xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision 70705abf)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.24 2007/11/18 17:53:01 pavalos Exp $ */
3 /*
4  * Copyright (c) 2000 Matthew Jacob
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/fcntl.h>
36 #include <sys/conf.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39 #include <sys/devicestat.h>
40 #include <sys/thread2.h>
41 #include <machine/stdarg.h>
42 
43 #include "../cam.h"
44 #include "../cam_ccb.h"
45 #include "../cam_extend.h"
46 #include "../cam_periph.h"
47 #include "../cam_xpt_periph.h"
48 #include "../cam_debug.h"
49 
50 #include "scsi_all.h"
51 #include "scsi_message.h"
52 #include <sys/ioccom.h>
53 #include "scsi_ses.h"
54 
55 #include <opt_ses.h>
56 
57 /*
58  * Platform Independent Driver Internal Definitions for SES devices.
59  */
60 typedef enum {
61 	SES_NONE,
62 	SES_SES_SCSI2,
63 	SES_SES,
64 	SES_SES_PASSTHROUGH,
65 	SES_SEN,
66 	SES_SAFT
67 } enctyp;
68 
69 struct ses_softc;
70 typedef struct ses_softc ses_softc_t;
71 typedef struct {
72 	int (*softc_init)(ses_softc_t *, int);
73 	int (*init_enc)(ses_softc_t *);
74 	int (*get_encstat)(ses_softc_t *, int);
75 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
76 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
77 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
78 } encvec;
79 
80 #define	ENCI_SVALID	0x80
81 
82 typedef struct {
83 	uint32_t
84 		enctype	: 8,		/* enclosure type */
85 		subenclosure : 8,	/* subenclosure id */
86 		svalid	: 1,		/* enclosure information valid */
87 		priv	: 15;		/* private data, per object */
88 	uint8_t	encstat[4];	/* state && stats */
89 } encobj;
90 
91 #define	SEN_ID		"UNISYS           SUN_SEN"
92 #define	SEN_ID_LEN	24
93 
94 
95 static enctyp ses_type(void *, int);
96 
97 
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init(ses_softc_t *, int);
100 static int ses_init_enc(ses_softc_t *);
101 static int ses_get_encstat(ses_softc_t *, int);
102 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
103 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
104 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
105 
106 static int safte_softc_init(ses_softc_t *, int);
107 static int safte_init_enc(ses_softc_t *);
108 static int safte_get_encstat(ses_softc_t *, int);
109 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
110 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
111 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
112 
113 /*
114  * Platform implementation defines/functions for SES internal kernel stuff
115  */
116 
117 #define	STRNCMP			strncmp
118 #define	PRINTF			kprintf
119 #define	SES_LOG			ses_log
120 #ifdef	DEBUG
121 #define	SES_DLOG		ses_log
122 #else
123 #define	SES_DLOG		if (0) ses_log
124 #endif
125 #define	SES_VLOG		if (bootverbose) ses_log
126 #define	SES_MALLOC(amt)		kmalloc(amt, M_DEVBUF, M_INTWAIT)
127 #define	SES_FREE(ptr, amt)	kfree(ptr, M_DEVBUF)
128 #define	MEMZERO			bzero
129 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
130 
131 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
132 static void ses_log(struct ses_softc *, const char *, ...);
133 
134 /*
135  * Gerenal FreeBSD kernel stuff.
136  */
137 
138 
139 #define ccb_state	ppriv_field0
140 #define ccb_bio		ppriv_ptr1
141 
142 struct ses_softc {
143 	enctyp		ses_type;	/* type of enclosure */
144 	encvec		ses_vec;	/* vector to handlers */
145 	void *		ses_private;	/* per-type private data */
146 	encobj *	ses_objmap;	/* objects */
147 	u_int32_t	ses_nobjects;	/* number of objects */
148 	ses_encstat	ses_encstat;	/* overall status */
149 	u_int8_t	ses_flags;
150 	union ccb	ses_saved_ccb;
151 	struct cam_periph *periph;
152 };
153 #define	SES_FLAG_INVALID	0x01
154 #define	SES_FLAG_OPEN		0x02
155 #define	SES_FLAG_INITIALIZED	0x04
156 
157 #define SESUNIT(x)       (minor((x)))
158 #define SES_CDEV_MAJOR	110
159 
160 static	d_open_t	sesopen;
161 static	d_close_t	sesclose;
162 static	d_ioctl_t	sesioctl;
163 static	periph_init_t	sesinit;
164 static  periph_ctor_t	sesregister;
165 static	periph_oninv_t	sesoninvalidate;
166 static  periph_dtor_t   sescleanup;
167 static  periph_start_t  sesstart;
168 
169 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
170 static void sesdone(struct cam_periph *, union ccb *);
171 static int seserror(union ccb *, u_int32_t, u_int32_t);
172 
173 static struct periph_driver sesdriver = {
174 	sesinit, "ses",
175 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
176 };
177 
178 PERIPHDRIVER_DECLARE(ses, sesdriver);
179 
180 static struct dev_ops ses_ops = {
181 	{ "ses", SES_CDEV_MAJOR, 0 },
182 	.d_open =	sesopen,
183 	.d_close =	sesclose,
184 	.d_ioctl =	sesioctl,
185 };
186 static struct extend_array *sesperiphs;
187 
188 void
189 sesinit(void)
190 {
191 	cam_status status;
192 	struct cam_path *path;
193 
194 	/*
195 	 * Create our extend array for storing the devices we attach to.
196 	 */
197 	sesperiphs = cam_extend_new();
198 	if (sesperiphs == NULL) {
199 		kprintf("ses: Failed to alloc extend array!\n");
200 		return;
201 	}
202 
203 	/*
204 	 * Install a global async callback.  This callback will
205 	 * receive async callbacks like "new device found".
206 	 */
207 	status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
208 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
209 
210 	if (status == CAM_REQ_CMP) {
211 		struct ccb_setasync csa;
212 
213                 xpt_setup_ccb(&csa.ccb_h, path, 5);
214                 csa.ccb_h.func_code = XPT_SASYNC_CB;
215                 csa.event_enable = AC_FOUND_DEVICE;
216                 csa.callback = sesasync;
217                 csa.callback_arg = NULL;
218                 xpt_action((union ccb *)&csa);
219 		status = csa.ccb_h.status;
220                 xpt_free_path(path);
221         }
222 
223 	if (status != CAM_REQ_CMP) {
224 		kprintf("ses: Failed to attach master async callback "
225 		       "due to status 0x%x!\n", status);
226 	}
227 }
228 
229 static void
230 sesoninvalidate(struct cam_periph *periph)
231 {
232 	struct ses_softc *softc;
233 	struct ccb_setasync csa;
234 
235 	softc = (struct ses_softc *)periph->softc;
236 
237 	/*
238 	 * Unregister any async callbacks.
239 	 */
240 	xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
241 	csa.ccb_h.func_code = XPT_SASYNC_CB;
242 	csa.event_enable = 0;
243 	csa.callback = sesasync;
244 	csa.callback_arg = periph;
245 	xpt_action((union ccb *)&csa);
246 
247 	softc->ses_flags |= SES_FLAG_INVALID;
248 
249 	xpt_print_path(periph->path);
250 	kprintf("lost device\n");
251 }
252 
253 static void
254 sescleanup(struct cam_periph *periph)
255 {
256 	struct ses_softc *softc;
257 
258 	softc = (struct ses_softc *)periph->softc;
259 
260 	cam_extend_release(sesperiphs, periph->unit_number);
261 	xpt_print_path(periph->path);
262 	kprintf("removing device entry\n");
263 	dev_ops_remove(&ses_ops, -1, periph->unit_number);
264 	kfree(softc, M_DEVBUF);
265 }
266 
267 static void
268 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
269 {
270 	struct cam_periph *periph;
271 
272 	periph = (struct cam_periph *)callback_arg;
273 
274 	switch(code) {
275 	case AC_FOUND_DEVICE:
276 	{
277 		cam_status status;
278 		struct ccb_getdev *cgd;
279 		int inq_len;
280 
281 		cgd = (struct ccb_getdev *)arg;
282 
283 		inq_len = cgd->inq_data.additional_length + 4;
284 
285 		/*
286 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
287 		 * PROBLEM: IS A SAF-TE DEVICE.
288 		 */
289 		switch (ses_type(&cgd->inq_data, inq_len)) {
290 		case SES_SES:
291 		case SES_SES_SCSI2:
292 		case SES_SES_PASSTHROUGH:
293 		case SES_SEN:
294 		case SES_SAFT:
295 			break;
296 		default:
297 			return;
298 		}
299 
300 		status = cam_periph_alloc(sesregister, sesoninvalidate,
301 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
302 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
303 
304 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
305 			kprintf("sesasync: Unable to probe new device due to "
306 			    "status 0x%x\n", status);
307 		}
308 		break;
309 	}
310 	default:
311 		cam_periph_async(periph, code, path, arg);
312 		break;
313 	}
314 }
315 
316 static cam_status
317 sesregister(struct cam_periph *periph, void *arg)
318 {
319 	struct ses_softc *softc;
320 	struct ccb_setasync csa;
321 	struct ccb_getdev *cgd;
322 	char *tname;
323 
324 	cgd = (struct ccb_getdev *)arg;
325 	if (periph == NULL) {
326 		kprintf("sesregister: periph was NULL!!\n");
327 		return (CAM_REQ_CMP_ERR);
328 	}
329 
330 	if (cgd == NULL) {
331 		kprintf("sesregister: no getdev CCB, can't register device\n");
332 		return (CAM_REQ_CMP_ERR);
333 	}
334 
335 	softc = kmalloc(sizeof (struct ses_softc), M_DEVBUF, M_INTWAIT | M_ZERO);
336 	periph->softc = softc;
337 	softc->periph = periph;
338 
339 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
340 
341 	switch (softc->ses_type) {
342 	case SES_SES:
343 	case SES_SES_SCSI2:
344         case SES_SES_PASSTHROUGH:
345 		softc->ses_vec.softc_init = ses_softc_init;
346 		softc->ses_vec.init_enc = ses_init_enc;
347 		softc->ses_vec.get_encstat = ses_get_encstat;
348 		softc->ses_vec.set_encstat = ses_set_encstat;
349 		softc->ses_vec.get_objstat = ses_get_objstat;
350 		softc->ses_vec.set_objstat = ses_set_objstat;
351 		break;
352         case SES_SAFT:
353 		softc->ses_vec.softc_init = safte_softc_init;
354 		softc->ses_vec.init_enc = safte_init_enc;
355 		softc->ses_vec.get_encstat = safte_get_encstat;
356 		softc->ses_vec.set_encstat = safte_set_encstat;
357 		softc->ses_vec.get_objstat = safte_get_objstat;
358 		softc->ses_vec.set_objstat = safte_set_objstat;
359 		break;
360         case SES_SEN:
361 		break;
362 	case SES_NONE:
363 	default:
364 		kfree(softc, M_DEVBUF);
365 		return (CAM_REQ_CMP_ERR);
366 	}
367 
368 	cam_extend_set(sesperiphs, periph->unit_number, periph);
369 
370 	dev_ops_add(&ses_ops, -1, periph->unit_number);
371 	make_dev(&ses_ops, periph->unit_number,
372 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
373 		    periph->periph_name, periph->unit_number);
374 
375 	/*
376 	 * Add an async callback so that we get
377 	 * notified if this device goes away.
378 	 */
379 	xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
380 	csa.ccb_h.func_code = XPT_SASYNC_CB;
381 	csa.event_enable = AC_LOST_DEVICE;
382 	csa.callback = sesasync;
383 	csa.callback_arg = periph;
384 	xpt_action((union ccb *)&csa);
385 
386 	switch (softc->ses_type) {
387 	default:
388 	case SES_NONE:
389 		tname = "No SES device";
390 		break;
391 	case SES_SES_SCSI2:
392 		tname = "SCSI-2 SES Device";
393 		break;
394 	case SES_SES:
395 		tname = "SCSI-3 SES Device";
396 		break;
397         case SES_SES_PASSTHROUGH:
398 		tname = "SES Passthrough Device";
399 		break;
400         case SES_SEN:
401 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
402 		break;
403         case SES_SAFT:
404 		tname = "SAF-TE Compliant Device";
405 		break;
406 	}
407 	xpt_announce_periph(periph, tname);
408 	return (CAM_REQ_CMP);
409 }
410 
411 static int
412 sesopen(struct dev_open_args *ap)
413 {
414 	cdev_t dev = ap->a_head.a_dev;
415 	struct cam_periph *periph;
416 	struct ses_softc *softc;
417 	int error;
418 
419 	crit_enter();
420 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
421 	if (periph == NULL) {
422 		crit_exit();
423 		return (ENXIO);
424 	}
425 	if ((error = cam_periph_lock(periph, PCATCH)) != 0) {
426 		crit_exit();
427 		return (error);
428 	}
429 	crit_exit();
430 
431 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
432 		cam_periph_unlock(periph);
433 		return (ENXIO);
434 	}
435 
436 	softc = (struct ses_softc *)periph->softc;
437 
438 	if (softc->ses_flags & SES_FLAG_INVALID) {
439 		error = ENXIO;
440 		goto out;
441 	}
442 	if (softc->ses_flags & SES_FLAG_OPEN) {
443 		error = EBUSY;
444 		goto out;
445 	}
446 	if (softc->ses_vec.softc_init == NULL) {
447 		error = ENXIO;
448 		goto out;
449 	}
450 
451 	softc->ses_flags |= SES_FLAG_OPEN;
452 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
453 		error = (*softc->ses_vec.softc_init)(softc, 1);
454 		if (error)
455 			softc->ses_flags &= ~SES_FLAG_OPEN;
456 		else
457 			softc->ses_flags |= SES_FLAG_INITIALIZED;
458 	}
459 
460 out:
461 	if (error) {
462 		cam_periph_release(periph);
463 	}
464 	cam_periph_unlock(periph);
465 	return (error);
466 }
467 
468 static int
469 sesclose(struct dev_close_args *ap)
470 {
471 	cdev_t dev = ap->a_head.a_dev;
472 	struct cam_periph *periph;
473 	struct ses_softc *softc;
474 	int unit, error;
475 
476 	error = 0;
477 
478 	unit = SESUNIT(dev);
479 	periph = cam_extend_get(sesperiphs, unit);
480 	if (periph == NULL)
481 		return (ENXIO);
482 
483 	softc = (struct ses_softc *)periph->softc;
484 
485 	if ((error = cam_periph_lock(periph, 0)) != 0)
486 		return (error);
487 
488 	softc->ses_flags &= ~SES_FLAG_OPEN;
489 
490 	cam_periph_unlock(periph);
491 	cam_periph_release(periph);
492 
493 	return (0);
494 }
495 
496 static void
497 sesstart(struct cam_periph *p, union ccb *sccb)
498 {
499 	crit_enter();
500 	if (p->immediate_priority <= p->pinfo.priority) {
501 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
502 		p->immediate_priority = CAM_PRIORITY_NONE;
503 		wakeup(&p->ccb_list);
504 	}
505 	crit_exit();
506 }
507 
508 static void
509 sesdone(struct cam_periph *periph, union ccb *dccb)
510 {
511 	wakeup(&dccb->ccb_h.cbfcnp);
512 }
513 
514 static int
515 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
516 {
517 	struct ses_softc *softc;
518 	struct cam_periph *periph;
519 
520 	periph = xpt_path_periph(ccb->ccb_h.path);
521 	softc = (struct ses_softc *)periph->softc;
522 
523 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
524 }
525 
526 static int
527 sesioctl(struct dev_ioctl_args *ap)
528 {
529 	cdev_t dev = ap->a_head.a_dev;
530 	struct cam_periph *periph;
531 	ses_encstat tmp;
532 	ses_objstat objs;
533 	ses_object obj, *uobj;
534 	struct ses_softc *ssc;
535 	void *addr;
536 	int error, i;
537 
538 
539 	if (ap->a_data)
540 		addr = *((caddr_t *)ap->a_data);
541 	else
542 		addr = NULL;
543 
544 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
545 	if (periph == NULL)
546 		return (ENXIO);
547 
548 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
549 
550 	ssc = (struct ses_softc *)periph->softc;
551 
552 	/*
553 	 * Now check to see whether we're initialized or not.
554 	 */
555 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
556 		return (ENXIO);
557 	}
558 
559 	error = 0;
560 
561 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
562 	    ("trying to do ioctl %#lx\n", ap->a_cmd));
563 
564 	/*
565 	 * If this command can change the device's state,
566 	 * we must have the device open for writing.
567 	 */
568 	switch (ap->a_cmd) {
569 	case SESIOC_GETNOBJ:
570 	case SESIOC_GETOBJMAP:
571 	case SESIOC_GETENCSTAT:
572 	case SESIOC_GETOBJSTAT:
573 		break;
574 	default:
575 		if ((ap->a_fflag & FWRITE) == 0) {
576 			return (EBADF);
577 		}
578 	}
579 
580 	switch (ap->a_cmd) {
581 	case SESIOC_GETNOBJ:
582 		error = copyout(&ssc->ses_nobjects, addr,
583 		    sizeof (ssc->ses_nobjects));
584 		break;
585 
586 	case SESIOC_GETOBJMAP:
587 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
588 			obj.obj_id = i;
589 			obj.subencid = ssc->ses_objmap[i].subenclosure;
590 			obj.object_type = ssc->ses_objmap[i].enctype;
591 			error = copyout(&obj, uobj, sizeof (ses_object));
592 			if (error) {
593 				break;
594 			}
595 		}
596 		break;
597 
598 	case SESIOC_GETENCSTAT:
599 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
600 		if (error)
601 			break;
602 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
603 		error = copyout(&tmp, addr, sizeof (ses_encstat));
604 		ssc->ses_encstat = tmp;
605 		break;
606 
607 	case SESIOC_SETENCSTAT:
608 		error = copyin(addr, &tmp, sizeof (ses_encstat));
609 		if (error)
610 			break;
611 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
612 		break;
613 
614 	case SESIOC_GETOBJSTAT:
615 		error = copyin(addr, &objs, sizeof (ses_objstat));
616 		if (error)
617 			break;
618 		if (objs.obj_id >= ssc->ses_nobjects) {
619 			error = EINVAL;
620 			break;
621 		}
622 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
623 		if (error)
624 			break;
625 		error = copyout(&objs, addr, sizeof (ses_objstat));
626 		/*
627 		 * Always (for now) invalidate entry.
628 		 */
629 		ssc->ses_objmap[objs.obj_id].svalid = 0;
630 		break;
631 
632 	case SESIOC_SETOBJSTAT:
633 		error = copyin(addr, &objs, sizeof (ses_objstat));
634 		if (error)
635 			break;
636 
637 		if (objs.obj_id >= ssc->ses_nobjects) {
638 			error = EINVAL;
639 			break;
640 		}
641 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
642 
643 		/*
644 		 * Always (for now) invalidate entry.
645 		 */
646 		ssc->ses_objmap[objs.obj_id].svalid = 0;
647 		break;
648 
649 	case SESIOC_INIT:
650 
651 		error = (*ssc->ses_vec.init_enc)(ssc);
652 		break;
653 
654 	default:
655 		error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
656 		break;
657 	}
658 	return (error);
659 }
660 
661 #define	SES_CFLAGS	CAM_RETRY_SELTO
662 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_UA
663 static int
664 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
665 {
666 	int error, dlen;
667 	ccb_flags ddf;
668 	union ccb *ccb;
669 
670 	if (dptr) {
671 		if ((dlen = *dlenp) < 0) {
672 			dlen = -dlen;
673 			ddf = CAM_DIR_OUT;
674 		} else {
675 			ddf = CAM_DIR_IN;
676 		}
677 	} else {
678 		dlen = 0;
679 		ddf = CAM_DIR_NONE;
680 	}
681 
682 	if (cdbl > IOCDBLEN) {
683 		cdbl = IOCDBLEN;
684 	}
685 
686 	ccb = cam_periph_getccb(ssc->periph, 1);
687 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
688 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
689 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
690 
691 	error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
692 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
693 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
694 	if (error) {
695 		if (dptr) {
696 			*dlenp = dlen;
697 		}
698 	} else {
699 		if (dptr) {
700 			*dlenp = ccb->csio.resid;
701 		}
702 	}
703 	xpt_release_ccb(ccb);
704 	return (error);
705 }
706 
707 static void
708 ses_log(struct ses_softc *ssc, const char *fmt, ...)
709 {
710 	__va_list ap;
711 
712 	kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
713 	__va_start(ap, fmt);
714 	kvprintf(fmt, ap);
715 	__va_end(ap);
716 }
717 
718 /*
719  * The code after this point runs on many platforms,
720  * so forgive the slightly awkward and nonconforming
721  * appearance.
722  */
723 
724 /*
725  * Is this a device that supports enclosure services?
726  *
727  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
728  * an SES device. If it happens to be an old UNISYS SEN device, we can
729  * handle that too.
730  */
731 
732 #define	SAFTE_START	44
733 #define	SAFTE_END	50
734 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
735 
736 static enctyp
737 ses_type(void *buf, int buflen)
738 {
739 	unsigned char *iqd = buf;
740 
741 	if (buflen < 8+SEN_ID_LEN)
742 		return (SES_NONE);
743 
744 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
745 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
746 			return (SES_SEN);
747 		} else if ((iqd[2] & 0x7) > 2) {
748 			return (SES_SES);
749 		} else {
750 			return (SES_SES_SCSI2);
751 		}
752 		return (SES_NONE);
753 	}
754 
755 #ifdef	SES_ENABLE_PASSTHROUGH
756 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
757 		/*
758 		 * PassThrough Device.
759 		 */
760 		return (SES_SES_PASSTHROUGH);
761 	}
762 #endif
763 
764 	/*
765 	 * The comparison is short for a reason-
766 	 * some vendors were chopping it short.
767 	 */
768 
769 	if (buflen < SAFTE_END - 2) {
770 		return (SES_NONE);
771 	}
772 
773 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
774 		return (SES_SAFT);
775 	}
776 	return (SES_NONE);
777 }
778 
779 /*
780  * SES Native Type Device Support
781  */
782 
783 /*
784  * SES Diagnostic Page Codes
785  */
786 
787 typedef enum {
788 	SesConfigPage = 0x1,
789 	SesControlPage,
790 #define	SesStatusPage SesControlPage
791 	SesHelpTxt,
792 	SesStringOut,
793 #define	SesStringIn	SesStringOut
794 	SesThresholdOut,
795 #define	SesThresholdIn SesThresholdOut
796 	SesArrayControl,
797 #define	SesArrayStatus	SesArrayControl
798 	SesElementDescriptor,
799 	SesShortStatus
800 } SesDiagPageCodes;
801 
802 /*
803  * minimal amounts
804  */
805 
806 /*
807  * Minimum amount of data, starting from byte 0, to have
808  * the config header.
809  */
810 #define	SES_CFGHDR_MINLEN	12
811 
812 /*
813  * Minimum amount of data, starting from byte 0, to have
814  * the config header and one enclosure header.
815  */
816 #define	SES_ENCHDR_MINLEN	48
817 
818 /*
819  * Take this value, subtract it from VEnclen and you know
820  * the length of the vendor unique bytes.
821  */
822 #define	SES_ENCHDR_VMIN		36
823 
824 /*
825  * SES Data Structures
826  */
827 
828 typedef struct {
829 	uint32_t GenCode;	/* Generation Code */
830 	uint8_t	Nsubenc;	/* Number of Subenclosures */
831 } SesCfgHdr;
832 
833 typedef struct {
834 	uint8_t	Subencid;	/* SubEnclosure Identifier */
835 	uint8_t	Ntypes;		/* # of supported types */
836 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
837 } SesEncHdr;
838 
839 typedef struct {
840 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
841 	uint8_t	encVid[8];
842 	uint8_t	encPid[16];
843 	uint8_t	encRev[4];
844 	uint8_t	encVen[1];
845 } SesEncDesc;
846 
847 typedef struct {
848 	uint8_t	enc_type;		/* type of element */
849 	uint8_t	enc_maxelt;		/* maximum supported */
850 	uint8_t	enc_subenc;		/* in SubEnc # N */
851 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
852 } SesThdr;
853 
854 typedef struct {
855 	uint8_t	comstatus;
856 	uint8_t	comstat[3];
857 } SesComStat;
858 
859 struct typidx {
860 	int ses_tidx;
861 	int ses_oidx;
862 };
863 
864 struct sscfg {
865 	uint8_t ses_ntypes;	/* total number of types supported */
866 
867 	/*
868 	 * We need to keep a type index as well as an
869 	 * object index for each object in an enclosure.
870 	 */
871 	struct typidx *ses_typidx;
872 
873 	/*
874 	 * We also need to keep track of the number of elements
875 	 * per type of element. This is needed later so that we
876 	 * can find precisely in the returned status data the
877 	 * status for the Nth element of the Kth type.
878 	 */
879 	uint8_t *	ses_eltmap;
880 };
881 
882 
883 /*
884  * (de)canonicalization defines
885  */
886 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
887 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
888 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
889 
890 #define	sset16(outp, idx, sval)	\
891 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
892 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
893 
894 
895 #define	sset24(outp, idx, sval)	\
896 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
897 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
898 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
899 
900 
901 #define	sset32(outp, idx, sval)	\
902 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
903 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
904 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
905 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
906 
907 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
908 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
909 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
910 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
911 
912 #define	sget16(inp, idx, lval)	\
913 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
914 		(((uint8_t *)(inp))[idx+1]), idx += 2
915 
916 #define	gget16(inp, idx, lval)	\
917 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
918 		(((uint8_t *)(inp))[idx+1])
919 
920 #define	sget24(inp, idx, lval)	\
921 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
922 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
923 			(((uint8_t *)(inp))[idx+2]), idx += 3
924 
925 #define	gget24(inp, idx, lval)	\
926 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
927 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
928 			(((uint8_t *)(inp))[idx+2])
929 
930 #define	sget32(inp, idx, lval)	\
931 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
932 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
933 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
934 			(((uint8_t *)(inp))[idx+3]), idx += 4
935 
936 #define	gget32(inp, idx, lval)	\
937 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
938 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
939 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
940 			(((uint8_t *)(inp))[idx+3])
941 
942 #define	SCSZ	0x2000
943 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
944 
945 /*
946  * Routines specific && private to SES only
947  */
948 
949 static int ses_getconfig(ses_softc_t *);
950 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
951 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
952 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
953 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
954 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
955 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
956 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
957 
958 static int
959 ses_softc_init(ses_softc_t *ssc, int doinit)
960 {
961 	if (doinit == 0) {
962 		struct sscfg *cc;
963 		if (ssc->ses_nobjects) {
964 			SES_FREE(ssc->ses_objmap,
965 			    ssc->ses_nobjects * sizeof (encobj));
966 			ssc->ses_objmap = NULL;
967 		}
968 		if ((cc = ssc->ses_private) != NULL) {
969 			if (cc->ses_eltmap && cc->ses_ntypes) {
970 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
971 				cc->ses_eltmap = NULL;
972 				cc->ses_ntypes = 0;
973 			}
974 			if (cc->ses_typidx && ssc->ses_nobjects) {
975 				SES_FREE(cc->ses_typidx,
976 				    ssc->ses_nobjects * sizeof (struct typidx));
977 				cc->ses_typidx = NULL;
978 			}
979 			SES_FREE(cc, sizeof (struct sscfg));
980 			ssc->ses_private = NULL;
981 		}
982 		ssc->ses_nobjects = 0;
983 		return (0);
984 	}
985 	if (ssc->ses_private == NULL) {
986 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
987 	}
988 	if (ssc->ses_private == NULL) {
989 		return (ENOMEM);
990 	}
991 	ssc->ses_nobjects = 0;
992 	ssc->ses_encstat = 0;
993 	return (ses_getconfig(ssc));
994 }
995 
996 static int
997 ses_init_enc(ses_softc_t *ssc)
998 {
999 	return (0);
1000 }
1001 
1002 static int
1003 ses_get_encstat(ses_softc_t *ssc, int slpflag)
1004 {
1005 	SesComStat ComStat;
1006 	int status;
1007 
1008 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1009 		return (status);
1010 	}
1011 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1012 	return (0);
1013 }
1014 
1015 static int
1016 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1017 {
1018 	SesComStat ComStat;
1019 	int status;
1020 
1021 	ComStat.comstatus = encstat & 0xf;
1022 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1023 		return (status);
1024 	}
1025 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1026 	return (0);
1027 }
1028 
1029 static int
1030 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1031 {
1032 	int i = (int)obp->obj_id;
1033 
1034 	if (ssc->ses_objmap[i].svalid == 0) {
1035 		SesComStat ComStat;
1036 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1037 		if (err)
1038 			return (err);
1039 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1040 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1041 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1042 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1043 		ssc->ses_objmap[i].svalid = 1;
1044 	}
1045 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1046 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1047 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1048 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1049 	return (0);
1050 }
1051 
1052 static int
1053 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1054 {
1055 	SesComStat ComStat;
1056 	int err;
1057 	/*
1058 	 * If this is clear, we don't do diddly.
1059 	 */
1060 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1061 		return (0);
1062 	}
1063 	ComStat.comstatus = obp->cstat[0];
1064 	ComStat.comstat[0] = obp->cstat[1];
1065 	ComStat.comstat[1] = obp->cstat[2];
1066 	ComStat.comstat[2] = obp->cstat[3];
1067 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1068 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1069 	return (err);
1070 }
1071 
1072 static int
1073 ses_getconfig(ses_softc_t *ssc)
1074 {
1075 	struct sscfg *cc;
1076 	SesCfgHdr cf;
1077 	SesEncHdr hd;
1078 	SesEncDesc *cdp;
1079 	SesThdr thdr;
1080 	int err, amt, i, nobj, ntype, maxima;
1081 	char storage[CFLEN], *sdata;
1082 	static char cdb[6] = {
1083 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1084 	};
1085 
1086 	cc = ssc->ses_private;
1087 	if (cc == NULL) {
1088 		return (ENXIO);
1089 	}
1090 
1091 	sdata = SES_MALLOC(SCSZ);
1092 	if (sdata == NULL)
1093 		return (ENOMEM);
1094 
1095 	amt = SCSZ;
1096 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1097 	if (err) {
1098 		SES_FREE(sdata, SCSZ);
1099 		return (err);
1100 	}
1101 	amt = SCSZ - amt;
1102 
1103 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1104 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1105 		SES_FREE(sdata, SCSZ);
1106 		return (EIO);
1107 	}
1108 	if (amt < SES_ENCHDR_MINLEN) {
1109 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1110 		SES_FREE(sdata, SCSZ);
1111 		return (EIO);
1112 	}
1113 
1114 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1115 
1116 	/*
1117 	 * Now waltz through all the subenclosures toting up the
1118 	 * number of types available in each. For this, we only
1119 	 * really need the enclosure header. However, we get the
1120 	 * enclosure descriptor for debug purposes, as well
1121 	 * as self-consistency checking purposes.
1122 	 */
1123 
1124 	maxima = cf.Nsubenc + 1;
1125 	cdp = (SesEncDesc *) storage;
1126 	for (ntype = i = 0; i < maxima; i++) {
1127 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1128 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1129 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1130 			SES_FREE(sdata, SCSZ);
1131 			return (EIO);
1132 		}
1133 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1134 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1135 
1136 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1137 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1138 			SES_FREE(sdata, SCSZ);
1139 			return (EIO);
1140 		}
1141 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1142 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1143 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1144 		    cdp->encWWN[6], cdp->encWWN[7]);
1145 		ntype += hd.Ntypes;
1146 	}
1147 
1148 	/*
1149 	 * Now waltz through all the types that are available, getting
1150 	 * the type header so we can start adding up the number of
1151 	 * objects available.
1152 	 */
1153 	for (nobj = i = 0; i < ntype; i++) {
1154 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1155 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1156 			SES_FREE(sdata, SCSZ);
1157 			return (EIO);
1158 		}
1159 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1160 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1161 		    thdr.enc_subenc, thdr.enc_tlen);
1162 		nobj += thdr.enc_maxelt;
1163 	}
1164 
1165 
1166 	/*
1167 	 * Now allocate the object array and type map.
1168 	 */
1169 
1170 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1171 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1172 	cc->ses_eltmap = SES_MALLOC(ntype);
1173 
1174 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1175 	    cc->ses_eltmap == NULL) {
1176 		if (ssc->ses_objmap) {
1177 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1178 			ssc->ses_objmap = NULL;
1179 		}
1180 		if (cc->ses_typidx) {
1181 			SES_FREE(cc->ses_typidx,
1182 			    (nobj * sizeof (struct typidx)));
1183 			cc->ses_typidx = NULL;
1184 		}
1185 		if (cc->ses_eltmap) {
1186 			SES_FREE(cc->ses_eltmap, ntype);
1187 			cc->ses_eltmap = NULL;
1188 		}
1189 		SES_FREE(sdata, SCSZ);
1190 		return (ENOMEM);
1191 	}
1192 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1193 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1194 	MEMZERO(cc->ses_eltmap, ntype);
1195 	cc->ses_ntypes = (uint8_t) ntype;
1196 	ssc->ses_nobjects = nobj;
1197 
1198 	/*
1199 	 * Now waltz through the # of types again to fill in the types
1200 	 * (and subenclosure ids) of the allocated objects.
1201 	 */
1202 	nobj = 0;
1203 	for (i = 0; i < ntype; i++) {
1204 		int j;
1205 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1206 			continue;
1207 		}
1208 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1209 		for (j = 0; j < thdr.enc_maxelt; j++) {
1210 			cc->ses_typidx[nobj].ses_tidx = i;
1211 			cc->ses_typidx[nobj].ses_oidx = j;
1212 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1213 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1214 		}
1215 	}
1216 	SES_FREE(sdata, SCSZ);
1217 	return (0);
1218 }
1219 
1220 static int
1221 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1222 {
1223 	struct sscfg *cc;
1224 	int err, amt, bufsiz, tidx, oidx;
1225 	char cdb[6], *sdata;
1226 
1227 	cc = ssc->ses_private;
1228 	if (cc == NULL) {
1229 		return (ENXIO);
1230 	}
1231 
1232 	/*
1233 	 * If we're just getting overall enclosure status,
1234 	 * we only need 2 bytes of data storage.
1235 	 *
1236 	 * If we're getting anything else, we know how much
1237 	 * storage we need by noting that starting at offset
1238 	 * 8 in returned data, all object status bytes are 4
1239 	 * bytes long, and are stored in chunks of types(M)
1240 	 * and nth+1 instances of type M.
1241 	 */
1242 	if (objid == -1) {
1243 		bufsiz = 2;
1244 	} else {
1245 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1246 	}
1247 	sdata = SES_MALLOC(bufsiz);
1248 	if (sdata == NULL)
1249 		return (ENOMEM);
1250 
1251 	cdb[0] = RECEIVE_DIAGNOSTIC;
1252 	cdb[1] = 1;
1253 	cdb[2] = SesStatusPage;
1254 	cdb[3] = bufsiz >> 8;
1255 	cdb[4] = bufsiz & 0xff;
1256 	cdb[5] = 0;
1257 	amt = bufsiz;
1258 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1259 	if (err) {
1260 		SES_FREE(sdata, bufsiz);
1261 		return (err);
1262 	}
1263 	amt = bufsiz - amt;
1264 
1265 	if (objid == -1) {
1266 		tidx = -1;
1267 		oidx = -1;
1268 	} else {
1269 		tidx = cc->ses_typidx[objid].ses_tidx;
1270 		oidx = cc->ses_typidx[objid].ses_oidx;
1271 	}
1272 	if (in) {
1273 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1274 			err = ENODEV;
1275 		}
1276 	} else {
1277 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1278 			err = ENODEV;
1279 		} else {
1280 			cdb[0] = SEND_DIAGNOSTIC;
1281 			cdb[1] = 0x10;
1282 			cdb[2] = 0;
1283 			cdb[3] = bufsiz >> 8;
1284 			cdb[4] = bufsiz & 0xff;
1285 			cdb[5] = 0;
1286 			amt = -bufsiz;
1287 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1288 		}
1289 	}
1290 	SES_FREE(sdata, bufsiz);
1291 	return (0);
1292 }
1293 
1294 
1295 /*
1296  * Routines to parse returned SES data structures.
1297  * Architecture and compiler independent.
1298  */
1299 
1300 static int
1301 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1302 {
1303 	if (buflen < SES_CFGHDR_MINLEN) {
1304 		return (-1);
1305 	}
1306 	gget8(buffer, 1, cfp->Nsubenc);
1307 	gget32(buffer, 4, cfp->GenCode);
1308 	return (0);
1309 }
1310 
1311 static int
1312 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1313 {
1314 	int s, off = 8;
1315 	for (s = 0; s < SubEncId; s++) {
1316 		if (off + 3 > amt)
1317 			return (-1);
1318 		off += buffer[off+3] + 4;
1319 	}
1320 	if (off + 3 > amt) {
1321 		return (-1);
1322 	}
1323 	gget8(buffer, off+1, chp->Subencid);
1324 	gget8(buffer, off+2, chp->Ntypes);
1325 	gget8(buffer, off+3, chp->VEnclen);
1326 	return (0);
1327 }
1328 
1329 static int
1330 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1331 {
1332 	int s, e, enclen, off = 8;
1333 	for (s = 0; s < SubEncId; s++) {
1334 		if (off + 3 > amt)
1335 			return (-1);
1336 		off += buffer[off+3] + 4;
1337 	}
1338 	if (off + 3 > amt) {
1339 		return (-1);
1340 	}
1341 	gget8(buffer, off+3, enclen);
1342 	off += 4;
1343 	if (off  >= amt)
1344 		return (-1);
1345 
1346 	e = off + enclen;
1347 	if (e > amt) {
1348 		e = amt;
1349 	}
1350 	MEMCPY(cdp, &buffer[off], e - off);
1351 	return (0);
1352 }
1353 
1354 static int
1355 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1356 {
1357 	int s, off = 8;
1358 
1359 	if (amt < SES_CFGHDR_MINLEN) {
1360 		return (-1);
1361 	}
1362 	for (s = 0; s < buffer[1]; s++) {
1363 		if (off + 3 > amt)
1364 			return (-1);
1365 		off += buffer[off+3] + 4;
1366 	}
1367 	if (off + 3 > amt) {
1368 		return (-1);
1369 	}
1370 	off += buffer[off+3] + 4 + (nth * 4);
1371 	if (amt < (off + 4))
1372 		return (-1);
1373 
1374 	gget8(buffer, off++, thp->enc_type);
1375 	gget8(buffer, off++, thp->enc_maxelt);
1376 	gget8(buffer, off++, thp->enc_subenc);
1377 	gget8(buffer, off, thp->enc_tlen);
1378 	return (0);
1379 }
1380 
1381 /*
1382  * This function needs a little explanation.
1383  *
1384  * The arguments are:
1385  *
1386  *
1387  *	char *b, int amt
1388  *
1389  *		These describes the raw input SES status data and length.
1390  *
1391  *	uint8_t *ep
1392  *
1393  *		This is a map of the number of types for each element type
1394  *		in the enclosure.
1395  *
1396  *	int elt
1397  *
1398  *		This is the element type being sought. If elt is -1,
1399  *		then overall enclosure status is being sought.
1400  *
1401  *	int elm
1402  *
1403  *		This is the ordinal Mth element of type elt being sought.
1404  *
1405  *	SesComStat *sp
1406  *
1407  *		This is the output area to store the status for
1408  *		the Mth element of type Elt.
1409  */
1410 
1411 static int
1412 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1413 {
1414 	int idx, i;
1415 
1416 	/*
1417 	 * If it's overall enclosure status being sought, get that.
1418 	 * We need at least 2 bytes of status data to get that.
1419 	 */
1420 	if (elt == -1) {
1421 		if (amt < 2)
1422 			return (-1);
1423 		gget8(b, 1, sp->comstatus);
1424 		sp->comstat[0] = 0;
1425 		sp->comstat[1] = 0;
1426 		sp->comstat[2] = 0;
1427 		return (0);
1428 	}
1429 
1430 	/*
1431 	 * Check to make sure that the Mth element is legal for type Elt.
1432 	 */
1433 
1434 	if (elm >= ep[elt])
1435 		return (-1);
1436 
1437 	/*
1438 	 * Starting at offset 8, start skipping over the storage
1439 	 * for the element types we're not interested in.
1440 	 */
1441 	for (idx = 8, i = 0; i < elt; i++) {
1442 		idx += ((ep[i] + 1) * 4);
1443 	}
1444 
1445 	/*
1446 	 * Skip over Overall status for this element type.
1447 	 */
1448 	idx += 4;
1449 
1450 	/*
1451 	 * And skip to the index for the Mth element that we're going for.
1452 	 */
1453 	idx += (4 * elm);
1454 
1455 	/*
1456 	 * Make sure we haven't overflowed the buffer.
1457 	 */
1458 	if (idx+4 > amt)
1459 		return (-1);
1460 
1461 	/*
1462 	 * Retrieve the status.
1463 	 */
1464 	gget8(b, idx++, sp->comstatus);
1465 	gget8(b, idx++, sp->comstat[0]);
1466 	gget8(b, idx++, sp->comstat[1]);
1467 	gget8(b, idx++, sp->comstat[2]);
1468 #if	0
1469 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1470 #endif
1471 	return (0);
1472 }
1473 
1474 /*
1475  * This is the mirror function to ses_decode, but we set the 'select'
1476  * bit for the object which we're interested in. All other objects,
1477  * after a status fetch, should have that bit off. Hmm. It'd be easy
1478  * enough to ensure this, so we will.
1479  */
1480 
1481 static int
1482 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1483 {
1484 	int idx, i;
1485 
1486 	/*
1487 	 * If it's overall enclosure status being sought, get that.
1488 	 * We need at least 2 bytes of status data to get that.
1489 	 */
1490 	if (elt == -1) {
1491 		if (amt < 2)
1492 			return (-1);
1493 		i = 0;
1494 		sset8(b, i, 0);
1495 		sset8(b, i, sp->comstatus & 0xf);
1496 #if	0
1497 		PRINTF("set EncStat %x\n", sp->comstatus);
1498 #endif
1499 		return (0);
1500 	}
1501 
1502 	/*
1503 	 * Check to make sure that the Mth element is legal for type Elt.
1504 	 */
1505 
1506 	if (elm >= ep[elt])
1507 		return (-1);
1508 
1509 	/*
1510 	 * Starting at offset 8, start skipping over the storage
1511 	 * for the element types we're not interested in.
1512 	 */
1513 	for (idx = 8, i = 0; i < elt; i++) {
1514 		idx += ((ep[i] + 1) * 4);
1515 	}
1516 
1517 	/*
1518 	 * Skip over Overall status for this element type.
1519 	 */
1520 	idx += 4;
1521 
1522 	/*
1523 	 * And skip to the index for the Mth element that we're going for.
1524 	 */
1525 	idx += (4 * elm);
1526 
1527 	/*
1528 	 * Make sure we haven't overflowed the buffer.
1529 	 */
1530 	if (idx+4 > amt)
1531 		return (-1);
1532 
1533 	/*
1534 	 * Set the status.
1535 	 */
1536 	sset8(b, idx, sp->comstatus);
1537 	sset8(b, idx, sp->comstat[0]);
1538 	sset8(b, idx, sp->comstat[1]);
1539 	sset8(b, idx, sp->comstat[2]);
1540 	idx -= 4;
1541 
1542 #if	0
1543 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1544 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1545 	    sp->comstat[1], sp->comstat[2]);
1546 #endif
1547 
1548 	/*
1549 	 * Now make sure all other 'Select' bits are off.
1550 	 */
1551 	for (i = 8; i < amt; i += 4) {
1552 		if (i != idx)
1553 			b[i] &= ~0x80;
1554 	}
1555 	/*
1556 	 * And make sure the INVOP bit is clear.
1557 	 */
1558 	b[2] &= ~0x10;
1559 
1560 	return (0);
1561 }
1562 
1563 /*
1564  * SAF-TE Type Device Emulation
1565  */
1566 
1567 static int safte_getconfig(ses_softc_t *);
1568 static int safte_rdstat(ses_softc_t *, int);
1569 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1570 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1571 static void wrslot_stat(ses_softc_t *, int);
1572 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1573 
1574 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1575 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1576 /*
1577  * SAF-TE specific defines- Mandatory ones only...
1578  */
1579 
1580 /*
1581  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1582  */
1583 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1584 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1585 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1586 
1587 /*
1588  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1589  */
1590 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1591 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1592 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1593 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1594 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1595 
1596 
1597 #define	SAFT_SCRATCH	64
1598 #define	NPSEUDO_THERM	16
1599 #define	NPSEUDO_ALARM	1
1600 struct scfg {
1601 	/*
1602 	 * Cached Configuration
1603 	 */
1604 	uint8_t	Nfans;		/* Number of Fans */
1605 	uint8_t	Npwr;		/* Number of Power Supplies */
1606 	uint8_t	Nslots;		/* Number of Device Slots */
1607 	uint8_t	DoorLock;	/* Door Lock Installed */
1608 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1609 	uint8_t	Nspkrs;		/* Number of Speakers */
1610 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1611 	/*
1612 	 * Cached Flag Bytes for Global Status
1613 	 */
1614 	uint8_t	flag1;
1615 	uint8_t	flag2;
1616 	/*
1617 	 * What object index ID is where various slots start.
1618 	 */
1619 	uint8_t	pwroff;
1620 	uint8_t	slotoff;
1621 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1622 };
1623 
1624 #define	SAFT_FLG1_ALARM		0x1
1625 #define	SAFT_FLG1_GLOBFAIL	0x2
1626 #define	SAFT_FLG1_GLOBWARN	0x4
1627 #define	SAFT_FLG1_ENCPWROFF	0x8
1628 #define	SAFT_FLG1_ENCFANFAIL	0x10
1629 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1630 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1631 #define	SAFT_FLG1_ENCDRVWARN	0x80
1632 
1633 #define	SAFT_FLG2_LOCKDOOR	0x4
1634 #define	SAFT_PRIVATE		sizeof (struct scfg)
1635 
1636 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1637 #define	SAFT_BAIL(r, x, k, l)	\
1638 	if (r >= x) { \
1639 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1640 		SES_FREE(k, l); \
1641 		return (EIO); \
1642 	}
1643 
1644 
1645 int
1646 safte_softc_init(ses_softc_t *ssc, int doinit)
1647 {
1648 	int err, i, r;
1649 	struct scfg *cc;
1650 
1651 	if (doinit == 0) {
1652 		if (ssc->ses_nobjects) {
1653 			if (ssc->ses_objmap) {
1654 				SES_FREE(ssc->ses_objmap,
1655 				    ssc->ses_nobjects * sizeof (encobj));
1656 				ssc->ses_objmap = NULL;
1657 			}
1658 			ssc->ses_nobjects = 0;
1659 		}
1660 		if (ssc->ses_private) {
1661 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1662 			ssc->ses_private = NULL;
1663 		}
1664 		return (0);
1665 	}
1666 
1667 	if (ssc->ses_private == NULL) {
1668 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1669 		if (ssc->ses_private == NULL) {
1670 			return (ENOMEM);
1671 		}
1672 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1673 	}
1674 
1675 	ssc->ses_nobjects = 0;
1676 	ssc->ses_encstat = 0;
1677 
1678 	if ((err = safte_getconfig(ssc)) != 0) {
1679 		return (err);
1680 	}
1681 
1682 	/*
1683 	 * The number of objects here, as well as that reported by the
1684 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1685 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1686 	 */
1687 	cc = ssc->ses_private;
1688 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1689 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1690 	ssc->ses_objmap = (encobj *)
1691 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1692 	if (ssc->ses_objmap == NULL) {
1693 		return (ENOMEM);
1694 	}
1695 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1696 
1697 	r = 0;
1698 	/*
1699 	 * Note that this is all arranged for the convenience
1700 	 * in later fetches of status.
1701 	 */
1702 	for (i = 0; i < cc->Nfans; i++)
1703 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1704 	cc->pwroff = (uint8_t) r;
1705 	for (i = 0; i < cc->Npwr; i++)
1706 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1707 	for (i = 0; i < cc->DoorLock; i++)
1708 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1709 	for (i = 0; i < cc->Nspkrs; i++)
1710 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1711 	for (i = 0; i < cc->Ntherm; i++)
1712 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1713 	for (i = 0; i < NPSEUDO_THERM; i++)
1714 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1715 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1716 	cc->slotoff = (uint8_t) r;
1717 	for (i = 0; i < cc->Nslots; i++)
1718 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1719 	return (0);
1720 }
1721 
1722 int
1723 safte_init_enc(ses_softc_t *ssc)
1724 {
1725 	int err;
1726 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1727 
1728 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1729 	if (err) {
1730 		return (err);
1731 	}
1732 	DELAY(5000);
1733 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1734 	return (err);
1735 }
1736 
1737 int
1738 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1739 {
1740 	return (safte_rdstat(ssc, slpflg));
1741 }
1742 
1743 int
1744 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1745 {
1746 	struct scfg *cc = ssc->ses_private;
1747 	if (cc == NULL)
1748 		return (0);
1749 	/*
1750 	 * Since SAF-TE devices aren't necessarily sticky in terms
1751 	 * of state, make our soft copy of enclosure status 'sticky'-
1752 	 * that is, things set in enclosure status stay set (as implied
1753 	 * by conditions set in reading object status) until cleared.
1754 	 */
1755 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1756 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1757 	ssc->ses_encstat |= ENCI_SVALID;
1758 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1759 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1760 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1761 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1762 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1763 	}
1764 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1765 }
1766 
1767 int
1768 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1769 {
1770 	int i = (int)obp->obj_id;
1771 
1772 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1773 	    (ssc->ses_objmap[i].svalid) == 0) {
1774 		int err = safte_rdstat(ssc, slpflg);
1775 		if (err)
1776 			return (err);
1777 	}
1778 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1779 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1780 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1781 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1782 	return (0);
1783 }
1784 
1785 
1786 int
1787 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1788 {
1789 	int idx, err;
1790 	encobj *ep;
1791 	struct scfg *cc;
1792 
1793 
1794 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1795 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1796 	    obp->cstat[3]);
1797 
1798 	/*
1799 	 * If this is clear, we don't do diddly.
1800 	 */
1801 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1802 		return (0);
1803 	}
1804 
1805 	err = 0;
1806 	/*
1807 	 * Check to see if the common bits are set and do them first.
1808 	 */
1809 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1810 		err = set_objstat_sel(ssc, obp, slp);
1811 		if (err)
1812 			return (err);
1813 	}
1814 
1815 	cc = ssc->ses_private;
1816 	if (cc == NULL)
1817 		return (0);
1818 
1819 	idx = (int)obp->obj_id;
1820 	ep = &ssc->ses_objmap[idx];
1821 
1822 	switch (ep->enctype) {
1823 	case SESTYP_DEVICE:
1824 	{
1825 		uint8_t slotop = 0;
1826 		/*
1827 		 * XXX: I should probably cache the previous state
1828 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1829 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1830 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1831 		 */
1832 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1833 			slotop |= 0x2;
1834 		}
1835 		if (obp->cstat[2] & SESCTL_RQSID) {
1836 			slotop |= 0x4;
1837 		}
1838 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1839 		    slotop, slp);
1840 		if (err)
1841 			return (err);
1842 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1843 			ep->priv |= 0x2;
1844 		} else {
1845 			ep->priv &= ~0x2;
1846 		}
1847 		if (ep->priv & 0xc6) {
1848 			ep->priv &= ~0x1;
1849 		} else {
1850 			ep->priv |= 0x1;	/* no errors */
1851 		}
1852 		wrslot_stat(ssc, slp);
1853 		break;
1854 	}
1855 	case SESTYP_POWER:
1856 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1857 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1858 		} else {
1859 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1860 		}
1861 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1862 		    cc->flag2, 0, slp);
1863 		if (err)
1864 			return (err);
1865 		if (obp->cstat[3] & SESCTL_RQSTON) {
1866 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1867 				idx - cc->pwroff, 0, 0, slp);
1868 		} else {
1869 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1870 				idx - cc->pwroff, 0, 1, slp);
1871 		}
1872 		break;
1873 	case SESTYP_FAN:
1874 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1875 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1876 		} else {
1877 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1878 		}
1879 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1880 		    cc->flag2, 0, slp);
1881 		if (err)
1882 			return (err);
1883 		if (obp->cstat[3] & SESCTL_RQSTON) {
1884 			uint8_t fsp;
1885 			if ((obp->cstat[3] & 0x7) == 7) {
1886 				fsp = 4;
1887 			} else if ((obp->cstat[3] & 0x7) == 6) {
1888 				fsp = 3;
1889 			} else if ((obp->cstat[3] & 0x7) == 4) {
1890 				fsp = 2;
1891 			} else {
1892 				fsp = 1;
1893 			}
1894 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1895 		} else {
1896 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1897 		}
1898 		break;
1899 	case SESTYP_DOORLOCK:
1900 		if (obp->cstat[3] & 0x1) {
1901 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1902 		} else {
1903 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1904 		}
1905 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1906 		break;
1907 	case SESTYP_ALARM:
1908 		/*
1909 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1910 		 */
1911 		obp->cstat[3] &= ~0xa;
1912 		if (obp->cstat[3] & 0x40) {
1913 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1914 		} else if (obp->cstat[3] != 0) {
1915 			cc->flag2 |= SAFT_FLG1_ALARM;
1916 		} else {
1917 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1918 		}
1919 		ep->priv = obp->cstat[3];
1920 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1921 		break;
1922 	default:
1923 		break;
1924 	}
1925 	ep->svalid = 0;
1926 	return (0);
1927 }
1928 
1929 static int
1930 safte_getconfig(ses_softc_t *ssc)
1931 {
1932 	struct scfg *cfg;
1933 	int err, amt;
1934 	char *sdata;
1935 	static char cdb[10] =
1936 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1937 
1938 	cfg = ssc->ses_private;
1939 	if (cfg == NULL)
1940 		return (ENXIO);
1941 
1942 	sdata = SES_MALLOC(SAFT_SCRATCH);
1943 	if (sdata == NULL)
1944 		return (ENOMEM);
1945 
1946 	amt = SAFT_SCRATCH;
1947 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1948 	if (err) {
1949 		SES_FREE(sdata, SAFT_SCRATCH);
1950 		return (err);
1951 	}
1952 	amt = SAFT_SCRATCH - amt;
1953 	if (amt < 6) {
1954 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1955 		SES_FREE(sdata, SAFT_SCRATCH);
1956 		return (EIO);
1957 	}
1958 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1959 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1960 	cfg->Nfans = sdata[0];
1961 	cfg->Npwr = sdata[1];
1962 	cfg->Nslots = sdata[2];
1963 	cfg->DoorLock = sdata[3];
1964 	cfg->Ntherm = sdata[4];
1965 	cfg->Nspkrs = sdata[5];
1966 	cfg->Nalarm = NPSEUDO_ALARM;
1967 	SES_FREE(sdata, SAFT_SCRATCH);
1968 	return (0);
1969 }
1970 
1971 static int
1972 safte_rdstat(ses_softc_t *ssc, int slpflg)
1973 {
1974 	int err, oid, r, i, hiwater, nitems, amt;
1975 	uint16_t tempflags;
1976 	size_t buflen;
1977 	uint8_t status, oencstat;
1978 	char *sdata, cdb[10];
1979 	struct scfg *cc = ssc->ses_private;
1980 
1981 
1982 	/*
1983 	 * The number of objects overstates things a bit,
1984 	 * both for the bogus 'thermometer' entries and
1985 	 * the drive status (which isn't read at the same
1986 	 * time as the enclosure status), but that's okay.
1987 	 */
1988 	buflen = 4 * cc->Nslots;
1989 	if (ssc->ses_nobjects > buflen)
1990 		buflen = ssc->ses_nobjects;
1991 	sdata = SES_MALLOC(buflen);
1992 	if (sdata == NULL)
1993 		return (ENOMEM);
1994 
1995 	cdb[0] = READ_BUFFER;
1996 	cdb[1] = 1;
1997 	cdb[2] = SAFTE_RD_RDESTS;
1998 	cdb[3] = 0;
1999 	cdb[4] = 0;
2000 	cdb[5] = 0;
2001 	cdb[6] = 0;
2002 	cdb[7] = (buflen >> 8) & 0xff;
2003 	cdb[8] = buflen & 0xff;
2004 	cdb[9] = 0;
2005 	amt = buflen;
2006 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2007 	if (err) {
2008 		SES_FREE(sdata, buflen);
2009 		return (err);
2010 	}
2011 	hiwater = buflen - amt;
2012 
2013 
2014 	/*
2015 	 * invalidate all status bits.
2016 	 */
2017 	for (i = 0; i < ssc->ses_nobjects; i++)
2018 		ssc->ses_objmap[i].svalid = 0;
2019 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2020 	ssc->ses_encstat = 0;
2021 
2022 
2023 	/*
2024 	 * Now parse returned buffer.
2025 	 * If we didn't get enough data back,
2026 	 * that's considered a fatal error.
2027 	 */
2028 	oid = r = 0;
2029 
2030 	for (nitems = i = 0; i < cc->Nfans; i++) {
2031 		SAFT_BAIL(r, hiwater, sdata, buflen);
2032 		/*
2033 		 * 0 = Fan Operational
2034 		 * 1 = Fan is malfunctioning
2035 		 * 2 = Fan is not present
2036 		 * 0x80 = Unknown or Not Reportable Status
2037 		 */
2038 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2039 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2040 		switch ((int)(uint8_t)sdata[r]) {
2041 		case 0:
2042 			nitems++;
2043 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2044 			/*
2045 			 * We could get fancier and cache
2046 			 * fan speeds that we have set, but
2047 			 * that isn't done now.
2048 			 */
2049 			ssc->ses_objmap[oid].encstat[3] = 7;
2050 			break;
2051 
2052 		case 1:
2053 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2054 			/*
2055 			 * FAIL and FAN STOPPED synthesized
2056 			 */
2057 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2058 			/*
2059 			 * Enclosure marked with CRITICAL error
2060 			 * if only one fan or no thermometers,
2061 			 * else the NONCRITICAL error is set.
2062 			 */
2063 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2064 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2065 			else
2066 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2067 			break;
2068 		case 2:
2069 			ssc->ses_objmap[oid].encstat[0] =
2070 			    SES_OBJSTAT_NOTINSTALLED;
2071 			ssc->ses_objmap[oid].encstat[3] = 0;
2072 			/*
2073 			 * Enclosure marked with CRITICAL error
2074 			 * if only one fan or no thermometers,
2075 			 * else the NONCRITICAL error is set.
2076 			 */
2077 			if (cc->Nfans == 1)
2078 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2079 			else
2080 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2081 			break;
2082 		case 0x80:
2083 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2084 			ssc->ses_objmap[oid].encstat[3] = 0;
2085 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2086 			break;
2087 		default:
2088 			ssc->ses_objmap[oid].encstat[0] =
2089 			    SES_OBJSTAT_UNSUPPORTED;
2090 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2091 			    sdata[r] & 0xff);
2092 			break;
2093 		}
2094 		ssc->ses_objmap[oid++].svalid = 1;
2095 		r++;
2096 	}
2097 
2098 	/*
2099 	 * No matter how you cut it, no cooling elements when there
2100 	 * should be some there is critical.
2101 	 */
2102 	if (cc->Nfans && nitems == 0) {
2103 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2104 	}
2105 
2106 
2107 	for (i = 0; i < cc->Npwr; i++) {
2108 		SAFT_BAIL(r, hiwater, sdata, buflen);
2109 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2110 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2111 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2112 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2113 		switch ((uint8_t)sdata[r]) {
2114 		case 0x00:	/* pws operational and on */
2115 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2116 			break;
2117 		case 0x01:	/* pws operational and off */
2118 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2119 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2120 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2121 			break;
2122 		case 0x10:	/* pws is malfunctioning and commanded on */
2123 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2124 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2125 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2126 			break;
2127 
2128 		case 0x11:	/* pws is malfunctioning and commanded off */
2129 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2130 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2131 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2132 			break;
2133 		case 0x20:	/* pws is not present */
2134 			ssc->ses_objmap[oid].encstat[0] =
2135 			    SES_OBJSTAT_NOTINSTALLED;
2136 			ssc->ses_objmap[oid].encstat[3] = 0;
2137 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2138 			break;
2139 		case 0x21:	/* pws is present */
2140 			/*
2141 			 * This is for enclosures that cannot tell whether the
2142 			 * device is on or malfunctioning, but know that it is
2143 			 * present. Just fall through.
2144 			 */
2145 			/* FALLTHROUGH */
2146 		case 0x80:	/* Unknown or Not Reportable Status */
2147 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2148 			ssc->ses_objmap[oid].encstat[3] = 0;
2149 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2150 			break;
2151 		default:
2152 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2153 			    i, sdata[r] & 0xff);
2154 			break;
2155 		}
2156 		ssc->ses_objmap[oid++].svalid = 1;
2157 		r++;
2158 	}
2159 
2160 	/*
2161 	 * Skip over Slot SCSI IDs
2162 	 */
2163 	r += cc->Nslots;
2164 
2165 	/*
2166 	 * We always have doorlock status, no matter what,
2167 	 * but we only save the status if we have one.
2168 	 */
2169 	SAFT_BAIL(r, hiwater, sdata, buflen);
2170 	if (cc->DoorLock) {
2171 		/*
2172 		 * 0 = Door Locked
2173 		 * 1 = Door Unlocked, or no Lock Installed
2174 		 * 0x80 = Unknown or Not Reportable Status
2175 		 */
2176 		ssc->ses_objmap[oid].encstat[1] = 0;
2177 		ssc->ses_objmap[oid].encstat[2] = 0;
2178 		switch ((uint8_t)sdata[r]) {
2179 		case 0:
2180 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2181 			ssc->ses_objmap[oid].encstat[3] = 0;
2182 			break;
2183 		case 1:
2184 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2185 			ssc->ses_objmap[oid].encstat[3] = 1;
2186 			break;
2187 		case 0x80:
2188 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2189 			ssc->ses_objmap[oid].encstat[3] = 0;
2190 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2191 			break;
2192 		default:
2193 			ssc->ses_objmap[oid].encstat[0] =
2194 			    SES_OBJSTAT_UNSUPPORTED;
2195 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2196 			    sdata[r] & 0xff);
2197 			break;
2198 		}
2199 		ssc->ses_objmap[oid++].svalid = 1;
2200 	}
2201 	r++;
2202 
2203 	/*
2204 	 * We always have speaker status, no matter what,
2205 	 * but we only save the status if we have one.
2206 	 */
2207 	SAFT_BAIL(r, hiwater, sdata, buflen);
2208 	if (cc->Nspkrs) {
2209 		ssc->ses_objmap[oid].encstat[1] = 0;
2210 		ssc->ses_objmap[oid].encstat[2] = 0;
2211 		if (sdata[r] == 1) {
2212 			/*
2213 			 * We need to cache tone urgency indicators.
2214 			 * Someday.
2215 			 */
2216 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2217 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2218 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2219 		} else if (sdata[r] == 0) {
2220 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2221 			ssc->ses_objmap[oid].encstat[3] = 0;
2222 		} else {
2223 			ssc->ses_objmap[oid].encstat[0] =
2224 			    SES_OBJSTAT_UNSUPPORTED;
2225 			ssc->ses_objmap[oid].encstat[3] = 0;
2226 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2227 			    sdata[r] & 0xff);
2228 		}
2229 		ssc->ses_objmap[oid++].svalid = 1;
2230 	}
2231 	r++;
2232 
2233 	for (i = 0; i < cc->Ntherm; i++) {
2234 		SAFT_BAIL(r, hiwater, sdata, buflen);
2235 		/*
2236 		 * Status is a range from -10 to 245 deg Celsius,
2237 		 * which we need to normalize to -20 to -245 according
2238 		 * to the latest SCSI spec, which makes little
2239 		 * sense since this would overflow an 8bit value.
2240 		 * Well, still, the base normalization is -20,
2241 		 * not -10, so we have to adjust.
2242 		 *
2243 		 * So what's over and under temperature?
2244 		 * Hmm- we'll state that 'normal' operating
2245 		 * is 10 to 40 deg Celsius.
2246 		 */
2247 
2248 		/*
2249 		 * Actually.... All of the units that people out in the world
2250 		 * seem to have do not come even close to setting a value that
2251 		 * complies with this spec.
2252 		 *
2253 		 * The closest explanation I could find was in an
2254 		 * LSI-Logic manual, which seemed to indicate that
2255 		 * this value would be set by whatever the I2C code
2256 		 * would interpolate from the output of an LM75
2257 		 * temperature sensor.
2258 		 *
2259 		 * This means that it is impossible to use the actual
2260 		 * numeric value to predict anything. But we don't want
2261 		 * to lose the value. So, we'll propagate the *uncorrected*
2262 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2263 		 * temperature flags for warnings.
2264 		 */
2265 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2266 		ssc->ses_objmap[oid].encstat[1] = 0;
2267 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2268 		ssc->ses_objmap[oid].encstat[3] = 0;
2269 		ssc->ses_objmap[oid++].svalid = 1;
2270 		r++;
2271 	}
2272 
2273 	/*
2274 	 * Now, for "pseudo" thermometers, we have two bytes
2275 	 * of information in enclosure status- 16 bits. Actually,
2276 	 * the MSB is a single TEMP ALERT flag indicating whether
2277 	 * any other bits are set, but, thanks to fuzzy thinking,
2278 	 * in the SAF-TE spec, this can also be set even if no
2279 	 * other bits are set, thus making this really another
2280 	 * binary temperature sensor.
2281 	 */
2282 
2283 	SAFT_BAIL(r, hiwater, sdata, buflen);
2284 	tempflags = sdata[r++];
2285 	SAFT_BAIL(r, hiwater, sdata, buflen);
2286 	tempflags |= (tempflags << 8) | sdata[r++];
2287 
2288 	for (i = 0; i < NPSEUDO_THERM; i++) {
2289 		ssc->ses_objmap[oid].encstat[1] = 0;
2290 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2291 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2292 			ssc->ses_objmap[4].encstat[2] = 0xff;
2293 			/*
2294 			 * Set 'over temperature' failure.
2295 			 */
2296 			ssc->ses_objmap[oid].encstat[3] = 8;
2297 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2298 		} else {
2299 			/*
2300 			 * We used to say 'not available' and synthesize a
2301 			 * nominal 30 deg (C)- that was wrong. Actually,
2302 			 * Just say 'OK', and use the reserved value of
2303 			 * zero.
2304 			 */
2305 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2306 			ssc->ses_objmap[oid].encstat[2] = 0;
2307 			ssc->ses_objmap[oid].encstat[3] = 0;
2308 		}
2309 		ssc->ses_objmap[oid++].svalid = 1;
2310 	}
2311 
2312 	/*
2313 	 * Get alarm status.
2314 	 */
2315 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2316 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2317 	ssc->ses_objmap[oid++].svalid = 1;
2318 
2319 	/*
2320 	 * Now get drive slot status
2321 	 */
2322 	cdb[2] = SAFTE_RD_RDDSTS;
2323 	amt = buflen;
2324 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2325 	if (err) {
2326 		SES_FREE(sdata, buflen);
2327 		return (err);
2328 	}
2329 	hiwater = buflen - amt;
2330 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2331 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2332 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2333 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2334 		ssc->ses_objmap[oid].encstat[2] = 0;
2335 		ssc->ses_objmap[oid].encstat[3] = 0;
2336 		status = sdata[r+3];
2337 		if ((status & 0x1) == 0) {	/* no device */
2338 			ssc->ses_objmap[oid].encstat[0] =
2339 			    SES_OBJSTAT_NOTINSTALLED;
2340 		} else {
2341 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2342 		}
2343 		if (status & 0x2) {
2344 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2345 		}
2346 		if ((status & 0x4) == 0) {
2347 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2348 		}
2349 		ssc->ses_objmap[oid++].svalid = 1;
2350 	}
2351 	/* see comment below about sticky enclosure status */
2352 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2353 	SES_FREE(sdata, buflen);
2354 	return (0);
2355 }
2356 
2357 static int
2358 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2359 {
2360 	int idx;
2361 	encobj *ep;
2362 	struct scfg *cc = ssc->ses_private;
2363 
2364 	if (cc == NULL)
2365 		return (0);
2366 
2367 	idx = (int)obp->obj_id;
2368 	ep = &ssc->ses_objmap[idx];
2369 
2370 	switch (ep->enctype) {
2371 	case SESTYP_DEVICE:
2372 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2373 			ep->priv |= 0x40;
2374 		}
2375 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2376 		if (obp->cstat[0] & SESCTL_DISABLE) {
2377 			ep->priv |= 0x80;
2378 			/*
2379 			 * Hmm. Try to set the 'No Drive' flag.
2380 			 * Maybe that will count as a 'disable'.
2381 			 */
2382 		}
2383 		if (ep->priv & 0xc6) {
2384 			ep->priv &= ~0x1;
2385 		} else {
2386 			ep->priv |= 0x1;	/* no errors */
2387 		}
2388 		wrslot_stat(ssc, slp);
2389 		break;
2390 	case SESTYP_POWER:
2391 		/*
2392 		 * Okay- the only one that makes sense here is to
2393 		 * do the 'disable' for a power supply.
2394 		 */
2395 		if (obp->cstat[0] & SESCTL_DISABLE) {
2396 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
2397 				idx - cc->pwroff, 0, 0, slp);
2398 		}
2399 		break;
2400 	case SESTYP_FAN:
2401 		/*
2402 		 * Okay- the only one that makes sense here is to
2403 		 * set fan speed to zero on disable.
2404 		 */
2405 		if (obp->cstat[0] & SESCTL_DISABLE) {
2406 			/* remember- fans are the first items, so idx works */
2407 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2408 		}
2409 		break;
2410 	case SESTYP_DOORLOCK:
2411 		/*
2412 		 * Well, we can 'disable' the lock.
2413 		 */
2414 		if (obp->cstat[0] & SESCTL_DISABLE) {
2415 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2416 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2417 				cc->flag2, 0, slp);
2418 		}
2419 		break;
2420 	case SESTYP_ALARM:
2421 		/*
2422 		 * Well, we can 'disable' the alarm.
2423 		 */
2424 		if (obp->cstat[0] & SESCTL_DISABLE) {
2425 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2426 			ep->priv |= 0x40;	/* Muted */
2427 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2428 				cc->flag2, 0, slp);
2429 		}
2430 		break;
2431 	default:
2432 		break;
2433 	}
2434 	ep->svalid = 0;
2435 	return (0);
2436 }
2437 
2438 /*
2439  * This function handles all of the 16 byte WRITE BUFFER commands.
2440  */
2441 static int
2442 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2443     uint8_t b3, int slp)
2444 {
2445 	int err, amt;
2446 	char *sdata;
2447 	struct scfg *cc = ssc->ses_private;
2448 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2449 
2450 	if (cc == NULL)
2451 		return (0);
2452 
2453 	sdata = SES_MALLOC(16);
2454 	if (sdata == NULL)
2455 		return (ENOMEM);
2456 
2457 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2458 
2459 	sdata[0] = op;
2460 	sdata[1] = b1;
2461 	sdata[2] = b2;
2462 	sdata[3] = b3;
2463 	MEMZERO(&sdata[4], 12);
2464 	amt = -16;
2465 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2466 	SES_FREE(sdata, 16);
2467 	return (err);
2468 }
2469 
2470 /*
2471  * This function updates the status byte for the device slot described.
2472  *
2473  * Since this is an optional SAF-TE command, there's no point in
2474  * returning an error.
2475  */
2476 static void
2477 wrslot_stat(ses_softc_t *ssc, int slp)
2478 {
2479 	int i, amt;
2480 	encobj *ep;
2481 	char cdb[10], *sdata;
2482 	struct scfg *cc = ssc->ses_private;
2483 
2484 	if (cc == NULL)
2485 		return;
2486 
2487 	SES_DLOG(ssc, "saf_wrslot\n");
2488 	cdb[0] = WRITE_BUFFER;
2489 	cdb[1] = 1;
2490 	cdb[2] = 0;
2491 	cdb[3] = 0;
2492 	cdb[4] = 0;
2493 	cdb[5] = 0;
2494 	cdb[6] = 0;
2495 	cdb[7] = 0;
2496 	cdb[8] = cc->Nslots * 3 + 1;
2497 	cdb[9] = 0;
2498 
2499 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2500 	if (sdata == NULL)
2501 		return;
2502 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2503 
2504 	sdata[0] = SAFTE_WT_DSTAT;
2505 	for (i = 0; i < cc->Nslots; i++) {
2506 		ep = &ssc->ses_objmap[cc->slotoff + i];
2507 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2508 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2509 	}
2510 	amt = -(cc->Nslots * 3 + 1);
2511 	ses_runcmd(ssc, cdb, 10, sdata, &amt);
2512 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2513 }
2514 
2515 /*
2516  * This function issues the "PERFORM SLOT OPERATION" command.
2517  */
2518 static int
2519 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2520 {
2521 	int err, amt;
2522 	char *sdata;
2523 	struct scfg *cc = ssc->ses_private;
2524 	static char cdb[10] =
2525 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2526 
2527 	if (cc == NULL)
2528 		return (0);
2529 
2530 	sdata = SES_MALLOC(SAFT_SCRATCH);
2531 	if (sdata == NULL)
2532 		return (ENOMEM);
2533 	MEMZERO(sdata, SAFT_SCRATCH);
2534 
2535 	sdata[0] = SAFTE_WT_SLTOP;
2536 	sdata[1] = slot;
2537 	sdata[2] = opflag;
2538 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2539 	amt = -SAFT_SCRATCH;
2540 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2541 	SES_FREE(sdata, SAFT_SCRATCH);
2542 	return (err);
2543 }
2544