd.Ntypes;
1147 	}
1148 
1149 	/*
1150 	 * Now waltz through all the types that are available, getting
1151 	 * the type header so we can start adding up the number of
1152 	 * objects available.
1153 	 */
1154 	for (nobj = i = 0; i < ntype; i++) {
1155 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1156 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1157 			SES_FREE(sdata, SCSZ);
1158 			return (EIO);
1159 		}
1160 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1161 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1162 		    thdr.enc_subenc, thdr.enc_tlen);
1163 		nobj += thdr.enc_maxelt;
1164 	}
1165 
1166 
1167 	/*
1168 	 * Now allocate the object array and type map.
1169 	 */
1170 
1171 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1172 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1173 	cc->ses_eltmap = SES_MALLOC(ntype);
1174 
1175 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1176 	    cc->ses_eltmap == NULL) {
1177 		if (ssc->ses_objmap) {
1178 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1179 			ssc->ses_objmap = NULL;
1180 		}
1181 		if (cc->ses_typidx) {
1182 			SES_FREE(cc->ses_typidx,
1183 			    (nobj * sizeof (struct typidx)));
1184 			cc->ses_typidx = NULL;
1185 		}
1186 		if (cc->ses_eltmap) {
1187 			SES_FREE(cc->ses_eltmap, ntype);
1188 			cc->ses_eltmap = NULL;
1189 		}
1190 		SES_FREE(sdata, SCSZ);
1191 		return (ENOMEM);
1192 	}
1193 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1194 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1195 	MEMZERO(cc->ses_eltmap, ntype);
1196 	cc->ses_ntypes = (uint8_t) ntype;
1197 	ssc->ses_nobjects = nobj;
1198 
1199 	/*
1200 	 * Now waltz through the # of types again to fill in the types
1201 	 * (and subenclosure ids) of the allocated objects.
1202 	 */
1203 	nobj = 0;
1204 	for (i = 0; i < ntype; i++) {
1205 		int j;
1206 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1207 			continue;
1208 		}
1209 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1210 		for (j = 0; j < thdr.enc_maxelt; j++) {
1211 			cc->ses_typidx[nobj].ses_tidx = i;
1212 			cc->ses_typidx[nobj].ses_oidx = j;
1213 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1214 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1215 		}
1216 	}
1217 	SES_FREE(sdata, SCSZ);
1218 	return (0);
1219 }
1220 
1221 static int
1222 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1223 {
1224 	struct sscfg *cc;
1225 	int err, amt, bufsiz, tidx, oidx;
1226 	char cdb[6], *sdata;
1227 
1228 	cc = ssc->ses_private;
1229 	if (cc == NULL) {
1230 		return (ENXIO);
1231 	}
1232 
1233 	/*
1234 	 * If we're just getting overall enclosure status,
1235 	 * we only need 2 bytes of data storage.
1236 	 *
1237 	 * If we're getting anything else, we know how much
1238 	 * storage we need by noting that starting at offset
1239 	 * 8 in returned data, all object status bytes are 4
1240 	 * bytes long, and are stored in chunks of types(M)
1241 	 * and nth+1 instances of type M.
1242 	 */
1243 	if (objid == -1) {
1244 		bufsiz = 2;
1245 	} else {
1246 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1247 	}
1248 	sdata = SES_MALLOC(bufsiz);
1249 	if (sdata == NULL)
1250 		return (ENOMEM);
1251 
1252 	cdb[0] = RECEIVE_DIAGNOSTIC;
1253 	cdb[1] = 1;
1254 	cdb[2] = SesStatusPage;
1255 	cdb[3] = bufsiz >> 8;
1256 	cdb[4] = bufsiz & 0xff;
1257 	cdb[5] = 0;
1258 	amt = bufsiz;
1259 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1260 	if (err) {
1261 		SES_FREE(sdata, bufsiz);
1262 		return (err);
1263 	}
1264 	amt = bufsiz - amt;
1265 
1266 	if (objid == -1) {
1267 		tidx = -1;
1268 		oidx = -1;
1269 	} else {
1270 		tidx = cc->ses_typidx[objid].ses_tidx;
1271 		oidx = cc->ses_typidx[objid].ses_oidx;
1272 	}
1273 	if (in) {
1274 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1275 			err = ENODEV;
1276 		}
1277 	} else {
1278 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1279 			err = ENODEV;
1280 		} else {
1281 			cdb[0] = SEND_DIAGNOSTIC;
1282 			cdb[1] = 0x10;
1283 			cdb[2] = 0;
1284 			cdb[3] = bufsiz >> 8;
1285 			cdb[4] = bufsiz & 0xff;
1286 			cdb[5] = 0;
1287 			amt = -bufsiz;
1288 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1289 		}
1290 	}
1291 	SES_FREE(sdata, bufsiz);
1292 	return (0);
1293 }
1294 
1295 
1296 /*
1297  * Routines to parse returned SES data structures.
1298  * Architecture and compiler independent.
1299  */
1300 
1301 static int
1302 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1303 {
1304 	if (buflen < SES_CFGHDR_MINLEN) {
1305 		return (-1);
1306 	}
1307 	gget8(buffer, 1, cfp->Nsubenc);
1308 	gget32(buffer, 4, cfp->GenCode);
1309 	return (0);
1310 }
1311 
1312 static int
1313 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1314 {
1315 	int s, off = 8;
1316 	for (s = 0; s < SubEncId; s++) {
1317 		if (off + 3 > amt)
1318 			return (-1);
1319 		off += buffer[off+3] + 4;
1320 	}
1321 	if (off + 3 > amt) {
1322 		return (-1);
1323 	}
1324 	gget8(buffer, off+1, chp->Subencid);
1325 	gget8(buffer, off+2, chp->Ntypes);
1326 	gget8(buffer, off+3, chp->VEnclen);
1327 	return (0);
1328 }
1329 
1330 static int
1331 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1332 {
1333 	int s, e, enclen, off = 8;
1334 	for (s = 0; s < SubEncId; s++) {
1335 		if (off + 3 > amt)
1336 			return (-1);
1337 		off += buffer[off+3] + 4;
1338 	}
1339 	if (off + 3 > amt) {
1340 		return (-1);
1341 	}
1342 	gget8(buffer, off+3, enclen);
1343 	off += 4;
1344 	if (off  >= amt)
1345 		return (-1);
1346 
1347 	e = off + enclen;
1348 	if (e > amt) {
1349 		e = amt;
1350 	}
1351 	MEMCPY(cdp, &buffer[off], e - off);
1352 	return (0);
1353 }
1354 
1355 static int
1356 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1357 {
1358 	int s, off = 8;
1359 
1360 	if (amt < SES_CFGHDR_MINLEN) {
1361 		return (-1);
1362 	}
1363 	for (s = 0; s < buffer[1]; s++) {
1364 		if (off + 3 > amt)
1365 			return (-1);
1366 		off += buffer[off+3] + 4;
1367 	}
1368 	if (off + 3 > amt) {
1369 		return (-1);
1370 	}
1371 	off += buffer[off+3] + 4 + (nth * 4);
1372 	if (amt < (off + 4))
1373 		return (-1);
1374 
1375 	gget8(buffer, off++, thp->enc_type);
1376 	gget8(buffer, off++, thp->enc_maxelt);
1377 	gget8(buffer, off++, thp->enc_subenc);
1378 	gget8(buffer, off, thp->enc_tlen);
1379 	return (0);
1380 }
1381 
1382 /*
1383  * This function needs a little explanation.
1384  *
1385  * The arguments are:
1386  *
1387  *
1388  *	char *b, int amt
1389  *
1390  *		These describes the raw input SES status data and length.
1391  *
1392  *	uint8_t *ep
1393  *
1394  *		This is a map of the number of types for each element type
1395  *		in the enclosure.
1396  *
1397  *	int elt
1398  *
1399  *		This is the element type being sought. If elt is -1,
1400  *		then overall enclosure status is being sought.
1401  *
1402  *	int elm
1403  *
1404  *		This is the ordinal Mth element of type elt being sought.
1405  *
1406  *	SesComStat *sp
1407  *
1408  *		This is the output area to store the status for
1409  *		the Mth element of type Elt.
1410  */
1411 
1412 static int
1413 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1414 {
1415 	int idx, i;
1416 
1417 	/*
1418 	 * If it's overall enclosure status being sought, get that.
1419 	 * We need at least 2 bytes of status data to get that.
1420 	 */
1421 	if (elt == -1) {
1422 		if (amt < 2)
1423 			return (-1);
1424 		gget8(b, 1, sp->comstatus);
1425 		sp->comstat[0] = 0;
1426 		sp->comstat[1] = 0;
1427 		sp->comstat[2] = 0;
1428 		return (0);
1429 	}
1430 
1431 	/*
1432 	 * Check to make sure that the Mth element is legal for type Elt.
1433 	 */
1434 
1435 	if (elm >= ep[elt])
1436 		return (-1);
1437 
1438 	/*
1439 	 * Starting at offset 8, start skipping over the storage
1440 	 * for the element types we're not interested in.
1441 	 */
1442 	for (idx = 8, i = 0; i < elt; i++) {
1443 		idx += ((ep[i] + 1) * 4);
1444 	}
1445 
1446 	/*
1447 	 * Skip over Overall status for this element type.
1448 	 */
1449 	idx += 4;
1450 
1451 	/*
1452 	 * And skip to the index for the Mth element that we're going for.
1453 	 */
1454 	idx += (4 * elm);
1455 
1456 	/*
1457 	 * Make sure we haven't overflowed the buffer.
1458 	 */
1459 	if (idx+4 > amt)
1460 		return (-1);
1461 
1462 	/*
1463 	 * Retrieve the status.
1464 	 */
1465 	gget8(b, idx++, sp->comstatus);
1466 	gget8(b, idx++, sp->comstat[0]);
1467 	gget8(b, idx++, sp->comstat[1]);
1468 	gget8(b, idx++, sp->comstat[2]);
1469 #if	0
1470 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1471 #endif
1472 	return (0);
1473 }
1474 
1475 /*
1476  * This is the mirror function to ses_decode, but we set the 'select'
1477  * bit for the object which we're interested in. All other objects,
1478  * after a status fetch, should have that bit off. Hmm. It'd be easy
1479  * enough to ensure this, so we will.
1480  */
1481 
1482 static int
1483 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1484 {
1485 	int idx, i;
1486 
1487 	/*
1488 	 * If it's overall enclosure status being sought, get that.
1489 	 * We need at least 2 bytes of status data to get that.
1490 	 */
1491 	if (elt == -1) {
1492 		if (amt < 2)
1493 			return (-1);
1494 		i = 0;
1495 		sset8(b, i, 0);
1496 		sset8(b, i, sp->comstatus & 0xf);
1497 #if	0
1498 		PRINTF("set EncStat %x\n", sp->comstatus);
1499 #endif
1500 		return (0);
1501 	}
1502 
1503 	/*
1504 	 * Check to make sure that the Mth element is legal for type Elt.
1505 	 */
1506 
1507 	if (elm >= ep[elt])
1508 		return (-1);
1509 
1510 	/*
1511 	 * Starting at offset 8, start skipping over the storage
1512 	 * for the element types we're not interested in.
1513 	 */
1514 	for (idx = 8, i = 0; i < elt; i++) {
1515 		idx += ((ep[i] + 1) * 4);
1516 	}
1517 
1518 	/*
1519 	 * Skip over Overall status for this element type.
1520 	 */
1521 	idx += 4;
1522 
1523 	/*
1524 	 * And skip to the index for the Mth element that we're going for.
1525 	 */
1526 	idx += (4 * elm);
1527 
1528 	/*
1529 	 * Make sure we haven't overflowed the buffer.
1530 	 */
1531 	if (idx+4 > amt)
1532 		return (-1);
1533 
1534 	/*
1535 	 * Set the status.
1536 	 */
1537 	sset8(b, idx, sp->comstatus);
1538 	sset8(b, idx, sp->comstat[0]);
1539 	sset8(b, idx, sp->comstat[1]);
1540 	sset8(b, idx, sp->comstat[2]);
1541 	idx -= 4;
1542 
1543 #if	0
1544 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1545 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1546 	    sp->comstat[1], sp->comstat[2]);
1547 #endif
1548 
1549 	/*
1550 	 * Now make sure all other 'Select' bits are off.
1551 	 */
1552 	for (i = 8; i < amt; i += 4) {
1553 		if (i != idx)
1554 			b[i] &= ~0x80;
1555 	}
1556 	/*
1557 	 * And make sure the INVOP bit is clear.
1558 	 */
1559 	b[2] &= ~0x10;
1560 
1561 	return (0);
1562 }
1563 
1564 /*
1565  * SAF-TE Type Device Emulation
1566  */
1567 
1568 static int safte_getconfig(ses_softc_t *);
1569 static int safte_rdstat(ses_softc_t *, int);
1570 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1571 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1572 static void wrslot_stat(ses_softc_t *, int);
1573 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1574 
1575 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1576 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1577 /*
1578  * SAF-TE specific defines- Mandatory ones only...
1579  */
1580 
1581 /*
1582  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1583  */
1584 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1585 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1586 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1587 
1588 /*
1589  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1590  */
1591 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1592 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1593 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1594 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1595 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1596 
1597 
1598 #define	SAFT_SCRATCH	64
1599 #define	NPSEUDO_THERM	16
1600 #define	NPSEUDO_ALARM	1
1601 struct scfg {
1602 	/*
1603 	 * Cached Configuration
1604 	 */
1605 	uint8_t	Nfans;		/* Number of Fans */
1606 	uint8_t	Npwr;		/* Number of Power Supplies */
1607 	uint8_t	Nslots;		/* Number of Device Slots */
1608 	uint8_t	DoorLock;	/* Door Lock Installed */
1609 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1610 	uint8_t	Nspkrs;		/* Number of Speakers */
1611 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1612 	/*
1613 	 * Cached Flag Bytes for Global Status
1614 	 */
1615 	uint8_t	flag1;
1616 	uint8_t	flag2;
1617 	/*
1618 	 * What object index ID is where various slots start.
1619 	 */
1620 	uint8_t	pwroff;
1621 	uint8_t	slotoff;
1622 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1623 };
1624 
1625 #define	SAFT_FLG1_ALARM		0x1
1626 #define	SAFT_FLG1_GLOBFAIL	0x2
1627 #define	SAFT_FLG1_GLOBWARN	0x4
1628 #define	SAFT_FLG1_ENCPWROFF	0x8
1629 #define	SAFT_FLG1_ENCFANFAIL	0x10
1630 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1631 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1632 #define	SAFT_FLG1_ENCDRVWARN	0x80
1633 
1634 #define	SAFT_FLG2_LOCKDOOR	0x4
1635 #define	SAFT_PRIVATE		sizeof (struct scfg)
1636 
1637 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1638 #define	SAFT_BAIL(r, x, k, l)	\
1639 	if (r >= x) { \
1640 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1641 		SES_FREE(k, l); \
1642 		return (EIO); \
1643 	}
1644 
1645 
1646 int
1647 safte_softc_init(ses_softc_t *ssc, int doinit)
1648 {
1649 	int err, i, r;
1650 	struct scfg *cc;
1651 
1652 	if (doinit == 0) {
1653 		if (ssc->ses_nobjects) {
1654 			if (ssc->ses_objmap) {
1655 				SES_FREE(ssc->ses_objmap,
1656 				    ssc->ses_nobjects * sizeof (encobj));
1657 				ssc->ses_objmap = NULL;
1658 			}
1659 			ssc->ses_nobjects = 0;
1660 		}
1661 		if (ssc->ses_private) {
1662 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1663 			ssc->ses_private = NULL;
1664 		}
1665 		return (0);
1666 	}
1667 
1668 	if (ssc->ses_private == NULL) {
1669 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1670 		if (ssc->ses_private == NULL) {
1671 			return (ENOMEM);
1672 		}
1673 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1674 	}
1675 
1676 	ssc->ses_nobjects = 0;
1677 	ssc->ses_encstat = 0;
1678 
1679 	if ((err = safte_getconfig(ssc)) != 0) {
1680 		return (err);
1681 	}
1682 
1683 	/*
1684 	 * The number of objects here, as well as that reported by the
1685 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1686 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1687 	 */
1688 	cc = ssc->ses_private;
1689 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1690 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1691 	ssc->ses_objmap = (encobj *)
1692 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1693 	if (ssc->ses_objmap == NULL) {
1694 		return (ENOMEM);
1695 	}
1696 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1697 
1698 	r = 0;
1699 	/*
1700 	 * Note that this is all arranged for the convenience
1701 	 * in later fetches of status.
1702 	 */
1703 	for (i = 0; i < cc->Nfans; i++)
1704 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1705 	cc->pwroff = (uint8_t) r;
1706 	for (i = 0; i < cc->Npwr; i++)
1707 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1708 	for (i = 0; i < cc->DoorLock; i++)
1709 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1710 	for (i = 0; i < cc->Nspkrs; i++)
1711 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1712 	for (i = 0; i < cc->Ntherm; i++)
1713 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1714 	for (i = 0; i < NPSEUDO_THERM; i++)
1715 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1716 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1717 	cc->slotoff = (uint8_t) r;
1718 	for (i = 0; i < cc->Nslots; i++)
1719 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1720 	return (0);
1721 }
1722 
1723 int
1724 safte_init_enc(ses_softc_t *ssc)
1725 {
1726 	int err;
1727 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1728 
1729 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1730 	if (err) {
1731 		return (err);
1732 	}
1733 	DELAY(5000);
1734 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1735 	return (err);
1736 }
1737 
1738 int
1739 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1740 {
1741 	return (safte_rdstat(ssc, slpflg));
1742 }
1743 
1744 int
1745 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1746 {
1747 	struct scfg *cc = ssc->ses_private;
1748 	if (cc == NULL)
1749 		return (0);
1750 	/*
1751 	 * Since SAF-TE devices aren't necessarily sticky in terms
1752 	 * of state, make our soft copy of enclosure status 'sticky'-
1753 	 * that is, things set in enclosure status stay set (as implied
1754 	 * by conditions set in reading object status) until cleared.
1755 	 */
1756 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1757 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1758 	ssc->ses_encstat |= ENCI_SVALID;
1759 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1760 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1761 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1762 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1763 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1764 	}
1765 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1766 }
1767 
1768 int
1769 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1770 {
1771 	int i = (int)obp->obj_id;
1772 
1773 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1774 	    (ssc->ses_objmap[i].svalid) == 0) {
1775 		int err = safte_rdstat(ssc, slpflg);
1776 		if (err)
1777 			return (err);
1778 	}
1779 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1780 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1781 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1782 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1783 	return (0);
1784 }
1785 
1786 
1787 int
1788 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1789 {
1790 	int idx, err;
1791 	encobj *ep;
1792 	struct scfg *cc;
1793 
1794 
1795 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1796 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1797 	    obp->cstat[3]);
1798 
1799 	/*
1800 	 * If this is clear, we don't do diddly.
1801 	 */
1802 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1803 		return (0);
1804 	}
1805 
1806 	err = 0;
1807 	/*
1808 	 * Check to see if the common bits are set and do them first.
1809 	 */
1810 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1811 		err = set_objstat_sel(ssc, obp, slp);
1812 		if (err)
1813 			return (err);
1814 	}
1815 
1816 	cc = ssc->ses_private;
1817 	if (cc == NULL)
1818 		return (0);
1819 
1820 	idx = (int)obp->obj_id;
1821 	ep = &ssc->ses_objmap[idx];
1822 
1823 	switch (ep->enctype) {
1824 	case SESTYP_DEVICE:
1825 	{
1826 		uint8_t slotop = 0;
1827 		/*
1828 		 * XXX: I should probably cache the previous state
1829 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1830 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1831 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1832 		 */
1833 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1834 			slotop |= 0x2;
1835 		}
1836 		if (obp->cstat[2] & SESCTL_RQSID) {
1837 			slotop |= 0x4;
1838 		}
1839 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1840 		    slotop, slp);
1841 		if (err)
1842 			return (err);
1843 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1844 			ep->priv |= 0x2;
1845 		} else {
1846 			ep->priv &= ~0x2;
1847 		}
1848 		if (ep->priv & 0xc6) {
1849 			ep->priv &= ~0x1;
1850 		} else {
1851 			ep->priv |= 0x1;	/* no errors */
1852 		}
1853 		wrslot_stat(ssc, slp);
1854 		break;
1855 	}
1856 	case SESTYP_POWER:
1857 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1858 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1859 		} else {
1860 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1861 		}
1862 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1863 		    cc->flag2, 0, slp);
1864 		if (err)
1865 			return (err);
1866 		if (obp->cstat[3] & SESCTL_RQSTON) {
1867 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1868 				idx - cc->pwroff, 0, 0, slp);
1869 		} else {
1870 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1871 				idx - cc->pwroff, 0, 1, slp);
1872 		}
1873 		break;
1874 	case SESTYP_FAN:
1875 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1876 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1877 		} else {
1878 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1879 		}
1880 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1881 		    cc->flag2, 0, slp);
1882 		if (err)
1883 			return (err);
1884 		if (obp->cstat[3] & SESCTL_RQSTON) {
1885 			uint8_t fsp;
1886 			if ((obp->cstat[3] & 0x7) == 7) {
1887 				fsp = 4;
1888 			} else if ((obp->cstat[3] & 0x7) == 6) {
1889 				fsp = 3;
1890 			} else if ((obp->cstat[3] & 0x7) == 4) {
1891 				fsp = 2;
1892 			} else {
1893 				fsp = 1;
1894 			}
1895 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1896 		} else {
1897 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1898 		}
1899 		break;
1900 	case SESTYP_DOORLOCK:
1901 		if (obp->cstat[3] & 0x1) {
1902 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1903 		} else {
1904 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1905 		}
1906 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1907 		break;
1908 	case SESTYP_ALARM:
1909 		/*
1910 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1911 		 */
1912 		obp->cstat[3] &= ~0xa;
1913 		if (obp->cstat[3] & 0x40) {
1914 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1915 		} else if (obp->cstat[3] != 0) {
1916 			cc->flag2 |= SAFT_FLG1_ALARM;
1917 		} else {
1918 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1919 		}
1920 		ep->priv = obp->cstat[3];
1921 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1922 		break;
1923 	default:
1924 		break;
1925 	}
1926 	ep->svalid = 0;
1927 	return (0);
1928 }
1929 
1930 static int
1931 safte_getconfig(ses_softc_t *ssc)
1932 {
1933 	struct scfg *cfg;
1934 	int err, amt;
1935 	char *sdata;
1936 	static char cdb[10] =
1937 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1938 
1939 	cfg = ssc->ses_private;
1940 	if (cfg == NULL)
1941 		return (ENXIO);
1942 
1943 	sdata = SES_MALLOC(SAFT_SCRATCH);
1944 	if (sdata == NULL)
1945 		return (ENOMEM);
1946 
1947 	amt = SAFT_SCRATCH;
1948 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1949 	if (err) {
1950 		SES_FREE(sdata, SAFT_SCRATCH);
1951 		return (err);
1952 	}
1953 	amt = SAFT_SCRATCH - amt;
1954 	if (amt < 6) {
1955 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1956 		SES_FREE(sdata, SAFT_SCRATCH);
1957 		return (EIO);
1958 	}
1959 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1960 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1961 	cfg->Nfans = sdata[0];
1962 	cfg->Npwr = sdata[1];
1963 	cfg->Nslots = sdata[2];
1964 	cfg->DoorLock = sdata[3];
1965 	cfg->Ntherm = sdata[4];
1966 	cfg->Nspkrs = sdata[5];
1967 	cfg->Nalarm = NPSEUDO_ALARM;
1968 	SES_FREE(sdata, SAFT_SCRATCH);
1969 	return (0);
1970 }
1971 
1972 static int
1973 safte_rdstat(ses_softc_t *ssc, int slpflg)
1974 {
1975 	int err, oid, r, i, hiwater, nitems, amt;
1976 	uint16_t tempflags;
1977 	size_t buflen;
1978 	uint8_t status, oencstat;
1979 	char *sdata, cdb[10];
1980 	struct scfg *cc = ssc->ses_private;
1981 
1982 
1983 	/*
1984 	 * The number of objects overstates things a bit,
1985 	 * both for the bogus 'thermometer' entries and
1986 	 * the drive status (which isn't read at the same
1987 	 * time as the enclosure status), but that's okay.
1988 	 */
1989 	buflen = 4 * cc->Nslots;
1990 	if (ssc->ses_nobjects > buflen)
1991 		buflen = ssc->ses_nobjects;
1992 	sdata = SES_MALLOC(buflen);
1993 	if (sdata == NULL)
1994 		return (ENOMEM);
1995 
1996 	cdb[0] = READ_BUFFER;
1997 	cdb[1] = 1;
1998 	cdb[2] = SAFTE_RD_RDESTS;
1999 	cdb[3] = 0;
2000 	cdb[4] = 0;
2001 	cdb[5] = 0;
2002 	cdb[6] = 0;
2003 	cdb[7] = (buflen >> 8) & 0xff;
2004 	cdb[8] = buflen & 0xff;
2005 	cdb[9] = 0;
2006 	amt = buflen;
2007 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2008 	if (err) {
2009 		SES_FREE(sdata, buflen);
2010 		return (err);
2011 	}
2012 	hiwater = buflen - amt;
2013 
2014 
2015 	/*
2016 	 * invalidate all status bits.
2017 	 */
2018 	for (i = 0; i < ssc->ses_nobjects; i++)
2019 		ssc->ses_objmap[i].svalid = 0;
2020 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2021 	ssc->ses_encstat = 0;
2022 
2023 
2024 	/*
2025 	 * Now parse returned buffer.
2026 	 * If we didn't get enough data back,
2027 	 * that's considered a fatal error.
2028 	 */
2029 	oid = r = 0;
2030 
2031 	for (nitems = i = 0; i < cc->Nfans; i++) {
2032 		SAFT_BAIL(r, hiwater, sdata, buflen);
2033 		/*
2034 		 * 0 = Fan Operational
2035 		 * 1 = Fan is malfunctioning
2036 		 * 2 = Fan is not present
2037 		 * 0x80 = Unknown or Not Reportable Status
2038 		 */
2039 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2040 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2041 		switch ((int)(uint8_t)sdata[r]) {
2042 		case 0:
2043 			nitems++;
2044 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2045 			/*
2046 			 * We could get fancier and cache
2047 			 * fan speeds that we have set, but
2048 			 * that isn't done now.
2049 			 */
2050 			ssc->ses_objmap[oid].encstat[3] = 7;
2051 			break;
2052 
2053 		case 1:
2054 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2055 			/*
2056 			 * FAIL and FAN STOPPED synthesized
2057 			 */
2058 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2059 			/*
2060 			 * Enclosure marked with CRITICAL error
2061 			 * if only one fan or no thermometers,
2062 			 * else the NONCRITICAL error is set.
2063 			 */
2064 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2065 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2066 			else
2067 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2068 			break;
2069 		case 2:
2070 			ssc->ses_objmap[oid].encstat[0] =
2071 			    SES_OBJSTAT_NOTINSTALLED;
2072 			ssc->ses_objmap[oid].encstat[3] = 0;
2073 			/*
2074 			 * Enclosure marked with CRITICAL error
2075 			 * if only one fan or no thermometers,
2076 			 * else the NONCRITICAL error is set.
2077 			 */
2078 			if (cc->Nfans == 1)
2079 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2080 			else
2081 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2082 			break;
2083 		case 0x80:
2084 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2085 			ssc->ses_objmap[oid].encstat[3] = 0;
2086 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2087 			break;
2088 		default:
2089 			ssc->ses_objmap[oid].encstat[0] =
2090 			    SES_OBJSTAT_UNSUPPORTED;
2091 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2092 			    sdata[r] & 0xff);
2093 			break;
2094 		}
2095 		ssc->ses_objmap[oid++].svalid = 1;
2096 		r++;
2097 	}
2098 
2099 	/*
2100 	 * No matter how you cut it, no cooling elements when there
2101 	 * should be some there is critical.
2102 	 */
2103 	if (cc->Nfans && nitems == 0) {
2104 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2105 	}
2106 
2107 
2108 	for (i = 0; i < cc->Npwr; i++) {
2109 		SAFT_BAIL(r, hiwater, sdata, buflen);
2110 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2111 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2112 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2113 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2114 		switch ((uint8_t)sdata[r]) {
2115 		case 0x00:	/* pws operational and on */
2116 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2117 			break;
2118 		case 0x01:	/* pws operational and off */
2119 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2120 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2121 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2122 			break;
2123 		case 0x10:	/* pws is malfunctioning and commanded on */
2124 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2125 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2126 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2127 			break;
2128 
2129 		case 0x11:	/* pws is malfunctioning and commanded off */
2130 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2131 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2132 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2133 			break;
2134 		case 0x20:	/* pws is not present */
2135 			ssc->ses_objmap[oid].encstat[0] =
2136 			    SES_OBJSTAT_NOTINSTALLED;
2137 			ssc->ses_objmap[oid].encstat[3] = 0;
2138 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2139 			break;
2140 		case 0x21:	/* pws is present */
2141 			/*
2142 			 * This is for enclosures that cannot tell whether the
2143 			 * device is on or malfunctioning, but know that it is
2144 			 * present. Just fall through.
2145 			 */
2146 			/* FALLTHROUGH */
2147 		case 0x80:	/* Unknown or Not Reportable Status */
2148 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2149 			ssc->ses_objmap[oid].encstat[3] = 0;
2150 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2151 			break;
2152 		default:
2153 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2154 			    i, sdata[r] & 0xff);
2155 			break;
2156 		}
2157 		ssc->ses_objmap[oid++].svalid = 1;
2158 		r++;
2159 	}
2160 
2161 	/*
2162 	 * Skip over Slot SCSI IDs
2163 	 */
2164 	r += cc->Nslots;
2165 
2166 	/*
2167 	 * We always have doorlock status, no matter what,
2168 	 * but we only save the status if we have one.
2169 	 */
2170 	SAFT_BAIL(r, hiwater, sdata, buflen);
2171 	if (cc->DoorLock) {
2172 		/*
2173 		 * 0 = Door Locked
2174 		 * 1 = Door Unlocked, or no Lock Installed
2175 		 * 0x80 = Unknown or Not Reportable Status
2176 		 */
2177 		ssc->ses_objmap[oid].encstat[1] = 0;
2178 		ssc->ses_objmap[oid].encstat[2] = 0;
2179 		switch ((uint8_t)sdata[r]) {
2180 		case 0:
2181 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2182 			ssc->ses_objmap[oid].encstat[3] = 0;
2183 			break;
2184 		case 1:
2185 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2186 			ssc->ses_objmap[oid].encstat[3] = 1;
2187 			break;
2188 		case 0x80:
2189 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2190 			ssc->ses_objmap[oid].encstat[3] = 0;
2191 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2192 			break;
2193 		default:
2194 			ssc->ses_objmap[oid].encstat[0] =
2195 			    SES_OBJSTAT_UNSUPPORTED;
2196 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2197 			    sdata[r] & 0xff);
2198 			break;
2199 		}
2200 		ssc->ses_objmap[oid++].svalid = 1;
2201 	}
2202 	r++;
2203 
2204 	/*
2205 	 * We always have speaker status, no matter what,
2206 	 * but we only save the status if we have one.
2207 	 */
2208 	SAFT_BAIL(r, hiwater, sdata, buflen);
2209 	if (cc->Nspkrs) {
2210 		ssc->ses_objmap[oid].encstat[1] = 0;
2211 		ssc->ses_objmap[oid].encstat[2] = 0;
2212 		if (sdata[r] == 1) {
2213 			/*
2214 			 * We need to cache tone urgency indicators.
2215 			 * Someday.
2216 			 */
2217 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2218 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2219 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2220 		} else if (sdata[r] == 0) {
2221 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2222 			ssc->ses_objmap[oid].encstat[3] = 0;
2223 		} else {
2224 			ssc->ses_objmap[oid].encstat[0] =
2225 			    SES_OBJSTAT_UNSUPPORTED;
2226 			ssc->ses_objmap[oid].encstat[3] = 0;
2227 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2228 			    sdata[r] & 0xff);
2229 		}
2230 		ssc->ses_objmap[oid++].svalid = 1;
2231 	}
2232 	r++;
2233 
2234 	for (i = 0; i < cc->Ntherm; i++) {
2235 		SAFT_BAIL(r, hiwater, sdata, buflen);
2236 		/*
2237 		 * Status is a range from -10 to 245 deg Celsius,
2238 		 * which we need to normalize to -20 to -245 according
2239 		 * to the latest SCSI spec, which makes little
2240 		 * sense since this would overflow an 8bit value.
2241 		 * Well, still, the base normalization is -20,
2242 		 * not -10, so we have to adjust.
2243 		 *
2244 		 * So what's over and under temperature?
2245 		 * Hmm- we'll state that 'normal' operating
2246 		 * is 10 to 40 deg Celsius.
2247 		 */
2248 
2249 		/*
2250 		 * Actually.... All of the units that people out in the world
2251 		 * seem to have do not come even close to setting a value that
2252 		 * complies with this spec.
2253 		 *
2254 		 * The closest explanation I could find was in an
2255 		 * LSI-Logic manual, which seemed to indicate that
2256 		 * this value would be set by whatever the I2C code
2257 		 * would interpolate from the output of an LM75
2258 		 * temperature sensor.
2259 		 *
2260 		 * This means that it is impossible to use the actual
2261 		 * numeric value to predict anything. But we don't want
2262 		 * to lose the value. So, we'll propagate the *uncorrected*
2263 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2264 		 * temperature flags for warnings.
2265 		 */
2266 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2267 		ssc->ses_objmap[oid].encstat[1] = 0;
2268 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2269 		ssc->ses_objmap[oid].encstat[3] = 0;
2270 		ssc->ses_objmap[oid++].svalid = 1;
2271 		r++;
2272 	}
2273 
2274 	/*
2275 	 * Now, for "pseudo" thermometers, we have two bytes
2276 	 * of information in enclosure status- 16 bits. Actually,
2277 	 * the MSB is a single TEMP ALERT flag indicating whether
2278 	 * any other bits are set, but, thanks to fuzzy thinking,
2279 	 * in the SAF-TE spec, this can also be set even if no
2280 	 * other bits are set, thus making this really another
2281 	 * binary temperature sensor.
2282 	 */
2283 
2284 	SAFT_BAIL(r, hiwater, sdata, buflen);
2285 	tempflags = sdata[r++];
2286 	SAFT_BAIL(r, hiwater, sdata, buflen);
2287 	tempflags |= (tempflags << 8) | sdata[r++];
2288 
2289 	for (i = 0; i < NPSEUDO_THERM; i++) {
2290 		ssc->ses_objmap[oid].encstat[1] = 0;
2291 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2292 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2293 			ssc->ses_objmap[4].encstat[2] = 0xff;
2294 			/*
2295 			 * Set 'over temperature' failure.
2296 			 */
2297 			ssc->ses_objmap[oid].encstat[3] = 8;
2298 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2299 		} else {
2300 			/*
2301 			 * We used to say 'not available' and synthesize a
2302 			 * nominal 30 deg (C)- that was wrong. Actually,
2303 			 * Just say 'OK', and use the reserved value of
2304 			 * zero.
2305 			 */
2306 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2307 			ssc->ses_objmap[oid].encstat[2] = 0;
2308 			ssc->ses_objmap[oid].encstat[3] = 0;
2309 		}
2310 		ssc->ses_objmap[oid++].svalid = 1;
2311 	}
2312 
2313 	/*
2314 	 * Get alarm status.
2315 	 */
2316 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2317 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2318 	ssc->ses_objmap[oid++].svalid = 1;
2319 
2320 	/*
2321 	 * Now get drive slot status
2322 	 */
2323 	cdb[2] = SAFTE_RD_RDDSTS;
2324 	amt = buflen;
2325 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2326 	if (err) {
2327 		SES_FREE(sdata, buflen);
2328 		return (err);
2329 	}
2330 	hiwater = buflen - amt;
2331 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2332 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2333 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2334 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2335 		ssc->ses_objmap[oid].encstat[2] = 0;
2336 		ssc->ses_objmap[oid].encstat[3] = 0;
2337 		status = sdata[r+3];
2338 		if ((status & 0x1) == 0) {	/* no device */
2339 			ssc->ses_objmap[oid].encstat[0] =
2340 			    SES_OBJSTAT_NOTINSTALLED;
2341 		} else {
2342 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2343 		}
2344 		if (status & 0x2) {
2345 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2346 		}
2347 		if ((status & 0x4) == 0) {
2348 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2349 		}
2350 		ssc->ses_objmap[oid++].svalid = 1;
2351 	}
2352 	/* see comment below about sticky enclosure status */
2353 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2354 	SES_FREE(sdata, buflen);
2355 	return (0);
2356 }
2357 
2358 static int
2359 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2360 {
2361 	int idx;
2362 	encobj *ep;
2363 	struct scfg *cc = ssc->ses_private;
2364 
2365 	if (cc == NULL)
2366 		return (0);
2367 
2368 	idx = (int)obp->obj_id;
2369 	ep = &ssc->ses_objmap[idx];
2370 
2371 	switch (ep->enctype) {
2372 	case SESTYP_DEVICE:
2373 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2374 			ep->priv |= 0x40;
2375 		}
2376 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2377 		if (obp->cstat[0] & SESCTL_DISABLE) {
2378 			ep->priv |= 0x80;
2379 			/*
2380 			 * Hmm. Try to set the 'No Drive' flag.
2381 			 * Maybe that will count as a 'disable'.
2382 			 */
2383 		}
2384 		if (ep->priv & 0xc6) {
2385 			ep->priv &= ~0x1;
2386 		} else {
2387 			ep->priv |= 0x1;	/* no errors */
2388 		}
2389 		wrslot_stat(ssc, slp);
2390 		break;
2391 	case SESTYP_POWER:
2392 		/*
2393 		 * Okay- the only one that makes sense here is to
2394 		 * do the 'disable' for a power supply.
2395 		 */
2396 		if (obp->cstat[0] & SESCTL_DISABLE) {
2397 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
2398 				idx - cc->pwroff, 0, 0, slp);
2399 		}
2400 		break;
2401 	case SESTYP_FAN:
2402 		/*
2403 		 * Okay- the only one that makes sense here is to
2404 		 * set fan speed to zero on disable.
2405 		 */
2406 		if (obp->cstat[0] & SESCTL_DISABLE) {
2407 			/* remember- fans are the first items, so idx works */
2408 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2409 		}
2410 		break;
2411 	case SESTYP_DOORLOCK:
2412 		/*
2413 		 * Well, we can 'disable' the lock.
2414 		 */
2415 		if (obp->cstat[0] & SESCTL_DISABLE) {
2416 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2417 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2418 				cc->flag2, 0, slp);
2419 		}
2420 		break;
2421 	case SESTYP_ALARM:
2422 		/*
2423 		 * Well, we can 'disable' the alarm.
2424 		 */
2425 		if (obp->cstat[0] & SESCTL_DISABLE) {
2426 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2427 			ep->priv |= 0x40;	/* Muted */
2428 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2429 				cc->flag2, 0, slp);
2430 		}
2431 		break;
2432 	default:
2433 		break;
2434 	}
2435 	ep->svalid = 0;
2436 	return (0);
2437 }
2438 
2439 /*
2440  * This function handles all of the 16 byte WRITE BUFFER commands.
2441  */
2442 static int
2443 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2444     uint8_t b3, int slp)
2445 {
2446 	int err, amt;
2447 	char *sdata;
2448 	struct scfg *cc = ssc->ses_private;
2449 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2450 
2451 	if (cc == NULL)
2452 		return (0);
2453 
2454 	sdata = SES_MALLOC(16);
2455 	if (sdata == NULL)
2456 		return (ENOMEM);
2457 
2458 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2459 
2460 	sdata[0] = op;
2461 	sdata[1] = b1;
2462 	sdata[2] = b2;
2463 	sdata[3] = b3;
2464 	MEMZERO(&sdata[4], 12);
2465 	amt = -16;
2466 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2467 	SES_FREE(sdata, 16);
2468 	return (err);
2469 }
2470 
2471 /*
2472  * This function updates the status byte for the device slot described.
2473  *
2474  * Since this is an optional SAF-TE command, there's no point in
2475  * returning an error.
2476  */
2477 static void
2478 wrslot_stat(ses_softc_t *ssc, int slp)
2479 {
2480 	int i, amt;
2481 	encobj *ep;
2482 	char cdb[10], *sdata;
2483 	struct scfg *cc = ssc->ses_private;
2484 
2485 	if (cc == NULL)
2486 		return;
2487 
2488 	SES_DLOG(ssc, "saf_wrslot\n");
2489 	cdb[0] = WRITE_BUFFER;
2490 	cdb[1] = 1;
2491 	cdb[2] = 0;
2492 	cdb[3] = 0;
2493 	cdb[4] = 0;
2494 	cdb[5] = 0;
2495 	cdb[6] = 0;
2496 	cdb[7] = 0;
2497 	cdb[8] = cc->Nslots * 3 + 1;
2498 	cdb[9] = 0;
2499 
2500 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2501 	if (sdata == NULL)
2502 		return;
2503 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2504 
2505 	sdata[0] = SAFTE_WT_DSTAT;
2506 	for (i = 0; i < cc->Nslots; i++) {
2507 		ep = &ssc->ses_objmap[cc->slotoff + i];
2508 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2509 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2510 	}
2511 	amt = -(cc->Nslots * 3 + 1);
2512 	ses_runcmd(ssc, cdb, 10, sdata, &amt);
2513 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2514 }
2515 
2516 /*
2517  * This function issues the "PERFORM SLOT OPERATION" command.
2518  */
2519 static int
2520 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2521 {
2522 	int err, amt;
2523 	char *sdata;
2524 	struct scfg *cc = ssc->ses_private;
2525 	static char cdb[10] =
2526 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2527 
2528 	if (cc == NULL)
2529 		return (0);
2530 
2531 	sdata = SES_MALLOC(SAFT_SCRATCH);
2532 	if (sdata == NULL)
2533 		return (ENOMEM);
2534 	MEMZERO(sdata, SAFT_SCRATCH);
2535 
2536 	sdata[0] = SAFTE_WT_SLTOP;
2537 	sdata[1] = slot;
2538 	sdata[2] = opflag;
2539 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2540 	amt = -SAFT_SCRATCH;
2541 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2542 	SES_FREE(sdata, SAFT_SCRATCH);
2543 	return (err);
2544 }
2545