xref: /dragonfly/sys/bus/pci/pci.c (revision a615f06f)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27  * $DragonFly: src/sys/bus/pci/pci.c,v 1.58 2008/11/16 18:44:00 swildner Exp $
28  *
29  */
30 
31 #include "opt_bus.h"
32 #include "opt_pci.h"
33 
34 #include "opt_compat_oldpci.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/fcntl.h>
41 #include <sys/conf.h>
42 #include <sys/kernel.h>
43 #include <sys/queue.h>
44 #include <sys/types.h>
45 #include <sys/sysctl.h>
46 #include <sys/buf.h>
47 
48 #include <vm/vm.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_extern.h>
51 
52 #include <sys/bus.h>
53 #include <sys/rman.h>
54 #include <machine/smp.h>
55 #include "pci_cfgreg.h"
56 
57 #include <sys/pciio.h>
58 #include "pcireg.h"
59 #include "pcivar.h"
60 #include "pci_private.h"
61 
62 #include "pcib_if.h"
63 
64 devclass_t	pci_devclass;
65 const char	*pcib_owner;
66 
67 static void		pci_read_capabilities(device_t dev, pcicfgregs *cfg);
68 static int		pcie_slotimpl(const pcicfgregs *);
69 
70 struct pci_quirk {
71 	u_int32_t devid;	/* Vendor/device of the card */
72 	int	type;
73 #define PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
74 	int	arg1;
75 	int	arg2;
76 };
77 
78 struct pci_quirk pci_quirks[] = {
79 	/*
80 	 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
81 	 */
82 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
83 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
84 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
85 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
86 
87 	{ 0 }
88 };
89 
90 /* map register information */
91 #define PCI_MAPMEM	0x01	/* memory map */
92 #define PCI_MAPMEMP	0x02	/* prefetchable memory map */
93 #define PCI_MAPPORT	0x04	/* port map */
94 
95 static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
96 u_int32_t pci_numdevs = 0;
97 static u_int32_t pci_generation = 0;
98 
99 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "pci parameters");
100 static int pci_do_power_nodriver = 0;
101 TUNABLE_INT("hw.pci.do_power_nodriver", &pci_do_power_nodriver);
102 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RW,
103     &pci_do_power_nodriver, 0,
104   "Place a function into D3 state when no driver attaches to it.  0 means\n\
105 disable.  1 means conservatively place devices into D3 state.  2 means\n\
106 aggressively place devices into D3 state.  3 means put absolutely everything\n\
107 in D3 state.");
108 
109 device_t
110 pci_find_bsf(u_int8_t bus, u_int8_t slot, u_int8_t func)
111 {
112 	struct pci_devinfo *dinfo;
113 
114 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
115 		if ((dinfo->cfg.bus == bus) &&
116 		    (dinfo->cfg.slot == slot) &&
117 		    (dinfo->cfg.func == func)) {
118 			return (dinfo->cfg.dev);
119 		}
120 	}
121 
122 	return (NULL);
123 }
124 
125 device_t
126 pci_find_device(u_int16_t vendor, u_int16_t device)
127 {
128 	struct pci_devinfo *dinfo;
129 
130 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
131 		if ((dinfo->cfg.vendor == vendor) &&
132 		    (dinfo->cfg.device == device)) {
133 			return (dinfo->cfg.dev);
134 		}
135 	}
136 
137 	return (NULL);
138 }
139 
140 int
141 pcie_slot_implemented(device_t dev)
142 {
143 	struct pci_devinfo *dinfo = device_get_ivars(dev);
144 
145 	return pcie_slotimpl(&dinfo->cfg);
146 }
147 
148 void
149 pcie_set_max_readrq(device_t dev, uint16_t rqsize)
150 {
151 	uint8_t expr_ptr;
152 	uint16_t val;
153 
154 	rqsize &= PCIEM_DEVCTL_MAX_READRQ_MASK;
155 	if (rqsize > PCIEM_DEVCTL_MAX_READRQ_4096) {
156 		panic("%s: invalid max read request size 0x%02x\n",
157 		      device_get_nameunit(dev), rqsize);
158 	}
159 
160 	expr_ptr = pci_get_pciecap_ptr(dev);
161 	if (!expr_ptr)
162 		panic("%s: not PCIe device\n", device_get_nameunit(dev));
163 
164 	val = pci_read_config(dev, expr_ptr + PCIER_DEVCTRL, 2);
165 	if ((val & PCIEM_DEVCTL_MAX_READRQ_MASK) != rqsize) {
166 		if (bootverbose)
167 			device_printf(dev, "adjust device control 0x%04x", val);
168 
169 		val &= ~PCIEM_DEVCTL_MAX_READRQ_MASK;
170 		val |= rqsize;
171 		pci_write_config(dev, expr_ptr + PCIER_DEVCTRL, val, 2);
172 
173 		if (bootverbose)
174 			kprintf(" -> 0x%04x\n", val);
175 	}
176 }
177 
178 /* return base address of memory or port map */
179 
180 static u_int32_t
181 pci_mapbase(unsigned mapreg)
182 {
183 	int mask = 0x03;
184 	if ((mapreg & 0x01) == 0)
185 		mask = 0x0f;
186 	return (mapreg & ~mask);
187 }
188 
189 /* return map type of memory or port map */
190 
191 static int
192 pci_maptype(unsigned mapreg)
193 {
194 	static u_int8_t maptype[0x10] = {
195 		PCI_MAPMEM,		PCI_MAPPORT,
196 		PCI_MAPMEM,		0,
197 		PCI_MAPMEM,		PCI_MAPPORT,
198 		0,			0,
199 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
200 		PCI_MAPMEM|PCI_MAPMEMP, 0,
201 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
202 		0,			0,
203 	};
204 
205 	return maptype[mapreg & 0x0f];
206 }
207 
208 /* return log2 of map size decoded for memory or port map */
209 
210 static int
211 pci_mapsize(unsigned testval)
212 {
213 	int ln2size;
214 
215 	testval = pci_mapbase(testval);
216 	ln2size = 0;
217 	if (testval != 0) {
218 		while ((testval & 1) == 0)
219 		{
220 			ln2size++;
221 			testval >>= 1;
222 		}
223 	}
224 	return (ln2size);
225 }
226 
227 /* return log2 of address range supported by map register */
228 
229 static int
230 pci_maprange(unsigned mapreg)
231 {
232 	int ln2range = 0;
233 	switch (mapreg & 0x07) {
234 	case 0x00:
235 	case 0x01:
236 	case 0x05:
237 		ln2range = 32;
238 		break;
239 	case 0x02:
240 		ln2range = 20;
241 		break;
242 	case 0x04:
243 		ln2range = 64;
244 		break;
245 	}
246 	return (ln2range);
247 }
248 
249 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
250 
251 static void
252 pci_fixancient(pcicfgregs *cfg)
253 {
254 	if (cfg->hdrtype != 0)
255 		return;
256 
257 	/* PCI to PCI bridges use header type 1 */
258 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
259 		cfg->hdrtype = 1;
260 }
261 
262 /* read config data specific to header type 1 device (PCI to PCI bridge) */
263 
264 static void *
265 pci_readppb(device_t pcib, int b, int s, int f)
266 {
267 	pcih1cfgregs *p;
268 
269 	p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
270 
271 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
272 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
273 
274 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
275 
276 	p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
277 						    PCIR_IOBASEH_1, 2),
278 				   PCIB_READ_CONFIG(pcib, b, s, f,
279 				   		    PCIR_IOBASEL_1, 1));
280 	p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
281 						      PCIR_IOLIMITH_1, 2),
282 				     PCIB_READ_CONFIG(pcib, b, s, f,
283 				     		      PCIR_IOLIMITL_1, 1));
284 
285 	p->membase = PCI_PPBMEMBASE (0,
286 				     PCIB_READ_CONFIG(pcib, b, s, f,
287 				     		      PCIR_MEMBASE_1, 2));
288 	p->memlimit = PCI_PPBMEMLIMIT (0,
289 				       PCIB_READ_CONFIG(pcib, b, s, f,
290 				       		        PCIR_MEMLIMIT_1, 2));
291 
292 	p->pmembase = PCI_PPBMEMBASE (
293 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
294 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
295 
296 	p->pmemlimit = PCI_PPBMEMLIMIT (
297 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
298 					     PCIR_PMLIMITH_1, 4),
299 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
300 
301 	return (p);
302 }
303 
304 /* read config data specific to header type 2 device (PCI to CardBus bridge) */
305 
306 static void *
307 pci_readpcb(device_t pcib, int b, int s, int f)
308 {
309 	pcih2cfgregs *p;
310 
311 	p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
312 
313 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
314 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
315 
316 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
317 
318 	p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
319 	p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
320 	p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
321 	p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
322 
323 	p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
324 	p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
325 	p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
326 	p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
327 
328 	p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
329 	return p;
330 }
331 
332 /* extract header type specific config data */
333 
334 static void
335 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
336 {
337 #define REG(n,w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
338 	switch (cfg->hdrtype) {
339 	case 0:
340 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
341 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
342 		cfg->nummaps	    = PCI_MAXMAPS_0;
343 		break;
344 	case 1:
345 		cfg->subvendor      = REG(PCIR_SUBVEND_1, 2);
346 		cfg->subdevice      = REG(PCIR_SUBDEV_1, 2);
347 		cfg->secondarybus   = REG(PCIR_SECBUS_1, 1);
348 		cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
349 		cfg->nummaps	    = PCI_MAXMAPS_1;
350 		cfg->hdrspec        = pci_readppb(pcib, b, s, f);
351 		break;
352 	case 2:
353 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
354 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
355 		cfg->secondarybus   = REG(PCIR_SECBUS_2, 1);
356 		cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
357 		cfg->nummaps	    = PCI_MAXMAPS_2;
358 		cfg->hdrspec        = pci_readpcb(pcib, b, s, f);
359 		break;
360 	}
361 #undef REG
362 }
363 
364 /* read configuration header into pcicfgrect structure */
365 
366 struct pci_devinfo *
367 pci_read_device(device_t pcib, int b, int s, int f, size_t size)
368 {
369 #define REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
370 
371 	pcicfgregs *cfg = NULL;
372 	struct pci_devinfo *devlist_entry;
373 	struct devlist *devlist_head;
374 
375 	devlist_head = &pci_devq;
376 
377 	devlist_entry = NULL;
378 
379 	if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
380 
381 		devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
382 
383 		cfg = &devlist_entry->cfg;
384 
385 		cfg->bus		= b;
386 		cfg->slot		= s;
387 		cfg->func		= f;
388 		cfg->vendor		= REG(PCIR_VENDOR, 2);
389 		cfg->device		= REG(PCIR_DEVICE, 2);
390 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
391 		cfg->statreg		= REG(PCIR_STATUS, 2);
392 		cfg->baseclass		= REG(PCIR_CLASS, 1);
393 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
394 		cfg->progif		= REG(PCIR_PROGIF, 1);
395 		cfg->revid		= REG(PCIR_REVID, 1);
396 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
397 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
398 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
399 		cfg->intpin		= REG(PCIR_INTPIN, 1);
400 		cfg->intline		= REG(PCIR_INTLINE, 1);
401 
402 #ifdef APIC_IO
403 		/*
404 		 * If using the APIC the intpin is probably wrong, since it
405 		 * is often setup by the BIOS with the PIC in mind.
406 		 */
407 		if (cfg->intpin != 0) {
408 			int airq;
409 
410 			airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
411 			if (airq >= 0) {
412 				/* PCI specific entry found in MP table */
413 				if (airq != cfg->intline) {
414 					undirect_pci_irq(cfg->intline);
415 					cfg->intline = airq;
416 				}
417 			} else {
418 				/*
419 				 * PCI interrupts might be redirected to the
420 				 * ISA bus according to some MP tables. Use the
421 				 * same methods as used by the ISA devices
422 				 * devices to find the proper IOAPIC int pin.
423 				 */
424 				airq = isa_apic_irq(cfg->intline);
425 				if ((airq >= 0) && (airq != cfg->intline)) {
426 					/* XXX: undirect_pci_irq() ? */
427 					undirect_isa_irq(cfg->intline);
428 					cfg->intline = airq;
429 				}
430 			}
431 		}
432 #endif /* APIC_IO */
433 
434 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
435 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
436 
437 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
438 		cfg->hdrtype		&= ~PCIM_MFDEV;
439 
440 		pci_fixancient(cfg);
441 		pci_hdrtypedata(pcib, b, s, f, cfg);
442 		pci_read_capabilities(pcib, cfg);
443 
444 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
445 
446 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
447 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
448 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
449 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
450 
451 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
452 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
453 		devlist_entry->conf.pc_vendor = cfg->vendor;
454 		devlist_entry->conf.pc_device = cfg->device;
455 
456 		devlist_entry->conf.pc_class = cfg->baseclass;
457 		devlist_entry->conf.pc_subclass = cfg->subclass;
458 		devlist_entry->conf.pc_progif = cfg->progif;
459 		devlist_entry->conf.pc_revid = cfg->revid;
460 
461 		pci_numdevs++;
462 		pci_generation++;
463 	}
464 	return (devlist_entry);
465 #undef REG
466 }
467 
468 static int
469 pci_fixup_nextptr(int *nextptr0)
470 {
471 	int nextptr = *nextptr0;
472 
473 	/* "Next pointer" is only one byte */
474 	KASSERT(nextptr <= 0xff, ("Illegal next pointer %d\n", nextptr));
475 
476 	if (nextptr & 0x3) {
477 		/*
478 		 * PCI local bus spec 3.0:
479 		 *
480 		 * "... The bottom two bits of all pointers are reserved
481 		 *  and must be implemented as 00b although software must
482 		 *  mask them to allow for future uses of these bits ..."
483 		 */
484 		if (bootverbose) {
485 			kprintf("Illegal PCI extended capability "
486 				"offset, fixup 0x%02x -> 0x%02x\n",
487 				nextptr, nextptr & ~0x3);
488 		}
489 		nextptr &= ~0x3;
490 	}
491 	*nextptr0 = nextptr;
492 
493 	if (nextptr < 0x40) {
494 		if (nextptr != 0) {
495 			kprintf("Illegal PCI extended capability "
496 				"offset 0x%02x", nextptr);
497 		}
498 		return 0;
499 	}
500 	return 1;
501 }
502 
503 static void
504 pci_read_cap_pmgt(device_t pcib, int ptr, pcicfgregs *cfg)
505 {
506 #define REG(n, w)	\
507 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
508 
509 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
510 
511 	if (pmgt->pp_cap)
512 		return;
513 
514 	pmgt->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
515 	pmgt->pp_status = ptr + PCIR_POWER_STATUS;
516 	pmgt->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
517 	/*
518 	 * XXX
519 	 * Following way may be used to to test whether
520 	 * 'data' register exists:
521 	 * if 'data_select' register of
522 	 * PCIR_POWER_STATUS(bits[12,9]) is read-only
523 	 * then 'data' register is _not_ implemented.
524 	 */
525 	pmgt->pp_data = 0;
526 
527 #undef REG
528 }
529 
530 static int
531 pcie_slotimpl(const pcicfgregs *cfg)
532 {
533 	const struct pcicfg_expr *expr = &cfg->expr;
534 	uint16_t port_type;
535 
536 	/*
537 	 * Only version 1 can be parsed currently
538 	 */
539 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
540 		return 0;
541 
542 	/*
543 	 * - Slot implemented bit is meaningful iff current port is
544 	 *   root port or down stream port.
545 	 * - Testing for root port or down stream port is meanningful
546 	 *   iff PCI configure has type 1 header.
547 	 */
548 
549 	if (cfg->hdrtype != 1)
550 		return 0;
551 
552 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
553 	if (port_type != PCIE_ROOT_PORT && port_type != PCIE_DOWN_STREAM_PORT)
554 		return 0;
555 
556 	if (!(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
557 		return 0;
558 
559 	return 1;
560 }
561 
562 static void
563 pci_read_cap_expr(device_t pcib, int ptr, pcicfgregs *cfg)
564 {
565 #define REG(n, w)	\
566 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
567 
568 	struct pcicfg_expr *expr = &cfg->expr;
569 
570 	expr->expr_ptr = ptr;
571 	expr->expr_cap = REG(ptr + PCIER_CAPABILITY, 2);
572 
573 	/*
574 	 * Only version 1 can be parsed currently
575 	 */
576 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
577 		return;
578 
579 	/*
580 	 * Read slot capabilities.  Slot capabilities exists iff
581 	 * current port's slot is implemented
582 	 */
583 	if (pcie_slotimpl(cfg))
584 		expr->expr_slotcap = REG(ptr + PCIER_SLOTCAP, 4);
585 
586 #undef REG
587 }
588 
589 static void
590 pci_read_capabilities(device_t pcib, pcicfgregs *cfg)
591 {
592 #define REG(n, w)	\
593 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
594 
595 	int nextptr, ptrptr;
596 
597 	if ((REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) == 0) {
598 		/* No capabilities */
599 		return;
600 	}
601 
602 	switch (cfg->hdrtype) {
603 	case 0:
604 	case 1:
605 		ptrptr = PCIR_CAP_PTR;
606 		break;
607 	case 2:
608 		ptrptr = PCIR_CAP_PTR_2;
609 		break;
610 	default:
611 		return;		/* No capabilities support */
612 	}
613 	nextptr = REG(ptrptr, 1);
614 
615 	/*
616 	 * Read capability entries.
617 	 */
618 	while (pci_fixup_nextptr(&nextptr)) {
619 		int ptr = nextptr;
620 
621 		/* Process this entry */
622 		switch (REG(ptr, 1)) {
623 		case PCIY_PMG:		/* PCI power management */
624 			pci_read_cap_pmgt(pcib, ptr, cfg);
625 			break;
626 		case PCIY_PCIX:		/* PCI-X */
627 			cfg->pcixcap_ptr = ptr;
628 			break;
629 		case PCIY_EXPRESS:	/* PCI Express */
630 			pci_read_cap_expr(pcib, ptr, cfg);
631 			break;
632 		default:
633 			break;
634 		}
635 
636 		/* Find the next entry */
637 		nextptr = REG(ptr + 1, 1);
638 	}
639 
640 #undef REG
641 }
642 
643 /* free pcicfgregs structure and all depending data structures */
644 
645 int
646 pci_freecfg(struct pci_devinfo *dinfo)
647 {
648 	struct devlist *devlist_head;
649 
650 	devlist_head = &pci_devq;
651 
652 	if (dinfo->cfg.hdrspec != NULL)
653 		kfree(dinfo->cfg.hdrspec, M_DEVBUF);
654 	/* XXX this hasn't been tested */
655 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
656 	kfree(dinfo, M_DEVBUF);
657 
658 	/* increment the generation count */
659 	pci_generation++;
660 
661 	/* we're losing one device */
662 	pci_numdevs--;
663 	return (0);
664 }
665 
666 
667 /*
668  * PCI power manangement
669  */
670 int
671 pci_set_powerstate_method(device_t dev, device_t child, int state)
672 {
673 	struct pci_devinfo *dinfo = device_get_ivars(child);
674 	pcicfgregs *cfg = &dinfo->cfg;
675 	uint16_t status;
676 	int result, oldstate, highest, delay;
677 
678 	if (cfg->pmgt.pp_cap == 0)
679 		return (EOPNOTSUPP);
680 
681 	/*
682 	 * Optimize a no state change request away.  While it would be OK to
683 	 * write to the hardware in theory, some devices have shown odd
684 	 * behavior when going from D3 -> D3.
685 	 */
686 	oldstate = pci_get_powerstate(child);
687 	if (oldstate == state)
688 		return (0);
689 
690 	/*
691 	 * The PCI power management specification states that after a state
692 	 * transition between PCI power states, system software must
693 	 * guarantee a minimal delay before the function accesses the device.
694 	 * Compute the worst case delay that we need to guarantee before we
695 	 * access the device.  Many devices will be responsive much more
696 	 * quickly than this delay, but there are some that don't respond
697 	 * instantly to state changes.  Transitions to/from D3 state require
698 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
699 	 * is done below with DELAY rather than a sleeper function because
700 	 * this function can be called from contexts where we cannot sleep.
701 	 */
702 	highest = (oldstate > state) ? oldstate : state;
703 	if (highest == PCI_POWERSTATE_D3)
704 	    delay = 10000;
705 	else if (highest == PCI_POWERSTATE_D2)
706 	    delay = 200;
707 	else
708 	    delay = 0;
709 	status = PCI_READ_CONFIG(dev, child, cfg->pmgt.pp_status, 2)
710 	    & ~PCIM_PSTAT_DMASK;
711 	result = 0;
712 	switch (state) {
713 	case PCI_POWERSTATE_D0:
714 		status |= PCIM_PSTAT_D0;
715 		break;
716 	case PCI_POWERSTATE_D1:
717 		if ((cfg->pmgt.pp_cap & PCIM_PCAP_D1SUPP) == 0)
718 			return (EOPNOTSUPP);
719 		status |= PCIM_PSTAT_D1;
720 		break;
721 	case PCI_POWERSTATE_D2:
722 		if ((cfg->pmgt.pp_cap & PCIM_PCAP_D2SUPP) == 0)
723 			return (EOPNOTSUPP);
724 		status |= PCIM_PSTAT_D2;
725 		break;
726 	case PCI_POWERSTATE_D3:
727 		status |= PCIM_PSTAT_D3;
728 		break;
729 	default:
730 		return (EINVAL);
731 	}
732 
733 	if (bootverbose)
734 		kprintf(
735 		    "pci%d:%d:%d: Transition from D%d to D%d\n",
736 		    dinfo->cfg.bus, dinfo->cfg.slot, dinfo->cfg.func,
737 		    oldstate, state);
738 
739 	PCI_WRITE_CONFIG(dev, child, cfg->pmgt.pp_status, status, 2);
740 	if (delay)
741 		DELAY(delay);
742 	return (0);
743 }
744 
745 int
746 pci_get_powerstate_method(device_t dev, device_t child)
747 {
748 	struct pci_devinfo *dinfo = device_get_ivars(child);
749 	pcicfgregs *cfg = &dinfo->cfg;
750 	uint16_t status;
751 	int result;
752 
753 	if (cfg->pmgt.pp_cap != 0) {
754 		status = PCI_READ_CONFIG(dev, child, cfg->pmgt.pp_status, 2);
755 		switch (status & PCIM_PSTAT_DMASK) {
756 		case PCIM_PSTAT_D0:
757 			result = PCI_POWERSTATE_D0;
758 			break;
759 		case PCIM_PSTAT_D1:
760 			result = PCI_POWERSTATE_D1;
761 			break;
762 		case PCIM_PSTAT_D2:
763 			result = PCI_POWERSTATE_D2;
764 			break;
765 		case PCIM_PSTAT_D3:
766 			result = PCI_POWERSTATE_D3;
767 			break;
768 		default:
769 			result = PCI_POWERSTATE_UNKNOWN;
770 			break;
771 		}
772 	} else {
773 		/* No support, device is always at D0 */
774 		result = PCI_POWERSTATE_D0;
775 	}
776 	return (result);
777 }
778 
779 /*
780  * Some convenience functions for PCI device drivers.
781  */
782 
783 static __inline void
784 pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
785 {
786     u_int16_t	command;
787 
788     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
789     command |= bit;
790     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
791 }
792 
793 static __inline void
794 pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
795 {
796     u_int16_t	command;
797 
798     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
799     command &= ~bit;
800     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
801 }
802 
803 int
804 pci_enable_busmaster_method(device_t dev, device_t child)
805 {
806     pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
807     return(0);
808 }
809 
810 int
811 pci_disable_busmaster_method(device_t dev, device_t child)
812 {
813     pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
814     return(0);
815 }
816 
817 int
818 pci_enable_io_method(device_t dev, device_t child, int space)
819 {
820     uint16_t command;
821     uint16_t bit;
822     char *error;
823 
824     bit = 0;
825     error = NULL;
826 
827     switch(space) {
828     case SYS_RES_IOPORT:
829 	bit = PCIM_CMD_PORTEN;
830 	error = "port";
831 	break;
832     case SYS_RES_MEMORY:
833 	bit = PCIM_CMD_MEMEN;
834 	error = "memory";
835 	break;
836     default:
837 	return(EINVAL);
838     }
839     pci_set_command_bit(dev, child, bit);
840     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
841     if (command & bit)
842 	return(0);
843     device_printf(child, "failed to enable %s mapping!\n", error);
844     return(ENXIO);
845 }
846 
847 int
848 pci_disable_io_method(device_t dev, device_t child, int space)
849 {
850     uint16_t command;
851     uint16_t bit;
852     char *error;
853 
854     bit = 0;
855     error = NULL;
856 
857     switch(space) {
858     case SYS_RES_IOPORT:
859 	bit = PCIM_CMD_PORTEN;
860 	error = "port";
861 	break;
862     case SYS_RES_MEMORY:
863 	bit = PCIM_CMD_MEMEN;
864 	error = "memory";
865 	break;
866     default:
867 	return (EINVAL);
868     }
869     pci_clear_command_bit(dev, child, bit);
870     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
871     if (command & bit) {
872 	device_printf(child, "failed to disable %s mapping!\n", error);
873 	return (ENXIO);
874     }
875     return (0);
876 }
877 
878 /*
879  * This is the user interface to PCI configuration space.
880  */
881 
882 static int
883 pci_open(struct dev_open_args *ap)
884 {
885 	if ((ap->a_oflags & FWRITE) && securelevel > 0) {
886 		return EPERM;
887 	}
888 	return 0;
889 }
890 
891 static int
892 pci_close(struct dev_close_args *ap)
893 {
894 	return 0;
895 }
896 
897 /*
898  * Match a single pci_conf structure against an array of pci_match_conf
899  * structures.  The first argument, 'matches', is an array of num_matches
900  * pci_match_conf structures.  match_buf is a pointer to the pci_conf
901  * structure that will be compared to every entry in the matches array.
902  * This function returns 1 on failure, 0 on success.
903  */
904 static int
905 pci_conf_match(struct pci_match_conf *matches, int num_matches,
906 	       struct pci_conf *match_buf)
907 {
908 	int i;
909 
910 	if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
911 		return(1);
912 
913 	for (i = 0; i < num_matches; i++) {
914 		/*
915 		 * I'm not sure why someone would do this...but...
916 		 */
917 		if (matches[i].flags == PCI_GETCONF_NO_MATCH)
918 			continue;
919 
920 		/*
921 		 * Look at each of the match flags.  If it's set, do the
922 		 * comparison.  If the comparison fails, we don't have a
923 		 * match, go on to the next item if there is one.
924 		 */
925 		if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
926 		 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
927 			continue;
928 
929 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
930 		 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
931 			continue;
932 
933 		if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
934 		 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
935 			continue;
936 
937 		if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
938 		 && (match_buf->pc_vendor != matches[i].pc_vendor))
939 			continue;
940 
941 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
942 		 && (match_buf->pc_device != matches[i].pc_device))
943 			continue;
944 
945 		if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
946 		 && (match_buf->pc_class != matches[i].pc_class))
947 			continue;
948 
949 		if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
950 		 && (match_buf->pd_unit != matches[i].pd_unit))
951 			continue;
952 
953 		if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
954 		 && (strncmp(matches[i].pd_name, match_buf->pd_name,
955 			     sizeof(match_buf->pd_name)) != 0))
956 			continue;
957 
958 		return(0);
959 	}
960 
961 	return(1);
962 }
963 
964 /*
965  * Locate the parent of a PCI device by scanning the PCI devlist
966  * and return the entry for the parent.
967  * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
968  * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
969  */
970 
971 pcicfgregs *
972 pci_devlist_get_parent(pcicfgregs *cfg)
973 {
974 	struct devlist *devlist_head;
975 	struct pci_devinfo *dinfo;
976 	pcicfgregs *bridge_cfg;
977 	int i;
978 
979 	dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
980 
981 	/* If the device is on PCI bus 0, look for the host */
982 	if (cfg->bus == 0) {
983 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
984 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
985 			bridge_cfg = &dinfo->cfg;
986 			if (bridge_cfg->baseclass == PCIC_BRIDGE
987 				&& bridge_cfg->subclass == PCIS_BRIDGE_HOST
988 		    		&& bridge_cfg->bus == cfg->bus) {
989 				return bridge_cfg;
990 			}
991 		}
992 	}
993 
994 	/* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
995 	if (cfg->bus > 0) {
996 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
997 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
998 			bridge_cfg = &dinfo->cfg;
999 			if (bridge_cfg->baseclass == PCIC_BRIDGE
1000 				&& bridge_cfg->subclass == PCIS_BRIDGE_PCI
1001 				&& bridge_cfg->secondarybus == cfg->bus) {
1002 				return bridge_cfg;
1003 			}
1004 		}
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 static int
1011 pci_ioctl(struct dev_ioctl_args *ap)
1012 {
1013 	device_t pci, pcib;
1014 	struct pci_io *io;
1015 	const char *name;
1016 	int error;
1017 
1018 	if (!(ap->a_fflag & FWRITE))
1019 		return EPERM;
1020 
1021 	switch(ap->a_cmd) {
1022 	case PCIOCGETCONF:
1023 		{
1024 		struct pci_devinfo *dinfo;
1025 		struct pci_conf_io *cio;
1026 		struct devlist *devlist_head;
1027 		struct pci_match_conf *pattern_buf;
1028 		int num_patterns;
1029 		size_t iolen;
1030 		int ionum, i;
1031 
1032 		cio = (struct pci_conf_io *)ap->a_data;
1033 
1034 		num_patterns = 0;
1035 		dinfo = NULL;
1036 
1037 		/*
1038 		 * Hopefully the user won't pass in a null pointer, but it
1039 		 * can't hurt to check.
1040 		 */
1041 		if (cio == NULL) {
1042 			error = EINVAL;
1043 			break;
1044 		}
1045 
1046 		/*
1047 		 * If the user specified an offset into the device list,
1048 		 * but the list has changed since they last called this
1049 		 * ioctl, tell them that the list has changed.  They will
1050 		 * have to get the list from the beginning.
1051 		 */
1052 		if ((cio->offset != 0)
1053 		 && (cio->generation != pci_generation)){
1054 			cio->num_matches = 0;
1055 			cio->status = PCI_GETCONF_LIST_CHANGED;
1056 			error = 0;
1057 			break;
1058 		}
1059 
1060 		/*
1061 		 * Check to see whether the user has asked for an offset
1062 		 * past the end of our list.
1063 		 */
1064 		if (cio->offset >= pci_numdevs) {
1065 			cio->num_matches = 0;
1066 			cio->status = PCI_GETCONF_LAST_DEVICE;
1067 			error = 0;
1068 			break;
1069 		}
1070 
1071 		/* get the head of the device queue */
1072 		devlist_head = &pci_devq;
1073 
1074 		/*
1075 		 * Determine how much room we have for pci_conf structures.
1076 		 * Round the user's buffer size down to the nearest
1077 		 * multiple of sizeof(struct pci_conf) in case the user
1078 		 * didn't specify a multiple of that size.
1079 		 */
1080 		iolen = min(cio->match_buf_len -
1081 			    (cio->match_buf_len % sizeof(struct pci_conf)),
1082 			    pci_numdevs * sizeof(struct pci_conf));
1083 
1084 		/*
1085 		 * Since we know that iolen is a multiple of the size of
1086 		 * the pciconf union, it's okay to do this.
1087 		 */
1088 		ionum = iolen / sizeof(struct pci_conf);
1089 
1090 		/*
1091 		 * If this test is true, the user wants the pci_conf
1092 		 * structures returned to match the supplied entries.
1093 		 */
1094 		if ((cio->num_patterns > 0)
1095 		 && (cio->pat_buf_len > 0)) {
1096 			/*
1097 			 * pat_buf_len needs to be:
1098 			 * num_patterns * sizeof(struct pci_match_conf)
1099 			 * While it is certainly possible the user just
1100 			 * allocated a large buffer, but set the number of
1101 			 * matches correctly, it is far more likely that
1102 			 * their kernel doesn't match the userland utility
1103 			 * they're using.  It's also possible that the user
1104 			 * forgot to initialize some variables.  Yes, this
1105 			 * may be overly picky, but I hazard to guess that
1106 			 * it's far more likely to just catch folks that
1107 			 * updated their kernel but not their userland.
1108 			 */
1109 			if ((cio->num_patterns *
1110 			    sizeof(struct pci_match_conf)) != cio->pat_buf_len){
1111 				/* The user made a mistake, return an error*/
1112 				cio->status = PCI_GETCONF_ERROR;
1113 				kprintf("pci_ioctl: pat_buf_len %d != "
1114 				       "num_patterns (%d) * sizeof(struct "
1115 				       "pci_match_conf) (%d)\npci_ioctl: "
1116 				       "pat_buf_len should be = %d\n",
1117 				       cio->pat_buf_len, cio->num_patterns,
1118 				       (int)sizeof(struct pci_match_conf),
1119 				       (int)sizeof(struct pci_match_conf) *
1120 				       cio->num_patterns);
1121 				kprintf("pci_ioctl: do your headers match your "
1122 				       "kernel?\n");
1123 				cio->num_matches = 0;
1124 				error = EINVAL;
1125 				break;
1126 			}
1127 
1128 			/*
1129 			 * Check the user's buffer to make sure it's readable.
1130 			 */
1131 			if (!useracc((caddr_t)cio->patterns,
1132 				    cio->pat_buf_len, VM_PROT_READ)) {
1133 				kprintf("pci_ioctl: pattern buffer %p, "
1134 				       "length %u isn't user accessible for"
1135 				       " READ\n", cio->patterns,
1136 				       cio->pat_buf_len);
1137 				error = EACCES;
1138 				break;
1139 			}
1140 			/*
1141 			 * Allocate a buffer to hold the patterns.
1142 			 */
1143 			pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
1144 					     M_WAITOK);
1145 			error = copyin(cio->patterns, pattern_buf,
1146 				       cio->pat_buf_len);
1147 			if (error != 0)
1148 				break;
1149 			num_patterns = cio->num_patterns;
1150 
1151 		} else if ((cio->num_patterns > 0)
1152 			|| (cio->pat_buf_len > 0)) {
1153 			/*
1154 			 * The user made a mistake, spit out an error.
1155 			 */
1156 			cio->status = PCI_GETCONF_ERROR;
1157 			cio->num_matches = 0;
1158 			kprintf("pci_ioctl: invalid GETCONF arguments\n");
1159 			error = EINVAL;
1160 			break;
1161 		} else
1162 			pattern_buf = NULL;
1163 
1164 		/*
1165 		 * Make sure we can write to the match buffer.
1166 		 */
1167 		if (!useracc((caddr_t)cio->matches,
1168 			     cio->match_buf_len, VM_PROT_WRITE)) {
1169 			kprintf("pci_ioctl: match buffer %p, length %u "
1170 			       "isn't user accessible for WRITE\n",
1171 			       cio->matches, cio->match_buf_len);
1172 			error = EACCES;
1173 			break;
1174 		}
1175 
1176 		/*
1177 		 * Go through the list of devices and copy out the devices
1178 		 * that match the user's criteria.
1179 		 */
1180 		for (cio->num_matches = 0, error = 0, i = 0,
1181 		     dinfo = STAILQ_FIRST(devlist_head);
1182 		     (dinfo != NULL) && (cio->num_matches < ionum)
1183 		     && (error == 0) && (i < pci_numdevs);
1184 		     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
1185 
1186 			if (i < cio->offset)
1187 				continue;
1188 
1189 			/* Populate pd_name and pd_unit */
1190 			name = NULL;
1191 			if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
1192 				name = device_get_name(dinfo->cfg.dev);
1193 			if (name) {
1194 				strncpy(dinfo->conf.pd_name, name,
1195 					sizeof(dinfo->conf.pd_name));
1196 				dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1197 				dinfo->conf.pd_unit =
1198 					device_get_unit(dinfo->cfg.dev);
1199 			}
1200 
1201 			if ((pattern_buf == NULL) ||
1202 			    (pci_conf_match(pattern_buf, num_patterns,
1203 					    &dinfo->conf) == 0)) {
1204 
1205 				/*
1206 				 * If we've filled up the user's buffer,
1207 				 * break out at this point.  Since we've
1208 				 * got a match here, we'll pick right back
1209 				 * up at the matching entry.  We can also
1210 				 * tell the user that there are more matches
1211 				 * left.
1212 				 */
1213 				if (cio->num_matches >= ionum)
1214 					break;
1215 
1216 				error = copyout(&dinfo->conf,
1217 					        &cio->matches[cio->num_matches],
1218 						sizeof(struct pci_conf));
1219 				cio->num_matches++;
1220 			}
1221 		}
1222 
1223 		/*
1224 		 * Set the pointer into the list, so if the user is getting
1225 		 * n records at a time, where n < pci_numdevs,
1226 		 */
1227 		cio->offset = i;
1228 
1229 		/*
1230 		 * Set the generation, the user will need this if they make
1231 		 * another ioctl call with offset != 0.
1232 		 */
1233 		cio->generation = pci_generation;
1234 
1235 		/*
1236 		 * If this is the last device, inform the user so he won't
1237 		 * bother asking for more devices.  If dinfo isn't NULL, we
1238 		 * know that there are more matches in the list because of
1239 		 * the way the traversal is done.
1240 		 */
1241 		if (dinfo == NULL)
1242 			cio->status = PCI_GETCONF_LAST_DEVICE;
1243 		else
1244 			cio->status = PCI_GETCONF_MORE_DEVS;
1245 
1246 		if (pattern_buf != NULL)
1247 			kfree(pattern_buf, M_TEMP);
1248 
1249 		break;
1250 		}
1251 	case PCIOCREAD:
1252 		io = (struct pci_io *)ap->a_data;
1253 		switch(io->pi_width) {
1254 		case 4:
1255 		case 2:
1256 		case 1:
1257 			/*
1258 			 * Assume that the user-level bus number is
1259 			 * actually the pciN instance number. We map
1260 			 * from that to the real pcib+bus combination.
1261 			 */
1262 			pci = devclass_get_device(pci_devclass,
1263 						  io->pi_sel.pc_bus);
1264 			if (pci) {
1265 				/*
1266 				 * pci is the pci device and may contain
1267 				 * several children (for each function code).
1268 				 * The governing pci bus is the parent to
1269 				 * the pci device.
1270 				 */
1271 				int b;
1272 
1273 				pcib = device_get_parent(pci);
1274 				b = pcib_get_bus(pcib);
1275 				io->pi_data =
1276 					PCIB_READ_CONFIG(pcib,
1277 							 b,
1278 							 io->pi_sel.pc_dev,
1279 							 io->pi_sel.pc_func,
1280 							 io->pi_reg,
1281 							 io->pi_width);
1282 				error = 0;
1283 			} else {
1284 				error = ENODEV;
1285 			}
1286 			break;
1287 		default:
1288 			error = ENODEV;
1289 			break;
1290 		}
1291 		break;
1292 
1293 	case PCIOCWRITE:
1294 		io = (struct pci_io *)ap->a_data;
1295 		switch(io->pi_width) {
1296 		case 4:
1297 		case 2:
1298 		case 1:
1299 			/*
1300 			 * Assume that the user-level bus number is
1301 			 * actually the pciN instance number. We map
1302 			 * from that to the real pcib+bus combination.
1303 			 */
1304 			pci = devclass_get_device(pci_devclass,
1305 						  io->pi_sel.pc_bus);
1306 			if (pci) {
1307 				/*
1308 				 * pci is the pci device and may contain
1309 				 * several children (for each function code).
1310 				 * The governing pci bus is the parent to
1311 				 * the pci device.
1312 				 */
1313 				int b;
1314 
1315 				pcib = device_get_parent(pci);
1316 				b = pcib_get_bus(pcib);
1317 				PCIB_WRITE_CONFIG(pcib,
1318 						  b,
1319 						  io->pi_sel.pc_dev,
1320 						  io->pi_sel.pc_func,
1321 						  io->pi_reg,
1322 						  io->pi_data,
1323 						  io->pi_width);
1324 				error = 0;
1325 			} else {
1326 				error = ENODEV;
1327 			}
1328 			break;
1329 		default:
1330 			error = ENODEV;
1331 			break;
1332 		}
1333 		break;
1334 
1335 	default:
1336 		error = ENOTTY;
1337 		break;
1338 	}
1339 
1340 	return (error);
1341 }
1342 
1343 #define	PCI_CDEV	78
1344 
1345 static struct dev_ops pcic_ops = {
1346 	{ "pci", PCI_CDEV, 0 },
1347 	.d_open =	pci_open,
1348 	.d_close =	pci_close,
1349 	.d_ioctl =	pci_ioctl,
1350 };
1351 
1352 #include "pci_if.h"
1353 
1354 /*
1355  * New style pci driver.  Parent device is either a pci-host-bridge or a
1356  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
1357  */
1358 const char *
1359 pci_class_to_string(int baseclass)
1360 {
1361 	const char *name;
1362 
1363 	switch(baseclass) {
1364 	case PCIC_OLD:
1365 		name = "OLD";
1366 		break;
1367 	case PCIC_STORAGE:
1368 		name = "STORAGE";
1369 		break;
1370 	case PCIC_NETWORK:
1371 		name = "NETWORK";
1372 		break;
1373 	case PCIC_DISPLAY:
1374 		name = "DISPLAY";
1375 		break;
1376 	case PCIC_MULTIMEDIA:
1377 		name = "MULTIMEDIA";
1378 		break;
1379 	case PCIC_MEMORY:
1380 		name = "MEMORY";
1381 		break;
1382 	case PCIC_BRIDGE:
1383 		name = "BRIDGE";
1384 		break;
1385 	case PCIC_SIMPLECOMM:
1386 		name = "SIMPLECOMM";
1387 		break;
1388 	case PCIC_BASEPERIPH:
1389 		name = "BASEPERIPH";
1390 		break;
1391 	case PCIC_INPUTDEV:
1392 		name = "INPUTDEV";
1393 		break;
1394 	case PCIC_DOCKING:
1395 		name = "DOCKING";
1396 		break;
1397 	case PCIC_PROCESSOR:
1398 		name = "PROCESSOR";
1399 		break;
1400 	case PCIC_SERIALBUS:
1401 		name = "SERIALBUS";
1402 		break;
1403 	case PCIC_WIRELESS:
1404 		name = "WIRELESS";
1405 		break;
1406 	case PCIC_I2O:
1407 		name = "I20";
1408 		break;
1409 	case PCIC_SATELLITE:
1410 		name = "SATELLITE";
1411 		break;
1412 	case PCIC_CRYPTO:
1413 		name = "CRYPTO";
1414 		break;
1415 	case PCIC_SIGPROC:
1416 		name = "SIGPROC";
1417 		break;
1418 	case PCIC_OTHER:
1419 		name = "OTHER";
1420 		break;
1421 	default:
1422 		name = "?";
1423 		break;
1424 	}
1425 	return(name);
1426 }
1427 
1428 static void
1429 pci_print_verbose_expr(const pcicfgregs *cfg)
1430 {
1431 	const struct pcicfg_expr *expr = &cfg->expr;
1432 	const char *port_name;
1433 	uint16_t port_type;
1434 
1435 	if (!bootverbose)
1436 		return;
1437 
1438 	if (expr->expr_ptr == 0) /* No PCI Express capability */
1439 		return;
1440 
1441 	kprintf("\tPCI Express ver.%d cap=0x%04x",
1442 		expr->expr_cap & PCIEM_CAP_VER_MASK, expr->expr_cap);
1443 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
1444 		goto back;
1445 
1446 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
1447 
1448 	switch (port_type) {
1449 	case PCIE_END_POINT:
1450 		port_name = "DEVICE";
1451 		break;
1452 	case PCIE_LEG_END_POINT:
1453 		port_name = "LEGDEV";
1454 		break;
1455 	case PCIE_ROOT_PORT:
1456 		port_name = "ROOT";
1457 		break;
1458 	case PCIE_UP_STREAM_PORT:
1459 		port_name = "UPSTREAM";
1460 		break;
1461 	case PCIE_DOWN_STREAM_PORT:
1462 		port_name = "DOWNSTRM";
1463 		break;
1464 	case PCIE_PCIE2PCI_BRIDGE:
1465 		port_name = "PCIE2PCI";
1466 		break;
1467 	case PCIE_PCI2PCIE_BRIDGE:
1468 		port_name = "PCI2PCIE";
1469 		break;
1470 	default:
1471 		port_name = NULL;
1472 		break;
1473 	}
1474 	if ((port_type == PCIE_ROOT_PORT ||
1475 	     port_type == PCIE_DOWN_STREAM_PORT) &&
1476 	    !(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
1477 		port_name = NULL;
1478 	if (port_name != NULL)
1479 		kprintf("[%s]", port_name);
1480 
1481 	if (pcie_slotimpl(cfg)) {
1482 		kprintf(", slotcap=0x%08x", expr->expr_slotcap);
1483 		if (expr->expr_slotcap & PCIEM_SLTCAP_HP_CAP)
1484 			kprintf("[HOTPLUG]");
1485 	}
1486 back:
1487 	kprintf("\n");
1488 }
1489 
1490 void
1491 pci_print_verbose(struct pci_devinfo *dinfo)
1492 {
1493 	if (bootverbose) {
1494 		pcicfgregs *cfg = &dinfo->cfg;
1495 
1496 		kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1497 		       cfg->vendor, cfg->device, cfg->revid);
1498 		kprintf("\tbus=%d, slot=%d, func=%d\n",
1499 		       cfg->bus, cfg->slot, cfg->func);
1500 		kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1501 		       pci_class_to_string(cfg->baseclass),
1502 		       cfg->baseclass, cfg->subclass, cfg->progif,
1503 		       cfg->hdrtype, cfg->mfdev);
1504 		kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1505 		       cfg->subordinatebus, cfg->secondarybus);
1506 #ifdef PCI_DEBUG
1507 		kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1508 		       cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1509 		kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1510 		       cfg->lattimer, cfg->lattimer * 30,
1511 		       cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1512 #endif /* PCI_DEBUG */
1513 		if (cfg->intpin > 0)
1514 			kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1515 
1516 		pci_print_verbose_expr(cfg);
1517 	}
1518 }
1519 
1520 static int
1521 pci_porten(device_t pcib, int b, int s, int f)
1522 {
1523 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1524 		& PCIM_CMD_PORTEN) != 0;
1525 }
1526 
1527 static int
1528 pci_memen(device_t pcib, int b, int s, int f)
1529 {
1530 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1531 		& PCIM_CMD_MEMEN) != 0;
1532 }
1533 
1534 /*
1535  * Add a resource based on a pci map register. Return 1 if the map
1536  * register is a 32bit map register or 2 if it is a 64bit register.
1537  */
1538 static int
1539 pci_add_map(device_t pcib, int b, int s, int f, int reg,
1540 	    struct resource_list *rl)
1541 {
1542 	u_int32_t map;
1543 	u_int64_t base;
1544 	u_int8_t ln2size;
1545 	u_int8_t ln2range;
1546 	u_int32_t testval;
1547 
1548 
1549 #ifdef PCI_ENABLE_IO_MODES
1550 	u_int16_t cmd;
1551 #endif
1552 	int type;
1553 
1554 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1555 
1556 	if (map == 0 || map == 0xffffffff)
1557 		return 1; /* skip invalid entry */
1558 
1559 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1560 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1561 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1562 
1563 	base = pci_mapbase(map);
1564 	if (pci_maptype(map) & PCI_MAPMEM)
1565 		type = SYS_RES_MEMORY;
1566 	else
1567 		type = SYS_RES_IOPORT;
1568 	ln2size = pci_mapsize(testval);
1569 	ln2range = pci_maprange(testval);
1570 	if (ln2range == 64) {
1571 		/* Read the other half of a 64bit map register */
1572 		base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1573 	}
1574 
1575 	/*
1576 	 * This code theoretically does the right thing, but has
1577 	 * undesirable side effects in some cases where
1578 	 * peripherals respond oddly to having these bits
1579 	 * enabled.  Leave them alone by default.
1580 	 */
1581 #ifdef PCI_ENABLE_IO_MODES
1582 	if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1583 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1584 		cmd |= PCIM_CMD_PORTEN;
1585 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1586 	}
1587 	if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1588 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1589 		cmd |= PCIM_CMD_MEMEN;
1590 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1591 	}
1592 #else
1593         if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1594                 return 1;
1595         if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1596 		return 1;
1597 #endif
1598 
1599 	resource_list_add(rl, type, reg,
1600 			  base, base + (1 << ln2size) - 1,
1601 			  (1 << ln2size));
1602 
1603 	if (bootverbose) {
1604 		kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1605 		       reg, pci_maptype(base), ln2range,
1606 		       (unsigned int) base, ln2size);
1607 	}
1608 
1609 	return (ln2range == 64) ? 2 : 1;
1610 }
1611 
1612 #ifdef PCI_MAP_FIXUP
1613 /*
1614  * For ATA devices we need to decide early on what addressing mode to use.
1615  * Legacy demands that the primary and secondary ATA ports sits on the
1616  * same addresses that old ISA hardware did. This dictates that we use
1617  * those addresses and ignore the BARs if we cannot set PCI native
1618  * addressing mode.
1619  */
1620 static void
1621 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1622 	     struct resource_list *rl)
1623 {
1624 	int rid, type, progif;
1625 #if 0
1626 	/* if this device supports PCI native addressing use it */
1627 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1628 	if ((progif &0x8a) == 0x8a) {
1629 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1630 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1631 			kprintf("Trying ATA native PCI addressing mode\n");
1632 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1633 		}
1634 	}
1635 #endif
1636 	/*
1637 	 * Because we return any preallocated resources for lazy
1638 	 * allocation for PCI devices in pci_alloc_resource(), we can
1639 	 * allocate our legacy resources here.
1640 	 */
1641 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1642 	type = SYS_RES_IOPORT;
1643 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1644 		pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1645 		pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1646 	} else {
1647 		rid = PCIR_BAR(0);
1648 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1649 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1650 				    0);
1651 		rid = PCIR_BAR(1);
1652 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1653 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1654 				    0);
1655 	}
1656 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
1657 		pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1658 		pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1659 	} else {
1660 		rid = PCIR_BAR(2);
1661 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1662 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1663 				    0);
1664 		rid = PCIR_BAR(3);
1665 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1666 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1667 				    0);
1668 	}
1669 	pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1670 	pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1671 }
1672 #endif /* PCI_MAP_FIXUP */
1673 
1674 static void
1675 pci_add_resources(device_t pcib, device_t bus, device_t dev)
1676 {
1677 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1678 	pcicfgregs *cfg = &dinfo->cfg;
1679 	struct resource_list *rl = &dinfo->resources;
1680 	struct pci_quirk *q;
1681 	int b, i, f, s;
1682 #if 0	/* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1683 	int irq;
1684 #endif
1685 
1686 	b = cfg->bus;
1687 	s = cfg->slot;
1688 	f = cfg->func;
1689 #ifdef PCI_MAP_FIXUP
1690 	/* atapci devices in legacy mode need special map treatment */
1691 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
1692 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1693 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
1694 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
1695 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
1696 		pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1697 	else
1698 #endif /* PCI_MAP_FIXUP */
1699 		for (i = 0; i < cfg->nummaps;) {
1700 			i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1701 		}
1702 
1703 	for (q = &pci_quirks[0]; q->devid; q++) {
1704 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
1705 		    && q->type == PCI_QUIRK_MAP_REG)
1706 			pci_add_map(pcib, b, s, f, q->arg1, rl);
1707 	}
1708 
1709 	if (cfg->intpin > 0 && cfg->intline != 255)
1710 		resource_list_add(rl, SYS_RES_IRQ, 0,
1711 				  cfg->intline, cfg->intline, 1);
1712 }
1713 
1714 void
1715 pci_add_children(device_t dev, int busno, size_t dinfo_size)
1716 {
1717 #define REG(n, w)       PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1718 	device_t pcib = device_get_parent(dev);
1719 	struct pci_devinfo *dinfo;
1720 	int maxslots;
1721 	int s, f, pcifunchigh;
1722 	uint8_t hdrtype;
1723 
1724 	KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1725 
1726 	maxslots = PCIB_MAXSLOTS(pcib);
1727 
1728 	for (s = 0; s <= maxslots; s++) {
1729 		pcifunchigh = 0;
1730 		f = 0;
1731 		hdrtype = REG(PCIR_HDRTYPE, 1);
1732 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1733 			continue;
1734 		if (hdrtype & PCIM_MFDEV)
1735 			pcifunchigh = PCI_FUNCMAX;
1736 		for (f = 0; f <= pcifunchigh; f++) {
1737 			dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1738 			if (dinfo != NULL) {
1739 				pci_add_child(dev, dinfo);
1740 			}
1741 		}
1742 	}
1743 #undef REG
1744 }
1745 
1746 /*
1747  * The actual PCI child that we add has a NULL driver whos parent
1748  * device will be "pci".  The child contains the ivars, not the parent.
1749  */
1750 void
1751 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1752 {
1753 	device_t pcib;
1754 
1755 	pcib = device_get_parent(bus);
1756 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1757 	device_set_ivars(dinfo->cfg.dev, dinfo);
1758 	pci_cfg_save(dinfo->cfg.dev, dinfo, 0);
1759 	pci_cfg_restore(dinfo->cfg.dev, dinfo);
1760 	pci_add_resources(pcib, bus, dinfo->cfg.dev);
1761 	pci_print_verbose(dinfo);
1762 }
1763 
1764 /*
1765  * Probe the PCI bus.  Note: probe code is not supposed to add children
1766  * or call attach.
1767  */
1768 static int
1769 pci_probe(device_t dev)
1770 {
1771 	device_set_desc(dev, "PCI bus");
1772 
1773 	/* Allow other subclasses to override this driver */
1774 	return(-1000);
1775 }
1776 
1777 static int
1778 pci_attach(device_t dev)
1779 {
1780 	int busno;
1781 	int lunit = device_get_unit(dev);
1782 
1783 	dev_ops_add(&pcic_ops, -1, lunit);
1784 	make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1785 
1786         /*
1787          * Since there can be multiple independantly numbered PCI
1788          * busses on some large alpha systems, we can't use the unit
1789          * number to decide what bus we are probing. We ask the parent
1790          * pcib what our bus number is.
1791 	 *
1792 	 * pcib_get_bus() must act on the pci bus device, not on the pci
1793 	 * device, because it uses badly hacked nexus-based ivars to
1794 	 * store and retrieve the physical bus number.  XXX
1795          */
1796         busno = pcib_get_bus(device_get_parent(dev));
1797         if (bootverbose)
1798                 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1799 
1800         pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1801 
1802         return (bus_generic_attach(dev));
1803 }
1804 
1805 static int
1806 pci_print_resources(struct resource_list *rl, const char *name, int type,
1807 		    const char *format)
1808 {
1809 	struct resource_list_entry *rle;
1810 	int printed, retval;
1811 
1812 	printed = 0;
1813 	retval = 0;
1814 	/* Yes, this is kinda cheating */
1815 	SLIST_FOREACH(rle, rl, link) {
1816 		if (rle->type == type) {
1817 			if (printed == 0)
1818 				retval += kprintf(" %s ", name);
1819 			else if (printed > 0)
1820 				retval += kprintf(",");
1821 			printed++;
1822 			retval += kprintf(format, rle->start);
1823 			if (rle->count > 1) {
1824 				retval += kprintf("-");
1825 				retval += kprintf(format, rle->start +
1826 						 rle->count - 1);
1827 			}
1828 		}
1829 	}
1830 	return retval;
1831 }
1832 
1833 int
1834 pci_print_child(device_t dev, device_t child)
1835 {
1836 	struct pci_devinfo *dinfo;
1837 	struct resource_list *rl;
1838 	pcicfgregs *cfg;
1839 	int retval = 0;
1840 
1841 	dinfo = device_get_ivars(child);
1842 	cfg = &dinfo->cfg;
1843 	rl = &dinfo->resources;
1844 
1845 	retval += bus_print_child_header(dev, child);
1846 
1847 	retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1848 	retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1849 	retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1850 	if (device_get_flags(dev))
1851 		retval += kprintf(" flags %#x", device_get_flags(dev));
1852 
1853 	retval += kprintf(" at device %d.%d", pci_get_slot(child),
1854 			 pci_get_function(child));
1855 
1856 	retval += bus_print_child_footer(dev, child);
1857 
1858 	return (retval);
1859 }
1860 
1861 void
1862 pci_probe_nomatch(device_t dev, device_t child)
1863 {
1864 	struct pci_devinfo *dinfo;
1865 	pcicfgregs *cfg;
1866 	const char *desc;
1867 	int unknown;
1868 
1869 	unknown = 0;
1870 	dinfo = device_get_ivars(child);
1871 	cfg = &dinfo->cfg;
1872 	desc = pci_ata_match(child);
1873 	if (!desc) desc = pci_usb_match(child);
1874 	if (!desc) desc = pci_vga_match(child);
1875 	if (!desc) desc = pci_chip_match(child);
1876 	if (!desc) {
1877 		desc = "unknown card";
1878 		unknown++;
1879 	}
1880 	device_printf(dev, "<%s>", desc);
1881 	if (bootverbose || unknown) {
1882 		kprintf(" (vendor=0x%04x, dev=0x%04x)",
1883 			cfg->vendor,
1884 			cfg->device);
1885 	}
1886 	kprintf(" at %d.%d",
1887 		pci_get_slot(child),
1888 		pci_get_function(child));
1889 	if (cfg->intpin > 0 && cfg->intline != 255) {
1890 		kprintf(" irq %d", cfg->intline);
1891 	}
1892 	kprintf("\n");
1893 	pci_cfg_save(child, (struct pci_devinfo *)device_get_ivars(child), 1);
1894 
1895 	return;
1896 }
1897 
1898 int
1899 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1900 {
1901 	struct pci_devinfo *dinfo;
1902 	pcicfgregs *cfg;
1903 
1904 	dinfo = device_get_ivars(child);
1905 	cfg = &dinfo->cfg;
1906 
1907 	switch (which) {
1908 	case PCI_IVAR_SUBVENDOR:
1909 		*result = cfg->subvendor;
1910 		break;
1911 	case PCI_IVAR_SUBDEVICE:
1912 		*result = cfg->subdevice;
1913 		break;
1914 	case PCI_IVAR_VENDOR:
1915 		*result = cfg->vendor;
1916 		break;
1917 	case PCI_IVAR_DEVICE:
1918 		*result = cfg->device;
1919 		break;
1920 	case PCI_IVAR_DEVID:
1921 		*result = (cfg->device << 16) | cfg->vendor;
1922 		break;
1923 	case PCI_IVAR_CLASS:
1924 		*result = cfg->baseclass;
1925 		break;
1926 	case PCI_IVAR_SUBCLASS:
1927 		*result = cfg->subclass;
1928 		break;
1929 	case PCI_IVAR_PROGIF:
1930 		*result = cfg->progif;
1931 		break;
1932 	case PCI_IVAR_REVID:
1933 		*result = cfg->revid;
1934 		break;
1935 	case PCI_IVAR_INTPIN:
1936 		*result = cfg->intpin;
1937 		break;
1938 	case PCI_IVAR_IRQ:
1939 		*result = cfg->intline;
1940 		break;
1941 	case PCI_IVAR_BUS:
1942 		*result = cfg->bus;
1943 		break;
1944 	case PCI_IVAR_SLOT:
1945 		*result = cfg->slot;
1946 		break;
1947 	case PCI_IVAR_FUNCTION:
1948 		*result = cfg->func;
1949 		break;
1950 	case PCI_IVAR_SECONDARYBUS:
1951 		*result = cfg->secondarybus;
1952 		break;
1953 	case PCI_IVAR_SUBORDINATEBUS:
1954 		*result = cfg->subordinatebus;
1955 		break;
1956 	case PCI_IVAR_ETHADDR:
1957 		/*
1958 		 * The generic accessor doesn't deal with failure, so
1959 		 * we set the return value, then return an error.
1960 		 */
1961 		*result = 0;
1962 		return (EINVAL);
1963 	case PCI_IVAR_PCIXCAP_PTR:
1964 		*result = cfg->pcixcap_ptr;
1965 		break;
1966 	case PCI_IVAR_PCIECAP_PTR:
1967 		*result = cfg->expr.expr_ptr;
1968 		break;
1969 	default:
1970 		return ENOENT;
1971 	}
1972 	return 0;
1973 }
1974 
1975 int
1976 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1977 {
1978 	struct pci_devinfo *dinfo;
1979 	pcicfgregs *cfg;
1980 
1981 	dinfo = device_get_ivars(child);
1982 	cfg = &dinfo->cfg;
1983 
1984 	switch (which) {
1985 	case PCI_IVAR_SUBVENDOR:
1986 	case PCI_IVAR_SUBDEVICE:
1987 	case PCI_IVAR_VENDOR:
1988 	case PCI_IVAR_DEVICE:
1989 	case PCI_IVAR_DEVID:
1990 	case PCI_IVAR_CLASS:
1991 	case PCI_IVAR_SUBCLASS:
1992 	case PCI_IVAR_PROGIF:
1993 	case PCI_IVAR_REVID:
1994 	case PCI_IVAR_INTPIN:
1995 	case PCI_IVAR_IRQ:
1996 	case PCI_IVAR_BUS:
1997 	case PCI_IVAR_SLOT:
1998 	case PCI_IVAR_FUNCTION:
1999 	case PCI_IVAR_ETHADDR:
2000 	case PCI_IVAR_PCIXCAP_PTR:
2001 	case PCI_IVAR_PCIECAP_PTR:
2002 		return EINVAL;	/* disallow for now */
2003 
2004 	case PCI_IVAR_SECONDARYBUS:
2005 		cfg->secondarybus = value;
2006 		break;
2007 	case PCI_IVAR_SUBORDINATEBUS:
2008 		cfg->subordinatebus = value;
2009 		break;
2010 	default:
2011 		return ENOENT;
2012 	}
2013 	return 0;
2014 }
2015 
2016 #ifdef PCI_MAP_FIXUP
2017 static struct resource *
2018 pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
2019 	      u_long end, u_long count, u_int flags)
2020 {
2021 	struct pci_devinfo *dinfo = device_get_ivars(child);
2022 	struct resource_list *rl = &dinfo->resources;
2023 	struct resource_list_entry *rle;
2024 	struct resource *res;
2025 	uint32_t map, testval;
2026 	int mapsize;
2027 
2028 	/*
2029 	 * Weed out the bogons, and figure out how large the BAR/map
2030 	 * is. BARs that read back 0 here are bogus and unimplemented.
2031 	 *
2032 	 * Note: atapci in legacy mode are special and handled elsewhere
2033 	 * in the code. If you have an atapci device in legacy mode and
2034 	 * it fails here, that other code is broken.
2035 	 */
2036 	res = NULL;
2037 	map = pci_read_config(child, *rid, 4);
2038 	pci_write_config(child, *rid, 0xffffffff, 4);
2039 	testval = pci_read_config(child, *rid, 4);
2040 	if (pci_mapbase(testval) == 0)
2041 		goto out;
2042 	if (pci_maptype(testval) & PCI_MAPMEM) {
2043 		if (type != SYS_RES_MEMORY) {
2044 			if (bootverbose)
2045 				device_printf(dev, "child %s requested type %d"
2046 					      " for rid %#x, but the BAR says "
2047 					      "it is a memio\n",
2048 					      device_get_nameunit(child), type,
2049 					      *rid);
2050 			goto out;
2051 		}
2052 	} else {
2053 		if (type != SYS_RES_IOPORT) {
2054 			if (bootverbose)
2055 				device_printf(dev, "child %s requested type %d"
2056 					      " for rid %#x, but the BAR says "
2057 					      "it is an ioport\n",
2058 					      device_get_nameunit(child), type,
2059 					      *rid);
2060 			goto out;
2061 		}
2062 	}
2063 	/*
2064 	 * For real BARs, we need to override the size that
2065 	 * the driver requests, because that's what the BAR
2066 	 * actually uses and we would otherwise have a
2067 	 * situation where we might allocate the excess to
2068 	 * another driver, which won't work.
2069 	 */
2070 	mapsize = pci_mapsize(testval);
2071 	count = 1 << mapsize;
2072 	if (RF_ALIGNMENT(flags) < mapsize)
2073 		flags = (flags & ~RF_ALIGNMENT_MASK) |
2074 		   RF_ALIGNMENT_LOG2(mapsize);
2075 	/*
2076 	 * Allocate enough resource, and then write back the
2077 	 * appropriate BAR for that resource.
2078 	 */
2079 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
2080 				 start, end, count, flags);
2081 	if (res == NULL) {
2082 		device_printf(child, "%#lx bytes at rid %#x res %d failed "
2083 			      "(%#lx, %#lx)\n", count, *rid, type, start, end);
2084 		goto out;
2085 	}
2086 	resource_list_add(rl, type, *rid, start, end, count);
2087 	rle = resource_list_find(rl, type, *rid);
2088 	if (rle == NULL)
2089 		panic("pci_alloc_map: unexpectedly can't find resource.");
2090 	rle->res = res;
2091 	rle->start = rman_get_start(res);
2092 	rle->end = rman_get_end(res);
2093 	rle->count = count;
2094 	if (bootverbose)
2095 		device_printf(child, "lazy allocation of %#lx bytes rid %#x "
2096 			      "type %d at %#lx\n", count, *rid, type,
2097 			      rman_get_start(res));
2098 	map = rman_get_start(res);
2099 out:;
2100 	pci_write_config(child, *rid, map, 4);
2101 	return res;
2102 }
2103 #endif /* PCI_MAP_FIXUP */
2104 
2105 struct resource *
2106 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
2107 		   u_long start, u_long end, u_long count, u_int flags)
2108 {
2109 	struct pci_devinfo *dinfo = device_get_ivars(child);
2110 	struct resource_list *rl = &dinfo->resources;
2111 #ifdef PCI_MAP_FIXUP
2112 	struct resource_list_entry *rle;
2113 #endif /* PCI_MAP_FIXUP */
2114 	pcicfgregs *cfg = &dinfo->cfg;
2115 
2116 	/*
2117 	 * Perform lazy resource allocation
2118 	 */
2119 	if (device_get_parent(child) == dev) {
2120 		switch (type) {
2121 		case SYS_RES_IRQ:
2122 #ifdef __i386__
2123 		/*
2124 		 * If device doesn't have an interrupt routed, and is
2125 		 * deserving of an interrupt, try to assign it one.
2126 		 */
2127 			if ((cfg->intline == 255 || cfg->intline == 0) &&
2128 			    (cfg->intpin != 0) &&
2129 			    (start == 0) && (end == ~0UL)) {
2130 				cfg->intline = PCIB_ROUTE_INTERRUPT(
2131 					device_get_parent(dev), child,
2132 					cfg->intpin);
2133 				if (cfg->intline != 255) {
2134 					pci_write_config(child, PCIR_INTLINE,
2135 					    cfg->intline, 1);
2136 					resource_list_add(rl, SYS_RES_IRQ, 0,
2137 					    cfg->intline, cfg->intline, 1);
2138 				}
2139 			}
2140 			break;
2141 #endif
2142 		case SYS_RES_IOPORT:
2143 			/* FALLTHROUGH */
2144 		case SYS_RES_MEMORY:
2145 			if (*rid < PCIR_BAR(cfg->nummaps)) {
2146 				/*
2147 				 * Enable the I/O mode.  We should
2148 				 * also be assigning resources too
2149 				 * when none are present.  The
2150 				 * resource_list_alloc kind of sorta does
2151 				 * this...
2152 				 */
2153 				if (PCI_ENABLE_IO(dev, child, type))
2154 					return (NULL);
2155 			}
2156 #ifdef PCI_MAP_FIXUP
2157 			rle = resource_list_find(rl, type, *rid);
2158 			if (rle == NULL)
2159 				return pci_alloc_map(dev, child, type, rid,
2160 						     start, end, count, flags);
2161 #endif /* PCI_MAP_FIXUP */
2162 			break;
2163 		}
2164 #ifdef PCI_MAP_FIXUP
2165 		/*
2166 		 * If we've already allocated the resource, then
2167 		 * return it now. But first we may need to activate
2168 		 * it, since we don't allocate the resource as active
2169 		 * above. Normally this would be done down in the
2170 		 * nexus, but since we short-circuit that path we have
2171 		 * to do its job here. Not sure if we should free the
2172 		 * resource if it fails to activate.
2173 		 *
2174 		 * Note: this also finds and returns resources for
2175 		 * atapci devices in legacy mode as allocated in
2176 		 * pci_ata_maps().
2177 		 */
2178 		rle = resource_list_find(rl, type, *rid);
2179 		if (rle != NULL && rle->res != NULL) {
2180 			if (bootverbose)
2181 				device_printf(child, "reserved %#lx bytes for "
2182 					      "rid %#x type %d at %#lx\n",
2183 					      rman_get_size(rle->res), *rid,
2184 					      type, rman_get_start(rle->res));
2185 			if ((flags & RF_ACTIVE) &&
2186 			    bus_generic_activate_resource(dev, child, type,
2187 							  *rid, rle->res) != 0)
2188 				return NULL;
2189 			return rle->res;
2190 		}
2191 #endif /* PCI_MAP_FIXUP */
2192 	}
2193 	return resource_list_alloc(rl, dev, child, type, rid,
2194 				   start, end, count, flags);
2195 }
2196 
2197 static int
2198 pci_release_resource(device_t dev, device_t child, int type, int rid,
2199 		     struct resource *r)
2200 {
2201 	struct pci_devinfo *dinfo = device_get_ivars(child);
2202 	struct resource_list *rl = &dinfo->resources;
2203 
2204 	return resource_list_release(rl, dev, child, type, rid, r);
2205 }
2206 
2207 static int
2208 pci_set_resource(device_t dev, device_t child, int type, int rid,
2209 		 u_long start, u_long count)
2210 {
2211 	struct pci_devinfo *dinfo = device_get_ivars(child);
2212 	struct resource_list *rl = &dinfo->resources;
2213 
2214 	resource_list_add(rl, type, rid, start, start + count - 1, count);
2215 	return 0;
2216 }
2217 
2218 static int
2219 pci_get_resource(device_t dev, device_t child, int type, int rid,
2220 		 u_long *startp, u_long *countp)
2221 {
2222 	struct pci_devinfo *dinfo = device_get_ivars(child);
2223 	struct resource_list *rl = &dinfo->resources;
2224 	struct resource_list_entry *rle;
2225 
2226 	rle = resource_list_find(rl, type, rid);
2227 	if (!rle)
2228 		return ENOENT;
2229 
2230 	if (startp)
2231 		*startp = rle->start;
2232 	if (countp)
2233 		*countp = rle->count;
2234 
2235 	return 0;
2236 }
2237 
2238 void
2239 pci_delete_resource(device_t dev, device_t child, int type, int rid)
2240 {
2241 	kprintf("pci_delete_resource: PCI resources can not be deleted\n");
2242 }
2243 
2244 struct resource_list *
2245 pci_get_resource_list (device_t dev, device_t child)
2246 {
2247 	struct pci_devinfo *dinfo = device_get_ivars(child);
2248 
2249 	if (dinfo == NULL)
2250 		return (NULL);
2251 	return (&dinfo->resources);
2252 }
2253 
2254 u_int32_t
2255 pci_read_config_method(device_t dev, device_t child, int reg, int width)
2256 {
2257 	struct pci_devinfo *dinfo = device_get_ivars(child);
2258 	pcicfgregs *cfg = &dinfo->cfg;
2259 
2260 	return PCIB_READ_CONFIG(device_get_parent(dev),
2261 				 cfg->bus, cfg->slot, cfg->func,
2262 				 reg, width);
2263 }
2264 
2265 void
2266 pci_write_config_method(device_t dev, device_t child, int reg,
2267 			u_int32_t val, int width)
2268 {
2269 	struct pci_devinfo *dinfo = device_get_ivars(child);
2270 	pcicfgregs *cfg = &dinfo->cfg;
2271 
2272 	PCIB_WRITE_CONFIG(device_get_parent(dev),
2273 			  cfg->bus, cfg->slot, cfg->func,
2274 			  reg, val, width);
2275 }
2276 
2277 int
2278 pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2279     size_t buflen)
2280 {
2281 	struct pci_devinfo *dinfo;
2282 
2283 	dinfo = device_get_ivars(child);
2284 	ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2285 	    pci_get_function(child));
2286 	return (0);
2287 }
2288 
2289 int
2290 pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2291     size_t buflen)
2292 {
2293 	struct pci_devinfo *dinfo;
2294 	pcicfgregs *cfg;
2295 
2296 	dinfo = device_get_ivars(child);
2297 	cfg = &dinfo->cfg;
2298 	ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2299 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2300 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2301 	    cfg->progif);
2302 	return (0);
2303 }
2304 
2305 int
2306 pci_assign_interrupt_method(device_t dev, device_t child)
2307 {
2308         struct pci_devinfo *dinfo = device_get_ivars(child);
2309         pcicfgregs *cfg = &dinfo->cfg;
2310 
2311         return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2312             cfg->intpin));
2313 }
2314 
2315 static int
2316 pci_modevent(module_t mod, int what, void *arg)
2317 {
2318 	switch (what) {
2319 	case MOD_LOAD:
2320 		STAILQ_INIT(&pci_devq);
2321 		break;
2322 	case MOD_UNLOAD:
2323 		break;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 void
2330 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
2331 {
2332 	int i;
2333 
2334 	/*
2335 	 * Only do header type 0 devices.  Type 1 devices are bridges,
2336 	 * which we know need special treatment.  Type 2 devices are
2337 	 * cardbus bridges which also require special treatment.
2338 	 * Other types are unknown, and we err on the side of safety
2339 	 * by ignoring them.
2340 	 */
2341 	if (dinfo->cfg.hdrtype != 0)
2342 		return;
2343 
2344 	/*
2345 	 * Restore the device to full power mode.  We must do this
2346 	 * before we restore the registers because moving from D3 to
2347 	 * D0 will cause the chip's BARs and some other registers to
2348 	 * be reset to some unknown power on reset values.  Cut down
2349 	 * the noise on boot by doing nothing if we are already in
2350 	 * state D0.
2351 	 */
2352 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2353 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2354 	}
2355 	for (i = 0; i < dinfo->cfg.nummaps; i++)
2356 		pci_write_config(dev, PCIR_BAR(i), dinfo->cfg.bar[i], 4);
2357 	pci_write_config(dev, PCIR_BIOS, dinfo->cfg.bios, 4);
2358 	pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
2359 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
2360 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
2361 	pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
2362 	pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
2363 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
2364 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
2365 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
2366 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
2367 #if 0
2368 	/* Restore MSI and MSI-X configurations if they are present. */
2369 	if (dinfo->cfg.msi.msi_location != 0)
2370 		pci_resume_msi(dev);
2371 	if (dinfo->cfg.msix.msix_location != 0)
2372 		pci_resume_msix(dev);
2373 #endif
2374 }
2375 
2376 void
2377 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
2378 {
2379 	int i;
2380 	uint32_t cls;
2381 	int ps;
2382 
2383 	/*
2384 	 * Only do header type 0 devices.  Type 1 devices are bridges, which
2385 	 * we know need special treatment.  Type 2 devices are cardbus bridges
2386 	 * which also require special treatment.  Other types are unknown, and
2387 	 * we err on the side of safety by ignoring them.  Powering down
2388 	 * bridges should not be undertaken lightly.
2389 	 */
2390 	if (dinfo->cfg.hdrtype != 0)
2391 		return;
2392 	for (i = 0; i < dinfo->cfg.nummaps; i++)
2393 		dinfo->cfg.bar[i] = pci_read_config(dev, PCIR_BAR(i), 4);
2394 	dinfo->cfg.bios = pci_read_config(dev, PCIR_BIOS, 4);
2395 
2396 	/*
2397 	 * Some drivers apparently write to these registers w/o updating our
2398 	 * cached copy.  No harm happens if we update the copy, so do so here
2399 	 * so we can restore them.  The COMMAND register is modified by the
2400 	 * bus w/o updating the cache.  This should represent the normally
2401 	 * writable portion of the 'defined' part of type 0 headers.  In
2402 	 * theory we also need to save/restore the PCI capability structures
2403 	 * we know about, but apart from power we don't know any that are
2404 	 * writable.
2405 	 */
2406 	dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2407 	dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2408 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
2409 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
2410 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
2411 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
2412 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
2413 	dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
2414 	dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
2415 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2416 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2417 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
2418 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
2419 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
2420 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
2421 
2422 	/*
2423 	 * don't set the state for display devices, base peripherals and
2424 	 * memory devices since bad things happen when they are powered down.
2425 	 * We should (a) have drivers that can easily detach and (b) use
2426 	 * generic drivers for these devices so that some device actually
2427 	 * attaches.  We need to make sure that when we implement (a) we don't
2428 	 * power the device down on a reattach.
2429 	 */
2430 	cls = pci_get_class(dev);
2431 	if (!setstate)
2432 		return;
2433 
2434 	switch (pci_do_power_nodriver)
2435 	{
2436 		case 0:		/* NO powerdown at all */
2437 			return;
2438 		case 1:		/* Conservative about what to power down */
2439 			if (cls == PCIC_STORAGE)
2440 				return;
2441 			/*FALLTHROUGH*/
2442 		case 2:		/* Agressive about what to power down */
2443 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
2444 			    cls == PCIC_BASEPERIPH)
2445 				return;
2446 			/*FALLTHROUGH*/
2447 		case 3:		/* Power down everything */
2448 			break;
2449 	}
2450 
2451 	if (cls == PCIC_STORAGE)
2452 		return;
2453 
2454 	/*
2455 	 * PCI spec says we can only go into D3 state from D0 state.
2456 	 * Transition from D[12] into D0 before going to D3 state.
2457 	 */
2458 	ps = pci_get_powerstate(dev);
2459 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
2460 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2461 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
2462 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
2463 }
2464 
2465 int
2466 pci_resume(device_t dev)
2467 {
2468         int                     numdevs;
2469         int                     i;
2470         device_t                *children;
2471         device_t                child;
2472         struct pci_devinfo      *dinfo;
2473         pcicfgregs              *cfg;
2474 
2475         device_get_children(dev, &children, &numdevs);
2476 
2477         for (i = 0; i < numdevs; i++) {
2478                 child = children[i];
2479 
2480                 dinfo = device_get_ivars(child);
2481                 cfg = &dinfo->cfg;
2482                 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2483                         cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2484                         if (PCI_INTERRUPT_VALID(cfg->intline)) {
2485                                 pci_write_config(child, PCIR_INTLINE,
2486                                     cfg->intline, 1);
2487                         }
2488                 }
2489         }
2490 
2491         kfree(children, M_TEMP);
2492 
2493         return (bus_generic_resume(dev));
2494 }
2495 
2496 void
2497 pci_driver_added(device_t dev, driver_t *driver)
2498 {
2499 	int numdevs;
2500 	device_t *devlist;
2501 	device_t child;
2502 	struct pci_devinfo *dinfo;
2503 	int i;
2504 
2505 	if (bootverbose)
2506 		device_printf(dev, "driver added\n");
2507 	DEVICE_IDENTIFY(driver, dev);
2508 	device_get_children(dev, &devlist, &numdevs);
2509 	for (i = 0; i < numdevs; i++) {
2510 		child = devlist[i];
2511 		if (device_get_state(child) != DS_NOTPRESENT)
2512 			continue;
2513 		dinfo = device_get_ivars(child);
2514 		pci_print_verbose(dinfo);
2515 		if (bootverbose)
2516 			kprintf("pci%d:%d:%d: reprobing on driver added\n",
2517 			    dinfo->cfg.bus, dinfo->cfg.slot, dinfo->cfg.func);
2518 		pci_cfg_restore(child, dinfo);
2519 		if (device_probe_and_attach(child) != 0)
2520 			pci_cfg_save(child, dinfo, 1);
2521 	}
2522 	kfree(devlist, M_TEMP);
2523 }
2524 
2525 static void
2526 pci_child_detached(device_t parent __unused, device_t child) {
2527 	/* Turn child's power off */
2528 	pci_cfg_save(child, device_get_ivars(child), 1);
2529 }
2530 
2531 static device_method_t pci_methods[] = {
2532 	/* Device interface */
2533 	DEVMETHOD(device_probe,		pci_probe),
2534 	DEVMETHOD(device_attach,	pci_attach),
2535 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2536 	DEVMETHOD(device_suspend,	bus_generic_suspend),
2537 	DEVMETHOD(device_resume,	pci_resume),
2538 
2539 	/* Bus interface */
2540 	DEVMETHOD(bus_print_child,	pci_print_child),
2541 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
2542 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
2543 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
2544 	DEVMETHOD(bus_driver_added,	pci_driver_added),
2545 	DEVMETHOD(bus_child_detached,	pci_child_detached),
2546 	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
2547 	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
2548 
2549 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2550 	DEVMETHOD(bus_set_resource,	pci_set_resource),
2551 	DEVMETHOD(bus_get_resource,	pci_get_resource),
2552 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
2553 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
2554 	DEVMETHOD(bus_release_resource,	pci_release_resource),
2555 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2556 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2557 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2558 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2559 
2560 	/* PCI interface */
2561 	DEVMETHOD(pci_read_config,	pci_read_config_method),
2562 	DEVMETHOD(pci_write_config,	pci_write_config_method),
2563 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
2564 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2565 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
2566 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
2567 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
2568 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
2569 	DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2570 
2571 	{ 0, 0 }
2572 };
2573 
2574 driver_t pci_driver = {
2575 	"pci",
2576 	pci_methods,
2577 	1,			/* no softc */
2578 };
2579 
2580 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2581 MODULE_VERSION(pci, 1);
2582