xref: /dragonfly/sys/bus/u4b/usb_transfer.c (revision 3a76bbe8)
1 /* $FreeBSD$ */
2 /*-
3  * Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/stdint.h>
28 #include <sys/param.h>
29 #include <sys/queue.h>
30 #include <sys/types.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/bus.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/condvar.h>
38 #include <sys/sysctl.h>
39 #include <sys/unistd.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 
45 #include <bus/u4b/usb.h>
46 #include <bus/u4b/usbdi.h>
47 #include <bus/u4b/usbdi_util.h>
48 
49 #define	USB_DEBUG_VAR usb_debug
50 
51 #include <bus/u4b/usb_core.h>
52 #include <bus/u4b/usb_busdma.h>
53 #include <bus/u4b/usb_process.h>
54 #include <bus/u4b/usb_transfer.h>
55 #include <bus/u4b/usb_device.h>
56 #include <bus/u4b/usb_debug.h>
57 #include <bus/u4b/usb_util.h>
58 
59 #include <bus/u4b/usb_controller.h>
60 #include <bus/u4b/usb_bus.h>
61 #include <bus/u4b/usb_pf.h>
62 
63 struct usb_std_packet_size {
64 	struct {
65 		uint16_t min;		/* inclusive */
66 		uint16_t max;		/* inclusive */
67 	}	range;
68 
69 	uint16_t fixed[4];
70 };
71 
72 static usb_callback_t usb_request_callback;
73 
74 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = {
75 
76 	/* This transfer is used for generic control endpoint transfers */
77 
78 	[0] = {
79 		.type = UE_CONTROL,
80 		.endpoint = 0x00,	/* Control endpoint */
81 		.direction = UE_DIR_ANY,
82 		.bufsize = USB_EP0_BUFSIZE,	/* bytes */
83 		.flags = {.proxy_buffer = 1,},
84 		.callback = &usb_request_callback,
85 		.usb_mode = USB_MODE_DUAL,	/* both modes */
86 	},
87 
88 	/* This transfer is used for generic clear stall only */
89 
90 	[1] = {
91 		.type = UE_CONTROL,
92 		.endpoint = 0x00,	/* Control pipe */
93 		.direction = UE_DIR_ANY,
94 		.bufsize = sizeof(struct usb_device_request),
95 		.callback = &usb_do_clear_stall_callback,
96 		.timeout = 1000,	/* 1 second */
97 		.interval = 50,	/* 50ms */
98 		.usb_mode = USB_MODE_HOST,
99 	},
100 };
101 
102 /* function prototypes */
103 
104 static void	usbd_update_max_frame_size(struct usb_xfer *);
105 static void	usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t);
106 static void	usbd_control_transfer_init(struct usb_xfer *);
107 static int	usbd_setup_ctrl_transfer(struct usb_xfer *);
108 static void	usb_callback_proc(struct usb_proc_msg *);
109 static void	usbd_callback_ss_done_defer(struct usb_xfer *);
110 static void	usbd_callback_wrapper(struct usb_xfer_queue *);
111 static void	usbd_transfer_start_cb(void *);
112 static uint8_t	usbd_callback_wrapper_sub(struct usb_xfer *);
113 static void	usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
114 		    uint8_t type, enum usb_dev_speed speed);
115 
116 /*------------------------------------------------------------------------*
117  *	usb_request_callback
118  *------------------------------------------------------------------------*/
119 static void
120 usb_request_callback(struct usb_xfer *xfer, usb_error_t error)
121 {
122 	if (xfer->flags_int.usb_mode == USB_MODE_DEVICE)
123 		usb_handle_request_callback(xfer, error);
124 	else
125 		usbd_do_request_callback(xfer, error);
126 }
127 
128 /*------------------------------------------------------------------------*
129  *	usbd_update_max_frame_size
130  *
131  * This function updates the maximum frame size, hence high speed USB
132  * can transfer multiple consecutive packets.
133  *------------------------------------------------------------------------*/
134 static void
135 usbd_update_max_frame_size(struct usb_xfer *xfer)
136 {
137 	/* compute maximum frame size */
138 	/* this computation should not overflow 16-bit */
139 	/* max = 15 * 1024 */
140 
141 	xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count;
142 }
143 
144 /*------------------------------------------------------------------------*
145  *	usbd_get_dma_delay
146  *
147  * The following function is called when we need to
148  * synchronize with DMA hardware.
149  *
150  * Returns:
151  *    0: no DMA delay required
152  * Else: milliseconds of DMA delay
153  *------------------------------------------------------------------------*/
154 usb_timeout_t
155 usbd_get_dma_delay(struct usb_device *udev)
156 {
157 	struct usb_bus_methods *mtod;
158 	uint32_t temp;
159 
160 	mtod = udev->bus->methods;
161 	temp = 0;
162 
163 	if (mtod->get_dma_delay) {
164 		(mtod->get_dma_delay) (udev, &temp);
165 		/*
166 		 * Round up and convert to milliseconds. Note that we use
167 		 * 1024 milliseconds per second. to save a division.
168 		 */
169 		temp += 0x3FF;
170 		temp /= 0x400;
171 	}
172 	return (temp);
173 }
174 
175 /*------------------------------------------------------------------------*
176  *	usbd_transfer_setup_sub_malloc
177  *
178  * This function will allocate one or more DMA'able memory chunks
179  * according to "size", "align" and "count" arguments. "ppc" is
180  * pointed to a linear array of USB page caches afterwards.
181  *
182  * Returns:
183  *    0: Success
184  * Else: Failure
185  *------------------------------------------------------------------------*/
186 #if USB_HAVE_BUSDMA
187 uint8_t
188 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm,
189     struct usb_page_cache **ppc, usb_size_t size, usb_size_t align,
190     usb_size_t count)
191 {
192 	struct usb_page_cache *pc;
193 	struct usb_page *pg;
194 	void *buf;
195 	usb_size_t n_dma_pc;
196 	usb_size_t n_obj;
197 	usb_size_t x;
198 	usb_size_t y;
199 	usb_size_t r;
200 	usb_size_t z;
201 
202 #if 0
203 	USB_ASSERT(align > 1, ("Invalid alignment, 0x%08x\n",
204 	    align));
205 	USB_ASSERT(size > 0, ("Invalid size = 0\n"));
206 #endif
207 
208 	if (count == 0) {
209 		return (0);		/* nothing to allocate */
210 	}
211 	/*
212 	 * Make sure that the size is aligned properly.
213 	 */
214 	size = -((-size) & (-align));
215 
216 	/*
217 	 * Try multi-allocation chunks to reduce the number of DMA
218 	 * allocations, hence DMA allocations are slow.
219 	 */
220 	if (size >= PAGE_SIZE) {
221 		n_dma_pc = count;
222 		n_obj = 1;
223 	} else {
224 		/* compute number of objects per page */
225 		n_obj = (PAGE_SIZE / size);
226 		/*
227 		 * Compute number of DMA chunks, rounded up
228 		 * to nearest one:
229 		 */
230 		n_dma_pc = ((count + n_obj - 1) / n_obj);
231 	}
232 
233 	if (parm->buf == NULL) {
234 		/* for the future */
235 		parm->dma_page_ptr += n_dma_pc;
236 		parm->dma_page_cache_ptr += n_dma_pc;
237 		parm->dma_page_ptr += count;
238 		parm->xfer_page_cache_ptr += count;
239 		return (0);
240 	}
241 	for (x = 0; x != n_dma_pc; x++) {
242 		/* need to initialize the page cache */
243 		parm->dma_page_cache_ptr[x].tag_parent =
244 		    &parm->curr_xfer->xroot->dma_parent_tag;
245 	}
246 	for (x = 0; x != count; x++) {
247 		/* need to initialize the page cache */
248 		parm->xfer_page_cache_ptr[x].tag_parent =
249 		    &parm->curr_xfer->xroot->dma_parent_tag;
250 	}
251 
252 	if (ppc) {
253 		*ppc = parm->xfer_page_cache_ptr;
254 	}
255 	r = count;			/* set remainder count */
256 	z = n_obj * size;		/* set allocation size */
257 	pc = parm->xfer_page_cache_ptr;
258 	pg = parm->dma_page_ptr;
259 
260 	for (x = 0; x != n_dma_pc; x++) {
261 
262 		if (r < n_obj) {
263 			/* compute last remainder */
264 			z = r * size;
265 			n_obj = r;
266 		}
267 		if (usb_pc_alloc_mem(parm->dma_page_cache_ptr,
268 		    pg, z, align)) {
269 			return (1);	/* failure */
270 		}
271 		/* Set beginning of current buffer */
272 		buf = parm->dma_page_cache_ptr->buffer;
273 		/* Make room for one DMA page cache and one page */
274 		parm->dma_page_cache_ptr++;
275 		pg++;
276 
277 		for (y = 0; (y != n_obj); y++, r--, pc++, pg++) {
278 
279 			/* Load sub-chunk into DMA */
280 			if (usb_pc_dmamap_create(pc, size)) {
281 				return (1);	/* failure */
282 			}
283 			pc->buffer = USB_ADD_BYTES(buf, y * size);
284 			pc->page_start = pg;
285 
286 			lockmgr(pc->tag_parent->lock, LK_EXCLUSIVE);
287 			if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) {
288 				lockmgr(pc->tag_parent->lock, LK_RELEASE);
289 				return (1);	/* failure */
290 			}
291 			lockmgr(pc->tag_parent->lock, LK_RELEASE);
292 		}
293 	}
294 
295 	parm->xfer_page_cache_ptr = pc;
296 	parm->dma_page_ptr = pg;
297 	return (0);
298 }
299 #endif
300 
301 /*------------------------------------------------------------------------*
302  *	usbd_transfer_setup_sub - transfer setup subroutine
303  *
304  * This function must be called from the "xfer_setup" callback of the
305  * USB Host or Device controller driver when setting up an USB
306  * transfer. This function will setup correct packet sizes, buffer
307  * sizes, flags and more, that are stored in the "usb_xfer"
308  * structure.
309  *------------------------------------------------------------------------*/
310 void
311 usbd_transfer_setup_sub(struct usb_setup_params *parm)
312 {
313 	enum {
314 		REQ_SIZE = 8,
315 		MIN_PKT = 8,
316 	};
317 	struct usb_xfer *xfer = parm->curr_xfer;
318 	const struct usb_config *setup = parm->curr_setup;
319 	struct usb_endpoint_ss_comp_descriptor *ecomp;
320 	struct usb_endpoint_descriptor *edesc;
321 	struct usb_std_packet_size std_size;
322 	usb_frcount_t n_frlengths;
323 	usb_frcount_t n_frbuffers;
324 	usb_frcount_t x;
325 	uint8_t type;
326 	uint8_t zmps;
327 
328 	/*
329 	 * Sanity check. The following parameters must be initialized before
330 	 * calling this function.
331 	 */
332 	if ((parm->hc_max_packet_size == 0) ||
333 	    (parm->hc_max_packet_count == 0) ||
334 	    (parm->hc_max_frame_size == 0)) {
335 		parm->err = USB_ERR_INVAL;
336 		goto done;
337 	}
338 	edesc = xfer->endpoint->edesc;
339 	ecomp = xfer->endpoint->ecomp;
340 
341 	type = (edesc->bmAttributes & UE_XFERTYPE);
342 
343 	xfer->flags = setup->flags;
344 	xfer->nframes = setup->frames;
345 	xfer->timeout = setup->timeout;
346 	xfer->callback = setup->callback;
347 	xfer->interval = setup->interval;
348 	xfer->endpointno = edesc->bEndpointAddress;
349 	xfer->max_packet_size = UGETW(edesc->wMaxPacketSize);
350 	xfer->max_packet_count = 1;
351 	/* make a shadow copy: */
352 	xfer->flags_int.usb_mode = parm->udev->flags.usb_mode;
353 
354 	parm->bufsize = setup->bufsize;
355 
356 	switch (parm->speed) {
357 	case USB_SPEED_HIGH:
358 		switch (type) {
359 		case UE_ISOCHRONOUS:
360 		case UE_INTERRUPT:
361 			xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3;
362 
363 			/* check for invalid max packet count */
364 			if (xfer->max_packet_count > 3)
365 				xfer->max_packet_count = 3;
366 			break;
367 		default:
368 			break;
369 		}
370 		xfer->max_packet_size &= 0x7FF;
371 		break;
372 	case USB_SPEED_SUPER:
373 		xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3;
374 
375 		if (ecomp != NULL)
376 			xfer->max_packet_count += ecomp->bMaxBurst;
377 
378 		if ((xfer->max_packet_count == 0) ||
379 		    (xfer->max_packet_count > 16))
380 			xfer->max_packet_count = 16;
381 
382 		switch (type) {
383 		case UE_CONTROL:
384 			xfer->max_packet_count = 1;
385 			break;
386 		case UE_ISOCHRONOUS:
387 			if (ecomp != NULL) {
388 				uint8_t mult;
389 
390 				mult = (ecomp->bmAttributes & 3) + 1;
391 				if (mult > 3)
392 					mult = 3;
393 
394 				xfer->max_packet_count *= mult;
395 			}
396 			break;
397 		default:
398 			break;
399 		}
400 		xfer->max_packet_size &= 0x7FF;
401 		break;
402 	default:
403 		break;
404 	}
405 	/* range check "max_packet_count" */
406 
407 	if (xfer->max_packet_count > parm->hc_max_packet_count) {
408 		xfer->max_packet_count = parm->hc_max_packet_count;
409 	}
410 	/* filter "wMaxPacketSize" according to HC capabilities */
411 
412 	if ((xfer->max_packet_size > parm->hc_max_packet_size) ||
413 	    (xfer->max_packet_size == 0)) {
414 		xfer->max_packet_size = parm->hc_max_packet_size;
415 	}
416 	/* filter "wMaxPacketSize" according to standard sizes */
417 
418 	usbd_get_std_packet_size(&std_size, type, parm->speed);
419 
420 	if (std_size.range.min || std_size.range.max) {
421 
422 		if (xfer->max_packet_size < std_size.range.min) {
423 			xfer->max_packet_size = std_size.range.min;
424 		}
425 		if (xfer->max_packet_size > std_size.range.max) {
426 			xfer->max_packet_size = std_size.range.max;
427 		}
428 	} else {
429 
430 		if (xfer->max_packet_size >= std_size.fixed[3]) {
431 			xfer->max_packet_size = std_size.fixed[3];
432 		} else if (xfer->max_packet_size >= std_size.fixed[2]) {
433 			xfer->max_packet_size = std_size.fixed[2];
434 		} else if (xfer->max_packet_size >= std_size.fixed[1]) {
435 			xfer->max_packet_size = std_size.fixed[1];
436 		} else {
437 			/* only one possibility left */
438 			xfer->max_packet_size = std_size.fixed[0];
439 		}
440 	}
441 
442 	/* compute "max_frame_size" */
443 
444 	usbd_update_max_frame_size(xfer);
445 
446 	/* check interrupt interval and transfer pre-delay */
447 
448 	if (type == UE_ISOCHRONOUS) {
449 
450 		uint16_t frame_limit;
451 
452 		xfer->interval = 0;	/* not used, must be zero */
453 		xfer->flags_int.isochronous_xfr = 1;	/* set flag */
454 
455 		if (xfer->timeout == 0) {
456 			/*
457 			 * set a default timeout in
458 			 * case something goes wrong!
459 			 */
460 			xfer->timeout = 1000 / 4;
461 		}
462 		switch (parm->speed) {
463 		case USB_SPEED_LOW:
464 		case USB_SPEED_FULL:
465 			frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER;
466 			xfer->fps_shift = 0;
467 			break;
468 		default:
469 			frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER;
470 			xfer->fps_shift = edesc->bInterval;
471 			if (xfer->fps_shift > 0)
472 				xfer->fps_shift--;
473 			if (xfer->fps_shift > 3)
474 				xfer->fps_shift = 3;
475 			if (xfer->flags.pre_scale_frames != 0)
476 				xfer->nframes <<= (3 - xfer->fps_shift);
477 			break;
478 		}
479 
480 		if (xfer->nframes > frame_limit) {
481 			/*
482 			 * this is not going to work
483 			 * cross hardware
484 			 */
485 			parm->err = USB_ERR_INVAL;
486 			goto done;
487 		}
488 		if (xfer->nframes == 0) {
489 			/*
490 			 * this is not a valid value
491 			 */
492 			parm->err = USB_ERR_ZERO_NFRAMES;
493 			goto done;
494 		}
495 	} else {
496 
497 		/*
498 		 * If a value is specified use that else check the
499 		 * endpoint descriptor!
500 		 */
501 		if (type == UE_INTERRUPT) {
502 
503 			uint32_t temp;
504 
505 			if (xfer->interval == 0) {
506 
507 				xfer->interval = edesc->bInterval;
508 
509 				switch (parm->speed) {
510 				case USB_SPEED_LOW:
511 				case USB_SPEED_FULL:
512 					break;
513 				default:
514 					/* 125us -> 1ms */
515 					if (xfer->interval < 4)
516 						xfer->interval = 1;
517 					else if (xfer->interval > 16)
518 						xfer->interval = (1 << (16 - 4));
519 					else
520 						xfer->interval =
521 						    (1 << (xfer->interval - 4));
522 					break;
523 				}
524 			}
525 
526 			if (xfer->interval == 0) {
527 				/*
528 				 * One millisecond is the smallest
529 				 * interval we support:
530 				 */
531 				xfer->interval = 1;
532 			}
533 
534 			xfer->fps_shift = 0;
535 			temp = 1;
536 
537 			while ((temp != 0) && (temp < xfer->interval)) {
538 				xfer->fps_shift++;
539 				temp *= 2;
540 			}
541 
542 			switch (parm->speed) {
543 			case USB_SPEED_LOW:
544 			case USB_SPEED_FULL:
545 				break;
546 			default:
547 				xfer->fps_shift += 3;
548 				break;
549 			}
550 		}
551 	}
552 
553 	/*
554 	 * NOTE: we do not allow "max_packet_size" or "max_frame_size"
555 	 * to be equal to zero when setting up USB transfers, hence
556 	 * this leads to alot of extra code in the USB kernel.
557 	 */
558 
559 	if ((xfer->max_frame_size == 0) ||
560 	    (xfer->max_packet_size == 0)) {
561 
562 		zmps = 1;
563 
564 		if ((parm->bufsize <= MIN_PKT) &&
565 		    (type != UE_CONTROL) &&
566 		    (type != UE_BULK)) {
567 
568 			/* workaround */
569 			xfer->max_packet_size = MIN_PKT;
570 			xfer->max_packet_count = 1;
571 			parm->bufsize = 0;	/* automatic setup length */
572 			usbd_update_max_frame_size(xfer);
573 
574 		} else {
575 			parm->err = USB_ERR_ZERO_MAXP;
576 			goto done;
577 		}
578 
579 	} else {
580 		zmps = 0;
581 	}
582 
583 	/*
584 	 * check if we should setup a default
585 	 * length:
586 	 */
587 
588 	if (parm->bufsize == 0) {
589 
590 		parm->bufsize = xfer->max_frame_size;
591 
592 		if (type == UE_ISOCHRONOUS) {
593 			parm->bufsize *= xfer->nframes;
594 		}
595 	}
596 	/*
597 	 * check if we are about to setup a proxy
598 	 * type of buffer:
599 	 */
600 
601 	if (xfer->flags.proxy_buffer) {
602 
603 		/* round bufsize up */
604 
605 		parm->bufsize += (xfer->max_frame_size - 1);
606 
607 		if (parm->bufsize < xfer->max_frame_size) {
608 			/* length wrapped around */
609 			parm->err = USB_ERR_INVAL;
610 			goto done;
611 		}
612 		/* subtract remainder */
613 
614 		parm->bufsize -= (parm->bufsize % xfer->max_frame_size);
615 
616 		/* add length of USB device request structure, if any */
617 
618 		if (type == UE_CONTROL) {
619 			parm->bufsize += REQ_SIZE;	/* SETUP message */
620 		}
621 	}
622 	xfer->max_data_length = parm->bufsize;
623 
624 	/* Setup "n_frlengths" and "n_frbuffers" */
625 
626 	if (type == UE_ISOCHRONOUS) {
627 		n_frlengths = xfer->nframes;
628 		n_frbuffers = 1;
629 	} else {
630 
631 		if (type == UE_CONTROL) {
632 			xfer->flags_int.control_xfr = 1;
633 			if (xfer->nframes == 0) {
634 				if (parm->bufsize <= REQ_SIZE) {
635 					/*
636 					 * there will never be any data
637 					 * stage
638 					 */
639 					xfer->nframes = 1;
640 				} else {
641 					xfer->nframes = 2;
642 				}
643 			}
644 		} else {
645 			if (xfer->nframes == 0) {
646 				xfer->nframes = 1;
647 			}
648 		}
649 
650 		n_frlengths = xfer->nframes;
651 		n_frbuffers = xfer->nframes;
652 	}
653 
654 	/*
655 	 * check if we have room for the
656 	 * USB device request structure:
657 	 */
658 
659 	if (type == UE_CONTROL) {
660 
661 		if (xfer->max_data_length < REQ_SIZE) {
662 			/* length wrapped around or too small bufsize */
663 			parm->err = USB_ERR_INVAL;
664 			goto done;
665 		}
666 		xfer->max_data_length -= REQ_SIZE;
667 	}
668 	/*
669 	 * Setup "frlengths" and shadow "frlengths" for keeping the
670 	 * initial frame lengths when a USB transfer is complete. This
671 	 * information is useful when computing isochronous offsets.
672 	 */
673 	xfer->frlengths = parm->xfer_length_ptr;
674 	parm->xfer_length_ptr += 2 * n_frlengths;
675 
676 	/* setup "frbuffers" */
677 	xfer->frbuffers = parm->xfer_page_cache_ptr;
678 	parm->xfer_page_cache_ptr += n_frbuffers;
679 
680 	/* initialize max frame count */
681 	xfer->max_frame_count = xfer->nframes;
682 
683 	/*
684 	 * check if we need to setup
685 	 * a local buffer:
686 	 */
687 
688 	if (!xfer->flags.ext_buffer) {
689 
690 		/* align data */
691 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
692 
693 		if (parm->buf) {
694 
695 			xfer->local_buffer =
696 			    USB_ADD_BYTES(parm->buf, parm->size[0]);
697 
698 			usbd_xfer_set_frame_offset(xfer, 0, 0);
699 
700 			if ((type == UE_CONTROL) && (n_frbuffers > 1)) {
701 				usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1);
702 			}
703 		}
704 		parm->size[0] += parm->bufsize;
705 
706 		/* align data again */
707 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
708 	}
709 	/*
710 	 * Compute maximum buffer size
711 	 */
712 
713 	if (parm->bufsize_max < parm->bufsize) {
714 		parm->bufsize_max = parm->bufsize;
715 	}
716 #if USB_HAVE_BUSDMA
717 	if (xfer->flags_int.bdma_enable) {
718 		/*
719 		 * Setup "dma_page_ptr".
720 		 *
721 		 * Proof for formula below:
722 		 *
723 		 * Assume there are three USB frames having length "a", "b" and
724 		 * "c". These USB frames will at maximum need "z"
725 		 * "usb_page" structures. "z" is given by:
726 		 *
727 		 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) +
728 		 * ((c / USB_PAGE_SIZE) + 2);
729 		 *
730 		 * Constraining "a", "b" and "c" like this:
731 		 *
732 		 * (a + b + c) <= parm->bufsize
733 		 *
734 		 * We know that:
735 		 *
736 		 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2));
737 		 *
738 		 * Here is the general formula:
739 		 */
740 		xfer->dma_page_ptr = parm->dma_page_ptr;
741 		parm->dma_page_ptr += (2 * n_frbuffers);
742 		parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE);
743 	}
744 #endif
745 	if (zmps) {
746 		/* correct maximum data length */
747 		xfer->max_data_length = 0;
748 	}
749 	/* subtract USB frame remainder from "hc_max_frame_size" */
750 
751 	xfer->max_hc_frame_size =
752 	    (parm->hc_max_frame_size -
753 	    (parm->hc_max_frame_size % xfer->max_frame_size));
754 
755 	if (xfer->max_hc_frame_size == 0) {
756 		parm->err = USB_ERR_INVAL;
757 		goto done;
758 	}
759 
760 	/* initialize frame buffers */
761 
762 	if (parm->buf) {
763 		for (x = 0; x != n_frbuffers; x++) {
764 			xfer->frbuffers[x].tag_parent =
765 			    &xfer->xroot->dma_parent_tag;
766 #if USB_HAVE_BUSDMA
767 			if (xfer->flags_int.bdma_enable &&
768 			    (parm->bufsize_max > 0)) {
769 
770 				if (usb_pc_dmamap_create(
771 				    xfer->frbuffers + x,
772 				    parm->bufsize_max)) {
773 					parm->err = USB_ERR_NOMEM;
774 					goto done;
775 				}
776 			}
777 #endif
778 		}
779 	}
780 done:
781 	if (parm->err) {
782 		/*
783 		 * Set some dummy values so that we avoid division by zero:
784 		 */
785 		xfer->max_hc_frame_size = 1;
786 		xfer->max_frame_size = 1;
787 		xfer->max_packet_size = 1;
788 		xfer->max_data_length = 0;
789 		xfer->nframes = 0;
790 		xfer->max_frame_count = 0;
791 	}
792 }
793 
794 /*------------------------------------------------------------------------*
795  *	usbd_transfer_setup - setup an array of USB transfers
796  *
797  * NOTE: You must always call "usbd_transfer_unsetup" after calling
798  * "usbd_transfer_setup" if success was returned.
799  *
800  * The idea is that the USB device driver should pre-allocate all its
801  * transfers by one call to this function.
802  *
803  * Return values:
804  *    0: Success
805  * Else: Failure
806  *------------------------------------------------------------------------*/
807 usb_error_t
808 usbd_transfer_setup(struct usb_device *udev,
809     const uint8_t *ifaces, struct usb_xfer **ppxfer,
810     const struct usb_config *setup_start, uint16_t n_setup,
811     void *priv_sc, struct lock *xfer_lock)
812 {
813 	struct usb_xfer dummy;
814 	struct usb_setup_params parm;
815 	const struct usb_config *setup_end = setup_start + n_setup;
816 	const struct usb_config *setup;
817 	struct usb_endpoint *ep;
818 	struct usb_xfer_root *info;
819 	struct usb_xfer *xfer;
820 	void *buf = NULL;
821 	uint16_t n;
822 	uint16_t refcount;
823 
824 	parm.err = 0;
825 	refcount = 0;
826 	info = NULL;
827 
828 #if 0
829 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
830 	    "usbd_transfer_setup can sleep!");
831 #endif
832 
833 	/* do some checking first */
834 
835 	if (n_setup == 0) {
836 		DPRINTFN(6, "setup array has zero length!\n");
837 		return (USB_ERR_INVAL);
838 	}
839 	if (ifaces == 0) {
840 		DPRINTFN(6, "ifaces array is NULL!\n");
841 		return (USB_ERR_INVAL);
842 	}
843 	if (xfer_lock == NULL) {
844 		panic("xfer without lock!\n");
845 		DPRINTFN(6, "using global lock\n");
846 	}
847 	/* sanity checks */
848 	for (setup = setup_start, n = 0;
849 	    setup != setup_end; setup++, n++) {
850 		if (setup->bufsize == (usb_frlength_t)-1) {
851 			parm.err = USB_ERR_BAD_BUFSIZE;
852 			DPRINTF("invalid bufsize\n");
853 		}
854 		if (setup->callback == NULL) {
855 			parm.err = USB_ERR_NO_CALLBACK;
856 			DPRINTF("no callback\n");
857 		}
858 		ppxfer[n] = NULL;
859 	}
860 
861 	if (parm.err) {
862 		goto done;
863 	}
864 	memset(&parm, 0, sizeof(parm));
865 
866 	parm.udev = udev;
867 	parm.speed = usbd_get_speed(udev);
868 	parm.hc_max_packet_count = 1;
869 
870 	if (parm.speed >= USB_SPEED_MAX) {
871 		parm.err = USB_ERR_INVAL;
872 		goto done;
873 	}
874 	/* setup all transfers */
875 
876 	while (1) {
877 
878 		if (buf) {
879 			/*
880 			 * Initialize the "usb_xfer_root" structure,
881 			 * which is common for all our USB transfers.
882 			 */
883 			info = USB_ADD_BYTES(buf, 0);
884 
885 			info->memory_base = buf;
886 			info->memory_size = parm.size[0];
887 
888 #if USB_HAVE_BUSDMA
889 			info->dma_page_cache_start = USB_ADD_BYTES(buf, parm.size[4]);
890 			info->dma_page_cache_end = USB_ADD_BYTES(buf, parm.size[5]);
891 #endif
892 			info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm.size[5]);
893 			info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm.size[2]);
894 
895 			cv_init(&info->cv_drain, "WDRAIN");
896 
897 			info->xfer_lock = xfer_lock;
898 #if USB_HAVE_BUSDMA
899 			usb_dma_tag_setup(&info->dma_parent_tag,
900 			    parm.dma_tag_p, udev->bus->dma_parent_tag[0].tag,
901 			    xfer_lock, &usb_bdma_done_event, 32, parm.dma_tag_max);
902 #endif
903 
904 			info->bus = udev->bus;
905 			info->udev = udev;
906 
907 			TAILQ_INIT(&info->done_q.head);
908 			info->done_q.command = &usbd_callback_wrapper;
909 #if USB_HAVE_BUSDMA
910 			TAILQ_INIT(&info->dma_q.head);
911 			info->dma_q.command = &usb_bdma_work_loop;
912 #endif
913 			info->done_m[0].hdr.pm_callback = &usb_callback_proc;
914 			info->done_m[0].xroot = info;
915 			info->done_m[1].hdr.pm_callback = &usb_callback_proc;
916 			info->done_m[1].xroot = info;
917 
918 			/*
919 			 * In device side mode control endpoint
920 			 * requests need to run from a separate
921 			 * context, else there is a chance of
922 			 * deadlock!
923 			 */
924 			if (setup_start == usb_control_ep_cfg)
925 				info->done_p =
926 				    &udev->bus->control_xfer_proc;
927 			else
928 				info->done_p =
929 				    &udev->bus->non_giant_callback_proc;
930 		}
931 		/* reset sizes */
932 
933 		parm.size[0] = 0;
934 		parm.buf = buf;
935 		parm.size[0] += sizeof(info[0]);
936 
937 		for (setup = setup_start, n = 0;
938 		    setup != setup_end; setup++, n++) {
939 
940 			/* skip USB transfers without callbacks: */
941 			if (setup->callback == NULL) {
942 				continue;
943 			}
944 			/* see if there is a matching endpoint */
945 			ep = usbd_get_endpoint(udev,
946 			    ifaces[setup->if_index], setup);
947 
948 			if ((ep == NULL) || (ep->methods == NULL)) {
949 				if (setup->flags.no_pipe_ok)
950 					continue;
951 				if ((setup->usb_mode != USB_MODE_DUAL) &&
952 				    (setup->usb_mode != udev->flags.usb_mode))
953 					continue;
954 				parm.err = USB_ERR_NO_PIPE;
955 				goto done;
956 			}
957 
958 			/* align data properly */
959 			parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
960 
961 			/* store current setup pointer */
962 			parm.curr_setup = setup;
963 
964 			if (buf) {
965 				/*
966 				 * Common initialization of the
967 				 * "usb_xfer" structure.
968 				 */
969 				xfer = USB_ADD_BYTES(buf, parm.size[0]);
970 				xfer->address = udev->address;
971 				xfer->priv_sc = priv_sc;
972 				xfer->xroot = info;
973 
974 				usb_callout_init_mtx(&xfer->timeout_handle,
975 				    &udev->bus->bus_lock, 0);
976 			} else {
977 				/*
978 				 * Setup a dummy xfer, hence we are
979 				 * writing to the "usb_xfer"
980 				 * structure pointed to by "xfer"
981 				 * before we have allocated any
982 				 * memory:
983 				 */
984 				xfer = &dummy;
985 				memset(&dummy, 0, sizeof(dummy));
986 				refcount++;
987 			}
988 
989 			/* set transfer endpoint pointer */
990 			xfer->endpoint = ep;
991 
992 			parm.size[0] += sizeof(xfer[0]);
993 			parm.methods = xfer->endpoint->methods;
994 			parm.curr_xfer = xfer;
995 
996 			/*
997 			 * Call the Host or Device controller transfer
998 			 * setup routine:
999 			 */
1000 			(udev->bus->methods->xfer_setup) (&parm);
1001 
1002 			/* check for error */
1003 			if (parm.err)
1004 				goto done;
1005 
1006 			if (buf) {
1007 				/*
1008 				 * Increment the endpoint refcount. This
1009 				 * basically prevents setting a new
1010 				 * configuration and alternate setting
1011 				 * when USB transfers are in use on
1012 				 * the given interface. Search the USB
1013 				 * code for "endpoint->refcount_alloc" if you
1014 				 * want more information.
1015 				 */
1016 				USB_BUS_LOCK(info->bus);
1017 				if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX)
1018 					parm.err = USB_ERR_INVAL;
1019 
1020 				xfer->endpoint->refcount_alloc++;
1021 
1022 				if (xfer->endpoint->refcount_alloc == 0)
1023 					panic("usbd_transfer_setup(): Refcount wrapped to zero\n");
1024 				USB_BUS_UNLOCK(info->bus);
1025 
1026 				/*
1027 				 * Whenever we set ppxfer[] then we
1028 				 * also need to increment the
1029 				 * "setup_refcount":
1030 				 */
1031 				info->setup_refcount++;
1032 
1033 				/*
1034 				 * Transfer is successfully setup and
1035 				 * can be used:
1036 				 */
1037 				ppxfer[n] = xfer;
1038 			}
1039 
1040 			/* check for error */
1041 			if (parm.err)
1042 				goto done;
1043 		}
1044 
1045 		if (buf || parm.err) {
1046 			goto done;
1047 		}
1048 		if (refcount == 0) {
1049 			/* no transfers - nothing to do ! */
1050 			goto done;
1051 		}
1052 		/* align data properly */
1053 		parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
1054 
1055 		/* store offset temporarily */
1056 		parm.size[1] = parm.size[0];
1057 
1058 		/*
1059 		 * The number of DMA tags required depends on
1060 		 * the number of endpoints. The current estimate
1061 		 * for maximum number of DMA tags per endpoint
1062 		 * is two.
1063 		 */
1064 		parm.dma_tag_max += 2 * MIN(n_setup, USB_EP_MAX);
1065 
1066 		/*
1067 		 * DMA tags for QH, TD, Data and more.
1068 		 */
1069 		parm.dma_tag_max += 8;
1070 
1071 		parm.dma_tag_p += parm.dma_tag_max;
1072 
1073 		parm.size[0] += ((uint8_t *)parm.dma_tag_p) -
1074 		    ((uint8_t *)0);
1075 
1076 		/* align data properly */
1077 		parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
1078 
1079 		/* store offset temporarily */
1080 		parm.size[3] = parm.size[0];
1081 
1082 		parm.size[0] += ((uint8_t *)parm.dma_page_ptr) -
1083 		    ((uint8_t *)0);
1084 
1085 		/* align data properly */
1086 		parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
1087 
1088 		/* store offset temporarily */
1089 		parm.size[4] = parm.size[0];
1090 
1091 		parm.size[0] += ((uint8_t *)parm.dma_page_cache_ptr) -
1092 		    ((uint8_t *)0);
1093 
1094 		/* store end offset temporarily */
1095 		parm.size[5] = parm.size[0];
1096 
1097 		parm.size[0] += ((uint8_t *)parm.xfer_page_cache_ptr) -
1098 		    ((uint8_t *)0);
1099 
1100 		/* store end offset temporarily */
1101 
1102 		parm.size[2] = parm.size[0];
1103 
1104 		/* align data properly */
1105 		parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
1106 
1107 		parm.size[6] = parm.size[0];
1108 
1109 		parm.size[0] += ((uint8_t *)parm.xfer_length_ptr) -
1110 		    ((uint8_t *)0);
1111 
1112 		/* align data properly */
1113 		parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1));
1114 
1115 		/* allocate zeroed memory */
1116 		buf = kmalloc(parm.size[0], M_USB, M_WAITOK | M_ZERO);
1117 
1118 		if (buf == NULL) {
1119 			parm.err = USB_ERR_NOMEM;
1120 			DPRINTFN(0, "cannot allocate memory block for "
1121 			    "configuration (%d bytes)\n",
1122 			    parm.size[0]);
1123 			goto done;
1124 		}
1125 		parm.dma_tag_p = USB_ADD_BYTES(buf, parm.size[1]);
1126 		parm.dma_page_ptr = USB_ADD_BYTES(buf, parm.size[3]);
1127 		parm.dma_page_cache_ptr = USB_ADD_BYTES(buf, parm.size[4]);
1128 		parm.xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm.size[5]);
1129 		parm.xfer_length_ptr = USB_ADD_BYTES(buf, parm.size[6]);
1130 	}
1131 
1132 done:
1133 	if (buf) {
1134 		if (info->setup_refcount == 0) {
1135 			/*
1136 			 * "usbd_transfer_unsetup_sub" will unlock
1137 			 * the bus mutex before returning !
1138 			 */
1139 			USB_BUS_LOCK(info->bus);
1140 
1141 			/* something went wrong */
1142 			usbd_transfer_unsetup_sub(info, 0);
1143 		}
1144 	}
1145 	if (parm.err) {
1146 		usbd_transfer_unsetup(ppxfer, n_setup);
1147 	}
1148 	return (parm.err);
1149 }
1150 
1151 /*------------------------------------------------------------------------*
1152  *	usbd_transfer_unsetup_sub - factored out code
1153  *------------------------------------------------------------------------*/
1154 static void
1155 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay)
1156 {
1157 #if USB_HAVE_BUSDMA
1158 	struct usb_page_cache *pc;
1159 #endif
1160 
1161 	USB_BUS_LOCK_ASSERT(info->bus);
1162 
1163 	/* wait for any outstanding DMA operations */
1164 
1165 	if (needs_delay) {
1166 		usb_timeout_t temp;
1167 		temp = usbd_get_dma_delay(info->udev);
1168 		if (temp != 0) {
1169 			usb_pause_mtx(&info->bus->bus_lock,
1170 			    USB_MS_TO_TICKS(temp));
1171 		}
1172 	}
1173 
1174 	/* make sure that our done messages are not queued anywhere */
1175 	usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]);
1176 
1177 	USB_BUS_UNLOCK(info->bus);
1178 
1179 #if USB_HAVE_BUSDMA
1180 	/* free DMA'able memory, if any */
1181 	pc = info->dma_page_cache_start;
1182 	while (pc != info->dma_page_cache_end) {
1183 		usb_pc_free_mem(pc);
1184 		pc++;
1185 	}
1186 
1187 	/* free DMA maps in all "xfer->frbuffers" */
1188 	pc = info->xfer_page_cache_start;
1189 	while (pc != info->xfer_page_cache_end) {
1190 		usb_pc_dmamap_destroy(pc);
1191 		pc++;
1192 	}
1193 
1194 	/* free all DMA tags */
1195 	usb_dma_tag_unsetup(&info->dma_parent_tag);
1196 #endif
1197 
1198 	cv_destroy(&info->cv_drain);
1199 
1200 	/*
1201 	 * free the "memory_base" last, hence the "info" structure is
1202 	 * contained within the "memory_base"!
1203 	 */
1204 	kfree(info->memory_base, M_USB);
1205 }
1206 
1207 /*------------------------------------------------------------------------*
1208  *	usbd_transfer_unsetup - unsetup/free an array of USB transfers
1209  *
1210  * NOTE: All USB transfers in progress will get called back passing
1211  * the error code "USB_ERR_CANCELLED" before this function
1212  * returns.
1213  *------------------------------------------------------------------------*/
1214 void
1215 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup)
1216 {
1217 	struct usb_xfer *xfer;
1218 	struct usb_xfer_root *info;
1219 	uint8_t needs_delay = 0;
1220 
1221 #if 0
1222 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1223 	    "usbd_transfer_unsetup can sleep!");
1224 #endif
1225 
1226 	while (n_setup--) {
1227 		xfer = pxfer[n_setup];
1228 
1229 		if (xfer == NULL)
1230 			continue;
1231 
1232 		info = xfer->xroot;
1233 
1234 		USB_XFER_LOCK(xfer);
1235 		USB_BUS_LOCK(info->bus);
1236 
1237 		/*
1238 		 * HINT: when you start/stop a transfer, it might be a
1239 		 * good idea to directly use the "pxfer[]" structure:
1240 		 *
1241 		 * usbd_transfer_start(sc->pxfer[0]);
1242 		 * usbd_transfer_stop(sc->pxfer[0]);
1243 		 *
1244 		 * That way, if your code has many parts that will not
1245 		 * stop running under the same lock, in other words
1246 		 * "xfer_mtx", the usbd_transfer_start and
1247 		 * usbd_transfer_stop functions will simply return
1248 		 * when they detect a NULL pointer argument.
1249 		 *
1250 		 * To avoid any races we clear the "pxfer[]" pointer
1251 		 * while holding the private mutex of the driver:
1252 		 */
1253 		pxfer[n_setup] = NULL;
1254 
1255 		USB_BUS_UNLOCK(info->bus);
1256 		USB_XFER_UNLOCK(xfer);
1257 
1258 		usbd_transfer_drain(xfer);
1259 
1260 #if USB_HAVE_BUSDMA
1261 		if (xfer->flags_int.bdma_enable)
1262 			needs_delay = 1;
1263 #endif
1264 		/*
1265 		 * NOTE: default endpoint does not have an
1266 		 * interface, even if endpoint->iface_index == 0
1267 		 */
1268 		USB_BUS_LOCK(info->bus);
1269 		xfer->endpoint->refcount_alloc--;
1270 		USB_BUS_UNLOCK(info->bus);
1271 
1272 		usb_callout_drain(&xfer->timeout_handle);
1273 
1274 		USB_BUS_LOCK(info->bus);
1275 
1276 #if 0
1277 		USB_ASSERT(info->setup_refcount != 0, ("Invalid setup "
1278 		    "reference count\n"));
1279 #endif
1280 
1281 		info->setup_refcount--;
1282 
1283 		if (info->setup_refcount == 0) {
1284 			usbd_transfer_unsetup_sub(info,
1285 			    needs_delay);
1286 		} else {
1287 			USB_BUS_UNLOCK(info->bus);
1288 		}
1289 	}
1290 }
1291 
1292 /*------------------------------------------------------------------------*
1293  *	usbd_control_transfer_init - factored out code
1294  *
1295  * In USB Device Mode we have to wait for the SETUP packet which
1296  * containst the "struct usb_device_request" structure, before we can
1297  * transfer any data. In USB Host Mode we already have the SETUP
1298  * packet at the moment the USB transfer is started. This leads us to
1299  * having to setup the USB transfer at two different places in
1300  * time. This function just contains factored out control transfer
1301  * initialisation code, so that we don't duplicate the code.
1302  *------------------------------------------------------------------------*/
1303 static void
1304 usbd_control_transfer_init(struct usb_xfer *xfer)
1305 {
1306 	struct usb_device_request req;
1307 
1308 	/* copy out the USB request header */
1309 
1310 	usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req));
1311 
1312 	/* setup remainder */
1313 
1314 	xfer->flags_int.control_rem = UGETW(req.wLength);
1315 
1316 	/* copy direction to endpoint variable */
1317 
1318 	xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT);
1319 	xfer->endpointno |=
1320 	    (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT;
1321 }
1322 
1323 /*------------------------------------------------------------------------*
1324  *	usbd_setup_ctrl_transfer
1325  *
1326  * This function handles initialisation of control transfers. Control
1327  * transfers are special in that regard that they can both transmit
1328  * and receive data.
1329  *
1330  * Return values:
1331  *    0: Success
1332  * Else: Failure
1333  *------------------------------------------------------------------------*/
1334 static int
1335 usbd_setup_ctrl_transfer(struct usb_xfer *xfer)
1336 {
1337 	usb_frlength_t len;
1338 
1339 	/* Check for control endpoint stall */
1340 	if (xfer->flags.stall_pipe && xfer->flags_int.control_act) {
1341 		/* the control transfer is no longer active */
1342 		xfer->flags_int.control_stall = 1;
1343 		xfer->flags_int.control_act = 0;
1344 	} else {
1345 		/* don't stall control transfer by default */
1346 		xfer->flags_int.control_stall = 0;
1347 	}
1348 
1349 	/* Check for invalid number of frames */
1350 	if (xfer->nframes > 2) {
1351 		/*
1352 		 * If you need to split a control transfer, you
1353 		 * have to do one part at a time. Only with
1354 		 * non-control transfers you can do multiple
1355 		 * parts a time.
1356 		 */
1357 		DPRINTFN(0, "Too many frames: %u\n",
1358 		    (unsigned int)xfer->nframes);
1359 		goto error;
1360 	}
1361 
1362 	/*
1363          * Check if there is a control
1364          * transfer in progress:
1365          */
1366 	if (xfer->flags_int.control_act) {
1367 
1368 		if (xfer->flags_int.control_hdr) {
1369 
1370 			/* clear send header flag */
1371 
1372 			xfer->flags_int.control_hdr = 0;
1373 
1374 			/* setup control transfer */
1375 			if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
1376 				usbd_control_transfer_init(xfer);
1377 			}
1378 		}
1379 		/* get data length */
1380 
1381 		len = xfer->sumlen;
1382 
1383 	} else {
1384 
1385 		/* the size of the SETUP structure is hardcoded ! */
1386 
1387 		if (xfer->frlengths[0] != sizeof(struct usb_device_request)) {
1388 			DPRINTFN(0, "Wrong framelength %u != %zu\n",
1389 			    xfer->frlengths[0], sizeof(struct
1390 			    usb_device_request));
1391 			goto error;
1392 		}
1393 		/* check USB mode */
1394 		if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
1395 
1396 			/* check number of frames */
1397 			if (xfer->nframes != 1) {
1398 				/*
1399 			         * We need to receive the setup
1400 			         * message first so that we know the
1401 			         * data direction!
1402 			         */
1403 				DPRINTF("Misconfigured transfer\n");
1404 				goto error;
1405 			}
1406 			/*
1407 			 * Set a dummy "control_rem" value.  This
1408 			 * variable will be overwritten later by a
1409 			 * call to "usbd_control_transfer_init()" !
1410 			 */
1411 			xfer->flags_int.control_rem = 0xFFFF;
1412 		} else {
1413 
1414 			/* setup "endpoint" and "control_rem" */
1415 
1416 			usbd_control_transfer_init(xfer);
1417 		}
1418 
1419 		/* set transfer-header flag */
1420 
1421 		xfer->flags_int.control_hdr = 1;
1422 
1423 		/* get data length */
1424 
1425 		len = (xfer->sumlen - sizeof(struct usb_device_request));
1426 	}
1427 
1428 	/* check if there is a length mismatch */
1429 
1430 	if (len > xfer->flags_int.control_rem) {
1431 		DPRINTFN(0, "Length (%d) greater than "
1432 		    "remaining length (%d)\n", len,
1433 		    xfer->flags_int.control_rem);
1434 		goto error;
1435 	}
1436 	/* check if we are doing a short transfer */
1437 
1438 	if (xfer->flags.force_short_xfer) {
1439 		xfer->flags_int.control_rem = 0;
1440 	} else {
1441 		if ((len != xfer->max_data_length) &&
1442 		    (len != xfer->flags_int.control_rem) &&
1443 		    (xfer->nframes != 1)) {
1444 			DPRINTFN(0, "Short control transfer without "
1445 			    "force_short_xfer set\n");
1446 			goto error;
1447 		}
1448 		xfer->flags_int.control_rem -= len;
1449 	}
1450 
1451 	/* the status part is executed when "control_act" is 0 */
1452 
1453 	if ((xfer->flags_int.control_rem > 0) ||
1454 	    (xfer->flags.manual_status)) {
1455 		/* don't execute the STATUS stage yet */
1456 		xfer->flags_int.control_act = 1;
1457 
1458 		/* sanity check */
1459 		if ((!xfer->flags_int.control_hdr) &&
1460 		    (xfer->nframes == 1)) {
1461 			/*
1462 		         * This is not a valid operation!
1463 		         */
1464 			DPRINTFN(0, "Invalid parameter "
1465 			    "combination\n");
1466 			goto error;
1467 		}
1468 	} else {
1469 		/* time to execute the STATUS stage */
1470 		xfer->flags_int.control_act = 0;
1471 	}
1472 	return (0);			/* success */
1473 
1474 error:
1475 	return (1);			/* failure */
1476 }
1477 
1478 /*------------------------------------------------------------------------*
1479  *	usbd_transfer_submit - start USB hardware for the given transfer
1480  *
1481  * This function should only be called from the USB callback.
1482  *------------------------------------------------------------------------*/
1483 void
1484 usbd_transfer_submit(struct usb_xfer *xfer)
1485 {
1486 	struct usb_xfer_root *info;
1487 	struct usb_bus *bus;
1488 	usb_frcount_t x;
1489 
1490 	info = xfer->xroot;
1491 	bus = info->bus;
1492 
1493 	DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n",
1494 	    xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ?
1495 	    "read" : "write");
1496 
1497 #ifdef USB_DEBUG
1498 	if (USB_DEBUG_VAR > 0) {
1499 		USB_BUS_LOCK(bus);
1500 
1501 		usb_dump_endpoint(xfer->endpoint);
1502 
1503 		USB_BUS_UNLOCK(bus);
1504 	}
1505 #endif
1506 
1507 	USB_XFER_LOCK_ASSERT(xfer);
1508 	USB_BUS_LOCK_ASSERT_NOTOWNED(bus);
1509 
1510 	/* Only open the USB transfer once! */
1511 	if (!xfer->flags_int.open) {
1512 		xfer->flags_int.open = 1;
1513 
1514 		DPRINTF("open\n");
1515 
1516 		USB_BUS_LOCK(bus);
1517 		(xfer->endpoint->methods->open) (xfer);
1518 		USB_BUS_UNLOCK(bus);
1519 	}
1520 	/* set "transferring" flag */
1521 	xfer->flags_int.transferring = 1;
1522 
1523 #if USB_HAVE_POWERD
1524 	/* increment power reference */
1525 	usbd_transfer_power_ref(xfer, 1);
1526 #endif
1527 	/*
1528 	 * Check if the transfer is waiting on a queue, most
1529 	 * frequently the "done_q":
1530 	 */
1531 	if (xfer->wait_queue) {
1532 		USB_BUS_LOCK(bus);
1533 		usbd_transfer_dequeue(xfer);
1534 		USB_BUS_UNLOCK(bus);
1535 	}
1536 	/* clear "did_dma_delay" flag */
1537 	xfer->flags_int.did_dma_delay = 0;
1538 
1539 	/* clear "did_close" flag */
1540 	xfer->flags_int.did_close = 0;
1541 
1542 #if USB_HAVE_BUSDMA
1543 	/* clear "bdma_setup" flag */
1544 	xfer->flags_int.bdma_setup = 0;
1545 #endif
1546 	/* by default we cannot cancel any USB transfer immediately */
1547 	xfer->flags_int.can_cancel_immed = 0;
1548 
1549 	/* clear lengths and frame counts by default */
1550 	xfer->sumlen = 0;
1551 	xfer->actlen = 0;
1552 	xfer->aframes = 0;
1553 
1554 	/* clear any previous errors */
1555 	xfer->error = 0;
1556 
1557 	/* Check if the device is still alive */
1558 	if (info->udev->state < USB_STATE_POWERED) {
1559 		USB_BUS_LOCK(bus);
1560 		/*
1561 		 * Must return cancelled error code else
1562 		 * device drivers can hang.
1563 		 */
1564 		usbd_transfer_done(xfer, USB_ERR_CANCELLED);
1565 		USB_BUS_UNLOCK(bus);
1566 		return;
1567 	}
1568 
1569 	/* sanity check */
1570 	if (xfer->nframes == 0) {
1571 		if (xfer->flags.stall_pipe) {
1572 			/*
1573 			 * Special case - want to stall without transferring
1574 			 * any data:
1575 			 */
1576 			DPRINTF("xfer=%p nframes=0: stall "
1577 			    "or clear stall!\n", xfer);
1578 			USB_BUS_LOCK(bus);
1579 			xfer->flags_int.can_cancel_immed = 1;
1580 			/* start the transfer */
1581 			usb_command_wrapper(&xfer->endpoint->endpoint_q, xfer);
1582 			USB_BUS_UNLOCK(bus);
1583 			return;
1584 		}
1585 		USB_BUS_LOCK(bus);
1586 		usbd_transfer_done(xfer, USB_ERR_INVAL);
1587 		USB_BUS_UNLOCK(bus);
1588 		return;
1589 	}
1590 	/* compute some variables */
1591 
1592 	for (x = 0; x != xfer->nframes; x++) {
1593 		/* make a copy of the frlenghts[] */
1594 		xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x];
1595 		/* compute total transfer length */
1596 		xfer->sumlen += xfer->frlengths[x];
1597 		if (xfer->sumlen < xfer->frlengths[x]) {
1598 			/* length wrapped around */
1599 			USB_BUS_LOCK(bus);
1600 			usbd_transfer_done(xfer, USB_ERR_INVAL);
1601 			USB_BUS_UNLOCK(bus);
1602 			return;
1603 		}
1604 	}
1605 
1606 	/* clear some internal flags */
1607 
1608 	xfer->flags_int.short_xfer_ok = 0;
1609 	xfer->flags_int.short_frames_ok = 0;
1610 
1611 	/* check if this is a control transfer */
1612 
1613 	if (xfer->flags_int.control_xfr) {
1614 
1615 		if (usbd_setup_ctrl_transfer(xfer)) {
1616 			USB_BUS_LOCK(bus);
1617 			usbd_transfer_done(xfer, USB_ERR_STALLED);
1618 			USB_BUS_UNLOCK(bus);
1619 			return;
1620 		}
1621 	}
1622 	/*
1623 	 * Setup filtered version of some transfer flags,
1624 	 * in case of data read direction
1625 	 */
1626 	if (USB_GET_DATA_ISREAD(xfer)) {
1627 
1628 		if (xfer->flags.short_frames_ok) {
1629 			xfer->flags_int.short_xfer_ok = 1;
1630 			xfer->flags_int.short_frames_ok = 1;
1631 		} else if (xfer->flags.short_xfer_ok) {
1632 			xfer->flags_int.short_xfer_ok = 1;
1633 
1634 			/* check for control transfer */
1635 			if (xfer->flags_int.control_xfr) {
1636 				/*
1637 				 * 1) Control transfers do not support
1638 				 * reception of multiple short USB
1639 				 * frames in host mode and device side
1640 				 * mode, with exception of:
1641 				 *
1642 				 * 2) Due to sometimes buggy device
1643 				 * side firmware we need to do a
1644 				 * STATUS stage in case of short
1645 				 * control transfers in USB host mode.
1646 				 * The STATUS stage then becomes the
1647 				 * "alt_next" to the DATA stage.
1648 				 */
1649 				xfer->flags_int.short_frames_ok = 1;
1650 			}
1651 		}
1652 	}
1653 	/*
1654 	 * Check if BUS-DMA support is enabled and try to load virtual
1655 	 * buffers into DMA, if any:
1656 	 */
1657 #if USB_HAVE_BUSDMA
1658 	if (xfer->flags_int.bdma_enable) {
1659 		/* insert the USB transfer last in the BUS-DMA queue */
1660 		usb_command_wrapper(&xfer->xroot->dma_q, xfer);
1661 		return;
1662 	}
1663 #endif
1664 	/*
1665 	 * Enter the USB transfer into the Host Controller or
1666 	 * Device Controller schedule:
1667 	 */
1668 	usbd_pipe_enter(xfer);
1669 }
1670 
1671 /*------------------------------------------------------------------------*
1672  *	usbd_pipe_enter - factored out code
1673  *------------------------------------------------------------------------*/
1674 void
1675 usbd_pipe_enter(struct usb_xfer *xfer)
1676 {
1677 	struct usb_endpoint *ep;
1678 
1679 	USB_XFER_LOCK_ASSERT(xfer);
1680 
1681 	USB_BUS_LOCK(xfer->xroot->bus);
1682 
1683 	ep = xfer->endpoint;
1684 
1685 	DPRINTF("enter\n");
1686 
1687 	/* enter the transfer */
1688 	(ep->methods->enter) (xfer);
1689 
1690 	xfer->flags_int.can_cancel_immed = 1;
1691 
1692 	/* check for transfer error */
1693 	if (xfer->error) {
1694 		/* some error has happened */
1695 		usbd_transfer_done(xfer, 0);
1696 		USB_BUS_UNLOCK(xfer->xroot->bus);
1697 		return;
1698 	}
1699 
1700 	/* start the transfer */
1701 	usb_command_wrapper(&ep->endpoint_q, xfer);
1702 	USB_BUS_UNLOCK(xfer->xroot->bus);
1703 }
1704 
1705 /*------------------------------------------------------------------------*
1706  *	usbd_transfer_start - start an USB transfer
1707  *
1708  * NOTE: Calling this function more than one time will only
1709  *       result in a single transfer start, until the USB transfer
1710  *       completes.
1711  *------------------------------------------------------------------------*/
1712 void
1713 usbd_transfer_start(struct usb_xfer *xfer)
1714 {
1715 	if (xfer == NULL) {
1716 		/* transfer is gone */
1717 		return;
1718 	}
1719 	USB_XFER_LOCK_ASSERT(xfer);
1720 
1721 	/* mark the USB transfer started */
1722 
1723 	if (!xfer->flags_int.started) {
1724 		/* lock the BUS lock to avoid races updating flags_int */
1725 		USB_BUS_LOCK(xfer->xroot->bus);
1726 		xfer->flags_int.started = 1;
1727 		USB_BUS_UNLOCK(xfer->xroot->bus);
1728 	}
1729 	/* check if the USB transfer callback is already transferring */
1730 
1731 	if (xfer->flags_int.transferring) {
1732 		return;
1733 	}
1734 	USB_BUS_LOCK(xfer->xroot->bus);
1735 	/* call the USB transfer callback */
1736 	usbd_callback_ss_done_defer(xfer);
1737 	USB_BUS_UNLOCK(xfer->xroot->bus);
1738 }
1739 
1740 /*------------------------------------------------------------------------*
1741  *	usbd_transfer_stop - stop an USB transfer
1742  *
1743  * NOTE: Calling this function more than one time will only
1744  *       result in a single transfer stop.
1745  * NOTE: When this function returns it is not safe to free nor
1746  *       reuse any DMA buffers. See "usbd_transfer_drain()".
1747  *------------------------------------------------------------------------*/
1748 void
1749 usbd_transfer_stop(struct usb_xfer *xfer)
1750 {
1751 	struct usb_endpoint *ep;
1752 
1753 	if (xfer == NULL) {
1754 		/* transfer is gone */
1755 		return;
1756 	}
1757 #if 0
1758 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1759 #endif
1760 
1761 	/* check if the USB transfer was ever opened */
1762 
1763 	if (!xfer->flags_int.open) {
1764 		if (xfer->flags_int.started) {
1765 			/* nothing to do except clearing the "started" flag */
1766 			/* lock the BUS lock to avoid races updating flags_int */
1767 			USB_BUS_LOCK(xfer->xroot->bus);
1768 			xfer->flags_int.started = 0;
1769 			USB_BUS_UNLOCK(xfer->xroot->bus);
1770 		}
1771 		return;
1772 	}
1773 	/* try to stop the current USB transfer */
1774 
1775 	USB_BUS_LOCK(xfer->xroot->bus);
1776 	/* override any previous error */
1777 	xfer->error = USB_ERR_CANCELLED;
1778 
1779 	/*
1780 	 * Clear "open" and "started" when both private and USB lock
1781 	 * is locked so that we don't get a race updating "flags_int"
1782 	 */
1783 	xfer->flags_int.open = 0;
1784 	xfer->flags_int.started = 0;
1785 
1786 	/*
1787 	 * Check if we can cancel the USB transfer immediately.
1788 	 */
1789 	if (xfer->flags_int.transferring) {
1790 		if (xfer->flags_int.can_cancel_immed &&
1791 		    (!xfer->flags_int.did_close)) {
1792 			DPRINTF("close\n");
1793 			/*
1794 			 * The following will lead to an USB_ERR_CANCELLED
1795 			 * error code being passed to the USB callback.
1796 			 */
1797 			(xfer->endpoint->methods->close) (xfer);
1798 			/* only close once */
1799 			xfer->flags_int.did_close = 1;
1800 		} else {
1801 			/* need to wait for the next done callback */
1802 		}
1803 	} else {
1804 		DPRINTF("close\n");
1805 
1806 		/* close here and now */
1807 		(xfer->endpoint->methods->close) (xfer);
1808 
1809 		/*
1810 		 * Any additional DMA delay is done by
1811 		 * "usbd_transfer_unsetup()".
1812 		 */
1813 
1814 		/*
1815 		 * Special case. Check if we need to restart a blocked
1816 		 * endpoint.
1817 		 */
1818 		ep = xfer->endpoint;
1819 
1820 		/*
1821 		 * If the current USB transfer is completing we need
1822 		 * to start the next one:
1823 		 */
1824 		if (ep->endpoint_q.curr == xfer) {
1825 			usb_command_wrapper(&ep->endpoint_q, NULL);
1826 		}
1827 	}
1828 
1829 	USB_BUS_UNLOCK(xfer->xroot->bus);
1830 }
1831 
1832 /*------------------------------------------------------------------------*
1833  *	usbd_transfer_pending
1834  *
1835  * This function will check if an USB transfer is pending which is a
1836  * little bit complicated!
1837  * Return values:
1838  * 0: Not pending
1839  * 1: Pending: The USB transfer will receive a callback in the future.
1840  *------------------------------------------------------------------------*/
1841 uint8_t
1842 usbd_transfer_pending(struct usb_xfer *xfer)
1843 {
1844 	struct usb_xfer_root *info;
1845 	struct usb_xfer_queue *pq;
1846 
1847 	if (xfer == NULL) {
1848 		/* transfer is gone */
1849 		return (0);
1850 	}
1851 #if 0
1852 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1853 #endif
1854 
1855 	if (xfer->flags_int.transferring) {
1856 		/* trivial case */
1857 		return (1);
1858 	}
1859 	USB_BUS_LOCK(xfer->xroot->bus);
1860 	if (xfer->wait_queue) {
1861 		/* we are waiting on a queue somewhere */
1862 		USB_BUS_UNLOCK(xfer->xroot->bus);
1863 		return (1);
1864 	}
1865 	info = xfer->xroot;
1866 	pq = &info->done_q;
1867 
1868 	if (pq->curr == xfer) {
1869 		/* we are currently scheduled for callback */
1870 		USB_BUS_UNLOCK(xfer->xroot->bus);
1871 		return (1);
1872 	}
1873 	/* we are not pending */
1874 	USB_BUS_UNLOCK(xfer->xroot->bus);
1875 	return (0);
1876 }
1877 
1878 /*------------------------------------------------------------------------*
1879  *	usbd_transfer_drain
1880  *
1881  * This function will stop the USB transfer and wait for any
1882  * additional BUS-DMA and HW-DMA operations to complete. Buffers that
1883  * are loaded into DMA can safely be freed or reused after that this
1884  * function has returned.
1885  *------------------------------------------------------------------------*/
1886 void
1887 usbd_transfer_drain(struct usb_xfer *xfer)
1888 {
1889 #if 0
1890 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1891 	    "usbd_transfer_drain can sleep!");
1892 #endif
1893 
1894 	if (xfer == NULL) {
1895 		/* transfer is gone */
1896 		return;
1897 	}
1898 	USB_XFER_LOCK_ASSERT_NOTOWNED(xfer);
1899 	USB_XFER_LOCK(xfer);
1900 
1901 	usbd_transfer_stop(xfer);
1902 
1903 	while (usbd_transfer_pending(xfer) ||
1904 	    xfer->flags_int.doing_callback) {
1905 
1906 		/*
1907 		 * It is allowed that the callback can drop its
1908 		 * transfer mutex. In that case checking only
1909 		 * "usbd_transfer_pending()" is not enough to tell if
1910 		 * the USB transfer is fully drained. We also need to
1911 		 * check the internal "doing_callback" flag.
1912 		 */
1913 		xfer->flags_int.draining = 1;
1914 
1915 		/*
1916 		 * Wait until the current outstanding USB
1917 		 * transfer is complete !
1918 		 */
1919 		cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_lock);
1920 	}
1921 	USB_XFER_UNLOCK(xfer);
1922 }
1923 
1924 struct usb_page_cache *
1925 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex)
1926 {
1927 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
1928 
1929 	return (&xfer->frbuffers[frindex]);
1930 }
1931 
1932 /*------------------------------------------------------------------------*
1933  *	usbd_xfer_get_fps_shift
1934  *
1935  * The following function is only useful for isochronous transfers. It
1936  * returns how many times the frame execution rate has been shifted
1937  * down.
1938  *
1939  * Return value:
1940  * Success: 0..3
1941  * Failure: 0
1942  *------------------------------------------------------------------------*/
1943 uint8_t
1944 usbd_xfer_get_fps_shift(struct usb_xfer *xfer)
1945 {
1946 	return (xfer->fps_shift);
1947 }
1948 
1949 usb_frlength_t
1950 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex)
1951 {
1952 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
1953 
1954 	return (xfer->frlengths[frindex]);
1955 }
1956 
1957 /*------------------------------------------------------------------------*
1958  *	usbd_xfer_set_frame_data
1959  *
1960  * This function sets the pointer of the buffer that should
1961  * loaded directly into DMA for the given USB frame. Passing "ptr"
1962  * equal to NULL while the corresponding "frlength" is greater
1963  * than zero gives undefined results!
1964  *------------------------------------------------------------------------*/
1965 void
1966 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
1967     void *ptr, usb_frlength_t len)
1968 {
1969 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
1970 
1971 	/* set virtual address to load and length */
1972 	xfer->frbuffers[frindex].buffer = ptr;
1973 	usbd_xfer_set_frame_len(xfer, frindex, len);
1974 }
1975 
1976 void
1977 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
1978     void **ptr, int *len)
1979 {
1980 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
1981 
1982 	if (ptr != NULL)
1983 		*ptr = xfer->frbuffers[frindex].buffer;
1984 	if (len != NULL)
1985 		*len = xfer->frlengths[frindex];
1986 }
1987 
1988 /*------------------------------------------------------------------------*
1989  *	usbd_xfer_old_frame_length
1990  *
1991  * This function returns the framelength of the given frame at the
1992  * time the transfer was submitted. This function can be used to
1993  * compute the starting data pointer of the next isochronous frame
1994  * when an isochronous transfer has completed.
1995  *------------------------------------------------------------------------*/
1996 usb_frlength_t
1997 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex)
1998 {
1999 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2000 
2001 	return (xfer->frlengths[frindex + xfer->max_frame_count]);
2002 }
2003 
2004 void
2005 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes,
2006     int *nframes)
2007 {
2008 	if (actlen != NULL)
2009 		*actlen = xfer->actlen;
2010 	if (sumlen != NULL)
2011 		*sumlen = xfer->sumlen;
2012 	if (aframes != NULL)
2013 		*aframes = xfer->aframes;
2014 	if (nframes != NULL)
2015 		*nframes = xfer->nframes;
2016 }
2017 
2018 /*------------------------------------------------------------------------*
2019  *	usbd_xfer_set_frame_offset
2020  *
2021  * This function sets the frame data buffer offset relative to the beginning
2022  * of the USB DMA buffer allocated for this USB transfer.
2023  *------------------------------------------------------------------------*/
2024 void
2025 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset,
2026     usb_frcount_t frindex)
2027 {
2028 	KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame "
2029 	    "when the USB buffer is external\n"));
2030 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2031 
2032 	/* set virtual address to load */
2033 	xfer->frbuffers[frindex].buffer =
2034 	    USB_ADD_BYTES(xfer->local_buffer, offset);
2035 }
2036 
2037 void
2038 usbd_xfer_set_interval(struct usb_xfer *xfer, int i)
2039 {
2040 	xfer->interval = i;
2041 }
2042 
2043 void
2044 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t)
2045 {
2046 	xfer->timeout = t;
2047 }
2048 
2049 void
2050 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n)
2051 {
2052 	xfer->nframes = n;
2053 }
2054 
2055 usb_frcount_t
2056 usbd_xfer_max_frames(struct usb_xfer *xfer)
2057 {
2058 	return (xfer->max_frame_count);
2059 }
2060 
2061 usb_frlength_t
2062 usbd_xfer_max_len(struct usb_xfer *xfer)
2063 {
2064 	return (xfer->max_data_length);
2065 }
2066 
2067 usb_frlength_t
2068 usbd_xfer_max_framelen(struct usb_xfer *xfer)
2069 {
2070 	return (xfer->max_frame_size);
2071 }
2072 
2073 void
2074 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex,
2075     usb_frlength_t len)
2076 {
2077 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2078 
2079 	xfer->frlengths[frindex] = len;
2080 }
2081 
2082 /*------------------------------------------------------------------------*
2083  *	usb_callback_proc - factored out code
2084  *
2085  * This function performs USB callbacks.
2086  *------------------------------------------------------------------------*/
2087 static void
2088 usb_callback_proc(struct usb_proc_msg *_pm)
2089 {
2090 	struct usb_done_msg *pm = (void *)_pm;
2091 	struct usb_xfer_root *info = pm->xroot;
2092 
2093 	/* Change locking order */
2094 	USB_BUS_UNLOCK(info->bus);
2095 
2096 	/*
2097 	 * We exploit the fact that the mutex is the same for all
2098 	 * callbacks that will be called from this thread:
2099 	 */
2100 	lockmgr(info->xfer_lock, LK_EXCLUSIVE);
2101 	USB_BUS_LOCK(info->bus);
2102 
2103 	/* Continue where we lost track */
2104 	usb_command_wrapper(&info->done_q,
2105 	    info->done_q.curr);
2106 
2107 	lockmgr(info->xfer_lock, LK_RELEASE);
2108 }
2109 
2110 /*------------------------------------------------------------------------*
2111  *	usbd_callback_ss_done_defer
2112  *
2113  * This function will defer the start, stop and done callback to the
2114  * correct thread.
2115  *------------------------------------------------------------------------*/
2116 static void
2117 usbd_callback_ss_done_defer(struct usb_xfer *xfer)
2118 {
2119 	struct usb_xfer_root *info = xfer->xroot;
2120 	struct usb_xfer_queue *pq = &info->done_q;
2121 
2122 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2123 
2124 	if (pq->curr != xfer) {
2125 		usbd_transfer_enqueue(pq, xfer);
2126 	}
2127 	if (!pq->recurse_1) {
2128 
2129 		/*
2130 	         * We have to postpone the callback due to the fact we
2131 	         * will have a Lock Order Reversal, LOR, if we try to
2132 	         * proceed !
2133 	         */
2134 		if (usb_proc_msignal(info->done_p,
2135 		    &info->done_m[0], &info->done_m[1])) {
2136 			/* ignore */
2137 		}
2138 	} else {
2139 		/* clear second recurse flag */
2140 		pq->recurse_2 = 0;
2141 	}
2142 	return;
2143 
2144 }
2145 
2146 /*------------------------------------------------------------------------*
2147  *	usbd_callback_wrapper
2148  *
2149  * This is a wrapper for USB callbacks. This wrapper does some
2150  * auto-magic things like figuring out if we can call the callback
2151  * directly from the current context or if we need to wakeup the
2152  * interrupt process.
2153  *------------------------------------------------------------------------*/
2154 static void
2155 usbd_callback_wrapper(struct usb_xfer_queue *pq)
2156 {
2157 	struct usb_xfer *xfer = pq->curr;
2158 	struct usb_xfer_root *info = xfer->xroot;
2159 
2160 	USB_BUS_LOCK_ASSERT(info->bus);
2161 	if (!lockowned(info->xfer_lock)) {
2162 		/*
2163 	       	 * Cases that end up here:
2164 		 *
2165 		 * 5) HW interrupt done callback or other source.
2166 		 */
2167 		DPRINTFN(3, "case 5\n");
2168 
2169 		/*
2170 	         * We have to postpone the callback due to the fact we
2171 	         * will have a Lock Order Reversal, LOR, if we try to
2172 	         * proceed !
2173 	         */
2174 		if (usb_proc_msignal(info->done_p,
2175 		    &info->done_m[0], &info->done_m[1])) {
2176 			/* ignore */
2177 		}
2178 		return;
2179 	}
2180 	/*
2181 	 * Cases that end up here:
2182 	 *
2183 	 * 1) We are starting a transfer
2184 	 * 2) We are prematurely calling back a transfer
2185 	 * 3) We are stopping a transfer
2186 	 * 4) We are doing an ordinary callback
2187 	 */
2188 	DPRINTFN(3, "case 1-4\n");
2189 	/* get next USB transfer in the queue */
2190 	info->done_q.curr = NULL;
2191 
2192 	/* set flag in case of drain */
2193 	xfer->flags_int.doing_callback = 1;
2194 
2195 	USB_BUS_UNLOCK(info->bus);
2196 	USB_BUS_LOCK_ASSERT_NOTOWNED(info->bus);
2197 
2198 	/* set correct USB state for callback */
2199 	if (!xfer->flags_int.transferring) {
2200 		xfer->usb_state = USB_ST_SETUP;
2201 		if (!xfer->flags_int.started) {
2202 			/* we got stopped before we even got started */
2203 			USB_BUS_LOCK(info->bus);
2204 			goto done;
2205 		}
2206 	} else {
2207 
2208 		if (usbd_callback_wrapper_sub(xfer)) {
2209 			/* the callback has been deferred */
2210 			USB_BUS_LOCK(info->bus);
2211 			goto done;
2212 		}
2213 #if USB_HAVE_POWERD
2214 		/* decrement power reference */
2215 		usbd_transfer_power_ref(xfer, -1);
2216 #endif
2217 		xfer->flags_int.transferring = 0;
2218 
2219 		if (xfer->error) {
2220 			xfer->usb_state = USB_ST_ERROR;
2221 		} else {
2222 			/* set transferred state */
2223 			xfer->usb_state = USB_ST_TRANSFERRED;
2224 #if USB_HAVE_BUSDMA
2225 			/* sync DMA memory, if any */
2226 			if (xfer->flags_int.bdma_enable &&
2227 			    (!xfer->flags_int.bdma_no_post_sync)) {
2228 				usb_bdma_post_sync(xfer);
2229 			}
2230 #endif
2231 		}
2232 	}
2233 
2234 #if USB_HAVE_PF
2235 	if (xfer->usb_state != USB_ST_SETUP)
2236 		usbpf_xfertap(xfer, USBPF_XFERTAP_DONE);
2237 #endif
2238 	USB_XFER_LOCK_ASSERT(xfer);
2239 	/* call processing routine */
2240 	(xfer->callback) (xfer, xfer->error);
2241 
2242 	/* pickup the USB mutex again */
2243 	USB_BUS_LOCK(info->bus);
2244 
2245 	/*
2246 	 * Check if we got started after that we got cancelled, but
2247 	 * before we managed to do the callback.
2248 	 */
2249 	if ((!xfer->flags_int.open) &&
2250 	    (xfer->flags_int.started) &&
2251 	    (xfer->usb_state == USB_ST_ERROR)) {
2252 		/* clear flag in case of drain */
2253 		xfer->flags_int.doing_callback = 0;
2254 		/* try to loop, but not recursivly */
2255 		usb_command_wrapper(&info->done_q, xfer);
2256 		return;
2257 	}
2258 
2259 done:
2260 	/* clear flag in case of drain */
2261 	xfer->flags_int.doing_callback = 0;
2262 
2263 	/*
2264 	 * Check if we are draining.
2265 	 */
2266 	if (xfer->flags_int.draining &&
2267 	    (!xfer->flags_int.transferring)) {
2268 		/* "usbd_transfer_drain()" is waiting for end of transfer */
2269 		xfer->flags_int.draining = 0;
2270 		cv_broadcast(&info->cv_drain);
2271 	}
2272 
2273 	/* do the next callback, if any */
2274 	usb_command_wrapper(&info->done_q,
2275 	    info->done_q.curr);
2276 }
2277 
2278 /*------------------------------------------------------------------------*
2279  *	usb_dma_delay_done_cb
2280  *
2281  * This function is called when the DMA delay has been exectuded, and
2282  * will make sure that the callback is called to complete the USB
2283  * transfer. This code path is ususally only used when there is an USB
2284  * error like USB_ERR_CANCELLED.
2285  *------------------------------------------------------------------------*/
2286 void
2287 usb_dma_delay_done_cb(struct usb_xfer *xfer)
2288 {
2289 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2290 
2291 	DPRINTFN(3, "Completed %p\n", xfer);
2292 
2293 	/* queue callback for execution, again */
2294 	usbd_transfer_done(xfer, 0);
2295 }
2296 
2297 /*------------------------------------------------------------------------*
2298  *	usbd_transfer_dequeue
2299  *
2300  *  - This function is used to remove an USB transfer from a USB
2301  *  transfer queue.
2302  *
2303  *  - This function can be called multiple times in a row.
2304  *------------------------------------------------------------------------*/
2305 void
2306 usbd_transfer_dequeue(struct usb_xfer *xfer)
2307 {
2308 	struct usb_xfer_queue *pq;
2309 
2310 	pq = xfer->wait_queue;
2311 	if (pq) {
2312 		TAILQ_REMOVE(&pq->head, xfer, wait_entry);
2313 		xfer->wait_queue = NULL;
2314 	}
2315 }
2316 
2317 /*------------------------------------------------------------------------*
2318  *	usbd_transfer_enqueue
2319  *
2320  *  - This function is used to insert an USB transfer into a USB *
2321  *  transfer queue.
2322  *
2323  *  - This function can be called multiple times in a row.
2324  *------------------------------------------------------------------------*/
2325 void
2326 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
2327 {
2328 	/*
2329 	 * Insert the USB transfer into the queue, if it is not
2330 	 * already on a USB transfer queue:
2331 	 */
2332 	if (xfer->wait_queue == NULL) {
2333 		xfer->wait_queue = pq;
2334 		TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry);
2335 	}
2336 }
2337 
2338 /*------------------------------------------------------------------------*
2339  *	usbd_transfer_done
2340  *
2341  *  - This function is used to remove an USB transfer from the busdma,
2342  *  pipe or interrupt queue.
2343  *
2344  *  - This function is used to queue the USB transfer on the done
2345  *  queue.
2346  *
2347  *  - This function is used to stop any USB transfer timeouts.
2348  *------------------------------------------------------------------------*/
2349 void
2350 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error)
2351 {
2352 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2353 
2354 	DPRINTF("err=%s\n", usbd_errstr(error));
2355 
2356 	/*
2357 	 * If we are not transferring then just return.
2358 	 * This can happen during transfer cancel.
2359 	 */
2360 	if (!xfer->flags_int.transferring) {
2361 		DPRINTF("not transferring\n");
2362 		/* end of control transfer, if any */
2363 		xfer->flags_int.control_act = 0;
2364 		return;
2365 	}
2366 	/* only set transfer error if not already set */
2367 	if (!xfer->error) {
2368 		xfer->error = error;
2369 	}
2370 	/* stop any callouts */
2371 	usb_callout_stop(&xfer->timeout_handle);
2372 
2373 	/*
2374 	 * If we are waiting on a queue, just remove the USB transfer
2375 	 * from the queue, if any. We should have the required locks
2376 	 * locked to do the remove when this function is called.
2377 	 */
2378 	usbd_transfer_dequeue(xfer);
2379 
2380 #if USB_HAVE_BUSDMA
2381 	if (lockowned(xfer->xroot->xfer_lock)) {
2382 		struct usb_xfer_queue *pq;
2383 
2384 		/*
2385 		 * If the private USB lock is not locked, then we assume
2386 		 * that the BUS-DMA load stage has been passed:
2387 		 */
2388 		pq = &xfer->xroot->dma_q;
2389 
2390 		if (pq->curr == xfer) {
2391 			/* start the next BUS-DMA load, if any */
2392 			usb_command_wrapper(pq, NULL);
2393 		}
2394 	}
2395 #endif
2396 	/* keep some statistics */
2397 	if (xfer->error) {
2398 		xfer->xroot->bus->stats_err.uds_requests
2399 		    [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
2400 	} else {
2401 		xfer->xroot->bus->stats_ok.uds_requests
2402 		    [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
2403 	}
2404 
2405 	/* call the USB transfer callback */
2406 	usbd_callback_ss_done_defer(xfer);
2407 }
2408 
2409 /*------------------------------------------------------------------------*
2410  *	usbd_transfer_start_cb
2411  *
2412  * This function is called to start the USB transfer when
2413  * "xfer->interval" is greater than zero, and and the endpoint type is
2414  * BULK or CONTROL.
2415  *------------------------------------------------------------------------*/
2416 static void
2417 usbd_transfer_start_cb(void *arg)
2418 {
2419 	struct usb_xfer *xfer = arg;
2420 	struct usb_endpoint *ep = xfer->endpoint;
2421 
2422 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2423 
2424 	DPRINTF("start\n");
2425 
2426 #if USB_HAVE_PF
2427 	usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
2428 #endif
2429 	/* start USB transfer, if no error */
2430 	if (xfer->error == 0)
2431 		(ep->methods->start) (xfer);
2432 
2433 	xfer->flags_int.can_cancel_immed = 1;
2434 
2435 	/* check for error */
2436 	if (xfer->error) {
2437 		/* some error has happened */
2438 		usbd_transfer_done(xfer, 0);
2439 	}
2440 }
2441 
2442 /*------------------------------------------------------------------------*
2443  *	usbd_xfer_set_stall
2444  *
2445  * This function is used to set the stall flag outside the
2446  * callback. This function is NULL safe.
2447  *------------------------------------------------------------------------*/
2448 void
2449 usbd_xfer_set_stall(struct usb_xfer *xfer)
2450 {
2451 	if (xfer == NULL) {
2452 		/* tearing down */
2453 		return;
2454 	}
2455 	USB_XFER_LOCK_ASSERT(xfer);
2456 
2457 	/* avoid any races by locking the USB mutex */
2458 	USB_BUS_LOCK(xfer->xroot->bus);
2459 	xfer->flags.stall_pipe = 1;
2460 	USB_BUS_UNLOCK(xfer->xroot->bus);
2461 }
2462 
2463 int
2464 usbd_xfer_is_stalled(struct usb_xfer *xfer)
2465 {
2466 	return (xfer->endpoint->is_stalled);
2467 }
2468 
2469 /*------------------------------------------------------------------------*
2470  *	usbd_transfer_clear_stall
2471  *
2472  * This function is used to clear the stall flag outside the
2473  * callback. This function is NULL safe.
2474  *------------------------------------------------------------------------*/
2475 void
2476 usbd_transfer_clear_stall(struct usb_xfer *xfer)
2477 {
2478 	if (xfer == NULL) {
2479 		/* tearing down */
2480 		return;
2481 	}
2482 	USB_XFER_LOCK_ASSERT(xfer);
2483 
2484 	/* avoid any races by locking the USB mutex */
2485 	USB_BUS_LOCK(xfer->xroot->bus);
2486 
2487 	xfer->flags.stall_pipe = 0;
2488 
2489 	USB_BUS_UNLOCK(xfer->xroot->bus);
2490 }
2491 
2492 /*------------------------------------------------------------------------*
2493  *	usbd_pipe_start
2494  *
2495  * This function is used to add an USB transfer to the pipe transfer list.
2496  *------------------------------------------------------------------------*/
2497 void
2498 usbd_pipe_start(struct usb_xfer_queue *pq)
2499 {
2500 	struct usb_endpoint *ep;
2501 	struct usb_xfer *xfer;
2502 	uint8_t type;
2503 
2504 	xfer = pq->curr;
2505 	ep = xfer->endpoint;
2506 
2507 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2508 
2509 	/*
2510 	 * If the endpoint is already stalled we do nothing !
2511 	 */
2512 	if (ep->is_stalled) {
2513 		return;
2514 	}
2515 	/*
2516 	 * Check if we are supposed to stall the endpoint:
2517 	 */
2518 	if (xfer->flags.stall_pipe) {
2519 		struct usb_device *udev;
2520 		struct usb_xfer_root *info;
2521 
2522 		/* clear stall command */
2523 		xfer->flags.stall_pipe = 0;
2524 
2525 		/* get pointer to USB device */
2526 		info = xfer->xroot;
2527 		udev = info->udev;
2528 
2529 		/*
2530 		 * Only stall BULK and INTERRUPT endpoints.
2531 		 */
2532 		type = (ep->edesc->bmAttributes & UE_XFERTYPE);
2533 		if ((type == UE_BULK) ||
2534 		    (type == UE_INTERRUPT)) {
2535 			uint8_t did_stall;
2536 
2537 			did_stall = 1;
2538 
2539 			if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2540 				(udev->bus->methods->set_stall) (
2541 				    udev, NULL, ep, &did_stall);
2542 			} else if (udev->ctrl_xfer[1]) {
2543 				info = udev->ctrl_xfer[1]->xroot;
2544 				usb_proc_msignal(
2545 				    &info->bus->non_giant_callback_proc,
2546 				    &udev->cs_msg[0], &udev->cs_msg[1]);
2547 			} else {
2548 				/* should not happen */
2549 				DPRINTFN(0, "No stall handler\n");
2550 			}
2551 			/*
2552 			 * Check if we should stall. Some USB hardware
2553 			 * handles set- and clear-stall in hardware.
2554 			 */
2555 			if (did_stall) {
2556 				/*
2557 				 * The transfer will be continued when
2558 				 * the clear-stall control endpoint
2559 				 * message is received.
2560 				 */
2561 				ep->is_stalled = 1;
2562 				return;
2563 			}
2564 		} else if (type == UE_ISOCHRONOUS) {
2565 
2566 			/*
2567 			 * Make sure any FIFO overflow or other FIFO
2568 			 * error conditions go away by resetting the
2569 			 * endpoint FIFO through the clear stall
2570 			 * method.
2571 			 */
2572 			if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2573 				(udev->bus->methods->clear_stall) (udev, ep);
2574 			}
2575 		}
2576 	}
2577 	/* Set or clear stall complete - special case */
2578 	if (xfer->nframes == 0) {
2579 		/* we are complete */
2580 		xfer->aframes = 0;
2581 		usbd_transfer_done(xfer, 0);
2582 		return;
2583 	}
2584 	/*
2585 	 * Handled cases:
2586 	 *
2587 	 * 1) Start the first transfer queued.
2588 	 *
2589 	 * 2) Re-start the current USB transfer.
2590 	 */
2591 	/*
2592 	 * Check if there should be any
2593 	 * pre transfer start delay:
2594 	 */
2595 	if (xfer->interval > 0) {
2596 		type = (ep->edesc->bmAttributes & UE_XFERTYPE);
2597 		if ((type == UE_BULK) ||
2598 		    (type == UE_CONTROL)) {
2599 			usbd_transfer_timeout_ms(xfer,
2600 			    &usbd_transfer_start_cb,
2601 			    xfer->interval);
2602 			return;
2603 		}
2604 	}
2605 	DPRINTF("start\n");
2606 
2607 #if USB_HAVE_PF
2608 	usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
2609 #endif
2610 	/* start USB transfer, if no error */
2611 	if (xfer->error == 0)
2612 		(ep->methods->start) (xfer);
2613 
2614 	xfer->flags_int.can_cancel_immed = 1;
2615 
2616 	/* check for error */
2617 	if (xfer->error) {
2618 		/* some error has happened */
2619 		usbd_transfer_done(xfer, 0);
2620 	}
2621 }
2622 
2623 /*------------------------------------------------------------------------*
2624  *	usbd_transfer_timeout_ms
2625  *
2626  * This function is used to setup a timeout on the given USB
2627  * transfer. If the timeout has been deferred the callback given by
2628  * "cb" will get called after "ms" milliseconds.
2629  *------------------------------------------------------------------------*/
2630 void
2631 usbd_transfer_timeout_ms(struct usb_xfer *xfer,
2632     void (*cb) (void *arg), usb_timeout_t ms)
2633 {
2634 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2635 
2636 	/* defer delay */
2637 	usb_callout_reset(&xfer->timeout_handle,
2638 	    USB_MS_TO_TICKS(ms), cb, xfer);
2639 }
2640 
2641 /*------------------------------------------------------------------------*
2642  *	usbd_callback_wrapper_sub
2643  *
2644  *  - This function will update variables in an USB transfer after
2645  *  that the USB transfer is complete.
2646  *
2647  *  - This function is used to start the next USB transfer on the
2648  *  ep transfer queue, if any.
2649  *
2650  * NOTE: In some special cases the USB transfer will not be removed from
2651  * the pipe queue, but remain first. To enforce USB transfer removal call
2652  * this function passing the error code "USB_ERR_CANCELLED".
2653  *
2654  * Return values:
2655  * 0: Success.
2656  * Else: The callback has been deferred.
2657  *------------------------------------------------------------------------*/
2658 static uint8_t
2659 usbd_callback_wrapper_sub(struct usb_xfer *xfer)
2660 {
2661 	struct usb_endpoint *ep;
2662 	struct usb_bus *bus;
2663 	usb_frcount_t x;
2664 
2665 	bus = xfer->xroot->bus;
2666 
2667 	if ((!xfer->flags_int.open) &&
2668 	    (!xfer->flags_int.did_close)) {
2669 		DPRINTF("close\n");
2670 		USB_BUS_LOCK(bus);
2671 		(xfer->endpoint->methods->close) (xfer);
2672 		USB_BUS_UNLOCK(bus);
2673 		/* only close once */
2674 		xfer->flags_int.did_close = 1;
2675 		return (1);		/* wait for new callback */
2676 	}
2677 	/*
2678 	 * If we have a non-hardware induced error we
2679 	 * need to do the DMA delay!
2680 	 */
2681 	if (xfer->error != 0 && !xfer->flags_int.did_dma_delay &&
2682 	    (xfer->error == USB_ERR_CANCELLED ||
2683 	    xfer->error == USB_ERR_TIMEOUT ||
2684 	    bus->methods->start_dma_delay != NULL)) {
2685 
2686 		usb_timeout_t temp;
2687 
2688 		/* only delay once */
2689 		xfer->flags_int.did_dma_delay = 1;
2690 
2691 		/* we can not cancel this delay */
2692 		xfer->flags_int.can_cancel_immed = 0;
2693 
2694 		temp = usbd_get_dma_delay(xfer->xroot->udev);
2695 
2696 		DPRINTFN(3, "DMA delay, %u ms, "
2697 		    "on %p\n", temp, xfer);
2698 
2699 		if (temp != 0) {
2700 			USB_BUS_LOCK(bus);
2701 			/*
2702 			 * Some hardware solutions have dedicated
2703 			 * events when it is safe to free DMA'ed
2704 			 * memory. For the other hardware platforms we
2705 			 * use a static delay.
2706 			 */
2707 			if (bus->methods->start_dma_delay != NULL) {
2708 				(bus->methods->start_dma_delay) (xfer);
2709 			} else {
2710 				usbd_transfer_timeout_ms(xfer,
2711 				    (void *)&usb_dma_delay_done_cb, temp);
2712 			}
2713 			USB_BUS_UNLOCK(bus);
2714 			return (1);	/* wait for new callback */
2715 		}
2716 	}
2717 	/* check actual number of frames */
2718 	if (xfer->aframes > xfer->nframes) {
2719 		if (xfer->error == 0) {
2720 			panic("%s: actual number of frames, %d, is "
2721 			    "greater than initial number of frames, %d\n",
2722 			    __FUNCTION__, xfer->aframes, xfer->nframes);
2723 		} else {
2724 			/* just set some valid value */
2725 			xfer->aframes = xfer->nframes;
2726 		}
2727 	}
2728 	/* compute actual length */
2729 	xfer->actlen = 0;
2730 
2731 	for (x = 0; x != xfer->aframes; x++) {
2732 		xfer->actlen += xfer->frlengths[x];
2733 	}
2734 
2735 	/*
2736 	 * Frames that were not transferred get zero actual length in
2737 	 * case the USB device driver does not check the actual number
2738 	 * of frames transferred, "xfer->aframes":
2739 	 */
2740 	for (; x < xfer->nframes; x++) {
2741 		usbd_xfer_set_frame_len(xfer, x, 0);
2742 	}
2743 
2744 	/* check actual length */
2745 	if (xfer->actlen > xfer->sumlen) {
2746 		if (xfer->error == 0) {
2747 			panic("%s: actual length, %d, is greater than "
2748 			    "initial length, %d\n",
2749 			    __FUNCTION__, xfer->actlen, xfer->sumlen);
2750 		} else {
2751 			/* just set some valid value */
2752 			xfer->actlen = xfer->sumlen;
2753 		}
2754 	}
2755 	DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n",
2756 	    xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen,
2757 	    xfer->aframes, xfer->nframes);
2758 
2759 	if (xfer->error) {
2760 		/* end of control transfer, if any */
2761 		xfer->flags_int.control_act = 0;
2762 
2763 		/* check if we should block the execution queue */
2764 		if ((xfer->error != USB_ERR_CANCELLED) &&
2765 		    (xfer->flags.pipe_bof)) {
2766 			DPRINTFN(2, "xfer=%p: Block On Failure "
2767 			    "on endpoint=%p\n", xfer, xfer->endpoint);
2768 			goto done;
2769 		}
2770 	} else {
2771 		/* check for short transfers */
2772 		if (xfer->actlen < xfer->sumlen) {
2773 
2774 			/* end of control transfer, if any */
2775 			xfer->flags_int.control_act = 0;
2776 
2777 			if (!xfer->flags_int.short_xfer_ok) {
2778 				xfer->error = USB_ERR_SHORT_XFER;
2779 				if (xfer->flags.pipe_bof) {
2780 					DPRINTFN(2, "xfer=%p: Block On Failure on "
2781 					    "Short Transfer on endpoint %p.\n",
2782 					    xfer, xfer->endpoint);
2783 					goto done;
2784 				}
2785 			}
2786 		} else {
2787 			/*
2788 			 * Check if we are in the middle of a
2789 			 * control transfer:
2790 			 */
2791 			if (xfer->flags_int.control_act) {
2792 				DPRINTFN(5, "xfer=%p: Control transfer "
2793 				    "active on endpoint=%p\n", xfer, xfer->endpoint);
2794 				goto done;
2795 			}
2796 		}
2797 	}
2798 
2799 	ep = xfer->endpoint;
2800 
2801 	/*
2802 	 * If the current USB transfer is completing we need to start the
2803 	 * next one:
2804 	 */
2805 	USB_BUS_LOCK(bus);
2806 	if (ep->endpoint_q.curr == xfer) {
2807 		usb_command_wrapper(&ep->endpoint_q, NULL);
2808 
2809 		if (ep->endpoint_q.curr || TAILQ_FIRST(&ep->endpoint_q.head)) {
2810 			/* there is another USB transfer waiting */
2811 		} else {
2812 			/* this is the last USB transfer */
2813 			/* clear isochronous sync flag */
2814 			xfer->endpoint->is_synced = 0;
2815 		}
2816 	}
2817 	USB_BUS_UNLOCK(bus);
2818 done:
2819 	return (0);
2820 }
2821 
2822 /*------------------------------------------------------------------------*
2823  *	usb_command_wrapper
2824  *
2825  * This function is used to execute commands non-recursivly on an USB
2826  * transfer.
2827  *------------------------------------------------------------------------*/
2828 void
2829 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
2830 {
2831 	if (xfer) {
2832 		/*
2833 		 * If the transfer is not already processing,
2834 		 * queue it!
2835 		 */
2836 		if (pq->curr != xfer) {
2837 			usbd_transfer_enqueue(pq, xfer);
2838 			if (pq->curr != NULL) {
2839 				/* something is already processing */
2840 				DPRINTFN(6, "busy %p\n", pq->curr);
2841 				return;
2842 			}
2843 		}
2844 	} else {
2845 		/* Get next element in queue */
2846 		pq->curr = NULL;
2847 	}
2848 
2849 	if (!pq->recurse_1) {
2850 
2851 		do {
2852 
2853 			/* set both recurse flags */
2854 			pq->recurse_1 = 1;
2855 			pq->recurse_2 = 1;
2856 
2857 			if (pq->curr == NULL) {
2858 				xfer = TAILQ_FIRST(&pq->head);
2859 				if (xfer) {
2860 					TAILQ_REMOVE(&pq->head, xfer,
2861 					    wait_entry);
2862 					xfer->wait_queue = NULL;
2863 					pq->curr = xfer;
2864 				} else {
2865 					break;
2866 				}
2867 			}
2868 			DPRINTFN(6, "cb %p (enter)\n", pq->curr);
2869 			(pq->command) (pq);
2870 			DPRINTFN(6, "cb %p (leave)\n", pq->curr);
2871 
2872 		} while (!pq->recurse_2);
2873 
2874 		/* clear first recurse flag */
2875 		pq->recurse_1 = 0;
2876 
2877 	} else {
2878 		/* clear second recurse flag */
2879 		pq->recurse_2 = 0;
2880 	}
2881 }
2882 
2883 /*------------------------------------------------------------------------*
2884  *	usbd_ctrl_transfer_setup
2885  *
2886  * This function is used to setup the default USB control endpoint
2887  * transfer.
2888  *------------------------------------------------------------------------*/
2889 void
2890 usbd_ctrl_transfer_setup(struct usb_device *udev)
2891 {
2892 	struct usb_xfer *xfer;
2893 	uint8_t no_resetup;
2894 	uint8_t iface_index;
2895 
2896 	/* check for root HUB */
2897 	if (udev->parent_hub == NULL)
2898 		return;
2899 repeat:
2900 
2901 	xfer = udev->ctrl_xfer[0];
2902 	if (xfer) {
2903 		USB_XFER_LOCK(xfer);
2904 		no_resetup =
2905 		    ((xfer->address == udev->address) &&
2906 		    (udev->ctrl_ep_desc.wMaxPacketSize[0] ==
2907 		    udev->ddesc.bMaxPacketSize));
2908 		if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2909 			if (no_resetup) {
2910 				/*
2911 				 * NOTE: checking "xfer->address" and
2912 				 * starting the USB transfer must be
2913 				 * atomic!
2914 				 */
2915 				usbd_transfer_start(xfer);
2916 			}
2917 		}
2918 		USB_XFER_UNLOCK(xfer);
2919 	} else {
2920 		no_resetup = 0;
2921 	}
2922 
2923 	if (no_resetup) {
2924 		/*
2925 	         * All parameters are exactly the same like before.
2926 	         * Just return.
2927 	         */
2928 		return;
2929 	}
2930 	/*
2931 	 * Update wMaxPacketSize for the default control endpoint:
2932 	 */
2933 	udev->ctrl_ep_desc.wMaxPacketSize[0] =
2934 	    udev->ddesc.bMaxPacketSize;
2935 
2936 	/*
2937 	 * Unsetup any existing USB transfer:
2938 	 */
2939 	usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX);
2940 
2941 	/*
2942 	 * Reset clear stall error counter.
2943 	 */
2944 	udev->clear_stall_errors = 0;
2945 
2946 	/*
2947 	 * Try to setup a new USB transfer for the
2948 	 * default control endpoint:
2949 	 */
2950 	iface_index = 0;
2951 	if (usbd_transfer_setup(udev, &iface_index,
2952 	    udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL,
2953 	    &udev->device_lock)) {
2954 		DPRINTFN(0, "could not setup default "
2955 		    "USB transfer\n");
2956 	} else {
2957 		goto repeat;
2958 	}
2959 }
2960 
2961 /*------------------------------------------------------------------------*
2962  *	usbd_clear_data_toggle - factored out code
2963  *
2964  * NOTE: the intention of this function is not to reset the hardware
2965  * data toggle.
2966  *------------------------------------------------------------------------*/
2967 void
2968 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep)
2969 {
2970 	USB_BUS_LOCK_ASSERT(udev->bus);
2971 
2972 	/* check that we have a valid case */
2973 	if (udev->flags.usb_mode == USB_MODE_HOST &&
2974 	    udev->parent_hub != NULL &&
2975 	    udev->bus->methods->clear_stall != NULL &&
2976 	    ep->methods != NULL) {
2977 		(udev->bus->methods->clear_stall) (udev, ep);
2978 	}
2979 }
2980 
2981 /*------------------------------------------------------------------------*
2982  *	usbd_clear_data_toggle - factored out code
2983  *
2984  * NOTE: the intention of this function is not to reset the hardware
2985  * data toggle on the USB device side.
2986  *------------------------------------------------------------------------*/
2987 void
2988 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep)
2989 {
2990 	DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep);
2991 
2992 	USB_BUS_LOCK(udev->bus);
2993 	ep->toggle_next = 0;
2994 	/* some hardware needs a callback to clear the data toggle */
2995 	usbd_clear_stall_locked(udev, ep);
2996 	USB_BUS_UNLOCK(udev->bus);
2997 }
2998 
2999 /*------------------------------------------------------------------------*
3000  *	usbd_clear_stall_callback - factored out clear stall callback
3001  *
3002  * Input parameters:
3003  *  xfer1: Clear Stall Control Transfer
3004  *  xfer2: Stalled USB Transfer
3005  *
3006  * This function is NULL safe.
3007  *
3008  * Return values:
3009  *   0: In progress
3010  *   Else: Finished
3011  *
3012  * Clear stall config example:
3013  *
3014  * static const struct usb_config my_clearstall =  {
3015  *	.type = UE_CONTROL,
3016  *	.endpoint = 0,
3017  *	.direction = UE_DIR_ANY,
3018  *	.interval = 50, //50 milliseconds
3019  *	.bufsize = sizeof(struct usb_device_request),
3020  *	.timeout = 1000, //1.000 seconds
3021  *	.callback = &my_clear_stall_callback, // **
3022  *	.usb_mode = USB_MODE_HOST,
3023  * };
3024  *
3025  * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback"
3026  * passing the correct parameters.
3027  *------------------------------------------------------------------------*/
3028 uint8_t
3029 usbd_clear_stall_callback(struct usb_xfer *xfer1,
3030     struct usb_xfer *xfer2)
3031 {
3032 	struct usb_device_request req;
3033 
3034 	if (xfer2 == NULL) {
3035 		/* looks like we are tearing down */
3036 		DPRINTF("NULL input parameter\n");
3037 		return (0);
3038 	}
3039 	USB_XFER_LOCK_ASSERT(xfer1);
3040 	USB_XFER_LOCK_ASSERT(xfer2);
3041 
3042 	switch (USB_GET_STATE(xfer1)) {
3043 	case USB_ST_SETUP:
3044 
3045 		/*
3046 		 * pre-clear the data toggle to DATA0 ("umass.c" and
3047 		 * "ata-usb.c" depends on this)
3048 		 */
3049 
3050 		usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint);
3051 
3052 		/* setup a clear-stall packet */
3053 
3054 		req.bmRequestType = UT_WRITE_ENDPOINT;
3055 		req.bRequest = UR_CLEAR_FEATURE;
3056 		USETW(req.wValue, UF_ENDPOINT_HALT);
3057 		req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress;
3058 		req.wIndex[1] = 0;
3059 		USETW(req.wLength, 0);
3060 
3061 		/*
3062 		 * "usbd_transfer_setup_sub()" will ensure that
3063 		 * we have sufficient room in the buffer for
3064 		 * the request structure!
3065 		 */
3066 
3067 		/* copy in the transfer */
3068 
3069 		usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req));
3070 
3071 		/* set length */
3072 		xfer1->frlengths[0] = sizeof(req);
3073 		xfer1->nframes = 1;
3074 
3075 		usbd_transfer_submit(xfer1);
3076 		return (0);
3077 
3078 	case USB_ST_TRANSFERRED:
3079 		break;
3080 
3081 	default:			/* Error */
3082 		if (xfer1->error == USB_ERR_CANCELLED) {
3083 			return (0);
3084 		}
3085 		break;
3086 	}
3087 	return (1);			/* Clear Stall Finished */
3088 }
3089 
3090 /*------------------------------------------------------------------------*
3091  *	usbd_transfer_poll
3092  *
3093  * The following function gets called from the USB keyboard driver and
3094  * UMASS when the system has paniced.
3095  *
3096  * NOTE: It is currently not possible to resume normal operation on
3097  * the USB controller which has been polled, due to clearing of the
3098  * "up_dsleep" and "up_msleep" flags.
3099  *------------------------------------------------------------------------*/
3100 void
3101 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max)
3102 {
3103 	struct usb_xfer *xfer;
3104 	struct usb_xfer_root *xroot;
3105 	struct usb_device *udev;
3106 	struct usb_proc_msg *pm;
3107 	uint16_t n;
3108 	uint16_t drop_bus;
3109 	uint16_t drop_xfer;
3110 
3111 	for (n = 0; n != max; n++) {
3112 		/* Extra checks to avoid panic */
3113 		xfer = ppxfer[n];
3114 		if (xfer == NULL)
3115 			continue;	/* no USB transfer */
3116 		xroot = xfer->xroot;
3117 		if (xroot == NULL)
3118 			continue;	/* no USB root */
3119 		udev = xroot->udev;
3120 		if (udev == NULL)
3121 			continue;	/* no USB device */
3122 		if (udev->bus == NULL)
3123 			continue;	/* no BUS structure */
3124 		if (udev->bus->methods == NULL)
3125 			continue;	/* no BUS methods */
3126 		if (udev->bus->methods->xfer_poll == NULL)
3127 			continue;	/* no poll method */
3128 
3129 		/* make sure that the BUS mutex is not locked */
3130 		drop_bus = 0;
3131 		while (lockowned(&xroot->udev->bus->bus_lock)) {
3132 			lockmgr(&xroot->udev->bus->bus_lock, LK_RELEASE);
3133 			drop_bus++;
3134 		}
3135 
3136 		/* make sure that the transfer mutex is not locked */
3137 		drop_xfer = 0;
3138 		while (lockowned(xroot->xfer_lock)) {
3139 			lockmgr(xroot->xfer_lock, LK_RELEASE);
3140 			drop_xfer++;
3141 		}
3142 
3143 		/* Make sure cv_signal() and cv_broadcast() is not called */
3144 		udev->bus->control_xfer_proc.up_msleep = 0;
3145 		udev->bus->explore_proc.up_msleep = 0;
3146 		udev->bus->giant_callback_proc.up_msleep = 0;
3147 		udev->bus->non_giant_callback_proc.up_msleep = 0;
3148 
3149 		/* poll USB hardware */
3150 		(udev->bus->methods->xfer_poll) (udev->bus);
3151 
3152 		USB_BUS_LOCK(xroot->bus);
3153 
3154 		/* check for clear stall */
3155 		if (udev->ctrl_xfer[1] != NULL) {
3156 
3157 			/* poll clear stall start */
3158 			pm = &udev->cs_msg[0].hdr;
3159 			(pm->pm_callback) (pm);
3160 			/* poll clear stall done thread */
3161 			pm = &udev->ctrl_xfer[1]->
3162 			    xroot->done_m[0].hdr;
3163 			(pm->pm_callback) (pm);
3164 		}
3165 
3166 		/* poll done thread */
3167 		pm = &xroot->done_m[0].hdr;
3168 		(pm->pm_callback) (pm);
3169 
3170 		USB_BUS_UNLOCK(xroot->bus);
3171 
3172 		/* restore transfer mutex */
3173 		while (drop_xfer--)
3174 			lockmgr(xroot->xfer_lock, LK_EXCLUSIVE);
3175 
3176 		/* restore BUS mutex */
3177 		while (drop_bus--)
3178 			lockmgr(&xroot->udev->bus->bus_lock, LK_EXCLUSIVE);
3179 	}
3180 }
3181 
3182 static void
3183 usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
3184     uint8_t type, enum usb_dev_speed speed)
3185 {
3186 	static const uint16_t intr_range_max[USB_SPEED_MAX] = {
3187 		[USB_SPEED_LOW] = 8,
3188 		[USB_SPEED_FULL] = 64,
3189 		[USB_SPEED_HIGH] = 1024,
3190 		[USB_SPEED_VARIABLE] = 1024,
3191 		[USB_SPEED_SUPER] = 1024,
3192 	};
3193 
3194 	static const uint16_t isoc_range_max[USB_SPEED_MAX] = {
3195 		[USB_SPEED_LOW] = 0,	/* invalid */
3196 		[USB_SPEED_FULL] = 1023,
3197 		[USB_SPEED_HIGH] = 1024,
3198 		[USB_SPEED_VARIABLE] = 3584,
3199 		[USB_SPEED_SUPER] = 1024,
3200 	};
3201 
3202 	static const uint16_t control_min[USB_SPEED_MAX] = {
3203 		[USB_SPEED_LOW] = 8,
3204 		[USB_SPEED_FULL] = 8,
3205 		[USB_SPEED_HIGH] = 64,
3206 		[USB_SPEED_VARIABLE] = 512,
3207 		[USB_SPEED_SUPER] = 512,
3208 	};
3209 
3210 	static const uint16_t bulk_min[USB_SPEED_MAX] = {
3211 		[USB_SPEED_LOW] = 8,
3212 		[USB_SPEED_FULL] = 8,
3213 		[USB_SPEED_HIGH] = 512,
3214 		[USB_SPEED_VARIABLE] = 512,
3215 		[USB_SPEED_SUPER] = 1024,
3216 	};
3217 
3218 	uint16_t temp;
3219 
3220 	memset(ptr, 0, sizeof(*ptr));
3221 
3222 	switch (type) {
3223 	case UE_INTERRUPT:
3224 		ptr->range.max = intr_range_max[speed];
3225 		break;
3226 	case UE_ISOCHRONOUS:
3227 		ptr->range.max = isoc_range_max[speed];
3228 		break;
3229 	default:
3230 		if (type == UE_BULK)
3231 			temp = bulk_min[speed];
3232 		else /* UE_CONTROL */
3233 			temp = control_min[speed];
3234 
3235 		/* default is fixed */
3236 		ptr->fixed[0] = temp;
3237 		ptr->fixed[1] = temp;
3238 		ptr->fixed[2] = temp;
3239 		ptr->fixed[3] = temp;
3240 
3241 		if (speed == USB_SPEED_FULL) {
3242 			/* multiple sizes */
3243 			ptr->fixed[1] = 16;
3244 			ptr->fixed[2] = 32;
3245 			ptr->fixed[3] = 64;
3246 		}
3247 		if ((speed == USB_SPEED_VARIABLE) &&
3248 		    (type == UE_BULK)) {
3249 			/* multiple sizes */
3250 			ptr->fixed[2] = 1024;
3251 			ptr->fixed[3] = 1536;
3252 		}
3253 		break;
3254 	}
3255 }
3256 
3257 void	*
3258 usbd_xfer_softc(struct usb_xfer *xfer)
3259 {
3260 	return (xfer->priv_sc);
3261 }
3262 
3263 void *
3264 usbd_xfer_get_priv(struct usb_xfer *xfer)
3265 {
3266 	return (xfer->priv_fifo);
3267 }
3268 
3269 void
3270 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr)
3271 {
3272 	xfer->priv_fifo = ptr;
3273 }
3274 
3275 uint8_t
3276 usbd_xfer_state(struct usb_xfer *xfer)
3277 {
3278 	return (xfer->usb_state);
3279 }
3280 
3281 void
3282 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag)
3283 {
3284 	switch (flag) {
3285 		case USB_FORCE_SHORT_XFER:
3286 			xfer->flags.force_short_xfer = 1;
3287 			break;
3288 		case USB_SHORT_XFER_OK:
3289 			xfer->flags.short_xfer_ok = 1;
3290 			break;
3291 		case USB_MULTI_SHORT_OK:
3292 			xfer->flags.short_frames_ok = 1;
3293 			break;
3294 		case USB_MANUAL_STATUS:
3295 			xfer->flags.manual_status = 1;
3296 			break;
3297 	}
3298 }
3299 
3300 void
3301 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag)
3302 {
3303 	switch (flag) {
3304 		case USB_FORCE_SHORT_XFER:
3305 			xfer->flags.force_short_xfer = 0;
3306 			break;
3307 		case USB_SHORT_XFER_OK:
3308 			xfer->flags.short_xfer_ok = 0;
3309 			break;
3310 		case USB_MULTI_SHORT_OK:
3311 			xfer->flags.short_frames_ok = 0;
3312 			break;
3313 		case USB_MANUAL_STATUS:
3314 			xfer->flags.manual_status = 0;
3315 			break;
3316 	}
3317 }
3318 
3319 /*
3320  * The following function returns in milliseconds when the isochronous
3321  * transfer was completed by the hardware. The returned value wraps
3322  * around 65536 milliseconds.
3323  */
3324 uint16_t
3325 usbd_xfer_get_timestamp(struct usb_xfer *xfer)
3326 {
3327 	return (xfer->isoc_time_complete);
3328 }
3329