xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision 7d84b73d)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /*
3  * Copyright (c) 2000 Matthew Jacob
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification, immediately at the beginning of the file.
12  * 2. The name of the author may not be used to endorse or promote products
13  *    derived from this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  */
28 #include <sys/param.h>
29 #include <sys/queue.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/types.h>
33 #include <sys/malloc.h>
34 #include <sys/fcntl.h>
35 #include <sys/caps.h>
36 #include <sys/conf.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39 #include <sys/devicestat.h>
40 #include <machine/stdarg.h>
41 
42 #include "../cam.h"
43 #include "../cam_ccb.h"
44 #include "../cam_extend.h"
45 #include "../cam_periph.h"
46 #include "../cam_xpt_periph.h"
47 #include "../cam_debug.h"
48 #include "../cam_sim.h"
49 
50 #include "scsi_all.h"
51 #include "scsi_message.h"
52 #include "scsi_ses.h"
53 
54 #include <opt_ses.h>
55 
56 MALLOC_DEFINE(M_SCSISES, "SCSI SES", "SCSI SES buffers");
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init)(ses_softc_t *, int);
74 	int (*init_enc)(ses_softc_t *);
75 	int (*get_encstat)(ses_softc_t *, int);
76 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
77 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
78 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 
96 static enctyp ses_type(void *, int);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			kprintf
120 #define	SES_LOG			ses_log
121 #ifdef	DEBUG
122 #define	SES_DLOG		ses_log
123 #else
124 #define	SES_DLOG		if (0) ses_log
125 #endif
126 #define	SES_VLOG		if (bootverbose) ses_log
127 #define	SES_MALLOC(amt)		kmalloc(amt, M_SCSISES, M_INTWAIT)
128 #define	SES_FREE(ptr, amt)	kfree(ptr, M_SCSISES)
129 #define	MEMZERO			bzero
130 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
131 
132 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
133 static void ses_log(struct ses_softc *, const char *, ...) __printflike(2, 3);
134 
135 /*
136  * Gerenal FreeBSD kernel stuff.
137  */
138 
139 
140 #define ccb_state	ppriv_field0
141 #define ccb_bio		ppriv_ptr1
142 
143 struct ses_softc {
144 	enctyp		ses_type;	/* type of enclosure */
145 	encvec		ses_vec;	/* vector to handlers */
146 	void *		ses_private;	/* per-type private data */
147 	encobj *	ses_objmap;	/* objects */
148 	u_int32_t	ses_nobjects;	/* number of objects */
149 	ses_encstat	ses_encstat;	/* overall status */
150 	u_int8_t	ses_flags;
151 	union ccb	ses_saved_ccb;
152 	struct cam_periph *periph;
153 };
154 #define	SES_FLAG_INVALID	0x01
155 #define	SES_FLAG_OPEN		0x02
156 #define	SES_FLAG_INITIALIZED	0x04
157 
158 #define SESUNIT(x)       (minor((x)))
159 
160 static	d_open_t	sesopen;
161 static	d_close_t	sesclose;
162 static	d_ioctl_t	sesioctl;
163 static	periph_init_t	sesinit;
164 static  periph_ctor_t	sesregister;
165 static	periph_oninv_t	sesoninvalidate;
166 static  periph_dtor_t   sescleanup;
167 static  periph_start_t  sesstart;
168 
169 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
170 static void sesdone(struct cam_periph *, union ccb *);
171 static int seserror(union ccb *, u_int32_t, u_int32_t);
172 
173 static struct periph_driver sesdriver = {
174 	sesinit, "ses",
175 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
176 };
177 
178 PERIPHDRIVER_DECLARE(ses, sesdriver);
179 
180 static struct dev_ops ses_ops = {
181 	{ "ses", 0, 0 },
182 	.d_open =	sesopen,
183 	.d_close =	sesclose,
184 	.d_ioctl =	sesioctl,
185 };
186 static struct extend_array *sesperiphs;
187 
188 static void
189 sesinit(void)
190 {
191 	cam_status status;
192 
193 	/*
194 	 * Create our extend array for storing the devices we attach to.
195 	 */
196 	sesperiphs = cam_extend_new();
197 	if (sesperiphs == NULL) {
198 		kprintf("ses: Failed to alloc extend array!\n");
199 		return;
200 	}
201 
202 	/*
203 	 * Install a global async callback.  This callback will
204 	 * receive async callbacks like "new device found".
205 	 */
206 	status = xpt_register_async(AC_FOUND_DEVICE, sesasync, NULL, NULL);
207 
208 	if (status != CAM_REQ_CMP) {
209 		kprintf("ses: Failed to attach master async callback "
210 		       "due to status 0x%x!\n", status);
211 	}
212 }
213 
214 static void
215 sesoninvalidate(struct cam_periph *periph)
216 {
217 	struct ses_softc *softc;
218 
219 	softc = (struct ses_softc *)periph->softc;
220 
221 	/*
222 	 * Unregister any async callbacks.
223 	 */
224 	xpt_register_async(0, sesasync, periph, periph->path);
225 
226 	softc->ses_flags |= SES_FLAG_INVALID;
227 
228 	xpt_print(periph->path, "lost device\n");
229 }
230 
231 static void
232 sescleanup(struct cam_periph *periph)
233 {
234 	struct ses_softc *softc;
235 
236 	softc = (struct ses_softc *)periph->softc;
237 
238 	cam_extend_release(sesperiphs, periph->unit_number);
239 	xpt_print(periph->path, "removing device entry\n");
240 	dev_ops_remove_minor(&ses_ops, periph->unit_number);
241 	kfree(softc, M_SCSISES);
242 }
243 
244 static void
245 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
246 {
247 	struct cam_periph *periph;
248 
249 	periph = (struct cam_periph *)callback_arg;
250 
251 	switch(code) {
252 	case AC_FOUND_DEVICE:
253 	{
254 		cam_status status;
255 		struct ccb_getdev *cgd;
256 		int inq_len;
257 
258 		cgd = (struct ccb_getdev *)arg;
259 		if (arg == NULL) {
260 			break;
261 		}
262 
263 		inq_len = cgd->inq_data.additional_length + 4;
264 
265 		/*
266 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
267 		 * PROBLEM: IS A SAF-TE DEVICE.
268 		 */
269 		switch (ses_type(&cgd->inq_data, inq_len)) {
270 		case SES_SES:
271 		case SES_SES_SCSI2:
272 		case SES_SES_PASSTHROUGH:
273 		case SES_SEN:
274 		case SES_SAFT:
275 			break;
276 		default:
277 			return;
278 		}
279 
280 		status = cam_periph_alloc(sesregister, sesoninvalidate,
281 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
282 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
283 
284 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
285 			kprintf("sesasync: Unable to probe new device due to "
286 			    "status 0x%x\n", status);
287 		}
288 		break;
289 	}
290 	default:
291 		cam_periph_async(periph, code, path, arg);
292 		break;
293 	}
294 }
295 
296 static cam_status
297 sesregister(struct cam_periph *periph, void *arg)
298 {
299 	struct ses_softc *softc;
300 	struct ccb_getdev *cgd;
301 	char *tname;
302 
303 	cgd = (struct ccb_getdev *)arg;
304 	if (periph == NULL) {
305 		kprintf("sesregister: periph was NULL!!\n");
306 		return (CAM_REQ_CMP_ERR);
307 	}
308 
309 	if (cgd == NULL) {
310 		kprintf("sesregister: no getdev CCB, can't register device\n");
311 		return (CAM_REQ_CMP_ERR);
312 	}
313 
314 	softc = kmalloc(sizeof (struct ses_softc), M_SCSISES, M_INTWAIT | M_ZERO);
315 	periph->softc = softc;
316 	softc->periph = periph;
317 
318 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
319 
320 	switch (softc->ses_type) {
321 	case SES_SES:
322 	case SES_SES_SCSI2:
323         case SES_SES_PASSTHROUGH:
324 		softc->ses_vec.softc_init = ses_softc_init;
325 		softc->ses_vec.init_enc = ses_init_enc;
326 		softc->ses_vec.get_encstat = ses_get_encstat;
327 		softc->ses_vec.set_encstat = ses_set_encstat;
328 		softc->ses_vec.get_objstat = ses_get_objstat;
329 		softc->ses_vec.set_objstat = ses_set_objstat;
330 		break;
331         case SES_SAFT:
332 		softc->ses_vec.softc_init = safte_softc_init;
333 		softc->ses_vec.init_enc = safte_init_enc;
334 		softc->ses_vec.get_encstat = safte_get_encstat;
335 		softc->ses_vec.set_encstat = safte_set_encstat;
336 		softc->ses_vec.get_objstat = safte_get_objstat;
337 		softc->ses_vec.set_objstat = safte_set_objstat;
338 		break;
339         case SES_SEN:
340 		break;
341 	case SES_NONE:
342 	default:
343 		kfree(softc, M_SCSISES);
344 		return (CAM_REQ_CMP_ERR);
345 	}
346 
347 	cam_extend_set(sesperiphs, periph->unit_number, periph);
348 
349 	cam_periph_unlock(periph);
350 	make_dev(&ses_ops, periph->unit_number,
351 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
352 		    periph->periph_name, periph->unit_number);
353 	cam_periph_lock(periph);
354 
355 	/*
356 	 * Add an async callback so that we get
357 	 * notified if this device goes away.
358 	 */
359 	xpt_register_async(AC_LOST_DEVICE, sesasync, periph, periph->path);
360 
361 	switch (softc->ses_type) {
362 	default:
363 	case SES_NONE:
364 		tname = "No SES device";
365 		break;
366 	case SES_SES_SCSI2:
367 		tname = "SCSI-2 SES Device";
368 		break;
369 	case SES_SES:
370 		tname = "SCSI-3 SES Device";
371 		break;
372         case SES_SES_PASSTHROUGH:
373 		tname = "SES Passthrough Device";
374 		break;
375         case SES_SEN:
376 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
377 		break;
378         case SES_SAFT:
379 		tname = "SAF-TE Compliant Device";
380 		break;
381 	}
382 	xpt_announce_periph(periph, tname);
383 	return (CAM_REQ_CMP);
384 }
385 
386 static int
387 sesopen(struct dev_open_args *ap)
388 {
389 	cdev_t dev = ap->a_head.a_dev;
390 	struct cam_periph *periph;
391 	struct ses_softc *softc;
392 	int error = 0;
393 
394 	/*
395 	 * Disallow CAM access if RESTRICTEDROOT
396 	 */
397 	if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT))
398 		return (EPERM);
399 
400 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
401 	if (periph == NULL) {
402 		return (ENXIO);
403 	}
404 
405 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
406 		cam_periph_unlock(periph);
407 		return (ENXIO);
408 	}
409 
410 	cam_periph_lock(periph);
411 
412 	softc = (struct ses_softc *)periph->softc;
413 
414 	if (softc->ses_flags & SES_FLAG_INVALID) {
415 		error = ENXIO;
416 		goto out;
417 	}
418 	if (softc->ses_flags & SES_FLAG_OPEN) {
419 		error = EBUSY;
420 		goto out;
421 	}
422 	if (softc->ses_vec.softc_init == NULL) {
423 		error = ENXIO;
424 		goto out;
425 	}
426 
427 	softc->ses_flags |= SES_FLAG_OPEN;
428 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
429 		error = (*softc->ses_vec.softc_init)(softc, 1);
430 		if (error)
431 			softc->ses_flags &= ~SES_FLAG_OPEN;
432 		else
433 			softc->ses_flags |= SES_FLAG_INITIALIZED;
434 	}
435 
436 out:
437 	cam_periph_unlock(periph);
438 	if (error) {
439 		cam_periph_release(periph);
440 	}
441 	return (error);
442 }
443 
444 static int
445 sesclose(struct dev_close_args *ap)
446 {
447 	cdev_t dev = ap->a_head.a_dev;
448 	struct cam_periph *periph;
449 	struct ses_softc *softc;
450 	int unit;
451 
452 	unit = SESUNIT(dev);
453 	periph = cam_extend_get(sesperiphs, unit);
454 	if (periph == NULL)
455 		return (ENXIO);
456 
457 	cam_periph_lock(periph);
458 
459 	softc = (struct ses_softc *)periph->softc;
460 	softc->ses_flags &= ~SES_FLAG_OPEN;
461 
462 	cam_periph_unlock(periph);
463 	cam_periph_release(periph);
464 
465 	return (0);
466 }
467 
468 static void
469 sesstart(struct cam_periph *p, union ccb *sccb)
470 {
471 	if (p->immediate_priority <= p->pinfo.priority) {
472 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
473 		p->immediate_priority = CAM_PRIORITY_NONE;
474 		wakeup(&p->ccb_list);
475 	}
476 }
477 
478 static void
479 sesdone(struct cam_periph *periph, union ccb *dccb)
480 {
481 	wakeup(&dccb->ccb_h.cbfcnp);
482 }
483 
484 static int
485 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
486 {
487 	struct ses_softc *softc;
488 	struct cam_periph *periph;
489 
490 	periph = xpt_path_periph(ccb->ccb_h.path);
491 	softc = (struct ses_softc *)periph->softc;
492 
493 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
494 }
495 
496 static int
497 sesioctl(struct dev_ioctl_args *ap)
498 {
499 	cdev_t dev = ap->a_head.a_dev;
500 	struct cam_periph *periph;
501 	ses_encstat tmp;
502 	ses_objstat objs;
503 	ses_object obj, *uobj;
504 	struct ses_softc *ssc;
505 	void *addr;
506 	int error, i;
507 
508 
509 	if (ap->a_data)
510 		addr = *((caddr_t *)ap->a_data);
511 	else
512 		addr = NULL;
513 
514 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
515 	if (periph == NULL)
516 		return (ENXIO);
517 
518 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
519 
520 	cam_periph_lock(periph);
521 	ssc = (struct ses_softc *)periph->softc;
522 
523 	/*
524 	 * Now check to see whether we're initialized or not.
525 	 */
526 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
527 		cam_periph_unlock(periph);
528 		return (ENXIO);
529 	}
530 	cam_periph_unlock(periph);
531 
532 	error = 0;
533 
534 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
535 	    ("trying to do ioctl %#lx\n", ap->a_cmd));
536 
537 	/*
538 	 * If this command can change the device's state,
539 	 * we must have the device open for writing.
540 	 */
541 	switch (ap->a_cmd) {
542 	case SESIOC_GETNOBJ:
543 	case SESIOC_GETOBJMAP:
544 	case SESIOC_GETENCSTAT:
545 	case SESIOC_GETOBJSTAT:
546 		break;
547 	default:
548 		if ((ap->a_fflag & FWRITE) == 0) {
549 			return (EBADF);
550 		}
551 	}
552 
553 	switch (ap->a_cmd) {
554 	case SESIOC_GETNOBJ:
555 		error = copyout(&ssc->ses_nobjects, addr,
556 		    sizeof (ssc->ses_nobjects));
557 		break;
558 
559 	case SESIOC_GETOBJMAP:
560 		/*
561 		 * XXX Dropping the lock while copying multiple segments is
562 		 * bogus.
563 		 */
564 		cam_periph_lock(periph);
565 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
566 			obj.obj_id = i;
567 			obj.subencid = ssc->ses_objmap[i].subenclosure;
568 			obj.object_type = ssc->ses_objmap[i].enctype;
569 			cam_periph_unlock(periph);
570 			error = copyout(&obj, uobj, sizeof (ses_object));
571 			cam_periph_lock(periph);
572 			if (error) {
573 				break;
574 			}
575 		}
576 		cam_periph_unlock(periph);
577 		break;
578 
579 	case SESIOC_GETENCSTAT:
580 		cam_periph_lock(periph);
581 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
582 		if (error) {
583 			cam_periph_unlock(periph);
584 			break;
585 		}
586 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
587 		cam_periph_unlock(periph);
588 		error = copyout(&tmp, addr, sizeof (ses_encstat));
589 		ssc->ses_encstat = tmp;
590 		break;
591 
592 	case SESIOC_SETENCSTAT:
593 		error = copyin(addr, &tmp, sizeof (ses_encstat));
594 		if (error)
595 			break;
596 		cam_periph_lock(periph);
597 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
598 		cam_periph_unlock(periph);
599 		break;
600 
601 	case SESIOC_GETOBJSTAT:
602 		error = copyin(addr, &objs, sizeof (ses_objstat));
603 		if (error)
604 			break;
605 		if (objs.obj_id >= ssc->ses_nobjects) {
606 			error = EINVAL;
607 			break;
608 		}
609 		cam_periph_lock(periph);
610 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
611 		cam_periph_unlock(periph);
612 		if (error)
613 			break;
614 		error = copyout(&objs, addr, sizeof (ses_objstat));
615 		/*
616 		 * Always (for now) invalidate entry.
617 		 */
618 		ssc->ses_objmap[objs.obj_id].svalid = 0;
619 		break;
620 
621 	case SESIOC_SETOBJSTAT:
622 		error = copyin(addr, &objs, sizeof (ses_objstat));
623 		if (error)
624 			break;
625 
626 		if (objs.obj_id >= ssc->ses_nobjects) {
627 			error = EINVAL;
628 			break;
629 		}
630 		cam_periph_lock(periph);
631 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
632 		cam_periph_unlock(periph);
633 
634 		/*
635 		 * Always (for now) invalidate entry.
636 		 */
637 		ssc->ses_objmap[objs.obj_id].svalid = 0;
638 		break;
639 
640 	case SESIOC_INIT:
641 
642 		cam_periph_lock(periph);
643 		error = (*ssc->ses_vec.init_enc)(ssc);
644 		cam_periph_unlock(periph);
645 		break;
646 
647 	default:
648 		cam_periph_lock(periph);
649 		error = cam_periph_ioctl(periph, ap->a_cmd, ap->a_data, seserror);
650 		cam_periph_unlock(periph);
651 		break;
652 	}
653 	return (error);
654 }
655 
656 #define	SES_CFLAGS	CAM_RETRY_SELTO
657 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_UA
658 static int
659 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
660 {
661 	int error, dlen;
662 	ccb_flags ddf;
663 	union ccb *ccb;
664 
665 	if (dptr) {
666 		if ((dlen = *dlenp) < 0) {
667 			dlen = -dlen;
668 			ddf = CAM_DIR_OUT;
669 		} else {
670 			ddf = CAM_DIR_IN;
671 		}
672 	} else {
673 		dlen = 0;
674 		ddf = CAM_DIR_NONE;
675 	}
676 
677 	if (cdbl > IOCDBLEN) {
678 		cdbl = IOCDBLEN;
679 	}
680 
681 	ccb = cam_periph_getccb(ssc->periph, 1);
682 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
683 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
684 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
685 
686 	error = cam_periph_runccb(ccb, seserror, SES_CFLAGS, SES_FLAGS, NULL);
687 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
688 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
689 	if (error) {
690 		if (dptr) {
691 			*dlenp = dlen;
692 		}
693 	} else {
694 		if (dptr) {
695 			*dlenp = ccb->csio.resid;
696 		}
697 	}
698 	xpt_release_ccb(ccb);
699 	return (error);
700 }
701 
702 static void
703 ses_log(struct ses_softc *ssc, const char *fmt, ...)
704 {
705 	__va_list ap;
706 
707 	kprintf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
708 	__va_start(ap, fmt);
709 	kvprintf(fmt, ap);
710 	__va_end(ap);
711 }
712 
713 /*
714  * The code after this point runs on many platforms,
715  * so forgive the slightly awkward and nonconforming
716  * appearance.
717  */
718 
719 /*
720  * Is this a device that supports enclosure services?
721  *
722  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
723  * an SES device. If it happens to be an old UNISYS SEN device, we can
724  * handle that too.
725  */
726 
727 #define	SAFTE_START	44
728 #define	SAFTE_END	50
729 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
730 
731 static enctyp
732 ses_type(void *buf, int buflen)
733 {
734 	unsigned char *iqd = buf;
735 
736 	if (buflen < 8+SEN_ID_LEN)
737 		return (SES_NONE);
738 
739 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
740 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
741 			return (SES_SEN);
742 		} else if ((iqd[2] & 0x7) > 2) {
743 			return (SES_SES);
744 		} else {
745 			return (SES_SES_SCSI2);
746 		}
747 		return (SES_NONE);
748 	}
749 
750 #ifdef	SES_ENABLE_PASSTHROUGH
751 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
752 		/*
753 		 * PassThrough Device.
754 		 */
755 		return (SES_SES_PASSTHROUGH);
756 	}
757 #endif
758 
759 	/*
760 	 * The comparison is short for a reason-
761 	 * some vendors were chopping it short.
762 	 */
763 
764 	if (buflen < SAFTE_END - 2) {
765 		return (SES_NONE);
766 	}
767 
768 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
769 		return (SES_SAFT);
770 	}
771 	return (SES_NONE);
772 }
773 
774 /*
775  * SES Native Type Device Support
776  */
777 
778 /*
779  * SES Diagnostic Page Codes
780  */
781 
782 typedef enum {
783 	SesConfigPage = 0x1,
784 	SesControlPage,
785 #define	SesStatusPage SesControlPage
786 	SesHelpTxt,
787 	SesStringOut,
788 #define	SesStringIn	SesStringOut
789 	SesThresholdOut,
790 #define	SesThresholdIn SesThresholdOut
791 	SesArrayControl,
792 #define	SesArrayStatus	SesArrayControl
793 	SesElementDescriptor,
794 	SesShortStatus
795 } SesDiagPageCodes;
796 
797 /*
798  * minimal amounts
799  */
800 
801 /*
802  * Minimum amount of data, starting from byte 0, to have
803  * the config header.
804  */
805 #define	SES_CFGHDR_MINLEN	12
806 
807 /*
808  * Minimum amount of data, starting from byte 0, to have
809  * the config header and one enclosure header.
810  */
811 #define	SES_ENCHDR_MINLEN	48
812 
813 /*
814  * Take this value, subtract it from VEnclen and you know
815  * the length of the vendor unique bytes.
816  */
817 #define	SES_ENCHDR_VMIN		36
818 
819 /*
820  * SES Data Structures
821  */
822 
823 typedef struct {
824 	uint32_t GenCode;	/* Generation Code */
825 	uint8_t	Nsubenc;	/* Number of Subenclosures */
826 } SesCfgHdr;
827 
828 typedef struct {
829 	uint8_t	Subencid;	/* SubEnclosure Identifier */
830 	uint8_t	Ntypes;		/* # of supported types */
831 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
832 } SesEncHdr;
833 
834 typedef struct {
835 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
836 	uint8_t	encVid[8];
837 	uint8_t	encPid[16];
838 	uint8_t	encRev[4];
839 	uint8_t	encVen[1];
840 } SesEncDesc;
841 
842 typedef struct {
843 	uint8_t	enc_type;		/* type of element */
844 	uint8_t	enc_maxelt;		/* maximum supported */
845 	uint8_t	enc_subenc;		/* in SubEnc # N */
846 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
847 } SesThdr;
848 
849 typedef struct {
850 	uint8_t	comstatus;
851 	uint8_t	comstat[3];
852 } SesComStat;
853 
854 struct typidx {
855 	int ses_tidx;
856 	int ses_oidx;
857 };
858 
859 struct sscfg {
860 	uint8_t ses_ntypes;	/* total number of types supported */
861 
862 	/*
863 	 * We need to keep a type index as well as an
864 	 * object index for each object in an enclosure.
865 	 */
866 	struct typidx *ses_typidx;
867 
868 	/*
869 	 * We also need to keep track of the number of elements
870 	 * per type of element. This is needed later so that we
871 	 * can find precisely in the returned status data the
872 	 * status for the Nth element of the Kth type.
873 	 */
874 	uint8_t *	ses_eltmap;
875 };
876 
877 
878 /*
879  * (de)canonicalization defines
880  */
881 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
882 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
883 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
884 
885 #define	sset16(outp, idx, sval)	\
886 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
887 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
888 
889 
890 #define	sset24(outp, idx, sval)	\
891 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
892 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
893 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
894 
895 
896 #define	sset32(outp, idx, sval)	\
897 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
898 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
899 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
900 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
901 
902 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
903 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
904 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
905 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
906 
907 #define	sget16(inp, idx, lval)	\
908 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
909 		(((uint8_t *)(inp))[idx+1]), idx += 2
910 
911 #define	gget16(inp, idx, lval)	\
912 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
913 		(((uint8_t *)(inp))[idx+1])
914 
915 #define	sget24(inp, idx, lval)	\
916 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
917 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
918 			(((uint8_t *)(inp))[idx+2]), idx += 3
919 
920 #define	gget24(inp, idx, lval)	\
921 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
922 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
923 			(((uint8_t *)(inp))[idx+2])
924 
925 #define	sget32(inp, idx, lval)	\
926 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
927 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
928 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
929 			(((uint8_t *)(inp))[idx+3]), idx += 4
930 
931 #define	gget32(inp, idx, lval)	\
932 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
933 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
934 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
935 			(((uint8_t *)(inp))[idx+3])
936 
937 #define	SCSZ	0x2000
938 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
939 
940 /*
941  * Routines specific && private to SES only
942  */
943 
944 static int ses_getconfig(ses_softc_t *);
945 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
946 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
947 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
948 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
949 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
950 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
951 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
952 
953 static int
954 ses_softc_init(ses_softc_t *ssc, int doinit)
955 {
956 	if (doinit == 0) {
957 		struct sscfg *cc;
958 		if (ssc->ses_nobjects) {
959 			SES_FREE(ssc->ses_objmap,
960 			    ssc->ses_nobjects * sizeof (encobj));
961 			ssc->ses_objmap = NULL;
962 		}
963 		if ((cc = ssc->ses_private) != NULL) {
964 			if (cc->ses_eltmap && cc->ses_ntypes) {
965 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
966 				cc->ses_eltmap = NULL;
967 				cc->ses_ntypes = 0;
968 			}
969 			if (cc->ses_typidx && ssc->ses_nobjects) {
970 				SES_FREE(cc->ses_typidx,
971 				    ssc->ses_nobjects * sizeof (struct typidx));
972 				cc->ses_typidx = NULL;
973 			}
974 			SES_FREE(cc, sizeof (struct sscfg));
975 			ssc->ses_private = NULL;
976 		}
977 		ssc->ses_nobjects = 0;
978 		return (0);
979 	}
980 	if (ssc->ses_private == NULL) {
981 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
982 	}
983 	if (ssc->ses_private == NULL) {
984 		return (ENOMEM);
985 	}
986 	ssc->ses_nobjects = 0;
987 	ssc->ses_encstat = 0;
988 	return (ses_getconfig(ssc));
989 }
990 
991 static int
992 ses_init_enc(ses_softc_t *ssc)
993 {
994 	return (0);
995 }
996 
997 static int
998 ses_get_encstat(ses_softc_t *ssc, int slpflag)
999 {
1000 	SesComStat ComStat;
1001 	int status;
1002 
1003 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1004 		return (status);
1005 	}
1006 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1007 	return (0);
1008 }
1009 
1010 static int
1011 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1012 {
1013 	SesComStat ComStat;
1014 	int status;
1015 
1016 	ComStat.comstatus = encstat & 0xf;
1017 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1018 		return (status);
1019 	}
1020 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1021 	return (0);
1022 }
1023 
1024 static int
1025 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1026 {
1027 	int i = (int)obp->obj_id;
1028 
1029 	if (ssc->ses_objmap[i].svalid == 0) {
1030 		SesComStat ComStat;
1031 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1032 		if (err)
1033 			return (err);
1034 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1035 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1036 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1037 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1038 		ssc->ses_objmap[i].svalid = 1;
1039 	}
1040 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1041 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1042 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1043 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1044 	return (0);
1045 }
1046 
1047 static int
1048 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1049 {
1050 	SesComStat ComStat;
1051 	int err;
1052 	/*
1053 	 * If this is clear, we don't do diddly.
1054 	 */
1055 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1056 		return (0);
1057 	}
1058 	ComStat.comstatus = obp->cstat[0];
1059 	ComStat.comstat[0] = obp->cstat[1];
1060 	ComStat.comstat[1] = obp->cstat[2];
1061 	ComStat.comstat[2] = obp->cstat[3];
1062 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1063 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1064 	return (err);
1065 }
1066 
1067 static int
1068 ses_getconfig(ses_softc_t *ssc)
1069 {
1070 	struct sscfg *cc;
1071 	SesCfgHdr cf;
1072 	SesEncHdr hd;
1073 	SesEncDesc *cdp;
1074 	SesThdr thdr;
1075 	int err, amt, i, nobj, ntype, maxima;
1076 	char storage[CFLEN], *sdata;
1077 	static char cdb[6] = {
1078 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1079 	};
1080 
1081 	cc = ssc->ses_private;
1082 	if (cc == NULL) {
1083 		return (ENXIO);
1084 	}
1085 
1086 	sdata = SES_MALLOC(SCSZ);
1087 	if (sdata == NULL)
1088 		return (ENOMEM);
1089 
1090 	amt = SCSZ;
1091 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1092 	if (err) {
1093 		SES_FREE(sdata, SCSZ);
1094 		return (err);
1095 	}
1096 	amt = SCSZ - amt;
1097 
1098 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1099 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1100 		SES_FREE(sdata, SCSZ);
1101 		return (EIO);
1102 	}
1103 	if (amt < SES_ENCHDR_MINLEN) {
1104 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1105 		SES_FREE(sdata, SCSZ);
1106 		return (EIO);
1107 	}
1108 
1109 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1110 
1111 	/*
1112 	 * Now waltz through all the subenclosures toting up the
1113 	 * number of types available in each. For this, we only
1114 	 * really need the enclosure header. However, we get the
1115 	 * enclosure descriptor for debug purposes, as well
1116 	 * as self-consistency checking purposes.
1117 	 */
1118 
1119 	maxima = cf.Nsubenc + 1;
1120 	cdp = (SesEncDesc *) storage;
1121 	for (ntype = i = 0; i < maxima; i++) {
1122 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1123 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1124 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1125 			SES_FREE(sdata, SCSZ);
1126 			return (EIO);
1127 		}
1128 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1129 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1130 
1131 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1132 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1133 			SES_FREE(sdata, SCSZ);
1134 			return (EIO);
1135 		}
1136 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1137 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1138 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1139 		    cdp->encWWN[6], cdp->encWWN[7]);
1140 		ntype += hd.Ntypes;
1141 	}
1142 
1143 	/*
1144 	 * Now waltz through all the types that are available, getting
1145 	 * the type header so we can start adding up the number of
1146 	 * objects available.
1147 	 */
1148 	for (nobj = i = 0; i < ntype; i++) {
1149 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1150 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1151 			SES_FREE(sdata, SCSZ);
1152 			return (EIO);
1153 		}
1154 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1155 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1156 		    thdr.enc_subenc, thdr.enc_tlen);
1157 		nobj += thdr.enc_maxelt;
1158 	}
1159 
1160 
1161 	/*
1162 	 * Now allocate the object array and type map.
1163 	 */
1164 
1165 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1166 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1167 	cc->ses_eltmap = SES_MALLOC(ntype);
1168 
1169 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1170 	    cc->ses_eltmap == NULL) {
1171 		if (ssc->ses_objmap) {
1172 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1173 			ssc->ses_objmap = NULL;
1174 		}
1175 		if (cc->ses_typidx) {
1176 			SES_FREE(cc->ses_typidx,
1177 			    (nobj * sizeof (struct typidx)));
1178 			cc->ses_typidx = NULL;
1179 		}
1180 		if (cc->ses_eltmap) {
1181 			SES_FREE(cc->ses_eltmap, ntype);
1182 			cc->ses_eltmap = NULL;
1183 		}
1184 		SES_FREE(sdata, SCSZ);
1185 		return (ENOMEM);
1186 	}
1187 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1188 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1189 	MEMZERO(cc->ses_eltmap, ntype);
1190 	cc->ses_ntypes = (uint8_t) ntype;
1191 	ssc->ses_nobjects = nobj;
1192 
1193 	/*
1194 	 * Now waltz through the # of types again to fill in the types
1195 	 * (and subenclosure ids) of the allocated objects.
1196 	 */
1197 	nobj = 0;
1198 	for (i = 0; i < ntype; i++) {
1199 		int j;
1200 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1201 			continue;
1202 		}
1203 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1204 		for (j = 0; j < thdr.enc_maxelt; j++) {
1205 			cc->ses_typidx[nobj].ses_tidx = i;
1206 			cc->ses_typidx[nobj].ses_oidx = j;
1207 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1208 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1209 		}
1210 	}
1211 	SES_FREE(sdata, SCSZ);
1212 	return (0);
1213 }
1214 
1215 static int
1216 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1217 {
1218 	struct sscfg *cc;
1219 	int err, amt, bufsiz, tidx, oidx;
1220 	char cdb[6], *sdata;
1221 
1222 	bzero(sp, sizeof(*sp));
1223 	cc = ssc->ses_private;
1224 	if (cc == NULL) {
1225 		return (ENXIO);
1226 	}
1227 
1228 	/*
1229 	 * If we're just getting overall enclosure status,
1230 	 * we only need 2 bytes of data storage.
1231 	 *
1232 	 * If we're getting anything else, we know how much
1233 	 * storage we need by noting that starting at offset
1234 	 * 8 in returned data, all object status bytes are 4
1235 	 * bytes long, and are stored in chunks of types(M)
1236 	 * and nth+1 instances of type M.
1237 	 */
1238 	if (objid == -1) {
1239 		bufsiz = 2;
1240 	} else {
1241 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1242 	}
1243 	sdata = SES_MALLOC(bufsiz);
1244 	if (sdata == NULL)
1245 		return (ENOMEM);
1246 
1247 	cdb[0] = RECEIVE_DIAGNOSTIC;
1248 	cdb[1] = 1;
1249 	cdb[2] = SesStatusPage;
1250 	cdb[3] = bufsiz >> 8;
1251 	cdb[4] = bufsiz & 0xff;
1252 	cdb[5] = 0;
1253 	amt = bufsiz;
1254 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1255 	if (err) {
1256 		SES_FREE(sdata, bufsiz);
1257 		return (err);
1258 	}
1259 	amt = bufsiz - amt;
1260 
1261 	if (objid == -1) {
1262 		tidx = -1;
1263 		oidx = -1;
1264 	} else {
1265 		tidx = cc->ses_typidx[objid].ses_tidx;
1266 		oidx = cc->ses_typidx[objid].ses_oidx;
1267 	}
1268 	if (in) {
1269 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1270 			err = ENODEV;
1271 		}
1272 	} else {
1273 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1274 			err = ENODEV;
1275 		} else {
1276 			cdb[0] = SEND_DIAGNOSTIC;
1277 			cdb[1] = 0x10;
1278 			cdb[2] = 0;
1279 			cdb[3] = bufsiz >> 8;
1280 			cdb[4] = bufsiz & 0xff;
1281 			cdb[5] = 0;
1282 			amt = -bufsiz;
1283 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1284 		}
1285 	}
1286 	SES_FREE(sdata, bufsiz);
1287 	return (0);
1288 }
1289 
1290 
1291 /*
1292  * Routines to parse returned SES data structures.
1293  * Architecture and compiler independent.
1294  */
1295 
1296 static int
1297 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1298 {
1299 	if (buflen < SES_CFGHDR_MINLEN) {
1300 		return (-1);
1301 	}
1302 	gget8(buffer, 1, cfp->Nsubenc);
1303 	gget32(buffer, 4, cfp->GenCode);
1304 	return (0);
1305 }
1306 
1307 static int
1308 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1309 {
1310 	int s, off = 8;
1311 	for (s = 0; s < SubEncId; s++) {
1312 		if (off + 3 > amt)
1313 			return (-1);
1314 		off += buffer[off+3] + 4;
1315 	}
1316 	if (off + 3 > amt) {
1317 		return (-1);
1318 	}
1319 	gget8(buffer, off+1, chp->Subencid);
1320 	gget8(buffer, off+2, chp->Ntypes);
1321 	gget8(buffer, off+3, chp->VEnclen);
1322 	return (0);
1323 }
1324 
1325 static int
1326 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1327 {
1328 	int s, e, enclen, off = 8;
1329 	for (s = 0; s < SubEncId; s++) {
1330 		if (off + 3 > amt)
1331 			return (-1);
1332 		off += buffer[off+3] + 4;
1333 	}
1334 	if (off + 3 > amt) {
1335 		return (-1);
1336 	}
1337 	gget8(buffer, off+3, enclen);
1338 	off += 4;
1339 	if (off  >= amt)
1340 		return (-1);
1341 
1342 	e = off + enclen;
1343 	if (e > amt) {
1344 		e = amt;
1345 	}
1346 	MEMCPY(cdp, &buffer[off], e - off);
1347 	return (0);
1348 }
1349 
1350 static int
1351 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1352 {
1353 	int s, off = 8;
1354 
1355 	if (amt < SES_CFGHDR_MINLEN) {
1356 		return (-1);
1357 	}
1358 	for (s = 0; s < buffer[1]; s++) {
1359 		if (off + 3 > amt)
1360 			return (-1);
1361 		off += buffer[off+3] + 4;
1362 	}
1363 	if (off + 3 > amt) {
1364 		return (-1);
1365 	}
1366 	off += buffer[off+3] + 4 + (nth * 4);
1367 	if (amt < (off + 4))
1368 		return (-1);
1369 
1370 	gget8(buffer, off++, thp->enc_type);
1371 	gget8(buffer, off++, thp->enc_maxelt);
1372 	gget8(buffer, off++, thp->enc_subenc);
1373 	gget8(buffer, off, thp->enc_tlen);
1374 	return (0);
1375 }
1376 
1377 /*
1378  * This function needs a little explanation.
1379  *
1380  * The arguments are:
1381  *
1382  *
1383  *	char *b, int amt
1384  *
1385  *		These describes the raw input SES status data and length.
1386  *
1387  *	uint8_t *ep
1388  *
1389  *		This is a map of the number of types for each element type
1390  *		in the enclosure.
1391  *
1392  *	int elt
1393  *
1394  *		This is the element type being sought. If elt is -1,
1395  *		then overall enclosure status is being sought.
1396  *
1397  *	int elm
1398  *
1399  *		This is the ordinal Mth element of type elt being sought.
1400  *
1401  *	SesComStat *sp
1402  *
1403  *		This is the output area to store the status for
1404  *		the Mth element of type Elt.
1405  */
1406 
1407 static int
1408 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1409 {
1410 	int idx, i;
1411 
1412 	/*
1413 	 * If it's overall enclosure status being sought, get that.
1414 	 * We need at least 2 bytes of status data to get that.
1415 	 */
1416 	if (elt == -1) {
1417 		if (amt < 2)
1418 			return (-1);
1419 		gget8(b, 1, sp->comstatus);
1420 		sp->comstat[0] = 0;
1421 		sp->comstat[1] = 0;
1422 		sp->comstat[2] = 0;
1423 		return (0);
1424 	}
1425 
1426 	/*
1427 	 * Check to make sure that the Mth element is legal for type Elt.
1428 	 */
1429 
1430 	if (elm >= ep[elt])
1431 		return (-1);
1432 
1433 	/*
1434 	 * Starting at offset 8, start skipping over the storage
1435 	 * for the element types we're not interested in.
1436 	 */
1437 	for (idx = 8, i = 0; i < elt; i++) {
1438 		idx += ((ep[i] + 1) * 4);
1439 	}
1440 
1441 	/*
1442 	 * Skip over Overall status for this element type.
1443 	 */
1444 	idx += 4;
1445 
1446 	/*
1447 	 * And skip to the index for the Mth element that we're going for.
1448 	 */
1449 	idx += (4 * elm);
1450 
1451 	/*
1452 	 * Make sure we haven't overflowed the buffer.
1453 	 */
1454 	if (idx+4 > amt)
1455 		return (-1);
1456 
1457 	/*
1458 	 * Retrieve the status.
1459 	 */
1460 	gget8(b, idx++, sp->comstatus);
1461 	gget8(b, idx++, sp->comstat[0]);
1462 	gget8(b, idx++, sp->comstat[1]);
1463 	gget8(b, idx++, sp->comstat[2]);
1464 #if	0
1465 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1466 #endif
1467 	return (0);
1468 }
1469 
1470 /*
1471  * This is the mirror function to ses_decode, but we set the 'select'
1472  * bit for the object which we're interested in. All other objects,
1473  * after a status fetch, should have that bit off. Hmm. It'd be easy
1474  * enough to ensure this, so we will.
1475  */
1476 
1477 static int
1478 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1479 {
1480 	int idx, i;
1481 
1482 	/*
1483 	 * If it's overall enclosure status being sought, get that.
1484 	 * We need at least 2 bytes of status data to get that.
1485 	 */
1486 	if (elt == -1) {
1487 		if (amt < 2)
1488 			return (-1);
1489 		i = 0;
1490 		sset8(b, i, 0);
1491 		sset8(b, i, sp->comstatus & 0xf);
1492 #if	0
1493 		PRINTF("set EncStat %x\n", sp->comstatus);
1494 #endif
1495 		return (0);
1496 	}
1497 
1498 	/*
1499 	 * Check to make sure that the Mth element is legal for type Elt.
1500 	 */
1501 
1502 	if (elm >= ep[elt])
1503 		return (-1);
1504 
1505 	/*
1506 	 * Starting at offset 8, start skipping over the storage
1507 	 * for the element types we're not interested in.
1508 	 */
1509 	for (idx = 8, i = 0; i < elt; i++) {
1510 		idx += ((ep[i] + 1) * 4);
1511 	}
1512 
1513 	/*
1514 	 * Skip over Overall status for this element type.
1515 	 */
1516 	idx += 4;
1517 
1518 	/*
1519 	 * And skip to the index for the Mth element that we're going for.
1520 	 */
1521 	idx += (4 * elm);
1522 
1523 	/*
1524 	 * Make sure we haven't overflowed the buffer.
1525 	 */
1526 	if (idx+4 > amt)
1527 		return (-1);
1528 
1529 	/*
1530 	 * Set the status.
1531 	 */
1532 	sset8(b, idx, sp->comstatus);
1533 	sset8(b, idx, sp->comstat[0]);
1534 	sset8(b, idx, sp->comstat[1]);
1535 	sset8(b, idx, sp->comstat[2]);
1536 	idx -= 4;
1537 
1538 #if	0
1539 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1540 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1541 	    sp->comstat[1], sp->comstat[2]);
1542 #endif
1543 
1544 	/*
1545 	 * Now make sure all other 'Select' bits are off.
1546 	 */
1547 	for (i = 8; i < amt; i += 4) {
1548 		if (i != idx)
1549 			b[i] &= ~0x80;
1550 	}
1551 	/*
1552 	 * And make sure the INVOP bit is clear.
1553 	 */
1554 	b[2] &= ~0x10;
1555 
1556 	return (0);
1557 }
1558 
1559 /*
1560  * SAF-TE Type Device Emulation
1561  */
1562 
1563 static int safte_getconfig(ses_softc_t *);
1564 static int safte_rdstat(ses_softc_t *, int);
1565 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1566 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1567 static void wrslot_stat(ses_softc_t *, int);
1568 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1569 
1570 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1571 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1572 /*
1573  * SAF-TE specific defines- Mandatory ones only...
1574  */
1575 
1576 /*
1577  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1578  */
1579 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1580 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1581 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1582 
1583 /*
1584  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1585  */
1586 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1587 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1588 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1589 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1590 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1591 
1592 
1593 #define	SAFT_SCRATCH	64
1594 #define	NPSEUDO_THERM	16
1595 #define	NPSEUDO_ALARM	1
1596 struct scfg {
1597 	/*
1598 	 * Cached Configuration
1599 	 */
1600 	uint8_t	Nfans;		/* Number of Fans */
1601 	uint8_t	Npwr;		/* Number of Power Supplies */
1602 	uint8_t	Nslots;		/* Number of Device Slots */
1603 	uint8_t	DoorLock;	/* Door Lock Installed */
1604 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1605 	uint8_t	Nspkrs;		/* Number of Speakers */
1606 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1607 	/*
1608 	 * Cached Flag Bytes for Global Status
1609 	 */
1610 	uint8_t	flag1;
1611 	uint8_t	flag2;
1612 	/*
1613 	 * What object index ID is where various slots start.
1614 	 */
1615 	uint8_t	pwroff;
1616 	uint8_t	slotoff;
1617 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1618 };
1619 
1620 #define	SAFT_FLG1_ALARM		0x1
1621 #define	SAFT_FLG1_GLOBFAIL	0x2
1622 #define	SAFT_FLG1_GLOBWARN	0x4
1623 #define	SAFT_FLG1_ENCPWROFF	0x8
1624 #define	SAFT_FLG1_ENCFANFAIL	0x10
1625 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1626 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1627 #define	SAFT_FLG1_ENCDRVWARN	0x80
1628 
1629 #define	SAFT_FLG2_LOCKDOOR	0x4
1630 #define	SAFT_PRIVATE		sizeof (struct scfg)
1631 
1632 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1633 #define	SAFT_BAIL(r, x, k, l)	\
1634 	if ((r) >= (x)) { \
1635 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1636 		SES_FREE((k), (l)); \
1637 		return (EIO); \
1638 	}
1639 
1640 
1641 static int
1642 safte_softc_init(ses_softc_t *ssc, int doinit)
1643 {
1644 	int err, i, r;
1645 	struct scfg *cc;
1646 
1647 	if (doinit == 0) {
1648 		if (ssc->ses_nobjects) {
1649 			if (ssc->ses_objmap) {
1650 				SES_FREE(ssc->ses_objmap,
1651 				    ssc->ses_nobjects * sizeof (encobj));
1652 				ssc->ses_objmap = NULL;
1653 			}
1654 			ssc->ses_nobjects = 0;
1655 		}
1656 		if (ssc->ses_private) {
1657 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1658 			ssc->ses_private = NULL;
1659 		}
1660 		return (0);
1661 	}
1662 
1663 	if (ssc->ses_private == NULL) {
1664 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1665 		if (ssc->ses_private == NULL) {
1666 			return (ENOMEM);
1667 		}
1668 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1669 	}
1670 
1671 	ssc->ses_nobjects = 0;
1672 	ssc->ses_encstat = 0;
1673 
1674 	if ((err = safte_getconfig(ssc)) != 0) {
1675 		return (err);
1676 	}
1677 
1678 	/*
1679 	 * The number of objects here, as well as that reported by the
1680 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1681 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1682 	 */
1683 	cc = ssc->ses_private;
1684 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1685 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1686 	ssc->ses_objmap = (encobj *)
1687 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1688 	if (ssc->ses_objmap == NULL) {
1689 		return (ENOMEM);
1690 	}
1691 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1692 
1693 	r = 0;
1694 	/*
1695 	 * Note that this is all arranged for the convenience
1696 	 * in later fetches of status.
1697 	 */
1698 	for (i = 0; i < cc->Nfans; i++)
1699 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1700 	cc->pwroff = (uint8_t) r;
1701 	for (i = 0; i < cc->Npwr; i++)
1702 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1703 	for (i = 0; i < cc->DoorLock; i++)
1704 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1705 	for (i = 0; i < cc->Nspkrs; i++)
1706 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1707 	for (i = 0; i < cc->Ntherm; i++)
1708 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1709 	for (i = 0; i < NPSEUDO_THERM; i++)
1710 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1711 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1712 	cc->slotoff = (uint8_t) r;
1713 	for (i = 0; i < cc->Nslots; i++)
1714 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1715 	return (0);
1716 }
1717 
1718 static int
1719 safte_init_enc(ses_softc_t *ssc)
1720 {
1721 	int err;
1722 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1723 
1724 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1725 	if (err) {
1726 		return (err);
1727 	}
1728 	DELAY(5000);
1729 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1730 	return (err);
1731 }
1732 
1733 static int
1734 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1735 {
1736 	return (safte_rdstat(ssc, slpflg));
1737 }
1738 
1739 static int
1740 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1741 {
1742 	struct scfg *cc = ssc->ses_private;
1743 	if (cc == NULL)
1744 		return (0);
1745 	/*
1746 	 * Since SAF-TE devices aren't necessarily sticky in terms
1747 	 * of state, make our soft copy of enclosure status 'sticky'-
1748 	 * that is, things set in enclosure status stay set (as implied
1749 	 * by conditions set in reading object status) until cleared.
1750 	 */
1751 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1752 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1753 	ssc->ses_encstat |= ENCI_SVALID;
1754 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1755 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1756 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1757 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1758 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1759 	}
1760 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1761 }
1762 
1763 static int
1764 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1765 {
1766 	int i = (int)obp->obj_id;
1767 
1768 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1769 	    (ssc->ses_objmap[i].svalid) == 0) {
1770 		int err = safte_rdstat(ssc, slpflg);
1771 		if (err)
1772 			return (err);
1773 	}
1774 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1775 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1776 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1777 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1778 	return (0);
1779 }
1780 
1781 
1782 static int
1783 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1784 {
1785 	int idx, err;
1786 	encobj *ep;
1787 	struct scfg *cc;
1788 
1789 
1790 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1791 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1792 	    obp->cstat[3]);
1793 
1794 	/*
1795 	 * If this is clear, we don't do diddly.
1796 	 */
1797 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1798 		return (0);
1799 	}
1800 
1801 	err = 0;
1802 	/*
1803 	 * Check to see if the common bits are set and do them first.
1804 	 */
1805 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1806 		err = set_objstat_sel(ssc, obp, slp);
1807 		if (err)
1808 			return (err);
1809 	}
1810 
1811 	cc = ssc->ses_private;
1812 	if (cc == NULL)
1813 		return (0);
1814 
1815 	idx = (int)obp->obj_id;
1816 	ep = &ssc->ses_objmap[idx];
1817 
1818 	switch (ep->enctype) {
1819 	case SESTYP_DEVICE:
1820 	{
1821 		uint8_t slotop = 0;
1822 		/*
1823 		 * XXX: I should probably cache the previous state
1824 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1825 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1826 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1827 		 */
1828 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1829 			slotop |= 0x2;
1830 		}
1831 		if (obp->cstat[2] & SESCTL_RQSID) {
1832 			slotop |= 0x4;
1833 		}
1834 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1835 		    slotop, slp);
1836 		if (err)
1837 			return (err);
1838 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1839 			ep->priv |= 0x2;
1840 		} else {
1841 			ep->priv &= ~0x2;
1842 		}
1843 		if (ep->priv & 0xc6) {
1844 			ep->priv &= ~0x1;
1845 		} else {
1846 			ep->priv |= 0x1;	/* no errors */
1847 		}
1848 		wrslot_stat(ssc, slp);
1849 		break;
1850 	}
1851 	case SESTYP_POWER:
1852 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1853 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1854 		} else {
1855 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1856 		}
1857 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1858 		    cc->flag2, 0, slp);
1859 		if (err)
1860 			return (err);
1861 		if (obp->cstat[3] & SESCTL_RQSTON) {
1862 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1863 				idx - cc->pwroff, 0, 0, slp);
1864 		} else {
1865 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
1866 				idx - cc->pwroff, 0, 1, slp);
1867 		}
1868 		break;
1869 	case SESTYP_FAN:
1870 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1871 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1872 		} else {
1873 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1874 		}
1875 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1876 		    cc->flag2, 0, slp);
1877 		if (err)
1878 			return (err);
1879 		if (obp->cstat[3] & SESCTL_RQSTON) {
1880 			uint8_t fsp;
1881 			if ((obp->cstat[3] & 0x7) == 7) {
1882 				fsp = 4;
1883 			} else if ((obp->cstat[3] & 0x7) == 6) {
1884 				fsp = 3;
1885 			} else if ((obp->cstat[3] & 0x7) == 4) {
1886 				fsp = 2;
1887 			} else {
1888 				fsp = 1;
1889 			}
1890 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1891 		} else {
1892 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1893 		}
1894 		break;
1895 	case SESTYP_DOORLOCK:
1896 		if (obp->cstat[3] & 0x1) {
1897 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1898 		} else {
1899 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1900 		}
1901 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1902 		break;
1903 	case SESTYP_ALARM:
1904 		/*
1905 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1906 		 */
1907 		obp->cstat[3] &= ~0xa;
1908 		if (obp->cstat[3] & 0x40) {
1909 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1910 		} else if (obp->cstat[3] != 0) {
1911 			cc->flag2 |= SAFT_FLG1_ALARM;
1912 		} else {
1913 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1914 		}
1915 		ep->priv = obp->cstat[3];
1916 		wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slp);
1917 		break;
1918 	default:
1919 		break;
1920 	}
1921 	ep->svalid = 0;
1922 	return (0);
1923 }
1924 
1925 static int
1926 safte_getconfig(ses_softc_t *ssc)
1927 {
1928 	struct scfg *cfg;
1929 	int err, amt;
1930 	char *sdata;
1931 	static char cdb[10] =
1932 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1933 
1934 	cfg = ssc->ses_private;
1935 	if (cfg == NULL)
1936 		return (ENXIO);
1937 
1938 	sdata = SES_MALLOC(SAFT_SCRATCH);
1939 	if (sdata == NULL)
1940 		return (ENOMEM);
1941 
1942 	amt = SAFT_SCRATCH;
1943 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1944 	if (err) {
1945 		SES_FREE(sdata, SAFT_SCRATCH);
1946 		return (err);
1947 	}
1948 	amt = SAFT_SCRATCH - amt;
1949 	if (amt < 6) {
1950 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1951 		SES_FREE(sdata, SAFT_SCRATCH);
1952 		return (EIO);
1953 	}
1954 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1955 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1956 	cfg->Nfans = sdata[0];
1957 	cfg->Npwr = sdata[1];
1958 	cfg->Nslots = sdata[2];
1959 	cfg->DoorLock = sdata[3];
1960 	cfg->Ntherm = sdata[4];
1961 	cfg->Nspkrs = sdata[5];
1962 	cfg->Nalarm = NPSEUDO_ALARM;
1963 	SES_FREE(sdata, SAFT_SCRATCH);
1964 	return (0);
1965 }
1966 
1967 static int
1968 safte_rdstat(ses_softc_t *ssc, int slpflg)
1969 {
1970 	int err, oid, r, i, hiwater, nitems, amt;
1971 	uint16_t tempflags;
1972 	size_t buflen;
1973 	uint8_t status, oencstat;
1974 	char *sdata, cdb[10];
1975 	struct scfg *cc = ssc->ses_private;
1976 
1977 
1978 	/*
1979 	 * The number of objects overstates things a bit,
1980 	 * both for the bogus 'thermometer' entries and
1981 	 * the drive status (which isn't read at the same
1982 	 * time as the enclosure status), but that's okay.
1983 	 */
1984 	buflen = 4 * cc->Nslots;
1985 	if (ssc->ses_nobjects > buflen)
1986 		buflen = ssc->ses_nobjects;
1987 	sdata = SES_MALLOC(buflen);
1988 	if (sdata == NULL)
1989 		return (ENOMEM);
1990 
1991 	cdb[0] = READ_BUFFER;
1992 	cdb[1] = 1;
1993 	cdb[2] = SAFTE_RD_RDESTS;
1994 	cdb[3] = 0;
1995 	cdb[4] = 0;
1996 	cdb[5] = 0;
1997 	cdb[6] = 0;
1998 	cdb[7] = (buflen >> 8) & 0xff;
1999 	cdb[8] = buflen & 0xff;
2000 	cdb[9] = 0;
2001 	amt = buflen;
2002 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2003 	if (err) {
2004 		SES_FREE(sdata, buflen);
2005 		return (err);
2006 	}
2007 	hiwater = buflen - amt;
2008 
2009 
2010 	/*
2011 	 * invalidate all status bits.
2012 	 */
2013 	for (i = 0; i < ssc->ses_nobjects; i++)
2014 		ssc->ses_objmap[i].svalid = 0;
2015 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2016 	ssc->ses_encstat = 0;
2017 
2018 
2019 	/*
2020 	 * Now parse returned buffer.
2021 	 * If we didn't get enough data back,
2022 	 * that's considered a fatal error.
2023 	 */
2024 	oid = r = 0;
2025 
2026 	for (nitems = i = 0; i < cc->Nfans; i++) {
2027 		SAFT_BAIL(r, hiwater, sdata, buflen);
2028 		/*
2029 		 * 0 = Fan Operational
2030 		 * 1 = Fan is malfunctioning
2031 		 * 2 = Fan is not present
2032 		 * 0x80 = Unknown or Not Reportable Status
2033 		 */
2034 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2035 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2036 		switch ((int)(uint8_t)sdata[r]) {
2037 		case 0:
2038 			nitems++;
2039 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2040 			/*
2041 			 * We could get fancier and cache
2042 			 * fan speeds that we have set, but
2043 			 * that isn't done now.
2044 			 */
2045 			ssc->ses_objmap[oid].encstat[3] = 7;
2046 			break;
2047 
2048 		case 1:
2049 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2050 			/*
2051 			 * FAIL and FAN STOPPED synthesized
2052 			 */
2053 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2054 			/*
2055 			 * Enclosure marked with CRITICAL error
2056 			 * if only one fan or no thermometers,
2057 			 * else the NONCRITICAL error is set.
2058 			 */
2059 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2060 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2061 			else
2062 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2063 			break;
2064 		case 2:
2065 			ssc->ses_objmap[oid].encstat[0] =
2066 			    SES_OBJSTAT_NOTINSTALLED;
2067 			ssc->ses_objmap[oid].encstat[3] = 0;
2068 			/*
2069 			 * Enclosure marked with CRITICAL error
2070 			 * if only one fan or no thermometers,
2071 			 * else the NONCRITICAL error is set.
2072 			 */
2073 			if (cc->Nfans == 1)
2074 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2075 			else
2076 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2077 			break;
2078 		case 0x80:
2079 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2080 			ssc->ses_objmap[oid].encstat[3] = 0;
2081 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2082 			break;
2083 		default:
2084 			ssc->ses_objmap[oid].encstat[0] =
2085 			    SES_OBJSTAT_UNSUPPORTED;
2086 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2087 			    sdata[r] & 0xff);
2088 			break;
2089 		}
2090 		ssc->ses_objmap[oid++].svalid = 1;
2091 		r++;
2092 	}
2093 
2094 	/*
2095 	 * No matter how you cut it, no cooling elements when there
2096 	 * should be some there is critical.
2097 	 */
2098 	if (cc->Nfans && nitems == 0) {
2099 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2100 	}
2101 
2102 
2103 	for (i = 0; i < cc->Npwr; i++) {
2104 		SAFT_BAIL(r, hiwater, sdata, buflen);
2105 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2106 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2107 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2108 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2109 		switch ((uint8_t)sdata[r]) {
2110 		case 0x00:	/* pws operational and on */
2111 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2112 			break;
2113 		case 0x01:	/* pws operational and off */
2114 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2115 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2116 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2117 			break;
2118 		case 0x10:	/* pws is malfunctioning and commanded on */
2119 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2120 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2121 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2122 			break;
2123 
2124 		case 0x11:	/* pws is malfunctioning and commanded off */
2125 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2126 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2127 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2128 			break;
2129 		case 0x20:	/* pws is not present */
2130 			ssc->ses_objmap[oid].encstat[0] =
2131 			    SES_OBJSTAT_NOTINSTALLED;
2132 			ssc->ses_objmap[oid].encstat[3] = 0;
2133 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2134 			break;
2135 		case 0x21:	/* pws is present */
2136 			/*
2137 			 * This is for enclosures that cannot tell whether the
2138 			 * device is on or malfunctioning, but know that it is
2139 			 * present. Just fall through.
2140 			 */
2141 			/* FALLTHROUGH */
2142 		case 0x80:	/* Unknown or Not Reportable Status */
2143 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2144 			ssc->ses_objmap[oid].encstat[3] = 0;
2145 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2146 			break;
2147 		default:
2148 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2149 			    i, sdata[r] & 0xff);
2150 			break;
2151 		}
2152 		ssc->ses_objmap[oid++].svalid = 1;
2153 		r++;
2154 	}
2155 
2156 	/*
2157 	 * Skip over Slot SCSI IDs
2158 	 */
2159 	r += cc->Nslots;
2160 
2161 	/*
2162 	 * We always have doorlock status, no matter what,
2163 	 * but we only save the status if we have one.
2164 	 */
2165 	SAFT_BAIL(r, hiwater, sdata, buflen);
2166 	if (cc->DoorLock) {
2167 		/*
2168 		 * 0 = Door Locked
2169 		 * 1 = Door Unlocked, or no Lock Installed
2170 		 * 0x80 = Unknown or Not Reportable Status
2171 		 */
2172 		ssc->ses_objmap[oid].encstat[1] = 0;
2173 		ssc->ses_objmap[oid].encstat[2] = 0;
2174 		switch ((uint8_t)sdata[r]) {
2175 		case 0:
2176 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2177 			ssc->ses_objmap[oid].encstat[3] = 0;
2178 			break;
2179 		case 1:
2180 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2181 			ssc->ses_objmap[oid].encstat[3] = 1;
2182 			break;
2183 		case 0x80:
2184 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2185 			ssc->ses_objmap[oid].encstat[3] = 0;
2186 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2187 			break;
2188 		default:
2189 			ssc->ses_objmap[oid].encstat[0] =
2190 			    SES_OBJSTAT_UNSUPPORTED;
2191 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2192 			    sdata[r] & 0xff);
2193 			break;
2194 		}
2195 		ssc->ses_objmap[oid++].svalid = 1;
2196 	}
2197 	r++;
2198 
2199 	/*
2200 	 * We always have speaker status, no matter what,
2201 	 * but we only save the status if we have one.
2202 	 */
2203 	SAFT_BAIL(r, hiwater, sdata, buflen);
2204 	if (cc->Nspkrs) {
2205 		ssc->ses_objmap[oid].encstat[1] = 0;
2206 		ssc->ses_objmap[oid].encstat[2] = 0;
2207 		if (sdata[r] == 1) {
2208 			/*
2209 			 * We need to cache tone urgency indicators.
2210 			 * Someday.
2211 			 */
2212 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2213 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2214 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2215 		} else if (sdata[r] == 0) {
2216 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2217 			ssc->ses_objmap[oid].encstat[3] = 0;
2218 		} else {
2219 			ssc->ses_objmap[oid].encstat[0] =
2220 			    SES_OBJSTAT_UNSUPPORTED;
2221 			ssc->ses_objmap[oid].encstat[3] = 0;
2222 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2223 			    sdata[r] & 0xff);
2224 		}
2225 		ssc->ses_objmap[oid++].svalid = 1;
2226 	}
2227 	r++;
2228 
2229 	for (i = 0; i < cc->Ntherm; i++) {
2230 		SAFT_BAIL(r, hiwater, sdata, buflen);
2231 		/*
2232 		 * Status is a range from -10 to 245 deg Celsius,
2233 		 * which we need to normalize to -20 to -245 according
2234 		 * to the latest SCSI spec, which makes little
2235 		 * sense since this would overflow an 8bit value.
2236 		 * Well, still, the base normalization is -20,
2237 		 * not -10, so we have to adjust.
2238 		 *
2239 		 * So what's over and under temperature?
2240 		 * Hmm- we'll state that 'normal' operating
2241 		 * is 10 to 40 deg Celsius.
2242 		 */
2243 
2244 		/*
2245 		 * Actually.... All of the units that people out in the world
2246 		 * seem to have do not come even close to setting a value that
2247 		 * complies with this spec.
2248 		 *
2249 		 * The closest explanation I could find was in an
2250 		 * LSI-Logic manual, which seemed to indicate that
2251 		 * this value would be set by whatever the I2C code
2252 		 * would interpolate from the output of an LM75
2253 		 * temperature sensor.
2254 		 *
2255 		 * This means that it is impossible to use the actual
2256 		 * numeric value to predict anything. But we don't want
2257 		 * to lose the value. So, we'll propagate the *uncorrected*
2258 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2259 		 * temperature flags for warnings.
2260 		 */
2261 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2262 		ssc->ses_objmap[oid].encstat[1] = 0;
2263 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2264 		ssc->ses_objmap[oid].encstat[3] = 0;
2265 		ssc->ses_objmap[oid++].svalid = 1;
2266 		r++;
2267 	}
2268 
2269 	/*
2270 	 * Now, for "pseudo" thermometers, we have two bytes
2271 	 * of information in enclosure status- 16 bits. Actually,
2272 	 * the MSB is a single TEMP ALERT flag indicating whether
2273 	 * any other bits are set, but, thanks to fuzzy thinking,
2274 	 * in the SAF-TE spec, this can also be set even if no
2275 	 * other bits are set, thus making this really another
2276 	 * binary temperature sensor.
2277 	 */
2278 
2279 	SAFT_BAIL(r, hiwater, sdata, buflen);
2280 	tempflags = sdata[r++];
2281 	SAFT_BAIL(r, hiwater, sdata, buflen);
2282 	tempflags |= (tempflags << 8) | sdata[r++];
2283 
2284 	for (i = 0; i < NPSEUDO_THERM; i++) {
2285 		ssc->ses_objmap[oid].encstat[1] = 0;
2286 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2287 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2288 			ssc->ses_objmap[4].encstat[2] = 0xff;
2289 			/*
2290 			 * Set 'over temperature' failure.
2291 			 */
2292 			ssc->ses_objmap[oid].encstat[3] = 8;
2293 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2294 		} else {
2295 			/*
2296 			 * We used to say 'not available' and synthesize a
2297 			 * nominal 30 deg (C)- that was wrong. Actually,
2298 			 * Just say 'OK', and use the reserved value of
2299 			 * zero.
2300 			 */
2301 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2302 			ssc->ses_objmap[oid].encstat[2] = 0;
2303 			ssc->ses_objmap[oid].encstat[3] = 0;
2304 		}
2305 		ssc->ses_objmap[oid++].svalid = 1;
2306 	}
2307 
2308 	/*
2309 	 * Get alarm status.
2310 	 */
2311 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2312 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2313 	ssc->ses_objmap[oid++].svalid = 1;
2314 
2315 	/*
2316 	 * Now get drive slot status
2317 	 */
2318 	cdb[2] = SAFTE_RD_RDDSTS;
2319 	amt = buflen;
2320 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2321 	if (err) {
2322 		SES_FREE(sdata, buflen);
2323 		return (err);
2324 	}
2325 	hiwater = buflen - amt;
2326 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2327 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2328 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2329 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2330 		ssc->ses_objmap[oid].encstat[2] = 0;
2331 		ssc->ses_objmap[oid].encstat[3] = 0;
2332 		status = sdata[r+3];
2333 		if ((status & 0x1) == 0) {	/* no device */
2334 			ssc->ses_objmap[oid].encstat[0] =
2335 			    SES_OBJSTAT_NOTINSTALLED;
2336 		} else {
2337 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2338 		}
2339 		if (status & 0x2) {
2340 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2341 		}
2342 		if ((status & 0x4) == 0) {
2343 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2344 		}
2345 		ssc->ses_objmap[oid++].svalid = 1;
2346 	}
2347 	/* see comment below about sticky enclosure status */
2348 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2349 	SES_FREE(sdata, buflen);
2350 	return (0);
2351 }
2352 
2353 static int
2354 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2355 {
2356 	int idx;
2357 	encobj *ep;
2358 	struct scfg *cc = ssc->ses_private;
2359 
2360 	if (cc == NULL)
2361 		return (0);
2362 
2363 	idx = (int)obp->obj_id;
2364 	ep = &ssc->ses_objmap[idx];
2365 
2366 	switch (ep->enctype) {
2367 	case SESTYP_DEVICE:
2368 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2369 			ep->priv |= 0x40;
2370 		}
2371 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2372 		if (obp->cstat[0] & SESCTL_DISABLE) {
2373 			ep->priv |= 0x80;
2374 			/*
2375 			 * Hmm. Try to set the 'No Drive' flag.
2376 			 * Maybe that will count as a 'disable'.
2377 			 */
2378 		}
2379 		if (ep->priv & 0xc6) {
2380 			ep->priv &= ~0x1;
2381 		} else {
2382 			ep->priv |= 0x1;	/* no errors */
2383 		}
2384 		wrslot_stat(ssc, slp);
2385 		break;
2386 	case SESTYP_POWER:
2387 		/*
2388 		 * Okay- the only one that makes sense here is to
2389 		 * do the 'disable' for a power supply.
2390 		 */
2391 		if (obp->cstat[0] & SESCTL_DISABLE) {
2392 			wrbuf16(ssc, SAFTE_WT_ACTPWS,
2393 				idx - cc->pwroff, 0, 0, slp);
2394 		}
2395 		break;
2396 	case SESTYP_FAN:
2397 		/*
2398 		 * Okay- the only one that makes sense here is to
2399 		 * set fan speed to zero on disable.
2400 		 */
2401 		if (obp->cstat[0] & SESCTL_DISABLE) {
2402 			/* remember- fans are the first items, so idx works */
2403 			wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2404 		}
2405 		break;
2406 	case SESTYP_DOORLOCK:
2407 		/*
2408 		 * Well, we can 'disable' the lock.
2409 		 */
2410 		if (obp->cstat[0] & SESCTL_DISABLE) {
2411 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2412 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2413 				cc->flag2, 0, slp);
2414 		}
2415 		break;
2416 	case SESTYP_ALARM:
2417 		/*
2418 		 * Well, we can 'disable' the alarm.
2419 		 */
2420 		if (obp->cstat[0] & SESCTL_DISABLE) {
2421 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2422 			ep->priv |= 0x40;	/* Muted */
2423 			wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2424 				cc->flag2, 0, slp);
2425 		}
2426 		break;
2427 	default:
2428 		break;
2429 	}
2430 	ep->svalid = 0;
2431 	return (0);
2432 }
2433 
2434 /*
2435  * This function handles all of the 16 byte WRITE BUFFER commands.
2436  */
2437 static int
2438 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2439     uint8_t b3, int slp)
2440 {
2441 	int err, amt;
2442 	char *sdata;
2443 	struct scfg *cc = ssc->ses_private;
2444 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2445 
2446 	if (cc == NULL)
2447 		return (0);
2448 
2449 	sdata = SES_MALLOC(16);
2450 	if (sdata == NULL)
2451 		return (ENOMEM);
2452 
2453 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2454 
2455 	sdata[0] = op;
2456 	sdata[1] = b1;
2457 	sdata[2] = b2;
2458 	sdata[3] = b3;
2459 	MEMZERO(&sdata[4], 12);
2460 	amt = -16;
2461 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2462 	SES_FREE(sdata, 16);
2463 	return (err);
2464 }
2465 
2466 /*
2467  * This function updates the status byte for the device slot described.
2468  *
2469  * Since this is an optional SAF-TE command, there's no point in
2470  * returning an error.
2471  */
2472 static void
2473 wrslot_stat(ses_softc_t *ssc, int slp)
2474 {
2475 	int i, amt;
2476 	encobj *ep;
2477 	char cdb[10], *sdata;
2478 	struct scfg *cc = ssc->ses_private;
2479 
2480 	if (cc == NULL)
2481 		return;
2482 
2483 	SES_DLOG(ssc, "saf_wrslot\n");
2484 	cdb[0] = WRITE_BUFFER;
2485 	cdb[1] = 1;
2486 	cdb[2] = 0;
2487 	cdb[3] = 0;
2488 	cdb[4] = 0;
2489 	cdb[5] = 0;
2490 	cdb[6] = 0;
2491 	cdb[7] = 0;
2492 	cdb[8] = cc->Nslots * 3 + 1;
2493 	cdb[9] = 0;
2494 
2495 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2496 	if (sdata == NULL)
2497 		return;
2498 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2499 
2500 	sdata[0] = SAFTE_WT_DSTAT;
2501 	for (i = 0; i < cc->Nslots; i++) {
2502 		ep = &ssc->ses_objmap[cc->slotoff + i];
2503 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2504 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2505 	}
2506 	amt = -(cc->Nslots * 3 + 1);
2507 	ses_runcmd(ssc, cdb, 10, sdata, &amt);
2508 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2509 }
2510 
2511 /*
2512  * This function issues the "PERFORM SLOT OPERATION" command.
2513  */
2514 static int
2515 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2516 {
2517 	int err, amt;
2518 	char *sdata;
2519 	struct scfg *cc = ssc->ses_private;
2520 	static char cdb[10] =
2521 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2522 
2523 	if (cc == NULL)
2524 		return (0);
2525 
2526 	sdata = SES_MALLOC(SAFT_SCRATCH);
2527 	if (sdata == NULL)
2528 		return (ENOMEM);
2529 	MEMZERO(sdata, SAFT_SCRATCH);
2530 
2531 	sdata[0] = SAFTE_WT_SLTOP;
2532 	sdata[1] = slot;
2533 	sdata[2] = opflag;
2534 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2535 	amt = -SAFT_SCRATCH;
2536 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2537 	SES_FREE(sdata, SAFT_SCRATCH);
2538 	return (err);
2539 }
2540