xref: /dragonfly/sys/bus/firewire/firewire.c (revision 92fc8b5c)
1 /*
2  * Copyright (c) 2003 Hidetoshi Shimokawa
3  * Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the acknowledgement as bellow:
16  *
17  *    This product includes software developed by K. Kobayashi and H. Shimokawa
18  *
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
26  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
30  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/firewire/firewire.c,v 1.68 2004/01/08 14:58:09 simokawa Exp $
35  * $DragonFly: src/sys/bus/firewire/firewire.c,v 1.21 2008/01/06 16:55:49 swildner Exp $
36  *
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/conf.h>
46 #include <sys/bus.h>		/* used by smbus and newbus */
47 #include <sys/sysctl.h>
48 #include <sys/thread2.h>
49 
50 #if defined(__DragonFly__) || __FreeBSD_version < 500000
51 #include <machine/clock.h>	/* for DELAY() */
52 #endif
53 
54 #ifdef __DragonFly__
55 #include "firewire.h"
56 #include "firewirereg.h"
57 #include "fwmem.h"
58 #include "iec13213.h"
59 #include "iec68113.h"
60 #else
61 #include <dev/firewire/firewire.h>
62 #include <dev/firewire/firewirereg.h>
63 #include <dev/firewire/fwmem.h>
64 #include <dev/firewire/iec13213.h>
65 #include <dev/firewire/iec68113.h>
66 #endif
67 
68 struct crom_src_buf {
69 	struct crom_src	src;
70 	struct crom_chunk root;
71 	struct crom_chunk vendor;
72 	struct crom_chunk hw;
73 };
74 
75 int firewire_debug=0, try_bmr=1, hold_count=3;
76 SYSCTL_INT(_debug, OID_AUTO, firewire_debug, CTLFLAG_RW, &firewire_debug, 0,
77 	"FireWire driver debug flag");
78 SYSCTL_NODE(_hw, OID_AUTO, firewire, CTLFLAG_RD, 0, "FireWire Subsystem");
79 SYSCTL_INT(_hw_firewire, OID_AUTO, try_bmr, CTLFLAG_RW, &try_bmr, 0,
80 	"Try to be a bus manager");
81 SYSCTL_INT(_hw_firewire, OID_AUTO, hold_count, CTLFLAG_RW, &hold_count, 0,
82 	"Number of count of bus resets for removing lost device information");
83 
84 MALLOC_DEFINE(M_FW, "firewire", "FireWire");
85 MALLOC_DEFINE(M_FWXFER, "fw_xfer", "XFER/FireWire");
86 
87 #define FW_MAXASYRTY 4
88 
89 devclass_t firewire_devclass;
90 
91 static int firewire_probe	(device_t);
92 static int firewire_attach      (device_t);
93 static int firewire_detach      (device_t);
94 static int firewire_resume      (device_t);
95 #if 0
96 static int firewire_shutdown    (device_t);
97 #endif
98 static device_t firewire_add_child (device_t, device_t, int, const char *, int);
99 static void fw_try_bmr (void *);
100 static void fw_try_bmr_callback (struct fw_xfer *);
101 static void fw_asystart (struct fw_xfer *);
102 static int fw_get_tlabel (struct firewire_comm *, struct fw_xfer *);
103 static void fw_bus_probe (struct firewire_comm *);
104 static void fw_bus_explore (struct firewire_comm *);
105 static void fw_bus_explore_callback (struct fw_xfer *);
106 static void fw_attach_dev (struct firewire_comm *);
107 #ifdef FW_VMACCESS
108 static void fw_vmaccess (struct fw_xfer *);
109 #endif
110 struct fw_xfer *asyreqq (struct firewire_comm *, u_int8_t, u_int8_t, u_int8_t,
111 	u_int32_t, u_int32_t, void (*)(struct fw_xfer *));
112 static int fw_bmr (struct firewire_comm *);
113 
114 /*
115  * note: bus_generic_identify() will automatically install a "firewire"
116  * device under any attached fwohci device.
117  */
118 static device_method_t firewire_methods[] = {
119 	/* Device interface */
120 	DEVMETHOD(device_identify,	bus_generic_identify),
121 	DEVMETHOD(device_probe,		firewire_probe),
122 	DEVMETHOD(device_attach,	firewire_attach),
123 	DEVMETHOD(device_detach,	firewire_detach),
124 	DEVMETHOD(device_suspend,	bus_generic_suspend),
125 	DEVMETHOD(device_resume,	firewire_resume),
126 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
127 
128 	/* Bus interface */
129 	DEVMETHOD(bus_add_child,	firewire_add_child),
130 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
131 
132 	{ 0, 0 }
133 };
134 char *linkspeed[] = {
135 	"S100", "S200", "S400", "S800",
136 	"S1600", "S3200", "undef", "undef"
137 };
138 
139 static char *tcode_str[] = {
140 	"WREQQ", "WREQB", "WRES",   "undef",
141 	"RREQQ", "RREQB", "RRESQ",  "RRESB",
142 	"CYCS",  "LREQ",  "STREAM", "LRES",
143 	"undef", "undef", "PHY",    "undef"
144 };
145 
146 /* IEEE-1394a Table C-2 Gap count as a function of hops*/
147 #define MAX_GAPHOP 15
148 u_int gap_cnt[] = { 5,  5,  7,  8, 10, 13, 16, 18,
149 		   21, 24, 26, 29, 32, 35, 37, 40};
150 
151 static driver_t firewire_driver = {
152 	"firewire",
153 	firewire_methods,
154 	sizeof(struct firewire_softc),
155 };
156 
157 /*
158  * Lookup fwdev by node id.
159  */
160 struct fw_device *
161 fw_noderesolve_nodeid(struct firewire_comm *fc, int dst)
162 {
163 	struct fw_device *fwdev;
164 
165 	crit_enter();
166 	STAILQ_FOREACH(fwdev, &fc->devices, link)
167 		if (fwdev->dst == dst && fwdev->status != FWDEVINVAL)
168 			break;
169 	crit_exit();
170 
171 	return fwdev;
172 }
173 
174 /*
175  * Lookup fwdev by EUI64.
176  */
177 struct fw_device *
178 fw_noderesolve_eui64(struct firewire_comm *fc, struct fw_eui64 *eui)
179 {
180 	struct fw_device *fwdev;
181 
182 	crit_enter();
183 	STAILQ_FOREACH(fwdev, &fc->devices, link)
184 		if (FW_EUI64_EQUAL(fwdev->eui, *eui))
185 			break;
186 	crit_exit();
187 
188 	if(fwdev == NULL) return NULL;
189 	if(fwdev->status == FWDEVINVAL) return NULL;
190 	return fwdev;
191 }
192 
193 /*
194  * Async. request procedure for userland application.
195  */
196 int
197 fw_asyreq(struct firewire_comm *fc, int sub, struct fw_xfer *xfer)
198 {
199 	int err = 0;
200 	struct fw_xferq *xferq;
201 	int tl = 0, len;
202 	struct fw_pkt *fp;
203 	int tcode;
204 	struct tcode_info *info;
205 
206 	if(xfer == NULL) return EINVAL;
207 	if(xfer->act.hand == NULL){
208 		kprintf("act.hand == NULL\n");
209 		return EINVAL;
210 	}
211 	fp = &xfer->send.hdr;
212 
213 	tcode = fp->mode.common.tcode & 0xf;
214 	info = &fc->tcode[tcode];
215 	if (info->flag == 0) {
216 		kprintf("invalid tcode=%x\n", tcode);
217 		return EINVAL;
218 	}
219 	if (info->flag & FWTI_REQ)
220 		xferq = fc->atq;
221 	else
222 		xferq = fc->ats;
223 	len = info->hdr_len;
224 	if (xfer->send.pay_len > MAXREC(fc->maxrec)) {
225 		kprintf("send.pay_len > maxrec\n");
226 		return EINVAL;
227 	}
228 	if (info->flag & FWTI_BLOCK_STR)
229 		len = fp->mode.stream.len;
230 	else if (info->flag & FWTI_BLOCK_ASY)
231 		len = fp->mode.rresb.len;
232 	else
233 		len = 0;
234 	if (len != xfer->send.pay_len){
235 		kprintf("len(%d) != send.pay_len(%d) %s(%x)\n",
236 		    len, xfer->send.pay_len, tcode_str[tcode], tcode);
237 		return EINVAL;
238 	}
239 
240 	if(xferq->start == NULL){
241 		kprintf("xferq->start == NULL\n");
242 		return EINVAL;
243 	}
244 	if(!(xferq->queued < xferq->maxq)){
245 		device_printf(fc->bdev, "Discard a packet (queued=%d)\n",
246 			xferq->queued);
247 		return EINVAL;
248 	}
249 
250 	microtime(&xfer->tv);
251 	if (info->flag & FWTI_TLABEL) {
252 		if((tl = fw_get_tlabel(fc, xfer)) == -1 )
253 			return EIO;
254 		fp->mode.hdr.tlrt = tl << 2;
255 	}
256 
257 	xfer->tl = tl;
258 	xfer->resp = 0;
259 	xfer->fc = fc;
260 	xfer->q = xferq;
261 	xfer->retry_req = fw_asybusy;
262 
263 	fw_asystart(xfer);
264 	return err;
265 }
266 /*
267  * Wakeup blocked process.
268  */
269 void
270 fw_asy_callback(struct fw_xfer *xfer){
271 	wakeup(xfer);
272 	return;
273 }
274 /*
275  * Postpone to later retry.
276  */
277 void
278 fw_asybusy(struct fw_xfer *xfer)
279 {
280 	kprintf("fw_asybusy\n");
281 /*
282 	xfer->ch =  timeout((timeout_t *)fw_asystart, (void *)xfer, 20000);
283 */
284 #if 0
285 	DELAY(20000);
286 #endif
287 	fw_asystart(xfer);
288 	return;
289 }
290 
291 /*
292  * Async. request with given xfer structure.
293  */
294 static void
295 fw_asystart(struct fw_xfer *xfer)
296 {
297 	struct firewire_comm *fc = xfer->fc;
298 
299 	if(xfer->retry++ >= fc->max_asyretry){
300 		device_printf(fc->bdev, "max_asyretry exceeded\n");
301 		xfer->resp = EBUSY;
302 		xfer->state = FWXF_BUSY;
303 		xfer->act.hand(xfer);
304 		return;
305 	}
306 #if 0 /* XXX allow bus explore packets only after bus rest */
307 	if (fc->status < FWBUSEXPLORE) {
308 		xfer->resp = EAGAIN;
309 		xfer->state = FWXF_BUSY;
310 		if (xfer->act.hand != NULL)
311 			xfer->act.hand(xfer);
312 		return;
313 	}
314 #endif
315 	crit_enter();
316 	xfer->state = FWXF_INQ;
317 	STAILQ_INSERT_TAIL(&xfer->q->q, xfer, link);
318 	xfer->q->queued ++;
319 	crit_exit();
320 	/* XXX just queue for mbuf */
321 	if (xfer->mbuf == NULL)
322 		xfer->q->start(fc);
323 	return;
324 }
325 
326 static int
327 firewire_probe(device_t dev)
328 {
329 	device_set_desc(dev, "IEEE1394(FireWire) bus");
330 	return (0);
331 }
332 
333 static void
334 firewire_xfer_timeout(struct firewire_comm *fc)
335 {
336 	struct fw_xfer *xfer;
337 	struct tlabel *tl;
338 	struct timeval tv;
339 	struct timeval split_timeout;
340 	int i;
341 
342 	split_timeout.tv_sec = 0;
343 	split_timeout.tv_usec = 200 * 1000;	 /* 200 msec */
344 
345 	microtime(&tv);
346 	timevalsub(&tv, &split_timeout);
347 
348 	crit_enter();
349 	for (i = 0; i < 0x40; i ++) {
350 		while ((tl = STAILQ_FIRST(&fc->tlabels[i])) != NULL) {
351 			xfer = tl->xfer;
352 			if (timevalcmp(&xfer->tv, &tv, >))
353 				/* the rests are newer than this */
354 				break;
355 			if (xfer->state == FWXF_START)
356 				/* not sent yet */
357 				break;
358 			device_printf(fc->bdev,
359 				"split transaction timeout dst=0x%x tl=0x%x state=%d\n",
360 				xfer->send.hdr.mode.hdr.dst, i, xfer->state);
361 			xfer->resp = ETIMEDOUT;
362 			STAILQ_REMOVE_HEAD(&fc->tlabels[i], link);
363 			fw_xfer_done(xfer);
364 		}
365 	}
366 	crit_exit();
367 }
368 
369 #define WATCHDOC_HZ 10
370 static void
371 firewire_watchdog(void *arg)
372 {
373 	struct firewire_comm *fc;
374 	static int watchdoc_clock = 0;
375 
376 	fc = (struct firewire_comm *)arg;
377 
378 	/*
379 	 * At boot stage, the device interrupt is disabled and
380 	 * We encounter a timeout easily. To avoid this,
381 	 * ignore clock interrupt for a while.
382 	 */
383 	if (watchdoc_clock > WATCHDOC_HZ * 15) {
384 		firewire_xfer_timeout(fc);
385 		fc->timeout(fc);
386 	} else
387 		watchdoc_clock ++;
388 
389 	callout_reset(&fc->timeout_callout, hz / WATCHDOC_HZ,
390 			(void *)firewire_watchdog, (void *)fc);
391 }
392 
393 /*
394  * The attach routine.
395  */
396 static int
397 firewire_attach(device_t dev)
398 {
399 	int unit;
400 	struct firewire_softc *sc = device_get_softc(dev);
401 	device_t pa = device_get_parent(dev);
402 	struct firewire_comm *fc;
403 
404 	fc = (struct firewire_comm *)device_get_softc(pa);
405 	sc->fc = fc;
406 	fc->status = FWBUSNOTREADY;
407 
408 	unit = device_get_unit(dev);
409 	if( fc->nisodma > FWMAXNDMA) fc->nisodma = FWMAXNDMA;
410 
411 	fwdev_makedev(sc);
412 
413 	CALLOUT_INIT(&sc->fc->timeout_callout);
414 	CALLOUT_INIT(&sc->fc->bmr_callout);
415 	CALLOUT_INIT(&sc->fc->retry_probe_callout);
416 	CALLOUT_INIT(&sc->fc->busprobe_callout);
417 
418 	callout_reset(&sc->fc->timeout_callout, hz,
419 			(void *)firewire_watchdog, (void *)sc->fc);
420 
421 	/* Locate our children */
422 	bus_generic_probe(dev);
423 
424 	/* launch attachement of the added children */
425 	bus_generic_attach(dev);
426 
427 	/* bus_reset */
428 	fw_busreset(fc);
429 	fc->ibr(fc);
430 
431 	return 0;
432 }
433 
434 /*
435  * Attach it as child.
436  */
437 static device_t
438 firewire_add_child(device_t bus, device_t parent, int order, const char *name, int unit)
439 {
440         device_t child;
441 	struct firewire_softc *sc;
442 
443 	sc = (struct firewire_softc *)device_get_softc(parent);
444 	child = device_add_child(parent, name, unit);
445 	if (child) {
446 		device_set_ivars(child, sc->fc);
447 		device_probe_and_attach(child);
448 	}
449 
450 	return child;
451 }
452 
453 static int
454 firewire_resume(device_t dev)
455 {
456 	struct firewire_softc *sc;
457 
458 	sc = (struct firewire_softc *)device_get_softc(dev);
459 	sc->fc->status = FWBUSNOTREADY;
460 
461 	bus_generic_resume(dev);
462 
463 	return(0);
464 }
465 
466 /*
467  * Dettach it.
468  */
469 static int
470 firewire_detach(device_t dev)
471 {
472 	struct firewire_softc *sc;
473 	struct csrdir *csrd, *next;
474 	struct fw_device *fwdev, *fwdev_next;
475 	int err;
476 
477 	sc = (struct firewire_softc *)device_get_softc(dev);
478 	if ((err = fwdev_destroydev(sc)) != 0)
479 		return err;
480 
481 	if ((err = bus_generic_detach(dev)) != 0)
482 		return err;
483 
484 	callout_stop(&sc->fc->timeout_callout);
485 	callout_stop(&sc->fc->bmr_callout);
486 	callout_stop(&sc->fc->retry_probe_callout);
487 	callout_stop(&sc->fc->busprobe_callout);
488 
489 	/* XXX xfree_free and callout_stop on all xfers */
490 	for (fwdev = STAILQ_FIRST(&sc->fc->devices); fwdev != NULL;
491 							fwdev = fwdev_next) {
492 		fwdev_next = STAILQ_NEXT(fwdev, link);
493 		kfree(fwdev, M_FW);
494 	}
495 	for (csrd = SLIST_FIRST(&sc->fc->csrfree); csrd != NULL; csrd = next) {
496 		next = SLIST_NEXT(csrd, link);
497 		kfree(csrd, M_FW);
498 	}
499 	kfree(sc->fc->topology_map, M_FW);
500 	kfree(sc->fc->speed_map, M_FW);
501 	kfree(sc->fc->crom_src_buf, M_FW);
502 	return(0);
503 }
504 #if 0
505 static int
506 firewire_shutdown( device_t dev )
507 {
508 	return 0;
509 }
510 #endif
511 
512 
513 static void
514 fw_xferq_drain(struct fw_xferq *xferq)
515 {
516 	struct fw_xfer *xfer;
517 
518 	while ((xfer = STAILQ_FIRST(&xferq->q)) != NULL) {
519 		STAILQ_REMOVE_HEAD(&xferq->q, link);
520 		xferq->queued --;
521 		xfer->resp = EAGAIN;
522 		xfer->state = FWXF_SENTERR;
523 		fw_xfer_done(xfer);
524 	}
525 }
526 
527 void
528 fw_drain_txq(struct firewire_comm *fc)
529 {
530 	int i;
531 
532 	fw_xferq_drain(fc->atq);
533 	fw_xferq_drain(fc->ats);
534 	for(i = 0; i < fc->nisodma; i++)
535 		fw_xferq_drain(fc->it[i]);
536 }
537 
538 static void
539 fw_reset_csr(struct firewire_comm *fc)
540 {
541 	int i;
542 
543 	CSRARC(fc, STATE_CLEAR)
544 			= 1 << 23 | 0 << 17 | 1 << 16 | 1 << 15 | 1 << 14 ;
545 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
546 	CSRARC(fc, NODE_IDS) = 0x3f;
547 
548 	CSRARC(fc, TOPO_MAP + 8) = 0;
549 	fc->irm = -1;
550 
551 	fc->max_node = -1;
552 
553 	for(i = 2; i < 0x100/4 - 2 ; i++){
554 		CSRARC(fc, SPED_MAP + i * 4) = 0;
555 	}
556 	CSRARC(fc, STATE_CLEAR) = 1 << 23 | 0 << 17 | 1 << 16 | 1 << 15 | 1 << 14 ;
557 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
558 	CSRARC(fc, RESET_START) = 0;
559 	CSRARC(fc, SPLIT_TIMEOUT_HI) = 0;
560 	CSRARC(fc, SPLIT_TIMEOUT_LO) = 800 << 19;
561 	CSRARC(fc, CYCLE_TIME) = 0x0;
562 	CSRARC(fc, BUS_TIME) = 0x0;
563 	CSRARC(fc, BUS_MGR_ID) = 0x3f;
564 	CSRARC(fc, BANDWIDTH_AV) = 4915;
565 	CSRARC(fc, CHANNELS_AV_HI) = 0xffffffff;
566 	CSRARC(fc, CHANNELS_AV_LO) = 0xffffffff;
567 	CSRARC(fc, IP_CHANNELS) = (1 << 31);
568 
569 	CSRARC(fc, CONF_ROM) = 0x04 << 24;
570 	CSRARC(fc, CONF_ROM + 4) = 0x31333934; /* means strings 1394 */
571 	CSRARC(fc, CONF_ROM + 8) = 1 << 31 | 1 << 30 | 1 << 29 |
572 				1 << 28 | 0xff << 16 | 0x09 << 8;
573 	CSRARC(fc, CONF_ROM + 0xc) = 0;
574 
575 /* DV depend CSRs see blue book */
576 	CSRARC(fc, oPCR) &= ~DV_BROADCAST_ON;
577 	CSRARC(fc, iPCR) &= ~DV_BROADCAST_ON;
578 
579 	CSRARC(fc, STATE_CLEAR) &= ~(1 << 23 | 1 << 15 | 1 << 14 );
580 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
581 }
582 
583 static void
584 fw_init_crom(struct firewire_comm *fc)
585 {
586 	struct crom_src *src;
587 
588 	fc->crom_src_buf = (struct crom_src_buf *)
589 		kmalloc(sizeof(struct crom_src_buf), M_FW, M_WAITOK | M_ZERO);
590 
591 	src = &fc->crom_src_buf->src;
592 	bzero(src, sizeof(struct crom_src));
593 
594 	/* BUS info sample */
595 	src->hdr.info_len = 4;
596 
597 	src->businfo.bus_name = CSR_BUS_NAME_IEEE1394;
598 
599 	src->businfo.irmc = 1;
600 	src->businfo.cmc = 1;
601 	src->businfo.isc = 1;
602 	src->businfo.bmc = 1;
603 	src->businfo.pmc = 0;
604 	src->businfo.cyc_clk_acc = 100;
605 	src->businfo.max_rec = fc->maxrec;
606 	src->businfo.max_rom = MAXROM_4;
607 	src->businfo.generation = 1;
608 	src->businfo.link_spd = fc->speed;
609 
610 	src->businfo.eui64.hi = fc->eui.hi;
611 	src->businfo.eui64.lo = fc->eui.lo;
612 
613 	STAILQ_INIT(&src->chunk_list);
614 
615 	fc->crom_src = src;
616 	fc->crom_root = &fc->crom_src_buf->root;
617 }
618 
619 static void
620 fw_reset_crom(struct firewire_comm *fc)
621 {
622 	struct crom_src_buf *buf;
623 	struct crom_src *src;
624 	struct crom_chunk *root;
625 
626 	if (fc->crom_src_buf == NULL)
627 		fw_init_crom(fc);
628 
629 	buf =  fc->crom_src_buf;
630 	src = fc->crom_src;
631 	root = fc->crom_root;
632 
633 	STAILQ_INIT(&src->chunk_list);
634 
635 	bzero(root, sizeof(struct crom_chunk));
636 	crom_add_chunk(src, NULL, root, 0);
637 	crom_add_entry(root, CSRKEY_NCAP, 0x0083c0); /* XXX */
638 	/* private company_id */
639 	crom_add_entry(root, CSRKEY_VENDOR, CSRVAL_VENDOR_PRIVATE);
640 #ifdef __DragonFly__
641 	crom_add_simple_text(src, root, &buf->vendor, "DragonFly Project");
642 	crom_add_entry(root, CSRKEY_HW, __DragonFly_version);
643 #else
644 	crom_add_simple_text(src, root, &buf->vendor, "FreeBSD Project");
645 	crom_add_entry(root, CSRKEY_HW, __FreeBSD_version);
646 #endif
647 	crom_add_simple_text(src, root, &buf->hw, hostname);
648 }
649 
650 /*
651  * Called after bus reset.
652  */
653 void
654 fw_busreset(struct firewire_comm *fc)
655 {
656 	struct firewire_dev_comm *fdc;
657 	struct crom_src *src;
658 	device_t *devlistp;
659 	void *newrom;
660 	int i, devcnt;
661 
662 	switch(fc->status){
663 	case FWBUSMGRELECT:
664 		callout_stop(&fc->bmr_callout);
665 		break;
666 	default:
667 		break;
668 	}
669 	fc->status = FWBUSRESET;
670 	fw_reset_csr(fc);
671 	fw_reset_crom(fc);
672 
673 	if (device_get_children(fc->bdev, &devlistp, &devcnt) == 0) {
674 		for( i = 0 ; i < devcnt ; i++)
675 			if (device_get_state(devlistp[i]) >= DS_ATTACHED)  {
676 				fdc = device_get_softc(devlistp[i]);
677 				if (fdc->post_busreset != NULL)
678 					fdc->post_busreset(fdc);
679 			}
680 		kfree(devlistp, M_TEMP);
681 	}
682 
683 	newrom = kmalloc(CROMSIZE, M_FW, M_WAITOK | M_ZERO);
684 	src = &fc->crom_src_buf->src;
685 	crom_load(src, (u_int32_t *)newrom, CROMSIZE);
686 	if (bcmp(newrom, fc->config_rom, CROMSIZE) != 0) {
687 		/* bump generation and reload */
688 		src->businfo.generation ++;
689 		/* generation must be between 0x2 and 0xF */
690 		if (src->businfo.generation < 2)
691 			src->businfo.generation ++;
692 		crom_load(src, (u_int32_t *)newrom, CROMSIZE);
693 		bcopy(newrom, (void *)fc->config_rom, CROMSIZE);
694 	}
695 	kfree(newrom, M_FW);
696 }
697 
698 /* Call once after reboot */
699 void
700 fw_init(struct firewire_comm *fc)
701 {
702 	int i;
703 	struct csrdir *csrd;
704 #ifdef FW_VMACCESS
705 	struct fw_xfer *xfer;
706 	struct fw_bind *fwb;
707 #endif
708 
709 	fc->max_asyretry = FW_MAXASYRTY;
710 
711 	fc->arq->queued = 0;
712 	fc->ars->queued = 0;
713 	fc->atq->queued = 0;
714 	fc->ats->queued = 0;
715 
716 	fc->arq->buf = NULL;
717 	fc->ars->buf = NULL;
718 	fc->atq->buf = NULL;
719 	fc->ats->buf = NULL;
720 
721 	fc->arq->flag = 0;
722 	fc->ars->flag = 0;
723 	fc->atq->flag = 0;
724 	fc->ats->flag = 0;
725 
726 	STAILQ_INIT(&fc->atq->q);
727 	STAILQ_INIT(&fc->ats->q);
728 
729 	for( i = 0 ; i < fc->nisodma ; i ++ ){
730 		fc->it[i]->queued = 0;
731 		fc->ir[i]->queued = 0;
732 
733 		fc->it[i]->start = NULL;
734 		fc->ir[i]->start = NULL;
735 
736 		fc->it[i]->buf = NULL;
737 		fc->ir[i]->buf = NULL;
738 
739 		fc->it[i]->flag = FWXFERQ_STREAM;
740 		fc->ir[i]->flag = FWXFERQ_STREAM;
741 
742 		STAILQ_INIT(&fc->it[i]->q);
743 		STAILQ_INIT(&fc->ir[i]->q);
744 
745 		STAILQ_INIT(&fc->it[i]->binds);
746 		STAILQ_INIT(&fc->ir[i]->binds);
747 	}
748 
749 	fc->arq->maxq = FWMAXQUEUE;
750 	fc->ars->maxq = FWMAXQUEUE;
751 	fc->atq->maxq = FWMAXQUEUE;
752 	fc->ats->maxq = FWMAXQUEUE;
753 
754 	for( i = 0 ; i < fc->nisodma ; i++){
755 		fc->ir[i]->maxq = FWMAXQUEUE;
756 		fc->it[i]->maxq = FWMAXQUEUE;
757 	}
758 /* Initialize csr registers */
759 	fc->topology_map = kmalloc(sizeof(struct fw_topology_map),
760 				    M_FW, M_WAITOK | M_ZERO);
761 	fc->speed_map = kmalloc(sizeof(struct fw_speed_map),
762 				    M_FW, M_WAITOK | M_ZERO);
763 	CSRARC(fc, TOPO_MAP) = 0x3f1 << 16;
764 	CSRARC(fc, TOPO_MAP + 4) = 1;
765 	CSRARC(fc, SPED_MAP) = 0x3f1 << 16;
766 	CSRARC(fc, SPED_MAP + 4) = 1;
767 
768 	STAILQ_INIT(&fc->devices);
769 
770 /* Initialize csr ROM work space */
771 	SLIST_INIT(&fc->ongocsr);
772 	SLIST_INIT(&fc->csrfree);
773 	for( i = 0 ; i < FWMAXCSRDIR ; i++){
774 		csrd = kmalloc(sizeof(struct csrdir), M_FW, M_WAITOK);
775 		SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
776 	}
777 
778 /* Initialize Async handlers */
779 	STAILQ_INIT(&fc->binds);
780 	for( i = 0 ; i < 0x40 ; i++){
781 		STAILQ_INIT(&fc->tlabels[i]);
782 	}
783 
784 /* DV depend CSRs see blue book */
785 #if 0
786 	CSRARC(fc, oMPR) = 0x3fff0001; /* # output channel = 1 */
787 	CSRARC(fc, oPCR) = 0x8000007a;
788 	for(i = 4 ; i < 0x7c/4 ; i+=4){
789 		CSRARC(fc, i + oPCR) = 0x8000007a;
790 	}
791 
792 	CSRARC(fc, iMPR) = 0x00ff0001; /* # input channel = 1 */
793 	CSRARC(fc, iPCR) = 0x803f0000;
794 	for(i = 4 ; i < 0x7c/4 ; i+=4){
795 		CSRARC(fc, i + iPCR) = 0x0;
796 	}
797 #endif
798 
799 	fc->crom_src_buf = NULL;
800 
801 #ifdef FW_VMACCESS
802 	xfer = fw_xfer_alloc();
803 	if(xfer == NULL) return;
804 
805 	fwb = kmalloc(sizeof (struct fw_bind), M_FW, M_WAITOK);
806 	xfer->act.hand = fw_vmaccess;
807 	xfer->fc = fc;
808 	xfer->sc = NULL;
809 
810 	fwb->start_hi = 0x2;
811 	fwb->start_lo = 0;
812 	fwb->addrlen = 0xffffffff;
813 	fwb->xfer = xfer;
814 	fw_bindadd(fc, fwb);
815 #endif
816 }
817 
818 #define BIND_CMP(addr, fwb) (((addr) < (fwb)->start)?-1:\
819     ((fwb)->end < (addr))?1:0)
820 
821 /*
822  * To lookup binded process from IEEE1394 address.
823  */
824 struct fw_bind *
825 fw_bindlookup(struct firewire_comm *fc, u_int16_t dest_hi, u_int32_t dest_lo)
826 {
827 	u_int64_t addr;
828 	struct fw_bind *tfw;
829 
830 	addr = ((u_int64_t)dest_hi << 32) | dest_lo;
831 	STAILQ_FOREACH(tfw, &fc->binds, fclist)
832 		if (tfw->act_type != FWACT_NULL && BIND_CMP(addr, tfw) == 0)
833 			return(tfw);
834 	return(NULL);
835 }
836 
837 /*
838  * To bind IEEE1394 address block to process.
839  */
840 int
841 fw_bindadd(struct firewire_comm *fc, struct fw_bind *fwb)
842 {
843 	struct fw_bind *tfw, *prev = NULL;
844 
845 	if (fwb->start > fwb->end) {
846 		kprintf("%s: invalid range\n", __func__);
847 		return EINVAL;
848 	}
849 
850 	STAILQ_FOREACH(tfw, &fc->binds, fclist) {
851 		if (fwb->end < tfw->start)
852 			break;
853 		prev = tfw;
854 	}
855 	if (prev == NULL) {
856 		STAILQ_INSERT_HEAD(&fc->binds, fwb, fclist);
857 		goto out;
858 	}
859 	if (prev->end < fwb->start) {
860 		STAILQ_INSERT_AFTER(&fc->binds, prev, fwb, fclist);
861 		goto out;
862 	}
863 
864 	kprintf("%s: bind failed\n", __func__);
865 	return (EBUSY);
866 
867 out:
868 	if (fwb->act_type == FWACT_CH)
869 		STAILQ_INSERT_HEAD(&fc->ir[fwb->sub]->binds, fwb, chlist);
870 	return (0);
871 }
872 
873 /*
874  * To free IEEE1394 address block.
875  */
876 int
877 fw_bindremove(struct firewire_comm *fc, struct fw_bind *fwb)
878 {
879 #if 0
880 	struct fw_xfer *xfer, *next;
881 #endif
882 	struct fw_bind *tfw;
883 
884 	crit_enter();
885 	STAILQ_FOREACH(tfw, &fc->binds, fclist)
886 		if (tfw == fwb) {
887 			STAILQ_REMOVE(&fc->binds, fwb, fw_bind, fclist);
888 			goto found;
889 		}
890 
891 	kprintf("%s: no such bind\n", __func__);
892 	crit_exit();
893 	return (1);
894 found:
895 #if 0
896 	/* shall we do this? */
897 	for (xfer = STAILQ_FIRST(&fwb->xferlist); xfer != NULL; xfer = next) {
898 		next = STAILQ_NEXT(xfer, link);
899 		fw_xfer_free(xfer);
900 	}
901 	STAILQ_INIT(&fwb->xferlist);
902 #endif
903 
904 	crit_exit();
905 	return 0;
906 }
907 
908 /*
909  * To free transaction label.
910  */
911 static void
912 fw_tl_free(struct firewire_comm *fc, struct fw_xfer *xfer)
913 {
914 	struct tlabel *tl;
915 
916 	crit_enter();
917 	for( tl = STAILQ_FIRST(&fc->tlabels[xfer->tl]); tl != NULL;
918 		tl = STAILQ_NEXT(tl, link)){
919 		if(tl->xfer == xfer){
920 			STAILQ_REMOVE(&fc->tlabels[xfer->tl], tl, tlabel, link);
921 			kfree(tl, M_FW);
922 			break;
923 		}
924 	}
925 	crit_exit();
926 }
927 
928 /*
929  * To obtain XFER structure by transaction label.
930  */
931 static struct fw_xfer *
932 fw_tl2xfer(struct firewire_comm *fc, int node, int tlabel)
933 {
934 	struct fw_xfer *xfer;
935 	struct tlabel *tl;
936 
937 	crit_enter();
938 
939 	for( tl = STAILQ_FIRST(&fc->tlabels[tlabel]); tl != NULL;
940 		tl = STAILQ_NEXT(tl, link)){
941 		if(tl->xfer->send.hdr.mode.hdr.dst == node){
942 			xfer = tl->xfer;
943 			crit_exit();
944 			if (firewire_debug > 2)
945 				kprintf("fw_tl2xfer: found tl=%d\n", tlabel);
946 			return(xfer);
947 		}
948 	}
949 	if (firewire_debug > 1)
950 		kprintf("fw_tl2xfer: not found tl=%d\n", tlabel);
951 	crit_exit();
952 	return(NULL);
953 }
954 
955 /*
956  * To allocate IEEE1394 XFER structure.
957  */
958 struct fw_xfer *
959 fw_xfer_alloc(struct malloc_type *type)
960 {
961 	struct fw_xfer *xfer;
962 
963 	xfer = kmalloc(sizeof(struct fw_xfer), type, M_INTWAIT | M_ZERO);
964 	xfer->malloc = type;
965 
966 	return xfer;
967 }
968 
969 struct fw_xfer *
970 fw_xfer_alloc_buf(struct malloc_type *type, int send_len, int recv_len)
971 {
972 	struct fw_xfer *xfer;
973 
974 	xfer = fw_xfer_alloc(type);
975 	xfer->send.pay_len = send_len;
976 	xfer->recv.pay_len = recv_len;
977 	if (xfer == NULL)
978 		return(NULL);
979 	if (send_len > 0) {
980 		xfer->send.payload = kmalloc(send_len, type, M_INTWAIT | M_ZERO);
981 		if (xfer->send.payload == NULL) {
982 			fw_xfer_free(xfer);
983 			return(NULL);
984 		}
985 	}
986 	if (recv_len > 0) {
987 		xfer->recv.payload = kmalloc(recv_len, type, M_INTWAIT);
988 		if (xfer->recv.payload == NULL) {
989 			if (xfer->send.payload != NULL)
990 				kfree(xfer->send.payload, type);
991 			fw_xfer_free(xfer);
992 			return(NULL);
993 		}
994 	}
995 	return(xfer);
996 }
997 
998 /*
999  * IEEE1394 XFER post process.
1000  */
1001 void
1002 fw_xfer_done(struct fw_xfer *xfer)
1003 {
1004 	if (xfer->act.hand == NULL) {
1005 		kprintf("act.hand == NULL\n");
1006 		return;
1007 	}
1008 
1009 	if (xfer->fc == NULL)
1010 		panic("fw_xfer_done: why xfer->fc is NULL?");
1011 
1012 	xfer->act.hand(xfer);
1013 }
1014 
1015 void
1016 fw_xfer_unload(struct fw_xfer* xfer)
1017 {
1018 	if(xfer == NULL ) return;
1019 	if(xfer->state == FWXF_INQ){
1020 		kprintf("fw_xfer_free FWXF_INQ\n");
1021 		crit_enter();
1022 		STAILQ_REMOVE(&xfer->q->q, xfer, fw_xfer, link);
1023 		xfer->q->queued --;
1024 		crit_exit();
1025 	}
1026 	if (xfer->fc != NULL) {
1027 #if 1
1028 		if(xfer->state == FWXF_START)
1029 			/*
1030 			 * This could happen if:
1031 			 *  1. We call fwohci_arcv() before fwohci_txd().
1032 			 *  2. firewire_watch() is called.
1033 			 */
1034 			kprintf("fw_xfer_free FWXF_START\n");
1035 #endif
1036 		fw_tl_free(xfer->fc, xfer);
1037 	}
1038 	xfer->state = FWXF_INIT;
1039 	xfer->resp = 0;
1040 	xfer->retry = 0;
1041 }
1042 /*
1043  * To free IEEE1394 XFER structure.
1044  */
1045 void
1046 fw_xfer_free_buf( struct fw_xfer* xfer)
1047 {
1048 	if (xfer == NULL) {
1049 		kprintf("%s: xfer == NULL\n", __func__);
1050 		return;
1051 	}
1052 	fw_xfer_unload(xfer);
1053 	if(xfer->send.payload != NULL){
1054 		kfree(xfer->send.payload, xfer->malloc);
1055 	}
1056 	if(xfer->recv.payload != NULL){
1057 		kfree(xfer->recv.payload, xfer->malloc);
1058 	}
1059 	kfree(xfer, xfer->malloc);
1060 }
1061 
1062 void
1063 fw_xfer_free( struct fw_xfer* xfer)
1064 {
1065 	if (xfer == NULL) {
1066 		kprintf("%s: xfer == NULL\n", __func__);
1067 		return;
1068 	}
1069 	fw_xfer_unload(xfer);
1070 	kfree(xfer, xfer->malloc);
1071 }
1072 
1073 void
1074 fw_asy_callback_free(struct fw_xfer *xfer)
1075 {
1076 #if 0
1077 	kprintf("asyreq done state=%d resp=%d\n",
1078 				xfer->state, xfer->resp);
1079 #endif
1080 	fw_xfer_free(xfer);
1081 }
1082 
1083 /*
1084  * To configure PHY.
1085  */
1086 static void
1087 fw_phy_config(struct firewire_comm *fc, int root_node, int gap_count)
1088 {
1089 	struct fw_xfer *xfer;
1090 	struct fw_pkt *fp;
1091 
1092 	fc->status = FWBUSPHYCONF;
1093 
1094 	xfer = fw_xfer_alloc(M_FWXFER);
1095 	if (xfer == NULL)
1096 		return;
1097 	xfer->fc = fc;
1098 	xfer->retry_req = fw_asybusy;
1099 	xfer->act.hand = fw_asy_callback_free;
1100 
1101 	fp = &xfer->send.hdr;
1102 	fp->mode.ld[1] = 0;
1103 	if (root_node >= 0)
1104 		fp->mode.ld[1] |= (root_node & 0x3f) << 24 | 1 << 23;
1105 	if (gap_count >= 0)
1106 		fp->mode.ld[1] |= 1 << 22 | (gap_count & 0x3f) << 16;
1107 	fp->mode.ld[2] = ~fp->mode.ld[1];
1108 /* XXX Dangerous, how to pass PHY packet to device driver */
1109 	fp->mode.common.tcode |= FWTCODE_PHY;
1110 
1111 	if (firewire_debug)
1112 		kprintf("send phy_config root_node=%d gap_count=%d\n",
1113 						root_node, gap_count);
1114 	fw_asyreq(fc, -1, xfer);
1115 }
1116 
1117 #if 0
1118 /*
1119  * Dump self ID.
1120  */
1121 static void
1122 fw_print_sid(u_int32_t sid)
1123 {
1124 	union fw_self_id *s;
1125 	s = (union fw_self_id *) &sid;
1126 	kprintf("node:%d link:%d gap:%d spd:%d del:%d con:%d pwr:%d"
1127 		" p0:%d p1:%d p2:%d i:%d m:%d\n",
1128 		s->p0.phy_id, s->p0.link_active, s->p0.gap_count,
1129 		s->p0.phy_speed, s->p0.phy_delay, s->p0.contender,
1130 		s->p0.power_class, s->p0.port0, s->p0.port1,
1131 		s->p0.port2, s->p0.initiated_reset, s->p0.more_packets);
1132 }
1133 #endif
1134 
1135 /*
1136  * To receive self ID.
1137  */
1138 void
1139 fw_sidrcv(struct firewire_comm* fc, u_int32_t *sid, u_int len)
1140 {
1141 	u_int32_t *p;
1142 	union fw_self_id *self_id;
1143 	u_int i, j, node, c_port = 0, i_branch = 0;
1144 
1145 	fc->sid_cnt = len /(sizeof(u_int32_t) * 2);
1146 	fc->status = FWBUSINIT;
1147 	fc->max_node = fc->nodeid & 0x3f;
1148 	CSRARC(fc, NODE_IDS) = ((u_int32_t)fc->nodeid) << 16;
1149 	fc->status = FWBUSCYMELECT;
1150 	fc->topology_map->crc_len = 2;
1151 	fc->topology_map->generation ++;
1152 	fc->topology_map->self_id_count = 0;
1153 	fc->topology_map->node_count = 0;
1154 	fc->speed_map->generation ++;
1155 	fc->speed_map->crc_len = 1 + (64*64 + 3) / 4;
1156 	self_id = &fc->topology_map->self_id[0];
1157 	for(i = 0; i < fc->sid_cnt; i ++){
1158 		if (sid[1] != ~sid[0]) {
1159 			kprintf("fw_sidrcv: invalid self-id packet\n");
1160 			sid += 2;
1161 			continue;
1162 		}
1163 		*self_id = *((union fw_self_id *)sid);
1164 		fc->topology_map->crc_len++;
1165 		if(self_id->p0.sequel == 0){
1166 			fc->topology_map->node_count ++;
1167 			c_port = 0;
1168 #if 0
1169 			fw_print_sid(sid[0]);
1170 #endif
1171 			node = self_id->p0.phy_id;
1172 			if(fc->max_node < node){
1173 				fc->max_node = self_id->p0.phy_id;
1174 			}
1175 			/* XXX I'm not sure this is the right speed_map */
1176 			fc->speed_map->speed[node][node]
1177 					= self_id->p0.phy_speed;
1178 			for (j = 0; j < node; j ++) {
1179 				fc->speed_map->speed[j][node]
1180 					= fc->speed_map->speed[node][j]
1181 					= min(fc->speed_map->speed[j][j],
1182 							self_id->p0.phy_speed);
1183 			}
1184 			if ((fc->irm == -1 || self_id->p0.phy_id > fc->irm) &&
1185 			  (self_id->p0.link_active && self_id->p0.contender)) {
1186 				fc->irm = self_id->p0.phy_id;
1187 			}
1188 			if(self_id->p0.port0 >= 0x2){
1189 				c_port++;
1190 			}
1191 			if(self_id->p0.port1 >= 0x2){
1192 				c_port++;
1193 			}
1194 			if(self_id->p0.port2 >= 0x2){
1195 				c_port++;
1196 			}
1197 		}
1198 		if(c_port > 2){
1199 			i_branch += (c_port - 2);
1200 		}
1201 		sid += 2;
1202 		self_id++;
1203 		fc->topology_map->self_id_count ++;
1204 	}
1205 	device_printf(fc->bdev, "%d nodes", fc->max_node + 1);
1206 	/* CRC */
1207 	fc->topology_map->crc = fw_crc16(
1208 			(u_int32_t *)&fc->topology_map->generation,
1209 			fc->topology_map->crc_len * 4);
1210 	fc->speed_map->crc = fw_crc16(
1211 			(u_int32_t *)&fc->speed_map->generation,
1212 			fc->speed_map->crc_len * 4);
1213 	/* byteswap and copy to CSR */
1214 	p = (u_int32_t *)fc->topology_map;
1215 	for (i = 0; i <= fc->topology_map->crc_len; i++)
1216 		CSRARC(fc, TOPO_MAP + i * 4) = htonl(*p++);
1217 	p = (u_int32_t *)fc->speed_map;
1218 	CSRARC(fc, SPED_MAP) = htonl(*p++);
1219 	CSRARC(fc, SPED_MAP + 4) = htonl(*p++);
1220 	/* don't byte-swap u_int8_t array */
1221 	bcopy(p, &CSRARC(fc, SPED_MAP + 8), (fc->speed_map->crc_len - 1)*4);
1222 
1223 	fc->max_hop = fc->max_node - i_branch;
1224 	kprintf(", maxhop <= %d", fc->max_hop);
1225 
1226 	if(fc->irm == -1 ){
1227 		kprintf(", Not found IRM capable node");
1228 	}else{
1229 		kprintf(", cable IRM = %d", fc->irm);
1230 		if (fc->irm == fc->nodeid)
1231 			kprintf(" (me)");
1232 	}
1233 	kprintf("\n");
1234 
1235 	if (try_bmr && (fc->irm != -1) && (CSRARC(fc, BUS_MGR_ID) == 0x3f)) {
1236 		if (fc->irm == fc->nodeid) {
1237 			fc->status = FWBUSMGRDONE;
1238 			CSRARC(fc, BUS_MGR_ID) = fc->set_bmr(fc, fc->irm);
1239 			fw_bmr(fc);
1240 		} else {
1241 			fc->status = FWBUSMGRELECT;
1242 			callout_reset(&fc->bmr_callout, hz/8,
1243 				(void *)fw_try_bmr, (void *)fc);
1244 		}
1245 	} else
1246 		fc->status = FWBUSMGRDONE;
1247 
1248 	callout_reset(&fc->busprobe_callout, hz/4,
1249 			(void *)fw_bus_probe, (void *)fc);
1250 }
1251 
1252 /*
1253  * To probe devices on the IEEE1394 bus.
1254  */
1255 static void
1256 fw_bus_probe(struct firewire_comm *fc)
1257 {
1258 	struct fw_device *fwdev;
1259 
1260 	crit_enter();
1261 	fc->status = FWBUSEXPLORE;
1262 	fc->retry_count = 0;
1263 
1264 	/* Invalidate all devices, just after bus reset. */
1265 	STAILQ_FOREACH(fwdev, &fc->devices, link)
1266 		if (fwdev->status != FWDEVINVAL) {
1267 			fwdev->status = FWDEVINVAL;
1268 			fwdev->rcnt = 0;
1269 		}
1270 
1271 	fc->ongonode = 0;
1272 	fc->ongoaddr = CSRROMOFF;
1273 	fc->ongodev = NULL;
1274 	fc->ongoeui.hi = 0xffffffff; fc->ongoeui.lo = 0xffffffff;
1275 	fw_bus_explore(fc);
1276 	crit_exit();
1277 }
1278 
1279 /*
1280  * To collect device informations on the IEEE1394 bus.
1281  */
1282 static void
1283 fw_bus_explore(struct firewire_comm *fc )
1284 {
1285 	int err = 0;
1286 	struct fw_device *fwdev, *pfwdev, *tfwdev;
1287 	u_int32_t addr;
1288 	struct fw_xfer *xfer;
1289 	struct fw_pkt *fp;
1290 
1291 	if(fc->status != FWBUSEXPLORE)
1292 		return;
1293 
1294 loop:
1295 	if(fc->ongonode == fc->nodeid) fc->ongonode++;
1296 
1297 	if(fc->ongonode > fc->max_node) goto done;
1298 	if(fc->ongonode >= 0x3f) goto done;
1299 
1300 	/* check link */
1301 	/* XXX we need to check phy_id first */
1302 	if (!fc->topology_map->self_id[fc->ongonode].p0.link_active) {
1303 		if (firewire_debug)
1304 			kprintf("node%d: link down\n", fc->ongonode);
1305 		fc->ongonode++;
1306 		goto loop;
1307 	}
1308 
1309 	if(fc->ongoaddr <= CSRROMOFF &&
1310 		fc->ongoeui.hi == 0xffffffff &&
1311 		fc->ongoeui.lo == 0xffffffff ){
1312 		fc->ongoaddr = CSRROMOFF;
1313 		addr = 0xf0000000 | fc->ongoaddr;
1314 	}else if(fc->ongoeui.hi == 0xffffffff ){
1315 		fc->ongoaddr = CSRROMOFF + 0xc;
1316 		addr = 0xf0000000 | fc->ongoaddr;
1317 	}else if(fc->ongoeui.lo == 0xffffffff ){
1318 		fc->ongoaddr = CSRROMOFF + 0x10;
1319 		addr = 0xf0000000 | fc->ongoaddr;
1320 	}else if(fc->ongodev == NULL){
1321 		STAILQ_FOREACH(fwdev, &fc->devices, link)
1322 			if (FW_EUI64_EQUAL(fwdev->eui, fc->ongoeui))
1323 				break;
1324 		if(fwdev != NULL){
1325 			fwdev->dst = fc->ongonode;
1326 			fwdev->status = FWDEVINIT;
1327 			fc->ongodev = fwdev;
1328 			fc->ongoaddr = CSRROMOFF;
1329 			addr = 0xf0000000 | fc->ongoaddr;
1330 			goto dorequest;
1331 		}
1332 		fwdev = kmalloc(sizeof(struct fw_device), M_FW,
1333 				M_WAITOK | M_ZERO);
1334 		fwdev->fc = fc;
1335 		fwdev->rommax = 0;
1336 		fwdev->dst = fc->ongonode;
1337 		fwdev->eui.hi = fc->ongoeui.hi; fwdev->eui.lo = fc->ongoeui.lo;
1338 		fwdev->status = FWDEVINIT;
1339 		fwdev->speed = fc->speed_map->speed[fc->nodeid][fc->ongonode];
1340 
1341 		pfwdev = NULL;
1342 		STAILQ_FOREACH(tfwdev, &fc->devices, link) {
1343 			if (tfwdev->eui.hi > fwdev->eui.hi ||
1344 					(tfwdev->eui.hi == fwdev->eui.hi &&
1345 					tfwdev->eui.lo > fwdev->eui.lo))
1346 				break;
1347 			pfwdev = tfwdev;
1348 		}
1349 		if (pfwdev == NULL)
1350 			STAILQ_INSERT_HEAD(&fc->devices, fwdev, link);
1351 		else
1352 			STAILQ_INSERT_AFTER(&fc->devices, pfwdev, fwdev, link);
1353 
1354 		device_printf(fc->bdev, "New %s device ID:%08x%08x\n",
1355 			linkspeed[fwdev->speed],
1356 			fc->ongoeui.hi, fc->ongoeui.lo);
1357 
1358 		fc->ongodev = fwdev;
1359 		fc->ongoaddr = CSRROMOFF;
1360 		addr = 0xf0000000 | fc->ongoaddr;
1361 	}else{
1362 		addr = 0xf0000000 | fc->ongoaddr;
1363 	}
1364 dorequest:
1365 #if 0
1366 	xfer = asyreqq(fc, FWSPD_S100, 0, 0,
1367 		((FWLOCALBUS | fc->ongonode) << 16) | 0xffff , addr,
1368 		fw_bus_explore_callback);
1369 	if(xfer == NULL) goto done;
1370 #else
1371 	xfer = fw_xfer_alloc(M_FWXFER);
1372 	if(xfer == NULL){
1373 		goto done;
1374 	}
1375 	xfer->send.spd = 0;
1376 	fp = &xfer->send.hdr;
1377 	fp->mode.rreqq.dest_hi = 0xffff;
1378 	fp->mode.rreqq.tlrt = 0;
1379 	fp->mode.rreqq.tcode = FWTCODE_RREQQ;
1380 	fp->mode.rreqq.pri = 0;
1381 	fp->mode.rreqq.src = 0;
1382 	fp->mode.rreqq.dst = FWLOCALBUS | fc->ongonode;
1383 	fp->mode.rreqq.dest_lo = addr;
1384 	xfer->act.hand = fw_bus_explore_callback;
1385 
1386 	if (firewire_debug)
1387 		kprintf("node%d: explore addr=0x%x\n",
1388 				fc->ongonode, fc->ongoaddr);
1389 	err = fw_asyreq(fc, -1, xfer);
1390 	if(err){
1391 		fw_xfer_free( xfer);
1392 		return;
1393 	}
1394 #endif
1395 	return;
1396 done:
1397 	/* fw_attach_devs */
1398 	fc->status = FWBUSEXPDONE;
1399 	if (firewire_debug)
1400 		kprintf("bus_explore done\n");
1401 	fw_attach_dev(fc);
1402 	return;
1403 
1404 }
1405 
1406 /* Portable Async. request read quad */
1407 struct fw_xfer *
1408 asyreqq(struct firewire_comm *fc, u_int8_t spd, u_int8_t tl, u_int8_t rt,
1409 	u_int32_t addr_hi, u_int32_t addr_lo,
1410 	void (*hand) (struct fw_xfer*))
1411 {
1412 	struct fw_xfer *xfer;
1413 	struct fw_pkt *fp;
1414 	int err;
1415 
1416 	xfer = fw_xfer_alloc(M_FWXFER);
1417 	if (xfer == NULL)
1418 		return NULL;
1419 
1420 	xfer->send.spd = spd; /* XXX:min(spd, fc->spd) */
1421 	fp = &xfer->send.hdr;
1422 	fp->mode.rreqq.dest_hi = addr_hi & 0xffff;
1423 	if(tl & FWP_TL_VALID){
1424 		fp->mode.rreqq.tlrt = (tl & 0x3f) << 2;
1425 	}else{
1426 		fp->mode.rreqq.tlrt = 0;
1427 	}
1428 	fp->mode.rreqq.tlrt |= rt & 0x3;
1429 	fp->mode.rreqq.tcode = FWTCODE_RREQQ;
1430 	fp->mode.rreqq.pri = 0;
1431 	fp->mode.rreqq.src = 0;
1432 	fp->mode.rreqq.dst = addr_hi >> 16;
1433 	fp->mode.rreqq.dest_lo = addr_lo;
1434 	xfer->act.hand = hand;
1435 
1436 	err = fw_asyreq(fc, -1, xfer);
1437 	if(err){
1438 		fw_xfer_free( xfer);
1439 		return NULL;
1440 	}
1441 	return xfer;
1442 }
1443 
1444 /*
1445  * Callback for the IEEE1394 bus information collection.
1446  */
1447 static void
1448 fw_bus_explore_callback(struct fw_xfer *xfer)
1449 {
1450 	struct firewire_comm *fc;
1451 	struct fw_pkt *sfp,*rfp;
1452 	struct csrhdr *chdr;
1453 	struct csrdir *csrd;
1454 	struct csrreg *csrreg;
1455 	u_int32_t offset;
1456 
1457 
1458 	if(xfer == NULL) {
1459 		kprintf("xfer == NULL\n");
1460 		return;
1461 	}
1462 	fc = xfer->fc;
1463 
1464 	if (firewire_debug)
1465 		kprintf("node%d: callback addr=0x%x\n",
1466 			fc->ongonode, fc->ongoaddr);
1467 
1468 	if(xfer->resp != 0){
1469 		kprintf("node%d: resp=%d addr=0x%x\n",
1470 			fc->ongonode, xfer->resp, fc->ongoaddr);
1471 		goto errnode;
1472 	}
1473 
1474 	sfp = &xfer->send.hdr;
1475 	rfp = &xfer->recv.hdr;
1476 #if 0
1477 	{
1478 		u_int32_t *qld;
1479 		int i;
1480 		qld = (u_int32_t *)xfer->recv.buf;
1481 		kprintf("len:%d\n", xfer->recv.len);
1482 		for( i = 0 ; i <= xfer->recv.len && i < 32; i+= 4){
1483 			kprintf("0x%08x ", rfp->mode.ld[i/4]);
1484 			if((i % 16) == 15) kprintf("\n");
1485 		}
1486 		if((i % 16) != 15) kprintf("\n");
1487 	}
1488 #endif
1489 	if(fc->ongodev == NULL){
1490 		if(sfp->mode.rreqq.dest_lo == (0xf0000000 | CSRROMOFF)){
1491 			rfp->mode.rresq.data = ntohl(rfp->mode.rresq.data);
1492 			chdr = (struct csrhdr *)(void *)(&rfp->mode.rresq.data);
1493 /* If CSR is minimal confinguration, more investgation is not needed. */
1494 			if(chdr->info_len == 1){
1495 				if (firewire_debug)
1496 					kprintf("node%d: minimal config\n",
1497 								fc->ongonode);
1498 				goto nextnode;
1499 			}else{
1500 				fc->ongoaddr = CSRROMOFF + 0xc;
1501 			}
1502 		}else if(sfp->mode.rreqq.dest_lo == (0xf0000000 |(CSRROMOFF + 0xc))){
1503 			fc->ongoeui.hi = ntohl(rfp->mode.rresq.data);
1504 			fc->ongoaddr = CSRROMOFF + 0x10;
1505 		}else if(sfp->mode.rreqq.dest_lo == (0xf0000000 |(CSRROMOFF + 0x10))){
1506 			fc->ongoeui.lo = ntohl(rfp->mode.rresq.data);
1507 			if (fc->ongoeui.hi == 0 && fc->ongoeui.lo == 0) {
1508 				if (firewire_debug)
1509 					kprintf("node%d: eui64 is zero.\n",
1510 							fc->ongonode);
1511 				goto nextnode;
1512 			}
1513 			fc->ongoaddr = CSRROMOFF;
1514 		}
1515 	}else{
1516 		if (fc->ongoaddr == CSRROMOFF &&
1517 		    fc->ongodev->csrrom[0] == ntohl(rfp->mode.rresq.data)) {
1518 			fc->ongodev->status = FWDEVATTACHED;
1519 			goto nextnode;
1520 		}
1521 		fc->ongodev->csrrom[(fc->ongoaddr - CSRROMOFF)/4] = ntohl(rfp->mode.rresq.data);
1522 		if(fc->ongoaddr > fc->ongodev->rommax){
1523 			fc->ongodev->rommax = fc->ongoaddr;
1524 		}
1525 		csrd = SLIST_FIRST(&fc->ongocsr);
1526 		if((csrd = SLIST_FIRST(&fc->ongocsr)) == NULL){
1527 			chdr = (struct csrhdr *)(fc->ongodev->csrrom);
1528 			offset = CSRROMOFF;
1529 		}else{
1530 			chdr = (struct csrhdr *)&fc->ongodev->csrrom[(csrd->off - CSRROMOFF)/4];
1531 			offset = csrd->off;
1532 		}
1533 		if(fc->ongoaddr > (CSRROMOFF + 0x14) && fc->ongoaddr != offset){
1534 			csrreg = (struct csrreg *)&fc->ongodev->csrrom[(fc->ongoaddr - CSRROMOFF)/4];
1535 			if( csrreg->key == 0x81 || csrreg->key == 0xd1){
1536 				csrd = SLIST_FIRST(&fc->csrfree);
1537 				if(csrd == NULL){
1538 					goto nextnode;
1539 				}else{
1540 					csrd->ongoaddr = fc->ongoaddr;
1541 					fc->ongoaddr += csrreg->val * 4;
1542 					csrd->off = fc->ongoaddr;
1543 					SLIST_REMOVE_HEAD(&fc->csrfree, link);
1544 					SLIST_INSERT_HEAD(&fc->ongocsr, csrd, link);
1545 					goto nextaddr;
1546 				}
1547 			}
1548 		}
1549 		fc->ongoaddr += 4;
1550 		if(((fc->ongoaddr - offset)/4 > chdr->crc_len) &&
1551 				(fc->ongodev->rommax < 0x414)){
1552 			if(fc->ongodev->rommax <= 0x414){
1553 				csrd = SLIST_FIRST(&fc->csrfree);
1554 				if(csrd == NULL) goto nextnode;
1555 				csrd->off = fc->ongoaddr;
1556 				csrd->ongoaddr = fc->ongoaddr;
1557 				SLIST_REMOVE_HEAD(&fc->csrfree, link);
1558 				SLIST_INSERT_HEAD(&fc->ongocsr, csrd, link);
1559 			}
1560 			goto nextaddr;
1561 		}
1562 
1563 		while(((fc->ongoaddr - offset)/4 > chdr->crc_len)){
1564 			if(csrd == NULL){
1565 				goto nextnode;
1566 			};
1567 			fc->ongoaddr = csrd->ongoaddr + 4;
1568 			SLIST_REMOVE_HEAD(&fc->ongocsr, link);
1569 			SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
1570 			csrd = SLIST_FIRST(&fc->ongocsr);
1571 			if((csrd = SLIST_FIRST(&fc->ongocsr)) == NULL){
1572 				chdr = (struct csrhdr *)(fc->ongodev->csrrom);
1573 				offset = CSRROMOFF;
1574 			}else{
1575 				chdr = (struct csrhdr *)&(fc->ongodev->csrrom[(csrd->off - CSRROMOFF)/4]);
1576 				offset = csrd->off;
1577 			}
1578 		}
1579 		if((fc->ongoaddr - CSRROMOFF) > CSRROMSIZE){
1580 			goto nextnode;
1581 		}
1582 	}
1583 nextaddr:
1584 	fw_xfer_free( xfer);
1585 	fw_bus_explore(fc);
1586 	return;
1587 errnode:
1588 	fc->retry_count++;
1589 	if (fc->ongodev != NULL)
1590 		fc->ongodev->status = FWDEVINVAL;
1591 nextnode:
1592 	fw_xfer_free( xfer);
1593 	fc->ongonode++;
1594 /* housekeeping work space */
1595 	fc->ongoaddr = CSRROMOFF;
1596 	fc->ongodev = NULL;
1597 	fc->ongoeui.hi = 0xffffffff; fc->ongoeui.lo = 0xffffffff;
1598 	while((csrd = SLIST_FIRST(&fc->ongocsr)) != NULL){
1599 		SLIST_REMOVE_HEAD(&fc->ongocsr, link);
1600 		SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
1601 	}
1602 	fw_bus_explore(fc);
1603 	return;
1604 }
1605 
1606 /*
1607  * To attach sub-devices layer onto IEEE1394 bus.
1608  */
1609 static void
1610 fw_attach_dev(struct firewire_comm *fc)
1611 {
1612 	struct fw_device *fwdev, *next;
1613 	int i, err;
1614 	device_t *devlistp;
1615 	int devcnt;
1616 	struct firewire_dev_comm *fdc;
1617 
1618 	for (fwdev = STAILQ_FIRST(&fc->devices); fwdev != NULL; fwdev = next) {
1619 		next = STAILQ_NEXT(fwdev, link);
1620 		if (fwdev->status == FWDEVINIT) {
1621 			fwdev->status = FWDEVATTACHED;
1622 		} else if (fwdev->status == FWDEVINVAL) {
1623 			fwdev->rcnt ++;
1624 			if (fwdev->rcnt > hold_count) {
1625 				/*
1626 				 * Remove devices which have not been seen
1627 				 * for a while.
1628 				 */
1629 				STAILQ_REMOVE(&fc->devices, fwdev, fw_device,
1630 				    link);
1631 				kfree(fwdev, M_FW);
1632 			}
1633 		}
1634 	}
1635 
1636 	err = device_get_children(fc->bdev, &devlistp, &devcnt);
1637 	if( err != 0 )
1638 		return;
1639 	for( i = 0 ; i < devcnt ; i++){
1640 		if (device_get_state(devlistp[i]) >= DS_ATTACHED)  {
1641 			fdc = device_get_softc(devlistp[i]);
1642 			if (fdc->post_explore != NULL)
1643 				fdc->post_explore(fdc);
1644 		}
1645 	}
1646 	kfree(devlistp, M_TEMP);
1647 
1648 	if (fc->retry_count > 0) {
1649 		kprintf("probe failed for %d node\n", fc->retry_count);
1650 #if 0
1651 		callout_reset(&fc->retry_probe_callout, hz*2,
1652 					(void *)fc->ibr, (void *)fc);
1653 #endif
1654 	}
1655 	return;
1656 }
1657 
1658 /*
1659  * To allocate uniq transaction label.
1660  */
1661 static int
1662 fw_get_tlabel(struct firewire_comm *fc, struct fw_xfer *xfer)
1663 {
1664 	u_int i;
1665 	struct tlabel *tl, *tmptl;
1666 	static u_int32_t label = 0;
1667 
1668 	crit_enter();
1669 	for( i = 0 ; i < 0x40 ; i ++){
1670 		label = (label + 1) & 0x3f;
1671 		for(tmptl = STAILQ_FIRST(&fc->tlabels[label]);
1672 			tmptl != NULL; tmptl = STAILQ_NEXT(tmptl, link)){
1673 			if (tmptl->xfer->send.hdr.mode.hdr.dst ==
1674 			    xfer->send.hdr.mode.hdr.dst)
1675 				break;
1676 		}
1677 		if(tmptl == NULL) {
1678 			tl = kmalloc(sizeof(struct tlabel), M_FW, M_WAITOK);
1679 			tl->xfer = xfer;
1680 			STAILQ_INSERT_TAIL(&fc->tlabels[label], tl, link);
1681 			crit_exit();
1682 			if (firewire_debug > 1)
1683 				kprintf("fw_get_tlabel: dst=%d tl=%d\n",
1684 				    xfer->send.hdr.mode.hdr.dst, label);
1685 			return(label);
1686 		}
1687 	}
1688 	crit_exit();
1689 
1690 	kprintf("fw_get_tlabel: no free tlabel\n");
1691 	return(-1);
1692 }
1693 
1694 static void
1695 fw_rcv_copy(struct fw_rcv_buf *rb)
1696 {
1697 	struct fw_pkt *pkt;
1698 	u_char *p;
1699 	struct tcode_info *tinfo;
1700 	u_int res, i, len, plen;
1701 
1702 	rb->xfer->recv.spd -= rb->spd;
1703 
1704 	pkt = (struct fw_pkt *)rb->vec->iov_base;
1705 	tinfo = &rb->fc->tcode[pkt->mode.hdr.tcode];
1706 
1707 	/* Copy header */
1708 	p = (u_char *)&rb->xfer->recv.hdr;
1709 	bcopy(rb->vec->iov_base, p, tinfo->hdr_len);
1710 	rb->vec->iov_base = (uint8_t *)rb->vec->iov_base + tinfo->hdr_len;
1711 	rb->vec->iov_len -= tinfo->hdr_len;
1712 
1713 	/* Copy payload */
1714 	p = (u_char *)rb->xfer->recv.payload;
1715 	res = rb->xfer->recv.pay_len;
1716 
1717 	/* special handling for RRESQ */
1718 	if (pkt->mode.hdr.tcode == FWTCODE_RRESQ &&
1719 	    p != NULL && res >= sizeof(u_int32_t)) {
1720 		*(u_int32_t *)p = pkt->mode.rresq.data;
1721 		rb->xfer->recv.pay_len = sizeof(u_int32_t);
1722 		return;
1723 	}
1724 
1725 	if ((tinfo->flag & FWTI_BLOCK_ASY) == 0)
1726 		return;
1727 
1728 	plen = pkt->mode.rresb.len;
1729 
1730 	for (i = 0; i < rb->nvec; i++, rb->vec++) {
1731 		len = MIN(rb->vec->iov_len, plen);
1732 		if (res < len) {
1733 			kprintf("rcv buffer(%d) is %d bytes short.\n",
1734 			    rb->xfer->recv.pay_len, len - res);
1735 			len = res;
1736 		}
1737 		bcopy(rb->vec->iov_base, p, len);
1738 		p += len;
1739 		res -= len;
1740 		plen -= len;
1741 		if (res == 0 || plen == 0)
1742 			break;
1743 	}
1744 	rb->xfer->recv.pay_len -= res;
1745 
1746 }
1747 
1748 /*
1749  * Generic packet receving process.
1750  */
1751 void
1752 fw_rcv(struct fw_rcv_buf *rb)
1753 {
1754 	struct fw_pkt *fp, *resfp;
1755 	struct fw_bind *bind;
1756 	int tcode;
1757 	int i, len, oldstate;
1758 #if 0
1759 	{
1760 		u_int32_t *qld;
1761 		int i;
1762 		qld = (u_int32_t *)buf;
1763 		kprintf("spd %d len:%d\n", spd, len);
1764 		for( i = 0 ; i <= len && i < 32; i+= 4){
1765 			kprintf("0x%08x ", ntohl(qld[i/4]));
1766 			if((i % 16) == 15) kprintf("\n");
1767 		}
1768 		if((i % 16) != 15) kprintf("\n");
1769 	}
1770 #endif
1771 	fp = (struct fw_pkt *)rb->vec[0].iov_base;
1772 	tcode = fp->mode.common.tcode;
1773 	switch (tcode) {
1774 	case FWTCODE_WRES:
1775 	case FWTCODE_RRESQ:
1776 	case FWTCODE_RRESB:
1777 	case FWTCODE_LRES:
1778 		rb->xfer = fw_tl2xfer(rb->fc, fp->mode.hdr.src,
1779 					fp->mode.hdr.tlrt >> 2);
1780 		if(rb->xfer == NULL) {
1781 			kprintf("fw_rcv: unknown response "
1782 			    "%s(%x) src=0x%x tl=0x%x rt=%d data=0x%x\n",
1783 			    tcode_str[tcode], tcode,
1784 			    fp->mode.hdr.src,
1785 			    fp->mode.hdr.tlrt >> 2,
1786 			    fp->mode.hdr.tlrt & 3,
1787 			    fp->mode.rresq.data);
1788 #if 1
1789 			kprintf("try ad-hoc work around!!\n");
1790 			rb->xfer = fw_tl2xfer(rb->fc, fp->mode.hdr.src,
1791 					(fp->mode.hdr.tlrt >> 2)^3);
1792 			if (rb->xfer == NULL) {
1793 				kprintf("no use...\n");
1794 				goto err;
1795 			}
1796 #else
1797 			goto err;
1798 #endif
1799 		}
1800 		fw_rcv_copy(rb);
1801 		if (rb->xfer->recv.hdr.mode.wres.rtcode != RESP_CMP)
1802 			rb->xfer->resp = EIO;
1803 		else
1804 			rb->xfer->resp = 0;
1805 		/* make sure the packet is drained in AT queue */
1806 		oldstate = rb->xfer->state;
1807 		rb->xfer->state = FWXF_RCVD;
1808 		switch (oldstate) {
1809 		case FWXF_SENT:
1810 			fw_xfer_done(rb->xfer);
1811 			break;
1812 		case FWXF_START:
1813 #if 0
1814 			if (firewire_debug)
1815 				kprintf("not sent yet tl=%x\n", rb->xfer->tl);
1816 #endif
1817 			break;
1818 		default:
1819 			kprintf("unexpected state %d\n", rb->xfer->state);
1820 		}
1821 		return;
1822 	case FWTCODE_WREQQ:
1823 	case FWTCODE_WREQB:
1824 	case FWTCODE_RREQQ:
1825 	case FWTCODE_RREQB:
1826 	case FWTCODE_LREQ:
1827 		bind = fw_bindlookup(rb->fc, fp->mode.rreqq.dest_hi,
1828 			fp->mode.rreqq.dest_lo);
1829 		if(bind == NULL){
1830 			kprintf("Unknown service addr 0x%04x:0x%08x %s(%x)"
1831 			    " src=0x%x data=%x\n",
1832 			    fp->mode.wreqq.dest_hi, fp->mode.wreqq.dest_lo,
1833 			    tcode_str[tcode], tcode,
1834 			    fp->mode.hdr.src, ntohl(fp->mode.wreqq.data));
1835 			if (rb->fc->status == FWBUSRESET) {
1836 				kprintf("fw_rcv: cannot respond(bus reset)!\n");
1837 				goto err;
1838 			}
1839 			rb->xfer = fw_xfer_alloc(M_FWXFER);
1840 			if(rb->xfer == NULL){
1841 				return;
1842 			}
1843 			rb->xfer->send.spd = rb->spd;
1844 			rb->xfer->send.pay_len = 0;
1845 			resfp = &rb->xfer->send.hdr;
1846 			switch (tcode) {
1847 			case FWTCODE_WREQQ:
1848 			case FWTCODE_WREQB:
1849 				resfp->mode.hdr.tcode = FWTCODE_WRES;
1850 				break;
1851 			case FWTCODE_RREQQ:
1852 				resfp->mode.hdr.tcode = FWTCODE_RRESQ;
1853 				break;
1854 			case FWTCODE_RREQB:
1855 				resfp->mode.hdr.tcode = FWTCODE_RRESB;
1856 				break;
1857 			case FWTCODE_LREQ:
1858 				resfp->mode.hdr.tcode = FWTCODE_LRES;
1859 				break;
1860 			}
1861 			resfp->mode.hdr.dst = fp->mode.hdr.src;
1862 			resfp->mode.hdr.tlrt = fp->mode.hdr.tlrt;
1863 			resfp->mode.hdr.pri = fp->mode.hdr.pri;
1864 			resfp->mode.rresb.rtcode = RESP_ADDRESS_ERROR;
1865 			resfp->mode.rresb.extcode = 0;
1866 			resfp->mode.rresb.len = 0;
1867 /*
1868 			rb->xfer->act.hand = fw_asy_callback;
1869 */
1870 			rb->xfer->act.hand = fw_xfer_free;
1871 			if(fw_asyreq(rb->fc, -1, rb->xfer)){
1872 				fw_xfer_free(rb->xfer);
1873 				return;
1874 			}
1875 			goto err;
1876 		}
1877 		len = 0;
1878 		for (i = 0; i < rb->nvec; i ++)
1879 			len += rb->vec[i].iov_len;
1880 		switch(bind->act_type){
1881 		case FWACT_XFER:
1882 			crit_enter();
1883 			rb->xfer = STAILQ_FIRST(&bind->xferlist);
1884 			if (rb->xfer == NULL) {
1885 				kprintf("Discard a packet for this bind.\n");
1886 				crit_exit();
1887 				goto err;
1888 			}
1889 			STAILQ_REMOVE_HEAD(&bind->xferlist, link);
1890 			crit_exit();
1891 			fw_rcv_copy(rb);
1892 			rb->xfer->act.hand(rb->xfer);
1893 			return;
1894 			break;
1895 		case FWACT_CH:
1896 			if(rb->fc->ir[bind->sub]->queued >=
1897 				rb->fc->ir[bind->sub]->maxq){
1898 				device_printf(rb->fc->bdev,
1899 					"Discard a packet %x %d\n",
1900 					bind->sub,
1901 					rb->fc->ir[bind->sub]->queued);
1902 				goto err;
1903 			}
1904 			crit_enter();
1905 			rb->xfer = STAILQ_FIRST(&bind->xferlist);
1906 			if (rb->xfer == NULL) {
1907 				kprintf("Discard packet for this bind\n");
1908 				goto err;
1909 			}
1910 			STAILQ_REMOVE_HEAD(&bind->xferlist, link);
1911 			crit_exit();
1912 			fw_rcv_copy(rb);
1913 			crit_enter();
1914 			rb->fc->ir[bind->sub]->queued++;
1915 			STAILQ_INSERT_TAIL(&rb->fc->ir[bind->sub]->q,
1916 			    rb->xfer, link);
1917 			crit_exit();
1918 
1919 			wakeup((caddr_t)rb->fc->ir[bind->sub]);
1920 
1921 			return;
1922 			break;
1923 		default:
1924 			goto err;
1925 			break;
1926 		}
1927 		break;
1928 #if 0 /* shouldn't happen ?? or for GASP */
1929 	case FWTCODE_STREAM:
1930 	{
1931 		struct fw_xferq *xferq;
1932 
1933 		xferq = rb->fc->ir[sub];
1934 #if 0
1935 		kprintf("stream rcv dma %d len %d off %d spd %d\n",
1936 			sub, len, off, spd);
1937 #endif
1938 		if(xferq->queued >= xferq->maxq) {
1939 			kprintf("receive queue is full\n");
1940 			goto err;
1941 		}
1942 		/* XXX get xfer from xfer queue, we don't need copy for
1943 			per packet mode */
1944 		rb->xfer = fw_xfer_alloc_buf(M_FWXFER, 0, /* XXX */
1945 						vec[0].iov_len);
1946 		if (rb->xfer == NULL) goto err;
1947 		fw_rcv_copy(rb)
1948 		crit_enter();
1949 		xferq->queued++;
1950 		STAILQ_INSERT_TAIL(&xferq->q, rb->xfer, link);
1951 		crit_exit();
1952 		sc = device_get_softc(rb->fc->bdev);
1953 		KNOTE(&xferq->rkq.ki_note, 0);
1954 		if (xferq->flag & FWXFERQ_WAKEUP) {
1955 			xferq->flag &= ~FWXFERQ_WAKEUP;
1956 			wakeup((caddr_t)xferq);
1957 		}
1958 		if (xferq->flag & FWXFERQ_HANDLER) {
1959 			xferq->hand(xferq);
1960 		}
1961 		return;
1962 		break;
1963 	}
1964 #endif
1965 	default:
1966 		kprintf("fw_rcv: unknow tcode %d\n", tcode);
1967 		break;
1968 	}
1969 err:
1970 	return;
1971 }
1972 
1973 /*
1974  * Post process for Bus Manager election process.
1975  */
1976 static void
1977 fw_try_bmr_callback(struct fw_xfer *xfer)
1978 {
1979 	struct firewire_comm *fc;
1980 	int bmr;
1981 
1982 	if (xfer == NULL)
1983 		return;
1984 	fc = xfer->fc;
1985 	if (xfer->resp != 0)
1986 		goto error;
1987 	if (xfer->recv.payload == NULL)
1988 		goto error;
1989 	if (xfer->recv.hdr.mode.lres.rtcode != FWRCODE_COMPLETE)
1990 		goto error;
1991 
1992 	bmr = ntohl(xfer->recv.payload[0]);
1993 	if (bmr == 0x3f)
1994 		bmr = fc->nodeid;
1995 
1996 	CSRARC(fc, BUS_MGR_ID) = fc->set_bmr(fc, bmr & 0x3f);
1997 	fw_xfer_free_buf(xfer);
1998 	fw_bmr(fc);
1999 	return;
2000 
2001 error:
2002 	device_printf(fc->bdev, "bus manager election failed\n");
2003 	fw_xfer_free_buf(xfer);
2004 }
2005 
2006 
2007 /*
2008  * To candidate Bus Manager election process.
2009  */
2010 static void
2011 fw_try_bmr(void *arg)
2012 {
2013 	struct fw_xfer *xfer;
2014 	struct firewire_comm *fc = (struct firewire_comm *)arg;
2015 	struct fw_pkt *fp;
2016 	int err = 0;
2017 
2018 	xfer = fw_xfer_alloc_buf(M_FWXFER, 8, 4);
2019 	if(xfer == NULL){
2020 		return;
2021 	}
2022 	xfer->send.spd = 0;
2023 	fc->status = FWBUSMGRELECT;
2024 
2025 	fp = &xfer->send.hdr;
2026 	fp->mode.lreq.dest_hi = 0xffff;
2027 	fp->mode.lreq.tlrt = 0;
2028 	fp->mode.lreq.tcode = FWTCODE_LREQ;
2029 	fp->mode.lreq.pri = 0;
2030 	fp->mode.lreq.src = 0;
2031 	fp->mode.lreq.len = 8;
2032 	fp->mode.lreq.extcode = EXTCODE_CMP_SWAP;
2033 	fp->mode.lreq.dst = FWLOCALBUS | fc->irm;
2034 	fp->mode.lreq.dest_lo = 0xf0000000 | BUS_MGR_ID;
2035 	xfer->send.payload[0] = htonl(0x3f);
2036 	xfer->send.payload[1] = htonl(fc->nodeid);
2037 	xfer->act.hand = fw_try_bmr_callback;
2038 
2039 	err = fw_asyreq(fc, -1, xfer);
2040 	if(err){
2041 		fw_xfer_free_buf(xfer);
2042 		return;
2043 	}
2044 	return;
2045 }
2046 
2047 #ifdef FW_VMACCESS
2048 /*
2049  * Software implementation for physical memory block access.
2050  * XXX:Too slow, usef for debug purpose only.
2051  */
2052 static void
2053 fw_vmaccess(struct fw_xfer *xfer){
2054 	struct fw_pkt *rfp, *sfp = NULL;
2055 	u_int32_t *ld = (u_int32_t *)xfer->recv.buf;
2056 
2057 	kprintf("vmaccess spd:%2x len:%03x data:%08x %08x %08x %08x\n",
2058 			xfer->spd, xfer->recv.len, ntohl(ld[0]), ntohl(ld[1]), ntohl(ld[2]), ntohl(ld[3]));
2059 	kprintf("vmaccess          data:%08x %08x %08x %08x\n", ntohl(ld[4]), ntohl(ld[5]), ntohl(ld[6]), ntohl(ld[7]));
2060 	if(xfer->resp != 0){
2061 		fw_xfer_free( xfer);
2062 		return;
2063 	}
2064 	if(xfer->recv.buf == NULL){
2065 		fw_xfer_free( xfer);
2066 		return;
2067 	}
2068 	rfp = (struct fw_pkt *)xfer->recv.buf;
2069 	switch(rfp->mode.hdr.tcode){
2070 		/* XXX need fix for 64bit arch */
2071 		case FWTCODE_WREQB:
2072 			xfer->send.buf = kmalloc(12, M_FW, M_WAITOK);
2073 			xfer->send.len = 12;
2074 			sfp = (struct fw_pkt *)xfer->send.buf;
2075 			bcopy(rfp->mode.wreqb.payload,
2076 				(caddr_t)ntohl(rfp->mode.wreqb.dest_lo), ntohs(rfp->mode.wreqb.len));
2077 			sfp->mode.wres.tcode = FWTCODE_WRES;
2078 			sfp->mode.wres.rtcode = 0;
2079 			break;
2080 		case FWTCODE_WREQQ:
2081 			xfer->send.buf = kmalloc(12, M_FW, M_WAITOK);
2082 			xfer->send.len = 12;
2083 			sfp->mode.wres.tcode = FWTCODE_WRES;
2084 			*((u_int32_t *)(ntohl(rfp->mode.wreqb.dest_lo))) = rfp->mode.wreqq.data;
2085 			sfp->mode.wres.rtcode = 0;
2086 			break;
2087 		case FWTCODE_RREQB:
2088 			xfer->send.buf = kmalloc(16 + rfp->mode.rreqb.len, M_FW, M_WAITOK);
2089 			xfer->send.len = 16 + ntohs(rfp->mode.rreqb.len);
2090 			sfp = (struct fw_pkt *)xfer->send.buf;
2091 			bcopy((caddr_t)ntohl(rfp->mode.rreqb.dest_lo),
2092 				sfp->mode.rresb.payload, (u_int16_t)ntohs(rfp->mode.rreqb.len));
2093 			sfp->mode.rresb.tcode = FWTCODE_RRESB;
2094 			sfp->mode.rresb.len = rfp->mode.rreqb.len;
2095 			sfp->mode.rresb.rtcode = 0;
2096 			sfp->mode.rresb.extcode = 0;
2097 			break;
2098 		case FWTCODE_RREQQ:
2099 			xfer->send.buf = kmalloc(16, M_FW, M_WAITOK);
2100 			xfer->send.len = 16;
2101 			sfp = (struct fw_pkt *)xfer->send.buf;
2102 			sfp->mode.rresq.data = *(u_int32_t *)(ntohl(rfp->mode.rreqq.dest_lo));
2103 			sfp->mode.wres.tcode = FWTCODE_RRESQ;
2104 			sfp->mode.rresb.rtcode = 0;
2105 			break;
2106 		default:
2107 			fw_xfer_free( xfer);
2108 			return;
2109 	}
2110 	sfp->mode.hdr.dst = rfp->mode.hdr.src;
2111 	xfer->dst = ntohs(rfp->mode.hdr.src);
2112 	xfer->act.hand = fw_xfer_free;
2113 	xfer->retry_req = fw_asybusy;
2114 
2115 	sfp->mode.hdr.tlrt = rfp->mode.hdr.tlrt;
2116 	sfp->mode.hdr.pri = 0;
2117 
2118 	fw_asyreq(xfer->fc, -1, xfer);
2119 /**/
2120 	return;
2121 }
2122 #endif
2123 
2124 /*
2125  * CRC16 check-sum for IEEE1394 register blocks.
2126  */
2127 u_int16_t
2128 fw_crc16(u_int32_t *ptr, u_int32_t len){
2129 	u_int32_t i, sum, crc = 0;
2130 	int shift;
2131 	len = (len + 3) & ~3;
2132 	for(i = 0 ; i < len ; i+= 4){
2133 		for( shift = 28 ; shift >= 0 ; shift -= 4){
2134 			sum = ((crc >> 12) ^ (ptr[i/4] >> shift)) & 0xf;
2135 			crc = (crc << 4) ^ ( sum << 12 ) ^ ( sum << 5) ^ sum;
2136 		}
2137 		crc &= 0xffff;
2138 	}
2139 	return((u_int16_t) crc);
2140 }
2141 
2142 static int
2143 fw_bmr(struct firewire_comm *fc)
2144 {
2145 	struct fw_device fwdev;
2146 	union fw_self_id *self_id;
2147 	int cmstr;
2148 	u_int32_t quad;
2149 
2150 	/* Check to see if the current root node is cycle master capable */
2151 	self_id = &fc->topology_map->self_id[fc->max_node];
2152 	if (fc->max_node > 0) {
2153 		/* XXX check cmc bit of businfo block rather than contender */
2154 		if (self_id->p0.link_active && self_id->p0.contender)
2155 			cmstr = fc->max_node;
2156 		else {
2157 			device_printf(fc->bdev,
2158 				"root node is not cycle master capable\n");
2159 			/* XXX shall we be the cycle master? */
2160 			cmstr = fc->nodeid;
2161 			/* XXX need bus reset */
2162 		}
2163 	} else
2164 		cmstr = -1;
2165 
2166 	device_printf(fc->bdev, "bus manager %d ", CSRARC(fc, BUS_MGR_ID));
2167 	if(CSRARC(fc, BUS_MGR_ID) != fc->nodeid) {
2168 		/* We are not the bus manager */
2169 		kprintf("\n");
2170 		return(0);
2171 	}
2172 	kprintf("(me)\n");
2173 
2174 	/* Optimize gapcount */
2175 	if(fc->max_hop <= MAX_GAPHOP )
2176 		fw_phy_config(fc, cmstr, gap_cnt[fc->max_hop]);
2177 	/* If we are the cycle master, nothing to do */
2178 	if (cmstr == fc->nodeid || cmstr == -1)
2179 		return 0;
2180 	/* Bus probe has not finished, make dummy fwdev for cmstr */
2181 	bzero(&fwdev, sizeof(fwdev));
2182 	fwdev.fc = fc;
2183 	fwdev.dst = cmstr;
2184 	fwdev.speed = 0;
2185 	fwdev.maxrec = 8; /* 512 */
2186 	fwdev.status = FWDEVINIT;
2187 	/* Set cmstr bit on the cycle master */
2188 	quad = htonl(1 << 8);
2189 	fwmem_write_quad(&fwdev, NULL, 0/*spd*/,
2190 		0xffff, 0xf0000000 | STATE_SET, &quad, fw_asy_callback_free);
2191 
2192 	return 0;
2193 }
2194 
2195 static int
2196 fw_modevent(module_t mode, int type, void *data)
2197 {
2198 	int err = 0;
2199 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2200 	static eventhandler_tag fwdev_ehtag = NULL;
2201 #endif
2202 
2203 	switch (type) {
2204 	case MOD_LOAD:
2205 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2206 		fwdev_ehtag = EVENTHANDLER_REGISTER(dev_clone,
2207 						fwdev_clone, 0, 1000);
2208 #endif
2209 		break;
2210 	case MOD_UNLOAD:
2211 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2212 		if (fwdev_ehtag != NULL)
2213 			EVENTHANDLER_DEREGISTER(dev_clone, fwdev_ehtag);
2214 #endif
2215 		break;
2216 	case MOD_SHUTDOWN:
2217 		break;
2218 	}
2219 	return (err);
2220 }
2221 
2222 /*
2223  * This causes the firewire identify to be called for any attached fwohci
2224  * device in the system.
2225  */
2226 DECLARE_DUMMY_MODULE(firewire);
2227 DRIVER_MODULE(firewire,fwohci,firewire_driver,firewire_devclass,fw_modevent,0);
2228 MODULE_VERSION(firewire, 1);
2229