xref: /dragonfly/sys/bus/pci/pci.c (revision e2f5ccfb)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27  * $DragonFly: src/sys/bus/pci/pci.c,v 1.52 2008/06/05 18:06:31 swildner Exp $
28  *
29  */
30 
31 #include "opt_bus.h"
32 #include "opt_pci.h"
33 
34 #include "opt_compat_oldpci.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/fcntl.h>
41 #include <sys/conf.h>
42 #include <sys/kernel.h>
43 #include <sys/queue.h>
44 #include <sys/types.h>
45 #include <sys/buf.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_extern.h>
50 
51 #include <sys/bus.h>
52 #include <sys/rman.h>
53 #include <machine/smp.h>
54 #ifdef __i386__
55 #include <bus/pci/i386/pci_cfgreg.h>
56 #endif
57 
58 #include <sys/pciio.h>
59 #include "pcireg.h"
60 #include "pcivar.h"
61 #include "pci_private.h"
62 
63 #include "pcib_if.h"
64 
65 devclass_t	pci_devclass;
66 const char	*pcib_owner;
67 
68 static void		pci_read_capabilities(device_t dev, pcicfgregs *cfg);
69 static int		pcie_slotimpl(const pcicfgregs *);
70 
71 struct pci_quirk {
72 	u_int32_t devid;	/* Vendor/device of the card */
73 	int	type;
74 #define PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
75 	int	arg1;
76 	int	arg2;
77 };
78 
79 struct pci_quirk pci_quirks[] = {
80 	/*
81 	 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
82 	 */
83 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
84 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
85 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
86 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
87 
88 	{ 0 }
89 };
90 
91 /* map register information */
92 #define PCI_MAPMEM	0x01	/* memory map */
93 #define PCI_MAPMEMP	0x02	/* prefetchable memory map */
94 #define PCI_MAPPORT	0x04	/* port map */
95 
96 static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
97 u_int32_t pci_numdevs = 0;
98 static u_int32_t pci_generation = 0;
99 
100 device_t
101 pci_find_bsf(u_int8_t bus, u_int8_t slot, u_int8_t func)
102 {
103 	struct pci_devinfo *dinfo;
104 
105 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
106 		if ((dinfo->cfg.bus == bus) &&
107 		    (dinfo->cfg.slot == slot) &&
108 		    (dinfo->cfg.func == func)) {
109 			return (dinfo->cfg.dev);
110 		}
111 	}
112 
113 	return (NULL);
114 }
115 
116 device_t
117 pci_find_device(u_int16_t vendor, u_int16_t device)
118 {
119 	struct pci_devinfo *dinfo;
120 
121 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
122 		if ((dinfo->cfg.vendor == vendor) &&
123 		    (dinfo->cfg.device == device)) {
124 			return (dinfo->cfg.dev);
125 		}
126 	}
127 
128 	return (NULL);
129 }
130 
131 int
132 pcie_slot_implemented(device_t dev)
133 {
134 	struct pci_devinfo *dinfo = device_get_ivars(dev);
135 
136 	return pcie_slotimpl(&dinfo->cfg);
137 }
138 
139 /* return base address of memory or port map */
140 
141 static u_int32_t
142 pci_mapbase(unsigned mapreg)
143 {
144 	int mask = 0x03;
145 	if ((mapreg & 0x01) == 0)
146 		mask = 0x0f;
147 	return (mapreg & ~mask);
148 }
149 
150 /* return map type of memory or port map */
151 
152 static int
153 pci_maptype(unsigned mapreg)
154 {
155 	static u_int8_t maptype[0x10] = {
156 		PCI_MAPMEM,		PCI_MAPPORT,
157 		PCI_MAPMEM,		0,
158 		PCI_MAPMEM,		PCI_MAPPORT,
159 		0,			0,
160 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
161 		PCI_MAPMEM|PCI_MAPMEMP, 0,
162 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
163 		0,			0,
164 	};
165 
166 	return maptype[mapreg & 0x0f];
167 }
168 
169 /* return log2 of map size decoded for memory or port map */
170 
171 static int
172 pci_mapsize(unsigned testval)
173 {
174 	int ln2size;
175 
176 	testval = pci_mapbase(testval);
177 	ln2size = 0;
178 	if (testval != 0) {
179 		while ((testval & 1) == 0)
180 		{
181 			ln2size++;
182 			testval >>= 1;
183 		}
184 	}
185 	return (ln2size);
186 }
187 
188 /* return log2 of address range supported by map register */
189 
190 static int
191 pci_maprange(unsigned mapreg)
192 {
193 	int ln2range = 0;
194 	switch (mapreg & 0x07) {
195 	case 0x00:
196 	case 0x01:
197 	case 0x05:
198 		ln2range = 32;
199 		break;
200 	case 0x02:
201 		ln2range = 20;
202 		break;
203 	case 0x04:
204 		ln2range = 64;
205 		break;
206 	}
207 	return (ln2range);
208 }
209 
210 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
211 
212 static void
213 pci_fixancient(pcicfgregs *cfg)
214 {
215 	if (cfg->hdrtype != 0)
216 		return;
217 
218 	/* PCI to PCI bridges use header type 1 */
219 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
220 		cfg->hdrtype = 1;
221 }
222 
223 /* read config data specific to header type 1 device (PCI to PCI bridge) */
224 
225 static void *
226 pci_readppb(device_t pcib, int b, int s, int f)
227 {
228 	pcih1cfgregs *p;
229 
230 	p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
231 
232 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
233 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
234 
235 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
236 
237 	p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
238 						    PCIR_IOBASEH_1, 2),
239 				   PCIB_READ_CONFIG(pcib, b, s, f,
240 				   		    PCIR_IOBASEL_1, 1));
241 	p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
242 						      PCIR_IOLIMITH_1, 2),
243 				     PCIB_READ_CONFIG(pcib, b, s, f,
244 				     		      PCIR_IOLIMITL_1, 1));
245 
246 	p->membase = PCI_PPBMEMBASE (0,
247 				     PCIB_READ_CONFIG(pcib, b, s, f,
248 				     		      PCIR_MEMBASE_1, 2));
249 	p->memlimit = PCI_PPBMEMLIMIT (0,
250 				       PCIB_READ_CONFIG(pcib, b, s, f,
251 				       		        PCIR_MEMLIMIT_1, 2));
252 
253 	p->pmembase = PCI_PPBMEMBASE (
254 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
255 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
256 
257 	p->pmemlimit = PCI_PPBMEMLIMIT (
258 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
259 					     PCIR_PMLIMITH_1, 4),
260 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
261 
262 	return (p);
263 }
264 
265 /* read config data specific to header type 2 device (PCI to CardBus bridge) */
266 
267 static void *
268 pci_readpcb(device_t pcib, int b, int s, int f)
269 {
270 	pcih2cfgregs *p;
271 
272 	p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
273 
274 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
275 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
276 
277 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
278 
279 	p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
280 	p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
281 	p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
282 	p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
283 
284 	p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
285 	p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
286 	p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
287 	p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
288 
289 	p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
290 	return p;
291 }
292 
293 /* extract header type specific config data */
294 
295 static void
296 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
297 {
298 #define REG(n,w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
299 	switch (cfg->hdrtype) {
300 	case 0:
301 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
302 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
303 		cfg->nummaps	    = PCI_MAXMAPS_0;
304 		break;
305 	case 1:
306 		cfg->subvendor      = REG(PCIR_SUBVEND_1, 2);
307 		cfg->subdevice      = REG(PCIR_SUBDEV_1, 2);
308 		cfg->secondarybus   = REG(PCIR_SECBUS_1, 1);
309 		cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
310 		cfg->nummaps	    = PCI_MAXMAPS_1;
311 		cfg->hdrspec        = pci_readppb(pcib, b, s, f);
312 		break;
313 	case 2:
314 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
315 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
316 		cfg->secondarybus   = REG(PCIR_SECBUS_2, 1);
317 		cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
318 		cfg->nummaps	    = PCI_MAXMAPS_2;
319 		cfg->hdrspec        = pci_readpcb(pcib, b, s, f);
320 		break;
321 	}
322 #undef REG
323 }
324 
325 /* read configuration header into pcicfgrect structure */
326 
327 struct pci_devinfo *
328 pci_read_device(device_t pcib, int b, int s, int f, size_t size)
329 {
330 #define REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
331 
332 	pcicfgregs *cfg = NULL;
333 	struct pci_devinfo *devlist_entry;
334 	struct devlist *devlist_head;
335 
336 	devlist_head = &pci_devq;
337 
338 	devlist_entry = NULL;
339 
340 	if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
341 
342 		devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
343 
344 		cfg = &devlist_entry->cfg;
345 
346 		cfg->bus		= b;
347 		cfg->slot		= s;
348 		cfg->func		= f;
349 		cfg->vendor		= REG(PCIR_VENDOR, 2);
350 		cfg->device		= REG(PCIR_DEVICE, 2);
351 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
352 		cfg->statreg		= REG(PCIR_STATUS, 2);
353 		cfg->baseclass		= REG(PCIR_CLASS, 1);
354 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
355 		cfg->progif		= REG(PCIR_PROGIF, 1);
356 		cfg->revid		= REG(PCIR_REVID, 1);
357 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
358 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
359 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
360 		cfg->intpin		= REG(PCIR_INTPIN, 1);
361 		cfg->intline		= REG(PCIR_INTLINE, 1);
362 
363 #ifdef APIC_IO
364 		/*
365 		 * If using the APIC the intpin is probably wrong, since it
366 		 * is often setup by the BIOS with the PIC in mind.
367 		 */
368 		if (cfg->intpin != 0) {
369 			int airq;
370 
371 			airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
372 			if (airq >= 0) {
373 				/* PCI specific entry found in MP table */
374 				if (airq != cfg->intline) {
375 					undirect_pci_irq(cfg->intline);
376 					cfg->intline = airq;
377 				}
378 			} else {
379 				/*
380 				 * PCI interrupts might be redirected to the
381 				 * ISA bus according to some MP tables. Use the
382 				 * same methods as used by the ISA devices
383 				 * devices to find the proper IOAPIC int pin.
384 				 */
385 				airq = isa_apic_irq(cfg->intline);
386 				if ((airq >= 0) && (airq != cfg->intline)) {
387 					/* XXX: undirect_pci_irq() ? */
388 					undirect_isa_irq(cfg->intline);
389 					cfg->intline = airq;
390 				}
391 			}
392 		}
393 #endif /* APIC_IO */
394 
395 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
396 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
397 
398 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
399 		cfg->hdrtype		&= ~PCIM_MFDEV;
400 
401 		pci_fixancient(cfg);
402 		pci_hdrtypedata(pcib, b, s, f, cfg);
403 		pci_read_capabilities(pcib, cfg);
404 
405 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
406 
407 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
408 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
409 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
410 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
411 
412 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
413 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
414 		devlist_entry->conf.pc_vendor = cfg->vendor;
415 		devlist_entry->conf.pc_device = cfg->device;
416 
417 		devlist_entry->conf.pc_class = cfg->baseclass;
418 		devlist_entry->conf.pc_subclass = cfg->subclass;
419 		devlist_entry->conf.pc_progif = cfg->progif;
420 		devlist_entry->conf.pc_revid = cfg->revid;
421 
422 		pci_numdevs++;
423 		pci_generation++;
424 	}
425 	return (devlist_entry);
426 #undef REG
427 }
428 
429 static int
430 pci_fixup_nextptr(int *nextptr0)
431 {
432 	int nextptr = *nextptr0;
433 
434 	/* "Next pointer" is only one byte */
435 	KASSERT(nextptr <= 0xff, ("Illegal next pointer %d\n", nextptr));
436 
437 	if (nextptr & 0x3) {
438 		/*
439 		 * PCI local bus spec 3.0:
440 		 *
441 		 * "... The bottom two bits of all pointers are reserved
442 		 *  and must be implemented as 00b although software must
443 		 *  mask them to allow for future uses of these bits ..."
444 		 */
445 		if (bootverbose) {
446 			kprintf("Illegal PCI extended capability "
447 				"offset, fixup 0x%02x -> 0x%02x\n",
448 				nextptr, nextptr & ~0x3);
449 		}
450 		nextptr &= ~0x3;
451 	}
452 	*nextptr0 = nextptr;
453 
454 	if (nextptr < 0x40) {
455 		if (nextptr != 0) {
456 			kprintf("Illegal PCI extended capability "
457 				"offset 0x%02x", nextptr);
458 		}
459 		return 0;
460 	}
461 	return 1;
462 }
463 
464 static void
465 pci_read_cap_pmgt(device_t pcib, int ptr, pcicfgregs *cfg)
466 {
467 #define REG(n, w)	\
468 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
469 
470 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
471 
472 	if (pmgt->pp_cap)
473 		return;
474 
475 	pmgt->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
476 	pmgt->pp_status = ptr + PCIR_POWER_STATUS;
477 	pmgt->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
478 	/*
479 	 * XXX
480 	 * Following way may be used to to test whether
481 	 * 'data' register exists:
482 	 * if 'data_select' register of
483 	 * PCIR_POWER_STATUS(bits[12,9]) is read-only
484 	 * then 'data' register is _not_ implemented.
485 	 */
486 	pmgt->pp_data = 0;
487 
488 #undef REG
489 }
490 
491 static int
492 pcie_slotimpl(const pcicfgregs *cfg)
493 {
494 	const struct pcicfg_expr *expr = &cfg->expr;
495 	uint16_t port_type;
496 
497 	/*
498 	 * Only version 1 can be parsed currently
499 	 */
500 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
501 		return 0;
502 
503 	/*
504 	 * - Slot implemented bit is meaningful iff current port is
505 	 *   root port or down stream port.
506 	 * - Testing for root port or down stream port is meanningful
507 	 *   iff PCI configure has type 1 header.
508 	 */
509 
510 	if (cfg->hdrtype != 1)
511 		return 0;
512 
513 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
514 	if (port_type != PCIE_ROOT_PORT && port_type != PCIE_DOWN_STREAM_PORT)
515 		return 0;
516 
517 	if (!(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
518 		return 0;
519 
520 	return 1;
521 }
522 
523 static void
524 pci_read_cap_expr(device_t pcib, int ptr, pcicfgregs *cfg)
525 {
526 #define REG(n, w)	\
527 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
528 
529 	struct pcicfg_expr *expr = &cfg->expr;
530 
531 	expr->expr_ptr = ptr;
532 	expr->expr_cap = REG(ptr + PCIER_CAPABILITY, 2);
533 
534 	/*
535 	 * Only version 1 can be parsed currently
536 	 */
537 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
538 		return;
539 
540 	/*
541 	 * Read slot capabilities.  Slot capabilities exists iff
542 	 * current port's slot is implemented
543 	 */
544 	if (pcie_slotimpl(cfg))
545 		expr->expr_slotcap = REG(ptr + PCIER_SLOTCAP, 4);
546 
547 #undef REG
548 }
549 
550 static void
551 pci_read_capabilities(device_t pcib, pcicfgregs *cfg)
552 {
553 #define REG(n, w)	\
554 	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
555 
556 	int nextptr, ptrptr;
557 
558 	if ((REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) == 0) {
559 		/* No capabilities */
560 		return;
561 	}
562 
563 	switch (cfg->hdrtype) {
564 	case 0:
565 	case 1:
566 		ptrptr = PCIR_CAP_PTR;
567 		break;
568 	case 2:
569 		ptrptr = PCIR_CAP_PTR_2;
570 		break;
571 	default:
572 		return;		/* No capabilities support */
573 	}
574 	nextptr = REG(ptrptr, 1);
575 
576 	/*
577 	 * Read capability entries.
578 	 */
579 	while (pci_fixup_nextptr(&nextptr)) {
580 		int ptr = nextptr;
581 
582 		/* Process this entry */
583 		switch (REG(ptr, 1)) {
584 		case PCIY_PMG:		/* PCI power management */
585 			pci_read_cap_pmgt(pcib, ptr, cfg);
586 			break;
587 		case PCIY_PCIX:		/* PCI-X */
588 			cfg->pcixcap_ptr = ptr;
589 			break;
590 		case PCIY_EXPRESS:	/* PCI Express */
591 			pci_read_cap_expr(pcib, ptr, cfg);
592 			break;
593 		default:
594 			break;
595 		}
596 
597 		/* Find the next entry */
598 		nextptr = REG(ptr + 1, 1);
599 	}
600 
601 #undef REG
602 }
603 
604 /* free pcicfgregs structure and all depending data structures */
605 
606 int
607 pci_freecfg(struct pci_devinfo *dinfo)
608 {
609 	struct devlist *devlist_head;
610 
611 	devlist_head = &pci_devq;
612 
613 	if (dinfo->cfg.hdrspec != NULL)
614 		kfree(dinfo->cfg.hdrspec, M_DEVBUF);
615 	/* XXX this hasn't been tested */
616 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
617 	kfree(dinfo, M_DEVBUF);
618 
619 	/* increment the generation count */
620 	pci_generation++;
621 
622 	/* we're losing one device */
623 	pci_numdevs--;
624 	return (0);
625 }
626 
627 
628 /*
629  * PCI power manangement
630  */
631 int
632 pci_set_powerstate_method(device_t dev, device_t child, int state)
633 {
634 	struct pci_devinfo *dinfo = device_get_ivars(child);
635 	pcicfgregs *cfg = &dinfo->cfg;
636 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
637 	u_int16_t status;
638 	int result;
639 
640 	if (pmgt->pp_cap != 0) {
641 		status = PCI_READ_CONFIG(dev, child, pmgt->pp_status, 2) & ~PCIM_PSTAT_DMASK;
642 		result = 0;
643 		switch (state) {
644 		case PCI_POWERSTATE_D0:
645 			status |= PCIM_PSTAT_D0;
646 			break;
647 		case PCI_POWERSTATE_D1:
648 			if (pmgt->pp_cap & PCIM_PCAP_D1SUPP) {
649 				status |= PCIM_PSTAT_D1;
650 			} else {
651 				result = EOPNOTSUPP;
652 			}
653 			break;
654 		case PCI_POWERSTATE_D2:
655 			if (pmgt->pp_cap & PCIM_PCAP_D2SUPP) {
656 				status |= PCIM_PSTAT_D2;
657 			} else {
658 				result = EOPNOTSUPP;
659 			}
660 			break;
661 		case PCI_POWERSTATE_D3:
662 			status |= PCIM_PSTAT_D3;
663 			break;
664 		default:
665 			result = EINVAL;
666 		}
667 		if (result == 0)
668 			PCI_WRITE_CONFIG(dev, child, pmgt->pp_status, status, 2);
669 	} else {
670 		result = ENXIO;
671 	}
672 	return(result);
673 }
674 
675 int
676 pci_get_powerstate_method(device_t dev, device_t child)
677 {
678 	struct pci_devinfo *dinfo = device_get_ivars(child);
679 	pcicfgregs *cfg = &dinfo->cfg;
680 	struct pcicfg_pmgt *pmgt = &cfg->pmgt;
681 	u_int16_t status;
682 	int result;
683 
684 	if (pmgt->pp_cap != 0) {
685 		status = PCI_READ_CONFIG(dev, child, pmgt->pp_status, 2);
686 		switch (status & PCIM_PSTAT_DMASK) {
687 		case PCIM_PSTAT_D0:
688 			result = PCI_POWERSTATE_D0;
689 			break;
690 		case PCIM_PSTAT_D1:
691 			result = PCI_POWERSTATE_D1;
692 			break;
693 		case PCIM_PSTAT_D2:
694 			result = PCI_POWERSTATE_D2;
695 			break;
696 		case PCIM_PSTAT_D3:
697 			result = PCI_POWERSTATE_D3;
698 			break;
699 		default:
700 			result = PCI_POWERSTATE_UNKNOWN;
701 			break;
702 		}
703 	} else {
704 		/* No support, device is always at D0 */
705 		result = PCI_POWERSTATE_D0;
706 	}
707 	return(result);
708 }
709 
710 /*
711  * Some convenience functions for PCI device drivers.
712  */
713 
714 static __inline void
715 pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
716 {
717     u_int16_t	command;
718 
719     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
720     command |= bit;
721     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
722 }
723 
724 static __inline void
725 pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
726 {
727     u_int16_t	command;
728 
729     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
730     command &= ~bit;
731     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
732 }
733 
734 int
735 pci_enable_busmaster_method(device_t dev, device_t child)
736 {
737     pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
738     return(0);
739 }
740 
741 int
742 pci_disable_busmaster_method(device_t dev, device_t child)
743 {
744     pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
745     return(0);
746 }
747 
748 int
749 pci_enable_io_method(device_t dev, device_t child, int space)
750 {
751     uint16_t command;
752     uint16_t bit;
753     char *error;
754 
755     bit = 0;
756     error = NULL;
757 
758     switch(space) {
759     case SYS_RES_IOPORT:
760 	bit = PCIM_CMD_PORTEN;
761 	error = "port";
762 	break;
763     case SYS_RES_MEMORY:
764 	bit = PCIM_CMD_MEMEN;
765 	error = "memory";
766 	break;
767     default:
768 	return(EINVAL);
769     }
770     pci_set_command_bit(dev, child, bit);
771     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
772     if (command & bit)
773 	return(0);
774     device_printf(child, "failed to enable %s mapping!\n", error);
775     return(ENXIO);
776 }
777 
778 int
779 pci_disable_io_method(device_t dev, device_t child, int space)
780 {
781     uint16_t command;
782     uint16_t bit;
783     char *error;
784 
785     bit = 0;
786     error = NULL;
787 
788     switch(space) {
789     case SYS_RES_IOPORT:
790 	bit = PCIM_CMD_PORTEN;
791 	error = "port";
792 	break;
793     case SYS_RES_MEMORY:
794 	bit = PCIM_CMD_MEMEN;
795 	error = "memory";
796 	break;
797     default:
798 	return (EINVAL);
799     }
800     pci_clear_command_bit(dev, child, bit);
801     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
802     if (command & bit) {
803 	device_printf(child, "failed to disable %s mapping!\n", error);
804 	return (ENXIO);
805     }
806     return (0);
807 }
808 
809 /*
810  * This is the user interface to PCI configuration space.
811  */
812 
813 static int
814 pci_open(struct dev_open_args *ap)
815 {
816 	if ((ap->a_oflags & FWRITE) && securelevel > 0) {
817 		return EPERM;
818 	}
819 	return 0;
820 }
821 
822 static int
823 pci_close(struct dev_close_args *ap)
824 {
825 	return 0;
826 }
827 
828 /*
829  * Match a single pci_conf structure against an array of pci_match_conf
830  * structures.  The first argument, 'matches', is an array of num_matches
831  * pci_match_conf structures.  match_buf is a pointer to the pci_conf
832  * structure that will be compared to every entry in the matches array.
833  * This function returns 1 on failure, 0 on success.
834  */
835 static int
836 pci_conf_match(struct pci_match_conf *matches, int num_matches,
837 	       struct pci_conf *match_buf)
838 {
839 	int i;
840 
841 	if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
842 		return(1);
843 
844 	for (i = 0; i < num_matches; i++) {
845 		/*
846 		 * I'm not sure why someone would do this...but...
847 		 */
848 		if (matches[i].flags == PCI_GETCONF_NO_MATCH)
849 			continue;
850 
851 		/*
852 		 * Look at each of the match flags.  If it's set, do the
853 		 * comparison.  If the comparison fails, we don't have a
854 		 * match, go on to the next item if there is one.
855 		 */
856 		if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
857 		 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
858 			continue;
859 
860 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
861 		 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
862 			continue;
863 
864 		if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
865 		 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
866 			continue;
867 
868 		if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
869 		 && (match_buf->pc_vendor != matches[i].pc_vendor))
870 			continue;
871 
872 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
873 		 && (match_buf->pc_device != matches[i].pc_device))
874 			continue;
875 
876 		if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
877 		 && (match_buf->pc_class != matches[i].pc_class))
878 			continue;
879 
880 		if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
881 		 && (match_buf->pd_unit != matches[i].pd_unit))
882 			continue;
883 
884 		if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
885 		 && (strncmp(matches[i].pd_name, match_buf->pd_name,
886 			     sizeof(match_buf->pd_name)) != 0))
887 			continue;
888 
889 		return(0);
890 	}
891 
892 	return(1);
893 }
894 
895 /*
896  * Locate the parent of a PCI device by scanning the PCI devlist
897  * and return the entry for the parent.
898  * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
899  * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
900  */
901 
902 pcicfgregs *
903 pci_devlist_get_parent(pcicfgregs *cfg)
904 {
905 	struct devlist *devlist_head;
906 	struct pci_devinfo *dinfo;
907 	pcicfgregs *bridge_cfg;
908 	int i;
909 
910 	dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
911 
912 	/* If the device is on PCI bus 0, look for the host */
913 	if (cfg->bus == 0) {
914 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
915 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
916 			bridge_cfg = &dinfo->cfg;
917 			if (bridge_cfg->baseclass == PCIC_BRIDGE
918 				&& bridge_cfg->subclass == PCIS_BRIDGE_HOST
919 		    		&& bridge_cfg->bus == cfg->bus) {
920 				return bridge_cfg;
921 			}
922 		}
923 	}
924 
925 	/* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
926 	if (cfg->bus > 0) {
927 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
928 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
929 			bridge_cfg = &dinfo->cfg;
930 			if (bridge_cfg->baseclass == PCIC_BRIDGE
931 				&& bridge_cfg->subclass == PCIS_BRIDGE_PCI
932 				&& bridge_cfg->secondarybus == cfg->bus) {
933 				return bridge_cfg;
934 			}
935 		}
936 	}
937 
938 	return NULL;
939 }
940 
941 static int
942 pci_ioctl(struct dev_ioctl_args *ap)
943 {
944 	device_t pci, pcib;
945 	struct pci_io *io;
946 	const char *name;
947 	int error;
948 
949 	if (!(ap->a_fflag & FWRITE))
950 		return EPERM;
951 
952 	switch(ap->a_cmd) {
953 	case PCIOCGETCONF:
954 		{
955 		struct pci_devinfo *dinfo;
956 		struct pci_conf_io *cio;
957 		struct devlist *devlist_head;
958 		struct pci_match_conf *pattern_buf;
959 		int num_patterns;
960 		size_t iolen;
961 		int ionum, i;
962 
963 		cio = (struct pci_conf_io *)ap->a_data;
964 
965 		num_patterns = 0;
966 		dinfo = NULL;
967 
968 		/*
969 		 * Hopefully the user won't pass in a null pointer, but it
970 		 * can't hurt to check.
971 		 */
972 		if (cio == NULL) {
973 			error = EINVAL;
974 			break;
975 		}
976 
977 		/*
978 		 * If the user specified an offset into the device list,
979 		 * but the list has changed since they last called this
980 		 * ioctl, tell them that the list has changed.  They will
981 		 * have to get the list from the beginning.
982 		 */
983 		if ((cio->offset != 0)
984 		 && (cio->generation != pci_generation)){
985 			cio->num_matches = 0;
986 			cio->status = PCI_GETCONF_LIST_CHANGED;
987 			error = 0;
988 			break;
989 		}
990 
991 		/*
992 		 * Check to see whether the user has asked for an offset
993 		 * past the end of our list.
994 		 */
995 		if (cio->offset >= pci_numdevs) {
996 			cio->num_matches = 0;
997 			cio->status = PCI_GETCONF_LAST_DEVICE;
998 			error = 0;
999 			break;
1000 		}
1001 
1002 		/* get the head of the device queue */
1003 		devlist_head = &pci_devq;
1004 
1005 		/*
1006 		 * Determine how much room we have for pci_conf structures.
1007 		 * Round the user's buffer size down to the nearest
1008 		 * multiple of sizeof(struct pci_conf) in case the user
1009 		 * didn't specify a multiple of that size.
1010 		 */
1011 		iolen = min(cio->match_buf_len -
1012 			    (cio->match_buf_len % sizeof(struct pci_conf)),
1013 			    pci_numdevs * sizeof(struct pci_conf));
1014 
1015 		/*
1016 		 * Since we know that iolen is a multiple of the size of
1017 		 * the pciconf union, it's okay to do this.
1018 		 */
1019 		ionum = iolen / sizeof(struct pci_conf);
1020 
1021 		/*
1022 		 * If this test is true, the user wants the pci_conf
1023 		 * structures returned to match the supplied entries.
1024 		 */
1025 		if ((cio->num_patterns > 0)
1026 		 && (cio->pat_buf_len > 0)) {
1027 			/*
1028 			 * pat_buf_len needs to be:
1029 			 * num_patterns * sizeof(struct pci_match_conf)
1030 			 * While it is certainly possible the user just
1031 			 * allocated a large buffer, but set the number of
1032 			 * matches correctly, it is far more likely that
1033 			 * their kernel doesn't match the userland utility
1034 			 * they're using.  It's also possible that the user
1035 			 * forgot to initialize some variables.  Yes, this
1036 			 * may be overly picky, but I hazard to guess that
1037 			 * it's far more likely to just catch folks that
1038 			 * updated their kernel but not their userland.
1039 			 */
1040 			if ((cio->num_patterns *
1041 			    sizeof(struct pci_match_conf)) != cio->pat_buf_len){
1042 				/* The user made a mistake, return an error*/
1043 				cio->status = PCI_GETCONF_ERROR;
1044 				kprintf("pci_ioctl: pat_buf_len %d != "
1045 				       "num_patterns (%d) * sizeof(struct "
1046 				       "pci_match_conf) (%d)\npci_ioctl: "
1047 				       "pat_buf_len should be = %d\n",
1048 				       cio->pat_buf_len, cio->num_patterns,
1049 				       (int)sizeof(struct pci_match_conf),
1050 				       (int)sizeof(struct pci_match_conf) *
1051 				       cio->num_patterns);
1052 				kprintf("pci_ioctl: do your headers match your "
1053 				       "kernel?\n");
1054 				cio->num_matches = 0;
1055 				error = EINVAL;
1056 				break;
1057 			}
1058 
1059 			/*
1060 			 * Check the user's buffer to make sure it's readable.
1061 			 */
1062 			if (!useracc((caddr_t)cio->patterns,
1063 				    cio->pat_buf_len, VM_PROT_READ)) {
1064 				kprintf("pci_ioctl: pattern buffer %p, "
1065 				       "length %u isn't user accessible for"
1066 				       " READ\n", cio->patterns,
1067 				       cio->pat_buf_len);
1068 				error = EACCES;
1069 				break;
1070 			}
1071 			/*
1072 			 * Allocate a buffer to hold the patterns.
1073 			 */
1074 			pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
1075 					     M_WAITOK);
1076 			error = copyin(cio->patterns, pattern_buf,
1077 				       cio->pat_buf_len);
1078 			if (error != 0)
1079 				break;
1080 			num_patterns = cio->num_patterns;
1081 
1082 		} else if ((cio->num_patterns > 0)
1083 			|| (cio->pat_buf_len > 0)) {
1084 			/*
1085 			 * The user made a mistake, spit out an error.
1086 			 */
1087 			cio->status = PCI_GETCONF_ERROR;
1088 			cio->num_matches = 0;
1089 			kprintf("pci_ioctl: invalid GETCONF arguments\n");
1090 			error = EINVAL;
1091 			break;
1092 		} else
1093 			pattern_buf = NULL;
1094 
1095 		/*
1096 		 * Make sure we can write to the match buffer.
1097 		 */
1098 		if (!useracc((caddr_t)cio->matches,
1099 			     cio->match_buf_len, VM_PROT_WRITE)) {
1100 			kprintf("pci_ioctl: match buffer %p, length %u "
1101 			       "isn't user accessible for WRITE\n",
1102 			       cio->matches, cio->match_buf_len);
1103 			error = EACCES;
1104 			break;
1105 		}
1106 
1107 		/*
1108 		 * Go through the list of devices and copy out the devices
1109 		 * that match the user's criteria.
1110 		 */
1111 		for (cio->num_matches = 0, error = 0, i = 0,
1112 		     dinfo = STAILQ_FIRST(devlist_head);
1113 		     (dinfo != NULL) && (cio->num_matches < ionum)
1114 		     && (error == 0) && (i < pci_numdevs);
1115 		     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
1116 
1117 			if (i < cio->offset)
1118 				continue;
1119 
1120 			/* Populate pd_name and pd_unit */
1121 			name = NULL;
1122 			if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
1123 				name = device_get_name(dinfo->cfg.dev);
1124 			if (name) {
1125 				strncpy(dinfo->conf.pd_name, name,
1126 					sizeof(dinfo->conf.pd_name));
1127 				dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1128 				dinfo->conf.pd_unit =
1129 					device_get_unit(dinfo->cfg.dev);
1130 			}
1131 
1132 			if ((pattern_buf == NULL) ||
1133 			    (pci_conf_match(pattern_buf, num_patterns,
1134 					    &dinfo->conf) == 0)) {
1135 
1136 				/*
1137 				 * If we've filled up the user's buffer,
1138 				 * break out at this point.  Since we've
1139 				 * got a match here, we'll pick right back
1140 				 * up at the matching entry.  We can also
1141 				 * tell the user that there are more matches
1142 				 * left.
1143 				 */
1144 				if (cio->num_matches >= ionum)
1145 					break;
1146 
1147 				error = copyout(&dinfo->conf,
1148 					        &cio->matches[cio->num_matches],
1149 						sizeof(struct pci_conf));
1150 				cio->num_matches++;
1151 			}
1152 		}
1153 
1154 		/*
1155 		 * Set the pointer into the list, so if the user is getting
1156 		 * n records at a time, where n < pci_numdevs,
1157 		 */
1158 		cio->offset = i;
1159 
1160 		/*
1161 		 * Set the generation, the user will need this if they make
1162 		 * another ioctl call with offset != 0.
1163 		 */
1164 		cio->generation = pci_generation;
1165 
1166 		/*
1167 		 * If this is the last device, inform the user so he won't
1168 		 * bother asking for more devices.  If dinfo isn't NULL, we
1169 		 * know that there are more matches in the list because of
1170 		 * the way the traversal is done.
1171 		 */
1172 		if (dinfo == NULL)
1173 			cio->status = PCI_GETCONF_LAST_DEVICE;
1174 		else
1175 			cio->status = PCI_GETCONF_MORE_DEVS;
1176 
1177 		if (pattern_buf != NULL)
1178 			kfree(pattern_buf, M_TEMP);
1179 
1180 		break;
1181 		}
1182 	case PCIOCREAD:
1183 		io = (struct pci_io *)ap->a_data;
1184 		switch(io->pi_width) {
1185 		case 4:
1186 		case 2:
1187 		case 1:
1188 			/*
1189 			 * Assume that the user-level bus number is
1190 			 * actually the pciN instance number. We map
1191 			 * from that to the real pcib+bus combination.
1192 			 */
1193 			pci = devclass_get_device(pci_devclass,
1194 						  io->pi_sel.pc_bus);
1195 			if (pci) {
1196 				/*
1197 				 * pci is the pci device and may contain
1198 				 * several children (for each function code).
1199 				 * The governing pci bus is the parent to
1200 				 * the pci device.
1201 				 */
1202 				int b;
1203 
1204 				pcib = device_get_parent(pci);
1205 				b = pcib_get_bus(pcib);
1206 				io->pi_data =
1207 					PCIB_READ_CONFIG(pcib,
1208 							 b,
1209 							 io->pi_sel.pc_dev,
1210 							 io->pi_sel.pc_func,
1211 							 io->pi_reg,
1212 							 io->pi_width);
1213 				error = 0;
1214 			} else {
1215 				error = ENODEV;
1216 			}
1217 			break;
1218 		default:
1219 			error = ENODEV;
1220 			break;
1221 		}
1222 		break;
1223 
1224 	case PCIOCWRITE:
1225 		io = (struct pci_io *)ap->a_data;
1226 		switch(io->pi_width) {
1227 		case 4:
1228 		case 2:
1229 		case 1:
1230 			/*
1231 			 * Assume that the user-level bus number is
1232 			 * actually the pciN instance number. We map
1233 			 * from that to the real pcib+bus combination.
1234 			 */
1235 			pci = devclass_get_device(pci_devclass,
1236 						  io->pi_sel.pc_bus);
1237 			if (pci) {
1238 				/*
1239 				 * pci is the pci device and may contain
1240 				 * several children (for each function code).
1241 				 * The governing pci bus is the parent to
1242 				 * the pci device.
1243 				 */
1244 				int b;
1245 
1246 				pcib = device_get_parent(pci);
1247 				b = pcib_get_bus(pcib);
1248 				PCIB_WRITE_CONFIG(pcib,
1249 						  b,
1250 						  io->pi_sel.pc_dev,
1251 						  io->pi_sel.pc_func,
1252 						  io->pi_reg,
1253 						  io->pi_data,
1254 						  io->pi_width);
1255 				error = 0;
1256 			} else {
1257 				error = ENODEV;
1258 			}
1259 			break;
1260 		default:
1261 			error = ENODEV;
1262 			break;
1263 		}
1264 		break;
1265 
1266 	default:
1267 		error = ENOTTY;
1268 		break;
1269 	}
1270 
1271 	return (error);
1272 }
1273 
1274 #define	PCI_CDEV	78
1275 
1276 static struct dev_ops pcic_ops = {
1277 	{ "pci", PCI_CDEV, 0 },
1278 	.d_open =	pci_open,
1279 	.d_close =	pci_close,
1280 	.d_ioctl =	pci_ioctl,
1281 };
1282 
1283 #include "pci_if.h"
1284 
1285 /*
1286  * New style pci driver.  Parent device is either a pci-host-bridge or a
1287  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
1288  */
1289 const char *
1290 pci_class_to_string(int baseclass)
1291 {
1292 	const char *name;
1293 
1294 	switch(baseclass) {
1295 	case PCIC_OLD:
1296 		name = "OLD";
1297 		break;
1298 	case PCIC_STORAGE:
1299 		name = "STORAGE";
1300 		break;
1301 	case PCIC_NETWORK:
1302 		name = "NETWORK";
1303 		break;
1304 	case PCIC_DISPLAY:
1305 		name = "DISPLAY";
1306 		break;
1307 	case PCIC_MULTIMEDIA:
1308 		name = "MULTIMEDIA";
1309 		break;
1310 	case PCIC_MEMORY:
1311 		name = "MEMORY";
1312 		break;
1313 	case PCIC_BRIDGE:
1314 		name = "BRIDGE";
1315 		break;
1316 	case PCIC_SIMPLECOMM:
1317 		name = "SIMPLECOMM";
1318 		break;
1319 	case PCIC_BASEPERIPH:
1320 		name = "BASEPERIPH";
1321 		break;
1322 	case PCIC_INPUTDEV:
1323 		name = "INPUTDEV";
1324 		break;
1325 	case PCIC_DOCKING:
1326 		name = "DOCKING";
1327 		break;
1328 	case PCIC_PROCESSOR:
1329 		name = "PROCESSOR";
1330 		break;
1331 	case PCIC_SERIALBUS:
1332 		name = "SERIALBUS";
1333 		break;
1334 	case PCIC_WIRELESS:
1335 		name = "WIRELESS";
1336 		break;
1337 	case PCIC_I2O:
1338 		name = "I20";
1339 		break;
1340 	case PCIC_SATELLITE:
1341 		name = "SATELLITE";
1342 		break;
1343 	case PCIC_CRYPTO:
1344 		name = "CRYPTO";
1345 		break;
1346 	case PCIC_SIGPROC:
1347 		name = "SIGPROC";
1348 		break;
1349 	case PCIC_OTHER:
1350 		name = "OTHER";
1351 		break;
1352 	default:
1353 		name = "?";
1354 		break;
1355 	}
1356 	return(name);
1357 }
1358 
1359 static void
1360 pci_print_verbose_expr(const pcicfgregs *cfg)
1361 {
1362 	const struct pcicfg_expr *expr = &cfg->expr;
1363 	const char *port_name;
1364 	uint16_t port_type;
1365 
1366 	if (!bootverbose)
1367 		return;
1368 
1369 	if (expr->expr_ptr == 0) /* No PCI Express capability */
1370 		return;
1371 
1372 	kprintf("\tPCI Express ver.%d cap=0x%04x",
1373 		expr->expr_cap & PCIEM_CAP_VER_MASK, expr->expr_cap);
1374 	if ((expr->expr_cap & PCIEM_CAP_VER_MASK) != PCIEM_CAP_VER_1)
1375 		goto back;
1376 
1377 	port_type = expr->expr_cap & PCIEM_CAP_PORT_TYPE;
1378 
1379 	switch (port_type) {
1380 	case PCIE_END_POINT:
1381 		port_name = "DEVICE";
1382 		break;
1383 	case PCIE_LEG_END_POINT:
1384 		port_name = "LEGDEV";
1385 		break;
1386 	case PCIE_ROOT_PORT:
1387 		port_name = "ROOT";
1388 		break;
1389 	case PCIE_UP_STREAM_PORT:
1390 		port_name = "UPSTREAM";
1391 		break;
1392 	case PCIE_DOWN_STREAM_PORT:
1393 		port_name = "DOWNSTRM";
1394 		break;
1395 	case PCIE_PCIE2PCI_BRIDGE:
1396 		port_name = "PCIE2PCI";
1397 		break;
1398 	case PCIE_PCI2PCIE_BRIDGE:
1399 		port_name = "PCI2PCIE";
1400 		break;
1401 	default:
1402 		port_name = NULL;
1403 		break;
1404 	}
1405 	if ((port_type == PCIE_ROOT_PORT ||
1406 	     port_type == PCIE_DOWN_STREAM_PORT) &&
1407 	    !(expr->expr_cap & PCIEM_CAP_SLOT_IMPL))
1408 		port_name = NULL;
1409 	if (port_name != NULL)
1410 		kprintf("[%s]", port_name);
1411 
1412 	if (pcie_slotimpl(cfg)) {
1413 		kprintf(", slotcap=0x%08x", expr->expr_slotcap);
1414 		if (expr->expr_slotcap & PCIEM_SLTCAP_HP_CAP)
1415 			kprintf("[HOTPLUG]");
1416 	}
1417 back:
1418 	kprintf("\n");
1419 }
1420 
1421 void
1422 pci_print_verbose(struct pci_devinfo *dinfo)
1423 {
1424 	if (bootverbose) {
1425 		pcicfgregs *cfg = &dinfo->cfg;
1426 
1427 		kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1428 		       cfg->vendor, cfg->device, cfg->revid);
1429 		kprintf("\tbus=%d, slot=%d, func=%d\n",
1430 		       cfg->bus, cfg->slot, cfg->func);
1431 		kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1432 		       pci_class_to_string(cfg->baseclass),
1433 		       cfg->baseclass, cfg->subclass, cfg->progif,
1434 		       cfg->hdrtype, cfg->mfdev);
1435 		kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1436 		       cfg->subordinatebus, cfg->secondarybus);
1437 #ifdef PCI_DEBUG
1438 		kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1439 		       cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1440 		kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1441 		       cfg->lattimer, cfg->lattimer * 30,
1442 		       cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1443 #endif /* PCI_DEBUG */
1444 		if (cfg->intpin > 0)
1445 			kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1446 
1447 		pci_print_verbose_expr(cfg);
1448 	}
1449 }
1450 
1451 static int
1452 pci_porten(device_t pcib, int b, int s, int f)
1453 {
1454 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1455 		& PCIM_CMD_PORTEN) != 0;
1456 }
1457 
1458 static int
1459 pci_memen(device_t pcib, int b, int s, int f)
1460 {
1461 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1462 		& PCIM_CMD_MEMEN) != 0;
1463 }
1464 
1465 /*
1466  * Add a resource based on a pci map register. Return 1 if the map
1467  * register is a 32bit map register or 2 if it is a 64bit register.
1468  */
1469 static int
1470 pci_add_map(device_t pcib, int b, int s, int f, int reg,
1471 	    struct resource_list *rl)
1472 {
1473 	u_int32_t map;
1474 	u_int64_t base;
1475 	u_int8_t ln2size;
1476 	u_int8_t ln2range;
1477 	u_int32_t testval;
1478 
1479 
1480 #ifdef PCI_ENABLE_IO_MODES
1481 	u_int16_t cmd;
1482 #endif
1483 	int type;
1484 
1485 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1486 
1487 	if (map == 0 || map == 0xffffffff)
1488 		return 1; /* skip invalid entry */
1489 
1490 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1491 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1492 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1493 
1494 	base = pci_mapbase(map);
1495 	if (pci_maptype(map) & PCI_MAPMEM)
1496 		type = SYS_RES_MEMORY;
1497 	else
1498 		type = SYS_RES_IOPORT;
1499 	ln2size = pci_mapsize(testval);
1500 	ln2range = pci_maprange(testval);
1501 	if (ln2range == 64) {
1502 		/* Read the other half of a 64bit map register */
1503 		base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1504 	}
1505 
1506 	/*
1507 	 * This code theoretically does the right thing, but has
1508 	 * undesirable side effects in some cases where
1509 	 * peripherals respond oddly to having these bits
1510 	 * enabled.  Leave them alone by default.
1511 	 */
1512 #ifdef PCI_ENABLE_IO_MODES
1513 	if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1514 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1515 		cmd |= PCIM_CMD_PORTEN;
1516 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1517 	}
1518 	if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1519 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1520 		cmd |= PCIM_CMD_MEMEN;
1521 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1522 	}
1523 #else
1524         if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1525                 return 1;
1526         if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1527 		return 1;
1528 #endif
1529 
1530 	resource_list_add(rl, type, reg,
1531 			  base, base + (1 << ln2size) - 1,
1532 			  (1 << ln2size));
1533 
1534 	if (bootverbose) {
1535 		kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1536 		       reg, pci_maptype(base), ln2range,
1537 		       (unsigned int) base, ln2size);
1538 	}
1539 
1540 	return (ln2range == 64) ? 2 : 1;
1541 }
1542 
1543 #ifdef PCI_MAP_FIXUP
1544 /*
1545  * For ATA devices we need to decide early on what addressing mode to use.
1546  * Legacy demands that the primary and secondary ATA ports sits on the
1547  * same addresses that old ISA hardware did. This dictates that we use
1548  * those addresses and ignore the BARs if we cannot set PCI native
1549  * addressing mode.
1550  */
1551 static void
1552 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1553 	     struct resource_list *rl)
1554 {
1555 	int rid, type, progif;
1556 #if 0
1557 	/* if this device supports PCI native addressing use it */
1558 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1559 	if ((progif &0x8a) == 0x8a) {
1560 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1561 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1562 			kprintf("Trying ATA native PCI addressing mode\n");
1563 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1564 		}
1565 	}
1566 #endif
1567 	/*
1568 	 * Because we return any preallocated resources for lazy
1569 	 * allocation for PCI devices in pci_alloc_resource(), we can
1570 	 * allocate our legacy resources here.
1571 	 */
1572 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1573 	type = SYS_RES_IOPORT;
1574 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1575 		pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1576 		pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1577 	} else {
1578 		rid = PCIR_BAR(0);
1579 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1580 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1581 				    0);
1582 		rid = PCIR_BAR(1);
1583 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1584 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1585 				    0);
1586 	}
1587 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
1588 		pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1589 		pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1590 	} else {
1591 		rid = PCIR_BAR(2);
1592 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1593 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1594 				    0);
1595 		rid = PCIR_BAR(3);
1596 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1597 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1598 				    0);
1599 	}
1600 	pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1601 	pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1602 }
1603 #endif /* PCI_MAP_FIXUP */
1604 
1605 static void
1606 pci_add_resources(device_t pcib, device_t bus, device_t dev)
1607 {
1608 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1609 	pcicfgregs *cfg = &dinfo->cfg;
1610 	struct resource_list *rl = &dinfo->resources;
1611 	struct pci_quirk *q;
1612 	int b, i, f, s;
1613 #if 0	/* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1614 	int irq;
1615 #endif
1616 
1617 	b = cfg->bus;
1618 	s = cfg->slot;
1619 	f = cfg->func;
1620 #ifdef PCI_MAP_FIXUP
1621 	/* atapci devices in legacy mode need special map treatment */
1622 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
1623 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1624 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
1625 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
1626 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
1627 		pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1628 	else
1629 #endif /* PCI_MAP_FIXUP */
1630 		for (i = 0; i < cfg->nummaps;) {
1631 			i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1632 		}
1633 
1634 	for (q = &pci_quirks[0]; q->devid; q++) {
1635 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
1636 		    && q->type == PCI_QUIRK_MAP_REG)
1637 			pci_add_map(pcib, b, s, f, q->arg1, rl);
1638 	}
1639 
1640 	if (cfg->intpin > 0 && cfg->intline != 255)
1641 		resource_list_add(rl, SYS_RES_IRQ, 0,
1642 				  cfg->intline, cfg->intline, 1);
1643 }
1644 
1645 void
1646 pci_add_children(device_t dev, int busno, size_t dinfo_size)
1647 {
1648 #define REG(n, w)       PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1649 	device_t pcib = device_get_parent(dev);
1650 	struct pci_devinfo *dinfo;
1651 	int maxslots;
1652 	int s, f, pcifunchigh;
1653 	uint8_t hdrtype;
1654 
1655 	KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1656 
1657 	maxslots = PCIB_MAXSLOTS(pcib);
1658 
1659 	for (s = 0; s <= maxslots; s++) {
1660 		pcifunchigh = 0;
1661 		f = 0;
1662 		hdrtype = REG(PCIR_HDRTYPE, 1);
1663 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1664 			continue;
1665 		if (hdrtype & PCIM_MFDEV)
1666 			pcifunchigh = PCI_FUNCMAX;
1667 		for (f = 0; f <= pcifunchigh; f++) {
1668 			dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1669 			if (dinfo != NULL) {
1670 				pci_add_child(dev, dinfo);
1671 			}
1672 		}
1673 	}
1674 #undef REG
1675 }
1676 
1677 /*
1678  * The actual PCI child that we add has a NULL driver whos parent
1679  * device will be "pci".  The child contains the ivars, not the parent.
1680  */
1681 void
1682 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1683 {
1684 	device_t pcib;
1685 
1686 	pcib = device_get_parent(bus);
1687 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1688 	device_set_ivars(dinfo->cfg.dev, dinfo);
1689 	pci_add_resources(pcib, bus, dinfo->cfg.dev);
1690 	pci_print_verbose(dinfo);
1691 }
1692 
1693 /*
1694  * Probe the PCI bus.  Note: probe code is not supposed to add children
1695  * or call attach.
1696  */
1697 static int
1698 pci_probe(device_t dev)
1699 {
1700 	device_set_desc(dev, "PCI bus");
1701 
1702 	/* Allow other subclasses to override this driver */
1703 	return(-1000);
1704 }
1705 
1706 static int
1707 pci_attach(device_t dev)
1708 {
1709 	int busno;
1710 	int lunit = device_get_unit(dev);
1711 
1712 	dev_ops_add(&pcic_ops, -1, lunit);
1713 	make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1714 
1715         /*
1716          * Since there can be multiple independantly numbered PCI
1717          * busses on some large alpha systems, we can't use the unit
1718          * number to decide what bus we are probing. We ask the parent
1719          * pcib what our bus number is.
1720 	 *
1721 	 * pcib_get_bus() must act on the pci bus device, not on the pci
1722 	 * device, because it uses badly hacked nexus-based ivars to
1723 	 * store and retrieve the physical bus number.  XXX
1724          */
1725         busno = pcib_get_bus(device_get_parent(dev));
1726         if (bootverbose)
1727                 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1728 
1729         pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1730 
1731         return (bus_generic_attach(dev));
1732 }
1733 
1734 static int
1735 pci_print_resources(struct resource_list *rl, const char *name, int type,
1736 		    const char *format)
1737 {
1738 	struct resource_list_entry *rle;
1739 	int printed, retval;
1740 
1741 	printed = 0;
1742 	retval = 0;
1743 	/* Yes, this is kinda cheating */
1744 	SLIST_FOREACH(rle, rl, link) {
1745 		if (rle->type == type) {
1746 			if (printed == 0)
1747 				retval += kprintf(" %s ", name);
1748 			else if (printed > 0)
1749 				retval += kprintf(",");
1750 			printed++;
1751 			retval += kprintf(format, rle->start);
1752 			if (rle->count > 1) {
1753 				retval += kprintf("-");
1754 				retval += kprintf(format, rle->start +
1755 						 rle->count - 1);
1756 			}
1757 		}
1758 	}
1759 	return retval;
1760 }
1761 
1762 int
1763 pci_print_child(device_t dev, device_t child)
1764 {
1765 	struct pci_devinfo *dinfo;
1766 	struct resource_list *rl;
1767 	pcicfgregs *cfg;
1768 	int retval = 0;
1769 
1770 	dinfo = device_get_ivars(child);
1771 	cfg = &dinfo->cfg;
1772 	rl = &dinfo->resources;
1773 
1774 	retval += bus_print_child_header(dev, child);
1775 
1776 	retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1777 	retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1778 	retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1779 	if (device_get_flags(dev))
1780 		retval += kprintf(" flags %#x", device_get_flags(dev));
1781 
1782 	retval += kprintf(" at device %d.%d", pci_get_slot(child),
1783 			 pci_get_function(child));
1784 
1785 	retval += bus_print_child_footer(dev, child);
1786 
1787 	return (retval);
1788 }
1789 
1790 void
1791 pci_probe_nomatch(device_t dev, device_t child)
1792 {
1793 	struct pci_devinfo *dinfo;
1794 	pcicfgregs *cfg;
1795 	const char *desc;
1796 	int unknown;
1797 
1798 	unknown = 0;
1799 	dinfo = device_get_ivars(child);
1800 	cfg = &dinfo->cfg;
1801 	desc = pci_ata_match(child);
1802 	if (!desc) desc = pci_usb_match(child);
1803 	if (!desc) desc = pci_vga_match(child);
1804 	if (!desc) desc = pci_chip_match(child);
1805 	if (!desc) {
1806 		desc = "unknown card";
1807 		unknown++;
1808 	}
1809 	device_printf(dev, "<%s>", desc);
1810 	if (bootverbose || unknown) {
1811 		kprintf(" (vendor=0x%04x, dev=0x%04x)",
1812 			cfg->vendor,
1813 			cfg->device);
1814 	}
1815 	kprintf(" at %d.%d",
1816 		pci_get_slot(child),
1817 		pci_get_function(child));
1818 	if (cfg->intpin > 0 && cfg->intline != 255) {
1819 		kprintf(" irq %d", cfg->intline);
1820 	}
1821 	kprintf("\n");
1822 
1823 	return;
1824 }
1825 
1826 int
1827 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1828 {
1829 	struct pci_devinfo *dinfo;
1830 	pcicfgregs *cfg;
1831 
1832 	dinfo = device_get_ivars(child);
1833 	cfg = &dinfo->cfg;
1834 
1835 	switch (which) {
1836 	case PCI_IVAR_SUBVENDOR:
1837 		*result = cfg->subvendor;
1838 		break;
1839 	case PCI_IVAR_SUBDEVICE:
1840 		*result = cfg->subdevice;
1841 		break;
1842 	case PCI_IVAR_VENDOR:
1843 		*result = cfg->vendor;
1844 		break;
1845 	case PCI_IVAR_DEVICE:
1846 		*result = cfg->device;
1847 		break;
1848 	case PCI_IVAR_DEVID:
1849 		*result = (cfg->device << 16) | cfg->vendor;
1850 		break;
1851 	case PCI_IVAR_CLASS:
1852 		*result = cfg->baseclass;
1853 		break;
1854 	case PCI_IVAR_SUBCLASS:
1855 		*result = cfg->subclass;
1856 		break;
1857 	case PCI_IVAR_PROGIF:
1858 		*result = cfg->progif;
1859 		break;
1860 	case PCI_IVAR_REVID:
1861 		*result = cfg->revid;
1862 		break;
1863 	case PCI_IVAR_INTPIN:
1864 		*result = cfg->intpin;
1865 		break;
1866 	case PCI_IVAR_IRQ:
1867 		*result = cfg->intline;
1868 		break;
1869 	case PCI_IVAR_BUS:
1870 		*result = cfg->bus;
1871 		break;
1872 	case PCI_IVAR_SLOT:
1873 		*result = cfg->slot;
1874 		break;
1875 	case PCI_IVAR_FUNCTION:
1876 		*result = cfg->func;
1877 		break;
1878 	case PCI_IVAR_SECONDARYBUS:
1879 		*result = cfg->secondarybus;
1880 		break;
1881 	case PCI_IVAR_SUBORDINATEBUS:
1882 		*result = cfg->subordinatebus;
1883 		break;
1884 	case PCI_IVAR_ETHADDR:
1885 		/*
1886 		 * The generic accessor doesn't deal with failure, so
1887 		 * we set the return value, then return an error.
1888 		 */
1889 		*result = 0;
1890 		return (EINVAL);
1891 	case PCI_IVAR_PCIXCAP_PTR:
1892 		*result = cfg->pcixcap_ptr;
1893 		break;
1894 	case PCI_IVAR_PCIECAP_PTR:
1895 		*result = cfg->expr.expr_ptr;
1896 		break;
1897 	default:
1898 		return ENOENT;
1899 	}
1900 	return 0;
1901 }
1902 
1903 int
1904 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1905 {
1906 	struct pci_devinfo *dinfo;
1907 	pcicfgregs *cfg;
1908 
1909 	dinfo = device_get_ivars(child);
1910 	cfg = &dinfo->cfg;
1911 
1912 	switch (which) {
1913 	case PCI_IVAR_SUBVENDOR:
1914 	case PCI_IVAR_SUBDEVICE:
1915 	case PCI_IVAR_VENDOR:
1916 	case PCI_IVAR_DEVICE:
1917 	case PCI_IVAR_DEVID:
1918 	case PCI_IVAR_CLASS:
1919 	case PCI_IVAR_SUBCLASS:
1920 	case PCI_IVAR_PROGIF:
1921 	case PCI_IVAR_REVID:
1922 	case PCI_IVAR_INTPIN:
1923 	case PCI_IVAR_IRQ:
1924 	case PCI_IVAR_BUS:
1925 	case PCI_IVAR_SLOT:
1926 	case PCI_IVAR_FUNCTION:
1927 	case PCI_IVAR_ETHADDR:
1928 	case PCI_IVAR_PCIXCAP_PTR:
1929 	case PCI_IVAR_PCIECAP_PTR:
1930 		return EINVAL;	/* disallow for now */
1931 
1932 	case PCI_IVAR_SECONDARYBUS:
1933 		cfg->secondarybus = value;
1934 		break;
1935 	case PCI_IVAR_SUBORDINATEBUS:
1936 		cfg->subordinatebus = value;
1937 		break;
1938 	default:
1939 		return ENOENT;
1940 	}
1941 	return 0;
1942 }
1943 
1944 #ifdef PCI_MAP_FIXUP
1945 static struct resource *
1946 pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
1947 	      u_long end, u_long count, u_int flags)
1948 {
1949 	struct pci_devinfo *dinfo = device_get_ivars(child);
1950 	struct resource_list *rl = &dinfo->resources;
1951 	struct resource_list_entry *rle;
1952 	struct resource *res;
1953 	uint32_t map, testval;
1954 	int mapsize;
1955 
1956 	/*
1957 	 * Weed out the bogons, and figure out how large the BAR/map
1958 	 * is. BARs that read back 0 here are bogus and unimplemented.
1959 	 *
1960 	 * Note: atapci in legacy mode are special and handled elsewhere
1961 	 * in the code. If you have an atapci device in legacy mode and
1962 	 * it fails here, that other code is broken.
1963 	 */
1964 	res = NULL;
1965 	map = pci_read_config(child, *rid, 4);
1966 	pci_write_config(child, *rid, 0xffffffff, 4);
1967 	testval = pci_read_config(child, *rid, 4);
1968 	if (pci_mapbase(testval) == 0)
1969 		goto out;
1970 	if (pci_maptype(testval) & PCI_MAPMEM) {
1971 		if (type != SYS_RES_MEMORY) {
1972 			if (bootverbose)
1973 				device_printf(dev, "child %s requested type %d"
1974 					      " for rid %#x, but the BAR says "
1975 					      "it is a memio\n",
1976 					      device_get_nameunit(child), type,
1977 					      *rid);
1978 			goto out;
1979 		}
1980 	} else {
1981 		if (type != SYS_RES_IOPORT) {
1982 			if (bootverbose)
1983 				device_printf(dev, "child %s requested type %d"
1984 					      " for rid %#x, but the BAR says "
1985 					      "it is an ioport\n",
1986 					      device_get_nameunit(child), type,
1987 					      *rid);
1988 			goto out;
1989 		}
1990 	}
1991 	/*
1992 	 * For real BARs, we need to override the size that
1993 	 * the driver requests, because that's what the BAR
1994 	 * actually uses and we would otherwise have a
1995 	 * situation where we might allocate the excess to
1996 	 * another driver, which won't work.
1997 	 */
1998 	mapsize = pci_mapsize(testval);
1999 	count = 1 << mapsize;
2000 	if (RF_ALIGNMENT(flags) < mapsize)
2001 		flags = (flags & ~RF_ALIGNMENT_MASK) |
2002 		   RF_ALIGNMENT_LOG2(mapsize);
2003 	/*
2004 	 * Allocate enough resource, and then write back the
2005 	 * appropriate BAR for that resource.
2006 	 */
2007 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
2008 				 start, end, count, flags);
2009 	if (res == NULL) {
2010 		device_printf(child, "%#lx bytes at rid %#x res %d failed "
2011 			      "(%#lx, %#lx)\n", count, *rid, type, start, end);
2012 		goto out;
2013 	}
2014 	resource_list_add(rl, type, *rid, start, end, count);
2015 	rle = resource_list_find(rl, type, *rid);
2016 	if (rle == NULL)
2017 		panic("pci_alloc_map: unexpectedly can't find resource.");
2018 	rle->res = res;
2019 	rle->start = rman_get_start(res);
2020 	rle->end = rman_get_end(res);
2021 	rle->count = count;
2022 	if (bootverbose)
2023 		device_printf(child, "lazy allocation of %#lx bytes rid %#x "
2024 			      "type %d at %#lx\n", count, *rid, type,
2025 			      rman_get_start(res));
2026 	map = rman_get_start(res);
2027 out:;
2028 	pci_write_config(child, *rid, map, 4);
2029 	return res;
2030 }
2031 #endif /* PCI_MAP_FIXUP */
2032 
2033 struct resource *
2034 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
2035 		   u_long start, u_long end, u_long count, u_int flags)
2036 {
2037 	struct pci_devinfo *dinfo = device_get_ivars(child);
2038 	struct resource_list *rl = &dinfo->resources;
2039 #ifdef PCI_MAP_FIXUP
2040 	struct resource_list_entry *rle;
2041 #endif /* PCI_MAP_FIXUP */
2042 	pcicfgregs *cfg = &dinfo->cfg;
2043 
2044 	/*
2045 	 * Perform lazy resource allocation
2046 	 */
2047 	if (device_get_parent(child) == dev) {
2048 		switch (type) {
2049 		case SYS_RES_IRQ:
2050 #ifdef __i386__
2051 		/*
2052 		 * If device doesn't have an interrupt routed, and is
2053 		 * deserving of an interrupt, try to assign it one.
2054 		 */
2055 			if ((cfg->intline == 255 || cfg->intline == 0) &&
2056 			    (cfg->intpin != 0) &&
2057 			    (start == 0) && (end == ~0UL)) {
2058 				cfg->intline = PCIB_ROUTE_INTERRUPT(
2059 					device_get_parent(dev), child,
2060 					cfg->intpin);
2061 				if (cfg->intline != 255) {
2062 					pci_write_config(child, PCIR_INTLINE,
2063 					    cfg->intline, 1);
2064 					resource_list_add(rl, SYS_RES_IRQ, 0,
2065 					    cfg->intline, cfg->intline, 1);
2066 				}
2067 			}
2068 			break;
2069 #endif
2070 		case SYS_RES_IOPORT:
2071 			/* FALLTHROUGH */
2072 		case SYS_RES_MEMORY:
2073 			if (*rid < PCIR_BAR(cfg->nummaps)) {
2074 				/*
2075 				 * Enable the I/O mode.  We should
2076 				 * also be assigning resources too
2077 				 * when none are present.  The
2078 				 * resource_list_alloc kind of sorta does
2079 				 * this...
2080 				 */
2081 				if (PCI_ENABLE_IO(dev, child, type))
2082 					return (NULL);
2083 			}
2084 #ifdef PCI_MAP_FIXUP
2085 			rle = resource_list_find(rl, type, *rid);
2086 			if (rle == NULL)
2087 				return pci_alloc_map(dev, child, type, rid,
2088 						     start, end, count, flags);
2089 #endif /* PCI_MAP_FIXUP */
2090 			break;
2091 		}
2092 #ifdef PCI_MAP_FIXUP
2093 		/*
2094 		 * If we've already allocated the resource, then
2095 		 * return it now. But first we may need to activate
2096 		 * it, since we don't allocate the resource as active
2097 		 * above. Normally this would be done down in the
2098 		 * nexus, but since we short-circuit that path we have
2099 		 * to do its job here. Not sure if we should free the
2100 		 * resource if it fails to activate.
2101 		 *
2102 		 * Note: this also finds and returns resources for
2103 		 * atapci devices in legacy mode as allocated in
2104 		 * pci_ata_maps().
2105 		 */
2106 		rle = resource_list_find(rl, type, *rid);
2107 		if (rle != NULL && rle->res != NULL) {
2108 			if (bootverbose)
2109 				device_printf(child, "reserved %#lx bytes for "
2110 					      "rid %#x type %d at %#lx\n",
2111 					      rman_get_size(rle->res), *rid,
2112 					      type, rman_get_start(rle->res));
2113 			if ((flags & RF_ACTIVE) &&
2114 			    bus_generic_activate_resource(dev, child, type,
2115 							  *rid, rle->res) != 0)
2116 				return NULL;
2117 			return rle->res;
2118 		}
2119 #endif /* PCI_MAP_FIXUP */
2120 	}
2121 	return resource_list_alloc(rl, dev, child, type, rid,
2122 				   start, end, count, flags);
2123 }
2124 
2125 static int
2126 pci_release_resource(device_t dev, device_t child, int type, int rid,
2127 		     struct resource *r)
2128 {
2129 	struct pci_devinfo *dinfo = device_get_ivars(child);
2130 	struct resource_list *rl = &dinfo->resources;
2131 
2132 	return resource_list_release(rl, dev, child, type, rid, r);
2133 }
2134 
2135 static int
2136 pci_set_resource(device_t dev, device_t child, int type, int rid,
2137 		 u_long start, u_long count)
2138 {
2139 	struct pci_devinfo *dinfo = device_get_ivars(child);
2140 	struct resource_list *rl = &dinfo->resources;
2141 
2142 	resource_list_add(rl, type, rid, start, start + count - 1, count);
2143 	return 0;
2144 }
2145 
2146 static int
2147 pci_get_resource(device_t dev, device_t child, int type, int rid,
2148 		 u_long *startp, u_long *countp)
2149 {
2150 	struct pci_devinfo *dinfo = device_get_ivars(child);
2151 	struct resource_list *rl = &dinfo->resources;
2152 	struct resource_list_entry *rle;
2153 
2154 	rle = resource_list_find(rl, type, rid);
2155 	if (!rle)
2156 		return ENOENT;
2157 
2158 	if (startp)
2159 		*startp = rle->start;
2160 	if (countp)
2161 		*countp = rle->count;
2162 
2163 	return 0;
2164 }
2165 
2166 void
2167 pci_delete_resource(device_t dev, device_t child, int type, int rid)
2168 {
2169 	kprintf("pci_delete_resource: PCI resources can not be deleted\n");
2170 }
2171 
2172 struct resource_list *
2173 pci_get_resource_list (device_t dev, device_t child)
2174 {
2175 	struct pci_devinfo *dinfo = device_get_ivars(child);
2176 
2177 	if (dinfo == NULL)
2178 		return (NULL);
2179 	return (&dinfo->resources);
2180 }
2181 
2182 u_int32_t
2183 pci_read_config_method(device_t dev, device_t child, int reg, int width)
2184 {
2185 	struct pci_devinfo *dinfo = device_get_ivars(child);
2186 	pcicfgregs *cfg = &dinfo->cfg;
2187 
2188 	return PCIB_READ_CONFIG(device_get_parent(dev),
2189 				 cfg->bus, cfg->slot, cfg->func,
2190 				 reg, width);
2191 }
2192 
2193 void
2194 pci_write_config_method(device_t dev, device_t child, int reg,
2195 			u_int32_t val, int width)
2196 {
2197 	struct pci_devinfo *dinfo = device_get_ivars(child);
2198 	pcicfgregs *cfg = &dinfo->cfg;
2199 
2200 	PCIB_WRITE_CONFIG(device_get_parent(dev),
2201 			  cfg->bus, cfg->slot, cfg->func,
2202 			  reg, val, width);
2203 }
2204 
2205 int
2206 pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2207     size_t buflen)
2208 {
2209 	struct pci_devinfo *dinfo;
2210 
2211 	dinfo = device_get_ivars(child);
2212 	ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2213 	    pci_get_function(child));
2214 	return (0);
2215 }
2216 
2217 int
2218 pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2219     size_t buflen)
2220 {
2221 	struct pci_devinfo *dinfo;
2222 	pcicfgregs *cfg;
2223 
2224 	dinfo = device_get_ivars(child);
2225 	cfg = &dinfo->cfg;
2226 	ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2227 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2228 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2229 	    cfg->progif);
2230 	return (0);
2231 }
2232 
2233 int
2234 pci_assign_interrupt_method(device_t dev, device_t child)
2235 {
2236         struct pci_devinfo *dinfo = device_get_ivars(child);
2237         pcicfgregs *cfg = &dinfo->cfg;
2238 
2239         return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2240             cfg->intpin));
2241 }
2242 
2243 static int
2244 pci_modevent(module_t mod, int what, void *arg)
2245 {
2246 	switch (what) {
2247 	case MOD_LOAD:
2248 		STAILQ_INIT(&pci_devq);
2249 		break;
2250 	case MOD_UNLOAD:
2251 		break;
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 int
2258 pci_resume(device_t dev)
2259 {
2260         int                     numdevs;
2261         int                     i;
2262         device_t                *children;
2263         device_t                child;
2264         struct pci_devinfo      *dinfo;
2265         pcicfgregs              *cfg;
2266 
2267         device_get_children(dev, &children, &numdevs);
2268 
2269         for (i = 0; i < numdevs; i++) {
2270                 child = children[i];
2271 
2272                 dinfo = device_get_ivars(child);
2273                 cfg = &dinfo->cfg;
2274                 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2275                         cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2276                         if (PCI_INTERRUPT_VALID(cfg->intline)) {
2277                                 pci_write_config(child, PCIR_INTLINE,
2278                                     cfg->intline, 1);
2279                         }
2280                 }
2281         }
2282 
2283         kfree(children, M_TEMP);
2284 
2285         return (bus_generic_resume(dev));
2286 }
2287 
2288 static device_method_t pci_methods[] = {
2289 	/* Device interface */
2290 	DEVMETHOD(device_probe,		pci_probe),
2291 	DEVMETHOD(device_attach,	pci_attach),
2292 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2293 	DEVMETHOD(device_suspend,	bus_generic_suspend),
2294 	DEVMETHOD(device_resume,	pci_resume),
2295 
2296 	/* Bus interface */
2297 	DEVMETHOD(bus_print_child,	pci_print_child),
2298 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
2299 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
2300 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
2301 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2302 	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
2303 	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
2304 
2305 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2306 	DEVMETHOD(bus_set_resource,	pci_set_resource),
2307 	DEVMETHOD(bus_get_resource,	pci_get_resource),
2308 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
2309 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
2310 	DEVMETHOD(bus_release_resource,	pci_release_resource),
2311 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2312 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2313 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2314 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2315 
2316 	/* PCI interface */
2317 	DEVMETHOD(pci_read_config,	pci_read_config_method),
2318 	DEVMETHOD(pci_write_config,	pci_write_config_method),
2319 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
2320 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2321 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
2322 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
2323 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
2324 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
2325 	DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2326 
2327 	{ 0, 0 }
2328 };
2329 
2330 driver_t pci_driver = {
2331 	"pci",
2332 	pci_methods,
2333 	1,			/* no softc */
2334 };
2335 
2336 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2337 MODULE_VERSION(pci, 1);
2338