xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision 0ca59c34)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /*
3  * Copyright (c) 2000 Matthew Jacob
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 #include <sys/param.h>
29 #include <sys/queue.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/types.h>
33 #include <sys/malloc.h>
34 #include <sys/fcntl.h>
35 #include <sys/conf.h>
36 #include <sys/buf.h>
37 #include <sys/errno.h>
38 #include <sys/devicestat.h>
39 #include <sys/thread2.h>
40 #include <machine/stdarg.h>
41 
42 #include "../cam.h"
43 #include "../cam_ccb.h"
44 #include "../cam_extend.h"
45 #include "../cam_periph.h"
46 #include "../cam_xpt_periph.h"
47 #include "../cam_debug.h"
48 #include "../cam_sim.h"
49 
50 #include "scsi_all.h"
51 #include "scsi_message.h"
52 #include "scsi_ses.h"
53 
54 #include <opt_ses.h>
55 
56 MALLOC_DEFINE(M_SCSISES, "SCSI SES", "SCSI SES buffers");
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init)(ses_softc_t *, int);
74 	int (*init_enc)(ses_softc_t *);
75 	int (*get_encstat)(ses_softc_t *, int);
76 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
77 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
78 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 
96 static enctyp ses_type(void *, int);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			kprintf
120 #define	SES_LOG			ses_log
121 #ifdef	DEBUG
122 #define	SES_DLOG		ses_log
123 #else
124 #define	SES_DLOG		if (0) ses_log
125 #endif
126 #define	SES_VLOG		if (bootverbose) ses_log
127 #define	SES_MALLOC(amt)		kmalloc(amt, M_SCSISES, M_INTWAIT)
128 #define	SES_FREE(ptr, amt)	kfree(ptr, M_SCSISES)
129 #define	MEMZERO			bzero
130 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
131 
132 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
133 static void ses_log(struct ses_softc *, const char *, ...) __printflike(2, 3);
134 
135 /*
136  * Gerenal FreeBSD kernel stuff.
137  */
138 
139 
140 #define ccb_state	ppriv_field0
141 #define ccb_bio		ppriv_ptr1
142 
143 struct ses_softc {
144 	enctyp		ses_type;	/* type of enclosure */
145 	encvec		ses_vec;	/* vector to handlers */
146 	void *		ses_private;	/* per-type private data */
147 	encobj *	ses_objmap;	/* objects */
148 	u_int32_t	ses_nobjects;	/* number of objects */
149 	ses_encstat	ses_encstat;	/* overall status */
150 	u_int8_t	ses_flags;
151 	union ccb	ses_saved_ccb;
152 	struct cam_periph *periph;
153 };
154 #define	SES_FLAG_INVALID	0x01
155 #define	SES_FLAG_OPEN		0x02
156 #define	SES_FLAG_INITIALIZED	0x04
157 
158 #define SESUNIT(x)       (minor((x)))
159 
160 static	d_open_t	sesopen;
161 static	d_close_t	sesclose;
162 static	d_ioctl_t	sesioctl;
163 static	periph_init_t	sesinit;
164 static  periph_ctor_t	sesregister;
165 static	periph_oninv_t	sesoninvalidate;
166 static  periph_dtor_t   sescleanup;
167 static  periph_start_t  sesstart;
168 
169 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
170 static void sesdone(struct cam_periph *, union ccb *);
171 static int seserror(union ccb *, u_int32_t, u_int32_t);
172 
173 static struct periph_driver sesdriver = {
174 	sesinit, "ses",
175 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
176 };
177 
178 PERIPHDRIVER_DECLARE(ses, sesdriver);
179 
180 static struct dev_ops ses_ops = {
181 	{ "ses", 0, 0 },
182 	.d_open =	sesopen,
183 	.d_close =	sesclose,
184 	.d_ioctl =	sesioctl,
185 };
186 static struct extend_array *sesperiphs;
187 
188 static void
189 sesinit(void)
190 {
191 	cam_status status;
192 
193 	/*
194 	 * Create our extend array for storing the devices we attach to.
195 	 */
196 	sesperiphs = cam_extend_new();
197 	if (sesperiphs == NULL) {
198 		kprintf("ses: Failed to alloc extend array!\n");
199 		return;
200 	}
201 
202 	/*
203 	 * Install a global async callback.  This callback will
204 	 * receive async callbacks like "new device found".
205 	 */
206 	status = xpt_register_async(AC_FOUND_DEVICE, sesasync, NULL, NULL);
207 
208 	if (status != CAM_REQ_CMP) {
209 		kprintf("ses: Failed to attach master async callback "
210 		       "due to status 0x%x!\n", status);
211 	}
212 }
213 
214 static void
215 sesoninvalidate(struct cam_periph *periph)
216 {
217 	struct ses_softc *softc;
218 
219 	softc = (struct ses_softc *)periph->softc;
220 
221 	/*
222 	 * Unregister any async callbacks.
223 	 */
224 	xpt_register_async(0, sesasync, periph, periph->path);
225 
226 	softc->ses_flags |= SES_FLAG_INVALID;
227 
228 	xpt_print(periph->path, "lost device\n");
229 }
230 
231 static void
232 sescleanup(struct cam_periph *periph)
233 {
234 	struct ses_softc *softc;
235 
236 	softc = (struct ses_softc *)periph->softc;
237 
238 	cam_extend_release(sesperiphs, periph->unit_number);
239 	xpt_print(periph->path, "removing device entry\n");
240 	dev_ops_remove_minor(&ses_ops, periph->unit_number);
241 	kfree(softc, M_SCSISES);
242 }
243 
244 static void
245 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
246 {
247 	struct cam_periph *periph;
248 
249 	periph = (struct cam_periph *)callback_arg;
250 
251 	switch(code) {
252 	case AC_FOUND_DEVICE:
253 	{
254 		cam_status status;
255 		struct ccb_getdev *cgd;
256 		int inq_len;
257 
258 		cgd = (struct ccb_getdev *)arg;
259 		if (arg == NULL) {
260 			break;
261 		}
262 
263 		inq_len = cgd->inq_data.additional_length + 4;
264 
265 		/*
266 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
267 		 * PROBLEM: IS A SAF-TE DEVICE.
268 		 */
269 		switch (ses_type(&cgd->inq_data, inq_len)) {
270 		case SES_SES:
271 		case SES_SES_SCSI2:
272 		case SES_SES_PASSTHROUGH:
273 		case SES_SEN:
274 		case SES_SAFT:
275 			break;
276 		default:
277 			return;
278 		}
279 
280 		status = cam_periph_alloc(sesregister, sesoninvalidate,
281 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
282 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
283 
284 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
285 			kprintf("sesasync: Unable to probe new device due to "
286 			    "status 0x%x\n", status);
287 		}
288 		break;
289 	}
290 	default:
291 		cam_periph_async(periph, code, path, arg);
292 		break;
293 	}
294 }
295 
296 static cam_status
297 sesregister(struct cam_periph *periph, void *arg)
298 {
299 	struct ses_softc *softc;
300 	struct ccb_getdev *cgd;
301 	char *tname;
302 
303 	cgd = (struct ccb_getdev *)arg;
304 	if (periph == NULL) {
305 		kprintf("sesregister: periph was NULL!!\n");
306 		return (CAM_REQ_CMP_ERR);
307 	}
308 
309 	if (cgd == NULL) {
310 		kprintf("sesregister: no getdev CCB, can't register device\n");
311 		return (CAM_REQ_CMP_ERR);
312 	}
313 
314 	softc = kmalloc(sizeof (struct ses_softc), M_SCSISES, M_INTWAIT | M_ZERO);
315 	periph->softc = softc;
316 	softc->periph = periph;
317 
318 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
319 
320 	switch (softc->ses_type) {
321 	case SES_SES:
322 	case SES_SES_SCSI2:
323         case SES_SES_PASSTHROUGH:
324 		softc->ses_vec.softc_init = ses_softc_init;
325 		softc->ses_vec.init_enc = ses_init_enc;
326 		softc->ses_vec.get_encstat = ses_get_encstat;
327 		softc->ses_vec.set_encstat = ses_set_encstat;
328 		softc->ses_vec.get_objstat = ses_get_objstat;
329 		softc->ses_vec.set_objstat = ses_set_objstat;
330 		break;
331         case SES_SAFT:
332 		softc->ses_vec.softc_init = safte_softc_init;
333 		softc->ses_vec.init_enc = safte_init_enc;
334 		softc->ses_vec.get_encstat = safte_get_encstat;
335 		softc->ses_vec.set_encstat = safte_set_encstat;
336 		softc->ses_vec.get_objstat = safte_get_objstat;
337 		softc->ses_vec.set_objstat = safte_set_objstat;
338 		break;
339         case SES_SEN:
340 		break;
341 	case SES_NONE:
342 	default:
343 		kfree(softc, M_SCSISES);
344 		return (CAM_REQ_CMP_ERR);
345 	}
346 
347 	cam_extend_set(sesperiphs, periph->unit_number, periph);
348 
349 	cam_periph_unlock(periph);
350 	make_dev(&ses_ops, periph->unit_number,
351 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
352 		    periph->periph_name, periph->unit_number);
353 	cam_periph_lock(periph);
354 
355 	/*
356 	 * Add an async callback so that we get
357 	 * notified if this device goes away.
358 	 */
359 	xpt_register_async(AC_LOST_DEVICE, sesasync, periph, periph->path);
360 
361 	switch (softc->ses_type) {
362 	default:
363 	case SES_NONE:
364 		tname = "No SES device";
365 		break;
366 	case SES_SES_SCSI2:
367 		tname = "SCSI-2 SES Device";
368 		break;
369 	case SES_SES:
370 		tname = "SCSI-3 SES Device";
371 		break;
372         case SES_SES_PASSTHROUGH:
373 		tname = "SES Passthrough Device";
374 		break;
375         case SES_SEN:
376 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
377 		break;
378         case SES_SAFT:
379 		tname = "SAF-TE Compliant Device";
380 		break;
381 	}
382 	xpt_announce_periph(periph, tname);
383 	return (CAM_REQ_CMP);
384 }
385 
386 static int
387 sesopen(struct dev_open_args *ap)
388 {
389 	cdev_t dev = ap->a_head.a_dev;
390 	struct cam_periph *periph;
391 	struct ses_softc *softc;
392 	int error = 0;
393 
394 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
395 	if (periph == NULL) {
396 		return (ENXIO);
397 	}
398 
399 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
400 		cam_periph_unlock(periph);
401 		return (ENXIO);
402 	}
403 
404 	cam_periph_lock(periph);
405 
406 	softc = (struct ses_softc *)periph->softc;
407 
408 	if (softc->ses_flags & SES_FLAG_INVALID) {
409 		error = ENXIO;
410 		goto out;
411 	}
412 	if (softc->ses_flags & SES_FLAG_OPEN) {
413 		error = EBUSY;
414 		goto out;
415 	}
416 	if (softc->ses_vec.softc_init == NULL) {
417 		error = ENXIO;
418 		goto out;
419 	}
420 
421 	softc->ses_flags |= SES_FLAG_OPEN;
422 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
423 		error = (*softc->ses_vec.softc_init)(softc, 1);
424 		if (error)
425 			softc->ses_flags &= ~SES_FLAG_OPEN;
426 		else
427 			softc->ses_flags |= SES_FLAG_INITIALIZED;
428 	}
429 
430 out:
431 	cam_periph_unlock(periph);
432 	if (error) {
433 		cam_periph_release(periph);
434 	}
435 	return (error);
436 }
437 
438 static int
439 sesclose(struct dev_close_args *ap)
440 {
441 	cdev_t dev = ap->a_head.a_dev;
442 	struct cam_periph *periph;
443 	struct ses_softc *softc;
444 	int unit;
445 
446 	unit = SESUNIT(dev);
447 	periph = cam_extend_get(sesperiphs, unit);
448 	if (periph == NULL)
449 		return (ENXIO);
450 
451 	cam_periph_lock(periph);
452 
453 	softc = (struct ses_softc *)periph->softc;
454 	softc->ses_flags &= ~SES_FLAG_OPEN;
455 
456 	cam_periph_unlock(periph);
457 	cam_periph_release(periph);
458 
459 	return (0);
460 }
461 
462 static void
463 sesstart(struct cam_periph *p, union ccb *sccb)
464 {
465 	if (p->immediate_priority <= p->pinfo.priority) {
466 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
467 		p->immediate_priority = CAM_PRIORITY_NONE;
468 		wakeup(&p->ccb_list);
469 	}
470 }
471 
472 static void
473 sesdone(struct cam_periph *periph, union ccb *dccb)
474 {
475 	wakeup(&dccb->ccb_h.cbfcnp);
476 }
477 
478 static int
479 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
480 {
481 	struct ses_softc *softc;
482 	struct cam_periph *periph;
483 
484 	periph = xpt_path_periph(ccb->ccb_h.path);
485 	softc = (struct ses_softc *)periph->softc;
486 
487 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
488 }
489 
490 static int
491 sesioctl(struct dev_ioctl_args *ap)
492 {
493 	cdev_t dev = ap->a_head.a_dev;
494 	struct cam_periph *periph;
495 	ses_encstat tmp;
496 	ses_objstat objs;
497 	ses_object obj, *uobj;
498 	struct ses_softc *ssc;
499 	void *addr;
500 	int error, i;
501 
502 
503 	if (ap->a_data)
504 		addr = *((caddr_t *)ap->a_data);
505 	else
506 		addr = NULL;
507 
508 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
509 	if (periph == NULL)
510 		return (ENXIO);
511 
512 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
513 
514 	cam_periph_lock(periph);
515 	ssc = (struct ses_softc *)periph->softc;
516 
517 	/*
518 	 * Now check to see whether we're initialized or not.
519 	 */
520 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
521 		cam_periph_unlock(periph);
522 		return (ENXIO);
523 	}
524 	cam_periph_unlock(periph);
525 
526 	error = 0;
527 
528 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
529 	    ("trying to do ioctl %#lx\n", ap->a_cmd));
530 
531 	/*
532 	 * If this command can change the device's state,
533 	 * we must have the device open for writing.
534 	 */
535 	switch (ap->a_cmd) {
536 	case SESIOC_GETNOBJ:
537 	case SESIOC_GETOBJMAP:
538 	case SESIOC_GETENCSTAT:
539 	case SESIOC_GETOBJSTAT:
540 		break;
541 	default:
542 		if ((ap->a_fflag & FWRITE) == 0) {
543 			return (EBADF);
544 		}
545 	}
546 
547 	switch (ap->a_cmd) {
548 	case SESIOC_GETNOBJ:
549 		error = copyout(&ssc->ses_nobjects, addr,
550 		    sizeof (ssc->ses_nobjects));
551 		break;
552 
553 	case SESIOC_GETOBJMAP:
554 		/*
555 		 * XXX Dropping the lock while copying multiple segments is
556 		 * bogus.
557 		 */
558 		cam_periph_lock(periph);
559 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
560 			obj.obj_id = i;
561 			obj.subencid = ssc->ses_objmap[i].subenclosure;
562 			obj.object_type = ssc->ses_objmap[i].enctype;
563 			cam_periph_unlock(periph);
564 			error = copyout(&obj, uobj, sizeof (ses_object));
565 			cam_periph_lock(periph);
566 			if (error) {
567 				break;
568 			}
569 		}
570 		cam_periph_unlock(periph);
571 		break;
572 
573 	case SESIOC_GETENCSTAT:
574 		cam_periph_lock(periph);
575 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
576 		if (error) {
577 			cam_periph_unlock(periph);
578 			break;
579 		}
580 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
581 		cam_periph_unlock(periph);
582 		error = copyout(&tmp, addr, sizeof (ses_encstat));
583 		ssc->ses_encstat = tmp;
584 		break;
585 
586 	case SESIOC_SETENCSTAT:
587 		error = copyin(addr, &tmp, sizeof (ses_encstat));
588 		if (error)
589 			break;
590 		cam_periph_lock(periph);
591 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
592 		cam_periph_unlock(periph);
593 		break;
594 
595 	case SESIOC_GETOBJSTAT:
596 		error = copyin(addr, &objs, sizeof (ses_objstat));
597 		if (error)
598 			break;
599 		if (objs.obj_id >= ssc->ses_nobjects) {
600 			error = EINVAL;
601 			break;
602 		}
603 		cam_periph_lock(periph);
604 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
605 		cam_periph_unlock(periph);
606 		if (error)
607 			break;
608 		error = copyout(&objs, addr, sizeof (ses_objstat));
609 		/*
610 		 * Always (for now) invalidate entry.
611 		 */
612 		ssc->ses_objmap[objs.obj_id].svalid = 0;
613 		break;
614 
615 	case SESIOC_SETOBJSTAT:
616 		error = copyin(addr, &objs, sizeof (ses_objstat));
617 		if (error)
618 			break;
619 
620 		if (objs.obj_id >= ssc->ses_nobjects) {
621 			error = EINVAL;
622 			break;
623 		}
624 		cam_periph_lock(periph);
625 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
626 		cam_periph_unlock(periph);
627 
628 		/*
629 		 * Always (for now) invalidate entry.
630 		 */
631 		ssc->ses_objmap[objs.obj_id].svalid = 0;
632 		break;
633 
634 	case SESIOC_INIT:
635 
636 		cam_periph_lock(periph);
637 		error = (*ssc->ses_vec.init_enc)(ssc);
638 		cam_periph_unlock(periph);
639 		break;
640 
641 	default:
642 		cam_periph_lock(periph);
643 		error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
644 		cam_periph_unlock(periph);
645 		break;
646 	}
647 	return (error);
648 }
649 
650 #define	SES_CFLAGS	CAM_RETRY_SELTO
651 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_UA
652 static int
653 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
654 {
655 	int error, dlen;
656 	ccb_flags ddf;
657 	union ccb *ccb;
658 
659 	if (dptr) {
660 		if ((dlen = *dlenp) < 0) {
661 			dlen = -dlen;
662 			ddf = CAM_DIR_OUT;
663 		} else {
664 			ddf = CAM_DIR_IN;
665 		}
666 	} else {
667 		dlen = 0;
668 		ddf = CAM_DIR_NONE;
669 	}
670 
671 	if (cdbl > IOCDBLEN) {
672 		cdbl = IOCDBLEN;
673 	}
674 
675 	ccb = cam_periph_getccb(ssc->periph, 1);
676 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
677 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
678 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
679 
680 	error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
681 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
682 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
683 	if (error) {
684 		if (dptr) {
685 			*dlenp = dlen;
686 		}
687 	} else {
688 		if (dptr) {
689 			*dlenp = ccb->csio.resid;
690 		}
691 	}
692 	xpt_release_ccb(ccb);
693 	return (error);
694 }
695 
696 static void
697 ses_log(struct ses_softc *ssc, const char *fmt, ...)
698 {
699 	__va_list ap;
700 
701 	kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
702 	__va_start(ap, fmt);
703 	kvprintf(fmt, ap);
704 	__va_end(ap);
705 }
706 
707 /*
708  * The code after this point runs on many platforms,
709  * so forgive the slightly awkward and nonconforming
710  * appearance.
711  */
712 
713 /*
714  * Is this a device that supports enclosure services?
715  *
716  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
717  * an SES device. If it happens to be an old UNISYS SEN device, we can
718  * handle that too.
719  */
720 
721 #define	SAFTE_START	44
722 #define	SAFTE_END	50
723 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
724 
725 static enctyp
726 ses_type(void *buf, int buflen)
727 {
728 	unsigned char *iqd = buf;
729 
730 	if (buflen < 8+SEN_ID_LEN)
731 		return (SES_NONE);
732 
733 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
734 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
735 			return (SES_SEN);
736 		} else if ((iqd[2] & 0x7) > 2) {
737 			return (SES_SES);
738 		} else {
739 			return (SES_SES_SCSI2);
740 		}
741 		return (SES_NONE);
742 	}
743 
744 #ifdef	SES_ENABLE_PASSTHROUGH
745 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
746 		/*
747 		 * PassThrough Device.
748 		 */
749 		return (SES_SES_PASSTHROUGH);
750 	}
751 #endif
752 
753 	/*
754 	 * The comparison is short for a reason-
755 	 * some vendors were chopping it short.
756 	 */
757 
758 	if (buflen < SAFTE_END - 2) {
759 		return (SES_NONE);
760 	}
761 
762 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
763 		return (SES_SAFT);
764 	}
765 	return (SES_NONE);
766 }
767 
768 /*
769  * SES Native Type Device Support
770  */
771 
772 /*
773  * SES Diagnostic Page Codes
774  */
775 
776 typedef enum {
777 	SesConfigPage = 0x1,
778 	SesControlPage,
779 #define	SesStatusPage SesControlPage
780 	SesHelpTxt,
781 	SesStringOut,
782 #define	SesStringIn	SesStringOut
783 	SesThresholdOut,
784 #define	SesThresholdIn SesThresholdOut
785 	SesArrayControl,
786 #define	SesArrayStatus	SesArrayControl
787 	SesElementDescriptor,
788 	SesShortStatus
789 } SesDiagPageCodes;
790 
791 /*
792  * minimal amounts
793  */
794 
795 /*
796  * Minimum amount of data, starting from byte 0, to have
797  * the config header.
798  */
799 #define	SES_CFGHDR_MINLEN	12
800 
801 /*
802  * Minimum amount of data, starting from byte 0, to have
803  * the config header and one enclosure header.
804  */
805 #define	SES_ENCHDR_MINLEN	48
806 
807 /*
808  * Take this value, subtract it from VEnclen and you know
809  * the length of the vendor unique bytes.
810  */
811 #define	SES_ENCHDR_VMIN		36
812 
813 /*
814  * SES Data Structures
815  */
816 
817 typedef struct {
818 	uint32_t GenCode;	/* Generation Code */
819 	uint8_t	Nsubenc;	/* Number of Subenclosures */
820 } SesCfgHdr;
821 
822 typedef struct {
823 	uint8_t	Subencid;	/* SubEnclosure Identifier */
824 	uint8_t	Ntypes;		/* # of supported types */
825 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
826 } SesEncHdr;
827 
828 typedef struct {
829 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
830 	uint8_t	encVid[8];
831 	uint8_t	encPid[16];
832 	uint8_t	encRev[4];
833 	uint8_t	encVen[1];
834 } SesEncDesc;
835 
836 typedef struct {
837 	uint8_t	enc_type;		/* type of element */
838 	uint8_t	enc_maxelt;		/* maximum supported */
839 	uint8_t	enc_subenc;		/* in SubEnc # N */
840 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
841 } SesThdr;
842 
843 typedef struct {
844 	uint8_t	comstatus;
845 	uint8_t	comstat[3];
846 } SesComStat;
847 
848 struct typidx {
849 	int ses_tidx;
850 	int ses_oidx;
851 };
852 
853 struct sscfg {
854 	uint8_t ses_ntypes;	/* total number of types supported */
855 
856 	/*
857 	 * We need to keep a type index as well as an
858 	 * object index for each object in an enclosure.
859 	 */
860 	struct typidx *ses_typidx;
861 
862 	/*
863 	 * We also need to keep track of the number of elements
864 	 * per type of element. This is needed later so that we
865 	 * can find precisely in the returned status data the
866 	 * status for the Nth element of the Kth type.
867 	 */
868 	uint8_t *	ses_eltmap;
869 };
870 
871 
872 /*
873  * (de)canonicalization defines
874  */
875 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
876 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
877 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
878 
879 #define	sset16(outp, idx, sval)	\
880 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
881 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
882 
883 
884 #define	sset24(outp, idx, sval)	\
885 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
886 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
887 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
888 
889 
890 #define	sset32(outp, idx, sval)	\
891 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
892 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
893 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
894 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
895 
896 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
897 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
898 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
899 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
900 
901 #define	sget16(inp, idx, lval)	\
902 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
903 		(((uint8_t *)(inp))[idx+1]), idx += 2
904 
905 #define	gget16(inp, idx, lval)	\
906 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
907 		(((uint8_t *)(inp))[idx+1])
908 
909 #define	sget24(inp, idx, lval)	\
910 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
911 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
912 			(((uint8_t *)(inp))[idx+2]), idx += 3
913 
914 #define	gget24(inp, idx, lval)	\
915 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
916 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
917 			(((uint8_t *)(inp))[idx+2])
918 
919 #define	sget32(inp, idx, lval)	\
920 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
921 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
922 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
923 			(((uint8_t *)(inp))[idx+3]), idx += 4
924 
925 #define	gget32(inp, idx, lval)	\
926 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
927 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
928 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
929 			(((uint8_t *)(inp))[idx+3])
930 
931 #define	SCSZ	0x2000
932 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
933 
934 /*
935  * Routines specific && private to SES only
936  */
937 
938 static int ses_getconfig(ses_softc_t *);
939 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
940 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
941 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
942 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
943 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
944 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
945 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
946 
947 static int
948 ses_softc_init(ses_softc_t *ssc, int doinit)
949 {
950 	if (doinit == 0) {
951 		struct sscfg *cc;
952 		if (ssc->ses_nobjects) {
953 			SES_FREE(ssc->ses_objmap,
954 			    ssc->ses_nobjects * sizeof (encobj));
955 			ssc->ses_objmap = NULL;
956 		}
957 		if ((cc = ssc->ses_private) != NULL) {
958 			if (cc->ses_eltmap && cc->ses_ntypes) {
959 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
960 				cc->ses_eltmap = NULL;
961 				cc->ses_ntypes = 0;
962 			}
963 			if (cc->ses_typidx && ssc->ses_nobjects) {
964 				SES_FREE(cc->ses_typidx,
965 				    ssc->ses_nobjects * sizeof (struct typidx));
966 				cc->ses_typidx = NULL;
967 			}
968 			SES_FREE(cc, sizeof (struct sscfg));
969 			ssc->ses_private = NULL;
970 		}
971 		ssc->ses_nobjects = 0;
972 		return (0);
973 	}
974 	if (ssc->ses_private == NULL) {
975 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
976 	}
977 	if (ssc->ses_private == NULL) {
978 		return (ENOMEM);
979 	}
980 	ssc->ses_nobjects = 0;
981 	ssc->ses_encstat = 0;
982 	return (ses_getconfig(ssc));
983 }
984 
985 static int
986 ses_init_enc(ses_softc_t *ssc)
987 {
988 	return (0);
989 }
990 
991 static int
992 ses_get_encstat(ses_softc_t *ssc, int slpflag)
993 {
994 	SesComStat ComStat;
995 	int status;
996 
997 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
998 		return (status);
999 	}
1000 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1001 	return (0);
1002 }
1003 
1004 static int
1005 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1006 {
1007 	SesComStat ComStat;
1008 	int status;
1009 
1010 	ComStat.comstatus = encstat & 0xf;
1011 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1012 		return (status);
1013 	}
1014 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1015 	return (0);
1016 }
1017 
1018 static int
1019 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1020 {
1021 	int i = (int)obp->obj_id;
1022 
1023 	if (ssc->ses_objmap[i].svalid == 0) {
1024 		SesComStat ComStat;
1025 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1026 		if (err)
1027 			return (err);
1028 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1029 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1030 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1031 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1032 		ssc->ses_objmap[i].svalid = 1;
1033 	}
1034 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1035 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1036 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1037 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1038 	return (0);
1039 }
1040 
1041 static int
1042 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1043 {
1044 	SesComStat ComStat;
1045 	int err;
1046 	/*
1047 	 * If this is clear, we don't do diddly.
1048 	 */
1049 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1050 		return (0);
1051 	}
1052 	ComStat.comstatus = obp->cstat[0];
1053 	ComStat.comstat[0] = obp->cstat[1];
1054 	ComStat.comstat[1] = obp->cstat[2];
1055 	ComStat.comstat[2] = obp->cstat[3];
1056 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1057 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1058 	return (err);
1059 }
1060 
1061 static int
1062 ses_getconfig(ses_softc_t *ssc)
1063 {
1064 	struct sscfg *cc;
1065 	SesCfgHdr cf;
1066 	SesEncHdr hd;
1067 	SesEncDesc *cdp;
1068 	SesThdr thdr;
1069 	int err, amt, i, nobj, ntype, maxima;
1070 	char storage[CFLEN], *sdata;
1071 	static char cdb[6] = {
1072 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1073 	};
1074 
1075 	cc = ssc->ses_private;
1076 	if (cc == NULL) {
1077 		return (ENXIO);
1078 	}
1079 
1080 	sdata = SES_MALLOC(SCSZ);
1081 	if (sdata == NULL)
1082 		return (ENOMEM);
1083 
1084 	amt = SCSZ;
1085 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1086 	if (err) {
1087 		SES_FREE(sdata, SCSZ);
1088 		return (err);
1089 	}
1090 	amt = SCSZ - amt;
1091 
1092 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1093 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1094 		SES_FREE(sdata, SCSZ);
1095 		return (EIO);
1096 	}
1097 	if (amt < SES_ENCHDR_MINLEN) {
1098 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1099 		SES_FREE(sdata, SCSZ);
1100 		return (EIO);
1101 	}
1102 
1103 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1104 
1105 	/*
1106 	 * Now waltz through all the subenclosures toting up the
1107 	 * number of types available in each. For this, we only
1108 	 * really need the enclosure header. However, we get the
1109 	 * enclosure descriptor for debug purposes, as well
1110 	 * as self-consistency checking purposes.
1111 	 */
1112 
1113 	maxima = cf.Nsubenc + 1;
1114 	cdp = (SesEncDesc *) storage;
1115 	for (ntype = i = 0; i < maxima; i++) {
1116 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1117 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1118 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1119 			SES_FREE(sdata, SCSZ);
1120 			return (EIO);
1121 		}
1122 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1123 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1124 
1125 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1126 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1127 			SES_FREE(sdata, SCSZ);
1128 			return (EIO);
1129 		}
1130 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1131 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1132 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1133 		    cdp->encWWN[6], cdp->encWWN[7]);
1134 		ntype += hd.Ntypes;
1135 	}
1136 
1137 	/*
1138 	 * Now waltz through all the types that are available, getting
1139 	 * the type header so we can start adding up the number of
1140 	 * objects available.
1141 	 */
1142 	for (nobj = i = 0; i < ntype; i++) {
1143 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1144 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1145 			SES_FREE(sdata, SCSZ);
1146 			return (EIO);
1147 		}
1148 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1149 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1150 		    thdr.enc_subenc, thdr.enc_tlen);
1151 		nobj += thdr.enc_maxelt;
1152 	}
1153 
1154 
1155 	/*
1156 	 * Now allocate the object array and type map.
1157 	 */
1158 
1159 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1160 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1161 	cc->ses_eltmap = SES_MALLOC(ntype);
1162 
1163 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1164 	    cc->ses_eltmap == NULL) {
1165 		if (ssc->ses_objmap) {
1166 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1167 			ssc->ses_objmap = NULL;
1168 		}
1169 		if (cc->ses_typidx) {
1170 			SES_FREE(cc->ses_typidx,
1171 			    (nobj * sizeof (struct typidx)));
1172 			cc->ses_typidx = NULL;
1173 		}
1174 		if (cc->ses_eltmap) {
1175 			SES_FREE(cc->ses_eltmap, ntype);
1176 			cc->ses_eltmap = NULL;
1177 		}
1178 		SES_FREE(sdata, SCSZ);
1179 		return (ENOMEM);
1180 	}
1181 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1182 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1183 	MEMZERO(cc->ses_eltmap, ntype);
1184 	cc->ses_ntypes = (uint8_t) ntype;
1185 	ssc->ses_nobjects = nobj;
1186 
1187 	/*
1188 	 * Now waltz through the # of types again to fill in the types
1189 	 * (and subenclosure ids) of the allocated objects.
1190 	 */
1191 	nobj = 0;
1192 	for (i = 0; i < ntype; i++) {
1193 		int j;
1194 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1195 			continue;
1196 		}
1197 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1198 		for (j = 0; j < thdr.enc_maxelt; j++) {
1199 			cc->ses_typidx[nobj].ses_tidx = i;
1200 			cc->ses_typidx[nobj].ses_oidx = j;
1201 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1202 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1203 		}
1204 	}
1205 	SES_FREE(sdata, SCSZ);
1206 	return (0);
1207 }
1208 
1209 static int
1210 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1211 {
1212 	struct sscfg *cc;
1213 	int err, amt, bufsiz, tidx, oidx;
1214 	char cdb[6], *sdata;
1215 
1216 	cc = ssc->ses_private;
1217 	if (cc == NULL) {
1218 		return (ENXIO);
1219 	}
1220 
1221 	/*
1222 	 * If we're just getting overall enclosure status,
1223 	 * we only need 2 bytes of data storage.
1224 	 *
1225 	 * If we're getting anything else, we know how much
1226 	 * storage we need by noting that starting at offset
1227 	 * 8 in returned data, all object status bytes are 4
1228 	 * bytes long, and are stored in chunks of types(M)
1229 	 * and nth+1 instances of type M.
1230 	 */
1231 	if (objid == -1) {
1232 		bufsiz = 2;
1233 	} else {
1234 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1235 	}
1236 	sdata = SES_MALLOC(bufsiz);
1237 	if (sdata == NULL)
1238 		return (ENOMEM);
1239 
1240 	cdb[0] = RECEIVE_DIAGNOSTIC;
1241 	cdb[1] = 1;
1242 	cdb[2] = SesStatusPage;
1243 	cdb[3] = bufsiz >> 8;
1244 	cdb[4] = bufsiz & 0xff;
1245 	cdb[5] = 0;
1246 	amt = bufsiz;
1247 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1248 	if (err) {
1249 		SES_FREE(sdata, bufsiz);
1250 		return (err);
1251 	}
1252 	amt = bufsiz - amt;
1253 
1254 	if (objid == -1) {
1255 		tidx = -1;
1256 		oidx = -1;
1257 	} else {
1258 		tidx = cc->ses_typidx[objid].ses_tidx;
1259 		oidx = cc->ses_typidx[objid].ses_oidx;
1260 	}
1261 	if (in) {
1262 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1263 			err = ENODEV;
1264 		}
1265 	} else {
1266 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1267 			err = ENODEV;
1268 		} else {
1269 			cdb[0] = SEND_DIAGNOSTIC;
1270 			cdb[1] = 0x10;
1271 			cdb[2] = 0;
1272 			cdb[3] = bufsiz >> 8;
1273 			cdb[4] = bufsiz & 0xff;
1274 			cdb[5] = 0;
1275 			amt = -bufsiz;
1276 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1277 		}
1278 	}
1279 	SES_FREE(sdata, bufsiz);
1280 	return (0);
1281 }
1282 
1283 
1284 /*
1285  * Routines to parse returned SES data structures.
1286  * Architecture and compiler independent.
1287  */
1288 
1289 static int
1290 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1291 {
1292 	if (buflen < SES_CFGHDR_MINLEN) {
1293 		return (-1);
1294 	}
1295 	gget8(buffer, 1, cfp->Nsubenc);
1296 	gget32(buffer, 4, cfp->GenCode);
1297 	return (0);
1298 }
1299 
1300 static int
1301 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1302 {
1303 	int s, off = 8;
1304 	for (s = 0; s < SubEncId; s++) {
1305 		if (off + 3 > amt)
1306 			return (-1);
1307 		off += buffer[off+3] + 4;
1308 	}
1309 	if (off + 3 > amt) {
1310 		return (-1);
1311 	}
1312 	gget8(buffer, off+1, chp->Subencid);
1313 	gget8(buffer, off+2, chp->Ntypes);
1314 	gget8(buffer, off+3, chp->VEnclen);
1315 	return (0);
1316 }
1317 
1318 static int
1319 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1320 {
1321 	int s, e, enclen, off = 8;
1322 	for (s = 0; s < SubEncId; s++) {
1323 		if (off + 3 > amt)
1324 			return (-1);
1325 		off += buffer[off+3] + 4;
1326 	}
1327 	if (off + 3 > amt) {
1328 		return (-1);
1329 	}
1330 	gget8(buffer, off+3, enclen);
1331 	off += 4;
1332 	if (off  >= amt)
1333 		return (-1);
1334 
1335 	e = off + enclen;
1336 	if (e > amt) {
1337 		e = amt;
1338 	}
1339 	MEMCPY(cdp, &buffer[off], e - off);
1340 	return (0);
1341 }
1342 
1343 static int
1344 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1345 {
1346 	int s, off = 8;
1347 
1348 	if (amt < SES_CFGHDR_MINLEN) {
1349 		return (-1);
1350 	}
1351 	for (s = 0; s < buffer[1]; s++) {
1352 		if (off + 3 > amt)
1353 			return (-1);
1354 		off += buffer[off+3] + 4;
1355 	}
1356 	if (off + 3 > amt) {
1357 		return (-1);
1358 	}
1359 	off += buffer[off+3] + 4 + (nth * 4);
1360 	if (amt < (off + 4))
1361 		return (-1);
1362 
1363 	gget8(buffer, off++, thp->enc_type);
1364 	gget8(buffer, off++, thp->enc_maxelt);
1365 	gget8(buffer, off++, thp->enc_subenc);
1366 	gget8(buffer, off, thp->enc_tlen);
1367 	return (0);
1368 }
1369 
1370 /*
1371  * This function needs a little explanation.
1372  *
1373  * The arguments are:
1374  *
1375  *
1376  *	char *b, int amt
1377  *
1378  *		These describes the raw input SES status data and length.
1379  *
1380  *	uint8_t *ep
1381  *
1382  *		This is a map of the number of types for each element type
1383  *		in the enclosure.
1384  *
1385  *	int elt
1386  *
1387  *		This is the element type being sought. If elt is -1,
1388  *		then overall enclosure status is being sought.
1389  *
1390  *	int elm
1391  *
1392  *		This is the ordinal Mth element of type elt being sought.
1393  *
1394  *	SesComStat *sp
1395  *
1396  *		This is the output area to store the status for
1397  *		the Mth element of type Elt.
1398  */
1399 
1400 static int
1401 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1402 {
1403 	int idx, i;
1404 
1405 	/*
1406 	 * If it's overall enclosure status being sought, get that.
1407 	 * We need at least 2 bytes of status data to get that.
1408 	 */
1409 	if (elt == -1) {
1410 		if (amt < 2)
1411 			return (-1);
1412 		gget8(b, 1, sp->comstatus);
1413 		sp->comstat[0] = 0;
1414 		sp->comstat[1] = 0;
1415 		sp->comstat[2] = 0;
1416 		return (0);
1417 	}
1418 
1419 	/*
1420 	 * Check to make sure that the Mth element is legal for type Elt.
1421 	 */
1422 
1423 	if (elm >= ep[elt])
1424 		return (-1);
1425 
1426 	/*
1427 	 * Starting at offset 8, start skipping over the storage
1428 	 * for the element types we're not interested in.
1429 	 */
1430 	for (idx = 8, i = 0; i < elt; i++) {
1431 		idx += ((ep[i] + 1) * 4);
1432 	}
1433 
1434 	/*
1435 	 * Skip over Overall status for this element type.
1436 	 */
1437 	idx += 4;
1438 
1439 	/*
1440 	 * And skip to the index for the Mth element that we're going for.
1441 	 */
1442 	idx += (4 * elm);
1443 
1444 	/*
1445 	 * Make sure we haven't overflowed the buffer.
1446 	 */
1447 	if (idx+4 > amt)
1448 		return (-1);
1449 
1450 	/*
1451 	 * Retrieve the status.
1452 	 */
1453 	gget8(b, idx++, sp->comstatus);
1454 	gget8(b, idx++, sp->comstat[0]);
1455 	gget8(b, idx++, sp->comstat[1]);
1456 	gget8(b, idx++, sp->comstat[2]);
1457 #if	0
1458 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1459 #endif
1460 	return (0);
1461 }
1462 
1463 /*
1464  * This is the mirror function to ses_decode, but we set the 'select'
1465  * bit for the object which we're interested in. All other objects,
1466  * after a status fetch, should have that bit off. Hmm. It'd be easy
1467  * enough to ensure this, so we will.
1468  */
1469 
1470 static int
1471 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1472 {
1473 	int idx, i;
1474 
1475 	/*
1476 	 * If it's overall enclosure status being sought, get that.
1477 	 * We need at least 2 bytes of status data to get that.
1478 	 */
1479 	if (elt == -1) {
1480 		if (amt < 2)
1481 			return (-1);
1482 		i = 0;
1483 		sset8(b, i, 0);
1484 		sset8(b, i, sp->comstatus & 0xf);
1485 #if	0
1486 		PRINTF("set EncStat %x\n", sp->comstatus);
1487 #endif
1488 		return (0);
1489 	}
1490 
1491 	/*
1492 	 * Check to make sure that the Mth element is legal for type Elt.
1493 	 */
1494 
1495 	if (elm >= ep[elt])
1496 		return (-1);
1497 
1498 	/*
1499 	 * Starting at offset 8, start skipping over the storage
1500 	 * for the element types we're not interested in.
1501 	 */
1502 	for (idx = 8, i = 0; i < elt; i++) {
1503 		idx += ((ep[i] + 1) * 4);
1504 	}
1505 
1506 	/*
1507 	 * Skip over Overall status for this element type.
1508 	 */
1509 	idx += 4;
1510 
1511 	/*
1512 	 * And skip to the index for the Mth element that we're going for.
1513 	 */
1514 	idx += (4 * elm);
1515 
1516 	/*
1517 	 * Make sure we haven't overflowed the buffer.
1518 	 */
1519 	if (idx+4 > amt)
1520 		return (-1);
1521 
1522 	/*
1523 	 * Set the status.
1524 	 */
1525 	sset8(b, idx, sp->comstatus);
1526 	sset8(b, idx, sp->comstat[0]);
1527 	sset8(b, idx, sp->comstat[1]);
1528 	sset8(b, idx, sp->comstat[2]);
1529 	idx -= 4;
1530 
1531 #if	0
1532 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1533 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1534 	    sp->comstat[1], sp->comstat[2]);
1535 #endif
1536 
1537 	/*
1538 	 * Now make sure all other 'Select' bits are off.
1539 	 */
1540 	for (i = 8; i < amt; i += 4) {
1541 		if (i != idx)
1542 			b[i] &= ~0x80;
1543 	}
1544 	/*
1545 	 * And make sure the INVOP bit is clear.
1546 	 */
1547 	b[2] &= ~0x10;
1548 
1549 	return (0);
1550 }
1551 
1552 /*
1553  * SAF-TE Type Device Emulation
1554  */
1555 
1556 static int safte_getconfig(ses_softc_t *);
1557 static int safte_rdstat(ses_softc_t *, int);
1558 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1559 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1560 static void wrslot_stat(ses_softc_t *, int);
1561 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1562 
1563 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1564 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1565 /*
1566  * SAF-TE specific defines- Mandatory ones only...
1567  */
1568 
1569 /*
1570  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1571  */
1572 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1573 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1574 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1575 
1576 /*
1577  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1578  */
1579 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1580 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1581 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1582 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1583 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1584 
1585 
1586 #define	SAFT_SCRATCH	64
1587 #define	NPSEUDO_THERM	16
1588 #define	NPSEUDO_ALARM	1
1589 struct scfg {
1590 	/*
1591 	 * Cached Configuration
1592 	 */
1593 	uint8_t	Nfans;		/* Number of Fans */
1594 	uint8_t	Npwr;		/* Number of Power Supplies */
1595 	uint8_t	Nslots;		/* Number of Device Slots */
1596 	uint8_t	DoorLock;	/* Door Lock Installed */
1597 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1598 	uint8_t	Nspkrs;		/* Number of Speakers */
1599 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1600 	/*
1601 	 * Cached Flag Bytes for Global Status
1602 	 */
1603 	uint8_t	flag1;
1604 	uint8_t	flag2;
1605 	/*
1606 	 * What object index ID is where various slots start.
1607 	 */
1608 	uint8_t	pwroff;
1609 	uint8_t	slotoff;
1610 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1611 };
1612 
1613 #define	SAFT_FLG1_ALARM		0x1
1614 #define	SAFT_FLG1_GLOBFAIL	0x2
1615 #define	SAFT_FLG1_GLOBWARN	0x4
1616 #define	SAFT_FLG1_ENCPWROFF	0x8
1617 #define	SAFT_FLG1_ENCFANFAIL	0x10
1618 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1619 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1620 #define	SAFT_FLG1_ENCDRVWARN	0x80
1621 
1622 #define	SAFT_FLG2_LOCKDOOR	0x4
1623 #define	SAFT_PRIVATE		sizeof (struct scfg)
1624 
1625 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1626 #define	SAFT_BAIL(r, x, k, l)	\
1627 	if ((r) >= (x)) { \
1628 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1629 		SES_FREE((k), (l)); \
1630 		return (EIO); \
1631 	}
1632 
1633 
1634 static int
1635 safte_softc_init(ses_softc_t *ssc, int doinit)
1636 {
1637 	int err, i, r;
1638 	struct scfg *cc;
1639 
1640 	if (doinit == 0) {
1641 		if (ssc->ses_nobjects) {
1642 			if (ssc->ses_objmap) {
1643 				SES_FREE(ssc->ses_objmap,
1644 				    ssc->ses_nobjects * sizeof (encobj));
1645 				ssc->ses_objmap = NULL;
1646 			}
1647 			ssc->ses_nobjects = 0;
1648 		}
1649 		if (ssc->ses_private) {
1650 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1651 			ssc->ses_private = NULL;
1652 		}
1653 		return (0);
1654 	}
1655 
1656 	if (ssc->ses_private == NULL) {
1657 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1658 		if (ssc->ses_private == NULL) {
1659 			return (ENOMEM);
1660 		}
1661 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1662 	}
1663 
1664 	ssc->ses_nobjects = 0;
1665 	ssc->ses_encstat = 0;
1666 
1667 	if ((err = safte_getconfig(ssc)) != 0) {
1668 		return (err);
1669 	}
1670 
1671 	/*
1672 	 * The number of objects here, as well as that reported by the
1673 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1674 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1675 	 */
1676 	cc = ssc->ses_private;
1677 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1678 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1679 	ssc->ses_objmap = (encobj *)
1680 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1681 	if (ssc->ses_objmap == NULL) {
1682 		return (ENOMEM);
1683 	}
1684 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1685 
1686 	r = 0;
1687 	/*
1688 	 * Note that this is all arranged for the convenience
1689 	 * in later fetches of status.
1690 	 */
1691 	for (i = 0; i < cc->Nfans; i++)
1692 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1693 	cc->pwroff = (uint8_t) r;
1694 	for (i = 0; i < cc->Npwr; i++)
1695 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1696 	for (i = 0; i < cc->DoorLock; i++)
1697 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1698 	for (i = 0; i < cc->Nspkrs; i++)
1699 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1700 	for (i = 0; i < cc->Ntherm; i++)
1701 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1702 	for (i = 0; i < NPSEUDO_THERM; i++)
1703 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1704 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1705 	cc->slotoff = (uint8_t) r;
1706 	for (i = 0; i < cc->Nslots; i++)
1707 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1708 	return (0);
1709 }
1710 
1711 static int
1712 safte_init_enc(ses_softc_t *ssc)
1713 {
1714 	int err;
1715 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1716 
1717 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1718 	if (err) {
1719 		return (err);
1720 	}
1721 	DELAY(5000);
1722 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1723 	return (err);
1724 }
1725 
1726 static int
1727 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1728 {
1729 	return (safte_rdstat(ssc, slpflg));
1730 }
1731 
1732 static int
1733 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1734 {
1735 	struct scfg *cc = ssc->ses_private;
1736 	if (cc == NULL)
1737 		return (0);
1738 	/*
1739 	 * Since SAF-TE devices aren't necessarily sticky in terms
1740 	 * of state, make our soft copy of enclosure status 'sticky'-
1741 	 * that is, things set in enclosure status stay set (as implied
1742 	 * by conditions set in reading object status) until cleared.
1743 	 */
1744 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1745 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1746 	ssc->ses_encstat |= ENCI_SVALID;
1747 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1748 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1749 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1750 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1751 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1752 	}
1753 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1754 }
1755 
1756 static int
1757 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1758 {
1759 	int i = (int)obp->obj_id;
1760 
1761 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1762 	    (ssc->ses_objmap[i].svalid) == 0) {
1763 		int err = safte_rdstat(ssc, slpflg);
1764 		if (err)
1765 			return (err);
1766 	}
1767 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1768 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1769 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1770 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1771 	return (0);
1772 }
1773 
1774 
1775 static int
1776 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1777 {
1778 	int idx, err;
1779 	encobj *ep;
1780 	struct scfg *cc;
1781 
1782 
1783 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1784 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1785 	    obp->cstat[3]);
1786 
1787 	/*
1788 	 * If this is clear, we don't do diddly.
1789 	 */
1790 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1791 		return (0);
1792 	}
1793 
1794 	err = 0;
1795 	/*
1796 	 * Check to see if the common bits are set and do them first.
1797 	 */
1798 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1799 		err = set_objstat_sel(ssc, obp, slp);
1800 		if (err)
1801 			return (err);
1802 	}
1803 
1804 	cc = ssc->ses_private;
1805 	if (cc == NULL)
1806 		return (0);
1807 
1808 	idx = (int)obp->obj_id;
1809 	ep = &ssc->ses_objmap[idx];
1810 
1811 	switch (ep->enctype) {
1812 	case SESTYP_DEVICE:
1813 	{
1814 		uint8_t slotop = 0;
1815 		/*
1816 		 * XXX: I should probably cache the previous state
1817 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1818 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1819 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1820 		 */
1821 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1822 			slotop |= 0x2;
1823 		}
1824 		if (obp->cstat[2] & SESCTL_RQSID) {
1825 			slotop |= 0x4;
1826 		}
1827 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1828 		    slotop, slp);
1829 		if (err)
1830 			return (err);
1831 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1832 			ep->priv |= 0x2;
1833 		} else {
1834 			ep->priv &= ~0x2;
1835 		}
1836 		if (ep->priv & 0xc6) {
1837 			ep->priv &= ~0x1;
1838 		} else {
1839 			ep->priv |= 0x1;	/* no errors */
1840 		}
1841 		wrslot_stat(ssc, slp);
1842 		break;
1843 	}
1844 	case SESTYP_POWER:
1845 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1846 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1847 		} else {
1848 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1849 		}
1850 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1851 		    cc->flag2, 0, slp);
1852 		if (err)
1853 			return (err);
1854 		if (obp->cstat[3] & SESCTL_RQSTON) {
1855 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1856 				idx - cc->pwroff, 0, 0, slp);
1857 		} else {
1858 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1859 				idx - cc->pwroff, 0, 1, slp);
1860 		}
1861 		break;
1862 	case SESTYP_FAN:
1863 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1864 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1865 		} else {
1866 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1867 		}
1868 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1869 		    cc->flag2, 0, slp);
1870 		if (err)
1871 			return (err);
1872 		if (obp->cstat[3] & SESCTL_RQSTON) {
1873 			uint8_t fsp;
1874 			if ((obp->cstat[3] & 0x7) == 7) {
1875 				fsp = 4;
1876 			} else if ((obp->cstat[3] & 0x7) == 6) {
1877 				fsp = 3;
1878 			} else if ((obp->cstat[3] & 0x7) == 4) {
1879 				fsp = 2;
1880 			} else {
1881 				fsp = 1;
1882 			}
1883 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1884 		} else {
1885 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1886 		}
1887 		break;
1888 	case SESTYP_DOORLOCK:
1889 		if (obp->cstat[3] & 0x1) {
1890 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1891 		} else {
1892 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1893 		}
1894 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1895 		break;
1896 	case SESTYP_ALARM:
1897 		/*
1898 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1899 		 */
1900 		obp->cstat[3] &= ~0xa;
1901 		if (obp->cstat[3] & 0x40) {
1902 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1903 		} else if (obp->cstat[3] != 0) {
1904 			cc->flag2 |= SAFT_FLG1_ALARM;
1905 		} else {
1906 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1907 		}
1908 		ep->priv = obp->cstat[3];
1909 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1910 		break;
1911 	default:
1912 		break;
1913 	}
1914 	ep->svalid = 0;
1915 	return (0);
1916 }
1917 
1918 static int
1919 safte_getconfig(ses_softc_t *ssc)
1920 {
1921 	struct scfg *cfg;
1922 	int err, amt;
1923 	char *sdata;
1924 	static char cdb[10] =
1925 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1926 
1927 	cfg = ssc->ses_private;
1928 	if (cfg == NULL)
1929 		return (ENXIO);
1930 
1931 	sdata = SES_MALLOC(SAFT_SCRATCH);
1932 	if (sdata == NULL)
1933 		return (ENOMEM);
1934 
1935 	amt = SAFT_SCRATCH;
1936 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1937 	if (err) {
1938 		SES_FREE(sdata, SAFT_SCRATCH);
1939 		return (err);
1940 	}
1941 	amt = SAFT_SCRATCH - amt;
1942 	if (amt < 6) {
1943 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1944 		SES_FREE(sdata, SAFT_SCRATCH);
1945 		return (EIO);
1946 	}
1947 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1948 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1949 	cfg->Nfans = sdata[0];
1950 	cfg->Npwr = sdata[1];
1951 	cfg->Nslots = sdata[2];
1952 	cfg->DoorLock = sdata[3];
1953 	cfg->Ntherm = sdata[4];
1954 	cfg->Nspkrs = sdata[5];
1955 	cfg->Nalarm = NPSEUDO_ALARM;
1956 	SES_FREE(sdata, SAFT_SCRATCH);
1957 	return (0);
1958 }
1959 
1960 static int
1961 safte_rdstat(ses_softc_t *ssc, int slpflg)
1962 {
1963 	int err, oid, r, i, hiwater, nitems, amt;
1964 	uint16_t tempflags;
1965 	size_t buflen;
1966 	uint8_t status, oencstat;
1967 	char *sdata, cdb[10];
1968 	struct scfg *cc = ssc->ses_private;
1969 
1970 
1971 	/*
1972 	 * The number of objects overstates things a bit,
1973 	 * both for the bogus 'thermometer' entries and
1974 	 * the drive status (which isn't read at the same
1975 	 * time as the enclosure status), but that's okay.
1976 	 */
1977 	buflen = 4 * cc->Nslots;
1978 	if (ssc->ses_nobjects > buflen)
1979 		buflen = ssc->ses_nobjects;
1980 	sdata = SES_MALLOC(buflen);
1981 	if (sdata == NULL)
1982 		return (ENOMEM);
1983 
1984 	cdb[0] = READ_BUFFER;
1985 	cdb[1] = 1;
1986 	cdb[2] = SAFTE_RD_RDESTS;
1987 	cdb[3] = 0;
1988 	cdb[4] = 0;
1989 	cdb[5] = 0;
1990 	cdb[6] = 0;
1991 	cdb[7] = (buflen >> 8) & 0xff;
1992 	cdb[8] = buflen & 0xff;
1993 	cdb[9] = 0;
1994 	amt = buflen;
1995 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1996 	if (err) {
1997 		SES_FREE(sdata, buflen);
1998 		return (err);
1999 	}
2000 	hiwater = buflen - amt;
2001 
2002 
2003 	/*
2004 	 * invalidate all status bits.
2005 	 */
2006 	for (i = 0; i < ssc->ses_nobjects; i++)
2007 		ssc->ses_objmap[i].svalid = 0;
2008 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2009 	ssc->ses_encstat = 0;
2010 
2011 
2012 	/*
2013 	 * Now parse returned buffer.
2014 	 * If we didn't get enough data back,
2015 	 * that's considered a fatal error.
2016 	 */
2017 	oid = r = 0;
2018 
2019 	for (nitems = i = 0; i < cc->Nfans; i++) {
2020 		SAFT_BAIL(r, hiwater, sdata, buflen);
2021 		/*
2022 		 * 0 = Fan Operational
2023 		 * 1 = Fan is malfunctioning
2024 		 * 2 = Fan is not present
2025 		 * 0x80 = Unknown or Not Reportable Status
2026 		 */
2027 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2028 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2029 		switch ((int)(uint8_t)sdata[r]) {
2030 		case 0:
2031 			nitems++;
2032 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2033 			/*
2034 			 * We could get fancier and cache
2035 			 * fan speeds that we have set, but
2036 			 * that isn't done now.
2037 			 */
2038 			ssc->ses_objmap[oid].encstat[3] = 7;
2039 			break;
2040 
2041 		case 1:
2042 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2043 			/*
2044 			 * FAIL and FAN STOPPED synthesized
2045 			 */
2046 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2047 			/*
2048 			 * Enclosure marked with CRITICAL error
2049 			 * if only one fan or no thermometers,
2050 			 * else the NONCRITICAL error is set.
2051 			 */
2052 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2053 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2054 			else
2055 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2056 			break;
2057 		case 2:
2058 			ssc->ses_objmap[oid].encstat[0] =
2059 			    SES_OBJSTAT_NOTINSTALLED;
2060 			ssc->ses_objmap[oid].encstat[3] = 0;
2061 			/*
2062 			 * Enclosure marked with CRITICAL error
2063 			 * if only one fan or no thermometers,
2064 			 * else the NONCRITICAL error is set.
2065 			 */
2066 			if (cc->Nfans == 1)
2067 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2068 			else
2069 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2070 			break;
2071 		case 0x80:
2072 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2073 			ssc->ses_objmap[oid].encstat[3] = 0;
2074 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2075 			break;
2076 		default:
2077 			ssc->ses_objmap[oid].encstat[0] =
2078 			    SES_OBJSTAT_UNSUPPORTED;
2079 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2080 			    sdata[r] & 0xff);
2081 			break;
2082 		}
2083 		ssc->ses_objmap[oid++].svalid = 1;
2084 		r++;
2085 	}
2086 
2087 	/*
2088 	 * No matter how you cut it, no cooling elements when there
2089 	 * should be some there is critical.
2090 	 */
2091 	if (cc->Nfans && nitems == 0) {
2092 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2093 	}
2094 
2095 
2096 	for (i = 0; i < cc->Npwr; i++) {
2097 		SAFT_BAIL(r, hiwater, sdata, buflen);
2098 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2099 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2100 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2101 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2102 		switch ((uint8_t)sdata[r]) {
2103 		case 0x00:	/* pws operational and on */
2104 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2105 			break;
2106 		case 0x01:	/* pws operational and off */
2107 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2108 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2109 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2110 			break;
2111 		case 0x10:	/* pws is malfunctioning and commanded on */
2112 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2113 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2114 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2115 			break;
2116 
2117 		case 0x11:	/* pws is malfunctioning and commanded off */
2118 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2119 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2120 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2121 			break;
2122 		case 0x20:	/* pws is not present */
2123 			ssc->ses_objmap[oid].encstat[0] =
2124 			    SES_OBJSTAT_NOTINSTALLED;
2125 			ssc->ses_objmap[oid].encstat[3] = 0;
2126 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2127 			break;
2128 		case 0x21:	/* pws is present */
2129 			/*
2130 			 * This is for enclosures that cannot tell whether the
2131 			 * device is on or malfunctioning, but know that it is
2132 			 * present. Just fall through.
2133 			 */
2134 			/* FALLTHROUGH */
2135 		case 0x80:	/* Unknown or Not Reportable Status */
2136 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2137 			ssc->ses_objmap[oid].encstat[3] = 0;
2138 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2139 			break;
2140 		default:
2141 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2142 			    i, sdata[r] & 0xff);
2143 			break;
2144 		}
2145 		ssc->ses_objmap[oid++].svalid = 1;
2146 		r++;
2147 	}
2148 
2149 	/*
2150 	 * Skip over Slot SCSI IDs
2151 	 */
2152 	r += cc->Nslots;
2153 
2154 	/*
2155 	 * We always have doorlock status, no matter what,
2156 	 * but we only save the status if we have one.
2157 	 */
2158 	SAFT_BAIL(r, hiwater, sdata, buflen);
2159 	if (cc->DoorLock) {
2160 		/*
2161 		 * 0 = Door Locked
2162 		 * 1 = Door Unlocked, or no Lock Installed
2163 		 * 0x80 = Unknown or Not Reportable Status
2164 		 */
2165 		ssc->ses_objmap[oid].encstat[1] = 0;
2166 		ssc->ses_objmap[oid].encstat[2] = 0;
2167 		switch ((uint8_t)sdata[r]) {
2168 		case 0:
2169 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2170 			ssc->ses_objmap[oid].encstat[3] = 0;
2171 			break;
2172 		case 1:
2173 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174 			ssc->ses_objmap[oid].encstat[3] = 1;
2175 			break;
2176 		case 0x80:
2177 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2178 			ssc->ses_objmap[oid].encstat[3] = 0;
2179 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2180 			break;
2181 		default:
2182 			ssc->ses_objmap[oid].encstat[0] =
2183 			    SES_OBJSTAT_UNSUPPORTED;
2184 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2185 			    sdata[r] & 0xff);
2186 			break;
2187 		}
2188 		ssc->ses_objmap[oid++].svalid = 1;
2189 	}
2190 	r++;
2191 
2192 	/*
2193 	 * We always have speaker status, no matter what,
2194 	 * but we only save the status if we have one.
2195 	 */
2196 	SAFT_BAIL(r, hiwater, sdata, buflen);
2197 	if (cc->Nspkrs) {
2198 		ssc->ses_objmap[oid].encstat[1] = 0;
2199 		ssc->ses_objmap[oid].encstat[2] = 0;
2200 		if (sdata[r] == 1) {
2201 			/*
2202 			 * We need to cache tone urgency indicators.
2203 			 * Someday.
2204 			 */
2205 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2206 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2207 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2208 		} else if (sdata[r] == 0) {
2209 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2210 			ssc->ses_objmap[oid].encstat[3] = 0;
2211 		} else {
2212 			ssc->ses_objmap[oid].encstat[0] =
2213 			    SES_OBJSTAT_UNSUPPORTED;
2214 			ssc->ses_objmap[oid].encstat[3] = 0;
2215 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2216 			    sdata[r] & 0xff);
2217 		}
2218 		ssc->ses_objmap[oid++].svalid = 1;
2219 	}
2220 	r++;
2221 
2222 	for (i = 0; i < cc->Ntherm; i++) {
2223 		SAFT_BAIL(r, hiwater, sdata, buflen);
2224 		/*
2225 		 * Status is a range from -10 to 245 deg Celsius,
2226 		 * which we need to normalize to -20 to -245 according
2227 		 * to the latest SCSI spec, which makes little
2228 		 * sense since this would overflow an 8bit value.
2229 		 * Well, still, the base normalization is -20,
2230 		 * not -10, so we have to adjust.
2231 		 *
2232 		 * So what's over and under temperature?
2233 		 * Hmm- we'll state that 'normal' operating
2234 		 * is 10 to 40 deg Celsius.
2235 		 */
2236 
2237 		/*
2238 		 * Actually.... All of the units that people out in the world
2239 		 * seem to have do not come even close to setting a value that
2240 		 * complies with this spec.
2241 		 *
2242 		 * The closest explanation I could find was in an
2243 		 * LSI-Logic manual, which seemed to indicate that
2244 		 * this value would be set by whatever the I2C code
2245 		 * would interpolate from the output of an LM75
2246 		 * temperature sensor.
2247 		 *
2248 		 * This means that it is impossible to use the actual
2249 		 * numeric value to predict anything. But we don't want
2250 		 * to lose the value. So, we'll propagate the *uncorrected*
2251 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2252 		 * temperature flags for warnings.
2253 		 */
2254 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2255 		ssc->ses_objmap[oid].encstat[1] = 0;
2256 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2257 		ssc->ses_objmap[oid].encstat[3] = 0;
2258 		ssc->ses_objmap[oid++].svalid = 1;
2259 		r++;
2260 	}
2261 
2262 	/*
2263 	 * Now, for "pseudo" thermometers, we have two bytes
2264 	 * of information in enclosure status- 16 bits. Actually,
2265 	 * the MSB is a single TEMP ALERT flag indicating whether
2266 	 * any other bits are set, but, thanks to fuzzy thinking,
2267 	 * in the SAF-TE spec, this can also be set even if no
2268 	 * other bits are set, thus making this really another
2269 	 * binary temperature sensor.
2270 	 */
2271 
2272 	SAFT_BAIL(r, hiwater, sdata, buflen);
2273 	tempflags = sdata[r++];
2274 	SAFT_BAIL(r, hiwater, sdata, buflen);
2275 	tempflags |= (tempflags << 8) | sdata[r++];
2276 
2277 	for (i = 0; i < NPSEUDO_THERM; i++) {
2278 		ssc->ses_objmap[oid].encstat[1] = 0;
2279 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2280 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2281 			ssc->ses_objmap[4].encstat[2] = 0xff;
2282 			/*
2283 			 * Set 'over temperature' failure.
2284 			 */
2285 			ssc->ses_objmap[oid].encstat[3] = 8;
2286 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2287 		} else {
2288 			/*
2289 			 * We used to say 'not available' and synthesize a
2290 			 * nominal 30 deg (C)- that was wrong. Actually,
2291 			 * Just say 'OK', and use the reserved value of
2292 			 * zero.
2293 			 */
2294 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2295 			ssc->ses_objmap[oid].encstat[2] = 0;
2296 			ssc->ses_objmap[oid].encstat[3] = 0;
2297 		}
2298 		ssc->ses_objmap[oid++].svalid = 1;
2299 	}
2300 
2301 	/*
2302 	 * Get alarm status.
2303 	 */
2304 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2305 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2306 	ssc->ses_objmap[oid++].svalid = 1;
2307 
2308 	/*
2309 	 * Now get drive slot status
2310 	 */
2311 	cdb[2] = SAFTE_RD_RDDSTS;
2312 	amt = buflen;
2313 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2314 	if (err) {
2315 		SES_FREE(sdata, buflen);
2316 		return (err);
2317 	}
2318 	hiwater = buflen - amt;
2319 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2320 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2321 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2322 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2323 		ssc->ses_objmap[oid].encstat[2] = 0;
2324 		ssc->ses_objmap[oid].encstat[3] = 0;
2325 		status = sdata[r+3];
2326 		if ((status & 0x1) == 0) {	/* no device */
2327 			ssc->ses_objmap[oid].encstat[0] =
2328 			    SES_OBJSTAT_NOTINSTALLED;
2329 		} else {
2330 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2331 		}
2332 		if (status & 0x2) {
2333 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2334 		}
2335 		if ((status & 0x4) == 0) {
2336 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2337 		}
2338 		ssc->ses_objmap[oid++].svalid = 1;
2339 	}
2340 	/* see comment below about sticky enclosure status */
2341 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2342 	SES_FREE(sdata, buflen);
2343 	return (0);
2344 }
2345 
2346 static int
2347 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2348 {
2349 	int idx;
2350 	encobj *ep;
2351 	struct scfg *cc = ssc->ses_private;
2352 
2353 	if (cc == NULL)
2354 		return (0);
2355 
2356 	idx = (int)obp->obj_id;
2357 	ep = &ssc->ses_objmap[idx];
2358 
2359 	switch (ep->enctype) {
2360 	case SESTYP_DEVICE:
2361 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2362 			ep->priv |= 0x40;
2363 		}
2364 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2365 		if (obp->cstat[0] & SESCTL_DISABLE) {
2366 			ep->priv |= 0x80;
2367 			/*
2368 			 * Hmm. Try to set the 'No Drive' flag.
2369 			 * Maybe that will count as a 'disable'.
2370 			 */
2371 		}
2372 		if (ep->priv & 0xc6) {
2373 			ep->priv &= ~0x1;
2374 		} else {
2375 			ep->priv |= 0x1;	/* no errors */
2376 		}
2377 		wrslot_stat(ssc, slp);
2378 		break;
2379 	case SESTYP_POWER:
2380 		/*
2381 		 * Okay- the only one that makes sense here is to
2382 		 * do the 'disable' for a power supply.
2383 		 */
2384 		if (obp->cstat[0] & SESCTL_DISABLE) {
2385 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
2386 				idx - cc->pwroff, 0, 0, slp);
2387 		}
2388 		break;
2389 	case SESTYP_FAN:
2390 		/*
2391 		 * Okay- the only one that makes sense here is to
2392 		 * set fan speed to zero on disable.
2393 		 */
2394 		if (obp->cstat[0] & SESCTL_DISABLE) {
2395 			/* remember- fans are the first items, so idx works */
2396 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2397 		}
2398 		break;
2399 	case SESTYP_DOORLOCK:
2400 		/*
2401 		 * Well, we can 'disable' the lock.
2402 		 */
2403 		if (obp->cstat[0] & SESCTL_DISABLE) {
2404 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2405 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2406 				cc->flag2, 0, slp);
2407 		}
2408 		break;
2409 	case SESTYP_ALARM:
2410 		/*
2411 		 * Well, we can 'disable' the alarm.
2412 		 */
2413 		if (obp->cstat[0] & SESCTL_DISABLE) {
2414 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2415 			ep->priv |= 0x40;	/* Muted */
2416 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2417 				cc->flag2, 0, slp);
2418 		}
2419 		break;
2420 	default:
2421 		break;
2422 	}
2423 	ep->svalid = 0;
2424 	return (0);
2425 }
2426 
2427 /*
2428  * This function handles all of the 16 byte WRITE BUFFER commands.
2429  */
2430 static int
2431 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2432     uint8_t b3, int slp)
2433 {
2434 	int err, amt;
2435 	char *sdata;
2436 	struct scfg *cc = ssc->ses_private;
2437 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2438 
2439 	if (cc == NULL)
2440 		return (0);
2441 
2442 	sdata = SES_MALLOC(16);
2443 	if (sdata == NULL)
2444 		return (ENOMEM);
2445 
2446 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2447 
2448 	sdata[0] = op;
2449 	sdata[1] = b1;
2450 	sdata[2] = b2;
2451 	sdata[3] = b3;
2452 	MEMZERO(&sdata[4], 12);
2453 	amt = -16;
2454 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2455 	SES_FREE(sdata, 16);
2456 	return (err);
2457 }
2458 
2459 /*
2460  * This function updates the status byte for the device slot described.
2461  *
2462  * Since this is an optional SAF-TE command, there's no point in
2463  * returning an error.
2464  */
2465 static void
2466 wrslot_stat(ses_softc_t *ssc, int slp)
2467 {
2468 	int i, amt;
2469 	encobj *ep;
2470 	char cdb[10], *sdata;
2471 	struct scfg *cc = ssc->ses_private;
2472 
2473 	if (cc == NULL)
2474 		return;
2475 
2476 	SES_DLOG(ssc, "saf_wrslot\n");
2477 	cdb[0] = WRITE_BUFFER;
2478 	cdb[1] = 1;
2479 	cdb[2] = 0;
2480 	cdb[3] = 0;
2481 	cdb[4] = 0;
2482 	cdb[5] = 0;
2483 	cdb[6] = 0;
2484 	cdb[7] = 0;
2485 	cdb[8] = cc->Nslots * 3 + 1;
2486 	cdb[9] = 0;
2487 
2488 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2489 	if (sdata == NULL)
2490 		return;
2491 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2492 
2493 	sdata[0] = SAFTE_WT_DSTAT;
2494 	for (i = 0; i < cc->Nslots; i++) {
2495 		ep = &ssc->ses_objmap[cc->slotoff + i];
2496 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2497 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2498 	}
2499 	amt = -(cc->Nslots * 3 + 1);
2500 	ses_runcmd(ssc, cdb, 10, sdata, &amt);
2501 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2502 }
2503 
2504 /*
2505  * This function issues the "PERFORM SLOT OPERATION" command.
2506  */
2507 static int
2508 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2509 {
2510 	int err, amt;
2511 	char *sdata;
2512 	struct scfg *cc = ssc->ses_private;
2513 	static char cdb[10] =
2514 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2515 
2516 	if (cc == NULL)
2517 		return (0);
2518 
2519 	sdata = SES_MALLOC(SAFT_SCRATCH);
2520 	if (sdata == NULL)
2521 		return (ENOMEM);
2522 	MEMZERO(sdata, SAFT_SCRATCH);
2523 
2524 	sdata[0] = SAFTE_WT_SLTOP;
2525 	sdata[1] = slot;
2526 	sdata[2] = opflag;
2527 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2528 	amt = -SAFT_SCRATCH;
2529 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2530 	SES_FREE(sdata, SAFT_SCRATCH);
2531 	return (err);
2532 }
2533