xref: /dragonfly/sys/bus/cam/scsi/scsi_ses.c (revision e1acdbad)
1 /* $FreeBSD: src/sys/cam/scsi/scsi_ses.c,v 1.8.2.2 2000/08/08 23:19:21 mjacob Exp $ */
2 /* $DragonFly: src/sys/bus/cam/scsi/scsi_ses.c,v 1.11 2004/05/19 22:52:38 dillon Exp $ */
3 /*
4  * Copyright (c) 2000 Matthew Jacob
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 #include <sys/param.h>
30 #include <sys/queue.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/fcntl.h>
36 #include <sys/stat.h>
37 #include <sys/conf.h>
38 #include <sys/buf.h>
39 #include <sys/errno.h>
40 #include <sys/devicestat.h>
41 #include <machine/stdarg.h>
42 
43 #include "../cam.h"
44 #include "../cam_ccb.h"
45 #include "../cam_extend.h"
46 #include "../cam_periph.h"
47 #include "../cam_xpt_periph.h"
48 #include "../cam_queue.h"
49 #include "../cam_debug.h"
50 
51 #include "scsi_all.h"
52 #include "scsi_message.h"
53 #include <sys/ioccom.h>
54 #include "scsi_ses.h"
55 
56 #include <opt_ses.h>
57 
58 /*
59  * Platform Independent Driver Internal Definitions for SES devices.
60  */
61 typedef enum {
62 	SES_NONE,
63 	SES_SES_SCSI2,
64 	SES_SES,
65 	SES_SES_PASSTHROUGH,
66 	SES_SEN,
67 	SES_SAFT
68 } enctyp;
69 
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 	int (*softc_init)(ses_softc_t *, int);
74 	int (*init_enc)(ses_softc_t *);
75 	int (*get_encstat)(ses_softc_t *, int);
76 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
77 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
78 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
79 } encvec;
80 
81 #define	ENCI_SVALID	0x80
82 
83 typedef struct {
84 	uint32_t
85 		enctype	: 8,		/* enclosure type */
86 		subenclosure : 8,	/* subenclosure id */
87 		svalid	: 1,		/* enclosure information valid */
88 		priv	: 15;		/* private data, per object */
89 	uint8_t	encstat[4];	/* state && stats */
90 } encobj;
91 
92 #define	SEN_ID		"UNISYS           SUN_SEN"
93 #define	SEN_ID_LEN	24
94 
95 
96 static enctyp ses_type(void *, int);
97 
98 
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 
114 /*
115  * Platform implementation defines/functions for SES internal kernel stuff
116  */
117 
118 #define	STRNCMP			strncmp
119 #define	PRINTF			printf
120 #define	SES_LOG			ses_log
121 #ifdef	DEBUG
122 #define	SES_DLOG		ses_log
123 #else
124 #define	SES_DLOG		if (0) ses_log
125 #endif
126 #define	SES_VLOG		if (bootverbose) ses_log
127 #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_INTWAIT)
128 #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
129 #define	MEMZERO			bzero
130 #define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
131 
132 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
133 static void ses_log(struct ses_softc *, const char *, ...);
134 
135 /*
136  * Gerenal FreeBSD kernel stuff.
137  */
138 
139 
140 #define ccb_state	ppriv_field0
141 #define ccb_bp		ppriv_ptr1
142 
143 struct ses_softc {
144 	enctyp		ses_type;	/* type of enclosure */
145 	encvec		ses_vec;	/* vector to handlers */
146 	void *		ses_private;	/* per-type private data */
147 	encobj *	ses_objmap;	/* objects */
148 	u_int32_t	ses_nobjects;	/* number of objects */
149 	ses_encstat	ses_encstat;	/* overall status */
150 	u_int8_t	ses_flags;
151 	union ccb	ses_saved_ccb;
152 	struct cam_periph *periph;
153 };
154 #define	SES_FLAG_INVALID	0x01
155 #define	SES_FLAG_OPEN		0x02
156 #define	SES_FLAG_INITIALIZED	0x04
157 
158 #define SESUNIT(x)       (minor((x)))
159 #define SES_CDEV_MAJOR	110
160 
161 static	d_open_t	sesopen;
162 static	d_close_t	sesclose;
163 static	d_ioctl_t	sesioctl;
164 static	periph_init_t	sesinit;
165 static  periph_ctor_t	sesregister;
166 static	periph_oninv_t	sesoninvalidate;
167 static  periph_dtor_t   sescleanup;
168 static  periph_start_t  sesstart;
169 
170 static void sesasync(void *, u_int32_t, struct cam_path *, void *);
171 static void sesdone(struct cam_periph *, union ccb *);
172 static int seserror(union ccb *, u_int32_t, u_int32_t);
173 
174 static struct periph_driver sesdriver = {
175 	sesinit, "ses",
176 	TAILQ_HEAD_INITIALIZER(sesdriver.units), /* generation */ 0
177 };
178 
179 DATA_SET(periphdriver_set, sesdriver);
180 
181 static struct cdevsw ses_cdevsw = {
182 	/* name */	"ses",
183 	/* maj */	SES_CDEV_MAJOR,
184 	/* flags */	0,
185 	/* port */      NULL,
186 	/* clone */     NULL,
187 
188 	/* open */	sesopen,
189 	/* close */	sesclose,
190 	/* read */	noread,
191 	/* write */	nowrite,
192 	/* ioctl */	sesioctl,
193 	/* poll */	nopoll,
194 	/* mmap */	nommap,
195 	/* strategy */	nostrategy,
196 	/* dump */	nodump,
197 	/* psize */	nopsize
198 };
199 static struct extend_array *sesperiphs;
200 
201 void
202 sesinit(void)
203 {
204 	cam_status status;
205 	struct cam_path *path;
206 
207 	/*
208 	 * Create our extend array for storing the devices we attach to.
209 	 */
210 	sesperiphs = cam_extend_new();
211 	if (sesperiphs == NULL) {
212 		printf("ses: Failed to alloc extend array!\n");
213 		return;
214 	}
215 
216 	/*
217 	 * Install a global async callback.  This callback will
218 	 * receive async callbacks like "new device found".
219 	 */
220 	status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
221 	    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
222 
223 	if (status == CAM_REQ_CMP) {
224 		struct ccb_setasync csa;
225 
226                 xpt_setup_ccb(&csa.ccb_h, path, 5);
227                 csa.ccb_h.func_code = XPT_SASYNC_CB;
228                 csa.event_enable = AC_FOUND_DEVICE;
229                 csa.callback = sesasync;
230                 csa.callback_arg = NULL;
231                 xpt_action((union ccb *)&csa);
232 		status = csa.ccb_h.status;
233                 xpt_free_path(path);
234         }
235 
236 	if (status != CAM_REQ_CMP) {
237 		printf("ses: Failed to attach master async callback "
238 		       "due to status 0x%x!\n", status);
239 	}
240 }
241 
242 static void
243 sesoninvalidate(struct cam_periph *periph)
244 {
245 	struct ses_softc *softc;
246 	struct ccb_setasync csa;
247 
248 	softc = (struct ses_softc *)periph->softc;
249 
250 	/*
251 	 * Unregister any async callbacks.
252 	 */
253 	xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
254 	csa.ccb_h.func_code = XPT_SASYNC_CB;
255 	csa.event_enable = 0;
256 	csa.callback = sesasync;
257 	csa.callback_arg = periph;
258 	xpt_action((union ccb *)&csa);
259 
260 	softc->ses_flags |= SES_FLAG_INVALID;
261 
262 	xpt_print_path(periph->path);
263 	printf("lost device\n");
264 }
265 
266 static void
267 sescleanup(struct cam_periph *periph)
268 {
269 	struct ses_softc *softc;
270 
271 	softc = (struct ses_softc *)periph->softc;
272 
273 	cam_extend_release(sesperiphs, periph->unit_number);
274 	xpt_print_path(periph->path);
275 	printf("removing device entry\n");
276 	cdevsw_remove(&ses_cdevsw, -1, periph->unit_number);
277 	free(softc, M_DEVBUF);
278 }
279 
280 static void
281 sesasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
282 {
283 	struct cam_periph *periph;
284 
285 	periph = (struct cam_periph *)callback_arg;
286 
287 	switch(code) {
288 	case AC_FOUND_DEVICE:
289 	{
290 		cam_status status;
291 		struct ccb_getdev *cgd;
292 
293 		cgd = (struct ccb_getdev *)arg;
294 
295 		/*
296 		 * PROBLEM: WE NEED TO LOOK AT BYTES 48-53 TO SEE IF THIS IS
297 		 * PROBLEM: IS A SAF-TE DEVICE.
298 		 */
299 		switch (ses_type(&cgd->inq_data, cgd->inq_len)) {
300 		case SES_SES:
301 		case SES_SES_SCSI2:
302 		case SES_SES_PASSTHROUGH:
303 		case SES_SEN:
304 		case SES_SAFT:
305 			break;
306 		default:
307 			return;
308 		}
309 
310 		status = cam_periph_alloc(sesregister, sesoninvalidate,
311 		    sescleanup, sesstart, "ses", CAM_PERIPH_BIO,
312 		    cgd->ccb_h.path, sesasync, AC_FOUND_DEVICE, cgd);
313 
314 		if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) {
315 			printf("sesasync: Unable to probe new device due to "
316 			    "status 0x%x\n", status);
317 		}
318 		break;
319 	}
320 	default:
321 		cam_periph_async(periph, code, path, arg);
322 		break;
323 	}
324 }
325 
326 static cam_status
327 sesregister(struct cam_periph *periph, void *arg)
328 {
329 	struct ses_softc *softc;
330 	struct ccb_setasync csa;
331 	struct ccb_getdev *cgd;
332 	char *tname;
333 
334 	cgd = (struct ccb_getdev *)arg;
335 	if (periph == NULL) {
336 		printf("sesregister: periph was NULL!!\n");
337 		return (CAM_REQ_CMP_ERR);
338 	}
339 
340 	if (cgd == NULL) {
341 		printf("sesregister: no getdev CCB, can't register device\n");
342 		return (CAM_REQ_CMP_ERR);
343 	}
344 
345 	softc = malloc(sizeof (struct ses_softc), M_DEVBUF, M_INTWAIT | M_ZERO);
346 	periph->softc = softc;
347 	softc->periph = periph;
348 
349 	softc->ses_type = ses_type(&cgd->inq_data, sizeof (cgd->inq_data));
350 
351 	switch (softc->ses_type) {
352 	case SES_SES:
353 	case SES_SES_SCSI2:
354         case SES_SES_PASSTHROUGH:
355 		softc->ses_vec.softc_init = ses_softc_init;
356 		softc->ses_vec.init_enc = ses_init_enc;
357 		softc->ses_vec.get_encstat = ses_get_encstat;
358 		softc->ses_vec.set_encstat = ses_set_encstat;
359 		softc->ses_vec.get_objstat = ses_get_objstat;
360 		softc->ses_vec.set_objstat = ses_set_objstat;
361 		break;
362         case SES_SAFT:
363 		softc->ses_vec.softc_init = safte_softc_init;
364 		softc->ses_vec.init_enc = safte_init_enc;
365 		softc->ses_vec.get_encstat = safte_get_encstat;
366 		softc->ses_vec.set_encstat = safte_set_encstat;
367 		softc->ses_vec.get_objstat = safte_get_objstat;
368 		softc->ses_vec.set_objstat = safte_set_objstat;
369 		break;
370         case SES_SEN:
371 		break;
372 	case SES_NONE:
373 	default:
374 		free(softc, M_DEVBUF);
375 		return (CAM_REQ_CMP_ERR);
376 	}
377 
378 	cam_extend_set(sesperiphs, periph->unit_number, periph);
379 
380 	cdevsw_add(&ses_cdevsw, -1, periph->unit_number);
381 	make_dev(&ses_cdevsw, periph->unit_number,
382 		    UID_ROOT, GID_OPERATOR, 0600, "%s%d",
383 		    periph->periph_name, periph->unit_number);
384 
385 	/*
386 	 * Add an async callback so that we get
387 	 * notified if this device goes away.
388 	 */
389 	xpt_setup_ccb(&csa.ccb_h, periph->path, 5);
390 	csa.ccb_h.func_code = XPT_SASYNC_CB;
391 	csa.event_enable = AC_LOST_DEVICE;
392 	csa.callback = sesasync;
393 	csa.callback_arg = periph;
394 	xpt_action((union ccb *)&csa);
395 
396 	switch (softc->ses_type) {
397 	default:
398 	case SES_NONE:
399 		tname = "No SES device";
400 		break;
401 	case SES_SES_SCSI2:
402 		tname = "SCSI-2 SES Device";
403 		break;
404 	case SES_SES:
405 		tname = "SCSI-3 SES Device";
406 		break;
407         case SES_SES_PASSTHROUGH:
408 		tname = "SES Passthrough Device";
409 		break;
410         case SES_SEN:
411 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
412 		break;
413         case SES_SAFT:
414 		tname = "SAF-TE Compliant Device";
415 		break;
416 	}
417 	xpt_announce_periph(periph, tname);
418 	return (CAM_REQ_CMP);
419 }
420 
421 static int
422 sesopen(dev_t dev, int flags, int fmt, struct thread *td)
423 {
424 	struct cam_periph *periph;
425 	struct ses_softc *softc;
426 	int error, s;
427 
428 	s = splsoftcam();
429 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
430 	if (periph == NULL) {
431 		splx(s);
432 		return (ENXIO);
433 	}
434 	if ((error = cam_periph_lock(periph, PCATCH)) != 0) {
435 		splx(s);
436 		return (error);
437 	}
438 	splx(s);
439 
440 	if (cam_periph_acquire(periph) != CAM_REQ_CMP) {
441 		cam_periph_unlock(periph);
442 		return (ENXIO);
443 	}
444 
445 	softc = (struct ses_softc *)periph->softc;
446 
447 	if (softc->ses_flags & SES_FLAG_INVALID) {
448 		error = ENXIO;
449 		goto out;
450 	}
451 	if (softc->ses_flags & SES_FLAG_OPEN) {
452 		error = EBUSY;
453 		goto out;
454 	}
455 	if (softc->ses_vec.softc_init == NULL) {
456 		error = ENXIO;
457 		goto out;
458 	}
459 
460 	softc->ses_flags |= SES_FLAG_OPEN;
461 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
462 		error = (*softc->ses_vec.softc_init)(softc, 1);
463 		if (error)
464 			softc->ses_flags &= ~SES_FLAG_OPEN;
465 		else
466 			softc->ses_flags |= SES_FLAG_INITIALIZED;
467 	}
468 
469 out:
470 	if (error) {
471 		cam_periph_release(periph);
472 	}
473 	cam_periph_unlock(periph);
474 	return (error);
475 }
476 
477 static int
478 sesclose(dev_t dev, int flag, int fmt, struct thread *td)
479 {
480 	struct cam_periph *periph;
481 	struct ses_softc *softc;
482 	int unit, error;
483 
484 	error = 0;
485 
486 	unit = SESUNIT(dev);
487 	periph = cam_extend_get(sesperiphs, unit);
488 	if (periph == NULL)
489 		return (ENXIO);
490 
491 	softc = (struct ses_softc *)periph->softc;
492 
493 	if ((error = cam_periph_lock(periph, 0)) != 0)
494 		return (error);
495 
496 	softc->ses_flags &= ~SES_FLAG_OPEN;
497 
498 	cam_periph_unlock(periph);
499 	cam_periph_release(periph);
500 
501 	return (0);
502 }
503 
504 static void
505 sesstart(struct cam_periph *p, union ccb *sccb)
506 {
507 	int s = splbio();
508 	if (p->immediate_priority <= p->pinfo.priority) {
509 		SLIST_INSERT_HEAD(&p->ccb_list, &sccb->ccb_h, periph_links.sle);
510 		p->immediate_priority = CAM_PRIORITY_NONE;
511 		wakeup(&p->ccb_list);
512 	}
513 	splx(s);
514 }
515 
516 static void
517 sesdone(struct cam_periph *periph, union ccb *dccb)
518 {
519 	wakeup(&dccb->ccb_h.cbfcnp);
520 }
521 
522 static int
523 seserror(union ccb *ccb, u_int32_t cflags, u_int32_t sflags)
524 {
525 	struct ses_softc *softc;
526 	struct cam_periph *periph;
527 
528 	periph = xpt_path_periph(ccb->ccb_h.path);
529 	softc = (struct ses_softc *)periph->softc;
530 
531 	return (cam_periph_error(ccb, cflags, sflags, &softc->ses_saved_ccb));
532 }
533 
534 static int
535 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct thread *td)
536 {
537 	struct cam_periph *periph;
538 	ses_encstat tmp;
539 	ses_objstat objs;
540 	ses_object obj, *uobj;
541 	struct ses_softc *ssc;
542 	void *addr;
543 	int error, i;
544 
545 
546 	if (arg_addr)
547 		addr = *((caddr_t *) arg_addr);
548 	else
549 		addr = NULL;
550 
551 	periph = cam_extend_get(sesperiphs, SESUNIT(dev));
552 	if (periph == NULL)
553 		return (ENXIO);
554 
555 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering sesioctl\n"));
556 
557 	ssc = (struct ses_softc *)periph->softc;
558 
559 	/*
560 	 * Now check to see whether we're initialized or not.
561 	 */
562 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
563 		return (ENXIO);
564 	}
565 
566 	error = 0;
567 
568 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE,
569 	    ("trying to do ioctl %#lx\n", cmd));
570 
571 	/*
572 	 * If this command can change the device's state,
573 	 * we must have the device open for writing.
574 	 */
575 	switch (cmd) {
576 	case SESIOC_GETNOBJ:
577 	case SESIOC_GETOBJMAP:
578 	case SESIOC_GETENCSTAT:
579 	case SESIOC_GETOBJSTAT:
580 		break;
581 	default:
582 		if ((flag & FWRITE) == 0) {
583 			return (EBADF);
584 		}
585 	}
586 
587 	switch (cmd) {
588 	case SESIOC_GETNOBJ:
589 		error = copyout(&ssc->ses_nobjects, addr,
590 		    sizeof (ssc->ses_nobjects));
591 		break;
592 
593 	case SESIOC_GETOBJMAP:
594 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
595 			obj.obj_id = i;
596 			obj.subencid = ssc->ses_objmap[i].subenclosure;
597 			obj.object_type = ssc->ses_objmap[i].enctype;
598 			error = copyout(&obj, uobj, sizeof (ses_object));
599 			if (error) {
600 				break;
601 			}
602 		}
603 		break;
604 
605 	case SESIOC_GETENCSTAT:
606 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
607 		if (error)
608 			break;
609 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
610 		error = copyout(&tmp, addr, sizeof (ses_encstat));
611 		ssc->ses_encstat = tmp;
612 		break;
613 
614 	case SESIOC_SETENCSTAT:
615 		error = copyin(addr, &tmp, sizeof (ses_encstat));
616 		if (error)
617 			break;
618 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
619 		break;
620 
621 	case SESIOC_GETOBJSTAT:
622 		error = copyin(addr, &objs, sizeof (ses_objstat));
623 		if (error)
624 			break;
625 		if (objs.obj_id >= ssc->ses_nobjects) {
626 			error = EINVAL;
627 			break;
628 		}
629 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
630 		if (error)
631 			break;
632 		error = copyout(&objs, addr, sizeof (ses_objstat));
633 		/*
634 		 * Always (for now) invalidate entry.
635 		 */
636 		ssc->ses_objmap[objs.obj_id].svalid = 0;
637 		break;
638 
639 	case SESIOC_SETOBJSTAT:
640 		error = copyin(addr, &objs, sizeof (ses_objstat));
641 		if (error)
642 			break;
643 
644 		if (objs.obj_id >= ssc->ses_nobjects) {
645 			error = EINVAL;
646 			break;
647 		}
648 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
649 
650 		/*
651 		 * Always (for now) invalidate entry.
652 		 */
653 		ssc->ses_objmap[objs.obj_id].svalid = 0;
654 		break;
655 
656 	case SESIOC_INIT:
657 
658 		error = (*ssc->ses_vec.init_enc)(ssc);
659 		break;
660 
661 	default:
662 		error = cam_periph_ioctl(periph, cmd, arg_addr, seserror);
663 		break;
664 	}
665 	return (error);
666 }
667 
668 #define	SES_FLAGS	SF_NO_PRINT | SF_RETRY_SELTO | SF_RETRY_UA
669 static int
670 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
671 {
672 	int error, dlen;
673 	ccb_flags ddf;
674 	union ccb *ccb;
675 
676 	if (dptr) {
677 		if ((dlen = *dlenp) < 0) {
678 			dlen = -dlen;
679 			ddf = CAM_DIR_OUT;
680 		} else {
681 			ddf = CAM_DIR_IN;
682 		}
683 	} else {
684 		dlen = 0;
685 		ddf = CAM_DIR_NONE;
686 	}
687 
688 	if (cdbl > IOCDBLEN) {
689 		cdbl = IOCDBLEN;
690 	}
691 
692 	ccb = cam_periph_getccb(ssc->periph, 1);
693 	cam_fill_csio(&ccb->csio, 0, sesdone, ddf, MSG_SIMPLE_Q_TAG, dptr,
694 	    dlen, sizeof (struct scsi_sense_data), cdbl, 60 * 1000);
695 	bcopy(cdb, ccb->csio.cdb_io.cdb_bytes, cdbl);
696 
697 	error = cam_periph_runccb(ccb, seserror, 0, SES_FLAGS, NULL);
698 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
699 		cam_release_devq(ccb->ccb_h.path, 0, 0, 0, FALSE);
700 	if (error) {
701 		if (dptr) {
702 			*dlenp = dlen;
703 		}
704 	} else {
705 		if (dptr) {
706 			*dlenp = ccb->csio.resid;
707 		}
708 	}
709 	xpt_release_ccb(ccb);
710 	return (error);
711 }
712 
713 static void
714 ses_log(struct ses_softc *ssc, const char *fmt, ...)
715 {
716 	__va_list ap;
717 
718 	printf("%s%d: ", ssc->periph->periph_name, ssc->periph->unit_number);
719 	__va_start(ap, fmt);
720 	vprintf(fmt, ap);
721 	__va_end(ap);
722 }
723 
724 /*
725  * The code after this point runs on many platforms,
726  * so forgive the slightly awkward and nonconforming
727  * appearance.
728  */
729 
730 /*
731  * Is this a device that supports enclosure services?
732  *
733  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
734  * an SES device. If it happens to be an old UNISYS SEN device, we can
735  * handle that too.
736  */
737 
738 #define	SAFTE_START	44
739 #define	SAFTE_END	50
740 #define	SAFTE_LEN	SAFTE_END-SAFTE_START
741 
742 static enctyp
743 ses_type(void *buf, int buflen)
744 {
745 	unsigned char *iqd = buf;
746 
747 	if (buflen == 0)
748 		buflen = 256;	/* per SPC-2 */
749 
750 	if (buflen < 8+SEN_ID_LEN)
751 		return (SES_NONE);
752 
753 	if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
754 		if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
755 			return (SES_SEN);
756 		} else if ((iqd[2] & 0x7) > 2) {
757 			return (SES_SES);
758 		} else {
759 			return (SES_SES_SCSI2);
760 		}
761 		return (SES_NONE);
762 	}
763 
764 #ifdef	SES_ENABLE_PASSTHROUGH
765 	if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
766 		/*
767 		 * PassThrough Device.
768 		 */
769 		return (SES_SES_PASSTHROUGH);
770 	}
771 #endif
772 
773 	/*
774 	 * The comparison is short for a reason-
775 	 * some vendors were chopping it short.
776 	 */
777 
778 	if (buflen < SAFTE_END - 2) {
779 		return (SES_NONE);
780 	}
781 
782 	if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
783 		return (SES_SAFT);
784 	}
785 	return (SES_NONE);
786 }
787 
788 /*
789  * SES Native Type Device Support
790  */
791 
792 /*
793  * SES Diagnostic Page Codes
794  */
795 
796 typedef enum {
797 	SesConfigPage = 0x1,
798 	SesControlPage,
799 #define	SesStatusPage SesControlPage
800 	SesHelpTxt,
801 	SesStringOut,
802 #define	SesStringIn	SesStringOut
803 	SesThresholdOut,
804 #define	SesThresholdIn SesThresholdOut
805 	SesArrayControl,
806 #define	SesArrayStatus	SesArrayControl
807 	SesElementDescriptor,
808 	SesShortStatus
809 } SesDiagPageCodes;
810 
811 /*
812  * minimal amounts
813  */
814 
815 /*
816  * Minimum amount of data, starting from byte 0, to have
817  * the config header.
818  */
819 #define	SES_CFGHDR_MINLEN	12
820 
821 /*
822  * Minimum amount of data, starting from byte 0, to have
823  * the config header and one enclosure header.
824  */
825 #define	SES_ENCHDR_MINLEN	48
826 
827 /*
828  * Take this value, subtract it from VEnclen and you know
829  * the length of the vendor unique bytes.
830  */
831 #define	SES_ENCHDR_VMIN		36
832 
833 /*
834  * SES Data Structures
835  */
836 
837 typedef struct {
838 	uint32_t GenCode;	/* Generation Code */
839 	uint8_t	Nsubenc;	/* Number of Subenclosures */
840 } SesCfgHdr;
841 
842 typedef struct {
843 	uint8_t	Subencid;	/* SubEnclosure Identifier */
844 	uint8_t	Ntypes;		/* # of supported types */
845 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
846 } SesEncHdr;
847 
848 typedef struct {
849 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
850 	uint8_t	encVid[8];
851 	uint8_t	encPid[16];
852 	uint8_t	encRev[4];
853 	uint8_t	encVen[1];
854 } SesEncDesc;
855 
856 typedef struct {
857 	uint8_t	enc_type;		/* type of element */
858 	uint8_t	enc_maxelt;		/* maximum supported */
859 	uint8_t	enc_subenc;		/* in SubEnc # N */
860 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
861 } SesThdr;
862 
863 typedef struct {
864 	uint8_t	comstatus;
865 	uint8_t	comstat[3];
866 } SesComStat;
867 
868 struct typidx {
869 	int ses_tidx;
870 	int ses_oidx;
871 };
872 
873 struct sscfg {
874 	uint8_t ses_ntypes;	/* total number of types supported */
875 
876 	/*
877 	 * We need to keep a type index as well as an
878 	 * object index for each object in an enclosure.
879 	 */
880 	struct typidx *ses_typidx;
881 
882 	/*
883 	 * We also need to keep track of the number of elements
884 	 * per type of element. This is needed later so that we
885 	 * can find precisely in the returned status data the
886 	 * status for the Nth element of the Kth type.
887 	 */
888 	uint8_t *	ses_eltmap;
889 };
890 
891 
892 /*
893  * (de)canonicalization defines
894  */
895 #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
896 #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
897 #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
898 
899 #define	sset16(outp, idx, sval)	\
900 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
901 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
902 
903 
904 #define	sset24(outp, idx, sval)	\
905 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
906 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
907 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
908 
909 
910 #define	sset32(outp, idx, sval)	\
911 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
912 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
913 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
914 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
915 
916 #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
917 #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
918 #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
919 #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
920 
921 #define	sget16(inp, idx, lval)	\
922 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
923 		(((uint8_t *)(inp))[idx+1]), idx += 2
924 
925 #define	gget16(inp, idx, lval)	\
926 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
927 		(((uint8_t *)(inp))[idx+1])
928 
929 #define	sget24(inp, idx, lval)	\
930 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
931 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
932 			(((uint8_t *)(inp))[idx+2]), idx += 3
933 
934 #define	gget24(inp, idx, lval)	\
935 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
936 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
937 			(((uint8_t *)(inp))[idx+2])
938 
939 #define	sget32(inp, idx, lval)	\
940 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
941 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
942 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
943 			(((uint8_t *)(inp))[idx+3]), idx += 4
944 
945 #define	gget32(inp, idx, lval)	\
946 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
947 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
948 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
949 			(((uint8_t *)(inp))[idx+3])
950 
951 #define	SCSZ	0x2000
952 #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
953 
954 /*
955  * Routines specific && private to SES only
956  */
957 
958 static int ses_getconfig(ses_softc_t *);
959 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
960 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
961 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
962 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
963 static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
964 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
965 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
966 
967 static int
968 ses_softc_init(ses_softc_t *ssc, int doinit)
969 {
970 	if (doinit == 0) {
971 		struct sscfg *cc;
972 		if (ssc->ses_nobjects) {
973 			SES_FREE(ssc->ses_objmap,
974 			    ssc->ses_nobjects * sizeof (encobj));
975 			ssc->ses_objmap = NULL;
976 		}
977 		if ((cc = ssc->ses_private) != NULL) {
978 			if (cc->ses_eltmap && cc->ses_ntypes) {
979 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
980 				cc->ses_eltmap = NULL;
981 				cc->ses_ntypes = 0;
982 			}
983 			if (cc->ses_typidx && ssc->ses_nobjects) {
984 				SES_FREE(cc->ses_typidx,
985 				    ssc->ses_nobjects * sizeof (struct typidx));
986 				cc->ses_typidx = NULL;
987 			}
988 			SES_FREE(cc, sizeof (struct sscfg));
989 			ssc->ses_private = NULL;
990 		}
991 		ssc->ses_nobjects = 0;
992 		return (0);
993 	}
994 	if (ssc->ses_private == NULL) {
995 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
996 	}
997 	if (ssc->ses_private == NULL) {
998 		return (ENOMEM);
999 	}
1000 	ssc->ses_nobjects = 0;
1001 	ssc->ses_encstat = 0;
1002 	return (ses_getconfig(ssc));
1003 }
1004 
1005 static int
1006 ses_init_enc(ses_softc_t *ssc)
1007 {
1008 	return (0);
1009 }
1010 
1011 static int
1012 ses_get_encstat(ses_softc_t *ssc, int slpflag)
1013 {
1014 	SesComStat ComStat;
1015 	int status;
1016 
1017 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
1018 		return (status);
1019 	}
1020 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
1021 	return (0);
1022 }
1023 
1024 static int
1025 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
1026 {
1027 	SesComStat ComStat;
1028 	int status;
1029 
1030 	ComStat.comstatus = encstat & 0xf;
1031 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
1032 		return (status);
1033 	}
1034 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
1035 	return (0);
1036 }
1037 
1038 static int
1039 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1040 {
1041 	int i = (int)obp->obj_id;
1042 
1043 	if (ssc->ses_objmap[i].svalid == 0) {
1044 		SesComStat ComStat;
1045 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
1046 		if (err)
1047 			return (err);
1048 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
1049 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
1050 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
1051 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
1052 		ssc->ses_objmap[i].svalid = 1;
1053 	}
1054 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1055 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1056 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1057 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1058 	return (0);
1059 }
1060 
1061 static int
1062 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
1063 {
1064 	SesComStat ComStat;
1065 	int err;
1066 	/*
1067 	 * If this is clear, we don't do diddly.
1068 	 */
1069 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1070 		return (0);
1071 	}
1072 	ComStat.comstatus = obp->cstat[0];
1073 	ComStat.comstat[0] = obp->cstat[1];
1074 	ComStat.comstat[1] = obp->cstat[2];
1075 	ComStat.comstat[2] = obp->cstat[3];
1076 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
1077 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
1078 	return (err);
1079 }
1080 
1081 static int
1082 ses_getconfig(ses_softc_t *ssc)
1083 {
1084 	struct sscfg *cc;
1085 	SesCfgHdr cf;
1086 	SesEncHdr hd;
1087 	SesEncDesc *cdp;
1088 	SesThdr thdr;
1089 	int err, amt, i, nobj, ntype, maxima;
1090 	char storage[CFLEN], *sdata;
1091 	static char cdb[6] = {
1092 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
1093 	};
1094 
1095 	cc = ssc->ses_private;
1096 	if (cc == NULL) {
1097 		return (ENXIO);
1098 	}
1099 
1100 	sdata = SES_MALLOC(SCSZ);
1101 	if (sdata == NULL)
1102 		return (ENOMEM);
1103 
1104 	amt = SCSZ;
1105 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1106 	if (err) {
1107 		SES_FREE(sdata, SCSZ);
1108 		return (err);
1109 	}
1110 	amt = SCSZ - amt;
1111 
1112 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
1113 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
1114 		SES_FREE(sdata, SCSZ);
1115 		return (EIO);
1116 	}
1117 	if (amt < SES_ENCHDR_MINLEN) {
1118 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
1119 		SES_FREE(sdata, SCSZ);
1120 		return (EIO);
1121 	}
1122 
1123 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
1124 
1125 	/*
1126 	 * Now waltz through all the subenclosures toting up the
1127 	 * number of types available in each. For this, we only
1128 	 * really need the enclosure header. However, we get the
1129 	 * enclosure descriptor for debug purposes, as well
1130 	 * as self-consistency checking purposes.
1131 	 */
1132 
1133 	maxima = cf.Nsubenc + 1;
1134 	cdp = (SesEncDesc *) storage;
1135 	for (ntype = i = 0; i < maxima; i++) {
1136 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
1137 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
1138 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
1139 			SES_FREE(sdata, SCSZ);
1140 			return (EIO);
1141 		}
1142 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
1143 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
1144 
1145 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
1146 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1147 			SES_FREE(sdata, SCSZ);
1148 			return (EIO);
1149 		}
1150 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1151 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1152 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1153 		    cdp->encWWN[6], cdp->encWWN[7]);
1154 		ntype += hd.Ntypes;
1155 	}
1156 
1157 	/*
1158 	 * Now waltz through all the types that are available, getting
1159 	 * the type header so we can start adding up the number of
1160 	 * objects available.
1161 	 */
1162 	for (nobj = i = 0; i < ntype; i++) {
1163 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1164 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1165 			SES_FREE(sdata, SCSZ);
1166 			return (EIO);
1167 		}
1168 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1169 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1170 		    thdr.enc_subenc, thdr.enc_tlen);
1171 		nobj += thdr.enc_maxelt;
1172 	}
1173 
1174 
1175 	/*
1176 	 * Now allocate the object array and type map.
1177 	 */
1178 
1179 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1180 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1181 	cc->ses_eltmap = SES_MALLOC(ntype);
1182 
1183 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1184 	    cc->ses_eltmap == NULL) {
1185 		if (ssc->ses_objmap) {
1186 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1187 			ssc->ses_objmap = NULL;
1188 		}
1189 		if (cc->ses_typidx) {
1190 			SES_FREE(cc->ses_typidx,
1191 			    (nobj * sizeof (struct typidx)));
1192 			cc->ses_typidx = NULL;
1193 		}
1194 		if (cc->ses_eltmap) {
1195 			SES_FREE(cc->ses_eltmap, ntype);
1196 			cc->ses_eltmap = NULL;
1197 		}
1198 		SES_FREE(sdata, SCSZ);
1199 		return (ENOMEM);
1200 	}
1201 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1202 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1203 	MEMZERO(cc->ses_eltmap, ntype);
1204 	cc->ses_ntypes = (uint8_t) ntype;
1205 	ssc->ses_nobjects = nobj;
1206 
1207 	/*
1208 	 * Now waltz through the # of types again to fill in the types
1209 	 * (and subenclosure ids) of the allocated objects.
1210 	 */
1211 	nobj = 0;
1212 	for (i = 0; i < ntype; i++) {
1213 		int j;
1214 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1215 			continue;
1216 		}
1217 		cc->ses_eltmap[i] = thdr.enc_maxelt;
1218 		for (j = 0; j < thdr.enc_maxelt; j++) {
1219 			cc->ses_typidx[nobj].ses_tidx = i;
1220 			cc->ses_typidx[nobj].ses_oidx = j;
1221 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1222 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1223 		}
1224 	}
1225 	SES_FREE(sdata, SCSZ);
1226 	return (0);
1227 }
1228 
1229 static int
1230 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1231 {
1232 	struct sscfg *cc;
1233 	int err, amt, bufsiz, tidx, oidx;
1234 	char cdb[6], *sdata;
1235 
1236 	cc = ssc->ses_private;
1237 	if (cc == NULL) {
1238 		return (ENXIO);
1239 	}
1240 
1241 	/*
1242 	 * If we're just getting overall enclosure status,
1243 	 * we only need 2 bytes of data storage.
1244 	 *
1245 	 * If we're getting anything else, we know how much
1246 	 * storage we need by noting that starting at offset
1247 	 * 8 in returned data, all object status bytes are 4
1248 	 * bytes long, and are stored in chunks of types(M)
1249 	 * and nth+1 instances of type M.
1250 	 */
1251 	if (objid == -1) {
1252 		bufsiz = 2;
1253 	} else {
1254 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1255 	}
1256 	sdata = SES_MALLOC(bufsiz);
1257 	if (sdata == NULL)
1258 		return (ENOMEM);
1259 
1260 	cdb[0] = RECEIVE_DIAGNOSTIC;
1261 	cdb[1] = 1;
1262 	cdb[2] = SesStatusPage;
1263 	cdb[3] = bufsiz >> 8;
1264 	cdb[4] = bufsiz & 0xff;
1265 	cdb[5] = 0;
1266 	amt = bufsiz;
1267 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1268 	if (err) {
1269 		SES_FREE(sdata, bufsiz);
1270 		return (err);
1271 	}
1272 	amt = bufsiz - amt;
1273 
1274 	if (objid == -1) {
1275 		tidx = -1;
1276 		oidx = -1;
1277 	} else {
1278 		tidx = cc->ses_typidx[objid].ses_tidx;
1279 		oidx = cc->ses_typidx[objid].ses_oidx;
1280 	}
1281 	if (in) {
1282 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1283 			err = ENODEV;
1284 		}
1285 	} else {
1286 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1287 			err = ENODEV;
1288 		} else {
1289 			cdb[0] = SEND_DIAGNOSTIC;
1290 			cdb[1] = 0x10;
1291 			cdb[2] = 0;
1292 			cdb[3] = bufsiz >> 8;
1293 			cdb[4] = bufsiz & 0xff;
1294 			cdb[5] = 0;
1295 			amt = -bufsiz;
1296 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1297 		}
1298 	}
1299 	SES_FREE(sdata, bufsiz);
1300 	return (0);
1301 }
1302 
1303 
1304 /*
1305  * Routines to parse returned SES data structures.
1306  * Architecture and compiler independent.
1307  */
1308 
1309 static int
1310 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1311 {
1312 	if (buflen < SES_CFGHDR_MINLEN) {
1313 		return (-1);
1314 	}
1315 	gget8(buffer, 1, cfp->Nsubenc);
1316 	gget32(buffer, 4, cfp->GenCode);
1317 	return (0);
1318 }
1319 
1320 static int
1321 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1322 {
1323 	int s, off = 8;
1324 	for (s = 0; s < SubEncId; s++) {
1325 		if (off + 3 > amt)
1326 			return (-1);
1327 		off += buffer[off+3] + 4;
1328 	}
1329 	if (off + 3 > amt) {
1330 		return (-1);
1331 	}
1332 	gget8(buffer, off+1, chp->Subencid);
1333 	gget8(buffer, off+2, chp->Ntypes);
1334 	gget8(buffer, off+3, chp->VEnclen);
1335 	return (0);
1336 }
1337 
1338 static int
1339 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1340 {
1341 	int s, e, enclen, off = 8;
1342 	for (s = 0; s < SubEncId; s++) {
1343 		if (off + 3 > amt)
1344 			return (-1);
1345 		off += buffer[off+3] + 4;
1346 	}
1347 	if (off + 3 > amt) {
1348 		return (-1);
1349 	}
1350 	gget8(buffer, off+3, enclen);
1351 	off += 4;
1352 	if (off  >= amt)
1353 		return (-1);
1354 
1355 	e = off + enclen;
1356 	if (e > amt) {
1357 		e = amt;
1358 	}
1359 	MEMCPY(cdp, &buffer[off], e - off);
1360 	return (0);
1361 }
1362 
1363 static int
1364 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1365 {
1366 	int s, off = 8;
1367 
1368 	if (amt < SES_CFGHDR_MINLEN) {
1369 		return (-1);
1370 	}
1371 	for (s = 0; s < buffer[1]; s++) {
1372 		if (off + 3 > amt)
1373 			return (-1);
1374 		off += buffer[off+3] + 4;
1375 	}
1376 	if (off + 3 > amt) {
1377 		return (-1);
1378 	}
1379 	off += buffer[off+3] + 4 + (nth * 4);
1380 	if (amt < (off + 4))
1381 		return (-1);
1382 
1383 	gget8(buffer, off++, thp->enc_type);
1384 	gget8(buffer, off++, thp->enc_maxelt);
1385 	gget8(buffer, off++, thp->enc_subenc);
1386 	gget8(buffer, off, thp->enc_tlen);
1387 	return (0);
1388 }
1389 
1390 /*
1391  * This function needs a little explanation.
1392  *
1393  * The arguments are:
1394  *
1395  *
1396  *	char *b, int amt
1397  *
1398  *		These describes the raw input SES status data and length.
1399  *
1400  *	uint8_t *ep
1401  *
1402  *		This is a map of the number of types for each element type
1403  *		in the enclosure.
1404  *
1405  *	int elt
1406  *
1407  *		This is the element type being sought. If elt is -1,
1408  *		then overall enclosure status is being sought.
1409  *
1410  *	int elm
1411  *
1412  *		This is the ordinal Mth element of type elt being sought.
1413  *
1414  *	SesComStat *sp
1415  *
1416  *		This is the output area to store the status for
1417  *		the Mth element of type Elt.
1418  */
1419 
1420 static int
1421 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1422 {
1423 	int idx, i;
1424 
1425 	/*
1426 	 * If it's overall enclosure status being sought, get that.
1427 	 * We need at least 2 bytes of status data to get that.
1428 	 */
1429 	if (elt == -1) {
1430 		if (amt < 2)
1431 			return (-1);
1432 		gget8(b, 1, sp->comstatus);
1433 		sp->comstat[0] = 0;
1434 		sp->comstat[1] = 0;
1435 		sp->comstat[2] = 0;
1436 		return (0);
1437 	}
1438 
1439 	/*
1440 	 * Check to make sure that the Mth element is legal for type Elt.
1441 	 */
1442 
1443 	if (elm >= ep[elt])
1444 		return (-1);
1445 
1446 	/*
1447 	 * Starting at offset 8, start skipping over the storage
1448 	 * for the element types we're not interested in.
1449 	 */
1450 	for (idx = 8, i = 0; i < elt; i++) {
1451 		idx += ((ep[i] + 1) * 4);
1452 	}
1453 
1454 	/*
1455 	 * Skip over Overall status for this element type.
1456 	 */
1457 	idx += 4;
1458 
1459 	/*
1460 	 * And skip to the index for the Mth element that we're going for.
1461 	 */
1462 	idx += (4 * elm);
1463 
1464 	/*
1465 	 * Make sure we haven't overflowed the buffer.
1466 	 */
1467 	if (idx+4 > amt)
1468 		return (-1);
1469 
1470 	/*
1471 	 * Retrieve the status.
1472 	 */
1473 	gget8(b, idx++, sp->comstatus);
1474 	gget8(b, idx++, sp->comstat[0]);
1475 	gget8(b, idx++, sp->comstat[1]);
1476 	gget8(b, idx++, sp->comstat[2]);
1477 #if	0
1478 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1479 #endif
1480 	return (0);
1481 }
1482 
1483 /*
1484  * This is the mirror function to ses_decode, but we set the 'select'
1485  * bit for the object which we're interested in. All other objects,
1486  * after a status fetch, should have that bit off. Hmm. It'd be easy
1487  * enough to ensure this, so we will.
1488  */
1489 
1490 static int
1491 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1492 {
1493 	int idx, i;
1494 
1495 	/*
1496 	 * If it's overall enclosure status being sought, get that.
1497 	 * We need at least 2 bytes of status data to get that.
1498 	 */
1499 	if (elt == -1) {
1500 		if (amt < 2)
1501 			return (-1);
1502 		i = 0;
1503 		sset8(b, i, 0);
1504 		sset8(b, i, sp->comstatus & 0xf);
1505 #if	0
1506 		PRINTF("set EncStat %x\n", sp->comstatus);
1507 #endif
1508 		return (0);
1509 	}
1510 
1511 	/*
1512 	 * Check to make sure that the Mth element is legal for type Elt.
1513 	 */
1514 
1515 	if (elm >= ep[elt])
1516 		return (-1);
1517 
1518 	/*
1519 	 * Starting at offset 8, start skipping over the storage
1520 	 * for the element types we're not interested in.
1521 	 */
1522 	for (idx = 8, i = 0; i < elt; i++) {
1523 		idx += ((ep[i] + 1) * 4);
1524 	}
1525 
1526 	/*
1527 	 * Skip over Overall status for this element type.
1528 	 */
1529 	idx += 4;
1530 
1531 	/*
1532 	 * And skip to the index for the Mth element that we're going for.
1533 	 */
1534 	idx += (4 * elm);
1535 
1536 	/*
1537 	 * Make sure we haven't overflowed the buffer.
1538 	 */
1539 	if (idx+4 > amt)
1540 		return (-1);
1541 
1542 	/*
1543 	 * Set the status.
1544 	 */
1545 	sset8(b, idx, sp->comstatus);
1546 	sset8(b, idx, sp->comstat[0]);
1547 	sset8(b, idx, sp->comstat[1]);
1548 	sset8(b, idx, sp->comstat[2]);
1549 	idx -= 4;
1550 
1551 #if	0
1552 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1553 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1554 	    sp->comstat[1], sp->comstat[2]);
1555 #endif
1556 
1557 	/*
1558 	 * Now make sure all other 'Select' bits are off.
1559 	 */
1560 	for (i = 8; i < amt; i += 4) {
1561 		if (i != idx)
1562 			b[i] &= ~0x80;
1563 	}
1564 	/*
1565 	 * And make sure the INVOP bit is clear.
1566 	 */
1567 	b[2] &= ~0x10;
1568 
1569 	return (0);
1570 }
1571 
1572 /*
1573  * SAF-TE Type Device Emulation
1574  */
1575 
1576 static int safte_getconfig(ses_softc_t *);
1577 static int safte_rdstat(ses_softc_t *, int);;
1578 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1579 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1580 static void wrslot_stat(ses_softc_t *, int);
1581 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1582 
1583 #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1584 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1585 /*
1586  * SAF-TE specific defines- Mandatory ones only...
1587  */
1588 
1589 /*
1590  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1591  */
1592 #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1593 #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1594 #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1595 
1596 /*
1597  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1598  */
1599 #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1600 #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1601 #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1602 #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1603 #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1604 
1605 
1606 #define	SAFT_SCRATCH	64
1607 #define	NPSEUDO_THERM	16
1608 #define	NPSEUDO_ALARM	1
1609 struct scfg {
1610 	/*
1611 	 * Cached Configuration
1612 	 */
1613 	uint8_t	Nfans;		/* Number of Fans */
1614 	uint8_t	Npwr;		/* Number of Power Supplies */
1615 	uint8_t	Nslots;		/* Number of Device Slots */
1616 	uint8_t	DoorLock;	/* Door Lock Installed */
1617 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1618 	uint8_t	Nspkrs;		/* Number of Speakers */
1619 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1620 	/*
1621 	 * Cached Flag Bytes for Global Status
1622 	 */
1623 	uint8_t	flag1;
1624 	uint8_t	flag2;
1625 	/*
1626 	 * What object index ID is where various slots start.
1627 	 */
1628 	uint8_t	pwroff;
1629 	uint8_t	slotoff;
1630 #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1631 };
1632 
1633 #define	SAFT_FLG1_ALARM		0x1
1634 #define	SAFT_FLG1_GLOBFAIL	0x2
1635 #define	SAFT_FLG1_GLOBWARN	0x4
1636 #define	SAFT_FLG1_ENCPWROFF	0x8
1637 #define	SAFT_FLG1_ENCFANFAIL	0x10
1638 #define	SAFT_FLG1_ENCPWRFAIL	0x20
1639 #define	SAFT_FLG1_ENCDRVFAIL	0x40
1640 #define	SAFT_FLG1_ENCDRVWARN	0x80
1641 
1642 #define	SAFT_FLG2_LOCKDOOR	0x4
1643 #define	SAFT_PRIVATE		sizeof (struct scfg)
1644 
1645 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1646 #define	SAFT_BAIL(r, x, k, l)	\
1647 	if (r >= x) { \
1648 		SES_LOG(ssc, safte_2little, x, __LINE__);\
1649 		SES_FREE(k, l); \
1650 		return (EIO); \
1651 	}
1652 
1653 
1654 int
1655 safte_softc_init(ses_softc_t *ssc, int doinit)
1656 {
1657 	int err, i, r;
1658 	struct scfg *cc;
1659 
1660 	if (doinit == 0) {
1661 		if (ssc->ses_nobjects) {
1662 			if (ssc->ses_objmap) {
1663 				SES_FREE(ssc->ses_objmap,
1664 				    ssc->ses_nobjects * sizeof (encobj));
1665 				ssc->ses_objmap = NULL;
1666 			}
1667 			ssc->ses_nobjects = 0;
1668 		}
1669 		if (ssc->ses_private) {
1670 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1671 			ssc->ses_private = NULL;
1672 		}
1673 		return (0);
1674 	}
1675 
1676 	if (ssc->ses_private == NULL) {
1677 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1678 		if (ssc->ses_private == NULL) {
1679 			return (ENOMEM);
1680 		}
1681 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1682 	}
1683 
1684 	ssc->ses_nobjects = 0;
1685 	ssc->ses_encstat = 0;
1686 
1687 	if ((err = safte_getconfig(ssc)) != 0) {
1688 		return (err);
1689 	}
1690 
1691 	/*
1692 	 * The number of objects here, as well as that reported by the
1693 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1694 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1695 	 */
1696 	cc = ssc->ses_private;
1697 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1698 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1699 	ssc->ses_objmap = (encobj *)
1700 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1701 	if (ssc->ses_objmap == NULL) {
1702 		return (ENOMEM);
1703 	}
1704 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1705 
1706 	r = 0;
1707 	/*
1708 	 * Note that this is all arranged for the convenience
1709 	 * in later fetches of status.
1710 	 */
1711 	for (i = 0; i < cc->Nfans; i++)
1712 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1713 	cc->pwroff = (uint8_t) r;
1714 	for (i = 0; i < cc->Npwr; i++)
1715 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1716 	for (i = 0; i < cc->DoorLock; i++)
1717 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1718 	for (i = 0; i < cc->Nspkrs; i++)
1719 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1720 	for (i = 0; i < cc->Ntherm; i++)
1721 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1722 	for (i = 0; i < NPSEUDO_THERM; i++)
1723 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1724 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1725 	cc->slotoff = (uint8_t) r;
1726 	for (i = 0; i < cc->Nslots; i++)
1727 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1728 	return (0);
1729 }
1730 
1731 int
1732 safte_init_enc(ses_softc_t *ssc)
1733 {
1734 	int err;
1735 	static char cdb0[6] = { SEND_DIAGNOSTIC };
1736 
1737 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1738 	if (err) {
1739 		return (err);
1740 	}
1741 	DELAY(5000);
1742 	err = wrbuf16(ssc, SAFTE_WT_GLOBAL, 0, 0, 0, 1);
1743 	return (err);
1744 }
1745 
1746 int
1747 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1748 {
1749 	return (safte_rdstat(ssc, slpflg));
1750 }
1751 
1752 int
1753 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1754 {
1755 	struct scfg *cc = ssc->ses_private;
1756 	if (cc == NULL)
1757 		return (0);
1758 	/*
1759 	 * Since SAF-TE devices aren't necessarily sticky in terms
1760 	 * of state, make our soft copy of enclosure status 'sticky'-
1761 	 * that is, things set in enclosure status stay set (as implied
1762 	 * by conditions set in reading object status) until cleared.
1763 	 */
1764 	ssc->ses_encstat &= ~ALL_ENC_STAT;
1765 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1766 	ssc->ses_encstat |= ENCI_SVALID;
1767 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1768 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1769 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1770 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1771 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1772 	}
1773 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1774 }
1775 
1776 int
1777 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1778 {
1779 	int i = (int)obp->obj_id;
1780 
1781 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1782 	    (ssc->ses_objmap[i].svalid) == 0) {
1783 		int err = safte_rdstat(ssc, slpflg);
1784 		if (err)
1785 			return (err);
1786 	}
1787 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1788 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1789 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1790 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1791 	return (0);
1792 }
1793 
1794 
1795 int
1796 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1797 {
1798 	int idx, err;
1799 	encobj *ep;
1800 	struct scfg *cc;
1801 
1802 
1803 	SES_DLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1804 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1805 	    obp->cstat[3]);
1806 
1807 	/*
1808 	 * If this is clear, we don't do diddly.
1809 	 */
1810 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1811 		return (0);
1812 	}
1813 
1814 	err = 0;
1815 	/*
1816 	 * Check to see if the common bits are set and do them first.
1817 	 */
1818 	if (obp->cstat[0] & ~SESCTL_CSEL) {
1819 		err = set_objstat_sel(ssc, obp, slp);
1820 		if (err)
1821 			return (err);
1822 	}
1823 
1824 	cc = ssc->ses_private;
1825 	if (cc == NULL)
1826 		return (0);
1827 
1828 	idx = (int)obp->obj_id;
1829 	ep = &ssc->ses_objmap[idx];
1830 
1831 	switch (ep->enctype) {
1832 	case SESTYP_DEVICE:
1833 	{
1834 		uint8_t slotop = 0;
1835 		/*
1836 		 * XXX: I should probably cache the previous state
1837 		 * XXX: of SESCTL_DEVOFF so that when it goes from
1838 		 * XXX: true to false I can then set PREPARE FOR OPERATION
1839 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1840 		 */
1841 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1842 			slotop |= 0x2;
1843 		}
1844 		if (obp->cstat[2] & SESCTL_RQSID) {
1845 			slotop |= 0x4;
1846 		}
1847 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1848 		    slotop, slp);
1849 		if (err)
1850 			return (err);
1851 		if (obp->cstat[3] & SESCTL_RQSFLT) {
1852 			ep->priv |= 0x2;
1853 		} else {
1854 			ep->priv &= ~0x2;
1855 		}
1856 		if (ep->priv & 0xc6) {
1857 			ep->priv &= ~0x1;
1858 		} else {
1859 			ep->priv |= 0x1;	/* no errors */
1860 		}
1861 		wrslot_stat(ssc, slp);
1862 		break;
1863 	}
1864 	case SESTYP_POWER:
1865 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1866 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1867 		} else {
1868 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1869 		}
1870 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1871 		    cc->flag2, 0, slp);
1872 		if (err)
1873 			return (err);
1874 		if (obp->cstat[3] & SESCTL_RQSTON) {
1875 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1876 				idx - cc->pwroff, 0, 0, slp);
1877 		} else {
1878 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1879 				idx - cc->pwroff, 0, 1, slp);
1880 		}
1881 		break;
1882 	case SESTYP_FAN:
1883 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1884 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1885 		} else {
1886 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1887 		}
1888 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1889 		    cc->flag2, 0, slp);
1890 		if (err)
1891 			return (err);
1892 		if (obp->cstat[3] & SESCTL_RQSTON) {
1893 			uint8_t fsp;
1894 			if ((obp->cstat[3] & 0x7) == 7) {
1895 				fsp = 4;
1896 			} else if ((obp->cstat[3] & 0x7) == 6) {
1897 				fsp = 3;
1898 			} else if ((obp->cstat[3] & 0x7) == 4) {
1899 				fsp = 2;
1900 			} else {
1901 				fsp = 1;
1902 			}
1903 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1904 		} else {
1905 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1906 		}
1907 		break;
1908 	case SESTYP_DOORLOCK:
1909 		if (obp->cstat[3] & 0x1) {
1910 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1911 		} else {
1912 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1913 		}
1914 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1915 		    cc->flag2, 0, slp);
1916 		break;
1917 	case SESTYP_ALARM:
1918 		/*
1919 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1920 		 */
1921 		obp->cstat[3] &= ~0xa;
1922 		if (obp->cstat[3] & 0x40) {
1923 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1924 		} else if (obp->cstat[3] != 0) {
1925 			cc->flag2 |= SAFT_FLG1_ALARM;
1926 		} else {
1927 			cc->flag2 &= ~SAFT_FLG1_ALARM;
1928 		}
1929 		ep->priv = obp->cstat[3];
1930 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1931 			cc->flag2, 0, slp);
1932 		break;
1933 	default:
1934 		break;
1935 	}
1936 	ep->svalid = 0;
1937 	return (0);
1938 }
1939 
1940 static int
1941 safte_getconfig(ses_softc_t *ssc)
1942 {
1943 	struct scfg *cfg;
1944 	int err, amt;
1945 	char *sdata;
1946 	static char cdb[10] =
1947 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1948 
1949 	cfg = ssc->ses_private;
1950 	if (cfg == NULL)
1951 		return (ENXIO);
1952 
1953 	sdata = SES_MALLOC(SAFT_SCRATCH);
1954 	if (sdata == NULL)
1955 		return (ENOMEM);
1956 
1957 	amt = SAFT_SCRATCH;
1958 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1959 	if (err) {
1960 		SES_FREE(sdata, SAFT_SCRATCH);
1961 		return (err);
1962 	}
1963 	amt = SAFT_SCRATCH - amt;
1964 	if (amt < 6) {
1965 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1966 		SES_FREE(sdata, SAFT_SCRATCH);
1967 		return (EIO);
1968 	}
1969 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1970 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1971 	cfg->Nfans = sdata[0];
1972 	cfg->Npwr = sdata[1];
1973 	cfg->Nslots = sdata[2];
1974 	cfg->DoorLock = sdata[3];
1975 	cfg->Ntherm = sdata[4];
1976 	cfg->Nspkrs = sdata[5];
1977 	cfg->Nalarm = NPSEUDO_ALARM;
1978 	SES_FREE(sdata, SAFT_SCRATCH);
1979 	return (0);
1980 }
1981 
1982 static int
1983 safte_rdstat(ses_softc_t *ssc, int slpflg)
1984 {
1985 	int err, oid, r, i, hiwater, nitems, amt;
1986 	uint16_t tempflags;
1987 	size_t buflen;
1988 	uint8_t status, oencstat;
1989 	char *sdata, cdb[10];
1990 	struct scfg *cc = ssc->ses_private;
1991 
1992 
1993 	/*
1994 	 * The number of objects overstates things a bit,
1995 	 * both for the bogus 'thermometer' entries and
1996 	 * the drive status (which isn't read at the same
1997 	 * time as the enclosure status), but that's okay.
1998 	 */
1999 	buflen = 4 * cc->Nslots;
2000 	if (ssc->ses_nobjects > buflen)
2001 		buflen = ssc->ses_nobjects;
2002 	sdata = SES_MALLOC(buflen);
2003 	if (sdata == NULL)
2004 		return (ENOMEM);
2005 
2006 	cdb[0] = READ_BUFFER;
2007 	cdb[1] = 1;
2008 	cdb[2] = SAFTE_RD_RDESTS;
2009 	cdb[3] = 0;
2010 	cdb[4] = 0;
2011 	cdb[5] = 0;
2012 	cdb[6] = 0;
2013 	cdb[7] = (buflen >> 8) & 0xff;
2014 	cdb[8] = buflen & 0xff;
2015 	cdb[9] = 0;
2016 	amt = buflen;
2017 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2018 	if (err) {
2019 		SES_FREE(sdata, buflen);
2020 		return (err);
2021 	}
2022 	hiwater = buflen - amt;
2023 
2024 
2025 	/*
2026 	 * invalidate all status bits.
2027 	 */
2028 	for (i = 0; i < ssc->ses_nobjects; i++)
2029 		ssc->ses_objmap[i].svalid = 0;
2030 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
2031 	ssc->ses_encstat = 0;
2032 
2033 
2034 	/*
2035 	 * Now parse returned buffer.
2036 	 * If we didn't get enough data back,
2037 	 * that's considered a fatal error.
2038 	 */
2039 	oid = r = 0;
2040 
2041 	for (nitems = i = 0; i < cc->Nfans; i++) {
2042 		SAFT_BAIL(r, hiwater, sdata, buflen);
2043 		/*
2044 		 * 0 = Fan Operational
2045 		 * 1 = Fan is malfunctioning
2046 		 * 2 = Fan is not present
2047 		 * 0x80 = Unknown or Not Reportable Status
2048 		 */
2049 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2050 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2051 		switch ((int)(uint8_t)sdata[r]) {
2052 		case 0:
2053 			nitems++;
2054 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2055 			/*
2056 			 * We could get fancier and cache
2057 			 * fan speeds that we have set, but
2058 			 * that isn't done now.
2059 			 */
2060 			ssc->ses_objmap[oid].encstat[3] = 7;
2061 			break;
2062 
2063 		case 1:
2064 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2065 			/*
2066 			 * FAIL and FAN STOPPED synthesized
2067 			 */
2068 			ssc->ses_objmap[oid].encstat[3] = 0x40;
2069 			/*
2070 			 * Enclosure marked with CRITICAL error
2071 			 * if only one fan or no thermometers,
2072 			 * else the NONCRITICAL error is set.
2073 			 */
2074 			if (cc->Nfans == 1 || cc->Ntherm == 0)
2075 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2076 			else
2077 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2078 			break;
2079 		case 2:
2080 			ssc->ses_objmap[oid].encstat[0] =
2081 			    SES_OBJSTAT_NOTINSTALLED;
2082 			ssc->ses_objmap[oid].encstat[3] = 0;
2083 			/*
2084 			 * Enclosure marked with CRITICAL error
2085 			 * if only one fan or no thermometers,
2086 			 * else the NONCRITICAL error is set.
2087 			 */
2088 			if (cc->Nfans == 1)
2089 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2090 			else
2091 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2092 			break;
2093 		case 0x80:
2094 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2095 			ssc->ses_objmap[oid].encstat[3] = 0;
2096 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2097 			break;
2098 		default:
2099 			ssc->ses_objmap[oid].encstat[0] =
2100 			    SES_OBJSTAT_UNSUPPORTED;
2101 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
2102 			    sdata[r] & 0xff);
2103 			break;
2104 		}
2105 		ssc->ses_objmap[oid++].svalid = 1;
2106 		r++;
2107 	}
2108 
2109 	/*
2110 	 * No matter how you cut it, no cooling elements when there
2111 	 * should be some there is critical.
2112 	 */
2113 	if (cc->Nfans && nitems == 0) {
2114 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2115 	}
2116 
2117 
2118 	for (i = 0; i < cc->Npwr; i++) {
2119 		SAFT_BAIL(r, hiwater, sdata, buflen);
2120 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2121 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
2122 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
2123 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
2124 		switch ((uint8_t)sdata[r]) {
2125 		case 0x00:	/* pws operational and on */
2126 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2127 			break;
2128 		case 0x01:	/* pws operational and off */
2129 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2130 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2131 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2132 			break;
2133 		case 0x10:	/* pws is malfunctioning and commanded on */
2134 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2135 			ssc->ses_objmap[oid].encstat[3] = 0x61;
2136 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2137 			break;
2138 
2139 		case 0x11:	/* pws is malfunctioning and commanded off */
2140 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2141 			ssc->ses_objmap[oid].encstat[3] = 0x51;
2142 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2143 			break;
2144 		case 0x20:	/* pws is not present */
2145 			ssc->ses_objmap[oid].encstat[0] =
2146 			    SES_OBJSTAT_NOTINSTALLED;
2147 			ssc->ses_objmap[oid].encstat[3] = 0;
2148 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2149 			break;
2150 		case 0x21:	/* pws is present */
2151 			/*
2152 			 * This is for enclosures that cannot tell whether the
2153 			 * device is on or malfunctioning, but know that it is
2154 			 * present. Just fall through.
2155 			 */
2156 			/* FALLTHROUGH */
2157 		case 0x80:	/* Unknown or Not Reportable Status */
2158 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2159 			ssc->ses_objmap[oid].encstat[3] = 0;
2160 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2161 			break;
2162 		default:
2163 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2164 			    i, sdata[r] & 0xff);
2165 			break;
2166 		}
2167 		ssc->ses_objmap[oid++].svalid = 1;
2168 		r++;
2169 	}
2170 
2171 	/*
2172 	 * Skip over Slot SCSI IDs
2173 	 */
2174 	r += cc->Nslots;
2175 
2176 	/*
2177 	 * We always have doorlock status, no matter what,
2178 	 * but we only save the status if we have one.
2179 	 */
2180 	SAFT_BAIL(r, hiwater, sdata, buflen);
2181 	if (cc->DoorLock) {
2182 		/*
2183 		 * 0 = Door Locked
2184 		 * 1 = Door Unlocked, or no Lock Installed
2185 		 * 0x80 = Unknown or Not Reportable Status
2186 		 */
2187 		ssc->ses_objmap[oid].encstat[1] = 0;
2188 		ssc->ses_objmap[oid].encstat[2] = 0;
2189 		switch ((uint8_t)sdata[r]) {
2190 		case 0:
2191 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2192 			ssc->ses_objmap[oid].encstat[3] = 0;
2193 			break;
2194 		case 1:
2195 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2196 			ssc->ses_objmap[oid].encstat[3] = 1;
2197 			break;
2198 		case 0x80:
2199 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2200 			ssc->ses_objmap[oid].encstat[3] = 0;
2201 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2202 			break;
2203 		default:
2204 			ssc->ses_objmap[oid].encstat[0] =
2205 			    SES_OBJSTAT_UNSUPPORTED;
2206 			SES_LOG(ssc, "unknown lock status 0x%x\n",
2207 			    sdata[r] & 0xff);
2208 			break;
2209 		}
2210 		ssc->ses_objmap[oid++].svalid = 1;
2211 	}
2212 	r++;
2213 
2214 	/*
2215 	 * We always have speaker status, no matter what,
2216 	 * but we only save the status if we have one.
2217 	 */
2218 	SAFT_BAIL(r, hiwater, sdata, buflen);
2219 	if (cc->Nspkrs) {
2220 		ssc->ses_objmap[oid].encstat[1] = 0;
2221 		ssc->ses_objmap[oid].encstat[2] = 0;
2222 		if (sdata[r] == 1) {
2223 			/*
2224 			 * We need to cache tone urgency indicators.
2225 			 * Someday.
2226 			 */
2227 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2228 			ssc->ses_objmap[oid].encstat[3] = 0x8;
2229 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2230 		} else if (sdata[r] == 0) {
2231 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2232 			ssc->ses_objmap[oid].encstat[3] = 0;
2233 		} else {
2234 			ssc->ses_objmap[oid].encstat[0] =
2235 			    SES_OBJSTAT_UNSUPPORTED;
2236 			ssc->ses_objmap[oid].encstat[3] = 0;
2237 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2238 			    sdata[r] & 0xff);
2239 		}
2240 		ssc->ses_objmap[oid++].svalid = 1;
2241 	}
2242 	r++;
2243 
2244 	for (i = 0; i < cc->Ntherm; i++) {
2245 		SAFT_BAIL(r, hiwater, sdata, buflen);
2246 		/*
2247 		 * Status is a range from -10 to 245 deg Celsius,
2248 		 * which we need to normalize to -20 to -245 according
2249 		 * to the latest SCSI spec, which makes little
2250 		 * sense since this would overflow an 8bit value.
2251 		 * Well, still, the base normalization is -20,
2252 		 * not -10, so we have to adjust.
2253 		 *
2254 		 * So what's over and under temperature?
2255 		 * Hmm- we'll state that 'normal' operating
2256 		 * is 10 to 40 deg Celsius.
2257 		 */
2258 
2259 		/*
2260 		 * Actually.... All of the units that people out in the world
2261 		 * seem to have do not come even close to setting a value that
2262 		 * complies with this spec.
2263 		 *
2264 		 * The closest explanation I could find was in an
2265 		 * LSI-Logic manual, which seemed to indicate that
2266 		 * this value would be set by whatever the I2C code
2267 		 * would interpolate from the output of an LM75
2268 		 * temperature sensor.
2269 		 *
2270 		 * This means that it is impossible to use the actual
2271 		 * numeric value to predict anything. But we don't want
2272 		 * to lose the value. So, we'll propagate the *uncorrected*
2273 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2274 		 * temperature flags for warnings.
2275 		 */
2276 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2277 		ssc->ses_objmap[oid].encstat[1] = 0;
2278 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2279 		ssc->ses_objmap[oid].encstat[3] = 0;;
2280 		ssc->ses_objmap[oid++].svalid = 1;
2281 		r++;
2282 	}
2283 
2284 	/*
2285 	 * Now, for "pseudo" thermometers, we have two bytes
2286 	 * of information in enclosure status- 16 bits. Actually,
2287 	 * the MSB is a single TEMP ALERT flag indicating whether
2288 	 * any other bits are set, but, thanks to fuzzy thinking,
2289 	 * in the SAF-TE spec, this can also be set even if no
2290 	 * other bits are set, thus making this really another
2291 	 * binary temperature sensor.
2292 	 */
2293 
2294 	SAFT_BAIL(r, hiwater, sdata, buflen);
2295 	tempflags = sdata[r++];
2296 	SAFT_BAIL(r, hiwater, sdata, buflen);
2297 	tempflags |= (tempflags << 8) | sdata[r++];
2298 
2299 	for (i = 0; i < NPSEUDO_THERM; i++) {
2300 		ssc->ses_objmap[oid].encstat[1] = 0;
2301 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2302 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2303 			ssc->ses_objmap[4].encstat[2] = 0xff;
2304 			/*
2305 			 * Set 'over temperature' failure.
2306 			 */
2307 			ssc->ses_objmap[oid].encstat[3] = 8;
2308 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2309 		} else {
2310 			/*
2311 			 * We used to say 'not available' and synthesize a
2312 			 * nominal 30 deg (C)- that was wrong. Actually,
2313 			 * Just say 'OK', and use the reserved value of
2314 			 * zero.
2315 			 */
2316 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2317 			ssc->ses_objmap[oid].encstat[2] = 0;
2318 			ssc->ses_objmap[oid].encstat[3] = 0;
2319 		}
2320 		ssc->ses_objmap[oid++].svalid = 1;
2321 	}
2322 
2323 	/*
2324 	 * Get alarm status.
2325 	 */
2326 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2327 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2328 	ssc->ses_objmap[oid++].svalid = 1;
2329 
2330 	/*
2331 	 * Now get drive slot status
2332 	 */
2333 	cdb[2] = SAFTE_RD_RDDSTS;
2334 	amt = buflen;
2335 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2336 	if (err) {
2337 		SES_FREE(sdata, buflen);
2338 		return (err);
2339 	}
2340 	hiwater = buflen - amt;
2341 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2342 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2343 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2344 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2345 		ssc->ses_objmap[oid].encstat[2] = 0;
2346 		ssc->ses_objmap[oid].encstat[3] = 0;
2347 		status = sdata[r+3];
2348 		if ((status & 0x1) == 0) {	/* no device */
2349 			ssc->ses_objmap[oid].encstat[0] =
2350 			    SES_OBJSTAT_NOTINSTALLED;
2351 		} else {
2352 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2353 		}
2354 		if (status & 0x2) {
2355 			ssc->ses_objmap[oid].encstat[2] = 0x8;
2356 		}
2357 		if ((status & 0x4) == 0) {
2358 			ssc->ses_objmap[oid].encstat[3] = 0x10;
2359 		}
2360 		ssc->ses_objmap[oid++].svalid = 1;
2361 	}
2362 	/* see comment below about sticky enclosure status */
2363 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2364 	SES_FREE(sdata, buflen);
2365 	return (0);
2366 }
2367 
2368 static int
2369 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2370 {
2371 	int idx;
2372 	encobj *ep;
2373 	struct scfg *cc = ssc->ses_private;
2374 
2375 	if (cc == NULL)
2376 		return (0);
2377 
2378 	idx = (int)obp->obj_id;
2379 	ep = &ssc->ses_objmap[idx];
2380 
2381 	switch (ep->enctype) {
2382 	case SESTYP_DEVICE:
2383 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2384 			ep->priv |= 0x40;
2385 		}
2386 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2387 		if (obp->cstat[0] & SESCTL_DISABLE) {
2388 			ep->priv |= 0x80;
2389 			/*
2390 			 * Hmm. Try to set the 'No Drive' flag.
2391 			 * Maybe that will count as a 'disable'.
2392 			 */
2393 		}
2394 		if (ep->priv & 0xc6) {
2395 			ep->priv &= ~0x1;
2396 		} else {
2397 			ep->priv |= 0x1;	/* no errors */
2398 		}
2399 		wrslot_stat(ssc, slp);
2400 		break;
2401 	case SESTYP_POWER:
2402 		/*
2403 		 * Okay- the only one that makes sense here is to
2404 		 * do the 'disable' for a power supply.
2405 		 */
2406 		if (obp->cstat[0] & SESCTL_DISABLE) {
2407 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2408 				idx - cc->pwroff, 0, 0, slp);
2409 		}
2410 		break;
2411 	case SESTYP_FAN:
2412 		/*
2413 		 * Okay- the only one that makes sense here is to
2414 		 * set fan speed to zero on disable.
2415 		 */
2416 		if (obp->cstat[0] & SESCTL_DISABLE) {
2417 			/* remember- fans are the first items, so idx works */
2418 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2419 		}
2420 		break;
2421 	case SESTYP_DOORLOCK:
2422 		/*
2423 		 * Well, we can 'disable' the lock.
2424 		 */
2425 		if (obp->cstat[0] & SESCTL_DISABLE) {
2426 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2427 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2428 				cc->flag2, 0, slp);
2429 		}
2430 		break;
2431 	case SESTYP_ALARM:
2432 		/*
2433 		 * Well, we can 'disable' the alarm.
2434 		 */
2435 		if (obp->cstat[0] & SESCTL_DISABLE) {
2436 			cc->flag2 &= ~SAFT_FLG1_ALARM;
2437 			ep->priv |= 0x40;	/* Muted */
2438 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2439 				cc->flag2, 0, slp);
2440 		}
2441 		break;
2442 	default:
2443 		break;
2444 	}
2445 	ep->svalid = 0;
2446 	return (0);
2447 }
2448 
2449 /*
2450  * This function handles all of the 16 byte WRITE BUFFER commands.
2451  */
2452 static int
2453 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2454     uint8_t b3, int slp)
2455 {
2456 	int err, amt;
2457 	char *sdata;
2458 	struct scfg *cc = ssc->ses_private;
2459 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2460 
2461 	if (cc == NULL)
2462 		return (0);
2463 
2464 	sdata = SES_MALLOC(16);
2465 	if (sdata == NULL)
2466 		return (ENOMEM);
2467 
2468 	SES_DLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2469 
2470 	sdata[0] = op;
2471 	sdata[1] = b1;
2472 	sdata[2] = b2;
2473 	sdata[3] = b3;
2474 	MEMZERO(&sdata[4], 12);
2475 	amt = -16;
2476 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2477 	SES_FREE(sdata, 16);
2478 	return (err);
2479 }
2480 
2481 /*
2482  * This function updates the status byte for the device slot described.
2483  *
2484  * Since this is an optional SAF-TE command, there's no point in
2485  * returning an error.
2486  */
2487 static void
2488 wrslot_stat(ses_softc_t *ssc, int slp)
2489 {
2490 	int i, amt;
2491 	encobj *ep;
2492 	char cdb[10], *sdata;
2493 	struct scfg *cc = ssc->ses_private;
2494 
2495 	if (cc == NULL)
2496 		return;
2497 
2498 	SES_DLOG(ssc, "saf_wrslot\n");
2499 	cdb[0] = WRITE_BUFFER;
2500 	cdb[1] = 1;
2501 	cdb[2] = 0;
2502 	cdb[3] = 0;
2503 	cdb[4] = 0;
2504 	cdb[5] = 0;
2505 	cdb[6] = 0;
2506 	cdb[7] = 0;
2507 	cdb[8] = cc->Nslots * 3 + 1;
2508 	cdb[9] = 0;
2509 
2510 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2511 	if (sdata == NULL)
2512 		return;
2513 	MEMZERO(sdata, cc->Nslots * 3 + 1);
2514 
2515 	sdata[0] = SAFTE_WT_DSTAT;
2516 	for (i = 0; i < cc->Nslots; i++) {
2517 		ep = &ssc->ses_objmap[cc->slotoff + i];
2518 		SES_DLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2519 		sdata[1 + (3 * i)] = ep->priv & 0xff;
2520 	}
2521 	amt = -(cc->Nslots * 3 + 1);
2522 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2523 	SES_FREE(sdata, cc->Nslots * 3 + 1);
2524 }
2525 
2526 /*
2527  * This function issues the "PERFORM SLOT OPERATION" command.
2528  */
2529 static int
2530 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2531 {
2532 	int err, amt;
2533 	char *sdata;
2534 	struct scfg *cc = ssc->ses_private;
2535 	static char cdb[10] =
2536 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2537 
2538 	if (cc == NULL)
2539 		return (0);
2540 
2541 	sdata = SES_MALLOC(SAFT_SCRATCH);
2542 	if (sdata == NULL)
2543 		return (ENOMEM);
2544 	MEMZERO(sdata, SAFT_SCRATCH);
2545 
2546 	sdata[0] = SAFTE_WT_SLTOP;
2547 	sdata[1] = slot;
2548 	sdata[2] = opflag;
2549 	SES_DLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2550 	amt = -SAFT_SCRATCH;
2551 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2552 	SES_FREE(sdata, SAFT_SCRATCH);
2553 	return (err);
2554 }
2555