xref: /dragonfly/sys/bus/pci/pci.c (revision f02303f9)
1 /*
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/pci/pci.c,v 1.141.2.15 2002/04/30 17:48:18 tmm Exp $
27  * $DragonFly: src/sys/bus/pci/pci.c,v 1.37 2007/02/11 01:51:28 swildner Exp $
28  *
29  */
30 
31 #include "opt_bus.h"
32 #include "opt_pci.h"
33 
34 #include "opt_compat_oldpci.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/fcntl.h>
41 #include <sys/conf.h>
42 #include <sys/kernel.h>
43 #include <sys/queue.h>
44 #include <sys/types.h>
45 #include <sys/buf.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_extern.h>
50 
51 #include <sys/bus.h>
52 #include <sys/rman.h>
53 #include <machine/smp.h>
54 #ifdef __i386__
55 #include <bus/pci/i386/pci_cfgreg.h>
56 #endif
57 
58 #include <sys/pciio.h>
59 #include "pcireg.h"
60 #include "pcivar.h"
61 #include "pci_private.h"
62 
63 #include "pcib_if.h"
64 
65 devclass_t	pci_devclass;
66 const char	*pcib_owner;
67 
68 static void		pci_read_extcap(device_t dev, pcicfgregs *cfg);
69 
70 struct pci_quirk {
71 	u_int32_t devid;	/* Vendor/device of the card */
72 	int	type;
73 #define PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
74 	int	arg1;
75 	int	arg2;
76 };
77 
78 struct pci_quirk pci_quirks[] = {
79 	/*
80 	 * The Intel 82371AB and 82443MX has a map register at offset 0x90.
81 	 */
82 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
83 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
84 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
85 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
86 
87 	{ 0 }
88 };
89 
90 /* map register information */
91 #define PCI_MAPMEM	0x01	/* memory map */
92 #define PCI_MAPMEMP	0x02	/* prefetchable memory map */
93 #define PCI_MAPPORT	0x04	/* port map */
94 
95 static STAILQ_HEAD(devlist, pci_devinfo) pci_devq;
96 u_int32_t pci_numdevs = 0;
97 static u_int32_t pci_generation = 0;
98 
99 device_t
100 pci_find_bsf (u_int8_t bus, u_int8_t slot, u_int8_t func)
101 {
102 	struct pci_devinfo *dinfo;
103 
104 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
105 		if ((dinfo->cfg.bus == bus) &&
106 		    (dinfo->cfg.slot == slot) &&
107 		    (dinfo->cfg.func == func)) {
108 			return (dinfo->cfg.dev);
109 		}
110 	}
111 
112 	return (NULL);
113 }
114 
115 device_t
116 pci_find_device (u_int16_t vendor, u_int16_t device)
117 {
118 	struct pci_devinfo *dinfo;
119 
120 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
121 		if ((dinfo->cfg.vendor == vendor) &&
122 		    (dinfo->cfg.device == device)) {
123 			return (dinfo->cfg.dev);
124 		}
125 	}
126 
127 	return (NULL);
128 }
129 
130 /* return base address of memory or port map */
131 
132 static u_int32_t
133 pci_mapbase(unsigned mapreg)
134 {
135 	int mask = 0x03;
136 	if ((mapreg & 0x01) == 0)
137 		mask = 0x0f;
138 	return (mapreg & ~mask);
139 }
140 
141 /* return map type of memory or port map */
142 
143 static int
144 pci_maptype(unsigned mapreg)
145 {
146 	static u_int8_t maptype[0x10] = {
147 		PCI_MAPMEM,		PCI_MAPPORT,
148 		PCI_MAPMEM,		0,
149 		PCI_MAPMEM,		PCI_MAPPORT,
150 		0,			0,
151 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
152 		PCI_MAPMEM|PCI_MAPMEMP, 0,
153 		PCI_MAPMEM|PCI_MAPMEMP,	PCI_MAPPORT,
154 		0,			0,
155 	};
156 
157 	return maptype[mapreg & 0x0f];
158 }
159 
160 /* return log2 of map size decoded for memory or port map */
161 
162 static int
163 pci_mapsize(unsigned testval)
164 {
165 	int ln2size;
166 
167 	testval = pci_mapbase(testval);
168 	ln2size = 0;
169 	if (testval != 0) {
170 		while ((testval & 1) == 0)
171 		{
172 			ln2size++;
173 			testval >>= 1;
174 		}
175 	}
176 	return (ln2size);
177 }
178 
179 /* return log2 of address range supported by map register */
180 
181 static int
182 pci_maprange(unsigned mapreg)
183 {
184 	int ln2range = 0;
185 	switch (mapreg & 0x07) {
186 	case 0x00:
187 	case 0x01:
188 	case 0x05:
189 		ln2range = 32;
190 		break;
191 	case 0x02:
192 		ln2range = 20;
193 		break;
194 	case 0x04:
195 		ln2range = 64;
196 		break;
197 	}
198 	return (ln2range);
199 }
200 
201 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
202 
203 static void
204 pci_fixancient(pcicfgregs *cfg)
205 {
206 	if (cfg->hdrtype != 0)
207 		return;
208 
209 	/* PCI to PCI bridges use header type 1 */
210 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
211 		cfg->hdrtype = 1;
212 }
213 
214 /* read config data specific to header type 1 device (PCI to PCI bridge) */
215 
216 static void *
217 pci_readppb(device_t pcib, int b, int s, int f)
218 {
219 	pcih1cfgregs *p;
220 
221 	p = kmalloc(sizeof (pcih1cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
222 	if (p == NULL)
223 		return (NULL);
224 
225 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_1, 2);
226 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_1, 2);
227 
228 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_1, 1);
229 
230 	p->iobase = PCI_PPBIOBASE (PCIB_READ_CONFIG(pcib, b, s, f,
231 						    PCIR_IOBASEH_1, 2),
232 				   PCIB_READ_CONFIG(pcib, b, s, f,
233 				   		    PCIR_IOBASEL_1, 1));
234 	p->iolimit = PCI_PPBIOLIMIT (PCIB_READ_CONFIG(pcib, b, s, f,
235 						      PCIR_IOLIMITH_1, 2),
236 				     PCIB_READ_CONFIG(pcib, b, s, f,
237 				     		      PCIR_IOLIMITL_1, 1));
238 
239 	p->membase = PCI_PPBMEMBASE (0,
240 				     PCIB_READ_CONFIG(pcib, b, s, f,
241 				     		      PCIR_MEMBASE_1, 2));
242 	p->memlimit = PCI_PPBMEMLIMIT (0,
243 				       PCIB_READ_CONFIG(pcib, b, s, f,
244 				       		        PCIR_MEMLIMIT_1, 2));
245 
246 	p->pmembase = PCI_PPBMEMBASE (
247 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEH_1, 4),
248 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMBASEL_1, 2));
249 
250 	p->pmemlimit = PCI_PPBMEMLIMIT (
251 		(pci_addr_t)PCIB_READ_CONFIG(pcib, b, s, f,
252 					     PCIR_PMLIMITH_1, 4),
253 		PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PMLIMITL_1, 2));
254 
255 	return (p);
256 }
257 
258 /* read config data specific to header type 2 device (PCI to CardBus bridge) */
259 
260 static void *
261 pci_readpcb(device_t pcib, int b, int s, int f)
262 {
263 	pcih2cfgregs *p;
264 
265 	p = kmalloc(sizeof (pcih2cfgregs), M_DEVBUF, M_WAITOK | M_ZERO);
266 	if (p == NULL)
267 		return (NULL);
268 
269 	p->secstat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECSTAT_2, 2);
270 	p->bridgectl = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_BRIDGECTL_2, 2);
271 
272 	p->seclat = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_SECLAT_2, 1);
273 
274 	p->membase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE0_2, 4);
275 	p->memlimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT0_2, 4);
276 	p->membase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMBASE1_2, 4);
277 	p->memlimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_MEMLIMIT1_2, 4);
278 
279 	p->iobase0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE0_2, 4);
280 	p->iolimit0 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT0_2, 4);
281 	p->iobase1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOBASE1_2, 4);
282 	p->iolimit1 = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_IOLIMIT1_2, 4);
283 
284 	p->pccardif = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_PCCARDIF_2, 4);
285 	return p;
286 }
287 
288 /* extract header type specific config data */
289 
290 static void
291 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
292 {
293 #define REG(n,w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
294 	switch (cfg->hdrtype) {
295 	case 0:
296 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
297 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
298 		cfg->nummaps	    = PCI_MAXMAPS_0;
299 		break;
300 	case 1:
301 		cfg->subvendor      = REG(PCIR_SUBVEND_1, 2);
302 		cfg->subdevice      = REG(PCIR_SUBDEV_1, 2);
303 		cfg->secondarybus   = REG(PCIR_SECBUS_1, 1);
304 		cfg->subordinatebus = REG(PCIR_SUBBUS_1, 1);
305 		cfg->nummaps	    = PCI_MAXMAPS_1;
306 		cfg->hdrspec        = pci_readppb(pcib, b, s, f);
307 		break;
308 	case 2:
309 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
310 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
311 		cfg->secondarybus   = REG(PCIR_SECBUS_2, 1);
312 		cfg->subordinatebus = REG(PCIR_SUBBUS_2, 1);
313 		cfg->nummaps	    = PCI_MAXMAPS_2;
314 		cfg->hdrspec        = pci_readpcb(pcib, b, s, f);
315 		break;
316 	}
317 #undef REG
318 }
319 
320 /* read configuration header into pcicfgrect structure */
321 
322 struct pci_devinfo *
323 pci_read_device(device_t pcib, int b, int s, int f, size_t size)
324 {
325 #define REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
326 
327 	pcicfgregs *cfg = NULL;
328 	struct pci_devinfo *devlist_entry;
329 	struct devlist *devlist_head;
330 
331 	devlist_head = &pci_devq;
332 
333 	devlist_entry = NULL;
334 
335 	if (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_DEVVENDOR, 4) != -1) {
336 
337 		devlist_entry = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
338 		if (devlist_entry == NULL)
339 			return (NULL);
340 
341 		cfg = &devlist_entry->cfg;
342 
343 		cfg->bus		= b;
344 		cfg->slot		= s;
345 		cfg->func		= f;
346 		cfg->vendor		= REG(PCIR_VENDOR, 2);
347 		cfg->device		= REG(PCIR_DEVICE, 2);
348 		cfg->cmdreg		= REG(PCIR_COMMAND, 2);
349 		cfg->statreg		= REG(PCIR_STATUS, 2);
350 		cfg->baseclass		= REG(PCIR_CLASS, 1);
351 		cfg->subclass		= REG(PCIR_SUBCLASS, 1);
352 		cfg->progif		= REG(PCIR_PROGIF, 1);
353 		cfg->revid		= REG(PCIR_REVID, 1);
354 		cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
355 		cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
356 		cfg->lattimer		= REG(PCIR_LATTIMER, 1);
357 		cfg->intpin		= REG(PCIR_INTPIN, 1);
358 		cfg->intline		= REG(PCIR_INTLINE, 1);
359 
360 #ifdef APIC_IO
361 		/*
362 		 * If using the APIC the intpin is probably wrong, since it
363 		 * is often setup by the BIOS with the PIC in mind.
364 		 */
365 		if (cfg->intpin != 0) {
366 			int airq;
367 
368 			airq = pci_apic_irq(cfg->bus, cfg->slot, cfg->intpin);
369 			if (airq >= 0) {
370 				/* PCI specific entry found in MP table */
371 				if (airq != cfg->intline) {
372 					undirect_pci_irq(cfg->intline);
373 					cfg->intline = airq;
374 				}
375 			} else {
376 				/*
377 				 * PCI interrupts might be redirected to the
378 				 * ISA bus according to some MP tables. Use the
379 				 * same methods as used by the ISA devices
380 				 * devices to find the proper IOAPIC int pin.
381 				 */
382 				airq = isa_apic_irq(cfg->intline);
383 				if ((airq >= 0) && (airq != cfg->intline)) {
384 					/* XXX: undirect_pci_irq() ? */
385 					undirect_isa_irq(cfg->intline);
386 					cfg->intline = airq;
387 				}
388 			}
389 		}
390 #endif /* APIC_IO */
391 
392 		cfg->mingnt		= REG(PCIR_MINGNT, 1);
393 		cfg->maxlat		= REG(PCIR_MAXLAT, 1);
394 
395 		cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
396 		cfg->hdrtype		&= ~PCIM_MFDEV;
397 
398 		pci_fixancient(cfg);
399 		pci_hdrtypedata(pcib, b, s, f, cfg);
400 
401 		if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
402 			pci_read_extcap(pcib, cfg);
403 
404 		STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
405 
406 		devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
407 		devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
408 		devlist_entry->conf.pc_sel.pc_func = cfg->func;
409 		devlist_entry->conf.pc_hdr = cfg->hdrtype;
410 
411 		devlist_entry->conf.pc_subvendor = cfg->subvendor;
412 		devlist_entry->conf.pc_subdevice = cfg->subdevice;
413 		devlist_entry->conf.pc_vendor = cfg->vendor;
414 		devlist_entry->conf.pc_device = cfg->device;
415 
416 		devlist_entry->conf.pc_class = cfg->baseclass;
417 		devlist_entry->conf.pc_subclass = cfg->subclass;
418 		devlist_entry->conf.pc_progif = cfg->progif;
419 		devlist_entry->conf.pc_revid = cfg->revid;
420 
421 		pci_numdevs++;
422 		pci_generation++;
423 	}
424 	return (devlist_entry);
425 #undef REG
426 }
427 
428 static void
429 pci_read_extcap(device_t pcib, pcicfgregs *cfg)
430 {
431 #define REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
432 	int	ptr, nextptr, ptrptr;
433 
434 	switch (cfg->hdrtype) {
435 	case 0:
436 		ptrptr = 0x34;
437 		break;
438 	case 2:
439 		ptrptr = 0x14;
440 		break;
441 	default:
442 		return;		/* no extended capabilities support */
443 	}
444 	nextptr = REG(ptrptr, 1);	/* sanity check? */
445 
446 	/*
447 	 * Read capability entries.
448 	 */
449 	while (nextptr != 0) {
450 		/* Sanity check */
451 		if (nextptr > 255) {
452 			kprintf("illegal PCI extended capability offset %d\n",
453 			    nextptr);
454 			return;
455 		}
456 		/* Find the next entry */
457 		ptr = nextptr;
458 		nextptr = REG(ptr + 1, 1);
459 
460 		/* Process this entry */
461 		switch (REG(ptr, 1)) {
462 		case 0x01:		/* PCI power management */
463 			if (cfg->pp_cap == 0) {
464 				cfg->pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
465 				cfg->pp_status = ptr + PCIR_POWER_STATUS;
466 				cfg->pp_pmcsr = ptr + PCIR_POWER_PMCSR;
467 				if ((nextptr - ptr) > PCIR_POWER_DATA)
468 					cfg->pp_data = ptr + PCIR_POWER_DATA;
469 			}
470 			break;
471 		default:
472 			break;
473 		}
474 	}
475 #undef REG
476 }
477 
478 /* free pcicfgregs structure and all depending data structures */
479 
480 int
481 pci_freecfg(struct pci_devinfo *dinfo)
482 {
483 	struct devlist *devlist_head;
484 
485 	devlist_head = &pci_devq;
486 
487 	if (dinfo->cfg.hdrspec != NULL)
488 		kfree(dinfo->cfg.hdrspec, M_DEVBUF);
489 	/* XXX this hasn't been tested */
490 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
491 	kfree(dinfo, M_DEVBUF);
492 
493 	/* increment the generation count */
494 	pci_generation++;
495 
496 	/* we're losing one device */
497 	pci_numdevs--;
498 	return (0);
499 }
500 
501 
502 /*
503  * PCI power manangement
504  */
505 int
506 pci_set_powerstate_method(device_t dev, device_t child, int state)
507 {
508 	struct pci_devinfo *dinfo = device_get_ivars(child);
509 	pcicfgregs *cfg = &dinfo->cfg;
510 	u_int16_t status;
511 	int result;
512 
513 	if (cfg->pp_cap != 0) {
514 		status = PCI_READ_CONFIG(dev, child, cfg->pp_status, 2) & ~PCIM_PSTAT_DMASK;
515 		result = 0;
516 		switch (state) {
517 		case PCI_POWERSTATE_D0:
518 			status |= PCIM_PSTAT_D0;
519 			break;
520 		case PCI_POWERSTATE_D1:
521 			if (cfg->pp_cap & PCIM_PCAP_D1SUPP) {
522 				status |= PCIM_PSTAT_D1;
523 			} else {
524 				result = EOPNOTSUPP;
525 			}
526 			break;
527 		case PCI_POWERSTATE_D2:
528 			if (cfg->pp_cap & PCIM_PCAP_D2SUPP) {
529 				status |= PCIM_PSTAT_D2;
530 			} else {
531 				result = EOPNOTSUPP;
532 			}
533 			break;
534 		case PCI_POWERSTATE_D3:
535 			status |= PCIM_PSTAT_D3;
536 			break;
537 		default:
538 			result = EINVAL;
539 		}
540 		if (result == 0)
541 			PCI_WRITE_CONFIG(dev, child, cfg->pp_status, status, 2);
542 	} else {
543 		result = ENXIO;
544 	}
545 	return(result);
546 }
547 
548 int
549 pci_get_powerstate_method(device_t dev, device_t child)
550 {
551 	struct pci_devinfo *dinfo = device_get_ivars(child);
552 	pcicfgregs *cfg = &dinfo->cfg;
553 	u_int16_t status;
554 	int result;
555 
556 	if (cfg->pp_cap != 0) {
557 		status = PCI_READ_CONFIG(dev, child, cfg->pp_status, 2);
558 		switch (status & PCIM_PSTAT_DMASK) {
559 		case PCIM_PSTAT_D0:
560 			result = PCI_POWERSTATE_D0;
561 			break;
562 		case PCIM_PSTAT_D1:
563 			result = PCI_POWERSTATE_D1;
564 			break;
565 		case PCIM_PSTAT_D2:
566 			result = PCI_POWERSTATE_D2;
567 			break;
568 		case PCIM_PSTAT_D3:
569 			result = PCI_POWERSTATE_D3;
570 			break;
571 		default:
572 			result = PCI_POWERSTATE_UNKNOWN;
573 			break;
574 		}
575 	} else {
576 		/* No support, device is always at D0 */
577 		result = PCI_POWERSTATE_D0;
578 	}
579 	return(result);
580 }
581 
582 /*
583  * Some convenience functions for PCI device drivers.
584  */
585 
586 static __inline void
587 pci_set_command_bit(device_t dev, device_t child, u_int16_t bit)
588 {
589     u_int16_t	command;
590 
591     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
592     command |= bit;
593     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
594 }
595 
596 static __inline void
597 pci_clear_command_bit(device_t dev, device_t child, u_int16_t bit)
598 {
599     u_int16_t	command;
600 
601     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
602     command &= ~bit;
603     PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
604 }
605 
606 int
607 pci_enable_busmaster_method(device_t dev, device_t child)
608 {
609     pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
610     return(0);
611 }
612 
613 int
614 pci_disable_busmaster_method(device_t dev, device_t child)
615 {
616     pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
617     return(0);
618 }
619 
620 int
621 pci_enable_io_method(device_t dev, device_t child, int space)
622 {
623     uint16_t command;
624     uint16_t bit;
625     char *error;
626 
627     bit = 0;
628     error = NULL;
629 
630     switch(space) {
631     case SYS_RES_IOPORT:
632 	bit = PCIM_CMD_PORTEN;
633 	error = "port";
634 	break;
635     case SYS_RES_MEMORY:
636 	bit = PCIM_CMD_MEMEN;
637 	error = "memory";
638 	break;
639     default:
640 	return(EINVAL);
641     }
642     pci_set_command_bit(dev, child, bit);
643     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
644     if (command & bit)
645 	return(0);
646     device_printf(child, "failed to enable %s mapping!\n", error);
647     return(ENXIO);
648 }
649 
650 int
651 pci_disable_io_method(device_t dev, device_t child, int space)
652 {
653     uint16_t command;
654     uint16_t bit;
655     char *error;
656 
657     bit = 0;
658     error = NULL;
659 
660     switch(space) {
661     case SYS_RES_IOPORT:
662 	bit = PCIM_CMD_PORTEN;
663 	error = "port";
664 	break;
665     case SYS_RES_MEMORY:
666 	bit = PCIM_CMD_MEMEN;
667 	error = "memory";
668 	break;
669     default:
670 	return (EINVAL);
671     }
672     pci_clear_command_bit(dev, child, bit);
673     command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
674     if (command & bit) {
675 	device_printf(child, "failed to disable %s mapping!\n", error);
676 	return (ENXIO);
677     }
678     return (0);
679 }
680 
681 /*
682  * This is the user interface to PCI configuration space.
683  */
684 
685 static int
686 pci_open(struct dev_open_args *ap)
687 {
688 	if ((ap->a_oflags & FWRITE) && securelevel > 0) {
689 		return EPERM;
690 	}
691 	return 0;
692 }
693 
694 static int
695 pci_close(struct dev_close_args *ap)
696 {
697 	return 0;
698 }
699 
700 /*
701  * Match a single pci_conf structure against an array of pci_match_conf
702  * structures.  The first argument, 'matches', is an array of num_matches
703  * pci_match_conf structures.  match_buf is a pointer to the pci_conf
704  * structure that will be compared to every entry in the matches array.
705  * This function returns 1 on failure, 0 on success.
706  */
707 static int
708 pci_conf_match(struct pci_match_conf *matches, int num_matches,
709 	       struct pci_conf *match_buf)
710 {
711 	int i;
712 
713 	if ((matches == NULL) || (match_buf == NULL) || (num_matches <= 0))
714 		return(1);
715 
716 	for (i = 0; i < num_matches; i++) {
717 		/*
718 		 * I'm not sure why someone would do this...but...
719 		 */
720 		if (matches[i].flags == PCI_GETCONF_NO_MATCH)
721 			continue;
722 
723 		/*
724 		 * Look at each of the match flags.  If it's set, do the
725 		 * comparison.  If the comparison fails, we don't have a
726 		 * match, go on to the next item if there is one.
727 		 */
728 		if (((matches[i].flags & PCI_GETCONF_MATCH_BUS) != 0)
729 		 && (match_buf->pc_sel.pc_bus != matches[i].pc_sel.pc_bus))
730 			continue;
731 
732 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEV) != 0)
733 		 && (match_buf->pc_sel.pc_dev != matches[i].pc_sel.pc_dev))
734 			continue;
735 
736 		if (((matches[i].flags & PCI_GETCONF_MATCH_FUNC) != 0)
737 		 && (match_buf->pc_sel.pc_func != matches[i].pc_sel.pc_func))
738 			continue;
739 
740 		if (((matches[i].flags & PCI_GETCONF_MATCH_VENDOR) != 0)
741 		 && (match_buf->pc_vendor != matches[i].pc_vendor))
742 			continue;
743 
744 		if (((matches[i].flags & PCI_GETCONF_MATCH_DEVICE) != 0)
745 		 && (match_buf->pc_device != matches[i].pc_device))
746 			continue;
747 
748 		if (((matches[i].flags & PCI_GETCONF_MATCH_CLASS) != 0)
749 		 && (match_buf->pc_class != matches[i].pc_class))
750 			continue;
751 
752 		if (((matches[i].flags & PCI_GETCONF_MATCH_UNIT) != 0)
753 		 && (match_buf->pd_unit != matches[i].pd_unit))
754 			continue;
755 
756 		if (((matches[i].flags & PCI_GETCONF_MATCH_NAME) != 0)
757 		 && (strncmp(matches[i].pd_name, match_buf->pd_name,
758 			     sizeof(match_buf->pd_name)) != 0))
759 			continue;
760 
761 		return(0);
762 	}
763 
764 	return(1);
765 }
766 
767 /*
768  * Locate the parent of a PCI device by scanning the PCI devlist
769  * and return the entry for the parent.
770  * For devices on PCI Bus 0 (the host bus), this is the PCI Host.
771  * For devices on secondary PCI busses, this is that bus' PCI-PCI Bridge.
772  */
773 
774 pcicfgregs *
775 pci_devlist_get_parent(pcicfgregs *cfg)
776 {
777 	struct devlist *devlist_head;
778 	struct pci_devinfo *dinfo;
779 	pcicfgregs *bridge_cfg;
780 	int i;
781 
782 	dinfo = STAILQ_FIRST(devlist_head = &pci_devq);
783 
784 	/* If the device is on PCI bus 0, look for the host */
785 	if (cfg->bus == 0) {
786 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
787 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
788 			bridge_cfg = &dinfo->cfg;
789 			if (bridge_cfg->baseclass == PCIC_BRIDGE
790 				&& bridge_cfg->subclass == PCIS_BRIDGE_HOST
791 		    		&& bridge_cfg->bus == cfg->bus) {
792 				return bridge_cfg;
793 			}
794 		}
795 	}
796 
797 	/* If the device is not on PCI bus 0, look for the PCI-PCI bridge */
798 	if (cfg->bus > 0) {
799 		for (i = 0; (dinfo != NULL) && (i < pci_numdevs);
800 		dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
801 			bridge_cfg = &dinfo->cfg;
802 			if (bridge_cfg->baseclass == PCIC_BRIDGE
803 				&& bridge_cfg->subclass == PCIS_BRIDGE_PCI
804 				&& bridge_cfg->secondarybus == cfg->bus) {
805 				return bridge_cfg;
806 			}
807 		}
808 	}
809 
810 	return NULL;
811 }
812 
813 static int
814 pci_ioctl(struct dev_ioctl_args *ap)
815 {
816 	device_t pci, pcib;
817 	struct pci_io *io;
818 	const char *name;
819 	int error;
820 
821 	if (!(ap->a_fflag & FWRITE))
822 		return EPERM;
823 
824 	switch(ap->a_cmd) {
825 	case PCIOCGETCONF:
826 		{
827 		struct pci_devinfo *dinfo;
828 		struct pci_conf_io *cio;
829 		struct devlist *devlist_head;
830 		struct pci_match_conf *pattern_buf;
831 		int num_patterns;
832 		size_t iolen;
833 		int ionum, i;
834 
835 		cio = (struct pci_conf_io *)ap->a_data;
836 
837 		num_patterns = 0;
838 		dinfo = NULL;
839 
840 		/*
841 		 * Hopefully the user won't pass in a null pointer, but it
842 		 * can't hurt to check.
843 		 */
844 		if (cio == NULL) {
845 			error = EINVAL;
846 			break;
847 		}
848 
849 		/*
850 		 * If the user specified an offset into the device list,
851 		 * but the list has changed since they last called this
852 		 * ioctl, tell them that the list has changed.  They will
853 		 * have to get the list from the beginning.
854 		 */
855 		if ((cio->offset != 0)
856 		 && (cio->generation != pci_generation)){
857 			cio->num_matches = 0;
858 			cio->status = PCI_GETCONF_LIST_CHANGED;
859 			error = 0;
860 			break;
861 		}
862 
863 		/*
864 		 * Check to see whether the user has asked for an offset
865 		 * past the end of our list.
866 		 */
867 		if (cio->offset >= pci_numdevs) {
868 			cio->num_matches = 0;
869 			cio->status = PCI_GETCONF_LAST_DEVICE;
870 			error = 0;
871 			break;
872 		}
873 
874 		/* get the head of the device queue */
875 		devlist_head = &pci_devq;
876 
877 		/*
878 		 * Determine how much room we have for pci_conf structures.
879 		 * Round the user's buffer size down to the nearest
880 		 * multiple of sizeof(struct pci_conf) in case the user
881 		 * didn't specify a multiple of that size.
882 		 */
883 		iolen = min(cio->match_buf_len -
884 			    (cio->match_buf_len % sizeof(struct pci_conf)),
885 			    pci_numdevs * sizeof(struct pci_conf));
886 
887 		/*
888 		 * Since we know that iolen is a multiple of the size of
889 		 * the pciconf union, it's okay to do this.
890 		 */
891 		ionum = iolen / sizeof(struct pci_conf);
892 
893 		/*
894 		 * If this test is true, the user wants the pci_conf
895 		 * structures returned to match the supplied entries.
896 		 */
897 		if ((cio->num_patterns > 0)
898 		 && (cio->pat_buf_len > 0)) {
899 			/*
900 			 * pat_buf_len needs to be:
901 			 * num_patterns * sizeof(struct pci_match_conf)
902 			 * While it is certainly possible the user just
903 			 * allocated a large buffer, but set the number of
904 			 * matches correctly, it is far more likely that
905 			 * their kernel doesn't match the userland utility
906 			 * they're using.  It's also possible that the user
907 			 * forgot to initialize some variables.  Yes, this
908 			 * may be overly picky, but I hazard to guess that
909 			 * it's far more likely to just catch folks that
910 			 * updated their kernel but not their userland.
911 			 */
912 			if ((cio->num_patterns *
913 			    sizeof(struct pci_match_conf)) != cio->pat_buf_len){
914 				/* The user made a mistake, return an error*/
915 				cio->status = PCI_GETCONF_ERROR;
916 				kprintf("pci_ioctl: pat_buf_len %d != "
917 				       "num_patterns (%d) * sizeof(struct "
918 				       "pci_match_conf) (%d)\npci_ioctl: "
919 				       "pat_buf_len should be = %d\n",
920 				       cio->pat_buf_len, cio->num_patterns,
921 				       (int)sizeof(struct pci_match_conf),
922 				       (int)sizeof(struct pci_match_conf) *
923 				       cio->num_patterns);
924 				kprintf("pci_ioctl: do your headers match your "
925 				       "kernel?\n");
926 				cio->num_matches = 0;
927 				error = EINVAL;
928 				break;
929 			}
930 
931 			/*
932 			 * Check the user's buffer to make sure it's readable.
933 			 */
934 			if (!useracc((caddr_t)cio->patterns,
935 				    cio->pat_buf_len, VM_PROT_READ)) {
936 				kprintf("pci_ioctl: pattern buffer %p, "
937 				       "length %u isn't user accessible for"
938 				       " READ\n", cio->patterns,
939 				       cio->pat_buf_len);
940 				error = EACCES;
941 				break;
942 			}
943 			/*
944 			 * Allocate a buffer to hold the patterns.
945 			 */
946 			pattern_buf = kmalloc(cio->pat_buf_len, M_TEMP,
947 					     M_WAITOK);
948 			error = copyin(cio->patterns, pattern_buf,
949 				       cio->pat_buf_len);
950 			if (error != 0)
951 				break;
952 			num_patterns = cio->num_patterns;
953 
954 		} else if ((cio->num_patterns > 0)
955 			|| (cio->pat_buf_len > 0)) {
956 			/*
957 			 * The user made a mistake, spit out an error.
958 			 */
959 			cio->status = PCI_GETCONF_ERROR;
960 			cio->num_matches = 0;
961 			kprintf("pci_ioctl: invalid GETCONF arguments\n");
962 			error = EINVAL;
963 			break;
964 		} else
965 			pattern_buf = NULL;
966 
967 		/*
968 		 * Make sure we can write to the match buffer.
969 		 */
970 		if (!useracc((caddr_t)cio->matches,
971 			     cio->match_buf_len, VM_PROT_WRITE)) {
972 			kprintf("pci_ioctl: match buffer %p, length %u "
973 			       "isn't user accessible for WRITE\n",
974 			       cio->matches, cio->match_buf_len);
975 			error = EACCES;
976 			break;
977 		}
978 
979 		/*
980 		 * Go through the list of devices and copy out the devices
981 		 * that match the user's criteria.
982 		 */
983 		for (cio->num_matches = 0, error = 0, i = 0,
984 		     dinfo = STAILQ_FIRST(devlist_head);
985 		     (dinfo != NULL) && (cio->num_matches < ionum)
986 		     && (error == 0) && (i < pci_numdevs);
987 		     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
988 
989 			if (i < cio->offset)
990 				continue;
991 
992 			/* Populate pd_name and pd_unit */
993 			name = NULL;
994 			if (dinfo->cfg.dev && dinfo->conf.pd_name[0] == '\0')
995 				name = device_get_name(dinfo->cfg.dev);
996 			if (name) {
997 				strncpy(dinfo->conf.pd_name, name,
998 					sizeof(dinfo->conf.pd_name));
999 				dinfo->conf.pd_name[PCI_MAXNAMELEN] = 0;
1000 				dinfo->conf.pd_unit =
1001 					device_get_unit(dinfo->cfg.dev);
1002 			}
1003 
1004 			if ((pattern_buf == NULL) ||
1005 			    (pci_conf_match(pattern_buf, num_patterns,
1006 					    &dinfo->conf) == 0)) {
1007 
1008 				/*
1009 				 * If we've filled up the user's buffer,
1010 				 * break out at this point.  Since we've
1011 				 * got a match here, we'll pick right back
1012 				 * up at the matching entry.  We can also
1013 				 * tell the user that there are more matches
1014 				 * left.
1015 				 */
1016 				if (cio->num_matches >= ionum)
1017 					break;
1018 
1019 				error = copyout(&dinfo->conf,
1020 					        &cio->matches[cio->num_matches],
1021 						sizeof(struct pci_conf));
1022 				cio->num_matches++;
1023 			}
1024 		}
1025 
1026 		/*
1027 		 * Set the pointer into the list, so if the user is getting
1028 		 * n records at a time, where n < pci_numdevs,
1029 		 */
1030 		cio->offset = i;
1031 
1032 		/*
1033 		 * Set the generation, the user will need this if they make
1034 		 * another ioctl call with offset != 0.
1035 		 */
1036 		cio->generation = pci_generation;
1037 
1038 		/*
1039 		 * If this is the last device, inform the user so he won't
1040 		 * bother asking for more devices.  If dinfo isn't NULL, we
1041 		 * know that there are more matches in the list because of
1042 		 * the way the traversal is done.
1043 		 */
1044 		if (dinfo == NULL)
1045 			cio->status = PCI_GETCONF_LAST_DEVICE;
1046 		else
1047 			cio->status = PCI_GETCONF_MORE_DEVS;
1048 
1049 		if (pattern_buf != NULL)
1050 			kfree(pattern_buf, M_TEMP);
1051 
1052 		break;
1053 		}
1054 	case PCIOCREAD:
1055 		io = (struct pci_io *)ap->a_data;
1056 		switch(io->pi_width) {
1057 		case 4:
1058 		case 2:
1059 		case 1:
1060 			/*
1061 			 * Assume that the user-level bus number is
1062 			 * actually the pciN instance number. We map
1063 			 * from that to the real pcib+bus combination.
1064 			 */
1065 			pci = devclass_get_device(pci_devclass,
1066 						  io->pi_sel.pc_bus);
1067 			if (pci) {
1068 				/*
1069 				 * pci is the pci device and may contain
1070 				 * several children (for each function code).
1071 				 * The governing pci bus is the parent to
1072 				 * the pci device.
1073 				 */
1074 				int b;
1075 
1076 				pcib = device_get_parent(pci);
1077 				b = pcib_get_bus(pcib);
1078 				io->pi_data =
1079 					PCIB_READ_CONFIG(pcib,
1080 							 b,
1081 							 io->pi_sel.pc_dev,
1082 							 io->pi_sel.pc_func,
1083 							 io->pi_reg,
1084 							 io->pi_width);
1085 				error = 0;
1086 			} else {
1087 				error = ENODEV;
1088 			}
1089 			break;
1090 		default:
1091 			error = ENODEV;
1092 			break;
1093 		}
1094 		break;
1095 
1096 	case PCIOCWRITE:
1097 		io = (struct pci_io *)ap->a_data;
1098 		switch(io->pi_width) {
1099 		case 4:
1100 		case 2:
1101 		case 1:
1102 			/*
1103 			 * Assume that the user-level bus number is
1104 			 * actually the pciN instance number. We map
1105 			 * from that to the real pcib+bus combination.
1106 			 */
1107 			pci = devclass_get_device(pci_devclass,
1108 						  io->pi_sel.pc_bus);
1109 			if (pci) {
1110 				/*
1111 				 * pci is the pci device and may contain
1112 				 * several children (for each function code).
1113 				 * The governing pci bus is the parent to
1114 				 * the pci device.
1115 				 */
1116 				int b;
1117 
1118 				pcib = device_get_parent(pci);
1119 				b = pcib_get_bus(pcib);
1120 				PCIB_WRITE_CONFIG(pcib,
1121 						  b,
1122 						  io->pi_sel.pc_dev,
1123 						  io->pi_sel.pc_func,
1124 						  io->pi_reg,
1125 						  io->pi_data,
1126 						  io->pi_width);
1127 				error = 0;
1128 			} else {
1129 				error = ENODEV;
1130 			}
1131 			break;
1132 		default:
1133 			error = ENODEV;
1134 			break;
1135 		}
1136 		break;
1137 
1138 	default:
1139 		error = ENOTTY;
1140 		break;
1141 	}
1142 
1143 	return (error);
1144 }
1145 
1146 #define	PCI_CDEV	78
1147 
1148 static struct dev_ops pcic_ops = {
1149 	{ "pci", PCI_CDEV, 0 },
1150 	.d_open =	pci_open,
1151 	.d_close =	pci_close,
1152 	.d_ioctl =	pci_ioctl,
1153 };
1154 
1155 #include "pci_if.h"
1156 
1157 /*
1158  * New style pci driver.  Parent device is either a pci-host-bridge or a
1159  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
1160  */
1161 const char *
1162 pci_class_to_string(int baseclass)
1163 {
1164 	const char *name;
1165 
1166 	switch(baseclass) {
1167 	case PCIC_OLD:
1168 		name = "OLD";
1169 		break;
1170 	case PCIC_STORAGE:
1171 		name = "STORAGE";
1172 		break;
1173 	case PCIC_NETWORK:
1174 		name = "NETWORK";
1175 		break;
1176 	case PCIC_DISPLAY:
1177 		name = "DISPLAY";
1178 		break;
1179 	case PCIC_MULTIMEDIA:
1180 		name = "MULTIMEDIA";
1181 		break;
1182 	case PCIC_MEMORY:
1183 		name = "MEMORY";
1184 		break;
1185 	case PCIC_BRIDGE:
1186 		name = "BRIDGE";
1187 		break;
1188 	case PCIC_SIMPLECOMM:
1189 		name = "SIMPLECOMM";
1190 		break;
1191 	case PCIC_BASEPERIPH:
1192 		name = "BASEPERIPH";
1193 		break;
1194 	case PCIC_INPUTDEV:
1195 		name = "INPUTDEV";
1196 		break;
1197 	case PCIC_DOCKING:
1198 		name = "DOCKING";
1199 		break;
1200 	case PCIC_PROCESSOR:
1201 		name = "PROCESSOR";
1202 		break;
1203 	case PCIC_SERIALBUS:
1204 		name = "SERIALBUS";
1205 		break;
1206 	case PCIC_WIRELESS:
1207 		name = "WIRELESS";
1208 		break;
1209 	case PCIC_I2O:
1210 		name = "I20";
1211 		break;
1212 	case PCIC_SATELLITE:
1213 		name = "SATELLITE";
1214 		break;
1215 	case PCIC_CRYPTO:
1216 		name = "CRYPTO";
1217 		break;
1218 	case PCIC_SIGPROC:
1219 		name = "SIGPROC";
1220 		break;
1221 	case PCIC_OTHER:
1222 		name = "OTHER";
1223 		break;
1224 	default:
1225 		name = "?";
1226 		break;
1227 	}
1228 	return(name);
1229 }
1230 
1231 void
1232 pci_print_verbose(struct pci_devinfo *dinfo)
1233 {
1234 	if (bootverbose) {
1235 		pcicfgregs *cfg = &dinfo->cfg;
1236 
1237 		kprintf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
1238 		       cfg->vendor, cfg->device, cfg->revid);
1239 		kprintf("\tbus=%d, slot=%d, func=%d\n",
1240 		       cfg->bus, cfg->slot, cfg->func);
1241 		kprintf("\tclass=[%s]%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
1242 		       pci_class_to_string(cfg->baseclass),
1243 		       cfg->baseclass, cfg->subclass, cfg->progif,
1244 		       cfg->hdrtype, cfg->mfdev);
1245 		kprintf("\tsubordinatebus=%x \tsecondarybus=%x\n",
1246 		       cfg->subordinatebus, cfg->secondarybus);
1247 #ifdef PCI_DEBUG
1248 		kprintf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
1249 		       cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
1250 		kprintf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
1251 		       cfg->lattimer, cfg->lattimer * 30,
1252 		       cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
1253 #endif /* PCI_DEBUG */
1254 		if (cfg->intpin > 0)
1255 			kprintf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline);
1256 	}
1257 }
1258 
1259 static int
1260 pci_porten(device_t pcib, int b, int s, int f)
1261 {
1262 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1263 		& PCIM_CMD_PORTEN) != 0;
1264 }
1265 
1266 static int
1267 pci_memen(device_t pcib, int b, int s, int f)
1268 {
1269 	return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
1270 		& PCIM_CMD_MEMEN) != 0;
1271 }
1272 
1273 /*
1274  * Add a resource based on a pci map register. Return 1 if the map
1275  * register is a 32bit map register or 2 if it is a 64bit register.
1276  */
1277 static int
1278 pci_add_map(device_t pcib, int b, int s, int f, int reg,
1279 	    struct resource_list *rl)
1280 {
1281 	u_int32_t map;
1282 	u_int64_t base;
1283 	u_int8_t ln2size;
1284 	u_int8_t ln2range;
1285 	u_int32_t testval;
1286 
1287 
1288 #ifdef PCI_ENABLE_IO_MODES
1289 	u_int16_t cmd;
1290 #endif
1291 	int type;
1292 
1293 	map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1294 
1295 	if (map == 0 || map == 0xffffffff)
1296 		return 1; /* skip invalid entry */
1297 
1298 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
1299 	testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
1300 	PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
1301 
1302 	base = pci_mapbase(map);
1303 	if (pci_maptype(map) & PCI_MAPMEM)
1304 		type = SYS_RES_MEMORY;
1305 	else
1306 		type = SYS_RES_IOPORT;
1307 	ln2size = pci_mapsize(testval);
1308 	ln2range = pci_maprange(testval);
1309 	if (ln2range == 64) {
1310 		/* Read the other half of a 64bit map register */
1311 		base |= (u_int64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg+4, 4);
1312 	}
1313 
1314 	/*
1315 	 * This code theoretically does the right thing, but has
1316 	 * undesirable side effects in some cases where
1317 	 * peripherals respond oddly to having these bits
1318 	 * enabled.  Leave them alone by default.
1319 	 */
1320 #ifdef PCI_ENABLE_IO_MODES
1321 	if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
1322 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1323 		cmd |= PCIM_CMD_PORTEN;
1324 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1325 	}
1326 	if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
1327 		cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
1328 		cmd |= PCIM_CMD_MEMEN;
1329 		PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
1330 	}
1331 #else
1332         if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
1333                 return 1;
1334         if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
1335 		return 1;
1336 #endif
1337 
1338 	resource_list_add(rl, type, reg,
1339 			  base, base + (1 << ln2size) - 1,
1340 			  (1 << ln2size));
1341 
1342 	if (bootverbose) {
1343 		kprintf("\tmap[%02x]: type %x, range %2d, base %08x, size %2d\n",
1344 		       reg, pci_maptype(base), ln2range,
1345 		       (unsigned int) base, ln2size);
1346 	}
1347 
1348 	return (ln2range == 64) ? 2 : 1;
1349 }
1350 
1351 #ifdef PCI_MAP_FIXUP
1352 /*
1353  * For ATA devices we need to decide early on what addressing mode to use.
1354  * Legacy demands that the primary and secondary ATA ports sits on the
1355  * same addresses that old ISA hardware did. This dictates that we use
1356  * those addresses and ignore the BARs if we cannot set PCI native
1357  * addressing mode.
1358  */
1359 static void
1360 pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b, int s, int f,
1361 	     struct resource_list *rl)
1362 {
1363 	int rid, type, progif;
1364 #if 0
1365 	/* if this device supports PCI native addressing use it */
1366 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1367 	if ((progif &0x8a) == 0x8a) {
1368 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
1369 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
1370 			kprintf("Trying ATA native PCI addressing mode\n");
1371 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
1372 		}
1373 	}
1374 #endif
1375 	/*
1376 	 * Because we return any preallocated resources for lazy
1377 	 * allocation for PCI devices in pci_alloc_resource(), we can
1378 	 * allocate our legacy resources here.
1379 	 */
1380 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
1381 	type = SYS_RES_IOPORT;
1382 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
1383 		pci_add_map(pcib, b, s, f, PCIR_BAR(0), rl);
1384 		pci_add_map(pcib, b, s, f, PCIR_BAR(1), rl);
1385 	} else {
1386 		rid = PCIR_BAR(0);
1387 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
1388 		resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
1389 				    0);
1390 		rid = PCIR_BAR(1);
1391 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
1392 		resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
1393 				    0);
1394 	}
1395 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
1396 		pci_add_map(pcib, b, s, f, PCIR_BAR(2), rl);
1397 		pci_add_map(pcib, b, s, f, PCIR_BAR(3), rl);
1398 	} else {
1399 		rid = PCIR_BAR(2);
1400 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
1401 		resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
1402 				    0);
1403 		rid = PCIR_BAR(3);
1404 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
1405 		resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
1406 				    0);
1407 	}
1408 	pci_add_map(pcib, b, s, f, PCIR_BAR(4), rl);
1409 	pci_add_map(pcib, b, s, f, PCIR_BAR(5), rl);
1410 }
1411 #endif /* PCI_MAP_FIXUP */
1412 
1413 static void
1414 pci_add_resources(device_t pcib, device_t bus, device_t dev)
1415 {
1416 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1417 	pcicfgregs *cfg = &dinfo->cfg;
1418 	struct resource_list *rl = &dinfo->resources;
1419 	struct pci_quirk *q;
1420 	int b, i, f, s;
1421 #if 0	/* WILL BE USED WITH ADDITIONAL IMPORT FROM FREEBSD-5 XXX */
1422 	int irq;
1423 #endif
1424 
1425 	b = cfg->bus;
1426 	s = cfg->slot;
1427 	f = cfg->func;
1428 #ifdef PCI_MAP_FIXUP
1429 	/* atapci devices in legacy mode need special map treatment */
1430 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
1431 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
1432 	    (pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV))
1433 		pci_ata_maps(pcib, bus, dev, b, s, f, rl);
1434 	else
1435 #endif /* PCI_MAP_FIXUP */
1436 		for (i = 0; i < cfg->nummaps;) {
1437 			i += pci_add_map(pcib, b, s, f, PCIR_BAR(i),rl);
1438 		}
1439 
1440 	for (q = &pci_quirks[0]; q->devid; q++) {
1441 		if (q->devid == ((cfg->device << 16) | cfg->vendor)
1442 		    && q->type == PCI_QUIRK_MAP_REG)
1443 			pci_add_map(pcib, b, s, f, q->arg1, rl);
1444 	}
1445 
1446 	if (cfg->intpin > 0 && cfg->intline != 255)
1447 		resource_list_add(rl, SYS_RES_IRQ, 0,
1448 				  cfg->intline, cfg->intline, 1);
1449 }
1450 
1451 void
1452 pci_add_children(device_t dev, int busno, size_t dinfo_size)
1453 {
1454 #define REG(n, w)       PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
1455 	device_t pcib = device_get_parent(dev);
1456 	struct pci_devinfo *dinfo;
1457 	int maxslots;
1458 	int s, f, pcifunchigh;
1459 	uint8_t hdrtype;
1460 
1461 	KKASSERT(dinfo_size >= sizeof(struct pci_devinfo));
1462 
1463 	maxslots = PCIB_MAXSLOTS(pcib);
1464 
1465 	for (s = 0; s <= maxslots; s++) {
1466 		pcifunchigh = 0;
1467 		f = 0;
1468 		hdrtype = REG(PCIR_HDRTYPE, 1);
1469 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
1470 			continue;
1471 		if (hdrtype & PCIM_MFDEV)
1472 			pcifunchigh = PCI_FUNCMAX;
1473 		for (f = 0; f <= pcifunchigh; f++) {
1474 			dinfo = pci_read_device(pcib, busno, s, f, dinfo_size);
1475 			if (dinfo != NULL) {
1476 				pci_add_child(dev, dinfo);
1477 			}
1478 		}
1479 	}
1480 #undef REG
1481 }
1482 
1483 /*
1484  * The actual PCI child that we add has a NULL driver whos parent
1485  * device will be "pci".  The child contains the ivars, not the parent.
1486  */
1487 void
1488 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
1489 {
1490 	device_t pcib;
1491 
1492 	pcib = device_get_parent(bus);
1493 	dinfo->cfg.dev = device_add_child(bus, NULL, -1);
1494 	device_set_ivars(dinfo->cfg.dev, dinfo);
1495 	pci_add_resources(pcib, bus, dinfo->cfg.dev);
1496 	pci_print_verbose(dinfo);
1497 }
1498 
1499 /*
1500  * Probe the PCI bus.  Note: probe code is not supposed to add children
1501  * or call attach.
1502  */
1503 static int
1504 pci_probe(device_t dev)
1505 {
1506 	device_set_desc(dev, "PCI bus");
1507 
1508 	/* Allow other subclasses to override this driver */
1509 	return(-1000);
1510 }
1511 
1512 static int
1513 pci_attach(device_t dev)
1514 {
1515 	int busno;
1516 	int lunit = device_get_unit(dev);
1517 
1518 	dev_ops_add(&pcic_ops, -1, lunit);
1519 	make_dev(&pcic_ops, lunit, UID_ROOT, GID_WHEEL, 0644, "pci%d", lunit);
1520 
1521         /*
1522          * Since there can be multiple independantly numbered PCI
1523          * busses on some large alpha systems, we can't use the unit
1524          * number to decide what bus we are probing. We ask the parent
1525          * pcib what our bus number is.
1526 	 *
1527 	 * pcib_get_bus() must act on the pci bus device, not on the pci
1528 	 * device, because it uses badly hacked nexus-based ivars to
1529 	 * store and retrieve the physical bus number.  XXX
1530          */
1531         busno = pcib_get_bus(device_get_parent(dev));
1532         if (bootverbose)
1533                 device_printf(dev, "pci_attach() physical bus=%d\n", busno);
1534 
1535         pci_add_children(dev, busno, sizeof(struct pci_devinfo));
1536 
1537         return (bus_generic_attach(dev));
1538 }
1539 
1540 static int
1541 pci_print_resources(struct resource_list *rl, const char *name, int type,
1542 		    const char *format)
1543 {
1544 	struct resource_list_entry *rle;
1545 	int printed, retval;
1546 
1547 	printed = 0;
1548 	retval = 0;
1549 	/* Yes, this is kinda cheating */
1550 	SLIST_FOREACH(rle, rl, link) {
1551 		if (rle->type == type) {
1552 			if (printed == 0)
1553 				retval += kprintf(" %s ", name);
1554 			else if (printed > 0)
1555 				retval += kprintf(",");
1556 			printed++;
1557 			retval += kprintf(format, rle->start);
1558 			if (rle->count > 1) {
1559 				retval += kprintf("-");
1560 				retval += kprintf(format, rle->start +
1561 						 rle->count - 1);
1562 			}
1563 		}
1564 	}
1565 	return retval;
1566 }
1567 
1568 int
1569 pci_print_child(device_t dev, device_t child)
1570 {
1571 	struct pci_devinfo *dinfo;
1572 	struct resource_list *rl;
1573 	pcicfgregs *cfg;
1574 	int retval = 0;
1575 
1576 	dinfo = device_get_ivars(child);
1577 	cfg = &dinfo->cfg;
1578 	rl = &dinfo->resources;
1579 
1580 	retval += bus_print_child_header(dev, child);
1581 
1582 	retval += pci_print_resources(rl, "port", SYS_RES_IOPORT, "%#lx");
1583 	retval += pci_print_resources(rl, "mem", SYS_RES_MEMORY, "%#lx");
1584 	retval += pci_print_resources(rl, "irq", SYS_RES_IRQ, "%ld");
1585 	if (device_get_flags(dev))
1586 		retval += kprintf(" flags %#x", device_get_flags(dev));
1587 
1588 	retval += kprintf(" at device %d.%d", pci_get_slot(child),
1589 			 pci_get_function(child));
1590 
1591 	retval += bus_print_child_footer(dev, child);
1592 
1593 	return (retval);
1594 }
1595 
1596 void
1597 pci_probe_nomatch(device_t dev, device_t child)
1598 {
1599 	struct pci_devinfo *dinfo;
1600 	pcicfgregs *cfg;
1601 	const char *desc;
1602 	int unknown;
1603 
1604 	unknown = 0;
1605 	dinfo = device_get_ivars(child);
1606 	cfg = &dinfo->cfg;
1607 	desc = pci_ata_match(child);
1608 	if (!desc) desc = pci_usb_match(child);
1609 	if (!desc) desc = pci_vga_match(child);
1610 	if (!desc) desc = pci_chip_match(child);
1611 	if (!desc) {
1612 		desc = "unknown card";
1613 		unknown++;
1614 	}
1615 	device_printf(dev, "<%s>", desc);
1616 	if (bootverbose || unknown) {
1617 		kprintf(" (vendor=0x%04x, dev=0x%04x)",
1618 			cfg->vendor,
1619 			cfg->device);
1620 	}
1621 	kprintf(" at %d.%d",
1622 		pci_get_slot(child),
1623 		pci_get_function(child));
1624 	if (cfg->intpin > 0 && cfg->intline != 255) {
1625 		kprintf(" irq %d", cfg->intline);
1626 	}
1627 	kprintf("\n");
1628 
1629 	return;
1630 }
1631 
1632 int
1633 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1634 {
1635 	struct pci_devinfo *dinfo;
1636 	pcicfgregs *cfg;
1637 
1638 	dinfo = device_get_ivars(child);
1639 	cfg = &dinfo->cfg;
1640 
1641 	switch (which) {
1642 	case PCI_IVAR_SUBVENDOR:
1643 		*result = cfg->subvendor;
1644 		break;
1645 	case PCI_IVAR_SUBDEVICE:
1646 		*result = cfg->subdevice;
1647 		break;
1648 	case PCI_IVAR_VENDOR:
1649 		*result = cfg->vendor;
1650 		break;
1651 	case PCI_IVAR_DEVICE:
1652 		*result = cfg->device;
1653 		break;
1654 	case PCI_IVAR_DEVID:
1655 		*result = (cfg->device << 16) | cfg->vendor;
1656 		break;
1657 	case PCI_IVAR_CLASS:
1658 		*result = cfg->baseclass;
1659 		break;
1660 	case PCI_IVAR_SUBCLASS:
1661 		*result = cfg->subclass;
1662 		break;
1663 	case PCI_IVAR_PROGIF:
1664 		*result = cfg->progif;
1665 		break;
1666 	case PCI_IVAR_REVID:
1667 		*result = cfg->revid;
1668 		break;
1669 	case PCI_IVAR_INTPIN:
1670 		*result = cfg->intpin;
1671 		break;
1672 	case PCI_IVAR_IRQ:
1673 		*result = cfg->intline;
1674 		break;
1675 	case PCI_IVAR_BUS:
1676 		*result = cfg->bus;
1677 		break;
1678 	case PCI_IVAR_SLOT:
1679 		*result = cfg->slot;
1680 		break;
1681 	case PCI_IVAR_FUNCTION:
1682 		*result = cfg->func;
1683 		break;
1684 	case PCI_IVAR_SECONDARYBUS:
1685 		*result = cfg->secondarybus;
1686 		break;
1687 	case PCI_IVAR_SUBORDINATEBUS:
1688 		*result = cfg->subordinatebus;
1689 		break;
1690 	case PCI_IVAR_ETHADDR:
1691 		/*
1692 		 * The generic accessor doesn't deal with failure, so
1693 		 * we set the return value, then return an error.
1694 		 */
1695 		*result = NULL;
1696 		return (EINVAL);
1697 	default:
1698 		return ENOENT;
1699 	}
1700 	return 0;
1701 }
1702 
1703 int
1704 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
1705 {
1706 	struct pci_devinfo *dinfo;
1707 	pcicfgregs *cfg;
1708 
1709 	dinfo = device_get_ivars(child);
1710 	cfg = &dinfo->cfg;
1711 
1712 	switch (which) {
1713 	case PCI_IVAR_SUBVENDOR:
1714 	case PCI_IVAR_SUBDEVICE:
1715 	case PCI_IVAR_VENDOR:
1716 	case PCI_IVAR_DEVICE:
1717 	case PCI_IVAR_DEVID:
1718 	case PCI_IVAR_CLASS:
1719 	case PCI_IVAR_SUBCLASS:
1720 	case PCI_IVAR_PROGIF:
1721 	case PCI_IVAR_REVID:
1722 	case PCI_IVAR_INTPIN:
1723 	case PCI_IVAR_IRQ:
1724 	case PCI_IVAR_BUS:
1725 	case PCI_IVAR_SLOT:
1726 	case PCI_IVAR_FUNCTION:
1727 	case PCI_IVAR_ETHADDR:
1728 		return EINVAL;	/* disallow for now */
1729 
1730 	case PCI_IVAR_SECONDARYBUS:
1731 		cfg->secondarybus = value;
1732 		break;
1733 	case PCI_IVAR_SUBORDINATEBUS:
1734 		cfg->subordinatebus = value;
1735 		break;
1736 	default:
1737 		return ENOENT;
1738 	}
1739 	return 0;
1740 }
1741 
1742 #ifdef PCI_MAP_FIXUP
1743 static struct resource *
1744 pci_alloc_map(device_t dev, device_t child, int type, int *rid, u_long start,
1745 	      u_long end, u_long count, u_int flags)
1746 {
1747 	struct pci_devinfo *dinfo = device_get_ivars(child);
1748 	struct resource_list *rl = &dinfo->resources;
1749 	struct resource_list_entry *rle;
1750 	struct resource *res;
1751 	uint32_t map, testval;
1752 	int mapsize;
1753 
1754 	/*
1755 	 * Weed out the bogons, and figure out how large the BAR/map
1756 	 * is. BARs that read back 0 here are bogus and unimplemented.
1757 	 *
1758 	 * Note: atapci in legacy mode are special and handled elsewhere
1759 	 * in the code. If you have an atapci device in legacy mode and
1760 	 * it fails here, that other code is broken.
1761 	 */
1762 	res = NULL;
1763 	map = pci_read_config(child, *rid, 4);
1764 	pci_write_config(child, *rid, 0xffffffff, 4);
1765 	testval = pci_read_config(child, *rid, 4);
1766 	if (pci_mapbase(testval) == 0)
1767 		goto out;
1768 	if (pci_maptype(testval) & PCI_MAPMEM) {
1769 		if (type != SYS_RES_MEMORY) {
1770 			if (bootverbose)
1771 				device_printf(dev, "child %s requested type %d"
1772 					      " for rid %#x, but the BAR says "
1773 					      "it is a memio\n",
1774 					      device_get_nameunit(child), type,
1775 					      *rid);
1776 			goto out;
1777 		}
1778 	} else {
1779 		if (type != SYS_RES_IOPORT) {
1780 			if (bootverbose)
1781 				device_printf(dev, "child %s requested type %d"
1782 					      " for rid %#x, but the BAR says "
1783 					      "it is an ioport\n",
1784 					      device_get_nameunit(child), type,
1785 					      *rid);
1786 			goto out;
1787 		}
1788 	}
1789 	/*
1790 	 * For real BARs, we need to override the size that
1791 	 * the driver requests, because that's what the BAR
1792 	 * actually uses and we would otherwise have a
1793 	 * situation where we might allocate the excess to
1794 	 * another driver, which won't work.
1795 	 */
1796 	mapsize = pci_mapsize(testval);
1797 	count = 1 << mapsize;
1798 	if (RF_ALIGNMENT(flags) < mapsize)
1799 		flags = (flags & ~RF_ALIGNMENT_MASK) |
1800 		   RF_ALIGNMENT_LOG2(mapsize);
1801 	/*
1802 	 * Allocate enough resource, and then write back the
1803 	 * appropriate BAR for that resource.
1804 	 */
1805 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
1806 				 start, end, count, flags);
1807 	if (res == NULL) {
1808 		device_printf(child, "%#lx bytes at rid %#x res %d failed "
1809 			      "(%#lx, %#lx)\n", count, *rid, type, start, end);
1810 		goto out;
1811 	}
1812 	resource_list_add(rl, type, *rid, start, end, count);
1813 	rle = resource_list_find(rl, type, *rid);
1814 	if (rle == NULL)
1815 		panic("pci_alloc_map: unexpectedly can't find resource.");
1816 	rle->res = res;
1817 	rle->start = rman_get_start(res);
1818 	rle->end = rman_get_end(res);
1819 	rle->count = count;
1820 	if (bootverbose)
1821 		device_printf(child, "lazy allocation of %#lx bytes rid %#x "
1822 			      "type %d at %#lx\n", count, *rid, type,
1823 			      rman_get_start(res));
1824 	map = rman_get_start(res);
1825 out:;
1826 	pci_write_config(child, *rid, map, 4);
1827 	return res;
1828 }
1829 #endif /* PCI_MAP_FIXUP */
1830 
1831 struct resource *
1832 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
1833 		   u_long start, u_long end, u_long count, u_int flags)
1834 {
1835 	struct pci_devinfo *dinfo = device_get_ivars(child);
1836 	struct resource_list *rl = &dinfo->resources;
1837 #ifdef PCI_MAP_FIXUP
1838 	struct resource_list_entry *rle;
1839 #endif /* PCI_MAP_FIXUP */
1840 	pcicfgregs *cfg = &dinfo->cfg;
1841 
1842 	/*
1843 	 * Perform lazy resource allocation
1844 	 */
1845 	if (device_get_parent(child) == dev) {
1846 		switch (type) {
1847 		case SYS_RES_IRQ:
1848 #ifdef __i386__
1849 		/*
1850 		 * If device doesn't have an interrupt routed, and is
1851 		 * deserving of an interrupt, try to assign it one.
1852 		 */
1853 			if ((cfg->intline == 255 || cfg->intline == 0) &&
1854 			    (cfg->intpin != 0) &&
1855 			    (start == 0) && (end == ~0UL)) {
1856 				cfg->intline = PCIB_ROUTE_INTERRUPT(
1857 					device_get_parent(dev), child,
1858 					cfg->intpin);
1859 				if (cfg->intline != 255) {
1860 					pci_write_config(child, PCIR_INTLINE,
1861 					    cfg->intline, 1);
1862 					resource_list_add(rl, SYS_RES_IRQ, 0,
1863 					    cfg->intline, cfg->intline, 1);
1864 				}
1865 			}
1866 			break;
1867 #endif
1868 		case SYS_RES_IOPORT:
1869 			/* FALLTHROUGH */
1870 		case SYS_RES_MEMORY:
1871 			if (*rid < PCIR_BAR(cfg->nummaps)) {
1872 				/*
1873 				 * Enable the I/O mode.  We should
1874 				 * also be assigning resources too
1875 				 * when none are present.  The
1876 				 * resource_list_alloc kind of sorta does
1877 				 * this...
1878 				 */
1879 				if (PCI_ENABLE_IO(dev, child, type))
1880 					return (NULL);
1881 			}
1882 #ifdef PCI_MAP_FIXUP
1883 			rle = resource_list_find(rl, type, *rid);
1884 			if (rle == NULL)
1885 				return pci_alloc_map(dev, child, type, rid,
1886 						     start, end, count, flags);
1887 #endif /* PCI_MAP_FIXUP */
1888 			break;
1889 		}
1890 #ifdef PCI_MAP_FIXUP
1891 		/*
1892 		 * If we've already allocated the resource, then
1893 		 * return it now. But first we may need to activate
1894 		 * it, since we don't allocate the resource as active
1895 		 * above. Normally this would be done down in the
1896 		 * nexus, but since we short-circuit that path we have
1897 		 * to do its job here. Not sure if we should free the
1898 		 * resource if it fails to activate.
1899 		 *
1900 		 * Note: this also finds and returns resources for
1901 		 * atapci devices in legacy mode as allocated in
1902 		 * pci_ata_maps().
1903 		 */
1904 		rle = resource_list_find(rl, type, *rid);
1905 		if (rle != NULL && rle->res != NULL) {
1906 			if (bootverbose)
1907 				device_printf(child, "reserved %#lx bytes for "
1908 					      "rid %#x type %d at %#lx\n",
1909 					      rman_get_size(rle->res), *rid,
1910 					      type, rman_get_start(rle->res));
1911 			if ((flags & RF_ACTIVE) &&
1912 			    bus_generic_activate_resource(dev, child, type,
1913 							  *rid, rle->res) != 0)
1914 				return NULL;
1915 			return rle->res;
1916 		}
1917 #endif /* PCI_MAP_FIXUP */
1918 	}
1919 	return resource_list_alloc(rl, dev, child, type, rid,
1920 				   start, end, count, flags);
1921 }
1922 
1923 static int
1924 pci_release_resource(device_t dev, device_t child, int type, int rid,
1925 		     struct resource *r)
1926 {
1927 	struct pci_devinfo *dinfo = device_get_ivars(child);
1928 	struct resource_list *rl = &dinfo->resources;
1929 
1930 	return resource_list_release(rl, dev, child, type, rid, r);
1931 }
1932 
1933 static int
1934 pci_set_resource(device_t dev, device_t child, int type, int rid,
1935 		 u_long start, u_long count)
1936 {
1937 	struct pci_devinfo *dinfo = device_get_ivars(child);
1938 	struct resource_list *rl = &dinfo->resources;
1939 
1940 	resource_list_add(rl, type, rid, start, start + count - 1, count);
1941 	return 0;
1942 }
1943 
1944 static int
1945 pci_get_resource(device_t dev, device_t child, int type, int rid,
1946 		 u_long *startp, u_long *countp)
1947 {
1948 	struct pci_devinfo *dinfo = device_get_ivars(child);
1949 	struct resource_list *rl = &dinfo->resources;
1950 	struct resource_list_entry *rle;
1951 
1952 	rle = resource_list_find(rl, type, rid);
1953 	if (!rle)
1954 		return ENOENT;
1955 
1956 	if (startp)
1957 		*startp = rle->start;
1958 	if (countp)
1959 		*countp = rle->count;
1960 
1961 	return 0;
1962 }
1963 
1964 void
1965 pci_delete_resource(device_t dev, device_t child, int type, int rid)
1966 {
1967 	kprintf("pci_delete_resource: PCI resources can not be deleted\n");
1968 }
1969 
1970 struct resource_list *
1971 pci_get_resource_list (device_t dev, device_t child)
1972 {
1973 	struct pci_devinfo *    dinfo = device_get_ivars(child);
1974 	struct resource_list *  rl = &dinfo->resources;
1975 
1976 	if (!rl)
1977 		return (NULL);
1978 
1979 	return (rl);
1980 }
1981 
1982 u_int32_t
1983 pci_read_config_method(device_t dev, device_t child, int reg, int width)
1984 {
1985 	struct pci_devinfo *dinfo = device_get_ivars(child);
1986 	pcicfgregs *cfg = &dinfo->cfg;
1987 
1988 	return PCIB_READ_CONFIG(device_get_parent(dev),
1989 				 cfg->bus, cfg->slot, cfg->func,
1990 				 reg, width);
1991 }
1992 
1993 void
1994 pci_write_config_method(device_t dev, device_t child, int reg,
1995 			u_int32_t val, int width)
1996 {
1997 	struct pci_devinfo *dinfo = device_get_ivars(child);
1998 	pcicfgregs *cfg = &dinfo->cfg;
1999 
2000 	PCIB_WRITE_CONFIG(device_get_parent(dev),
2001 			  cfg->bus, cfg->slot, cfg->func,
2002 			  reg, val, width);
2003 }
2004 
2005 int
2006 pci_child_location_str_method(device_t cbdev, device_t child, char *buf,
2007     size_t buflen)
2008 {
2009 	struct pci_devinfo *dinfo;
2010 
2011 	dinfo = device_get_ivars(child);
2012 	ksnprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
2013 	    pci_get_function(child));
2014 	return (0);
2015 }
2016 
2017 int
2018 pci_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
2019     size_t buflen)
2020 {
2021 	struct pci_devinfo *dinfo;
2022 	pcicfgregs *cfg;
2023 
2024 	dinfo = device_get_ivars(child);
2025 	cfg = &dinfo->cfg;
2026 	ksnprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
2027 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
2028 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
2029 	    cfg->progif);
2030 	return (0);
2031 }
2032 
2033 int
2034 pci_assign_interrupt_method(device_t dev, device_t child)
2035 {
2036         struct pci_devinfo *dinfo = device_get_ivars(child);
2037         pcicfgregs *cfg = &dinfo->cfg;
2038 
2039         return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
2040             cfg->intpin));
2041 }
2042 
2043 static int
2044 pci_modevent(module_t mod, int what, void *arg)
2045 {
2046 	switch (what) {
2047 	case MOD_LOAD:
2048 		STAILQ_INIT(&pci_devq);
2049 		break;
2050 	case MOD_UNLOAD:
2051 		break;
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 int
2058 pci_resume(device_t dev)
2059 {
2060         int                     numdevs;
2061         int                     i;
2062         device_t                *children;
2063         device_t                child;
2064         struct pci_devinfo      *dinfo;
2065         pcicfgregs              *cfg;
2066 
2067         device_get_children(dev, &children, &numdevs);
2068 
2069         for (i = 0; i < numdevs; i++) {
2070                 child = children[i];
2071 
2072                 dinfo = device_get_ivars(child);
2073                 cfg = &dinfo->cfg;
2074                 if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
2075                         cfg->intline = PCI_ASSIGN_INTERRUPT(dev, child);
2076                         if (PCI_INTERRUPT_VALID(cfg->intline)) {
2077                                 pci_write_config(child, PCIR_INTLINE,
2078                                     cfg->intline, 1);
2079                         }
2080                 }
2081         }
2082 
2083         kfree(children, M_TEMP);
2084 
2085         return (bus_generic_resume(dev));
2086 }
2087 
2088 static device_method_t pci_methods[] = {
2089 	/* Device interface */
2090 	DEVMETHOD(device_probe,		pci_probe),
2091 	DEVMETHOD(device_attach,	pci_attach),
2092 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2093 	DEVMETHOD(device_suspend,	bus_generic_suspend),
2094 	DEVMETHOD(device_resume,	pci_resume),
2095 
2096 	/* Bus interface */
2097 	DEVMETHOD(bus_print_child,	pci_print_child),
2098 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
2099 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
2100 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
2101 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2102 	DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
2103 	DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
2104 
2105 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
2106 	DEVMETHOD(bus_set_resource,	pci_set_resource),
2107 	DEVMETHOD(bus_get_resource,	pci_get_resource),
2108 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
2109 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
2110 	DEVMETHOD(bus_release_resource,	pci_release_resource),
2111 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
2112 	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
2113 	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
2114 	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
2115 
2116 	/* PCI interface */
2117 	DEVMETHOD(pci_read_config,	pci_read_config_method),
2118 	DEVMETHOD(pci_write_config,	pci_write_config_method),
2119 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
2120 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
2121 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
2122 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
2123 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
2124 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
2125 	DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
2126 
2127 	{ 0, 0 }
2128 };
2129 
2130 static driver_t pci_driver = {
2131 	"pci",
2132 	pci_methods,
2133 	1,			/* no softc */
2134 };
2135 
2136 DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
2137 MODULE_VERSION(pci, 1);
2138