xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision 1b722dce)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.29 2008/05/18 20:30:20 pavalos Exp $ */
3 /*
4  * Copyright (c) 2000 Matthew Jacob
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/fcntl.h>
36 #include <sys/conf.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39 #include <sys/devicestat.h>
40 #include <sys/thread2.h>
41 #include <machine/stdarg.h>
42 
43 #include "../cam.h"
44 #include "../cam_ccb.h"
45 #include "../cam_extend.h"
46 #include "../cam_periph.h"
47 #include "../cam_xpt_periph.h"
48 #include "../cam_debug.h"
49 #include "../cam_sim.h"
50 
51 #include "scsi_all.h"
52 #include "scsi_message.h"
53 #include "scsi_ses.h"
54 
55 #include <opt_ses.h>
56 
57 MALLOC_DEFINE(M_SCSISES, "SCSI SES", "SCSI SES buffers");
58 
59 /*
60  * Platform Independent Driver Internal Definitions for SES devices.
61  */
62 typedef enum {
63 	SES_NONE,
64 	SES_SES_SCSI2,
65 	SES_SES,
66 	SES_SES_PASSTHROUGH,
67 	SES_SEN,
68 	SES_SAFT
69 } enctyp;
70 
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 	int (*softc_init)(ses_softc_t *, int);
75 	int (*init_enc)(ses_softc_t *);
76 	int (*get_encstat)(ses_softc_t *, int);
77 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81 
82 #define	ENCI_SVALID	0x80
83 
84 typedef struct {
85 	uint32_t
86 		enctype	: 8,		/* enclosure type */
87 		subenclosure : 8,	/* subenclosure id */
88 		svalid	: 1,		/* enclosure information valid */
89 		priv	: 15;		/* private data, per object */
90 	uint8_t	encstat[4];	/* state && stats */
91 } encobj;
92 
93 #define	SEN_ID		"UNISYS           SUN_SEN"
94 #define	SEN_ID_LEN	24
95 
96 
97 static enctyp ses_type(void *, int);
98 
99 
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107 
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114 
115 /*
116  * Platform implementation defines/functions for SES internal kernel stuff
117  */
118 
119 #define	STRNCMP			strncmp
120 #define	PRINTF			kprintf
121 #define	SES_LOG			ses_log
122 #ifdef	DEBUG
123 #define	SES_DLOG		ses_log
124 #else
125 #define	SES_DLOG		if (0) ses_log
126 #endif
127 #define	SES_VLOG		if (bootverbose) ses_log
128 #define	SES_MALLOC(amt)		kmalloc(amt, M_SCSISES, M_INTWAIT)
129 #define	SES_FREE(ptr, amt)	kfree(ptr, M_SCSISES)
130 #define	MEMZERO			bzero
131 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
132 
133 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
134 static void ses_log(struct ses_softc *, const char *, ...);
135 
136 /*
137  * Gerenal FreeBSD kernel stuff.
138  */
139 
140 
141 #define ccb_state	ppriv_field0
142 #define ccb_bio		ppriv_ptr1
143 
144 struct ses_softc {
145 	enctyp		ses_type;	/* type of enclosure */
146 	encvec		ses_vec;	/* vector to handlers */
147 	void *		ses_private;	/* per-type private data */
148 	encobj *	ses_objmap;	/* objects */
149 	u_int32_t	ses_nobjects;	/* number of objects */
150 	ses_encstat	ses_encstat;	/* overall status */
151 	u_int8_t	ses_flags;
152 	union ccb	ses_saved_ccb;
153 	struct cam_periph *periph;
154 };
155 #define	SES_FLAG_INVALID	0x01
156 #define	SES_FLAG_OPEN		0x02
157 #define	SES_FLAG_INITIALIZED	0x04
158 
159 #define SESUNIT(x)       (minor((x)))
160 #define SES_CDEV_MAJOR	110
161 
162 static	d_open_t	sesopen;
163 static	d_close_t	sesclose;
164 static	d_ioctl_t	sesioctl;
165 static	periph_init_t	sesinit;
166 static  periph_ctor_t	sesregister;
167 static	periph_oninv_t	sesoninvalidate;
168 static  periph_dtor_t   sescleanup;
169 static  periph_start_t  sesstart;
170 
171 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
172 static void sesdone(struct cam_periph *, union ccb *);
173 static int seserror(union ccb *, u_int32_t, u_int32_t);
174 
175 static struct periph_driver sesdriver = {
176 	sesinit, "ses",
177 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
178 };
179 
180 PERIPHDRIVER_DECLARE(ses, sesdriver);
181 
182 static struct dev_ops ses_ops = {
183 	{ "ses", SES_CDEV_MAJOR, 0 },
184 	.d_open =	sesopen,
185 	.d_close =	sesclose,
186 	.d_ioctl =	sesioctl,
187 };
188 static struct extend_array *sesperiphs;
189 
190 static void
191 sesinit(void)
192 {
193 	cam_status status;
194 
195 	/*
196 	 * Create our extend array for storing the devices we attach to.
197 	 */
198 	sesperiphs = cam_extend_new();
199 	if (sesperiphs == NULL) {
200 		kprintf("ses: Failed to alloc extend array!\n");
201 		return;
202 	}
203 
204 	/*
205 	 * Install a global async callback.  This callback will
206 	 * receive async callbacks like "new device found".
207 	 */
208 	status = xpt_register_async(AC_FOUND_DEVICE, sesasync, NULL, NULL);
209 
210 	if (status != CAM_REQ_CMP) {
211 		kprintf("ses: Failed to attach master async callback "
212 		       "due to status 0x%x!\n", status);
213 	}
214 }
215 
216 static void
217 sesoninvalidate(struct cam_periph *periph)
218 {
219 	struct ses_softc *softc;
220 
221 	softc = (struct ses_softc *)periph->softc;
222 
223 	/*
224 	 * Unregister any async callbacks.
225 	 */
226 	xpt_register_async(0, sesasync, periph, periph->path);
227 
228 	softc->ses_flags |= SES_FLAG_INVALID;
229 
230 	xpt_print(periph->path, "lost device\n");
231 }
232 
233 static void
234 sescleanup(struct cam_periph *periph)
235 {
236 	struct ses_softc *softc;
237 
238 	softc = (struct ses_softc *)periph->softc;
239 
240 	cam_extend_release(sesperiphs, periph->unit_number);
241 	xpt_print(periph->path, "removing device entry\n");
242 	dev_ops_remove_minor(&ses_ops, periph->unit_number);
243 	kfree(softc, M_SCSISES);
244 }
245 
246 static void
247 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
248 {
249 	struct cam_periph *periph;
250 
251 	periph = (struct cam_periph *)callback_arg;
252 
253 	switch(code) {
254 	case AC_FOUND_DEVICE:
255 	{
256 		cam_status status;
257 		struct ccb_getdev *cgd;
258 		int inq_len;
259 
260 		cgd = (struct ccb_getdev *)arg;
261 		if (arg == NULL) {
262 			break;
263 		}
264 
265 		inq_len = cgd->inq_data.additional_length + 4;
266 
267 		/*
268 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
269 		 * PROBLEM: IS A SAF-TE DEVICE.
270 		 */
271 		switch (ses_type(&cgd->inq_data, inq_len)) {
272 		case SES_SES:
273 		case SES_SES_SCSI2:
274 		case SES_SES_PASSTHROUGH:
275 		case SES_SEN:
276 		case SES_SAFT:
277 			break;
278 		default:
279 			return;
280 		}
281 
282 		status = cam_periph_alloc(sesregister, sesoninvalidate,
283 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
284 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
285 
286 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
287 			kprintf("sesasync: Unable to probe new device due to "
288 			    "status 0x%x\n", status);
289 		}
290 		break;
291 	}
292 	default:
293 		cam_periph_async(periph, code, path, arg);
294 		break;
295 	}
296 }
297 
298 static cam_status
299 sesregister(struct cam_periph *periph, void *arg)
300 {
301 	struct ses_softc *softc;
302 	struct ccb_getdev *cgd;
303 	char *tname;
304 
305 	cgd = (struct ccb_getdev *)arg;
306 	if (periph == NULL) {
307 		kprintf("sesregister: periph was NULL!!\n");
308 		return (CAM_REQ_CMP_ERR);
309 	}
310 
311 	if (cgd == NULL) {
312 		kprintf("sesregister: no getdev CCB, can't register device\n");
313 		return (CAM_REQ_CMP_ERR);
314 	}
315 
316 	softc = kmalloc(sizeof (struct ses_softc), M_SCSISES, M_INTWAIT | M_ZERO);
317 	periph->softc = softc;
318 	softc->periph = periph;
319 
320 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
321 
322 	switch (softc->ses_type) {
323 	case SES_SES:
324 	case SES_SES_SCSI2:
325         case SES_SES_PASSTHROUGH:
326 		softc->ses_vec.softc_init = ses_softc_init;
327 		softc->ses_vec.init_enc = ses_init_enc;
328 		softc->ses_vec.get_encstat = ses_get_encstat;
329 		softc->ses_vec.set_encstat = ses_set_encstat;
330 		softc->ses_vec.get_objstat = ses_get_objstat;
331 		softc->ses_vec.set_objstat = ses_set_objstat;
332 		break;
333         case SES_SAFT:
334 		softc->ses_vec.softc_init = safte_softc_init;
335 		softc->ses_vec.init_enc = safte_init_enc;
336 		softc->ses_vec.get_encstat = safte_get_encstat;
337 		softc->ses_vec.set_encstat = safte_set_encstat;
338 		softc->ses_vec.get_objstat = safte_get_objstat;
339 		softc->ses_vec.set_objstat = safte_set_objstat;
340 		break;
341         case SES_SEN:
342 		break;
343 	case SES_NONE:
344 	default:
345 		kfree(softc, M_SCSISES);
346 		return (CAM_REQ_CMP_ERR);
347 	}
348 
349 	cam_extend_set(sesperiphs, periph->unit_number, periph);
350 
351 	cam_periph_unlock(periph);
352 	make_dev(&ses_ops, periph->unit_number,
353 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
354 		    periph->periph_name, periph->unit_number);
355 	cam_periph_lock(periph);
356 
357 	/*
358 	 * Add an async callback so that we get
359 	 * notified if this device goes away.
360 	 */
361 	xpt_register_async(AC_LOST_DEVICE, sesasync, periph, periph->path);
362 
363 	switch (softc->ses_type) {
364 	default:
365 	case SES_NONE:
366 		tname = "No SES device";
367 		break;
368 	case SES_SES_SCSI2:
369 		tname = "SCSI-2 SES Device";
370 		break;
371 	case SES_SES:
372 		tname = "SCSI-3 SES Device";
373 		break;
374         case SES_SES_PASSTHROUGH:
375 		tname = "SES Passthrough Device";
376 		break;
377         case SES_SEN:
378 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
379 		break;
380         case SES_SAFT:
381 		tname = "SAF-TE Compliant Device";
382 		break;
383 	}
384 	xpt_announce_periph(periph, tname);
385 	return (CAM_REQ_CMP);
386 }
387 
388 static int
389 sesopen(struct dev_open_args *ap)
390 {
391 	cdev_t dev = ap->a_head.a_dev;
392 	struct cam_periph *periph;
393 	struct ses_softc *softc;
394 	int error = 0;
395 
396 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
397 	if (periph == NULL) {
398 		return (ENXIO);
399 	}
400 
401 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
402 		cam_periph_unlock(periph);
403 		return (ENXIO);
404 	}
405 
406 	cam_periph_lock(periph);
407 
408 	softc = (struct ses_softc *)periph->softc;
409 
410 	if (softc->ses_flags & SES_FLAG_INVALID) {
411 		error = ENXIO;
412 		goto out;
413 	}
414 	if (softc->ses_flags & SES_FLAG_OPEN) {
415 		error = EBUSY;
416 		goto out;
417 	}
418 	if (softc->ses_vec.softc_init == NULL) {
419 		error = ENXIO;
420 		goto out;
421 	}
422 
423 	softc->ses_flags |= SES_FLAG_OPEN;
424 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
425 		error = (*softc->ses_vec.softc_init)(softc, 1);
426 		if (error)
427 			softc->ses_flags &= ~SES_FLAG_OPEN;
428 		else
429 			softc->ses_flags |= SES_FLAG_INITIALIZED;
430 	}
431 
432 out:
433 	cam_periph_unlock(periph);
434 	if (error) {
435 		cam_periph_release(periph);
436 	}
437 	return (error);
438 }
439 
440 static int
441 sesclose(struct dev_close_args *ap)
442 {
443 	cdev_t dev = ap->a_head.a_dev;
444 	struct cam_periph *periph;
445 	struct ses_softc *softc;
446 	int unit, error;
447 
448 	error = 0;
449 
450 	unit = SESUNIT(dev);
451 	periph = cam_extend_get(sesperiphs, unit);
452 	if (periph == NULL)
453 		return (ENXIO);
454 
455 	cam_periph_lock(periph);
456 
457 	softc = (struct ses_softc *)periph->softc;
458 	softc->ses_flags &= ~SES_FLAG_OPEN;
459 
460 	cam_periph_unlock(periph);
461 	cam_periph_release(periph);
462 
463 	return (0);
464 }
465 
466 static void
467 sesstart(struct cam_periph *p, union ccb *sccb)
468 {
469 	if (p->immediate_priority <= p->pinfo.priority) {
470 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
471 		p->immediate_priority = CAM_PRIORITY_NONE;
472 		wakeup(&p->ccb_list);
473 	}
474 }
475 
476 static void
477 sesdone(struct cam_periph *periph, union ccb *dccb)
478 {
479 	wakeup(&dccb->ccb_h.cbfcnp);
480 }
481 
482 static int
483 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
484 {
485 	struct ses_softc *softc;
486 	struct cam_periph *periph;
487 
488 	periph = xpt_path_periph(ccb->ccb_h.path);
489 	softc = (struct ses_softc *)periph->softc;
490 
491 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
492 }
493 
494 static int
495 sesioctl(struct dev_ioctl_args *ap)
496 {
497 	cdev_t dev = ap->a_head.a_dev;
498 	struct cam_periph *periph;
499 	ses_encstat tmp;
500 	ses_objstat objs;
501 	ses_object obj, *uobj;
502 	struct ses_softc *ssc;
503 	void *addr;
504 	int error, i;
505 
506 
507 	if (ap->a_data)
508 		addr = *((caddr_t *)ap->a_data);
509 	else
510 		addr = NULL;
511 
512 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
513 	if (periph == NULL)
514 		return (ENXIO);
515 
516 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
517 
518 	cam_periph_lock(periph);
519 	ssc = (struct ses_softc *)periph->softc;
520 
521 	/*
522 	 * Now check to see whether we're initialized or not.
523 	 */
524 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
525 		cam_periph_unlock(periph);
526 		return (ENXIO);
527 	}
528 	cam_periph_unlock(periph);
529 
530 	error = 0;
531 
532 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
533 	    ("trying to do ioctl %#lx\n", ap->a_cmd));
534 
535 	/*
536 	 * If this command can change the device's state,
537 	 * we must have the device open for writing.
538 	 */
539 	switch (ap->a_cmd) {
540 	case SESIOC_GETNOBJ:
541 	case SESIOC_GETOBJMAP:
542 	case SESIOC_GETENCSTAT:
543 	case SESIOC_GETOBJSTAT:
544 		break;
545 	default:
546 		if ((ap->a_fflag & FWRITE) == 0) {
547 			return (EBADF);
548 		}
549 	}
550 
551 	switch (ap->a_cmd) {
552 	case SESIOC_GETNOBJ:
553 		error = copyout(&ssc->ses_nobjects, addr,
554 		    sizeof (ssc->ses_nobjects));
555 		break;
556 
557 	case SESIOC_GETOBJMAP:
558 		/*
559 		 * XXX Dropping the lock while copying multiple segments is
560 		 * bogus.
561 		 */
562 		cam_periph_lock(periph);
563 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
564 			obj.obj_id = i;
565 			obj.subencid = ssc->ses_objmap[i].subenclosure;
566 			obj.object_type = ssc->ses_objmap[i].enctype;
567 			cam_periph_unlock(periph);
568 			error = copyout(&obj, uobj, sizeof (ses_object));
569 			cam_periph_lock(periph);
570 			if (error) {
571 				break;
572 			}
573 		}
574 		cam_periph_unlock(periph);
575 		break;
576 
577 	case SESIOC_GETENCSTAT:
578 		cam_periph_lock(periph);
579 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
580 		if (error) {
581 			cam_periph_unlock(periph);
582 			break;
583 		}
584 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
585 		cam_periph_unlock(periph);
586 		error = copyout(&tmp, addr, sizeof (ses_encstat));
587 		ssc->ses_encstat = tmp;
588 		break;
589 
590 	case SESIOC_SETENCSTAT:
591 		error = copyin(addr, &tmp, sizeof (ses_encstat));
592 		if (error)
593 			break;
594 		cam_periph_lock(periph);
595 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
596 		cam_periph_unlock(periph);
597 		break;
598 
599 	case SESIOC_GETOBJSTAT:
600 		error = copyin(addr, &objs, sizeof (ses_objstat));
601 		if (error)
602 			break;
603 		if (objs.obj_id >= ssc->ses_nobjects) {
604 			error = EINVAL;
605 			break;
606 		}
607 		cam_periph_lock(periph);
608 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
609 		cam_periph_unlock(periph);
610 		if (error)
611 			break;
612 		error = copyout(&objs, addr, sizeof (ses_objstat));
613 		/*
614 		 * Always (for now) invalidate entry.
615 		 */
616 		ssc->ses_objmap[objs.obj_id].svalid = 0;
617 		break;
618 
619 	case SESIOC_SETOBJSTAT:
620 		error = copyin(addr, &objs, sizeof (ses_objstat));
621 		if (error)
622 			break;
623 
624 		if (objs.obj_id >= ssc->ses_nobjects) {
625 			error = EINVAL;
626 			break;
627 		}
628 		cam_periph_lock(periph);
629 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
630 		cam_periph_unlock(periph);
631 
632 		/*
633 		 * Always (for now) invalidate entry.
634 		 */
635 		ssc->ses_objmap[objs.obj_id].svalid = 0;
636 		break;
637 
638 	case SESIOC_INIT:
639 
640 		cam_periph_lock(periph);
641 		error = (*ssc->ses_vec.init_enc)(ssc);
642 		cam_periph_unlock(periph);
643 		break;
644 
645 	default:
646 		cam_periph_lock(periph);
647 		error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
648 		cam_periph_unlock(periph);
649 		break;
650 	}
651 	return (error);
652 }
653 
654 #define	SES_CFLAGS	CAM_RETRY_SELTO
655 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_UA
656 static int
657 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
658 {
659 	int error, dlen;
660 	ccb_flags ddf;
661 	union ccb *ccb;
662 
663 	if (dptr) {
664 		if ((dlen = *dlenp) < 0) {
665 			dlen = -dlen;
666 			ddf = CAM_DIR_OUT;
667 		} else {
668 			ddf = CAM_DIR_IN;
669 		}
670 	} else {
671 		dlen = 0;
672 		ddf = CAM_DIR_NONE;
673 	}
674 
675 	if (cdbl > IOCDBLEN) {
676 		cdbl = IOCDBLEN;
677 	}
678 
679 	ccb = cam_periph_getccb(ssc->periph, 1);
680 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
681 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
682 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
683 
684 	error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
685 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
686 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
687 	if (error) {
688 		if (dptr) {
689 			*dlenp = dlen;
690 		}
691 	} else {
692 		if (dptr) {
693 			*dlenp = ccb->csio.resid;
694 		}
695 	}
696 	xpt_release_ccb(ccb);
697 	return (error);
698 }
699 
700 static void
701 ses_log(struct ses_softc *ssc, const char *fmt, ...)
702 {
703 	__va_list ap;
704 
705 	kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
706 	__va_start(ap, fmt);
707 	kvprintf(fmt, ap);
708 	__va_end(ap);
709 }
710 
711 /*
712  * The code after this point runs on many platforms,
713  * so forgive the slightly awkward and nonconforming
714  * appearance.
715  */
716 
717 /*
718  * Is this a device that supports enclosure services?
719  *
720  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
721  * an SES device. If it happens to be an old UNISYS SEN device, we can
722  * handle that too.
723  */
724 
725 #define	SAFTE_START	44
726 #define	SAFTE_END	50
727 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
728 
729 static enctyp
730 ses_type(void *buf, int buflen)
731 {
732 	unsigned char *iqd = buf;
733 
734 	if (buflen < 8+SEN_ID_LEN)
735 		return (SES_NONE);
736 
737 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
738 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
739 			return (SES_SEN);
740 		} else if ((iqd[2] & 0x7) > 2) {
741 			return (SES_SES);
742 		} else {
743 			return (SES_SES_SCSI2);
744 		}
745 		return (SES_NONE);
746 	}
747 
748 #ifdef	SES_ENABLE_PASSTHROUGH
749 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
750 		/*
751 		 * PassThrough Device.
752 		 */
753 		return (SES_SES_PASSTHROUGH);
754 	}
755 #endif
756 
757 	/*
758 	 * The comparison is short for a reason-
759 	 * some vendors were chopping it short.
760 	 */
761 
762 	if (buflen < SAFTE_END - 2) {
763 		return (SES_NONE);
764 	}
765 
766 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
767 		return (SES_SAFT);
768 	}
769 	return (SES_NONE);
770 }
771 
772 /*
773  * SES Native Type Device Support
774  */
775 
776 /*
777  * SES Diagnostic Page Codes
778  */
779 
780 typedef enum {
781 	SesConfigPage = 0x1,
782 	SesControlPage,
783 #define	SesStatusPage SesControlPage
784 	SesHelpTxt,
785 	SesStringOut,
786 #define	SesStringIn	SesStringOut
787 	SesThresholdOut,
788 #define	SesThresholdIn SesThresholdOut
789 	SesArrayControl,
790 #define	SesArrayStatus	SesArrayControl
791 	SesElementDescriptor,
792 	SesShortStatus
793 } SesDiagPageCodes;
794 
795 /*
796  * minimal amounts
797  */
798 
799 /*
800  * Minimum amount of data, starting from byte 0, to have
801  * the config header.
802  */
803 #define	SES_CFGHDR_MINLEN	12
804 
805 /*
806  * Minimum amount of data, starting from byte 0, to have
807  * the config header and one enclosure header.
808  */
809 #define	SES_ENCHDR_MINLEN	48
810 
811 /*
812  * Take this value, subtract it from VEnclen and you know
813  * the length of the vendor unique bytes.
814  */
815 #define	SES_ENCHDR_VMIN		36
816 
817 /*
818  * SES Data Structures
819  */
820 
821 typedef struct {
822 	uint32_t GenCode;	/* Generation Code */
823 	uint8_t	Nsubenc;	/* Number of Subenclosures */
824 } SesCfgHdr;
825 
826 typedef struct {
827 	uint8_t	Subencid;	/* SubEnclosure Identifier */
828 	uint8_t	Ntypes;		/* # of supported types */
829 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
830 } SesEncHdr;
831 
832 typedef struct {
833 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
834 	uint8_t	encVid[8];
835 	uint8_t	encPid[16];
836 	uint8_t	encRev[4];
837 	uint8_t	encVen[1];
838 } SesEncDesc;
839 
840 typedef struct {
841 	uint8_t	enc_type;		/* type of element */
842 	uint8_t	enc_maxelt;		/* maximum supported */
843 	uint8_t	enc_subenc;		/* in SubEnc # N */
844 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
845 } SesThdr;
846 
847 typedef struct {
848 	uint8_t	comstatus;
849 	uint8_t	comstat[3];
850 } SesComStat;
851 
852 struct typidx {
853 	int ses_tidx;
854 	int ses_oidx;
855 };
856 
857 struct sscfg {
858 	uint8_t ses_ntypes;	/* total number of types supported */
859 
860 	/*
861 	 * We need to keep a type index as well as an
862 	 * object index for each object in an enclosure.
863 	 */
864 	struct typidx *ses_typidx;
865 
866 	/*
867 	 * We also need to keep track of the number of elements
868 	 * per type of element. This is needed later so that we
869 	 * can find precisely in the returned status data the
870 	 * status for the Nth element of the Kth type.
871 	 */
872 	uint8_t *	ses_eltmap;
873 };
874 
875 
876 /*
877  * (de)canonicalization defines
878  */
879 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
880 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
881 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
882 
883 #define	sset16(outp, idx, sval)	\
884 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
885 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
886 
887 
888 #define	sset24(outp, idx, sval)	\
889 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
890 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
891 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
892 
893 
894 #define	sset32(outp, idx, sval)	\
895 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
896 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
897 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
898 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
899 
900 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
901 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
902 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
903 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
904 
905 #define	sget16(inp, idx, lval)	\
906 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
907 		(((uint8_t *)(inp))[idx+1]), idx += 2
908 
909 #define	gget16(inp, idx, lval)	\
910 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
911 		(((uint8_t *)(inp))[idx+1])
912 
913 #define	sget24(inp, idx, lval)	\
914 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
915 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
916 			(((uint8_t *)(inp))[idx+2]), idx += 3
917 
918 #define	gget24(inp, idx, lval)	\
919 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
920 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
921 			(((uint8_t *)(inp))[idx+2])
922 
923 #define	sget32(inp, idx, lval)	\
924 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
925 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
926 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
927 			(((uint8_t *)(inp))[idx+3]), idx += 4
928 
929 #define	gget32(inp, idx, lval)	\
930 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
931 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
932 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
933 			(((uint8_t *)(inp))[idx+3])
934 
935 #define	SCSZ	0x2000
936 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
937 
938 /*
939  * Routines specific && private to SES only
940  */
941 
942 static int ses_getconfig(ses_softc_t *);
943 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
944 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
945 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
946 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
947 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
948 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
949 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
950 
951 static int
952 ses_softc_init(ses_softc_t *ssc, int doinit)
953 {
954 	if (doinit == 0) {
955 		struct sscfg *cc;
956 		if (ssc->ses_nobjects) {
957 			SES_FREE(ssc->ses_objmap,
958 			    ssc->ses_nobjects * sizeof (encobj));
959 			ssc->ses_objmap = NULL;
960 		}
961 		if ((cc = ssc->ses_private) != NULL) {
962 			if (cc->ses_eltmap && cc->ses_ntypes) {
963 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
964 				cc->ses_eltmap = NULL;
965 				cc->ses_ntypes = 0;
966 			}
967 			if (cc->ses_typidx && ssc->ses_nobjects) {
968 				SES_FREE(cc->ses_typidx,
969 				    ssc->ses_nobjects * sizeof (struct typidx));
970 				cc->ses_typidx = NULL;
971 			}
972 			SES_FREE(cc, sizeof (struct sscfg));
973 			ssc->ses_private = NULL;
974 		}
975 		ssc->ses_nobjects = 0;
976 		return (0);
977 	}
978 	if (ssc->ses_private == NULL) {
979 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
980 	}
981 	if (ssc->ses_private == NULL) {
982 		return (ENOMEM);
983 	}
984 	ssc->ses_nobjects = 0;
985 	ssc->ses_encstat = 0;
986 	return (ses_getconfig(ssc));
987 }
988 
989 static int
990 ses_init_enc(ses_softc_t *ssc)
991 {
992 	return (0);
993 }
994 
995 static int
996 ses_get_encstat(ses_softc_t *ssc, int slpflag)
997 {
998 	SesComStat ComStat;
999 	int status;
1000 
1001 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1002 		return (status);
1003 	}
1004 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1005 	return (0);
1006 }
1007 
1008 static int
1009 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1010 {
1011 	SesComStat ComStat;
1012 	int status;
1013 
1014 	ComStat.comstatus = encstat & 0xf;
1015 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1016 		return (status);
1017 	}
1018 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1019 	return (0);
1020 }
1021 
1022 static int
1023 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1024 {
1025 	int i = (int)obp->obj_id;
1026 
1027 	if (ssc->ses_objmap[i].svalid == 0) {
1028 		SesComStat ComStat;
1029 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1030 		if (err)
1031 			return (err);
1032 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1033 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1034 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1035 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1036 		ssc->ses_objmap[i].svalid = 1;
1037 	}
1038 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1039 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1040 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1041 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1042 	return (0);
1043 }
1044 
1045 static int
1046 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1047 {
1048 	SesComStat ComStat;
1049 	int err;
1050 	/*
1051 	 * If this is clear, we don't do diddly.
1052 	 */
1053 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1054 		return (0);
1055 	}
1056 	ComStat.comstatus = obp->cstat[0];
1057 	ComStat.comstat[0] = obp->cstat[1];
1058 	ComStat.comstat[1] = obp->cstat[2];
1059 	ComStat.comstat[2] = obp->cstat[3];
1060 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1061 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1062 	return (err);
1063 }
1064 
1065 static int
1066 ses_getconfig(ses_softc_t *ssc)
1067 {
1068 	struct sscfg *cc;
1069 	SesCfgHdr cf;
1070 	SesEncHdr hd;
1071 	SesEncDesc *cdp;
1072 	SesThdr thdr;
1073 	int err, amt, i, nobj, ntype, maxima;
1074 	char storage[CFLEN], *sdata;
1075 	static char cdb[6] = {
1076 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1077 	};
1078 
1079 	cc = ssc->ses_private;
1080 	if (cc == NULL) {
1081 		return (ENXIO);
1082 	}
1083 
1084 	sdata = SES_MALLOC(SCSZ);
1085 	if (sdata == NULL)
1086 		return (ENOMEM);
1087 
1088 	amt = SCSZ;
1089 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1090 	if (err) {
1091 		SES_FREE(sdata, SCSZ);
1092 		return (err);
1093 	}
1094 	amt = SCSZ - amt;
1095 
1096 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1097 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1098 		SES_FREE(sdata, SCSZ);
1099 		return (EIO);
1100 	}
1101 	if (amt < SES_ENCHDR_MINLEN) {
1102 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1103 		SES_FREE(sdata, SCSZ);
1104 		return (EIO);
1105 	}
1106 
1107 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1108 
1109 	/*
1110 	 * Now waltz through all the subenclosures toting up the
1111 	 * number of types available in each. For this, we only
1112 	 * really need the enclosure header. However, we get the
1113 	 * enclosure descriptor for debug purposes, as well
1114 	 * as self-consistency checking purposes.
1115 	 */
1116 
1117 	maxima = cf.Nsubenc + 1;
1118 	cdp = (SesEncDesc *) storage;
1119 	for (ntype = i = 0; i < maxima; i++) {
1120 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1121 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1122 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1123 			SES_FREE(sdata, SCSZ);
1124 			return (EIO);
1125 		}
1126 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1127 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1128 
1129 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1130 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1131 			SES_FREE(sdata, SCSZ);
1132 			return (EIO);
1133 		}
1134 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1135 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1136 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1137 		    cdp->encWWN[6], cdp->encWWN[7]);
1138 		ntype += hd.Ntypes;
1139 	}
1140 
1141 	/*
1142 	 * Now waltz through all the types that are available, getting
1143 	 * the type header so we can start adding up the number of
1144 	 * objects available.
1145 	 */
1146 	for (nobj = i = 0; i < ntype; i++) {
1147 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1148 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1149 			SES_FREE(sdata, SCSZ);
1150 			return (EIO);
1151 		}
1152 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1153 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1154 		    thdr.enc_subenc, thdr.enc_tlen);
1155 		nobj += thdr.enc_maxelt;
1156 	}
1157 
1158 
1159 	/*
1160 	 * Now allocate the object array and type map.
1161 	 */
1162 
1163 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1164 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1165 	cc->ses_eltmap = SES_MALLOC(ntype);
1166 
1167 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1168 	    cc->ses_eltmap == NULL) {
1169 		if (ssc->ses_objmap) {
1170 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1171 			ssc->ses_objmap = NULL;
1172 		}
1173 		if (cc->ses_typidx) {
1174 			SES_FREE(cc->ses_typidx,
1175 			    (nobj * sizeof (struct typidx)));
1176 			cc->ses_typidx = NULL;
1177 		}
1178 		if (cc->ses_eltmap) {
1179 			SES_FREE(cc->ses_eltmap, ntype);
1180 			cc->ses_eltmap = NULL;
1181 		}
1182 		SES_FREE(sdata, SCSZ);
1183 		return (ENOMEM);
1184 	}
1185 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1186 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1187 	MEMZERO(cc->ses_eltmap, ntype);
1188 	cc->ses_ntypes = (uint8_t) ntype;
1189 	ssc->ses_nobjects = nobj;
1190 
1191 	/*
1192 	 * Now waltz through the # of types again to fill in the types
1193 	 * (and subenclosure ids) of the allocated objects.
1194 	 */
1195 	nobj = 0;
1196 	for (i = 0; i < ntype; i++) {
1197 		int j;
1198 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1199 			continue;
1200 		}
1201 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1202 		for (j = 0; j < thdr.enc_maxelt; j++) {
1203 			cc->ses_typidx[nobj].ses_tidx = i;
1204 			cc->ses_typidx[nobj].ses_oidx = j;
1205 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1206 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1207 		}
1208 	}
1209 	SES_FREE(sdata, SCSZ);
1210 	return (0);
1211 }
1212 
1213 static int
1214 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1215 {
1216 	struct sscfg *cc;
1217 	int err, amt, bufsiz, tidx, oidx;
1218 	char cdb[6], *sdata;
1219 
1220 	cc = ssc->ses_private;
1221 	if (cc == NULL) {
1222 		return (ENXIO);
1223 	}
1224 
1225 	/*
1226 	 * If we're just getting overall enclosure status,
1227 	 * we only need 2 bytes of data storage.
1228 	 *
1229 	 * If we're getting anything else, we know how much
1230 	 * storage we need by noting that starting at offset
1231 	 * 8 in returned data, all object status bytes are 4
1232 	 * bytes long, and are stored in chunks of types(M)
1233 	 * and nth+1 instances of type M.
1234 	 */
1235 	if (objid == -1) {
1236 		bufsiz = 2;
1237 	} else {
1238 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1239 	}
1240 	sdata = SES_MALLOC(bufsiz);
1241 	if (sdata == NULL)
1242 		return (ENOMEM);
1243 
1244 	cdb[0] = RECEIVE_DIAGNOSTIC;
1245 	cdb[1] = 1;
1246 	cdb[2] = SesStatusPage;
1247 	cdb[3] = bufsiz >> 8;
1248 	cdb[4] = bufsiz & 0xff;
1249 	cdb[5] = 0;
1250 	amt = bufsiz;
1251 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1252 	if (err) {
1253 		SES_FREE(sdata, bufsiz);
1254 		return (err);
1255 	}
1256 	amt = bufsiz - amt;
1257 
1258 	if (objid == -1) {
1259 		tidx = -1;
1260 		oidx = -1;
1261 	} else {
1262 		tidx = cc->ses_typidx[objid].ses_tidx;
1263 		oidx = cc->ses_typidx[objid].ses_oidx;
1264 	}
1265 	if (in) {
1266 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1267 			err = ENODEV;
1268 		}
1269 	} else {
1270 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1271 			err = ENODEV;
1272 		} else {
1273 			cdb[0] = SEND_DIAGNOSTIC;
1274 			cdb[1] = 0x10;
1275 			cdb[2] = 0;
1276 			cdb[3] = bufsiz >> 8;
1277 			cdb[4] = bufsiz & 0xff;
1278 			cdb[5] = 0;
1279 			amt = -bufsiz;
1280 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1281 		}
1282 	}
1283 	SES_FREE(sdata, bufsiz);
1284 	return (0);
1285 }
1286 
1287 
1288 /*
1289  * Routines to parse returned SES data structures.
1290  * Architecture and compiler independent.
1291  */
1292 
1293 static int
1294 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1295 {
1296 	if (buflen < SES_CFGHDR_MINLEN) {
1297 		return (-1);
1298 	}
1299 	gget8(buffer, 1, cfp->Nsubenc);
1300 	gget32(buffer, 4, cfp->GenCode);
1301 	return (0);
1302 }
1303 
1304 static int
1305 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1306 {
1307 	int s, off = 8;
1308 	for (s = 0; s < SubEncId; s++) {
1309 		if (off + 3 > amt)
1310 			return (-1);
1311 		off += buffer[off+3] + 4;
1312 	}
1313 	if (off + 3 > amt) {
1314 		return (-1);
1315 	}
1316 	gget8(buffer, off+1, chp->Subencid);
1317 	gget8(buffer, off+2, chp->Ntypes);
1318 	gget8(buffer, off+3, chp->VEnclen);
1319 	return (0);
1320 }
1321 
1322 static int
1323 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1324 {
1325 	int s, e, enclen, off = 8;
1326 	for (s = 0; s < SubEncId; s++) {
1327 		if (off + 3 > amt)
1328 			return (-1);
1329 		off += buffer[off+3] + 4;
1330 	}
1331 	if (off + 3 > amt) {
1332 		return (-1);
1333 	}
1334 	gget8(buffer, off+3, enclen);
1335 	off += 4;
1336 	if (off  >= amt)
1337 		return (-1);
1338 
1339 	e = off + enclen;
1340 	if (e > amt) {
1341 		e = amt;
1342 	}
1343 	MEMCPY(cdp, &buffer[off], e - off);
1344 	return (0);
1345 }
1346 
1347 static int
1348 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1349 {
1350 	int s, off = 8;
1351 
1352 	if (amt < SES_CFGHDR_MINLEN) {
1353 		return (-1);
1354 	}
1355 	for (s = 0; s < buffer[1]; s++) {
1356 		if (off + 3 > amt)
1357 			return (-1);
1358 		off += buffer[off+3] + 4;
1359 	}
1360 	if (off + 3 > amt) {
1361 		return (-1);
1362 	}
1363 	off += buffer[off+3] + 4 + (nth * 4);
1364 	if (amt < (off + 4))
1365 		return (-1);
1366 
1367 	gget8(buffer, off++, thp->enc_type);
1368 	gget8(buffer, off++, thp->enc_maxelt);
1369 	gget8(buffer, off++, thp->enc_subenc);
1370 	gget8(buffer, off, thp->enc_tlen);
1371 	return (0);
1372 }
1373 
1374 /*
1375  * This function needs a little explanation.
1376  *
1377  * The arguments are:
1378  *
1379  *
1380  *	char *b, int amt
1381  *
1382  *		These describes the raw input SES status data and length.
1383  *
1384  *	uint8_t *ep
1385  *
1386  *		This is a map of the number of types for each element type
1387  *		in the enclosure.
1388  *
1389  *	int elt
1390  *
1391  *		This is the element type being sought. If elt is -1,
1392  *		then overall enclosure status is being sought.
1393  *
1394  *	int elm
1395  *
1396  *		This is the ordinal Mth element of type elt being sought.
1397  *
1398  *	SesComStat *sp
1399  *
1400  *		This is the output area to store the status for
1401  *		the Mth element of type Elt.
1402  */
1403 
1404 static int
1405 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1406 {
1407 	int idx, i;
1408 
1409 	/*
1410 	 * If it's overall enclosure status being sought, get that.
1411 	 * We need at least 2 bytes of status data to get that.
1412 	 */
1413 	if (elt == -1) {
1414 		if (amt < 2)
1415 			return (-1);
1416 		gget8(b, 1, sp->comstatus);
1417 		sp->comstat[0] = 0;
1418 		sp->comstat[1] = 0;
1419 		sp->comstat[2] = 0;
1420 		return (0);
1421 	}
1422 
1423 	/*
1424 	 * Check to make sure that the Mth element is legal for type Elt.
1425 	 */
1426 
1427 	if (elm >= ep[elt])
1428 		return (-1);
1429 
1430 	/*
1431 	 * Starting at offset 8, start skipping over the storage
1432 	 * for the element types we're not interested in.
1433 	 */
1434 	for (idx = 8, i = 0; i < elt; i++) {
1435 		idx += ((ep[i] + 1) * 4);
1436 	}
1437 
1438 	/*
1439 	 * Skip over Overall status for this element type.
1440 	 */
1441 	idx += 4;
1442 
1443 	/*
1444 	 * And skip to the index for the Mth element that we're going for.
1445 	 */
1446 	idx += (4 * elm);
1447 
1448 	/*
1449 	 * Make sure we haven't overflowed the buffer.
1450 	 */
1451 	if (idx+4 > amt)
1452 		return (-1);
1453 
1454 	/*
1455 	 * Retrieve the status.
1456 	 */
1457 	gget8(b, idx++, sp->comstatus);
1458 	gget8(b, idx++, sp->comstat[0]);
1459 	gget8(b, idx++, sp->comstat[1]);
1460 	gget8(b, idx++, sp->comstat[2]);
1461 #if	0
1462 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1463 #endif
1464 	return (0);
1465 }
1466 
1467 /*
1468  * This is the mirror function to ses_decode, but we set the 'select'
1469  * bit for the object which we're interested in. All other objects,
1470  * after a status fetch, should have that bit off. Hmm. It'd be easy
1471  * enough to ensure this, so we will.
1472  */
1473 
1474 static int
1475 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1476 {
1477 	int idx, i;
1478 
1479 	/*
1480 	 * If it's overall enclosure status being sought, get that.
1481 	 * We need at least 2 bytes of status data to get that.
1482 	 */
1483 	if (elt == -1) {
1484 		if (amt < 2)
1485 			return (-1);
1486 		i = 0;
1487 		sset8(b, i, 0);
1488 		sset8(b, i, sp->comstatus & 0xf);
1489 #if	0
1490 		PRINTF("set EncStat %x\n", sp->comstatus);
1491 #endif
1492 		return (0);
1493 	}
1494 
1495 	/*
1496 	 * Check to make sure that the Mth element is legal for type Elt.
1497 	 */
1498 
1499 	if (elm >= ep[elt])
1500 		return (-1);
1501 
1502 	/*
1503 	 * Starting at offset 8, start skipping over the storage
1504 	 * for the element types we're not interested in.
1505 	 */
1506 	for (idx = 8, i = 0; i < elt; i++) {
1507 		idx += ((ep[i] + 1) * 4);
1508 	}
1509 
1510 	/*
1511 	 * Skip over Overall status for this element type.
1512 	 */
1513 	idx += 4;
1514 
1515 	/*
1516 	 * And skip to the index for the Mth element that we're going for.
1517 	 */
1518 	idx += (4 * elm);
1519 
1520 	/*
1521 	 * Make sure we haven't overflowed the buffer.
1522 	 */
1523 	if (idx+4 > amt)
1524 		return (-1);
1525 
1526 	/*
1527 	 * Set the status.
1528 	 */
1529 	sset8(b, idx, sp->comstatus);
1530 	sset8(b, idx, sp->comstat[0]);
1531 	sset8(b, idx, sp->comstat[1]);
1532 	sset8(b, idx, sp->comstat[2]);
1533 	idx -= 4;
1534 
1535 #if	0
1536 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1537 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1538 	    sp->comstat[1], sp->comstat[2]);
1539 #endif
1540 
1541 	/*
1542 	 * Now make sure all other 'Select' bits are off.
1543 	 */
1544 	for (i = 8; i < amt; i += 4) {
1545 		if (i != idx)
1546 			b[i] &= ~0x80;
1547 	}
1548 	/*
1549 	 * And make sure the INVOP bit is clear.
1550 	 */
1551 	b[2] &= ~0x10;
1552 
1553 	return (0);
1554 }
1555 
1556 /*
1557  * SAF-TE Type Device Emulation
1558  */
1559 
1560 static int safte_getconfig(ses_softc_t *);
1561 static int safte_rdstat(ses_softc_t *, int);
1562 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1563 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1564 static void wrslot_stat(ses_softc_t *, int);
1565 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1566 
1567 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1568 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1569 /*
1570  * SAF-TE specific defines- Mandatory ones only...
1571  */
1572 
1573 /*
1574  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1575  */
1576 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1577 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1578 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1579 
1580 /*
1581  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1582  */
1583 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1584 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1585 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1586 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1587 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1588 
1589 
1590 #define	SAFT_SCRATCH	64
1591 #define	NPSEUDO_THERM	16
1592 #define	NPSEUDO_ALARM	1
1593 struct scfg {
1594 	/*
1595 	 * Cached Configuration
1596 	 */
1597 	uint8_t	Nfans;		/* Number of Fans */
1598 	uint8_t	Npwr;		/* Number of Power Supplies */
1599 	uint8_t	Nslots;		/* Number of Device Slots */
1600 	uint8_t	DoorLock;	/* Door Lock Installed */
1601 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1602 	uint8_t	Nspkrs;		/* Number of Speakers */
1603 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1604 	/*
1605 	 * Cached Flag Bytes for Global Status
1606 	 */
1607 	uint8_t	flag1;
1608 	uint8_t	flag2;
1609 	/*
1610 	 * What object index ID is where various slots start.
1611 	 */
1612 	uint8_t	pwroff;
1613 	uint8_t	slotoff;
1614 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1615 };
1616 
1617 #define	SAFT_FLG1_ALARM		0x1
1618 #define	SAFT_FLG1_GLOBFAIL	0x2
1619 #define	SAFT_FLG1_GLOBWARN	0x4
1620 #define	SAFT_FLG1_ENCPWROFF	0x8
1621 #define	SAFT_FLG1_ENCFANFAIL	0x10
1622 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1623 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1624 #define	SAFT_FLG1_ENCDRVWARN	0x80
1625 
1626 #define	SAFT_FLG2_LOCKDOOR	0x4
1627 #define	SAFT_PRIVATE		sizeof (struct scfg)
1628 
1629 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1630 #define	SAFT_BAIL(r, x, k, l)	\
1631 	if ((r) >= (x)) { \
1632 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1633 		SES_FREE((k), (l)); \
1634 		return (EIO); \
1635 	}
1636 
1637 
1638 static int
1639 safte_softc_init(ses_softc_t *ssc, int doinit)
1640 {
1641 	int err, i, r;
1642 	struct scfg *cc;
1643 
1644 	if (doinit == 0) {
1645 		if (ssc->ses_nobjects) {
1646 			if (ssc->ses_objmap) {
1647 				SES_FREE(ssc->ses_objmap,
1648 				    ssc->ses_nobjects * sizeof (encobj));
1649 				ssc->ses_objmap = NULL;
1650 			}
1651 			ssc->ses_nobjects = 0;
1652 		}
1653 		if (ssc->ses_private) {
1654 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1655 			ssc->ses_private = NULL;
1656 		}
1657 		return (0);
1658 	}
1659 
1660 	if (ssc->ses_private == NULL) {
1661 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1662 		if (ssc->ses_private == NULL) {
1663 			return (ENOMEM);
1664 		}
1665 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1666 	}
1667 
1668 	ssc->ses_nobjects = 0;
1669 	ssc->ses_encstat = 0;
1670 
1671 	if ((err = safte_getconfig(ssc)) != 0) {
1672 		return (err);
1673 	}
1674 
1675 	/*
1676 	 * The number of objects here, as well as that reported by the
1677 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1678 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1679 	 */
1680 	cc = ssc->ses_private;
1681 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1682 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1683 	ssc->ses_objmap = (encobj *)
1684 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1685 	if (ssc->ses_objmap == NULL) {
1686 		return (ENOMEM);
1687 	}
1688 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1689 
1690 	r = 0;
1691 	/*
1692 	 * Note that this is all arranged for the convenience
1693 	 * in later fetches of status.
1694 	 */
1695 	for (i = 0; i < cc->Nfans; i++)
1696 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1697 	cc->pwroff = (uint8_t) r;
1698 	for (i = 0; i < cc->Npwr; i++)
1699 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1700 	for (i = 0; i < cc->DoorLock; i++)
1701 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1702 	for (i = 0; i < cc->Nspkrs; i++)
1703 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1704 	for (i = 0; i < cc->Ntherm; i++)
1705 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1706 	for (i = 0; i < NPSEUDO_THERM; i++)
1707 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1708 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1709 	cc->slotoff = (uint8_t) r;
1710 	for (i = 0; i < cc->Nslots; i++)
1711 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1712 	return (0);
1713 }
1714 
1715 static int
1716 safte_init_enc(ses_softc_t *ssc)
1717 {
1718 	int err;
1719 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1720 
1721 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1722 	if (err) {
1723 		return (err);
1724 	}
1725 	DELAY(5000);
1726 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1727 	return (err);
1728 }
1729 
1730 static int
1731 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1732 {
1733 	return (safte_rdstat(ssc, slpflg));
1734 }
1735 
1736 static int
1737 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1738 {
1739 	struct scfg *cc = ssc->ses_private;
1740 	if (cc == NULL)
1741 		return (0);
1742 	/*
1743 	 * Since SAF-TE devices aren't necessarily sticky in terms
1744 	 * of state, make our soft copy of enclosure status 'sticky'-
1745 	 * that is, things set in enclosure status stay set (as implied
1746 	 * by conditions set in reading object status) until cleared.
1747 	 */
1748 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1749 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1750 	ssc->ses_encstat |= ENCI_SVALID;
1751 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1752 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1753 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1754 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1755 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1756 	}
1757 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1758 }
1759 
1760 static int
1761 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1762 {
1763 	int i = (int)obp->obj_id;
1764 
1765 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1766 	    (ssc->ses_objmap[i].svalid) == 0) {
1767 		int err = safte_rdstat(ssc, slpflg);
1768 		if (err)
1769 			return (err);
1770 	}
1771 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1772 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1773 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1774 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1775 	return (0);
1776 }
1777 
1778 
1779 static int
1780 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1781 {
1782 	int idx, err;
1783 	encobj *ep;
1784 	struct scfg *cc;
1785 
1786 
1787 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1788 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1789 	    obp->cstat[3]);
1790 
1791 	/*
1792 	 * If this is clear, we don't do diddly.
1793 	 */
1794 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1795 		return (0);
1796 	}
1797 
1798 	err = 0;
1799 	/*
1800 	 * Check to see if the common bits are set and do them first.
1801 	 */
1802 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1803 		err = set_objstat_sel(ssc, obp, slp);
1804 		if (err)
1805 			return (err);
1806 	}
1807 
1808 	cc = ssc->ses_private;
1809 	if (cc == NULL)
1810 		return (0);
1811 
1812 	idx = (int)obp->obj_id;
1813 	ep = &ssc->ses_objmap[idx];
1814 
1815 	switch (ep->enctype) {
1816 	case SESTYP_DEVICE:
1817 	{
1818 		uint8_t slotop = 0;
1819 		/*
1820 		 * XXX: I should probably cache the previous state
1821 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1822 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1823 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1824 		 */
1825 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1826 			slotop |= 0x2;
1827 		}
1828 		if (obp->cstat[2] & SESCTL_RQSID) {
1829 			slotop |= 0x4;
1830 		}
1831 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1832 		    slotop, slp);
1833 		if (err)
1834 			return (err);
1835 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1836 			ep->priv |= 0x2;
1837 		} else {
1838 			ep->priv &= ~0x2;
1839 		}
1840 		if (ep->priv & 0xc6) {
1841 			ep->priv &= ~0x1;
1842 		} else {
1843 			ep->priv |= 0x1;	/* no errors */
1844 		}
1845 		wrslot_stat(ssc, slp);
1846 		break;
1847 	}
1848 	case SESTYP_POWER:
1849 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1850 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1851 		} else {
1852 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1853 		}
1854 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1855 		    cc->flag2, 0, slp);
1856 		if (err)
1857 			return (err);
1858 		if (obp->cstat[3] & SESCTL_RQSTON) {
1859 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1860 				idx - cc->pwroff, 0, 0, slp);
1861 		} else {
1862 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1863 				idx - cc->pwroff, 0, 1, slp);
1864 		}
1865 		break;
1866 	case SESTYP_FAN:
1867 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1868 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1869 		} else {
1870 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1871 		}
1872 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1873 		    cc->flag2, 0, slp);
1874 		if (err)
1875 			return (err);
1876 		if (obp->cstat[3] & SESCTL_RQSTON) {
1877 			uint8_t fsp;
1878 			if ((obp->cstat[3] & 0x7) == 7) {
1879 				fsp = 4;
1880 			} else if ((obp->cstat[3] & 0x7) == 6) {
1881 				fsp = 3;
1882 			} else if ((obp->cstat[3] & 0x7) == 4) {
1883 				fsp = 2;
1884 			} else {
1885 				fsp = 1;
1886 			}
1887 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1888 		} else {
1889 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1890 		}
1891 		break;
1892 	case SESTYP_DOORLOCK:
1893 		if (obp->cstat[3] & 0x1) {
1894 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1895 		} else {
1896 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1897 		}
1898 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1899 		break;
1900 	case SESTYP_ALARM:
1901 		/*
1902 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1903 		 */
1904 		obp->cstat[3] &= ~0xa;
1905 		if (obp->cstat[3] & 0x40) {
1906 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1907 		} else if (obp->cstat[3] != 0) {
1908 			cc->flag2 |= SAFT_FLG1_ALARM;
1909 		} else {
1910 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1911 		}
1912 		ep->priv = obp->cstat[3];
1913 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1914 		break;
1915 	default:
1916 		break;
1917 	}
1918 	ep->svalid = 0;
1919 	return (0);
1920 }
1921 
1922 static int
1923 safte_getconfig(ses_softc_t *ssc)
1924 {
1925 	struct scfg *cfg;
1926 	int err, amt;
1927 	char *sdata;
1928 	static char cdb[10] =
1929 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1930 
1931 	cfg = ssc->ses_private;
1932 	if (cfg == NULL)
1933 		return (ENXIO);
1934 
1935 	sdata = SES_MALLOC(SAFT_SCRATCH);
1936 	if (sdata == NULL)
1937 		return (ENOMEM);
1938 
1939 	amt = SAFT_SCRATCH;
1940 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1941 	if (err) {
1942 		SES_FREE(sdata, SAFT_SCRATCH);
1943 		return (err);
1944 	}
1945 	amt = SAFT_SCRATCH - amt;
1946 	if (amt < 6) {
1947 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1948 		SES_FREE(sdata, SAFT_SCRATCH);
1949 		return (EIO);
1950 	}
1951 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1952 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1953 	cfg->Nfans = sdata[0];
1954 	cfg->Npwr = sdata[1];
1955 	cfg->Nslots = sdata[2];
1956 	cfg->DoorLock = sdata[3];
1957 	cfg->Ntherm = sdata[4];
1958 	cfg->Nspkrs = sdata[5];
1959 	cfg->Nalarm = NPSEUDO_ALARM;
1960 	SES_FREE(sdata, SAFT_SCRATCH);
1961 	return (0);
1962 }
1963 
1964 static int
1965 safte_rdstat(ses_softc_t *ssc, int slpflg)
1966 {
1967 	int err, oid, r, i, hiwater, nitems, amt;
1968 	uint16_t tempflags;
1969 	size_t buflen;
1970 	uint8_t status, oencstat;
1971 	char *sdata, cdb[10];
1972 	struct scfg *cc = ssc->ses_private;
1973 
1974 
1975 	/*
1976 	 * The number of objects overstates things a bit,
1977 	 * both for the bogus 'thermometer' entries and
1978 	 * the drive status (which isn't read at the same
1979 	 * time as the enclosure status), but that's okay.
1980 	 */
1981 	buflen = 4 * cc->Nslots;
1982 	if (ssc->ses_nobjects > buflen)
1983 		buflen = ssc->ses_nobjects;
1984 	sdata = SES_MALLOC(buflen);
1985 	if (sdata == NULL)
1986 		return (ENOMEM);
1987 
1988 	cdb[0] = READ_BUFFER;
1989 	cdb[1] = 1;
1990 	cdb[2] = SAFTE_RD_RDESTS;
1991 	cdb[3] = 0;
1992 	cdb[4] = 0;
1993 	cdb[5] = 0;
1994 	cdb[6] = 0;
1995 	cdb[7] = (buflen >> 8) & 0xff;
1996 	cdb[8] = buflen & 0xff;
1997 	cdb[9] = 0;
1998 	amt = buflen;
1999 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2000 	if (err) {
2001 		SES_FREE(sdata, buflen);
2002 		return (err);
2003 	}
2004 	hiwater = buflen - amt;
2005 
2006 
2007 	/*
2008 	 * invalidate all status bits.
2009 	 */
2010 	for (i = 0; i < ssc->ses_nobjects; i++)
2011 		ssc->ses_objmap[i].svalid = 0;
2012 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2013 	ssc->ses_encstat = 0;
2014 
2015 
2016 	/*
2017 	 * Now parse returned buffer.
2018 	 * If we didn't get enough data back,
2019 	 * that's considered a fatal error.
2020 	 */
2021 	oid = r = 0;
2022 
2023 	for (nitems = i = 0; i < cc->Nfans; i++) {
2024 		SAFT_BAIL(r, hiwater, sdata, buflen);
2025 		/*
2026 		 * 0 = Fan Operational
2027 		 * 1 = Fan is malfunctioning
2028 		 * 2 = Fan is not present
2029 		 * 0x80 = Unknown or Not Reportable Status
2030 		 */
2031 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2032 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2033 		switch ((int)(uint8_t)sdata[r]) {
2034 		case 0:
2035 			nitems++;
2036 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2037 			/*
2038 			 * We could get fancier and cache
2039 			 * fan speeds that we have set, but
2040 			 * that isn't done now.
2041 			 */
2042 			ssc->ses_objmap[oid].encstat[3] = 7;
2043 			break;
2044 
2045 		case 1:
2046 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2047 			/*
2048 			 * FAIL and FAN STOPPED synthesized
2049 			 */
2050 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2051 			/*
2052 			 * Enclosure marked with CRITICAL error
2053 			 * if only one fan or no thermometers,
2054 			 * else the NONCRITICAL error is set.
2055 			 */
2056 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2057 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2058 			else
2059 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2060 			break;
2061 		case 2:
2062 			ssc->ses_objmap[oid].encstat[0] =
2063 			    SES_OBJSTAT_NOTINSTALLED;
2064 			ssc->ses_objmap[oid].encstat[3] = 0;
2065 			/*
2066 			 * Enclosure marked with CRITICAL error
2067 			 * if only one fan or no thermometers,
2068 			 * else the NONCRITICAL error is set.
2069 			 */
2070 			if (cc->Nfans == 1)
2071 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2072 			else
2073 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2074 			break;
2075 		case 0x80:
2076 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2077 			ssc->ses_objmap[oid].encstat[3] = 0;
2078 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2079 			break;
2080 		default:
2081 			ssc->ses_objmap[oid].encstat[0] =
2082 			    SES_OBJSTAT_UNSUPPORTED;
2083 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2084 			    sdata[r] & 0xff);
2085 			break;
2086 		}
2087 		ssc->ses_objmap[oid++].svalid = 1;
2088 		r++;
2089 	}
2090 
2091 	/*
2092 	 * No matter how you cut it, no cooling elements when there
2093 	 * should be some there is critical.
2094 	 */
2095 	if (cc->Nfans && nitems == 0) {
2096 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2097 	}
2098 
2099 
2100 	for (i = 0; i < cc->Npwr; i++) {
2101 		SAFT_BAIL(r, hiwater, sdata, buflen);
2102 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2103 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2104 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2105 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2106 		switch ((uint8_t)sdata[r]) {
2107 		case 0x00:	/* pws operational and on */
2108 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2109 			break;
2110 		case 0x01:	/* pws operational and off */
2111 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2112 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2113 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2114 			break;
2115 		case 0x10:	/* pws is malfunctioning and commanded on */
2116 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2117 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2118 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2119 			break;
2120 
2121 		case 0x11:	/* pws is malfunctioning and commanded off */
2122 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2123 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2124 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2125 			break;
2126 		case 0x20:	/* pws is not present */
2127 			ssc->ses_objmap[oid].encstat[0] =
2128 			    SES_OBJSTAT_NOTINSTALLED;
2129 			ssc->ses_objmap[oid].encstat[3] = 0;
2130 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2131 			break;
2132 		case 0x21:	/* pws is present */
2133 			/*
2134 			 * This is for enclosures that cannot tell whether the
2135 			 * device is on or malfunctioning, but know that it is
2136 			 * present. Just fall through.
2137 			 */
2138 			/* FALLTHROUGH */
2139 		case 0x80:	/* Unknown or Not Reportable Status */
2140 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2141 			ssc->ses_objmap[oid].encstat[3] = 0;
2142 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2143 			break;
2144 		default:
2145 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2146 			    i, sdata[r] & 0xff);
2147 			break;
2148 		}
2149 		ssc->ses_objmap[oid++].svalid = 1;
2150 		r++;
2151 	}
2152 
2153 	/*
2154 	 * Skip over Slot SCSI IDs
2155 	 */
2156 	r += cc->Nslots;
2157 
2158 	/*
2159 	 * We always have doorlock status, no matter what,
2160 	 * but we only save the status if we have one.
2161 	 */
2162 	SAFT_BAIL(r, hiwater, sdata, buflen);
2163 	if (cc->DoorLock) {
2164 		/*
2165 		 * 0 = Door Locked
2166 		 * 1 = Door Unlocked, or no Lock Installed
2167 		 * 0x80 = Unknown or Not Reportable Status
2168 		 */
2169 		ssc->ses_objmap[oid].encstat[1] = 0;
2170 		ssc->ses_objmap[oid].encstat[2] = 0;
2171 		switch ((uint8_t)sdata[r]) {
2172 		case 0:
2173 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174 			ssc->ses_objmap[oid].encstat[3] = 0;
2175 			break;
2176 		case 1:
2177 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2178 			ssc->ses_objmap[oid].encstat[3] = 1;
2179 			break;
2180 		case 0x80:
2181 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2182 			ssc->ses_objmap[oid].encstat[3] = 0;
2183 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2184 			break;
2185 		default:
2186 			ssc->ses_objmap[oid].encstat[0] =
2187 			    SES_OBJSTAT_UNSUPPORTED;
2188 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2189 			    sdata[r] & 0xff);
2190 			break;
2191 		}
2192 		ssc->ses_objmap[oid++].svalid = 1;
2193 	}
2194 	r++;
2195 
2196 	/*
2197 	 * We always have speaker status, no matter what,
2198 	 * but we only save the status if we have one.
2199 	 */
2200 	SAFT_BAIL(r, hiwater, sdata, buflen);
2201 	if (cc->Nspkrs) {
2202 		ssc->ses_objmap[oid].encstat[1] = 0;
2203 		ssc->ses_objmap[oid].encstat[2] = 0;
2204 		if (sdata[r] == 1) {
2205 			/*
2206 			 * We need to cache tone urgency indicators.
2207 			 * Someday.
2208 			 */
2209 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2210 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2211 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2212 		} else if (sdata[r] == 0) {
2213 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2214 			ssc->ses_objmap[oid].encstat[3] = 0;
2215 		} else {
2216 			ssc->ses_objmap[oid].encstat[0] =
2217 			    SES_OBJSTAT_UNSUPPORTED;
2218 			ssc->ses_objmap[oid].encstat[3] = 0;
2219 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2220 			    sdata[r] & 0xff);
2221 		}
2222 		ssc->ses_objmap[oid++].svalid = 1;
2223 	}
2224 	r++;
2225 
2226 	for (i = 0; i < cc->Ntherm; i++) {
2227 		SAFT_BAIL(r, hiwater, sdata, buflen);
2228 		/*
2229 		 * Status is a range from -10 to 245 deg Celsius,
2230 		 * which we need to normalize to -20 to -245 according
2231 		 * to the latest SCSI spec, which makes little
2232 		 * sense since this would overflow an 8bit value.
2233 		 * Well, still, the base normalization is -20,
2234 		 * not -10, so we have to adjust.
2235 		 *
2236 		 * So what's over and under temperature?
2237 		 * Hmm- we'll state that 'normal' operating
2238 		 * is 10 to 40 deg Celsius.
2239 		 */
2240 
2241 		/*
2242 		 * Actually.... All of the units that people out in the world
2243 		 * seem to have do not come even close to setting a value that
2244 		 * complies with this spec.
2245 		 *
2246 		 * The closest explanation I could find was in an
2247 		 * LSI-Logic manual, which seemed to indicate that
2248 		 * this value would be set by whatever the I2C code
2249 		 * would interpolate from the output of an LM75
2250 		 * temperature sensor.
2251 		 *
2252 		 * This means that it is impossible to use the actual
2253 		 * numeric value to predict anything. But we don't want
2254 		 * to lose the value. So, we'll propagate the *uncorrected*
2255 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2256 		 * temperature flags for warnings.
2257 		 */
2258 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2259 		ssc->ses_objmap[oid].encstat[1] = 0;
2260 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2261 		ssc->ses_objmap[oid].encstat[3] = 0;
2262 		ssc->ses_objmap[oid++].svalid = 1;
2263 		r++;
2264 	}
2265 
2266 	/*
2267 	 * Now, for "pseudo" thermometers, we have two bytes
2268 	 * of information in enclosure status- 16 bits. Actually,
2269 	 * the MSB is a single TEMP ALERT flag indicating whether
2270 	 * any other bits are set, but, thanks to fuzzy thinking,
2271 	 * in the SAF-TE spec, this can also be set even if no
2272 	 * other bits are set, thus making this really another
2273 	 * binary temperature sensor.
2274 	 */
2275 
2276 	SAFT_BAIL(r, hiwater, sdata, buflen);
2277 	tempflags = sdata[r++];
2278 	SAFT_BAIL(r, hiwater, sdata, buflen);
2279 	tempflags |= (tempflags << 8) | sdata[r++];
2280 
2281 	for (i = 0; i < NPSEUDO_THERM; i++) {
2282 		ssc->ses_objmap[oid].encstat[1] = 0;
2283 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2284 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2285 			ssc->ses_objmap[4].encstat[2] = 0xff;
2286 			/*
2287 			 * Set 'over temperature' failure.
2288 			 */
2289 			ssc->ses_objmap[oid].encstat[3] = 8;
2290 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2291 		} else {
2292 			/*
2293 			 * We used to say 'not available' and synthesize a
2294 			 * nominal 30 deg (C)- that was wrong. Actually,
2295 			 * Just say 'OK', and use the reserved value of
2296 			 * zero.
2297 			 */
2298 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2299 			ssc->ses_objmap[oid].encstat[2] = 0;
2300 			ssc->ses_objmap[oid].encstat[3] = 0;
2301 		}
2302 		ssc->ses_objmap[oid++].svalid = 1;
2303 	}
2304 
2305 	/*
2306 	 * Get alarm status.
2307 	 */
2308 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2309 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2310 	ssc->ses_objmap[oid++].svalid = 1;
2311 
2312 	/*
2313 	 * Now get drive slot status
2314 	 */
2315 	cdb[2] = SAFTE_RD_RDDSTS;
2316 	amt = buflen;
2317 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2318 	if (err) {
2319 		SES_FREE(sdata, buflen);
2320 		return (err);
2321 	}
2322 	hiwater = buflen - amt;
2323 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2324 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2325 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2326 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2327 		ssc->ses_objmap[oid].encstat[2] = 0;
2328 		ssc->ses_objmap[oid].encstat[3] = 0;
2329 		status = sdata[r+3];
2330 		if ((status & 0x1) == 0) {	/* no device */
2331 			ssc->ses_objmap[oid].encstat[0] =
2332 			    SES_OBJSTAT_NOTINSTALLED;
2333 		} else {
2334 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2335 		}
2336 		if (status & 0x2) {
2337 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2338 		}
2339 		if ((status & 0x4) == 0) {
2340 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2341 		}
2342 		ssc->ses_objmap[oid++].svalid = 1;
2343 	}
2344 	/* see comment below about sticky enclosure status */
2345 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2346 	SES_FREE(sdata, buflen);
2347 	return (0);
2348 }
2349 
2350 static int
2351 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2352 {
2353 	int idx;
2354 	encobj *ep;
2355 	struct scfg *cc = ssc->ses_private;
2356 
2357 	if (cc == NULL)
2358 		return (0);
2359 
2360 	idx = (int)obp->obj_id;
2361 	ep = &ssc->ses_objmap[idx];
2362 
2363 	switch (ep->enctype) {
2364 	case SESTYP_DEVICE:
2365 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2366 			ep->priv |= 0x40;
2367 		}
2368 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2369 		if (obp->cstat[0] & SESCTL_DISABLE) {
2370 			ep->priv |= 0x80;
2371 			/*
2372 			 * Hmm. Try to set the 'No Drive' flag.
2373 			 * Maybe that will count as a 'disable'.
2374 			 */
2375 		}
2376 		if (ep->priv & 0xc6) {
2377 			ep->priv &= ~0x1;
2378 		} else {
2379 			ep->priv |= 0x1;	/* no errors */
2380 		}
2381 		wrslot_stat(ssc, slp);
2382 		break;
2383 	case SESTYP_POWER:
2384 		/*
2385 		 * Okay- the only one that makes sense here is to
2386 		 * do the 'disable' for a power supply.
2387 		 */
2388 		if (obp->cstat[0] & SESCTL_DISABLE) {
2389 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
2390 				idx - cc->pwroff, 0, 0, slp);
2391 		}
2392 		break;
2393 	case SESTYP_FAN:
2394 		/*
2395 		 * Okay- the only one that makes sense here is to
2396 		 * set fan speed to zero on disable.
2397 		 */
2398 		if (obp->cstat[0] & SESCTL_DISABLE) {
2399 			/* remember- fans are the first items, so idx works */
2400 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2401 		}
2402 		break;
2403 	case SESTYP_DOORLOCK:
2404 		/*
2405 		 * Well, we can 'disable' the lock.
2406 		 */
2407 		if (obp->cstat[0] & SESCTL_DISABLE) {
2408 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2409 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2410 				cc->flag2, 0, slp);
2411 		}
2412 		break;
2413 	case SESTYP_ALARM:
2414 		/*
2415 		 * Well, we can 'disable' the alarm.
2416 		 */
2417 		if (obp->cstat[0] & SESCTL_DISABLE) {
2418 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2419 			ep->priv |= 0x40;	/* Muted */
2420 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2421 				cc->flag2, 0, slp);
2422 		}
2423 		break;
2424 	default:
2425 		break;
2426 	}
2427 	ep->svalid = 0;
2428 	return (0);
2429 }
2430 
2431 /*
2432  * This function handles all of the 16 byte WRITE BUFFER commands.
2433  */
2434 static int
2435 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2436     uint8_t b3, int slp)
2437 {
2438 	int err, amt;
2439 	char *sdata;
2440 	struct scfg *cc = ssc->ses_private;
2441 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2442 
2443 	if (cc == NULL)
2444 		return (0);
2445 
2446 	sdata = SES_MALLOC(16);
2447 	if (sdata == NULL)
2448 		return (ENOMEM);
2449 
2450 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2451 
2452 	sdata[0] = op;
2453 	sdata[1] = b1;
2454 	sdata[2] = b2;
2455 	sdata[3] = b3;
2456 	MEMZERO(&sdata[4], 12);
2457 	amt = -16;
2458 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2459 	SES_FREE(sdata, 16);
2460 	return (err);
2461 }
2462 
2463 /*
2464  * This function updates the status byte for the device slot described.
2465  *
2466  * Since this is an optional SAF-TE command, there's no point in
2467  * returning an error.
2468  */
2469 static void
2470 wrslot_stat(ses_softc_t *ssc, int slp)
2471 {
2472 	int i, amt;
2473 	encobj *ep;
2474 	char cdb[10], *sdata;
2475 	struct scfg *cc = ssc->ses_private;
2476 
2477 	if (cc == NULL)
2478 		return;
2479 
2480 	SES_DLOG(ssc, "saf_wrslot\n");
2481 	cdb[0] = WRITE_BUFFER;
2482 	cdb[1] = 1;
2483 	cdb[2] = 0;
2484 	cdb[3] = 0;
2485 	cdb[4] = 0;
2486 	cdb[5] = 0;
2487 	cdb[6] = 0;
2488 	cdb[7] = 0;
2489 	cdb[8] = cc->Nslots * 3 + 1;
2490 	cdb[9] = 0;
2491 
2492 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2493 	if (sdata == NULL)
2494 		return;
2495 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2496 
2497 	sdata[0] = SAFTE_WT_DSTAT;
2498 	for (i = 0; i < cc->Nslots; i++) {
2499 		ep = &ssc->ses_objmap[cc->slotoff + i];
2500 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2501 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2502 	}
2503 	amt = -(cc->Nslots * 3 + 1);
2504 	ses_runcmd(ssc, cdb, 10, sdata, &amt);
2505 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2506 }
2507 
2508 /*
2509  * This function issues the "PERFORM SLOT OPERATION" command.
2510  */
2511 static int
2512 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2513 {
2514 	int err, amt;
2515 	char *sdata;
2516 	struct scfg *cc = ssc->ses_private;
2517 	static char cdb[10] =
2518 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2519 
2520 	if (cc == NULL)
2521 		return (0);
2522 
2523 	sdata = SES_MALLOC(SAFT_SCRATCH);
2524 	if (sdata == NULL)
2525 		return (ENOMEM);
2526 	MEMZERO(sdata, SAFT_SCRATCH);
2527 
2528 	sdata[0] = SAFTE_WT_SLTOP;
2529 	sdata[1] = slot;
2530 	sdata[2] = opflag;
2531 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2532 	amt = -SAFT_SCRATCH;
2533 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2534 	SES_FREE(sdata, SAFT_SCRATCH);
2535 	return (err);
2536 }
2537