xref: /dragonfly/sys/bus/firewire/firewire.c (revision 9348a738)
1 /*
2  * Copyright (c) 2003 Hidetoshi Shimokawa
3  * Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the acknowledgement as bellow:
16  *
17  *    This product includes software developed by K. Kobayashi and H. Shimokawa
18  *
19  * 4. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
26  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
27  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
30  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/firewire/firewire.c,v 1.68 2004/01/08 14:58:09 simokawa Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/conf.h>
44 #include <sys/bus.h>		/* used by smbus and newbus */
45 #include <sys/sysctl.h>
46 #include <sys/thread2.h>
47 
48 #include <bus/firewire/firewire.h>
49 #include <bus/firewire/firewirereg.h>
50 #include <bus/firewire/fwmem.h>
51 #include <bus/firewire/iec13213.h>
52 #include <bus/firewire/iec68113.h>
53 
54 struct crom_src_buf {
55 	struct crom_src	src;
56 	struct crom_chunk root;
57 	struct crom_chunk vendor;
58 	struct crom_chunk hw;
59 };
60 
61 int firewire_debug=0, try_bmr=1, hold_count=3;
62 SYSCTL_INT(_debug, OID_AUTO, firewire_debug, CTLFLAG_RW, &firewire_debug, 0,
63 	"FireWire driver debug flag");
64 SYSCTL_NODE(_hw, OID_AUTO, firewire, CTLFLAG_RD, 0, "FireWire Subsystem");
65 SYSCTL_INT(_hw_firewire, OID_AUTO, try_bmr, CTLFLAG_RW, &try_bmr, 0,
66 	"Try to be a bus manager");
67 SYSCTL_INT(_hw_firewire, OID_AUTO, hold_count, CTLFLAG_RW, &hold_count, 0,
68 	"Number of count of bus resets for removing lost device information");
69 
70 MALLOC_DEFINE(M_FW, "firewire", "FireWire");
71 MALLOC_DEFINE(M_FWXFER, "fw_xfer", "XFER/FireWire");
72 
73 #define FW_MAXASYRTY 4
74 
75 devclass_t firewire_devclass;
76 
77 static int firewire_probe	(device_t);
78 static int firewire_attach      (device_t);
79 static int firewire_detach      (device_t);
80 static int firewire_resume      (device_t);
81 #if 0
82 static int firewire_shutdown    (device_t);
83 #endif
84 static device_t firewire_add_child (device_t, device_t, int, const char *, int);
85 static void fw_try_bmr (void *);
86 static void fw_try_bmr_callback (struct fw_xfer *);
87 static void fw_asystart (struct fw_xfer *);
88 static int fw_get_tlabel (struct firewire_comm *, struct fw_xfer *);
89 static void fw_bus_probe (struct firewire_comm *);
90 static void fw_bus_explore (struct firewire_comm *);
91 static void fw_bus_explore_callback (struct fw_xfer *);
92 static void fw_attach_dev (struct firewire_comm *);
93 #ifdef FW_VMACCESS
94 static void fw_vmaccess (struct fw_xfer *);
95 #endif
96 struct fw_xfer *asyreqq (struct firewire_comm *, u_int8_t, u_int8_t, u_int8_t,
97 	u_int32_t, u_int32_t, void (*)(struct fw_xfer *));
98 static int fw_bmr (struct firewire_comm *);
99 
100 /*
101  * note: bus_generic_identify() will automatically install a "firewire"
102  * device under any attached fwohci device.
103  */
104 static device_method_t firewire_methods[] = {
105 	/* Device interface */
106 	DEVMETHOD(device_identify,	bus_generic_identify),
107 	DEVMETHOD(device_probe,		firewire_probe),
108 	DEVMETHOD(device_attach,	firewire_attach),
109 	DEVMETHOD(device_detach,	firewire_detach),
110 	DEVMETHOD(device_suspend,	bus_generic_suspend),
111 	DEVMETHOD(device_resume,	firewire_resume),
112 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
113 
114 	/* Bus interface */
115 	DEVMETHOD(bus_add_child,	firewire_add_child),
116 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
117 
118 	DEVMETHOD_END
119 };
120 char *linkspeed[] = {
121 	"S100", "S200", "S400", "S800",
122 	"S1600", "S3200", "undef", "undef"
123 };
124 
125 static char *tcode_str[] = {
126 	"WREQQ", "WREQB", "WRES",   "undef",
127 	"RREQQ", "RREQB", "RRESQ",  "RRESB",
128 	"CYCS",  "LREQ",  "STREAM", "LRES",
129 	"undef", "undef", "PHY",    "undef"
130 };
131 
132 /* IEEE-1394a Table C-2 Gap count as a function of hops*/
133 #define MAX_GAPHOP 15
134 u_int gap_cnt[] = { 5,  5,  7,  8, 10, 13, 16, 18,
135 		   21, 24, 26, 29, 32, 35, 37, 40};
136 
137 static driver_t firewire_driver = {
138 	"firewire",
139 	firewire_methods,
140 	sizeof(struct firewire_softc),
141 };
142 
143 /*
144  * Lookup fwdev by node id.
145  */
146 struct fw_device *
147 fw_noderesolve_nodeid(struct firewire_comm *fc, int dst)
148 {
149 	struct fw_device *fwdev;
150 
151 	crit_enter();
152 	STAILQ_FOREACH(fwdev, &fc->devices, link)
153 		if (fwdev->dst == dst && fwdev->status != FWDEVINVAL)
154 			break;
155 	crit_exit();
156 
157 	return fwdev;
158 }
159 
160 /*
161  * Lookup fwdev by EUI64.
162  */
163 struct fw_device *
164 fw_noderesolve_eui64(struct firewire_comm *fc, struct fw_eui64 *eui)
165 {
166 	struct fw_device *fwdev;
167 
168 	crit_enter();
169 	STAILQ_FOREACH(fwdev, &fc->devices, link)
170 		if (FW_EUI64_EQUAL(fwdev->eui, *eui))
171 			break;
172 	crit_exit();
173 
174 	if(fwdev == NULL) return NULL;
175 	if(fwdev->status == FWDEVINVAL) return NULL;
176 	return fwdev;
177 }
178 
179 /*
180  * Async. request procedure for userland application.
181  */
182 int
183 fw_asyreq(struct firewire_comm *fc, int sub, struct fw_xfer *xfer)
184 {
185 	int err = 0;
186 	struct fw_xferq *xferq;
187 	int tl = 0, len;
188 	struct fw_pkt *fp;
189 	int tcode;
190 	struct tcode_info *info;
191 
192 	if(xfer == NULL) return EINVAL;
193 	if(xfer->act.hand == NULL){
194 		kprintf("act.hand == NULL\n");
195 		return EINVAL;
196 	}
197 	fp = &xfer->send.hdr;
198 
199 	tcode = fp->mode.common.tcode & 0xf;
200 	info = &fc->tcode[tcode];
201 	if (info->flag == 0) {
202 		kprintf("invalid tcode=%x\n", tcode);
203 		return EINVAL;
204 	}
205 	if (info->flag & FWTI_REQ)
206 		xferq = fc->atq;
207 	else
208 		xferq = fc->ats;
209 	len = info->hdr_len;
210 	if (xfer->send.pay_len > MAXREC(fc->maxrec)) {
211 		kprintf("send.pay_len > maxrec\n");
212 		return EINVAL;
213 	}
214 	if (info->flag & FWTI_BLOCK_STR)
215 		len = fp->mode.stream.len;
216 	else if (info->flag & FWTI_BLOCK_ASY)
217 		len = fp->mode.rresb.len;
218 	else
219 		len = 0;
220 	if (len != xfer->send.pay_len){
221 		kprintf("len(%d) != send.pay_len(%d) %s(%x)\n",
222 		    len, xfer->send.pay_len, tcode_str[tcode], tcode);
223 		return EINVAL;
224 	}
225 
226 	if(xferq->start == NULL){
227 		kprintf("xferq->start == NULL\n");
228 		return EINVAL;
229 	}
230 	if(!(xferq->queued < xferq->maxq)){
231 		device_printf(fc->bdev, "Discard a packet (queued=%d)\n",
232 			xferq->queued);
233 		return EINVAL;
234 	}
235 
236 	microtime(&xfer->tv);
237 	if (info->flag & FWTI_TLABEL) {
238 		if((tl = fw_get_tlabel(fc, xfer)) == -1 )
239 			return EIO;
240 		fp->mode.hdr.tlrt = tl << 2;
241 	}
242 
243 	xfer->tl = tl;
244 	xfer->resp = 0;
245 	xfer->fc = fc;
246 	xfer->q = xferq;
247 	xfer->retry_req = fw_asybusy;
248 
249 	fw_asystart(xfer);
250 	return err;
251 }
252 /*
253  * Wakeup blocked process.
254  */
255 void
256 fw_asy_callback(struct fw_xfer *xfer){
257 	wakeup(xfer);
258 	return;
259 }
260 /*
261  * Postpone to later retry.
262  */
263 void
264 fw_asybusy(struct fw_xfer *xfer)
265 {
266 	kprintf("fw_asybusy\n");
267 /*
268 	xfer->ch =  timeout((timeout_t *)fw_asystart, (void *)xfer, 20000);
269 */
270 #if 0
271 	DELAY(20000);
272 #endif
273 	fw_asystart(xfer);
274 	return;
275 }
276 
277 /*
278  * Async. request with given xfer structure.
279  */
280 static void
281 fw_asystart(struct fw_xfer *xfer)
282 {
283 	struct firewire_comm *fc = xfer->fc;
284 
285 	if(xfer->retry++ >= fc->max_asyretry){
286 		device_printf(fc->bdev, "max_asyretry exceeded\n");
287 		xfer->resp = EBUSY;
288 		xfer->state = FWXF_BUSY;
289 		xfer->act.hand(xfer);
290 		return;
291 	}
292 #if 0 /* XXX allow bus explore packets only after bus rest */
293 	if (fc->status < FWBUSEXPLORE) {
294 		xfer->resp = EAGAIN;
295 		xfer->state = FWXF_BUSY;
296 		if (xfer->act.hand != NULL)
297 			xfer->act.hand(xfer);
298 		return;
299 	}
300 #endif
301 	crit_enter();
302 	xfer->state = FWXF_INQ;
303 	STAILQ_INSERT_TAIL(&xfer->q->q, xfer, link);
304 	xfer->q->queued ++;
305 	crit_exit();
306 	/* XXX just queue for mbuf */
307 	if (xfer->mbuf == NULL)
308 		xfer->q->start(fc);
309 	return;
310 }
311 
312 static int
313 firewire_probe(device_t dev)
314 {
315 	device_set_desc(dev, "IEEE1394(FireWire) bus");
316 	return (0);
317 }
318 
319 static void
320 firewire_xfer_timeout(struct firewire_comm *fc)
321 {
322 	struct fw_xfer *xfer;
323 	struct tlabel *tl;
324 	struct timeval tv;
325 	struct timeval split_timeout;
326 	int i;
327 
328 	split_timeout.tv_sec = 0;
329 	split_timeout.tv_usec = 200 * 1000;	 /* 200 msec */
330 
331 	microtime(&tv);
332 	timevalsub(&tv, &split_timeout);
333 
334 	crit_enter();
335 	for (i = 0; i < 0x40; i ++) {
336 		while ((tl = STAILQ_FIRST(&fc->tlabels[i])) != NULL) {
337 			xfer = tl->xfer;
338 			if (timevalcmp(&xfer->tv, &tv, >))
339 				/* the rests are newer than this */
340 				break;
341 			if (xfer->state == FWXF_START)
342 				/* not sent yet */
343 				break;
344 			device_printf(fc->bdev,
345 				"split transaction timeout dst=0x%x tl=0x%x state=%d\n",
346 				xfer->send.hdr.mode.hdr.dst, i, xfer->state);
347 			xfer->resp = ETIMEDOUT;
348 			STAILQ_REMOVE_HEAD(&fc->tlabels[i], link);
349 			fw_xfer_done(xfer);
350 		}
351 	}
352 	crit_exit();
353 }
354 
355 #define WATCHDOC_HZ 10
356 static void
357 firewire_watchdog(void *arg)
358 {
359 	struct firewire_comm *fc;
360 	static int watchdoc_clock = 0;
361 
362 	fc = (struct firewire_comm *)arg;
363 
364 	/*
365 	 * At boot stage, the device interrupt is disabled and
366 	 * We encounter a timeout easily. To avoid this,
367 	 * ignore clock interrupt for a while.
368 	 */
369 	if (watchdoc_clock > WATCHDOC_HZ * 15) {
370 		firewire_xfer_timeout(fc);
371 		fc->timeout(fc);
372 	} else
373 		watchdoc_clock ++;
374 
375 	callout_reset(&fc->timeout_callout, hz / WATCHDOC_HZ,
376 			(void *)firewire_watchdog, (void *)fc);
377 }
378 
379 /*
380  * The attach routine.
381  */
382 static int
383 firewire_attach(device_t dev)
384 {
385 	struct firewire_softc *sc = device_get_softc(dev);
386 	device_t pa = device_get_parent(dev);
387 	struct firewire_comm *fc;
388 
389 	fc = (struct firewire_comm *)device_get_softc(pa);
390 	sc->fc = fc;
391 	fc->status = FWBUSNOTREADY;
392 
393 	if( fc->nisodma > FWMAXNDMA) fc->nisodma = FWMAXNDMA;
394 
395 	fwdev_makedev(sc);
396 
397 	CALLOUT_INIT(&sc->fc->timeout_callout);
398 	CALLOUT_INIT(&sc->fc->bmr_callout);
399 	CALLOUT_INIT(&sc->fc->retry_probe_callout);
400 	CALLOUT_INIT(&sc->fc->busprobe_callout);
401 
402 	callout_reset(&sc->fc->timeout_callout, hz,
403 			(void *)firewire_watchdog, (void *)sc->fc);
404 
405 	/* Locate our children */
406 	bus_generic_probe(dev);
407 
408 	/* launch attachement of the added children */
409 	bus_generic_attach(dev);
410 
411 	/* bus_reset */
412 	fw_busreset(fc);
413 	fc->ibr(fc);
414 
415 	return 0;
416 }
417 
418 /*
419  * Attach it as child.
420  */
421 static device_t
422 firewire_add_child(device_t bus, device_t parent, int order, const char *name, int unit)
423 {
424         device_t child;
425 	struct firewire_softc *sc;
426 
427 	sc = (struct firewire_softc *)device_get_softc(parent);
428 	child = device_add_child(parent, name, unit);
429 	if (child) {
430 		device_set_ivars(child, sc->fc);
431 		device_probe_and_attach(child);
432 	}
433 
434 	return child;
435 }
436 
437 static int
438 firewire_resume(device_t dev)
439 {
440 	struct firewire_softc *sc;
441 
442 	sc = (struct firewire_softc *)device_get_softc(dev);
443 	sc->fc->status = FWBUSNOTREADY;
444 
445 	bus_generic_resume(dev);
446 
447 	return(0);
448 }
449 
450 /*
451  * Dettach it.
452  */
453 static int
454 firewire_detach(device_t dev)
455 {
456 	struct firewire_softc *sc;
457 	struct csrdir *csrd, *next;
458 	struct fw_device *fwdev, *fwdev_next;
459 	int err;
460 
461 	sc = (struct firewire_softc *)device_get_softc(dev);
462 	if ((err = fwdev_destroydev(sc)) != 0)
463 		return err;
464 
465 	if ((err = bus_generic_detach(dev)) != 0)
466 		return err;
467 
468 	callout_stop(&sc->fc->timeout_callout);
469 	callout_stop(&sc->fc->bmr_callout);
470 	callout_stop(&sc->fc->retry_probe_callout);
471 	callout_stop(&sc->fc->busprobe_callout);
472 
473 	/* XXX xfree_free and callout_stop on all xfers */
474 	for (fwdev = STAILQ_FIRST(&sc->fc->devices); fwdev != NULL;
475 							fwdev = fwdev_next) {
476 		fwdev_next = STAILQ_NEXT(fwdev, link);
477 		kfree(fwdev, M_FW);
478 	}
479 	for (csrd = SLIST_FIRST(&sc->fc->csrfree); csrd != NULL; csrd = next) {
480 		next = SLIST_NEXT(csrd, link);
481 		kfree(csrd, M_FW);
482 	}
483 	kfree(sc->fc->topology_map, M_FW);
484 	kfree(sc->fc->speed_map, M_FW);
485 	kfree(sc->fc->crom_src_buf, M_FW);
486 	return(0);
487 }
488 #if 0
489 static int
490 firewire_shutdown( device_t dev )
491 {
492 	return 0;
493 }
494 #endif
495 
496 
497 static void
498 fw_xferq_drain(struct fw_xferq *xferq)
499 {
500 	struct fw_xfer *xfer;
501 
502 	while ((xfer = STAILQ_FIRST(&xferq->q)) != NULL) {
503 		STAILQ_REMOVE_HEAD(&xferq->q, link);
504 		xferq->queued --;
505 		xfer->resp = EAGAIN;
506 		xfer->state = FWXF_SENTERR;
507 		fw_xfer_done(xfer);
508 	}
509 }
510 
511 void
512 fw_drain_txq(struct firewire_comm *fc)
513 {
514 	int i;
515 
516 	fw_xferq_drain(fc->atq);
517 	fw_xferq_drain(fc->ats);
518 	for(i = 0; i < fc->nisodma; i++)
519 		fw_xferq_drain(fc->it[i]);
520 }
521 
522 static void
523 fw_reset_csr(struct firewire_comm *fc)
524 {
525 	int i;
526 
527 	CSRARC(fc, STATE_CLEAR)
528 			= 1 << 23 | 0 << 17 | 1 << 16 | 1 << 15 | 1 << 14 ;
529 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
530 	CSRARC(fc, NODE_IDS) = 0x3f;
531 
532 	CSRARC(fc, TOPO_MAP + 8) = 0;
533 	fc->irm = -1;
534 
535 	fc->max_node = -1;
536 
537 	for(i = 2; i < 0x100/4 - 2 ; i++){
538 		CSRARC(fc, SPED_MAP + i * 4) = 0;
539 	}
540 	CSRARC(fc, STATE_CLEAR) = 1 << 23 | 0 << 17 | 1 << 16 | 1 << 15 | 1 << 14 ;
541 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
542 	CSRARC(fc, RESET_START) = 0;
543 	CSRARC(fc, SPLIT_TIMEOUT_HI) = 0;
544 	CSRARC(fc, SPLIT_TIMEOUT_LO) = 800 << 19;
545 	CSRARC(fc, CYCLE_TIME) = 0x0;
546 	CSRARC(fc, BUS_TIME) = 0x0;
547 	CSRARC(fc, BUS_MGR_ID) = 0x3f;
548 	CSRARC(fc, BANDWIDTH_AV) = 4915;
549 	CSRARC(fc, CHANNELS_AV_HI) = 0xffffffff;
550 	CSRARC(fc, CHANNELS_AV_LO) = 0xffffffff;
551 	CSRARC(fc, IP_CHANNELS) = (1 << 31);
552 
553 	CSRARC(fc, CONF_ROM) = 0x04 << 24;
554 	CSRARC(fc, CONF_ROM + 4) = 0x31333934; /* means strings 1394 */
555 	CSRARC(fc, CONF_ROM + 8) = 1 << 31 | 1 << 30 | 1 << 29 |
556 				1 << 28 | 0xff << 16 | 0x09 << 8;
557 	CSRARC(fc, CONF_ROM + 0xc) = 0;
558 
559 /* DV depend CSRs see blue book */
560 	CSRARC(fc, oPCR) &= ~DV_BROADCAST_ON;
561 	CSRARC(fc, iPCR) &= ~DV_BROADCAST_ON;
562 
563 	CSRARC(fc, STATE_CLEAR) &= ~(1 << 23 | 1 << 15 | 1 << 14 );
564 	CSRARC(fc, STATE_SET) = CSRARC(fc, STATE_CLEAR);
565 }
566 
567 static void
568 fw_init_crom(struct firewire_comm *fc)
569 {
570 	struct crom_src *src;
571 
572 	fc->crom_src_buf = (struct crom_src_buf *)
573 		kmalloc(sizeof(struct crom_src_buf), M_FW, M_WAITOK | M_ZERO);
574 
575 	src = &fc->crom_src_buf->src;
576 	bzero(src, sizeof(struct crom_src));
577 
578 	/* BUS info sample */
579 	src->hdr.info_len = 4;
580 
581 	src->businfo.bus_name = CSR_BUS_NAME_IEEE1394;
582 
583 	src->businfo.irmc = 1;
584 	src->businfo.cmc = 1;
585 	src->businfo.isc = 1;
586 	src->businfo.bmc = 1;
587 	src->businfo.pmc = 0;
588 	src->businfo.cyc_clk_acc = 100;
589 	src->businfo.max_rec = fc->maxrec;
590 	src->businfo.max_rom = MAXROM_4;
591 	src->businfo.generation = 1;
592 	src->businfo.link_spd = fc->speed;
593 
594 	src->businfo.eui64.hi = fc->eui.hi;
595 	src->businfo.eui64.lo = fc->eui.lo;
596 
597 	STAILQ_INIT(&src->chunk_list);
598 
599 	fc->crom_src = src;
600 	fc->crom_root = &fc->crom_src_buf->root;
601 }
602 
603 static void
604 fw_reset_crom(struct firewire_comm *fc)
605 {
606 	struct crom_src_buf *buf;
607 	struct crom_src *src;
608 	struct crom_chunk *root;
609 
610 	if (fc->crom_src_buf == NULL)
611 		fw_init_crom(fc);
612 
613 	buf =  fc->crom_src_buf;
614 	src = fc->crom_src;
615 	root = fc->crom_root;
616 
617 	STAILQ_INIT(&src->chunk_list);
618 
619 	bzero(root, sizeof(struct crom_chunk));
620 	crom_add_chunk(src, NULL, root, 0);
621 	crom_add_entry(root, CSRKEY_NCAP, 0x0083c0); /* XXX */
622 	/* private company_id */
623 	crom_add_entry(root, CSRKEY_VENDOR, CSRVAL_VENDOR_PRIVATE);
624 	crom_add_simple_text(src, root, &buf->vendor, "DragonFly Project");
625 	crom_add_entry(root, CSRKEY_HW, __DragonFly_version);
626 	crom_add_simple_text(src, root, &buf->hw, hostname);
627 }
628 
629 /*
630  * Called after bus reset.
631  */
632 void
633 fw_busreset(struct firewire_comm *fc)
634 {
635 	struct firewire_dev_comm *fdc;
636 	struct crom_src *src;
637 	device_t *devlistp;
638 	void *newrom;
639 	int i, devcnt;
640 
641 	switch(fc->status){
642 	case FWBUSMGRELECT:
643 		callout_stop(&fc->bmr_callout);
644 		break;
645 	default:
646 		break;
647 	}
648 	fc->status = FWBUSRESET;
649 	fw_reset_csr(fc);
650 	fw_reset_crom(fc);
651 
652 	if (device_get_children(fc->bdev, &devlistp, &devcnt) == 0) {
653 		for( i = 0 ; i < devcnt ; i++)
654 			if (device_get_state(devlistp[i]) >= DS_ATTACHED)  {
655 				fdc = device_get_softc(devlistp[i]);
656 				if (fdc->post_busreset != NULL)
657 					fdc->post_busreset(fdc);
658 			}
659 		kfree(devlistp, M_TEMP);
660 	}
661 
662 	newrom = kmalloc(CROMSIZE, M_FW, M_WAITOK | M_ZERO);
663 	src = &fc->crom_src_buf->src;
664 	crom_load(src, (u_int32_t *)newrom, CROMSIZE);
665 	if (bcmp(newrom, fc->config_rom, CROMSIZE) != 0) {
666 		/* bump generation and reload */
667 		src->businfo.generation ++;
668 		/* generation must be between 0x2 and 0xF */
669 		if (src->businfo.generation < 2)
670 			src->businfo.generation ++;
671 		crom_load(src, (u_int32_t *)newrom, CROMSIZE);
672 		bcopy(newrom, (void *)fc->config_rom, CROMSIZE);
673 	}
674 	kfree(newrom, M_FW);
675 }
676 
677 /* Call once after reboot */
678 void
679 fw_init(struct firewire_comm *fc)
680 {
681 	int i;
682 	struct csrdir *csrd;
683 #ifdef FW_VMACCESS
684 	struct fw_xfer *xfer;
685 	struct fw_bind *fwb;
686 #endif
687 
688 	fc->max_asyretry = FW_MAXASYRTY;
689 
690 	fc->arq->queued = 0;
691 	fc->ars->queued = 0;
692 	fc->atq->queued = 0;
693 	fc->ats->queued = 0;
694 
695 	fc->arq->buf = NULL;
696 	fc->ars->buf = NULL;
697 	fc->atq->buf = NULL;
698 	fc->ats->buf = NULL;
699 
700 	fc->arq->flag = 0;
701 	fc->ars->flag = 0;
702 	fc->atq->flag = 0;
703 	fc->ats->flag = 0;
704 
705 	STAILQ_INIT(&fc->atq->q);
706 	STAILQ_INIT(&fc->ats->q);
707 
708 	for( i = 0 ; i < fc->nisodma ; i ++ ){
709 		fc->it[i]->queued = 0;
710 		fc->ir[i]->queued = 0;
711 
712 		fc->it[i]->start = NULL;
713 		fc->ir[i]->start = NULL;
714 
715 		fc->it[i]->buf = NULL;
716 		fc->ir[i]->buf = NULL;
717 
718 		fc->it[i]->flag = FWXFERQ_STREAM;
719 		fc->ir[i]->flag = FWXFERQ_STREAM;
720 
721 		STAILQ_INIT(&fc->it[i]->q);
722 		STAILQ_INIT(&fc->ir[i]->q);
723 
724 		STAILQ_INIT(&fc->it[i]->binds);
725 		STAILQ_INIT(&fc->ir[i]->binds);
726 	}
727 
728 	fc->arq->maxq = FWMAXQUEUE;
729 	fc->ars->maxq = FWMAXQUEUE;
730 	fc->atq->maxq = FWMAXQUEUE;
731 	fc->ats->maxq = FWMAXQUEUE;
732 
733 	for( i = 0 ; i < fc->nisodma ; i++){
734 		fc->ir[i]->maxq = FWMAXQUEUE;
735 		fc->it[i]->maxq = FWMAXQUEUE;
736 	}
737 /* Initialize csr registers */
738 	fc->topology_map = kmalloc(sizeof(struct fw_topology_map),
739 				    M_FW, M_WAITOK | M_ZERO);
740 	fc->speed_map = kmalloc(sizeof(struct fw_speed_map),
741 				    M_FW, M_WAITOK | M_ZERO);
742 	CSRARC(fc, TOPO_MAP) = 0x3f1 << 16;
743 	CSRARC(fc, TOPO_MAP + 4) = 1;
744 	CSRARC(fc, SPED_MAP) = 0x3f1 << 16;
745 	CSRARC(fc, SPED_MAP + 4) = 1;
746 
747 	STAILQ_INIT(&fc->devices);
748 
749 /* Initialize csr ROM work space */
750 	SLIST_INIT(&fc->ongocsr);
751 	SLIST_INIT(&fc->csrfree);
752 	for( i = 0 ; i < FWMAXCSRDIR ; i++){
753 		csrd = kmalloc(sizeof(struct csrdir), M_FW, M_WAITOK);
754 		SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
755 	}
756 
757 /* Initialize Async handlers */
758 	STAILQ_INIT(&fc->binds);
759 	for( i = 0 ; i < 0x40 ; i++){
760 		STAILQ_INIT(&fc->tlabels[i]);
761 	}
762 
763 /* DV depend CSRs see blue book */
764 #if 0
765 	CSRARC(fc, oMPR) = 0x3fff0001; /* # output channel = 1 */
766 	CSRARC(fc, oPCR) = 0x8000007a;
767 	for(i = 4 ; i < 0x7c/4 ; i+=4){
768 		CSRARC(fc, i + oPCR) = 0x8000007a;
769 	}
770 
771 	CSRARC(fc, iMPR) = 0x00ff0001; /* # input channel = 1 */
772 	CSRARC(fc, iPCR) = 0x803f0000;
773 	for(i = 4 ; i < 0x7c/4 ; i+=4){
774 		CSRARC(fc, i + iPCR) = 0x0;
775 	}
776 #endif
777 
778 	fc->crom_src_buf = NULL;
779 
780 #ifdef FW_VMACCESS
781 	xfer = fw_xfer_alloc();
782 	if(xfer == NULL) return;
783 
784 	fwb = kmalloc(sizeof (struct fw_bind), M_FW, M_WAITOK);
785 	xfer->act.hand = fw_vmaccess;
786 	xfer->fc = fc;
787 	xfer->sc = NULL;
788 
789 	fwb->start_hi = 0x2;
790 	fwb->start_lo = 0;
791 	fwb->addrlen = 0xffffffff;
792 	fwb->xfer = xfer;
793 	fw_bindadd(fc, fwb);
794 #endif
795 }
796 
797 #define BIND_CMP(addr, fwb) (((addr) < (fwb)->start)?-1:\
798     ((fwb)->end < (addr))?1:0)
799 
800 /*
801  * To lookup binded process from IEEE1394 address.
802  */
803 struct fw_bind *
804 fw_bindlookup(struct firewire_comm *fc, u_int16_t dest_hi, u_int32_t dest_lo)
805 {
806 	u_int64_t addr;
807 	struct fw_bind *tfw;
808 
809 	addr = ((u_int64_t)dest_hi << 32) | dest_lo;
810 	STAILQ_FOREACH(tfw, &fc->binds, fclist)
811 		if (tfw->act_type != FWACT_NULL && BIND_CMP(addr, tfw) == 0)
812 			return(tfw);
813 	return(NULL);
814 }
815 
816 /*
817  * To bind IEEE1394 address block to process.
818  */
819 int
820 fw_bindadd(struct firewire_comm *fc, struct fw_bind *fwb)
821 {
822 	struct fw_bind *tfw, *prev = NULL;
823 
824 	if (fwb->start > fwb->end) {
825 		kprintf("%s: invalid range\n", __func__);
826 		return EINVAL;
827 	}
828 
829 	STAILQ_FOREACH(tfw, &fc->binds, fclist) {
830 		if (fwb->end < tfw->start)
831 			break;
832 		prev = tfw;
833 	}
834 	if (prev == NULL) {
835 		STAILQ_INSERT_HEAD(&fc->binds, fwb, fclist);
836 		goto out;
837 	}
838 	if (prev->end < fwb->start) {
839 		STAILQ_INSERT_AFTER(&fc->binds, prev, fwb, fclist);
840 		goto out;
841 	}
842 
843 	kprintf("%s: bind failed\n", __func__);
844 	return (EBUSY);
845 
846 out:
847 	if (fwb->act_type == FWACT_CH)
848 		STAILQ_INSERT_HEAD(&fc->ir[fwb->sub]->binds, fwb, chlist);
849 	return (0);
850 }
851 
852 /*
853  * To free IEEE1394 address block.
854  */
855 int
856 fw_bindremove(struct firewire_comm *fc, struct fw_bind *fwb)
857 {
858 #if 0
859 	struct fw_xfer *xfer, *next;
860 #endif
861 	struct fw_bind *tfw;
862 
863 	crit_enter();
864 	STAILQ_FOREACH(tfw, &fc->binds, fclist)
865 		if (tfw == fwb) {
866 			STAILQ_REMOVE(&fc->binds, fwb, fw_bind, fclist);
867 			goto found;
868 		}
869 
870 	kprintf("%s: no such bind\n", __func__);
871 	crit_exit();
872 	return (1);
873 found:
874 #if 0
875 	/* shall we do this? */
876 	for (xfer = STAILQ_FIRST(&fwb->xferlist); xfer != NULL; xfer = next) {
877 		next = STAILQ_NEXT(xfer, link);
878 		fw_xfer_free(xfer);
879 	}
880 	STAILQ_INIT(&fwb->xferlist);
881 #endif
882 
883 	crit_exit();
884 	return 0;
885 }
886 
887 /*
888  * To free transaction label.
889  */
890 static void
891 fw_tl_free(struct firewire_comm *fc, struct fw_xfer *xfer)
892 {
893 	struct tlabel *tl;
894 
895 	crit_enter();
896 	for( tl = STAILQ_FIRST(&fc->tlabels[xfer->tl]); tl != NULL;
897 		tl = STAILQ_NEXT(tl, link)){
898 		if(tl->xfer == xfer){
899 			STAILQ_REMOVE(&fc->tlabels[xfer->tl], tl, tlabel, link);
900 			kfree(tl, M_FW);
901 			break;
902 		}
903 	}
904 	crit_exit();
905 }
906 
907 /*
908  * To obtain XFER structure by transaction label.
909  */
910 static struct fw_xfer *
911 fw_tl2xfer(struct firewire_comm *fc, int node, int tlabel)
912 {
913 	struct fw_xfer *xfer;
914 	struct tlabel *tl;
915 
916 	crit_enter();
917 
918 	for( tl = STAILQ_FIRST(&fc->tlabels[tlabel]); tl != NULL;
919 		tl = STAILQ_NEXT(tl, link)){
920 		if(tl->xfer->send.hdr.mode.hdr.dst == node){
921 			xfer = tl->xfer;
922 			crit_exit();
923 			if (firewire_debug > 2)
924 				kprintf("fw_tl2xfer: found tl=%d\n", tlabel);
925 			return(xfer);
926 		}
927 	}
928 	if (firewire_debug > 1)
929 		kprintf("fw_tl2xfer: not found tl=%d\n", tlabel);
930 	crit_exit();
931 	return(NULL);
932 }
933 
934 /*
935  * To allocate IEEE1394 XFER structure.
936  */
937 struct fw_xfer *
938 fw_xfer_alloc(struct malloc_type *type)
939 {
940 	struct fw_xfer *xfer;
941 
942 	xfer = kmalloc(sizeof(struct fw_xfer), type, M_INTWAIT | M_ZERO);
943 	xfer->malloc = type;
944 
945 	return xfer;
946 }
947 
948 struct fw_xfer *
949 fw_xfer_alloc_buf(struct malloc_type *type, int send_len, int recv_len)
950 {
951 	struct fw_xfer *xfer;
952 
953 	xfer = fw_xfer_alloc(type);
954 	if (xfer == NULL)
955 		return(NULL);
956 	xfer->send.pay_len = send_len;
957 	xfer->recv.pay_len = recv_len;
958 	if (send_len > 0) {
959 		xfer->send.payload = kmalloc(send_len, type, M_INTWAIT | M_ZERO);
960 		if (xfer->send.payload == NULL) {
961 			fw_xfer_free(xfer);
962 			return(NULL);
963 		}
964 	}
965 	if (recv_len > 0) {
966 		xfer->recv.payload = kmalloc(recv_len, type, M_INTWAIT);
967 		if (xfer->recv.payload == NULL) {
968 			if (xfer->send.payload != NULL)
969 				kfree(xfer->send.payload, type);
970 			fw_xfer_free(xfer);
971 			return(NULL);
972 		}
973 	}
974 	return(xfer);
975 }
976 
977 /*
978  * IEEE1394 XFER post process.
979  */
980 void
981 fw_xfer_done(struct fw_xfer *xfer)
982 {
983 	if (xfer->act.hand == NULL) {
984 		kprintf("act.hand == NULL\n");
985 		return;
986 	}
987 
988 	if (xfer->fc == NULL)
989 		panic("fw_xfer_done: why xfer->fc is NULL?");
990 
991 	xfer->act.hand(xfer);
992 }
993 
994 void
995 fw_xfer_unload(struct fw_xfer* xfer)
996 {
997 	if(xfer == NULL ) return;
998 	if(xfer->state == FWXF_INQ){
999 		kprintf("fw_xfer_free FWXF_INQ\n");
1000 		crit_enter();
1001 		STAILQ_REMOVE(&xfer->q->q, xfer, fw_xfer, link);
1002 		xfer->q->queued --;
1003 		crit_exit();
1004 	}
1005 	if (xfer->fc != NULL) {
1006 #if 1
1007 		if(xfer->state == FWXF_START)
1008 			/*
1009 			 * This could happen if:
1010 			 *  1. We call fwohci_arcv() before fwohci_txd().
1011 			 *  2. firewire_watch() is called.
1012 			 */
1013 			kprintf("fw_xfer_free FWXF_START\n");
1014 #endif
1015 		fw_tl_free(xfer->fc, xfer);
1016 	}
1017 	xfer->state = FWXF_INIT;
1018 	xfer->resp = 0;
1019 	xfer->retry = 0;
1020 }
1021 /*
1022  * To free IEEE1394 XFER structure.
1023  */
1024 void
1025 fw_xfer_free_buf( struct fw_xfer* xfer)
1026 {
1027 	if (xfer == NULL) {
1028 		kprintf("%s: xfer == NULL\n", __func__);
1029 		return;
1030 	}
1031 	fw_xfer_unload(xfer);
1032 	if(xfer->send.payload != NULL){
1033 		kfree(xfer->send.payload, xfer->malloc);
1034 	}
1035 	if(xfer->recv.payload != NULL){
1036 		kfree(xfer->recv.payload, xfer->malloc);
1037 	}
1038 	kfree(xfer, xfer->malloc);
1039 }
1040 
1041 void
1042 fw_xfer_free( struct fw_xfer* xfer)
1043 {
1044 	if (xfer == NULL) {
1045 		kprintf("%s: xfer == NULL\n", __func__);
1046 		return;
1047 	}
1048 	fw_xfer_unload(xfer);
1049 	kfree(xfer, xfer->malloc);
1050 }
1051 
1052 void
1053 fw_asy_callback_free(struct fw_xfer *xfer)
1054 {
1055 #if 0
1056 	kprintf("asyreq done state=%d resp=%d\n",
1057 				xfer->state, xfer->resp);
1058 #endif
1059 	fw_xfer_free(xfer);
1060 }
1061 
1062 /*
1063  * To configure PHY.
1064  */
1065 static void
1066 fw_phy_config(struct firewire_comm *fc, int root_node, int gap_count)
1067 {
1068 	struct fw_xfer *xfer;
1069 	struct fw_pkt *fp;
1070 
1071 	fc->status = FWBUSPHYCONF;
1072 
1073 	xfer = fw_xfer_alloc(M_FWXFER);
1074 	if (xfer == NULL)
1075 		return;
1076 	xfer->fc = fc;
1077 	xfer->retry_req = fw_asybusy;
1078 	xfer->act.hand = fw_asy_callback_free;
1079 
1080 	fp = &xfer->send.hdr;
1081 	fp->mode.ld[1] = 0;
1082 	if (root_node >= 0)
1083 		fp->mode.ld[1] |= (root_node & 0x3f) << 24 | 1 << 23;
1084 	if (gap_count >= 0)
1085 		fp->mode.ld[1] |= 1 << 22 | (gap_count & 0x3f) << 16;
1086 	fp->mode.ld[2] = ~fp->mode.ld[1];
1087 /* XXX Dangerous, how to pass PHY packet to device driver */
1088 	fp->mode.common.tcode |= FWTCODE_PHY;
1089 
1090 	if (firewire_debug)
1091 		kprintf("send phy_config root_node=%d gap_count=%d\n",
1092 						root_node, gap_count);
1093 	fw_asyreq(fc, -1, xfer);
1094 }
1095 
1096 #if 0
1097 /*
1098  * Dump self ID.
1099  */
1100 static void
1101 fw_print_sid(u_int32_t sid)
1102 {
1103 	union fw_self_id *s;
1104 	s = (union fw_self_id *) &sid;
1105 	kprintf("node:%d link:%d gap:%d spd:%d del:%d con:%d pwr:%d"
1106 		" p0:%d p1:%d p2:%d i:%d m:%d\n",
1107 		s->p0.phy_id, s->p0.link_active, s->p0.gap_count,
1108 		s->p0.phy_speed, s->p0.phy_delay, s->p0.contender,
1109 		s->p0.power_class, s->p0.port0, s->p0.port1,
1110 		s->p0.port2, s->p0.initiated_reset, s->p0.more_packets);
1111 }
1112 #endif
1113 
1114 /*
1115  * To receive self ID.
1116  */
1117 void
1118 fw_sidrcv(struct firewire_comm* fc, u_int32_t *sid, u_int len)
1119 {
1120 	u_int32_t *p;
1121 	union fw_self_id *self_id;
1122 	u_int i, j, node, c_port = 0, i_branch = 0;
1123 
1124 	fc->sid_cnt = len /(sizeof(u_int32_t) * 2);
1125 	fc->status = FWBUSINIT;
1126 	fc->max_node = fc->nodeid & 0x3f;
1127 	CSRARC(fc, NODE_IDS) = ((u_int32_t)fc->nodeid) << 16;
1128 	fc->status = FWBUSCYMELECT;
1129 	fc->topology_map->crc_len = 2;
1130 	fc->topology_map->generation ++;
1131 	fc->topology_map->self_id_count = 0;
1132 	fc->topology_map->node_count = 0;
1133 	fc->speed_map->generation ++;
1134 	fc->speed_map->crc_len = 1 + (64*64 + 3) / 4;
1135 	self_id = &fc->topology_map->self_id[0];
1136 	for(i = 0; i < fc->sid_cnt; i ++){
1137 		if (sid[1] != ~sid[0]) {
1138 			kprintf("fw_sidrcv: invalid self-id packet\n");
1139 			sid += 2;
1140 			continue;
1141 		}
1142 		*self_id = *((union fw_self_id *)sid);
1143 		fc->topology_map->crc_len++;
1144 		if(self_id->p0.sequel == 0){
1145 			fc->topology_map->node_count ++;
1146 			c_port = 0;
1147 #if 0
1148 			fw_print_sid(sid[0]);
1149 #endif
1150 			node = self_id->p0.phy_id;
1151 			if(fc->max_node < node){
1152 				fc->max_node = self_id->p0.phy_id;
1153 			}
1154 			/* XXX I'm not sure this is the right speed_map */
1155 			fc->speed_map->speed[node][node]
1156 					= self_id->p0.phy_speed;
1157 			for (j = 0; j < node; j ++) {
1158 				fc->speed_map->speed[j][node]
1159 					= fc->speed_map->speed[node][j]
1160 					= min(fc->speed_map->speed[j][j],
1161 							self_id->p0.phy_speed);
1162 			}
1163 			if ((fc->irm == -1 || self_id->p0.phy_id > fc->irm) &&
1164 			  (self_id->p0.link_active && self_id->p0.contender)) {
1165 				fc->irm = self_id->p0.phy_id;
1166 			}
1167 			if(self_id->p0.port0 >= 0x2){
1168 				c_port++;
1169 			}
1170 			if(self_id->p0.port1 >= 0x2){
1171 				c_port++;
1172 			}
1173 			if(self_id->p0.port2 >= 0x2){
1174 				c_port++;
1175 			}
1176 		}
1177 		if(c_port > 2){
1178 			i_branch += (c_port - 2);
1179 		}
1180 		sid += 2;
1181 		self_id++;
1182 		fc->topology_map->self_id_count ++;
1183 	}
1184 	device_printf(fc->bdev, "%d nodes", fc->max_node + 1);
1185 	/* CRC */
1186 	fc->topology_map->crc = fw_crc16(
1187 			(u_int32_t *)&fc->topology_map->generation,
1188 			fc->topology_map->crc_len * 4);
1189 	fc->speed_map->crc = fw_crc16(
1190 			(u_int32_t *)&fc->speed_map->generation,
1191 			fc->speed_map->crc_len * 4);
1192 	/* byteswap and copy to CSR */
1193 	p = (u_int32_t *)fc->topology_map;
1194 	for (i = 0; i <= fc->topology_map->crc_len; i++)
1195 		CSRARC(fc, TOPO_MAP + i * 4) = htonl(*p++);
1196 	p = (u_int32_t *)fc->speed_map;
1197 	CSRARC(fc, SPED_MAP) = htonl(*p++);
1198 	CSRARC(fc, SPED_MAP + 4) = htonl(*p++);
1199 	/* don't byte-swap u_int8_t array */
1200 	bcopy(p, &CSRARC(fc, SPED_MAP + 8), (fc->speed_map->crc_len - 1)*4);
1201 
1202 	fc->max_hop = fc->max_node - i_branch;
1203 	kprintf(", maxhop <= %d", fc->max_hop);
1204 
1205 	if(fc->irm == -1 ){
1206 		kprintf(", Not found IRM capable node");
1207 	}else{
1208 		kprintf(", cable IRM = %d", fc->irm);
1209 		if (fc->irm == fc->nodeid)
1210 			kprintf(" (me)");
1211 	}
1212 	kprintf("\n");
1213 
1214 	if (try_bmr && (fc->irm != -1) && (CSRARC(fc, BUS_MGR_ID) == 0x3f)) {
1215 		if (fc->irm == fc->nodeid) {
1216 			fc->status = FWBUSMGRDONE;
1217 			CSRARC(fc, BUS_MGR_ID) = fc->set_bmr(fc, fc->irm);
1218 			fw_bmr(fc);
1219 		} else {
1220 			fc->status = FWBUSMGRELECT;
1221 			callout_reset(&fc->bmr_callout, hz/8,
1222 				(void *)fw_try_bmr, (void *)fc);
1223 		}
1224 	} else
1225 		fc->status = FWBUSMGRDONE;
1226 
1227 	callout_reset(&fc->busprobe_callout, hz/4,
1228 			(void *)fw_bus_probe, (void *)fc);
1229 }
1230 
1231 /*
1232  * To probe devices on the IEEE1394 bus.
1233  */
1234 static void
1235 fw_bus_probe(struct firewire_comm *fc)
1236 {
1237 	struct fw_device *fwdev;
1238 
1239 	crit_enter();
1240 	fc->status = FWBUSEXPLORE;
1241 	fc->retry_count = 0;
1242 
1243 	/* Invalidate all devices, just after bus reset. */
1244 	STAILQ_FOREACH(fwdev, &fc->devices, link)
1245 		if (fwdev->status != FWDEVINVAL) {
1246 			fwdev->status = FWDEVINVAL;
1247 			fwdev->rcnt = 0;
1248 		}
1249 
1250 	fc->ongonode = 0;
1251 	fc->ongoaddr = CSRROMOFF;
1252 	fc->ongodev = NULL;
1253 	fc->ongoeui.hi = 0xffffffff; fc->ongoeui.lo = 0xffffffff;
1254 	fw_bus_explore(fc);
1255 	crit_exit();
1256 }
1257 
1258 /*
1259  * To collect device informations on the IEEE1394 bus.
1260  */
1261 static void
1262 fw_bus_explore(struct firewire_comm *fc )
1263 {
1264 	int err = 0;
1265 	struct fw_device *fwdev, *pfwdev, *tfwdev;
1266 	u_int32_t addr;
1267 	struct fw_xfer *xfer;
1268 	struct fw_pkt *fp;
1269 
1270 	if(fc->status != FWBUSEXPLORE)
1271 		return;
1272 
1273 loop:
1274 	if(fc->ongonode == fc->nodeid) fc->ongonode++;
1275 
1276 	if(fc->ongonode > fc->max_node) goto done;
1277 	if(fc->ongonode >= 0x3f) goto done;
1278 
1279 	/* check link */
1280 	/* XXX we need to check phy_id first */
1281 	if (!fc->topology_map->self_id[fc->ongonode].p0.link_active) {
1282 		if (firewire_debug)
1283 			kprintf("node%d: link down\n", fc->ongonode);
1284 		fc->ongonode++;
1285 		goto loop;
1286 	}
1287 
1288 	if(fc->ongoaddr <= CSRROMOFF &&
1289 		fc->ongoeui.hi == 0xffffffff &&
1290 		fc->ongoeui.lo == 0xffffffff ){
1291 		fc->ongoaddr = CSRROMOFF;
1292 		addr = 0xf0000000 | fc->ongoaddr;
1293 	}else if(fc->ongoeui.hi == 0xffffffff ){
1294 		fc->ongoaddr = CSRROMOFF + 0xc;
1295 		addr = 0xf0000000 | fc->ongoaddr;
1296 	}else if(fc->ongoeui.lo == 0xffffffff ){
1297 		fc->ongoaddr = CSRROMOFF + 0x10;
1298 		addr = 0xf0000000 | fc->ongoaddr;
1299 	}else if(fc->ongodev == NULL){
1300 		STAILQ_FOREACH(fwdev, &fc->devices, link)
1301 			if (FW_EUI64_EQUAL(fwdev->eui, fc->ongoeui))
1302 				break;
1303 		if(fwdev != NULL){
1304 			fwdev->dst = fc->ongonode;
1305 			fwdev->status = FWDEVINIT;
1306 			fc->ongodev = fwdev;
1307 			fc->ongoaddr = CSRROMOFF;
1308 			addr = 0xf0000000 | fc->ongoaddr;
1309 			goto dorequest;
1310 		}
1311 		fwdev = kmalloc(sizeof(struct fw_device), M_FW,
1312 				M_WAITOK | M_ZERO);
1313 		fwdev->fc = fc;
1314 		fwdev->rommax = 0;
1315 		fwdev->dst = fc->ongonode;
1316 		fwdev->eui.hi = fc->ongoeui.hi; fwdev->eui.lo = fc->ongoeui.lo;
1317 		fwdev->status = FWDEVINIT;
1318 		fwdev->speed = fc->speed_map->speed[fc->nodeid][fc->ongonode];
1319 
1320 		pfwdev = NULL;
1321 		STAILQ_FOREACH(tfwdev, &fc->devices, link) {
1322 			if (tfwdev->eui.hi > fwdev->eui.hi ||
1323 					(tfwdev->eui.hi == fwdev->eui.hi &&
1324 					tfwdev->eui.lo > fwdev->eui.lo))
1325 				break;
1326 			pfwdev = tfwdev;
1327 		}
1328 		if (pfwdev == NULL)
1329 			STAILQ_INSERT_HEAD(&fc->devices, fwdev, link);
1330 		else
1331 			STAILQ_INSERT_AFTER(&fc->devices, pfwdev, fwdev, link);
1332 
1333 		device_printf(fc->bdev, "New %s device ID:%08x%08x\n",
1334 			linkspeed[fwdev->speed],
1335 			fc->ongoeui.hi, fc->ongoeui.lo);
1336 
1337 		fc->ongodev = fwdev;
1338 		fc->ongoaddr = CSRROMOFF;
1339 		addr = 0xf0000000 | fc->ongoaddr;
1340 	}else{
1341 		addr = 0xf0000000 | fc->ongoaddr;
1342 	}
1343 dorequest:
1344 #if 0
1345 	xfer = asyreqq(fc, FWSPD_S100, 0, 0,
1346 		((FWLOCALBUS | fc->ongonode) << 16) | 0xffff , addr,
1347 		fw_bus_explore_callback);
1348 	if(xfer == NULL) goto done;
1349 #else
1350 	xfer = fw_xfer_alloc(M_FWXFER);
1351 	if(xfer == NULL){
1352 		goto done;
1353 	}
1354 	xfer->send.spd = 0;
1355 	fp = &xfer->send.hdr;
1356 	fp->mode.rreqq.dest_hi = 0xffff;
1357 	fp->mode.rreqq.tlrt = 0;
1358 	fp->mode.rreqq.tcode = FWTCODE_RREQQ;
1359 	fp->mode.rreqq.pri = 0;
1360 	fp->mode.rreqq.src = 0;
1361 	fp->mode.rreqq.dst = FWLOCALBUS | fc->ongonode;
1362 	fp->mode.rreqq.dest_lo = addr;
1363 	xfer->act.hand = fw_bus_explore_callback;
1364 
1365 	if (firewire_debug)
1366 		kprintf("node%d: explore addr=0x%x\n",
1367 				fc->ongonode, fc->ongoaddr);
1368 	err = fw_asyreq(fc, -1, xfer);
1369 	if(err){
1370 		fw_xfer_free( xfer);
1371 		return;
1372 	}
1373 #endif
1374 	return;
1375 done:
1376 	/* fw_attach_devs */
1377 	fc->status = FWBUSEXPDONE;
1378 	if (firewire_debug)
1379 		kprintf("bus_explore done\n");
1380 	fw_attach_dev(fc);
1381 	return;
1382 
1383 }
1384 
1385 /* Portable Async. request read quad */
1386 struct fw_xfer *
1387 asyreqq(struct firewire_comm *fc, u_int8_t spd, u_int8_t tl, u_int8_t rt,
1388 	u_int32_t addr_hi, u_int32_t addr_lo,
1389 	void (*hand) (struct fw_xfer*))
1390 {
1391 	struct fw_xfer *xfer;
1392 	struct fw_pkt *fp;
1393 	int err;
1394 
1395 	xfer = fw_xfer_alloc(M_FWXFER);
1396 	if (xfer == NULL)
1397 		return NULL;
1398 
1399 	xfer->send.spd = spd; /* XXX:min(spd, fc->spd) */
1400 	fp = &xfer->send.hdr;
1401 	fp->mode.rreqq.dest_hi = addr_hi & 0xffff;
1402 	if(tl & FWP_TL_VALID){
1403 		fp->mode.rreqq.tlrt = (tl & 0x3f) << 2;
1404 	}else{
1405 		fp->mode.rreqq.tlrt = 0;
1406 	}
1407 	fp->mode.rreqq.tlrt |= rt & 0x3;
1408 	fp->mode.rreqq.tcode = FWTCODE_RREQQ;
1409 	fp->mode.rreqq.pri = 0;
1410 	fp->mode.rreqq.src = 0;
1411 	fp->mode.rreqq.dst = addr_hi >> 16;
1412 	fp->mode.rreqq.dest_lo = addr_lo;
1413 	xfer->act.hand = hand;
1414 
1415 	err = fw_asyreq(fc, -1, xfer);
1416 	if(err){
1417 		fw_xfer_free( xfer);
1418 		return NULL;
1419 	}
1420 	return xfer;
1421 }
1422 
1423 /*
1424  * Callback for the IEEE1394 bus information collection.
1425  */
1426 static void
1427 fw_bus_explore_callback(struct fw_xfer *xfer)
1428 {
1429 	struct firewire_comm *fc;
1430 	struct fw_pkt *sfp,*rfp;
1431 	struct csrhdr *chdr;
1432 	struct csrdir *csrd;
1433 	struct csrreg *csrreg;
1434 	u_int32_t offset;
1435 
1436 
1437 	if(xfer == NULL) {
1438 		kprintf("xfer == NULL\n");
1439 		return;
1440 	}
1441 	fc = xfer->fc;
1442 
1443 	if (firewire_debug)
1444 		kprintf("node%d: callback addr=0x%x\n",
1445 			fc->ongonode, fc->ongoaddr);
1446 
1447 	if(xfer->resp != 0){
1448 		kprintf("node%d: resp=%d addr=0x%x\n",
1449 			fc->ongonode, xfer->resp, fc->ongoaddr);
1450 		goto errnode;
1451 	}
1452 
1453 	sfp = &xfer->send.hdr;
1454 	rfp = &xfer->recv.hdr;
1455 #if 0
1456 	{
1457 		u_int32_t *qld;
1458 		int i;
1459 		qld = (u_int32_t *)xfer->recv.buf;
1460 		kprintf("len:%d\n", xfer->recv.len);
1461 		for( i = 0 ; i <= xfer->recv.len && i < 32; i+= 4){
1462 			kprintf("0x%08x ", rfp->mode.ld[i/4]);
1463 			if((i % 16) == 15) kprintf("\n");
1464 		}
1465 		if((i % 16) != 15) kprintf("\n");
1466 	}
1467 #endif
1468 	if(fc->ongodev == NULL){
1469 		if(sfp->mode.rreqq.dest_lo == (0xf0000000 | CSRROMOFF)){
1470 			rfp->mode.rresq.data = ntohl(rfp->mode.rresq.data);
1471 			chdr = (struct csrhdr *)(void *)(&rfp->mode.rresq.data);
1472 /* If CSR is minimal confinguration, more investgation is not needed. */
1473 			if(chdr->info_len == 1){
1474 				if (firewire_debug)
1475 					kprintf("node%d: minimal config\n",
1476 								fc->ongonode);
1477 				goto nextnode;
1478 			}else{
1479 				fc->ongoaddr = CSRROMOFF + 0xc;
1480 			}
1481 		}else if(sfp->mode.rreqq.dest_lo == (0xf0000000 |(CSRROMOFF + 0xc))){
1482 			fc->ongoeui.hi = ntohl(rfp->mode.rresq.data);
1483 			fc->ongoaddr = CSRROMOFF + 0x10;
1484 		}else if(sfp->mode.rreqq.dest_lo == (0xf0000000 |(CSRROMOFF + 0x10))){
1485 			fc->ongoeui.lo = ntohl(rfp->mode.rresq.data);
1486 			if (fc->ongoeui.hi == 0 && fc->ongoeui.lo == 0) {
1487 				if (firewire_debug)
1488 					kprintf("node%d: eui64 is zero.\n",
1489 							fc->ongonode);
1490 				goto nextnode;
1491 			}
1492 			fc->ongoaddr = CSRROMOFF;
1493 		}
1494 	}else{
1495 		if (fc->ongoaddr == CSRROMOFF &&
1496 		    fc->ongodev->csrrom[0] == ntohl(rfp->mode.rresq.data)) {
1497 			fc->ongodev->status = FWDEVATTACHED;
1498 			goto nextnode;
1499 		}
1500 		fc->ongodev->csrrom[(fc->ongoaddr - CSRROMOFF)/4] = ntohl(rfp->mode.rresq.data);
1501 		if(fc->ongoaddr > fc->ongodev->rommax){
1502 			fc->ongodev->rommax = fc->ongoaddr;
1503 		}
1504 		csrd = SLIST_FIRST(&fc->ongocsr);
1505 		if((csrd = SLIST_FIRST(&fc->ongocsr)) == NULL){
1506 			chdr = (struct csrhdr *)(fc->ongodev->csrrom);
1507 			offset = CSRROMOFF;
1508 		}else{
1509 			chdr = (struct csrhdr *)&fc->ongodev->csrrom[(csrd->off - CSRROMOFF)/4];
1510 			offset = csrd->off;
1511 		}
1512 		if(fc->ongoaddr > (CSRROMOFF + 0x14) && fc->ongoaddr != offset){
1513 			csrreg = (struct csrreg *)&fc->ongodev->csrrom[(fc->ongoaddr - CSRROMOFF)/4];
1514 			if( csrreg->key == 0x81 || csrreg->key == 0xd1){
1515 				csrd = SLIST_FIRST(&fc->csrfree);
1516 				if(csrd == NULL){
1517 					goto nextnode;
1518 				}else{
1519 					csrd->ongoaddr = fc->ongoaddr;
1520 					fc->ongoaddr += csrreg->val * 4;
1521 					csrd->off = fc->ongoaddr;
1522 					SLIST_REMOVE_HEAD(&fc->csrfree, link);
1523 					SLIST_INSERT_HEAD(&fc->ongocsr, csrd, link);
1524 					goto nextaddr;
1525 				}
1526 			}
1527 		}
1528 		fc->ongoaddr += 4;
1529 		if(((fc->ongoaddr - offset)/4 > chdr->crc_len) &&
1530 				(fc->ongodev->rommax < 0x414)){
1531 			if(fc->ongodev->rommax <= 0x414){
1532 				csrd = SLIST_FIRST(&fc->csrfree);
1533 				if(csrd == NULL) goto nextnode;
1534 				csrd->off = fc->ongoaddr;
1535 				csrd->ongoaddr = fc->ongoaddr;
1536 				SLIST_REMOVE_HEAD(&fc->csrfree, link);
1537 				SLIST_INSERT_HEAD(&fc->ongocsr, csrd, link);
1538 			}
1539 			goto nextaddr;
1540 		}
1541 
1542 		while(((fc->ongoaddr - offset)/4 > chdr->crc_len)){
1543 			if(csrd == NULL){
1544 				goto nextnode;
1545 			}
1546 			fc->ongoaddr = csrd->ongoaddr + 4;
1547 			SLIST_REMOVE_HEAD(&fc->ongocsr, link);
1548 			SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
1549 			csrd = SLIST_FIRST(&fc->ongocsr);
1550 			if((csrd = SLIST_FIRST(&fc->ongocsr)) == NULL){
1551 				chdr = (struct csrhdr *)(fc->ongodev->csrrom);
1552 				offset = CSRROMOFF;
1553 			}else{
1554 				chdr = (struct csrhdr *)&(fc->ongodev->csrrom[(csrd->off - CSRROMOFF)/4]);
1555 				offset = csrd->off;
1556 			}
1557 		}
1558 		if((fc->ongoaddr - CSRROMOFF) > CSRROMSIZE){
1559 			goto nextnode;
1560 		}
1561 	}
1562 nextaddr:
1563 	fw_xfer_free( xfer);
1564 	fw_bus_explore(fc);
1565 	return;
1566 errnode:
1567 	fc->retry_count++;
1568 	if (fc->ongodev != NULL)
1569 		fc->ongodev->status = FWDEVINVAL;
1570 nextnode:
1571 	fw_xfer_free( xfer);
1572 	fc->ongonode++;
1573 /* housekeeping work space */
1574 	fc->ongoaddr = CSRROMOFF;
1575 	fc->ongodev = NULL;
1576 	fc->ongoeui.hi = 0xffffffff; fc->ongoeui.lo = 0xffffffff;
1577 	while((csrd = SLIST_FIRST(&fc->ongocsr)) != NULL){
1578 		SLIST_REMOVE_HEAD(&fc->ongocsr, link);
1579 		SLIST_INSERT_HEAD(&fc->csrfree, csrd, link);
1580 	}
1581 	fw_bus_explore(fc);
1582 	return;
1583 }
1584 
1585 /*
1586  * To attach sub-devices layer onto IEEE1394 bus.
1587  */
1588 static void
1589 fw_attach_dev(struct firewire_comm *fc)
1590 {
1591 	struct fw_device *fwdev, *next;
1592 	int i, err;
1593 	device_t *devlistp;
1594 	int devcnt;
1595 	struct firewire_dev_comm *fdc;
1596 
1597 	for (fwdev = STAILQ_FIRST(&fc->devices); fwdev != NULL; fwdev = next) {
1598 		next = STAILQ_NEXT(fwdev, link);
1599 		if (fwdev->status == FWDEVINIT) {
1600 			fwdev->status = FWDEVATTACHED;
1601 		} else if (fwdev->status == FWDEVINVAL) {
1602 			fwdev->rcnt ++;
1603 			if (fwdev->rcnt > hold_count) {
1604 				/*
1605 				 * Remove devices which have not been seen
1606 				 * for a while.
1607 				 */
1608 				STAILQ_REMOVE(&fc->devices, fwdev, fw_device,
1609 				    link);
1610 				kfree(fwdev, M_FW);
1611 			}
1612 		}
1613 	}
1614 
1615 	err = device_get_children(fc->bdev, &devlistp, &devcnt);
1616 	if( err != 0 )
1617 		return;
1618 	for( i = 0 ; i < devcnt ; i++){
1619 		if (device_get_state(devlistp[i]) >= DS_ATTACHED)  {
1620 			fdc = device_get_softc(devlistp[i]);
1621 			if (fdc->post_explore != NULL)
1622 				fdc->post_explore(fdc);
1623 		}
1624 	}
1625 	kfree(devlistp, M_TEMP);
1626 
1627 	if (fc->retry_count > 0) {
1628 		kprintf("probe failed for %d node\n", fc->retry_count);
1629 #if 0
1630 		callout_reset(&fc->retry_probe_callout, hz*2,
1631 					(void *)fc->ibr, (void *)fc);
1632 #endif
1633 	}
1634 	return;
1635 }
1636 
1637 /*
1638  * To allocate uniq transaction label.
1639  */
1640 static int
1641 fw_get_tlabel(struct firewire_comm *fc, struct fw_xfer *xfer)
1642 {
1643 	u_int i;
1644 	struct tlabel *tl, *tmptl;
1645 	static u_int32_t label = 0;
1646 
1647 	crit_enter();
1648 	for( i = 0 ; i < 0x40 ; i ++){
1649 		label = (label + 1) & 0x3f;
1650 		for(tmptl = STAILQ_FIRST(&fc->tlabels[label]);
1651 			tmptl != NULL; tmptl = STAILQ_NEXT(tmptl, link)){
1652 			if (tmptl->xfer->send.hdr.mode.hdr.dst ==
1653 			    xfer->send.hdr.mode.hdr.dst)
1654 				break;
1655 		}
1656 		if(tmptl == NULL) {
1657 			tl = kmalloc(sizeof(struct tlabel), M_FW, M_WAITOK);
1658 			tl->xfer = xfer;
1659 			STAILQ_INSERT_TAIL(&fc->tlabels[label], tl, link);
1660 			crit_exit();
1661 			if (firewire_debug > 1)
1662 				kprintf("fw_get_tlabel: dst=%d tl=%d\n",
1663 				    xfer->send.hdr.mode.hdr.dst, label);
1664 			return(label);
1665 		}
1666 	}
1667 	crit_exit();
1668 
1669 	kprintf("fw_get_tlabel: no free tlabel\n");
1670 	return(-1);
1671 }
1672 
1673 static void
1674 fw_rcv_copy(struct fw_rcv_buf *rb)
1675 {
1676 	struct fw_pkt *pkt;
1677 	u_char *p;
1678 	struct tcode_info *tinfo;
1679 	u_int res, i, len, plen;
1680 
1681 	rb->xfer->recv.spd -= rb->spd;
1682 
1683 	pkt = (struct fw_pkt *)rb->vec->iov_base;
1684 	tinfo = &rb->fc->tcode[pkt->mode.hdr.tcode];
1685 
1686 	/* Copy header */
1687 	p = (u_char *)&rb->xfer->recv.hdr;
1688 	bcopy(rb->vec->iov_base, p, tinfo->hdr_len);
1689 	rb->vec->iov_base = (uint8_t *)rb->vec->iov_base + tinfo->hdr_len;
1690 	rb->vec->iov_len -= tinfo->hdr_len;
1691 
1692 	/* Copy payload */
1693 	p = (u_char *)rb->xfer->recv.payload;
1694 	res = rb->xfer->recv.pay_len;
1695 
1696 	/* special handling for RRESQ */
1697 	if (pkt->mode.hdr.tcode == FWTCODE_RRESQ &&
1698 	    p != NULL && res >= sizeof(u_int32_t)) {
1699 		*(u_int32_t *)p = pkt->mode.rresq.data;
1700 		rb->xfer->recv.pay_len = sizeof(u_int32_t);
1701 		return;
1702 	}
1703 
1704 	if ((tinfo->flag & FWTI_BLOCK_ASY) == 0)
1705 		return;
1706 
1707 	plen = pkt->mode.rresb.len;
1708 
1709 	for (i = 0; i < rb->nvec; i++, rb->vec++) {
1710 		len = MIN(rb->vec->iov_len, plen);
1711 		if (res < len) {
1712 			kprintf("rcv buffer(%d) is %d bytes short.\n",
1713 			    rb->xfer->recv.pay_len, len - res);
1714 			len = res;
1715 		}
1716 		bcopy(rb->vec->iov_base, p, len);
1717 		p += len;
1718 		res -= len;
1719 		plen -= len;
1720 		if (res == 0 || plen == 0)
1721 			break;
1722 	}
1723 	rb->xfer->recv.pay_len -= res;
1724 
1725 }
1726 
1727 /*
1728  * Generic packet receving process.
1729  */
1730 void
1731 fw_rcv(struct fw_rcv_buf *rb)
1732 {
1733 	struct fw_pkt *fp, *resfp;
1734 	struct fw_bind *bind;
1735 	int tcode;
1736 	int i, len, oldstate;
1737 #if 0
1738 	{
1739 		u_int32_t *qld;
1740 		int i;
1741 		qld = (u_int32_t *)buf;
1742 		kprintf("spd %d len:%d\n", spd, len);
1743 		for( i = 0 ; i <= len && i < 32; i+= 4){
1744 			kprintf("0x%08x ", ntohl(qld[i/4]));
1745 			if((i % 16) == 15) kprintf("\n");
1746 		}
1747 		if((i % 16) != 15) kprintf("\n");
1748 	}
1749 #endif
1750 	fp = (struct fw_pkt *)rb->vec[0].iov_base;
1751 	tcode = fp->mode.common.tcode;
1752 	switch (tcode) {
1753 	case FWTCODE_WRES:
1754 	case FWTCODE_RRESQ:
1755 	case FWTCODE_RRESB:
1756 	case FWTCODE_LRES:
1757 		rb->xfer = fw_tl2xfer(rb->fc, fp->mode.hdr.src,
1758 					fp->mode.hdr.tlrt >> 2);
1759 		if(rb->xfer == NULL) {
1760 			kprintf("fw_rcv: unknown response "
1761 			    "%s(%x) src=0x%x tl=0x%x rt=%d data=0x%x\n",
1762 			    tcode_str[tcode], tcode,
1763 			    fp->mode.hdr.src,
1764 			    fp->mode.hdr.tlrt >> 2,
1765 			    fp->mode.hdr.tlrt & 3,
1766 			    fp->mode.rresq.data);
1767 #if 1
1768 			kprintf("try ad-hoc work around!!\n");
1769 			rb->xfer = fw_tl2xfer(rb->fc, fp->mode.hdr.src,
1770 					(fp->mode.hdr.tlrt >> 2)^3);
1771 			if (rb->xfer == NULL) {
1772 				kprintf("no use...\n");
1773 				goto err;
1774 			}
1775 #else
1776 			goto err;
1777 #endif
1778 		}
1779 		fw_rcv_copy(rb);
1780 		if (rb->xfer->recv.hdr.mode.wres.rtcode != RESP_CMP)
1781 			rb->xfer->resp = EIO;
1782 		else
1783 			rb->xfer->resp = 0;
1784 		/* make sure the packet is drained in AT queue */
1785 		oldstate = rb->xfer->state;
1786 		rb->xfer->state = FWXF_RCVD;
1787 		switch (oldstate) {
1788 		case FWXF_SENT:
1789 			fw_xfer_done(rb->xfer);
1790 			break;
1791 		case FWXF_START:
1792 #if 0
1793 			if (firewire_debug)
1794 				kprintf("not sent yet tl=%x\n", rb->xfer->tl);
1795 #endif
1796 			break;
1797 		default:
1798 			kprintf("unexpected state %d\n", rb->xfer->state);
1799 		}
1800 		return;
1801 	case FWTCODE_WREQQ:
1802 	case FWTCODE_WREQB:
1803 	case FWTCODE_RREQQ:
1804 	case FWTCODE_RREQB:
1805 	case FWTCODE_LREQ:
1806 		bind = fw_bindlookup(rb->fc, fp->mode.rreqq.dest_hi,
1807 			fp->mode.rreqq.dest_lo);
1808 		if(bind == NULL){
1809 			kprintf("Unknown service addr 0x%04x:0x%08x %s(%x)"
1810 			    " src=0x%x data=%x\n",
1811 			    fp->mode.wreqq.dest_hi, fp->mode.wreqq.dest_lo,
1812 			    tcode_str[tcode], tcode,
1813 			    fp->mode.hdr.src, ntohl(fp->mode.wreqq.data));
1814 			if (rb->fc->status == FWBUSRESET) {
1815 				kprintf("fw_rcv: cannot respond(bus reset)!\n");
1816 				goto err;
1817 			}
1818 			rb->xfer = fw_xfer_alloc(M_FWXFER);
1819 			if(rb->xfer == NULL){
1820 				return;
1821 			}
1822 			rb->xfer->send.spd = rb->spd;
1823 			rb->xfer->send.pay_len = 0;
1824 			resfp = &rb->xfer->send.hdr;
1825 			switch (tcode) {
1826 			case FWTCODE_WREQQ:
1827 			case FWTCODE_WREQB:
1828 				resfp->mode.hdr.tcode = FWTCODE_WRES;
1829 				break;
1830 			case FWTCODE_RREQQ:
1831 				resfp->mode.hdr.tcode = FWTCODE_RRESQ;
1832 				break;
1833 			case FWTCODE_RREQB:
1834 				resfp->mode.hdr.tcode = FWTCODE_RRESB;
1835 				break;
1836 			case FWTCODE_LREQ:
1837 				resfp->mode.hdr.tcode = FWTCODE_LRES;
1838 				break;
1839 			}
1840 			resfp->mode.hdr.dst = fp->mode.hdr.src;
1841 			resfp->mode.hdr.tlrt = fp->mode.hdr.tlrt;
1842 			resfp->mode.hdr.pri = fp->mode.hdr.pri;
1843 			resfp->mode.rresb.rtcode = RESP_ADDRESS_ERROR;
1844 			resfp->mode.rresb.extcode = 0;
1845 			resfp->mode.rresb.len = 0;
1846 /*
1847 			rb->xfer->act.hand = fw_asy_callback;
1848 */
1849 			rb->xfer->act.hand = fw_xfer_free;
1850 			if(fw_asyreq(rb->fc, -1, rb->xfer)){
1851 				fw_xfer_free(rb->xfer);
1852 				return;
1853 			}
1854 			goto err;
1855 		}
1856 		len = 0;
1857 		for (i = 0; i < rb->nvec; i ++)
1858 			len += rb->vec[i].iov_len;
1859 		switch(bind->act_type){
1860 		case FWACT_XFER:
1861 			crit_enter();
1862 			rb->xfer = STAILQ_FIRST(&bind->xferlist);
1863 			if (rb->xfer == NULL) {
1864 				kprintf("Discard a packet for this bind.\n");
1865 				crit_exit();
1866 				goto err;
1867 			}
1868 			STAILQ_REMOVE_HEAD(&bind->xferlist, link);
1869 			crit_exit();
1870 			fw_rcv_copy(rb);
1871 			rb->xfer->act.hand(rb->xfer);
1872 			return;
1873 			break;
1874 		case FWACT_CH:
1875 			if(rb->fc->ir[bind->sub]->queued >=
1876 				rb->fc->ir[bind->sub]->maxq){
1877 				device_printf(rb->fc->bdev,
1878 					"Discard a packet %x %d\n",
1879 					bind->sub,
1880 					rb->fc->ir[bind->sub]->queued);
1881 				goto err;
1882 			}
1883 			crit_enter();
1884 			rb->xfer = STAILQ_FIRST(&bind->xferlist);
1885 			if (rb->xfer == NULL) {
1886 				kprintf("Discard packet for this bind\n");
1887 				crit_exit();
1888 				goto err;
1889 			}
1890 			STAILQ_REMOVE_HEAD(&bind->xferlist, link);
1891 			crit_exit();
1892 			fw_rcv_copy(rb);
1893 			crit_enter();
1894 			rb->fc->ir[bind->sub]->queued++;
1895 			STAILQ_INSERT_TAIL(&rb->fc->ir[bind->sub]->q,
1896 			    rb->xfer, link);
1897 			crit_exit();
1898 
1899 			wakeup((caddr_t)rb->fc->ir[bind->sub]);
1900 
1901 			return;
1902 			break;
1903 		default:
1904 			goto err;
1905 			break;
1906 		}
1907 		break;
1908 #if 0 /* shouldn't happen ?? or for GASP */
1909 	case FWTCODE_STREAM:
1910 	{
1911 		struct fw_xferq *xferq;
1912 
1913 		xferq = rb->fc->ir[sub];
1914 #if 0
1915 		kprintf("stream rcv dma %d len %d off %d spd %d\n",
1916 			sub, len, off, spd);
1917 #endif
1918 		if(xferq->queued >= xferq->maxq) {
1919 			kprintf("receive queue is full\n");
1920 			goto err;
1921 		}
1922 		/* XXX get xfer from xfer queue, we don't need copy for
1923 			per packet mode */
1924 		rb->xfer = fw_xfer_alloc_buf(M_FWXFER, 0, /* XXX */
1925 						vec[0].iov_len);
1926 		if (rb->xfer == NULL) goto err;
1927 		fw_rcv_copy(rb)
1928 		crit_enter();
1929 		xferq->queued++;
1930 		STAILQ_INSERT_TAIL(&xferq->q, rb->xfer, link);
1931 		crit_exit();
1932 		sc = device_get_softc(rb->fc->bdev);
1933 		KNOTE(&xferq->rkq.ki_note, 0);
1934 		if (xferq->flag & FWXFERQ_WAKEUP) {
1935 			xferq->flag &= ~FWXFERQ_WAKEUP;
1936 			wakeup((caddr_t)xferq);
1937 		}
1938 		if (xferq->flag & FWXFERQ_HANDLER) {
1939 			xferq->hand(xferq);
1940 		}
1941 		return;
1942 		break;
1943 	}
1944 #endif
1945 	default:
1946 		kprintf("fw_rcv: unknown tcode %d\n", tcode);
1947 		break;
1948 	}
1949 err:
1950 	return;
1951 }
1952 
1953 /*
1954  * Post process for Bus Manager election process.
1955  */
1956 static void
1957 fw_try_bmr_callback(struct fw_xfer *xfer)
1958 {
1959 	struct firewire_comm *fc;
1960 	int bmr;
1961 
1962 	if (xfer == NULL)
1963 		return;
1964 	fc = xfer->fc;
1965 	if (xfer->resp != 0)
1966 		goto error;
1967 	if (xfer->recv.payload == NULL)
1968 		goto error;
1969 	if (xfer->recv.hdr.mode.lres.rtcode != FWRCODE_COMPLETE)
1970 		goto error;
1971 
1972 	bmr = ntohl(xfer->recv.payload[0]);
1973 	if (bmr == 0x3f)
1974 		bmr = fc->nodeid;
1975 
1976 	CSRARC(fc, BUS_MGR_ID) = fc->set_bmr(fc, bmr & 0x3f);
1977 	fw_xfer_free_buf(xfer);
1978 	fw_bmr(fc);
1979 	return;
1980 
1981 error:
1982 	device_printf(fc->bdev, "bus manager election failed\n");
1983 	fw_xfer_free_buf(xfer);
1984 }
1985 
1986 
1987 /*
1988  * To candidate Bus Manager election process.
1989  */
1990 static void
1991 fw_try_bmr(void *arg)
1992 {
1993 	struct fw_xfer *xfer;
1994 	struct firewire_comm *fc = (struct firewire_comm *)arg;
1995 	struct fw_pkt *fp;
1996 	int err = 0;
1997 
1998 	xfer = fw_xfer_alloc_buf(M_FWXFER, 8, 4);
1999 	if(xfer == NULL){
2000 		return;
2001 	}
2002 	xfer->send.spd = 0;
2003 	fc->status = FWBUSMGRELECT;
2004 
2005 	fp = &xfer->send.hdr;
2006 	fp->mode.lreq.dest_hi = 0xffff;
2007 	fp->mode.lreq.tlrt = 0;
2008 	fp->mode.lreq.tcode = FWTCODE_LREQ;
2009 	fp->mode.lreq.pri = 0;
2010 	fp->mode.lreq.src = 0;
2011 	fp->mode.lreq.len = 8;
2012 	fp->mode.lreq.extcode = EXTCODE_CMP_SWAP;
2013 	fp->mode.lreq.dst = FWLOCALBUS | fc->irm;
2014 	fp->mode.lreq.dest_lo = 0xf0000000 | BUS_MGR_ID;
2015 	xfer->send.payload[0] = htonl(0x3f);
2016 	xfer->send.payload[1] = htonl(fc->nodeid);
2017 	xfer->act.hand = fw_try_bmr_callback;
2018 
2019 	err = fw_asyreq(fc, -1, xfer);
2020 	if(err){
2021 		fw_xfer_free_buf(xfer);
2022 		return;
2023 	}
2024 	return;
2025 }
2026 
2027 #ifdef FW_VMACCESS
2028 /*
2029  * Software implementation for physical memory block access.
2030  * XXX:Too slow, usef for debug purpose only.
2031  */
2032 static void
2033 fw_vmaccess(struct fw_xfer *xfer){
2034 	struct fw_pkt *rfp, *sfp = NULL;
2035 	u_int32_t *ld = (u_int32_t *)xfer->recv.buf;
2036 
2037 	kprintf("vmaccess spd:%2x len:%03x data:%08x %08x %08x %08x\n",
2038 			xfer->spd, xfer->recv.len, ntohl(ld[0]), ntohl(ld[1]), ntohl(ld[2]), ntohl(ld[3]));
2039 	kprintf("vmaccess          data:%08x %08x %08x %08x\n", ntohl(ld[4]), ntohl(ld[5]), ntohl(ld[6]), ntohl(ld[7]));
2040 	if(xfer->resp != 0){
2041 		fw_xfer_free( xfer);
2042 		return;
2043 	}
2044 	if(xfer->recv.buf == NULL){
2045 		fw_xfer_free( xfer);
2046 		return;
2047 	}
2048 	rfp = (struct fw_pkt *)xfer->recv.buf;
2049 	switch(rfp->mode.hdr.tcode){
2050 		/* XXX need fix for 64bit arch */
2051 		case FWTCODE_WREQB:
2052 			xfer->send.buf = kmalloc(12, M_FW, M_WAITOK);
2053 			xfer->send.len = 12;
2054 			sfp = (struct fw_pkt *)xfer->send.buf;
2055 			bcopy(rfp->mode.wreqb.payload,
2056 				(caddr_t)ntohl(rfp->mode.wreqb.dest_lo), ntohs(rfp->mode.wreqb.len));
2057 			sfp->mode.wres.tcode = FWTCODE_WRES;
2058 			sfp->mode.wres.rtcode = 0;
2059 			break;
2060 		case FWTCODE_WREQQ:
2061 			xfer->send.buf = kmalloc(12, M_FW, M_WAITOK);
2062 			xfer->send.len = 12;
2063 			sfp->mode.wres.tcode = FWTCODE_WRES;
2064 			*((u_int32_t *)(ntohl(rfp->mode.wreqb.dest_lo))) = rfp->mode.wreqq.data;
2065 			sfp->mode.wres.rtcode = 0;
2066 			break;
2067 		case FWTCODE_RREQB:
2068 			xfer->send.buf = kmalloc(16 + rfp->mode.rreqb.len, M_FW, M_WAITOK);
2069 			xfer->send.len = 16 + ntohs(rfp->mode.rreqb.len);
2070 			sfp = (struct fw_pkt *)xfer->send.buf;
2071 			bcopy((caddr_t)ntohl(rfp->mode.rreqb.dest_lo),
2072 				sfp->mode.rresb.payload, (u_int16_t)ntohs(rfp->mode.rreqb.len));
2073 			sfp->mode.rresb.tcode = FWTCODE_RRESB;
2074 			sfp->mode.rresb.len = rfp->mode.rreqb.len;
2075 			sfp->mode.rresb.rtcode = 0;
2076 			sfp->mode.rresb.extcode = 0;
2077 			break;
2078 		case FWTCODE_RREQQ:
2079 			xfer->send.buf = kmalloc(16, M_FW, M_WAITOK);
2080 			xfer->send.len = 16;
2081 			sfp = (struct fw_pkt *)xfer->send.buf;
2082 			sfp->mode.rresq.data = *(u_int32_t *)(ntohl(rfp->mode.rreqq.dest_lo));
2083 			sfp->mode.wres.tcode = FWTCODE_RRESQ;
2084 			sfp->mode.rresb.rtcode = 0;
2085 			break;
2086 		default:
2087 			fw_xfer_free( xfer);
2088 			return;
2089 	}
2090 	sfp->mode.hdr.dst = rfp->mode.hdr.src;
2091 	xfer->dst = ntohs(rfp->mode.hdr.src);
2092 	xfer->act.hand = fw_xfer_free;
2093 	xfer->retry_req = fw_asybusy;
2094 
2095 	sfp->mode.hdr.tlrt = rfp->mode.hdr.tlrt;
2096 	sfp->mode.hdr.pri = 0;
2097 
2098 	fw_asyreq(xfer->fc, -1, xfer);
2099 /**/
2100 	return;
2101 }
2102 #endif
2103 
2104 /*
2105  * CRC16 check-sum for IEEE1394 register blocks.
2106  */
2107 u_int16_t
2108 fw_crc16(u_int32_t *ptr, u_int32_t len){
2109 	u_int32_t i, sum, crc = 0;
2110 	int shift;
2111 	len = (len + 3) & ~3;
2112 	for(i = 0 ; i < len ; i+= 4){
2113 		for( shift = 28 ; shift >= 0 ; shift -= 4){
2114 			sum = ((crc >> 12) ^ (ptr[i/4] >> shift)) & 0xf;
2115 			crc = (crc << 4) ^ ( sum << 12 ) ^ ( sum << 5) ^ sum;
2116 		}
2117 		crc &= 0xffff;
2118 	}
2119 	return((u_int16_t) crc);
2120 }
2121 
2122 static int
2123 fw_bmr(struct firewire_comm *fc)
2124 {
2125 	struct fw_device fwdev;
2126 	union fw_self_id *self_id;
2127 	int cmstr;
2128 	u_int32_t quad;
2129 
2130 	/* Check to see if the current root node is cycle master capable */
2131 	self_id = &fc->topology_map->self_id[fc->max_node];
2132 	if (fc->max_node > 0) {
2133 		/* XXX check cmc bit of businfo block rather than contender */
2134 		if (self_id->p0.link_active && self_id->p0.contender)
2135 			cmstr = fc->max_node;
2136 		else {
2137 			device_printf(fc->bdev,
2138 				"root node is not cycle master capable\n");
2139 			/* XXX shall we be the cycle master? */
2140 			cmstr = fc->nodeid;
2141 			/* XXX need bus reset */
2142 		}
2143 	} else
2144 		cmstr = -1;
2145 
2146 	device_printf(fc->bdev, "bus manager %d ", CSRARC(fc, BUS_MGR_ID));
2147 	if(CSRARC(fc, BUS_MGR_ID) != fc->nodeid) {
2148 		/* We are not the bus manager */
2149 		kprintf("\n");
2150 		return(0);
2151 	}
2152 	kprintf("(me)\n");
2153 
2154 	/* Optimize gapcount */
2155 	if(fc->max_hop <= MAX_GAPHOP )
2156 		fw_phy_config(fc, cmstr, gap_cnt[fc->max_hop]);
2157 	/* If we are the cycle master, nothing to do */
2158 	if (cmstr == fc->nodeid || cmstr == -1)
2159 		return 0;
2160 	/* Bus probe has not finished, make dummy fwdev for cmstr */
2161 	bzero(&fwdev, sizeof(fwdev));
2162 	fwdev.fc = fc;
2163 	fwdev.dst = cmstr;
2164 	fwdev.speed = 0;
2165 	fwdev.maxrec = 8; /* 512 */
2166 	fwdev.status = FWDEVINIT;
2167 	/* Set cmstr bit on the cycle master */
2168 	quad = htonl(1 << 8);
2169 	fwmem_write_quad(&fwdev, NULL, 0/*spd*/,
2170 		0xffff, 0xf0000000 | STATE_SET, &quad, fw_asy_callback_free);
2171 
2172 	return 0;
2173 }
2174 
2175 static int
2176 fw_modevent(module_t mode, int type, void *data)
2177 {
2178 	int err = 0;
2179 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2180 	static eventhandler_tag fwdev_ehtag = NULL;
2181 #endif
2182 
2183 	switch (type) {
2184 	case MOD_LOAD:
2185 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2186 		fwdev_ehtag = EVENTHANDLER_REGISTER(dev_clone,
2187 						fwdev_clone, 0, 1000);
2188 #endif
2189 		break;
2190 	case MOD_UNLOAD:
2191 #if defined(__FreeBSD__) && __FreeBSD_version >= 500000
2192 		if (fwdev_ehtag != NULL)
2193 			EVENTHANDLER_DEREGISTER(dev_clone, fwdev_ehtag);
2194 #endif
2195 		break;
2196 	case MOD_SHUTDOWN:
2197 		break;
2198 	}
2199 	return (err);
2200 }
2201 
2202 /*
2203  * This causes the firewire identify to be called for any attached fwohci
2204  * device in the system.
2205  */
2206 DECLARE_DUMMY_MODULE(firewire);
2207 DRIVER_MODULE(firewire,fwohci,firewire_driver,firewire_devclass,fw_modevent,NULL);
2208 MODULE_VERSION(firewire, 1);
2209