xref: /dragonfly/sys/bus/u4b/usb_transfer.c (revision 82730a9c)
1 /*-
2  * Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #include <sys/stdint.h>
27 #include <sys/param.h>
28 #include <sys/queue.h>
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/bus.h>
33 #include <sys/thread.h>
34 #include <sys/module.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/condvar.h>
38 #include <sys/sysctl.h>
39 #include <sys/unistd.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 
45 #include <sys/thread2.h>
46 
47 #include <bus/u4b/usb.h>
48 #include <bus/u4b/usbdi.h>
49 #include <bus/u4b/usbdi_util.h>
50 
51 #define	USB_DEBUG_VAR usb_debug
52 
53 #include <bus/u4b/usb_core.h>
54 #include <bus/u4b/usb_busdma.h>
55 #include <bus/u4b/usb_process.h>
56 #include <bus/u4b/usb_transfer.h>
57 #include <bus/u4b/usb_device.h>
58 #include <bus/u4b/usb_debug.h>
59 #include <bus/u4b/usb_util.h>
60 
61 #include <bus/u4b/usb_controller.h>
62 #include <bus/u4b/usb_bus.h>
63 #include <bus/u4b/usb_pf.h>
64 
65 struct usb_std_packet_size {
66 	struct {
67 		uint16_t min;		/* inclusive */
68 		uint16_t max;		/* inclusive */
69 	}	range;
70 
71 	uint16_t fixed[4];
72 };
73 
74 static usb_callback_t usb_request_callback;
75 
76 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = {
77 
78 	/* This transfer is used for generic control endpoint transfers */
79 
80 	[0] = {
81 		.type = UE_CONTROL,
82 		.endpoint = 0x00,	/* Control endpoint */
83 		.direction = UE_DIR_ANY,
84 		.bufsize = USB_EP0_BUFSIZE,	/* bytes */
85 		.flags = {.proxy_buffer = 1,},
86 		.callback = &usb_request_callback,
87 		.usb_mode = USB_MODE_DUAL,	/* both modes */
88 	},
89 
90 	/* This transfer is used for generic clear stall only */
91 
92 	[1] = {
93 		.type = UE_CONTROL,
94 		.endpoint = 0x00,	/* Control pipe */
95 		.direction = UE_DIR_ANY,
96 		.bufsize = sizeof(struct usb_device_request),
97 		.callback = &usb_do_clear_stall_callback,
98 		.timeout = 1000,	/* 1 second */
99 		.interval = 50,	/* 50ms */
100 		.usb_mode = USB_MODE_HOST,
101 	},
102 };
103 
104 /* function prototypes */
105 
106 static void	usbd_update_max_frame_size(struct usb_xfer *);
107 static void	usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t);
108 static void	usbd_delayed_free(void *data, struct malloc_type *mtype);
109 static void	usbd_control_transfer_init(struct usb_xfer *);
110 static int	usbd_setup_ctrl_transfer(struct usb_xfer *);
111 static void	usb_callback_proc(struct usb_proc_msg *);
112 static void	usbd_callback_ss_done_defer(struct usb_xfer *);
113 static void	usbd_callback_wrapper(struct usb_xfer_queue *);
114 static void	usbd_transfer_start_cb(void *);
115 static uint8_t	usbd_callback_wrapper_sub(struct usb_xfer *);
116 static void	usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
117 		    uint8_t type, enum usb_dev_speed speed);
118 
119 /*------------------------------------------------------------------------*
120  *	usb_request_callback
121  *------------------------------------------------------------------------*/
122 static void
123 usb_request_callback(struct usb_xfer *xfer, usb_error_t error)
124 {
125 	if (xfer->flags_int.usb_mode == USB_MODE_DEVICE)
126 		usb_handle_request_callback(xfer, error);
127 	else
128 		usbd_do_request_callback(xfer, error);
129 }
130 
131 /*------------------------------------------------------------------------*
132  *	usbd_update_max_frame_size
133  *
134  * This function updates the maximum frame size, hence high speed USB
135  * can transfer multiple consecutive packets.
136  *------------------------------------------------------------------------*/
137 static void
138 usbd_update_max_frame_size(struct usb_xfer *xfer)
139 {
140 	/* compute maximum frame size */
141 	/* this computation should not overflow 16-bit */
142 	/* max = 15 * 1024 */
143 
144 	xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count;
145 }
146 
147 /*------------------------------------------------------------------------*
148  *	usbd_get_dma_delay
149  *
150  * The following function is called when we need to
151  * synchronize with DMA hardware.
152  *
153  * Returns:
154  *    0: no DMA delay required
155  * Else: milliseconds of DMA delay
156  *------------------------------------------------------------------------*/
157 usb_timeout_t
158 usbd_get_dma_delay(struct usb_device *udev)
159 {
160 	const struct usb_bus_methods *mtod;
161 	uint32_t temp;
162 
163 	mtod = udev->bus->methods;
164 	temp = 0;
165 
166 	if (mtod->get_dma_delay) {
167 		(mtod->get_dma_delay) (udev, &temp);
168 		/*
169 		 * Round up and convert to milliseconds. Note that we use
170 		 * 1024 milliseconds per second. to save a division.
171 		 */
172 		temp += 0x3FF;
173 		temp /= 0x400;
174 	}
175 	return (temp);
176 }
177 
178 /*------------------------------------------------------------------------*
179  *	usbd_transfer_setup_sub_malloc
180  *
181  * This function will allocate one or more DMA'able memory chunks
182  * according to "size", "align" and "count" arguments. "ppc" is
183  * pointed to a linear array of USB page caches afterwards.
184  *
185  * If the "align" argument is equal to "1" a non-contiguous allocation
186  * can happen. Else if the "align" argument is greater than "1", the
187  * allocation will always be contiguous in memory.
188  *
189  * Returns:
190  *    0: Success
191  * Else: Failure
192  *------------------------------------------------------------------------*/
193 #if USB_HAVE_BUSDMA
194 uint8_t
195 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm,
196     struct usb_page_cache **ppc, usb_size_t size, usb_size_t align,
197     usb_size_t count)
198 {
199 	struct usb_page_cache *pc;
200 	struct usb_page *pg;
201 	void *buf;
202 	usb_size_t n_dma_pc;
203 	usb_size_t n_dma_pg;
204 	usb_size_t n_obj;
205 	usb_size_t x;
206 	usb_size_t y;
207 	usb_size_t r;
208 	usb_size_t z;
209 
210 	USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n",
211 	    align));
212 	USB_ASSERT(size > 0, ("Invalid size = 0\n"));
213 
214 	if (count == 0) {
215 		return (0);		/* nothing to allocate */
216 	}
217 	/*
218 	 * Make sure that the size is aligned properly.
219 	 */
220 	size = -((-size) & (-align));
221 
222 	/*
223 	 * Try multi-allocation chunks to reduce the number of DMA
224 	 * allocations, hence DMA allocations are slow.
225 	 */
226 	if (align == 1) {
227 		/* special case - non-cached multi page DMA memory */
228 		n_dma_pc = count;
229 		n_dma_pg = (2 + (size / USB_PAGE_SIZE));
230 		n_obj = 1;
231 	} else if (size >= USB_PAGE_SIZE) {
232 		n_dma_pc = count;
233 		n_dma_pg = 1;
234 		n_obj = 1;
235 	} else {
236 		/* compute number of objects per page */
237 		n_obj = (USB_PAGE_SIZE / size);
238 		/*
239 		 * Compute number of DMA chunks, rounded up
240 		 * to nearest one:
241 		 */
242 		n_dma_pc = ((count + n_obj - 1) / n_obj);
243 		n_dma_pg = 1;
244 	}
245 
246 	/*
247 	 * DMA memory is allocated once, but mapped twice. That's why
248 	 * there is one list for auto-free and another list for
249 	 * non-auto-free which only holds the mapping and not the
250 	 * allocation.
251 	 */
252 	if (parm->buf == NULL) {
253 		/* reserve memory (auto-free) */
254 		parm->dma_page_ptr += n_dma_pc * n_dma_pg;
255 		parm->dma_page_cache_ptr += n_dma_pc;
256 
257 		/* reserve memory (no-auto-free) */
258 		parm->dma_page_ptr += count * n_dma_pg;
259 		parm->xfer_page_cache_ptr += count;
260 		return (0);
261 	}
262 	for (x = 0; x != n_dma_pc; x++) {
263 		/* need to initialize the page cache */
264 		parm->dma_page_cache_ptr[x].tag_parent =
265 		    &parm->curr_xfer->xroot->dma_parent_tag;
266 	}
267 	for (x = 0; x != count; x++) {
268 		/* need to initialize the page cache */
269 		parm->xfer_page_cache_ptr[x].tag_parent =
270 		    &parm->curr_xfer->xroot->dma_parent_tag;
271 	}
272 
273 	if (ppc) {
274 		*ppc = parm->xfer_page_cache_ptr;
275 	}
276 	r = count;			/* set remainder count */
277 	z = n_obj * size;		/* set allocation size */
278 	pc = parm->xfer_page_cache_ptr;
279 	pg = parm->dma_page_ptr;
280 
281 	for (x = 0; x != n_dma_pc; x++) {
282 
283 		if (r < n_obj) {
284 			/* compute last remainder */
285 			z = r * size;
286 			n_obj = r;
287 		}
288 		if (usb_pc_alloc_mem(parm->dma_page_cache_ptr,
289 		    pg, z, align)) {
290 			return (1);	/* failure */
291 		}
292 		/* Set beginning of current buffer */
293 		buf = parm->dma_page_cache_ptr->buffer;
294 		/* Make room for one DMA page cache and one page */
295 		parm->dma_page_cache_ptr++;
296 		pg += n_dma_pg;
297 
298 		for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) {
299 
300 			/* Load sub-chunk into DMA */
301 			if (usb_pc_dmamap_create(pc, size)) {
302 				return (1);	/* failure */
303 			}
304 			pc->buffer = USB_ADD_BYTES(buf, y * size);
305 			pc->page_start = pg;
306 
307 			lockmgr(pc->tag_parent->lock, LK_EXCLUSIVE);
308 			if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) {
309 				lockmgr(pc->tag_parent->lock, LK_RELEASE);
310 				return (1);	/* failure */
311 			}
312 			lockmgr(pc->tag_parent->lock, LK_RELEASE);
313 		}
314 	}
315 
316 	parm->xfer_page_cache_ptr = pc;
317 	parm->dma_page_ptr = pg;
318 	return (0);
319 }
320 #endif
321 
322 /*------------------------------------------------------------------------*
323  *	usbd_transfer_setup_sub - transfer setup subroutine
324  *
325  * This function must be called from the "xfer_setup" callback of the
326  * USB Host or Device controller driver when setting up an USB
327  * transfer. This function will setup correct packet sizes, buffer
328  * sizes, flags and more, that are stored in the "usb_xfer"
329  * structure.
330  *------------------------------------------------------------------------*/
331 void
332 usbd_transfer_setup_sub(struct usb_setup_params *parm)
333 {
334 	enum {
335 		REQ_SIZE = 8,
336 		MIN_PKT = 8,
337 	};
338 	struct usb_xfer *xfer = parm->curr_xfer;
339 	const struct usb_config *setup = parm->curr_setup;
340 	struct usb_endpoint_ss_comp_descriptor *ecomp;
341 	struct usb_endpoint_descriptor *edesc;
342 	struct usb_std_packet_size std_size;
343 	usb_frcount_t n_frlengths;
344 	usb_frcount_t n_frbuffers;
345 	usb_frcount_t x;
346 	uint8_t type;
347 	uint8_t zmps;
348 
349 	/*
350 	 * Sanity check. The following parameters must be initialized before
351 	 * calling this function.
352 	 */
353 	if ((parm->hc_max_packet_size == 0) ||
354 	    (parm->hc_max_packet_count == 0) ||
355 	    (parm->hc_max_frame_size == 0)) {
356 		parm->err = USB_ERR_INVAL;
357 		goto done;
358 	}
359 	edesc = xfer->endpoint->edesc;
360 	ecomp = xfer->endpoint->ecomp;
361 
362 	type = (edesc->bmAttributes & UE_XFERTYPE);
363 
364 	xfer->flags = setup->flags;
365 	xfer->nframes = setup->frames;
366 	xfer->timeout = setup->timeout;
367 	xfer->callback = setup->callback;
368 	xfer->interval = setup->interval;
369 	xfer->endpointno = edesc->bEndpointAddress;
370 	xfer->max_packet_size = UGETW(edesc->wMaxPacketSize);
371 	xfer->max_packet_count = 1;
372 	/* make a shadow copy: */
373 	xfer->flags_int.usb_mode = parm->udev->flags.usb_mode;
374 
375 	parm->bufsize = setup->bufsize;
376 
377 	switch (parm->speed) {
378 	case USB_SPEED_HIGH:
379 		switch (type) {
380 		case UE_ISOCHRONOUS:
381 		case UE_INTERRUPT:
382 			xfer->max_packet_count +=
383 			    (xfer->max_packet_size >> 11) & 3;
384 
385 			/* check for invalid max packet count */
386 			if (xfer->max_packet_count > 3)
387 				xfer->max_packet_count = 3;
388 			break;
389 		default:
390 			break;
391 		}
392 		xfer->max_packet_size &= 0x7FF;
393 		break;
394 	case USB_SPEED_SUPER:
395 		xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3;
396 
397 		if (ecomp != NULL)
398 			xfer->max_packet_count += ecomp->bMaxBurst;
399 
400 		if ((xfer->max_packet_count == 0) ||
401 		    (xfer->max_packet_count > 16))
402 			xfer->max_packet_count = 16;
403 
404 		switch (type) {
405 		case UE_CONTROL:
406 			xfer->max_packet_count = 1;
407 			break;
408 		case UE_ISOCHRONOUS:
409 			if (ecomp != NULL) {
410 				uint8_t mult;
411 
412 				mult = UE_GET_SS_ISO_MULT(
413 				    ecomp->bmAttributes) + 1;
414 				if (mult > 3)
415 					mult = 3;
416 
417 				xfer->max_packet_count *= mult;
418 			}
419 			break;
420 		default:
421 			break;
422 		}
423 		xfer->max_packet_size &= 0x7FF;
424 		break;
425 	default:
426 		break;
427 	}
428 	/* range check "max_packet_count" */
429 
430 	if (xfer->max_packet_count > parm->hc_max_packet_count) {
431 		xfer->max_packet_count = parm->hc_max_packet_count;
432 	}
433 	/* filter "wMaxPacketSize" according to HC capabilities */
434 
435 	if ((xfer->max_packet_size > parm->hc_max_packet_size) ||
436 	    (xfer->max_packet_size == 0)) {
437 		xfer->max_packet_size = parm->hc_max_packet_size;
438 	}
439 	/* filter "wMaxPacketSize" according to standard sizes */
440 
441 	usbd_get_std_packet_size(&std_size, type, parm->speed);
442 
443 	if (std_size.range.min || std_size.range.max) {
444 
445 		if (xfer->max_packet_size < std_size.range.min) {
446 			xfer->max_packet_size = std_size.range.min;
447 		}
448 		if (xfer->max_packet_size > std_size.range.max) {
449 			xfer->max_packet_size = std_size.range.max;
450 		}
451 	} else {
452 
453 		if (xfer->max_packet_size >= std_size.fixed[3]) {
454 			xfer->max_packet_size = std_size.fixed[3];
455 		} else if (xfer->max_packet_size >= std_size.fixed[2]) {
456 			xfer->max_packet_size = std_size.fixed[2];
457 		} else if (xfer->max_packet_size >= std_size.fixed[1]) {
458 			xfer->max_packet_size = std_size.fixed[1];
459 		} else {
460 			/* only one possibility left */
461 			xfer->max_packet_size = std_size.fixed[0];
462 		}
463 	}
464 
465 	/* compute "max_frame_size" */
466 
467 	usbd_update_max_frame_size(xfer);
468 
469 	/* check interrupt interval and transfer pre-delay */
470 
471 	if (type == UE_ISOCHRONOUS) {
472 
473 		uint16_t frame_limit;
474 
475 		xfer->interval = 0;	/* not used, must be zero */
476 		xfer->flags_int.isochronous_xfr = 1;	/* set flag */
477 
478 		if (xfer->timeout == 0) {
479 			/*
480 			 * set a default timeout in
481 			 * case something goes wrong!
482 			 */
483 			xfer->timeout = 1000 / 4;
484 		}
485 		switch (parm->speed) {
486 		case USB_SPEED_LOW:
487 		case USB_SPEED_FULL:
488 			frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER;
489 			xfer->fps_shift = 0;
490 			break;
491 		default:
492 			frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER;
493 			xfer->fps_shift = edesc->bInterval;
494 			if (xfer->fps_shift > 0)
495 				xfer->fps_shift--;
496 			if (xfer->fps_shift > 3)
497 				xfer->fps_shift = 3;
498 			if (xfer->flags.pre_scale_frames != 0)
499 				xfer->nframes <<= (3 - xfer->fps_shift);
500 			break;
501 		}
502 
503 		if (xfer->nframes > frame_limit) {
504 			/*
505 			 * this is not going to work
506 			 * cross hardware
507 			 */
508 			parm->err = USB_ERR_INVAL;
509 			goto done;
510 		}
511 		if (xfer->nframes == 0) {
512 			/*
513 			 * this is not a valid value
514 			 */
515 			parm->err = USB_ERR_ZERO_NFRAMES;
516 			goto done;
517 		}
518 	} else {
519 
520 		/*
521 		 * If a value is specified use that else check the
522 		 * endpoint descriptor!
523 		 */
524 		if (type == UE_INTERRUPT) {
525 
526 			uint32_t temp;
527 
528 			if (xfer->interval == 0) {
529 
530 				xfer->interval = edesc->bInterval;
531 
532 				switch (parm->speed) {
533 				case USB_SPEED_LOW:
534 				case USB_SPEED_FULL:
535 					break;
536 				default:
537 					/* 125us -> 1ms */
538 					if (xfer->interval < 4)
539 						xfer->interval = 1;
540 					else if (xfer->interval > 16)
541 						xfer->interval = (1 << (16 - 4));
542 					else
543 						xfer->interval =
544 						    (1 << (xfer->interval - 4));
545 					break;
546 				}
547 			}
548 
549 			if (xfer->interval == 0) {
550 				/*
551 				 * One millisecond is the smallest
552 				 * interval we support:
553 				 */
554 				xfer->interval = 1;
555 			}
556 
557 			xfer->fps_shift = 0;
558 			temp = 1;
559 
560 			while ((temp != 0) && (temp < xfer->interval)) {
561 				xfer->fps_shift++;
562 				temp *= 2;
563 			}
564 
565 			switch (parm->speed) {
566 			case USB_SPEED_LOW:
567 			case USB_SPEED_FULL:
568 				break;
569 			default:
570 				xfer->fps_shift += 3;
571 				break;
572 			}
573 		}
574 	}
575 
576 	/*
577 	 * NOTE: we do not allow "max_packet_size" or "max_frame_size"
578 	 * to be equal to zero when setting up USB transfers, hence
579 	 * this leads to alot of extra code in the USB kernel.
580 	 */
581 
582 	if ((xfer->max_frame_size == 0) ||
583 	    (xfer->max_packet_size == 0)) {
584 
585 		zmps = 1;
586 
587 		if ((parm->bufsize <= MIN_PKT) &&
588 		    (type != UE_CONTROL) &&
589 		    (type != UE_BULK)) {
590 
591 			/* workaround */
592 			xfer->max_packet_size = MIN_PKT;
593 			xfer->max_packet_count = 1;
594 			parm->bufsize = 0;	/* automatic setup length */
595 			usbd_update_max_frame_size(xfer);
596 
597 		} else {
598 			parm->err = USB_ERR_ZERO_MAXP;
599 			goto done;
600 		}
601 
602 	} else {
603 		zmps = 0;
604 	}
605 
606 	/*
607 	 * check if we should setup a default
608 	 * length:
609 	 */
610 
611 	if (parm->bufsize == 0) {
612 
613 		parm->bufsize = xfer->max_frame_size;
614 
615 		if (type == UE_ISOCHRONOUS) {
616 			parm->bufsize *= xfer->nframes;
617 		}
618 	}
619 	/*
620 	 * check if we are about to setup a proxy
621 	 * type of buffer:
622 	 */
623 
624 	if (xfer->flags.proxy_buffer) {
625 
626 		/* round bufsize up */
627 
628 		parm->bufsize += (xfer->max_frame_size - 1);
629 
630 		if (parm->bufsize < xfer->max_frame_size) {
631 			/* length wrapped around */
632 			parm->err = USB_ERR_INVAL;
633 			goto done;
634 		}
635 		/* subtract remainder */
636 
637 		parm->bufsize -= (parm->bufsize % xfer->max_frame_size);
638 
639 		/* add length of USB device request structure, if any */
640 
641 		if (type == UE_CONTROL) {
642 			parm->bufsize += REQ_SIZE;	/* SETUP message */
643 		}
644 	}
645 	xfer->max_data_length = parm->bufsize;
646 
647 	/* Setup "n_frlengths" and "n_frbuffers" */
648 
649 	if (type == UE_ISOCHRONOUS) {
650 		n_frlengths = xfer->nframes;
651 		n_frbuffers = 1;
652 	} else {
653 
654 		if (type == UE_CONTROL) {
655 			xfer->flags_int.control_xfr = 1;
656 			if (xfer->nframes == 0) {
657 				if (parm->bufsize <= REQ_SIZE) {
658 					/*
659 					 * there will never be any data
660 					 * stage
661 					 */
662 					xfer->nframes = 1;
663 				} else {
664 					xfer->nframes = 2;
665 				}
666 			}
667 		} else {
668 			if (xfer->nframes == 0) {
669 				xfer->nframes = 1;
670 			}
671 		}
672 
673 		n_frlengths = xfer->nframes;
674 		n_frbuffers = xfer->nframes;
675 	}
676 
677 	/*
678 	 * check if we have room for the
679 	 * USB device request structure:
680 	 */
681 
682 	if (type == UE_CONTROL) {
683 
684 		if (xfer->max_data_length < REQ_SIZE) {
685 			/* length wrapped around or too small bufsize */
686 			parm->err = USB_ERR_INVAL;
687 			goto done;
688 		}
689 		xfer->max_data_length -= REQ_SIZE;
690 	}
691 	/*
692 	 * Setup "frlengths" and shadow "frlengths" for keeping the
693 	 * initial frame lengths when a USB transfer is complete. This
694 	 * information is useful when computing isochronous offsets.
695 	 */
696 	xfer->frlengths = parm->xfer_length_ptr;
697 	parm->xfer_length_ptr += 2 * n_frlengths;
698 
699 	/* setup "frbuffers" */
700 	xfer->frbuffers = parm->xfer_page_cache_ptr;
701 	parm->xfer_page_cache_ptr += n_frbuffers;
702 
703 	/* initialize max frame count */
704 	xfer->max_frame_count = xfer->nframes;
705 
706 	/*
707 	 * check if we need to setup
708 	 * a local buffer:
709 	 */
710 
711 	if (!xfer->flags.ext_buffer) {
712 #if USB_HAVE_BUSDMA
713 		struct usb_page_search page_info;
714 		struct usb_page_cache *pc;
715 
716 		if (usbd_transfer_setup_sub_malloc(parm,
717 		    &pc, parm->bufsize, 1, 1)) {
718 			parm->err = USB_ERR_NOMEM;
719 		} else if (parm->buf != NULL) {
720 
721 			usbd_get_page(pc, 0, &page_info);
722 
723 			xfer->local_buffer = page_info.buffer;
724 
725 			usbd_xfer_set_frame_offset(xfer, 0, 0);
726 
727 			if ((type == UE_CONTROL) && (n_frbuffers > 1)) {
728 				usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1);
729 			}
730 		}
731 #else
732 		/* align data */
733 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
734 
735 		if (parm->buf != NULL) {
736 			xfer->local_buffer =
737 			    USB_ADD_BYTES(parm->buf, parm->size[0]);
738 
739 			usbd_xfer_set_frame_offset(xfer, 0, 0);
740 
741 			if ((type == UE_CONTROL) && (n_frbuffers > 1)) {
742 				usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1);
743 			}
744 		}
745 		parm->size[0] += parm->bufsize;
746 
747 		/* align data again */
748 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
749 #endif
750 	}
751 	/*
752 	 * Compute maximum buffer size
753 	 */
754 
755 	if (parm->bufsize_max < parm->bufsize) {
756 		parm->bufsize_max = parm->bufsize;
757 	}
758 #if USB_HAVE_BUSDMA
759 	if (xfer->flags_int.bdma_enable) {
760 		/*
761 		 * Setup "dma_page_ptr".
762 		 *
763 		 * Proof for formula below:
764 		 *
765 		 * Assume there are three USB frames having length "a", "b" and
766 		 * "c". These USB frames will at maximum need "z"
767 		 * "usb_page" structures. "z" is given by:
768 		 *
769 		 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) +
770 		 * ((c / USB_PAGE_SIZE) + 2);
771 		 *
772 		 * Constraining "a", "b" and "c" like this:
773 		 *
774 		 * (a + b + c) <= parm->bufsize
775 		 *
776 		 * We know that:
777 		 *
778 		 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2));
779 		 *
780 		 * Here is the general formula:
781 		 */
782 		xfer->dma_page_ptr = parm->dma_page_ptr;
783 		parm->dma_page_ptr += (2 * n_frbuffers);
784 		parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE);
785 	}
786 #endif
787 	if (zmps) {
788 		/* correct maximum data length */
789 		xfer->max_data_length = 0;
790 	}
791 	/* subtract USB frame remainder from "hc_max_frame_size" */
792 
793 	xfer->max_hc_frame_size =
794 	    (parm->hc_max_frame_size -
795 	    (parm->hc_max_frame_size % xfer->max_frame_size));
796 
797 	if (xfer->max_hc_frame_size == 0) {
798 		parm->err = USB_ERR_INVAL;
799 		goto done;
800 	}
801 
802 	/* initialize frame buffers */
803 
804 	if (parm->buf) {
805 		for (x = 0; x != n_frbuffers; x++) {
806 			xfer->frbuffers[x].tag_parent =
807 			    &xfer->xroot->dma_parent_tag;
808 #if USB_HAVE_BUSDMA
809 			if (xfer->flags_int.bdma_enable &&
810 			    (parm->bufsize_max > 0)) {
811 
812 				if (usb_pc_dmamap_create(
813 				    xfer->frbuffers + x,
814 				    parm->bufsize_max)) {
815 					parm->err = USB_ERR_NOMEM;
816 					goto done;
817 				}
818 			}
819 #endif
820 		}
821 	}
822 done:
823 	if (parm->err) {
824 		/*
825 		 * Set some dummy values so that we avoid division by zero:
826 		 */
827 		xfer->max_hc_frame_size = 1;
828 		xfer->max_frame_size = 1;
829 		xfer->max_packet_size = 1;
830 		xfer->max_data_length = 0;
831 		xfer->nframes = 0;
832 		xfer->max_frame_count = 0;
833 	}
834 }
835 
836 /*------------------------------------------------------------------------*
837  *	usbd_transfer_setup - setup an array of USB transfers
838  *
839  * NOTE: You must always call "usbd_transfer_unsetup" after calling
840  * "usbd_transfer_setup" if success was returned.
841  *
842  * The idea is that the USB device driver should pre-allocate all its
843  * transfers by one call to this function.
844  *
845  * Return values:
846  *    0: Success
847  * Else: Failure
848  *------------------------------------------------------------------------*/
849 usb_error_t
850 usbd_transfer_setup(struct usb_device *udev,
851     const uint8_t *ifaces, struct usb_xfer **ppxfer,
852     const struct usb_config *setup_start, uint16_t n_setup,
853     void *priv_sc, struct lock *xfer_lock)
854 {
855 	const struct usb_config *setup_end = setup_start + n_setup;
856 	const struct usb_config *setup;
857 	struct usb_setup_params *parm;
858 	struct usb_endpoint *ep;
859 	struct usb_xfer_root *info;
860 	struct usb_xfer *xfer;
861 	void *buf = NULL;
862 	usb_error_t error = 0;
863 	uint16_t n;
864 	uint16_t refcount;
865 	uint8_t do_unlock;
866 
867 #if 0
868 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
869 	    "usbd_transfer_setup can sleep!");
870 #endif
871 
872 	/* do some checking first */
873 
874 	if (n_setup == 0) {
875 		DPRINTFN(6, "setup array has zero length!\n");
876 		return (USB_ERR_INVAL);
877 	}
878 	if (ifaces == NULL) {
879 		DPRINTFN(6, "ifaces array is NULL!\n");
880 		return (USB_ERR_INVAL);
881 	}
882 	if (xfer_lock == NULL) {
883 		panic("xfer without lock!\n");
884 		DPRINTFN(6, "using global lock\n");
885 	}
886 
887 	/* more sanity checks */
888 
889 	for (setup = setup_start, n = 0;
890 	    setup != setup_end; setup++, n++) {
891 		if (setup->bufsize == (usb_frlength_t)-1) {
892 			error = USB_ERR_BAD_BUFSIZE;
893 			DPRINTF("invalid bufsize\n");
894 		}
895 		if (setup->callback == NULL) {
896 			error = USB_ERR_NO_CALLBACK;
897 			DPRINTF("no callback\n");
898 		}
899 		ppxfer[n] = NULL;
900 	}
901 
902 	if (error)
903 		return (error);
904 
905 	/* Protect scratch area */
906 	do_unlock = usbd_enum_lock(udev);
907 
908 	refcount = 0;
909 	info = NULL;
910 
911 	parm = &udev->scratch.xfer_setup[0].parm;
912 	memset(parm, 0, sizeof(*parm));
913 
914 	parm->udev = udev;
915 	parm->speed = usbd_get_speed(udev);
916 	parm->hc_max_packet_count = 1;
917 
918 	if (parm->speed >= USB_SPEED_MAX) {
919 		parm->err = USB_ERR_INVAL;
920 		goto done;
921 	}
922 	/* setup all transfers */
923 
924 	while (1) {
925 
926 		if (buf) {
927 			/*
928 			 * Initialize the "usb_xfer_root" structure,
929 			 * which is common for all our USB transfers.
930 			 */
931 			info = USB_ADD_BYTES(buf, 0);
932 
933 			info->memory_base = buf;
934 			info->memory_size = parm->size[0];
935 
936 #if USB_HAVE_BUSDMA
937 			info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]);
938 			info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]);
939 #endif
940 			info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]);
941 			info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]);
942 
943 			cv_init(&info->cv_drain, "WDRAIN");
944 
945 			info->xfer_lock = xfer_lock;
946 #if USB_HAVE_BUSDMA
947 			usb_dma_tag_setup(&info->dma_parent_tag,
948 			    parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag,
949 			    xfer_lock, &usb_bdma_done_event, 32, parm->dma_tag_max);
950 #endif
951 
952 			info->bus = udev->bus;
953 			info->udev = udev;
954 
955 			TAILQ_INIT(&info->done_q.head);
956 			info->done_q.command = &usbd_callback_wrapper;
957 #if USB_HAVE_BUSDMA
958 			TAILQ_INIT(&info->dma_q.head);
959 			info->dma_q.command = &usb_bdma_work_loop;
960 #endif
961 			info->done_m[0].hdr.pm_callback = &usb_callback_proc;
962 			info->done_m[0].xroot = info;
963 			info->done_m[1].hdr.pm_callback = &usb_callback_proc;
964 			info->done_m[1].xroot = info;
965 
966 			/*
967 			 * In device side mode control endpoint
968 			 * requests need to run from a separate
969 			 * context, else there is a chance of
970 			 * deadlock!
971 			 */
972 			if (setup_start == usb_control_ep_cfg)
973 				info->done_p =
974 				    USB_BUS_CONTROL_XFER_PROC(udev->bus);
975 			else
976 				info->done_p =
977 				    USB_BUS_NON_GIANT_PROC(udev->bus);
978 		}
979 		/* reset sizes */
980 
981 		parm->size[0] = 0;
982 		parm->buf = buf;
983 		parm->size[0] += sizeof(info[0]);
984 
985 		for (setup = setup_start, n = 0;
986 		    setup != setup_end; setup++, n++) {
987 
988 			/* skip USB transfers without callbacks: */
989 			if (setup->callback == NULL) {
990 				continue;
991 			}
992 			/* see if there is a matching endpoint */
993 			ep = usbd_get_endpoint(udev,
994 			    ifaces[setup->if_index], setup);
995 
996 			/*
997 			 * Check that the USB PIPE is valid and that
998 			 * the endpoint mode is proper.
999 			 *
1000 			 * Make sure we don't allocate a streams
1001 			 * transfer when such a combination is not
1002 			 * valid.
1003 			 */
1004 			if ((ep == NULL) || (ep->methods == NULL) ||
1005 			    ((ep->ep_mode != USB_EP_MODE_STREAMS) &&
1006 			    (ep->ep_mode != USB_EP_MODE_DEFAULT)) ||
1007 			    (setup->stream_id != 0 &&
1008 			    (setup->stream_id >= USB_MAX_EP_STREAMS ||
1009 			    (ep->ep_mode != USB_EP_MODE_STREAMS)))) {
1010 				if (setup->flags.no_pipe_ok)
1011 					continue;
1012 				if ((setup->usb_mode != USB_MODE_DUAL) &&
1013 				    (setup->usb_mode != udev->flags.usb_mode))
1014 					continue;
1015 				parm->err = USB_ERR_NO_PIPE;
1016 				goto done;
1017 			}
1018 
1019 			/* align data properly */
1020 			parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1021 
1022 			/* store current setup pointer */
1023 			parm->curr_setup = setup;
1024 
1025 			if (buf) {
1026 				/*
1027 				 * Common initialization of the
1028 				 * "usb_xfer" structure.
1029 				 */
1030 				xfer = USB_ADD_BYTES(buf, parm->size[0]);
1031 				xfer->address = udev->address;
1032 				xfer->priv_sc = priv_sc;
1033 				xfer->xroot = info;
1034 
1035 				usb_callout_init_mtx(&xfer->timeout_handle,
1036 				    &udev->bus->bus_lock, 0);
1037 			} else {
1038 				/*
1039 				 * Setup a dummy xfer, hence we are
1040 				 * writing to the "usb_xfer"
1041 				 * structure pointed to by "xfer"
1042 				 * before we have allocated any
1043 				 * memory:
1044 				 */
1045 				xfer = &udev->scratch.xfer_setup[0].dummy;
1046 				memset(xfer, 0, sizeof(*xfer));
1047 				refcount++;
1048 			}
1049 
1050 			/* set transfer endpoint pointer */
1051 			xfer->endpoint = ep;
1052 
1053 			/* set transfer stream ID */
1054 			xfer->stream_id = setup->stream_id;
1055 
1056 			parm->size[0] += sizeof(xfer[0]);
1057 			parm->methods = xfer->endpoint->methods;
1058 			parm->curr_xfer = xfer;
1059 
1060 			/*
1061 			 * Call the Host or Device controller transfer
1062 			 * setup routine:
1063 			 */
1064 			(udev->bus->methods->xfer_setup) (parm);
1065 
1066 			/* check for error */
1067 			if (parm->err)
1068 				goto done;
1069 
1070 			if (buf) {
1071 				/*
1072 				 * Increment the endpoint refcount. This
1073 				 * basically prevents setting a new
1074 				 * configuration and alternate setting
1075 				 * when USB transfers are in use on
1076 				 * the given interface. Search the USB
1077 				 * code for "endpoint->refcount_alloc" if you
1078 				 * want more information.
1079 				 */
1080 				USB_BUS_LOCK(info->bus);
1081 				if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX)
1082 					parm->err = USB_ERR_INVAL;
1083 
1084 				xfer->endpoint->refcount_alloc++;
1085 
1086 				if (xfer->endpoint->refcount_alloc == 0)
1087 					panic("usbd_transfer_setup(): Refcount wrapped to zero\n");
1088 				USB_BUS_UNLOCK(info->bus);
1089 
1090 				/*
1091 				 * Whenever we set ppxfer[] then we
1092 				 * also need to increment the
1093 				 * "setup_refcount":
1094 				 */
1095 				info->setup_refcount++;
1096 
1097 				/*
1098 				 * Transfer is successfully setup and
1099 				 * can be used:
1100 				 */
1101 				ppxfer[n] = xfer;
1102 			}
1103 
1104 			/* check for error */
1105 			if (parm->err)
1106 				goto done;
1107 		}
1108 
1109 		if (buf != NULL || parm->err != 0)
1110 			goto done;
1111 
1112 		/* if no transfers, nothing to do */
1113 		if (refcount == 0)
1114 			goto done;
1115 
1116 		/* align data properly */
1117 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1118 
1119 		/* store offset temporarily */
1120 		parm->size[1] = parm->size[0];
1121 
1122 		/*
1123 		 * The number of DMA tags required depends on
1124 		 * the number of endpoints. The current estimate
1125 		 * for maximum number of DMA tags per endpoint
1126 		 * is three:
1127 		 * 1) for loading memory
1128 		 * 2) for allocating memory
1129 		 * 3) for fixing memory [UHCI]
1130 		 */
1131 		parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX);
1132 
1133 		/*
1134 		 * DMA tags for QH, TD, Data and more.
1135 		 */
1136 		parm->dma_tag_max += 8;
1137 
1138 		parm->dma_tag_p += parm->dma_tag_max;
1139 
1140 		parm->size[0] += ((uint8_t *)parm->dma_tag_p) -
1141 		    ((uint8_t *)0);
1142 
1143 		/* align data properly */
1144 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1145 
1146 		/* store offset temporarily */
1147 		parm->size[3] = parm->size[0];
1148 
1149 		parm->size[0] += ((uint8_t *)parm->dma_page_ptr) -
1150 		    ((uint8_t *)0);
1151 
1152 		/* align data properly */
1153 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1154 
1155 		/* store offset temporarily */
1156 		parm->size[4] = parm->size[0];
1157 
1158 		parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) -
1159 		    ((uint8_t *)0);
1160 
1161 		/* store end offset temporarily */
1162 		parm->size[5] = parm->size[0];
1163 
1164 		parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) -
1165 		    ((uint8_t *)0);
1166 
1167 		/* store end offset temporarily */
1168 
1169 		parm->size[2] = parm->size[0];
1170 
1171 		/* align data properly */
1172 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1173 
1174 		parm->size[6] = parm->size[0];
1175 
1176 		parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) -
1177 		    ((uint8_t *)0);
1178 
1179 		/* align data properly */
1180 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1181 
1182 		/* allocate zeroed memory */
1183 		buf = kmalloc(parm->size[0], M_USB, M_WAITOK | M_ZERO);
1184 
1185 		if (buf == NULL) {
1186 			parm->err = USB_ERR_NOMEM;
1187 			DPRINTFN(0, "cannot allocate memory block for "
1188 			    "configuration (%d bytes)\n",
1189 			    parm->size[0]);
1190 			goto done;
1191 		}
1192 		parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]);
1193 		parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]);
1194 		parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]);
1195 		parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]);
1196 		parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]);
1197 	}
1198 
1199 done:
1200 	if (buf) {
1201 		if (info->setup_refcount == 0) {
1202 			/*
1203 			 * "usbd_transfer_unsetup_sub" will unlock
1204 			 * the bus mutex before returning !
1205 			 */
1206 			USB_BUS_LOCK(info->bus);
1207 
1208 			/* something went wrong */
1209 			usbd_transfer_unsetup_sub(info, 0);
1210 		}
1211 	}
1212 
1213 	/* check if any errors happened */
1214 	if (parm->err)
1215 		usbd_transfer_unsetup(ppxfer, n_setup);
1216 
1217 	error = parm->err;
1218 
1219 	if (do_unlock)
1220 		usbd_enum_unlock(udev);
1221 
1222 	return (error);
1223 }
1224 
1225 /*------------------------------------------------------------------------*
1226  *	usbd_transfer_unsetup_sub - factored out code
1227  *------------------------------------------------------------------------*/
1228 static void
1229 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay)
1230 {
1231 #if USB_HAVE_BUSDMA
1232 	struct usb_page_cache *pc;
1233 #endif
1234 
1235 	USB_BUS_LOCK_ASSERT(info->bus);
1236 
1237 	/* wait for any outstanding DMA operations */
1238 	/* This is insane */
1239 	if (needs_delay) {
1240 		usb_timeout_t temp;
1241 		temp = usbd_get_dma_delay(info->udev);
1242 		if (temp != 0) {
1243 			usb_pause_mtx(&info->bus->bus_lock,
1244 			    USB_MS_TO_TICKS(temp));
1245 		}
1246 	}
1247 
1248 	/* make sure that our done messages are not queued anywhere */
1249 	usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]);
1250 
1251 	USB_BUS_UNLOCK(info->bus);
1252 
1253 #if USB_HAVE_BUSDMA
1254 	/* free DMA'able memory, if any */
1255 	pc = info->dma_page_cache_start;
1256 	while (pc != info->dma_page_cache_end) {
1257 		usb_pc_free_mem(pc);
1258 		pc++;
1259 	}
1260 
1261 	/* free DMA maps in all "xfer->frbuffers" */
1262 	pc = info->xfer_page_cache_start;
1263 	while (pc != info->xfer_page_cache_end) {
1264 		usb_pc_dmamap_destroy(pc);
1265 		pc++;
1266 	}
1267 
1268 	/* free all DMA tags */
1269 	usb_dma_tag_unsetup(&info->dma_parent_tag);
1270 #endif
1271 
1272 	cv_destroy(&info->cv_drain);
1273 
1274 	/*
1275 	 * free the "memory_base" last, hence the "info" structure is
1276 	 * contained within the "memory_base"!
1277 	 */
1278 	usbd_delayed_free(info->memory_base, M_USB);
1279 }
1280 
1281 /*
1282  * This is a horrible hack and workaround to a very bad decision by
1283  * the original U4B coder to integrate the QH/TD structures into the
1284  * xfer and then free the whole mess all at once.
1285  *
1286  * The problem is that the controller may still be accessing the QHs,
1287  * because it might have gotten side-tracked onto the removed QHs
1288  * chain link.  They have to remain intact long enough for the
1289  * controller to get out.
1290  *
1291  * This horrible hack basically just delays freeing by 256 slots.
1292  * It's not even time-based or door-bell based (which is the way
1293  * the linux driver does it)... but to fix it properly requires rewriting
1294  * too much of this driver.
1295  */
1296 #define DFREE_SLOTS	256
1297 #define DFREE_MASK	(DFREE_SLOTS - 1)
1298 
1299 static struct dfree_slot {
1300 	void *data;
1301 	struct malloc_type *mtype;
1302 } dfree_slots[DFREE_SLOTS];
1303 static int dfree_index;
1304 
1305 static void
1306 usbd_delayed_free(void *data, struct malloc_type *mtype)
1307 {
1308 	struct dfree_slot slot;
1309 	int index;
1310 
1311 	crit_enter();
1312 	index = atomic_fetchadd_int(&dfree_index, 1);
1313 	index &= DFREE_MASK;
1314 	slot = dfree_slots[index];
1315 	dfree_slots[index].data = data;
1316 	dfree_slots[index].mtype = mtype;
1317 	crit_exit();
1318 	if (slot.data)
1319 		kfree(slot.data, slot.mtype);
1320 }
1321 
1322 /*------------------------------------------------------------------------*
1323  *	usbd_transfer_unsetup - unsetup/free an array of USB transfers
1324  *
1325  * NOTE: All USB transfers in progress will get called back passing
1326  * the error code "USB_ERR_CANCELLED" before this function
1327  * returns.
1328  *------------------------------------------------------------------------*/
1329 void
1330 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup)
1331 {
1332 	struct usb_xfer *xfer;
1333 	struct usb_xfer_root *info;
1334 	uint8_t needs_delay = 0;
1335 
1336 #if 0
1337 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1338 	    "usbd_transfer_unsetup can sleep!");
1339 #endif
1340 
1341 	while (n_setup--) {
1342 		xfer = pxfer[n_setup];
1343 
1344 		if (xfer == NULL)
1345 			continue;
1346 
1347 		info = xfer->xroot;
1348 
1349 		USB_XFER_LOCK(xfer);
1350 		USB_BUS_LOCK(info->bus);
1351 
1352 		/*
1353 		 * HINT: when you start/stop a transfer, it might be a
1354 		 * good idea to directly use the "pxfer[]" structure:
1355 		 *
1356 		 * usbd_transfer_start(sc->pxfer[0]);
1357 		 * usbd_transfer_stop(sc->pxfer[0]);
1358 		 *
1359 		 * That way, if your code has many parts that will not
1360 		 * stop running under the same lock, in other words
1361 		 * "xfer_mtx", the usbd_transfer_start and
1362 		 * usbd_transfer_stop functions will simply return
1363 		 * when they detect a NULL pointer argument.
1364 		 *
1365 		 * To avoid any races we clear the "pxfer[]" pointer
1366 		 * while holding the private mutex of the driver:
1367 		 */
1368 		pxfer[n_setup] = NULL;
1369 
1370 		USB_BUS_UNLOCK(info->bus);
1371 		USB_XFER_UNLOCK(xfer);
1372 
1373 		usbd_transfer_drain(xfer);
1374 
1375 #if USB_HAVE_BUSDMA
1376 		if (xfer->flags_int.bdma_enable)
1377 			needs_delay = 1;
1378 #endif
1379 		/*
1380 		 * NOTE: default endpoint does not have an
1381 		 * interface, even if endpoint->iface_index == 0
1382 		 */
1383 		USB_BUS_LOCK(info->bus);
1384 		xfer->endpoint->refcount_alloc--;
1385 		USB_BUS_UNLOCK(info->bus);
1386 
1387 		usb_callout_drain(&xfer->timeout_handle);
1388 
1389 		USB_BUS_LOCK(info->bus);
1390 
1391 		USB_ASSERT(info->setup_refcount != 0, ("Invalid setup "
1392 		    "reference count\n"));
1393 
1394 		info->setup_refcount--;
1395 
1396 		if (info->setup_refcount == 0) {
1397 			usbd_transfer_unsetup_sub(info,
1398 			    needs_delay);
1399 		} else {
1400 			USB_BUS_UNLOCK(info->bus);
1401 		}
1402 	}
1403 }
1404 
1405 /*------------------------------------------------------------------------*
1406  *	usbd_control_transfer_init - factored out code
1407  *
1408  * In USB Device Mode we have to wait for the SETUP packet which
1409  * containst the "struct usb_device_request" structure, before we can
1410  * transfer any data. In USB Host Mode we already have the SETUP
1411  * packet at the moment the USB transfer is started. This leads us to
1412  * having to setup the USB transfer at two different places in
1413  * time. This function just contains factored out control transfer
1414  * initialisation code, so that we don't duplicate the code.
1415  *------------------------------------------------------------------------*/
1416 static void
1417 usbd_control_transfer_init(struct usb_xfer *xfer)
1418 {
1419 	struct usb_device_request req;
1420 
1421 	/* copy out the USB request header */
1422 
1423 	usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req));
1424 
1425 	/* setup remainder */
1426 
1427 	xfer->flags_int.control_rem = UGETW(req.wLength);
1428 
1429 	/* copy direction to endpoint variable */
1430 
1431 	xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT);
1432 	xfer->endpointno |=
1433 	    (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT;
1434 }
1435 
1436 /*------------------------------------------------------------------------*
1437  *	usbd_setup_ctrl_transfer
1438  *
1439  * This function handles initialisation of control transfers. Control
1440  * transfers are special in that regard that they can both transmit
1441  * and receive data.
1442  *
1443  * Return values:
1444  *    0: Success
1445  * Else: Failure
1446  *------------------------------------------------------------------------*/
1447 static int
1448 usbd_setup_ctrl_transfer(struct usb_xfer *xfer)
1449 {
1450 	usb_frlength_t len;
1451 
1452 	/* Check for control endpoint stall */
1453 	if (xfer->flags.stall_pipe && xfer->flags_int.control_act) {
1454 		/* the control transfer is no longer active */
1455 		xfer->flags_int.control_stall = 1;
1456 		xfer->flags_int.control_act = 0;
1457 	} else {
1458 		/* don't stall control transfer by default */
1459 		xfer->flags_int.control_stall = 0;
1460 	}
1461 
1462 	/* Check for invalid number of frames */
1463 	if (xfer->nframes > 2) {
1464 		/*
1465 		 * If you need to split a control transfer, you
1466 		 * have to do one part at a time. Only with
1467 		 * non-control transfers you can do multiple
1468 		 * parts a time.
1469 		 */
1470 		DPRINTFN(0, "Too many frames: %u\n",
1471 		    (unsigned int)xfer->nframes);
1472 		goto error;
1473 	}
1474 
1475 	/*
1476          * Check if there is a control
1477          * transfer in progress:
1478          */
1479 	if (xfer->flags_int.control_act) {
1480 
1481 		if (xfer->flags_int.control_hdr) {
1482 
1483 			/* clear send header flag */
1484 
1485 			xfer->flags_int.control_hdr = 0;
1486 
1487 			/* setup control transfer */
1488 			if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
1489 				usbd_control_transfer_init(xfer);
1490 			}
1491 		}
1492 		/* get data length */
1493 
1494 		len = xfer->sumlen;
1495 
1496 	} else {
1497 
1498 		/* the size of the SETUP structure is hardcoded ! */
1499 
1500 		if (xfer->frlengths[0] != sizeof(struct usb_device_request)) {
1501 			DPRINTFN(0, "Wrong framelength %u != %zu\n",
1502 			    xfer->frlengths[0], sizeof(struct
1503 			    usb_device_request));
1504 			goto error;
1505 		}
1506 		/* check USB mode */
1507 		if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
1508 
1509 			/* check number of frames */
1510 			if (xfer->nframes != 1) {
1511 				/*
1512 			         * We need to receive the setup
1513 			         * message first so that we know the
1514 			         * data direction!
1515 			         */
1516 				DPRINTF("Misconfigured transfer\n");
1517 				goto error;
1518 			}
1519 			/*
1520 			 * Set a dummy "control_rem" value.  This
1521 			 * variable will be overwritten later by a
1522 			 * call to "usbd_control_transfer_init()" !
1523 			 */
1524 			xfer->flags_int.control_rem = 0xFFFF;
1525 		} else {
1526 
1527 			/* setup "endpoint" and "control_rem" */
1528 
1529 			usbd_control_transfer_init(xfer);
1530 		}
1531 
1532 		/* set transfer-header flag */
1533 
1534 		xfer->flags_int.control_hdr = 1;
1535 
1536 		/* get data length */
1537 
1538 		len = (xfer->sumlen - sizeof(struct usb_device_request));
1539 	}
1540 
1541 	/* check if there is a length mismatch */
1542 
1543 	if (len > xfer->flags_int.control_rem) {
1544 		DPRINTFN(0, "Length (%d) greater than "
1545 		    "remaining length (%d)\n", len,
1546 		    xfer->flags_int.control_rem);
1547 		goto error;
1548 	}
1549 	/* check if we are doing a short transfer */
1550 
1551 	if (xfer->flags.force_short_xfer) {
1552 		xfer->flags_int.control_rem = 0;
1553 	} else {
1554 		if ((len != xfer->max_data_length) &&
1555 		    (len != xfer->flags_int.control_rem) &&
1556 		    (xfer->nframes != 1)) {
1557 			DPRINTFN(0, "Short control transfer without "
1558 			    "force_short_xfer set\n");
1559 			goto error;
1560 		}
1561 		xfer->flags_int.control_rem -= len;
1562 	}
1563 
1564 	/* the status part is executed when "control_act" is 0 */
1565 
1566 	if ((xfer->flags_int.control_rem > 0) ||
1567 	    (xfer->flags.manual_status)) {
1568 		/* don't execute the STATUS stage yet */
1569 		xfer->flags_int.control_act = 1;
1570 
1571 		/* sanity check */
1572 		if ((!xfer->flags_int.control_hdr) &&
1573 		    (xfer->nframes == 1)) {
1574 			/*
1575 		         * This is not a valid operation!
1576 		         */
1577 			DPRINTFN(0, "Invalid parameter "
1578 			    "combination\n");
1579 			goto error;
1580 		}
1581 	} else {
1582 		/* time to execute the STATUS stage */
1583 		xfer->flags_int.control_act = 0;
1584 	}
1585 	return (0);			/* success */
1586 
1587 error:
1588 	return (1);			/* failure */
1589 }
1590 
1591 /*------------------------------------------------------------------------*
1592  *	usbd_transfer_submit - start USB hardware for the given transfer
1593  *
1594  * This function should only be called from the USB callback.
1595  *------------------------------------------------------------------------*/
1596 void
1597 usbd_transfer_submit(struct usb_xfer *xfer)
1598 {
1599 	struct usb_xfer_root *info;
1600 	struct usb_bus *bus;
1601 	usb_frcount_t x;
1602 
1603 	info = xfer->xroot;
1604 	bus = info->bus;
1605 
1606 	DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n",
1607 	    xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ?
1608 	    "read" : "write");
1609 
1610 #ifdef USB_DEBUG
1611 	if (USB_DEBUG_VAR > 0) {
1612 		USB_BUS_LOCK(bus);
1613 
1614 		usb_dump_endpoint(xfer->endpoint);
1615 
1616 		USB_BUS_UNLOCK(bus);
1617 	}
1618 #endif
1619 
1620 	USB_XFER_LOCK_ASSERT(xfer);
1621 	USB_BUS_LOCK_ASSERT_NOTOWNED(bus);
1622 
1623 	/* Only open the USB transfer once! */
1624 	if (!xfer->flags_int.open) {
1625 		xfer->flags_int.open = 1;
1626 
1627 		DPRINTF("open\n");
1628 
1629 		USB_BUS_LOCK(bus);
1630 		(xfer->endpoint->methods->open) (xfer);
1631 		USB_BUS_UNLOCK(bus);
1632 	}
1633 	/* set "transferring" flag */
1634 	xfer->flags_int.transferring = 1;
1635 
1636 #if USB_HAVE_POWERD
1637 	/* increment power reference */
1638 	usbd_transfer_power_ref(xfer, 1);
1639 #endif
1640 	/*
1641 	 * Check if the transfer is waiting on a queue, most
1642 	 * frequently the "done_q":
1643 	 */
1644 	if (xfer->wait_queue) {
1645 		USB_BUS_LOCK(bus);
1646 		usbd_transfer_dequeue(xfer);
1647 		USB_BUS_UNLOCK(bus);
1648 	}
1649 	/* clear "did_dma_delay" flag */
1650 	xfer->flags_int.did_dma_delay = 0;
1651 
1652 	/* clear "did_close" flag */
1653 	xfer->flags_int.did_close = 0;
1654 
1655 #if USB_HAVE_BUSDMA
1656 	/* clear "bdma_setup" flag */
1657 	xfer->flags_int.bdma_setup = 0;
1658 #endif
1659 	/* by default we cannot cancel any USB transfer immediately */
1660 	xfer->flags_int.can_cancel_immed = 0;
1661 
1662 	/* clear lengths and frame counts by default */
1663 	xfer->sumlen = 0;
1664 	xfer->actlen = 0;
1665 	xfer->aframes = 0;
1666 
1667 	/* clear any previous errors */
1668 	xfer->error = 0;
1669 
1670 	/* Check if the device is still alive */
1671 	if (info->udev->state < USB_STATE_POWERED) {
1672 		USB_BUS_LOCK(bus);
1673 		/*
1674 		 * Must return cancelled error code else
1675 		 * device drivers can hang.
1676 		 */
1677 		usbd_transfer_done(xfer, USB_ERR_CANCELLED);
1678 		USB_BUS_UNLOCK(bus);
1679 		return;
1680 	}
1681 
1682 	/* sanity check */
1683 	if (xfer->nframes == 0) {
1684 		if (xfer->flags.stall_pipe) {
1685 			/*
1686 			 * Special case - want to stall without transferring
1687 			 * any data:
1688 			 */
1689 			DPRINTF("xfer=%p nframes=0: stall "
1690 			    "or clear stall!\n", xfer);
1691 			USB_BUS_LOCK(bus);
1692 			xfer->flags_int.can_cancel_immed = 1;
1693 			/* start the transfer */
1694 			usb_command_wrapper(&xfer->endpoint->
1695 			    endpoint_q[xfer->stream_id], xfer);
1696 			USB_BUS_UNLOCK(bus);
1697 			return;
1698 		}
1699 		USB_BUS_LOCK(bus);
1700 		usbd_transfer_done(xfer, USB_ERR_INVAL);
1701 		USB_BUS_UNLOCK(bus);
1702 		return;
1703 	}
1704 	/* compute some variables */
1705 
1706 	for (x = 0; x != xfer->nframes; x++) {
1707 		/* make a copy of the frlenghts[] */
1708 		xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x];
1709 		/* compute total transfer length */
1710 		xfer->sumlen += xfer->frlengths[x];
1711 		if (xfer->sumlen < xfer->frlengths[x]) {
1712 			/* length wrapped around */
1713 			USB_BUS_LOCK(bus);
1714 			usbd_transfer_done(xfer, USB_ERR_INVAL);
1715 			USB_BUS_UNLOCK(bus);
1716 			return;
1717 		}
1718 	}
1719 
1720 	/* clear some internal flags */
1721 
1722 	xfer->flags_int.short_xfer_ok = 0;
1723 	xfer->flags_int.short_frames_ok = 0;
1724 
1725 	/* check if this is a control transfer */
1726 
1727 	if (xfer->flags_int.control_xfr) {
1728 
1729 		if (usbd_setup_ctrl_transfer(xfer)) {
1730 			USB_BUS_LOCK(bus);
1731 			usbd_transfer_done(xfer, USB_ERR_STALLED);
1732 			USB_BUS_UNLOCK(bus);
1733 			return;
1734 		}
1735 	}
1736 	/*
1737 	 * Setup filtered version of some transfer flags,
1738 	 * in case of data read direction
1739 	 */
1740 	if (USB_GET_DATA_ISREAD(xfer)) {
1741 
1742 		if (xfer->flags.short_frames_ok) {
1743 			xfer->flags_int.short_xfer_ok = 1;
1744 			xfer->flags_int.short_frames_ok = 1;
1745 		} else if (xfer->flags.short_xfer_ok) {
1746 			xfer->flags_int.short_xfer_ok = 1;
1747 
1748 			/* check for control transfer */
1749 			if (xfer->flags_int.control_xfr) {
1750 				/*
1751 				 * 1) Control transfers do not support
1752 				 * reception of multiple short USB
1753 				 * frames in host mode and device side
1754 				 * mode, with exception of:
1755 				 *
1756 				 * 2) Due to sometimes buggy device
1757 				 * side firmware we need to do a
1758 				 * STATUS stage in case of short
1759 				 * control transfers in USB host mode.
1760 				 * The STATUS stage then becomes the
1761 				 * "alt_next" to the DATA stage.
1762 				 */
1763 				xfer->flags_int.short_frames_ok = 1;
1764 			}
1765 		}
1766 	}
1767 	/*
1768 	 * Check if BUS-DMA support is enabled and try to load virtual
1769 	 * buffers into DMA, if any:
1770 	 */
1771 #if USB_HAVE_BUSDMA
1772 	if (xfer->flags_int.bdma_enable) {
1773 		/* insert the USB transfer last in the BUS-DMA queue */
1774 		usb_command_wrapper(&xfer->xroot->dma_q, xfer);
1775 		return;
1776 	}
1777 #endif
1778 	/*
1779 	 * Enter the USB transfer into the Host Controller or
1780 	 * Device Controller schedule:
1781 	 */
1782 	usbd_pipe_enter(xfer);
1783 }
1784 
1785 /*------------------------------------------------------------------------*
1786  *	usbd_pipe_enter - factored out code
1787  *------------------------------------------------------------------------*/
1788 void
1789 usbd_pipe_enter(struct usb_xfer *xfer)
1790 {
1791 	struct usb_endpoint *ep;
1792 
1793 	USB_XFER_LOCK_ASSERT(xfer);
1794 
1795 	USB_BUS_LOCK(xfer->xroot->bus);
1796 
1797 	ep = xfer->endpoint;
1798 
1799 	DPRINTF("enter\n");
1800 
1801 	/* the transfer can now be cancelled */
1802 	xfer->flags_int.can_cancel_immed = 1;
1803 
1804 	/* enter the transfer */
1805 	(ep->methods->enter) (xfer);
1806 
1807 	/* check for transfer error */
1808 	if (xfer->error) {
1809 		/* some error has happened */
1810 		usbd_transfer_done(xfer, 0);
1811 		USB_BUS_UNLOCK(xfer->xroot->bus);
1812 		return;
1813 	}
1814 
1815 	/* start the transfer */
1816 	usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer);
1817 	USB_BUS_UNLOCK(xfer->xroot->bus);
1818 }
1819 
1820 /*------------------------------------------------------------------------*
1821  *	usbd_transfer_start - start an USB transfer
1822  *
1823  * NOTE: Calling this function more than one time will only
1824  *       result in a single transfer start, until the USB transfer
1825  *       completes.
1826  *------------------------------------------------------------------------*/
1827 void
1828 usbd_transfer_start(struct usb_xfer *xfer)
1829 {
1830 	if (xfer == NULL) {
1831 		/* transfer is gone */
1832 		return;
1833 	}
1834 	USB_XFER_LOCK_ASSERT(xfer);
1835 
1836 	/* mark the USB transfer started */
1837 
1838 	if (!xfer->flags_int.started) {
1839 		/* lock the BUS lock to avoid races updating flags_int */
1840 		USB_BUS_LOCK(xfer->xroot->bus);
1841 		xfer->flags_int.started = 1;
1842 		USB_BUS_UNLOCK(xfer->xroot->bus);
1843 	}
1844 	/* check if the USB transfer callback is already transferring */
1845 
1846 	if (xfer->flags_int.transferring) {
1847 		return;
1848 	}
1849 	USB_BUS_LOCK(xfer->xroot->bus);
1850 	/* call the USB transfer callback */
1851 	usbd_callback_ss_done_defer(xfer);
1852 	USB_BUS_UNLOCK(xfer->xroot->bus);
1853 }
1854 
1855 /*------------------------------------------------------------------------*
1856  *	usbd_transfer_stop - stop an USB transfer
1857  *
1858  * NOTE: Calling this function more than one time will only
1859  *       result in a single transfer stop.
1860  * NOTE: When this function returns it is not safe to free nor
1861  *       reuse any DMA buffers. See "usbd_transfer_drain()".
1862  *------------------------------------------------------------------------*/
1863 void
1864 usbd_transfer_stop(struct usb_xfer *xfer)
1865 {
1866 	struct usb_endpoint *ep;
1867 
1868 	if (xfer == NULL) {
1869 		/* transfer is gone */
1870 		return;
1871 	}
1872 #if 0
1873 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1874 #endif
1875 
1876 	/* check if the USB transfer was ever opened */
1877 
1878 	if (!xfer->flags_int.open) {
1879 		if (xfer->flags_int.started) {
1880 			/* nothing to do except clearing the "started" flag */
1881 			/* lock the BUS lock to avoid races updating flags_int */
1882 			USB_BUS_LOCK(xfer->xroot->bus);
1883 			xfer->flags_int.started = 0;
1884 			USB_BUS_UNLOCK(xfer->xroot->bus);
1885 		}
1886 		return;
1887 	}
1888 	/* try to stop the current USB transfer */
1889 
1890 	USB_BUS_LOCK(xfer->xroot->bus);
1891 	/* override any previous error */
1892 	xfer->error = USB_ERR_CANCELLED;
1893 
1894 	/*
1895 	 * Clear "open" and "started" when both private and USB lock
1896 	 * is locked so that we don't get a race updating "flags_int"
1897 	 */
1898 	xfer->flags_int.open = 0;
1899 	xfer->flags_int.started = 0;
1900 
1901 	/*
1902 	 * Check if we can cancel the USB transfer immediately.
1903 	 */
1904 	if (xfer->flags_int.transferring) {
1905 		if (xfer->flags_int.can_cancel_immed &&
1906 		    (!xfer->flags_int.did_close)) {
1907 			DPRINTF("close\n");
1908 			/*
1909 			 * The following will lead to an USB_ERR_CANCELLED
1910 			 * error code being passed to the USB callback.
1911 			 */
1912 			(xfer->endpoint->methods->close) (xfer);
1913 			/* only close once */
1914 			xfer->flags_int.did_close = 1;
1915 		} else {
1916 			/* need to wait for the next done callback */
1917 		}
1918 	} else {
1919 		DPRINTF("close\n");
1920 
1921 		/* close here and now */
1922 		(xfer->endpoint->methods->close) (xfer);
1923 
1924 		/*
1925 		 * Any additional DMA delay is done by
1926 		 * "usbd_transfer_unsetup()".
1927 		 */
1928 
1929 		/*
1930 		 * Special case. Check if we need to restart a blocked
1931 		 * endpoint.
1932 		 */
1933 		ep = xfer->endpoint;
1934 
1935 		/*
1936 		 * If the current USB transfer is completing we need
1937 		 * to start the next one:
1938 		 */
1939 		if (ep->endpoint_q[xfer->stream_id].curr == xfer) {
1940 			usb_command_wrapper(
1941                             &ep->endpoint_q[xfer->stream_id], NULL);
1942 		}
1943 	}
1944 
1945 	USB_BUS_UNLOCK(xfer->xroot->bus);
1946 }
1947 
1948 /*------------------------------------------------------------------------*
1949  *	usbd_transfer_pending
1950  *
1951  * This function will check if an USB transfer is pending which is a
1952  * little bit complicated!
1953  * Return values:
1954  * 0: Not pending
1955  * 1: Pending: The USB transfer will receive a callback in the future.
1956  *------------------------------------------------------------------------*/
1957 uint8_t
1958 usbd_transfer_pending(struct usb_xfer *xfer)
1959 {
1960 	struct usb_xfer_root *info;
1961 	struct usb_xfer_queue *pq;
1962 
1963 	if (xfer == NULL) {
1964 		/* transfer is gone */
1965 		return (0);
1966 	}
1967 #if 0
1968 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1969 #endif
1970 
1971 	if (xfer->flags_int.transferring) {
1972 		/* trivial case */
1973 		return (1);
1974 	}
1975 	USB_BUS_LOCK(xfer->xroot->bus);
1976 	if (xfer->wait_queue) {
1977 		/* we are waiting on a queue somewhere */
1978 		USB_BUS_UNLOCK(xfer->xroot->bus);
1979 		return (1);
1980 	}
1981 	info = xfer->xroot;
1982 	pq = &info->done_q;
1983 
1984 	if (pq->curr == xfer) {
1985 		/* we are currently scheduled for callback */
1986 		USB_BUS_UNLOCK(xfer->xroot->bus);
1987 		return (1);
1988 	}
1989 	/* we are not pending */
1990 	USB_BUS_UNLOCK(xfer->xroot->bus);
1991 	return (0);
1992 }
1993 
1994 /*------------------------------------------------------------------------*
1995  *	usbd_transfer_drain
1996  *
1997  * This function will stop the USB transfer and wait for any
1998  * additional BUS-DMA and HW-DMA operations to complete. Buffers that
1999  * are loaded into DMA can safely be freed or reused after that this
2000  * function has returned.
2001  *------------------------------------------------------------------------*/
2002 void
2003 usbd_transfer_drain(struct usb_xfer *xfer)
2004 {
2005 #if 0
2006 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2007 	    "usbd_transfer_drain can sleep!");
2008 #endif
2009 
2010 	if (xfer == NULL) {
2011 		/* transfer is gone */
2012 		return;
2013 	}
2014 	USB_XFER_LOCK_ASSERT_NOTOWNED(xfer);
2015 	USB_XFER_LOCK(xfer);
2016 
2017 	usbd_transfer_stop(xfer);
2018 
2019 	/*
2020 	 * It is allowed that the callback can drop its
2021 	 * transfer mutex. In that case checking only
2022 	 * "usbd_transfer_pending()" is not enough to tell if
2023 	 * the USB transfer is fully drained. We also need to
2024 	 * check the internal "doing_callback" flag.
2025 	 */
2026 	xfer->flags_int.draining = 1;
2027 
2028 	/*
2029 	 * XXX hack, the wakeup of xfer can race conditions which
2030 	 *     clear the pending status of the xfer.
2031 	 */
2032 	while (usbd_transfer_pending(xfer) ||
2033 	    xfer->flags_int.doing_callback) {
2034 
2035 		/*
2036 		 * Wait until the current outstanding USB
2037 		 * transfer is complete !
2038 		 */
2039 		/* cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_lock); */
2040 		lksleep(xfer, xfer->xroot->xfer_lock, 0, "DRAIN", hz);
2041 	}
2042 	xfer->flags_int.draining = 0;
2043 	USB_XFER_UNLOCK(xfer);
2044 }
2045 
2046 struct usb_page_cache *
2047 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex)
2048 {
2049 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2050 
2051 	return (&xfer->frbuffers[frindex]);
2052 }
2053 
2054 void *
2055 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex)
2056 {
2057 	struct usb_page_search page_info;
2058 
2059 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2060 
2061 	usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info);
2062 	return (page_info.buffer);
2063 }
2064 
2065 /*------------------------------------------------------------------------*
2066  *	usbd_xfer_get_fps_shift
2067  *
2068  * The following function is only useful for isochronous transfers. It
2069  * returns how many times the frame execution rate has been shifted
2070  * down.
2071  *
2072  * Return value:
2073  * Success: 0..3
2074  * Failure: 0
2075  *------------------------------------------------------------------------*/
2076 uint8_t
2077 usbd_xfer_get_fps_shift(struct usb_xfer *xfer)
2078 {
2079 	return (xfer->fps_shift);
2080 }
2081 
2082 usb_frlength_t
2083 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex)
2084 {
2085 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2086 
2087 	return (xfer->frlengths[frindex]);
2088 }
2089 
2090 /*------------------------------------------------------------------------*
2091  *	usbd_xfer_set_frame_data
2092  *
2093  * This function sets the pointer of the buffer that should
2094  * loaded directly into DMA for the given USB frame. Passing "ptr"
2095  * equal to NULL while the corresponding "frlength" is greater
2096  * than zero gives undefined results!
2097  *------------------------------------------------------------------------*/
2098 void
2099 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
2100     void *ptr, usb_frlength_t len)
2101 {
2102 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2103 
2104 	/* set virtual address to load and length */
2105 	xfer->frbuffers[frindex].buffer = ptr;
2106 	usbd_xfer_set_frame_len(xfer, frindex, len);
2107 }
2108 
2109 void
2110 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
2111     void **ptr, int *len)
2112 {
2113 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2114 
2115 	if (ptr != NULL)
2116 		*ptr = xfer->frbuffers[frindex].buffer;
2117 	if (len != NULL)
2118 		*len = xfer->frlengths[frindex];
2119 }
2120 
2121 /*------------------------------------------------------------------------*
2122  *	usbd_xfer_old_frame_length
2123  *
2124  * This function returns the framelength of the given frame at the
2125  * time the transfer was submitted. This function can be used to
2126  * compute the starting data pointer of the next isochronous frame
2127  * when an isochronous transfer has completed.
2128  *------------------------------------------------------------------------*/
2129 usb_frlength_t
2130 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex)
2131 {
2132 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2133 
2134 	return (xfer->frlengths[frindex + xfer->max_frame_count]);
2135 }
2136 
2137 void
2138 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes,
2139     int *nframes)
2140 {
2141 	if (actlen != NULL)
2142 		*actlen = xfer->actlen;
2143 	if (sumlen != NULL)
2144 		*sumlen = xfer->sumlen;
2145 	if (aframes != NULL)
2146 		*aframes = xfer->aframes;
2147 	if (nframes != NULL)
2148 		*nframes = xfer->nframes;
2149 }
2150 
2151 /*------------------------------------------------------------------------*
2152  *	usbd_xfer_set_frame_offset
2153  *
2154  * This function sets the frame data buffer offset relative to the beginning
2155  * of the USB DMA buffer allocated for this USB transfer.
2156  *------------------------------------------------------------------------*/
2157 void
2158 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset,
2159     usb_frcount_t frindex)
2160 {
2161 	KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame "
2162 	    "when the USB buffer is external\n"));
2163 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2164 
2165 	/* set virtual address to load */
2166 	xfer->frbuffers[frindex].buffer =
2167 	    USB_ADD_BYTES(xfer->local_buffer, offset);
2168 }
2169 
2170 void
2171 usbd_xfer_set_interval(struct usb_xfer *xfer, int i)
2172 {
2173 	xfer->interval = i;
2174 }
2175 
2176 void
2177 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t)
2178 {
2179 	xfer->timeout = t;
2180 }
2181 
2182 void
2183 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n)
2184 {
2185 	xfer->nframes = n;
2186 }
2187 
2188 usb_frcount_t
2189 usbd_xfer_max_frames(struct usb_xfer *xfer)
2190 {
2191 	return (xfer->max_frame_count);
2192 }
2193 
2194 usb_frlength_t
2195 usbd_xfer_max_len(struct usb_xfer *xfer)
2196 {
2197 	return (xfer->max_data_length);
2198 }
2199 
2200 usb_frlength_t
2201 usbd_xfer_max_framelen(struct usb_xfer *xfer)
2202 {
2203 	return (xfer->max_frame_size);
2204 }
2205 
2206 void
2207 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex,
2208     usb_frlength_t len)
2209 {
2210 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2211 
2212 	xfer->frlengths[frindex] = len;
2213 }
2214 
2215 /*------------------------------------------------------------------------*
2216  *	usb_callback_proc - factored out code
2217  *
2218  * This function performs USB callbacks.
2219  *------------------------------------------------------------------------*/
2220 static void
2221 usb_callback_proc(struct usb_proc_msg *_pm)
2222 {
2223 	struct usb_done_msg *pm = (void *)_pm;
2224 	struct usb_xfer_root *info = pm->xroot;
2225 
2226 	/* Change locking order */
2227 	USB_BUS_UNLOCK(info->bus);
2228 
2229 	/*
2230 	 * We exploit the fact that the mutex is the same for all
2231 	 * callbacks that will be called from this thread:
2232 	 */
2233 	lockmgr(info->xfer_lock, LK_EXCLUSIVE);
2234 	USB_BUS_LOCK(info->bus);
2235 
2236 	/* Continue where we lost track */
2237 	usb_command_wrapper(&info->done_q,
2238 	    info->done_q.curr);
2239 
2240 	lockmgr(info->xfer_lock, LK_RELEASE);
2241 }
2242 
2243 /*------------------------------------------------------------------------*
2244  *	usbd_callback_ss_done_defer
2245  *
2246  * This function will defer the start, stop and done callback to the
2247  * correct thread.
2248  *------------------------------------------------------------------------*/
2249 static void
2250 usbd_callback_ss_done_defer(struct usb_xfer *xfer)
2251 {
2252 	struct usb_xfer_root *info = xfer->xroot;
2253 	struct usb_xfer_queue *pq = &info->done_q;
2254 
2255 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2256 
2257 	if (pq->curr != xfer) {
2258 		usbd_transfer_enqueue(pq, xfer);
2259 	}
2260 	if (!pq->recurse_1) {
2261 
2262 		/*
2263 	         * We have to postpone the callback due to the fact we
2264 	         * will have a Lock Order Reversal, LOR, if we try to
2265 	         * proceed !
2266 	         */
2267 		if (usb_proc_msignal(info->done_p,
2268 		    &info->done_m[0], &info->done_m[1])) {
2269 			/* ignore */
2270 		}
2271 	} else {
2272 		/* clear second recurse flag */
2273 		pq->recurse_2 = 0;
2274 	}
2275 	return;
2276 
2277 }
2278 
2279 /*------------------------------------------------------------------------*
2280  *	usbd_callback_wrapper
2281  *
2282  * This is a wrapper for USB callbacks. This wrapper does some
2283  * auto-magic things like figuring out if we can call the callback
2284  * directly from the current context or if we need to wakeup the
2285  * interrupt process.
2286  *------------------------------------------------------------------------*/
2287 static void
2288 usbd_callback_wrapper(struct usb_xfer_queue *pq)
2289 {
2290 	struct usb_xfer *xfer = pq->curr;
2291 	struct usb_xfer_root *info = xfer->xroot;
2292 
2293 	USB_BUS_LOCK_ASSERT(info->bus);
2294 	if (!lockowned(info->xfer_lock)) {
2295 		/*
2296 	       	 * Cases that end up here:
2297 		 *
2298 		 * 5) HW interrupt done callback or other source.
2299 		 */
2300 		DPRINTFN(3, "case 5\n");
2301 
2302 		/*
2303 	         * We have to postpone the callback due to the fact we
2304 	         * will have a Lock Order Reversal, LOR, if we try to
2305 	         * proceed !
2306 	         */
2307 		if (usb_proc_msignal(info->done_p,
2308 		    &info->done_m[0], &info->done_m[1])) {
2309 			/* ignore */
2310 		}
2311 		return;
2312 	}
2313 	/*
2314 	 * Cases that end up here:
2315 	 *
2316 	 * 1) We are starting a transfer
2317 	 * 2) We are prematurely calling back a transfer
2318 	 * 3) We are stopping a transfer
2319 	 * 4) We are doing an ordinary callback
2320 	 */
2321 	DPRINTFN(3, "case 1-4\n");
2322 	/* get next USB transfer in the queue */
2323 	info->done_q.curr = NULL;
2324 
2325 	/* set flag in case of drain */
2326 	xfer->flags_int.doing_callback = 1;
2327 
2328 	USB_BUS_UNLOCK(info->bus);
2329 	USB_BUS_LOCK_ASSERT_NOTOWNED(info->bus);
2330 
2331 	/* set correct USB state for callback */
2332 	if (!xfer->flags_int.transferring) {
2333 		xfer->usb_state = USB_ST_SETUP;
2334 		if (!xfer->flags_int.started) {
2335 			/* we got stopped before we even got started */
2336 			USB_BUS_LOCK(info->bus);
2337 			goto done;
2338 		}
2339 	} else {
2340 
2341 		if (usbd_callback_wrapper_sub(xfer)) {
2342 			/* the callback has been deferred */
2343 			USB_BUS_LOCK(info->bus);
2344 			goto done;
2345 		}
2346 #if USB_HAVE_POWERD
2347 		/* decrement power reference */
2348 		usbd_transfer_power_ref(xfer, -1);
2349 #endif
2350 		xfer->flags_int.transferring = 0;
2351 
2352 		if (xfer->error) {
2353 			xfer->usb_state = USB_ST_ERROR;
2354 		} else {
2355 			/* set transferred state */
2356 			xfer->usb_state = USB_ST_TRANSFERRED;
2357 #if USB_HAVE_BUSDMA
2358 			/* sync DMA memory, if any */
2359 			if (xfer->flags_int.bdma_enable &&
2360 			    (!xfer->flags_int.bdma_no_post_sync)) {
2361 				usb_bdma_post_sync(xfer);
2362 			}
2363 #endif
2364 		}
2365 	}
2366 
2367 #if USB_HAVE_PF
2368 	if (xfer->usb_state != USB_ST_SETUP)
2369 		usbpf_xfertap(xfer, USBPF_XFERTAP_DONE);
2370 #endif
2371 	/* call processing routine */
2372 	(xfer->callback) (xfer, xfer->error);
2373 
2374 	/* pickup the USB mutex again */
2375 	USB_BUS_LOCK(info->bus);
2376 
2377 	/*
2378 	 * Check if we got started after that we got cancelled, but
2379 	 * before we managed to do the callback.
2380 	 */
2381 	if ((!xfer->flags_int.open) &&
2382 	    (xfer->flags_int.started) &&
2383 	    (xfer->usb_state == USB_ST_ERROR)) {
2384 		/* clear flag in case of drain */
2385 		xfer->flags_int.doing_callback = 0;
2386 		/* try to loop, but not recursivly */
2387 		usb_command_wrapper(&info->done_q, xfer);
2388 		return;
2389 	}
2390 
2391 done:
2392 	/* clear flag in case of drain */
2393 	xfer->flags_int.doing_callback = 0;
2394 
2395 	/*
2396 	 * Check if we are draining.
2397 	 */
2398 	if (xfer->flags_int.draining &&
2399 	    (!xfer->flags_int.transferring)) {
2400 		/* "usbd_transfer_drain()" is waiting for end of transfer */
2401 		xfer->flags_int.draining = 0;
2402 		/* cv_broadcast(&info->cv_drain); */
2403 		wakeup(xfer);
2404 	}
2405 
2406 	/* do the next callback, if any */
2407 	usb_command_wrapper(&info->done_q,
2408 	    info->done_q.curr);
2409 }
2410 
2411 /*------------------------------------------------------------------------*
2412  *	usb_dma_delay_done_cb
2413  *
2414  * This function is called when the DMA delay has been exectuded, and
2415  * will make sure that the callback is called to complete the USB
2416  * transfer. This code path is ususally only used when there is an USB
2417  * error like USB_ERR_CANCELLED.
2418  *------------------------------------------------------------------------*/
2419 void
2420 usb_dma_delay_done_cb(struct usb_xfer *xfer)
2421 {
2422 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2423 
2424 	DPRINTFN(3, "Completed %p\n", xfer);
2425 
2426 	/* queue callback for execution, again */
2427 	usbd_transfer_done(xfer, 0);
2428 }
2429 
2430 /*------------------------------------------------------------------------*
2431  *	usbd_transfer_dequeue
2432  *
2433  *  - This function is used to remove an USB transfer from a USB
2434  *  transfer queue.
2435  *
2436  *  - This function can be called multiple times in a row.
2437  *------------------------------------------------------------------------*/
2438 void
2439 usbd_transfer_dequeue(struct usb_xfer *xfer)
2440 {
2441 	struct usb_xfer_queue *pq;
2442 
2443 	pq = xfer->wait_queue;
2444 	if (pq) {
2445 		TAILQ_REMOVE(&pq->head, xfer, wait_entry);
2446 		xfer->wait_queue = NULL;
2447 	}
2448 }
2449 
2450 /*------------------------------------------------------------------------*
2451  *	usbd_transfer_enqueue
2452  *
2453  *  - This function is used to insert an USB transfer into a USB *
2454  *  transfer queue.
2455  *
2456  *  - This function can be called multiple times in a row.
2457  *------------------------------------------------------------------------*/
2458 void
2459 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
2460 {
2461 	/*
2462 	 * Insert the USB transfer into the queue, if it is not
2463 	 * already on a USB transfer queue:
2464 	 */
2465 	KKASSERT(xfer->wait_queue == NULL);
2466 	if (xfer->wait_queue == NULL) {
2467 		xfer->wait_queue = pq;
2468 		TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry);
2469 	}
2470 }
2471 
2472 /*------------------------------------------------------------------------*
2473  *	usbd_transfer_done
2474  *
2475  *  - This function is used to remove an USB transfer from the busdma,
2476  *  pipe or interrupt queue.
2477  *
2478  *  - This function is used to queue the USB transfer on the done
2479  *  queue.
2480  *
2481  *  - This function is used to stop any USB transfer timeouts.
2482  *------------------------------------------------------------------------*/
2483 void
2484 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error)
2485 {
2486 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2487 
2488 	DPRINTF("err=%s\n", usbd_errstr(error));
2489 
2490 	/*
2491 	 * If we are not transferring then just return.
2492 	 * This can happen during transfer cancel.
2493 	 */
2494 	if (!xfer->flags_int.transferring) {
2495 		DPRINTF("not transferring\n");
2496 		/* end of control transfer, if any */
2497 		xfer->flags_int.control_act = 0;
2498 		return;
2499 	}
2500 	/* only set transfer error if not already set */
2501 	if (!xfer->error) {
2502 		xfer->error = error;
2503 	}
2504 	/* stop any callouts */
2505 	usb_callout_stop(&xfer->timeout_handle);
2506 
2507 	/*
2508 	 * If we are waiting on a queue, just remove the USB transfer
2509 	 * from the queue, if any. We should have the required locks
2510 	 * locked to do the remove when this function is called.
2511 	 */
2512 	usbd_transfer_dequeue(xfer);
2513 
2514 #if USB_HAVE_BUSDMA
2515 	if (lockowned(xfer->xroot->xfer_lock)) {
2516 		struct usb_xfer_queue *pq;
2517 
2518 		/*
2519 		 * If the private USB lock is not locked, then we assume
2520 		 * that the BUS-DMA load stage has been passed:
2521 		 */
2522 		pq = &xfer->xroot->dma_q;
2523 
2524 		if (pq->curr == xfer) {
2525 			/* start the next BUS-DMA load, if any */
2526 			usb_command_wrapper(pq, NULL);
2527 		}
2528 	}
2529 #endif
2530 	/* keep some statistics */
2531 	if (xfer->error) {
2532 		xfer->xroot->bus->stats_err.uds_requests
2533 		    [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
2534 	} else {
2535 		xfer->xroot->bus->stats_ok.uds_requests
2536 		    [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
2537 	}
2538 
2539 	/* call the USB transfer callback */
2540 	usbd_callback_ss_done_defer(xfer);
2541 }
2542 
2543 /*------------------------------------------------------------------------*
2544  *	usbd_transfer_start_cb
2545  *
2546  * This function is called to start the USB transfer when
2547  * "xfer->interval" is greater than zero, and and the endpoint type is
2548  * BULK or CONTROL.
2549  *------------------------------------------------------------------------*/
2550 static void
2551 usbd_transfer_start_cb(void *arg)
2552 {
2553 	struct usb_xfer *xfer = arg;
2554 	struct usb_endpoint *ep = xfer->endpoint;
2555 
2556 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2557 
2558 	DPRINTF("start\n");
2559 
2560 #if USB_HAVE_PF
2561 	usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
2562 #endif
2563 
2564 	/* the transfer can now be cancelled */
2565 	xfer->flags_int.can_cancel_immed = 1;
2566 
2567 	/* start USB transfer, if no error */
2568 	if (xfer->error == 0)
2569 		(ep->methods->start) (xfer);
2570 
2571 	/* check for transfer error */
2572 	if (xfer->error) {
2573 		/* some error has happened */
2574 		usbd_transfer_done(xfer, 0);
2575 	}
2576 }
2577 
2578 /*------------------------------------------------------------------------*
2579  *	usbd_xfer_set_stall
2580  *
2581  * This function is used to set the stall flag outside the
2582  * callback. This function is NULL safe.
2583  *------------------------------------------------------------------------*/
2584 void
2585 usbd_xfer_set_stall(struct usb_xfer *xfer)
2586 {
2587 	if (xfer == NULL) {
2588 		/* tearing down */
2589 		return;
2590 	}
2591 	USB_XFER_LOCK_ASSERT(xfer);
2592 
2593 	/* avoid any races by locking the USB mutex */
2594 	USB_BUS_LOCK(xfer->xroot->bus);
2595 	xfer->flags.stall_pipe = 1;
2596 	USB_BUS_UNLOCK(xfer->xroot->bus);
2597 }
2598 
2599 int
2600 usbd_xfer_is_stalled(struct usb_xfer *xfer)
2601 {
2602 	return (xfer->endpoint->is_stalled);
2603 }
2604 
2605 /*------------------------------------------------------------------------*
2606  *	usbd_transfer_clear_stall
2607  *
2608  * This function is used to clear the stall flag outside the
2609  * callback. This function is NULL safe.
2610  *------------------------------------------------------------------------*/
2611 void
2612 usbd_transfer_clear_stall(struct usb_xfer *xfer)
2613 {
2614 	if (xfer == NULL) {
2615 		/* tearing down */
2616 		return;
2617 	}
2618 	USB_XFER_LOCK_ASSERT(xfer);
2619 
2620 	/* avoid any races by locking the USB mutex */
2621 	USB_BUS_LOCK(xfer->xroot->bus);
2622 
2623 	xfer->flags.stall_pipe = 0;
2624 
2625 	USB_BUS_UNLOCK(xfer->xroot->bus);
2626 }
2627 
2628 /*------------------------------------------------------------------------*
2629  *	usbd_pipe_start
2630  *
2631  * This function is used to add an USB transfer to the pipe transfer list.
2632  *------------------------------------------------------------------------*/
2633 void
2634 usbd_pipe_start(struct usb_xfer_queue *pq)
2635 {
2636 	struct usb_endpoint *ep;
2637 	struct usb_xfer *xfer;
2638 	uint8_t type;
2639 
2640 	xfer = pq->curr;
2641 	ep = xfer->endpoint;
2642 
2643 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2644 
2645 	/*
2646 	 * If the endpoint is already stalled we do nothing !
2647 	 */
2648 	if (ep->is_stalled) {
2649 		return;
2650 	}
2651 	/*
2652 	 * Check if we are supposed to stall the endpoint:
2653 	 */
2654 	if (xfer->flags.stall_pipe) {
2655 		struct usb_device *udev;
2656 		struct usb_xfer_root *info;
2657 
2658 		/* clear stall command */
2659 		xfer->flags.stall_pipe = 0;
2660 
2661 		/* get pointer to USB device */
2662 		info = xfer->xroot;
2663 		udev = info->udev;
2664 
2665 		/*
2666 		 * Only stall BULK and INTERRUPT endpoints.
2667 		 */
2668 		type = (ep->edesc->bmAttributes & UE_XFERTYPE);
2669 		if ((type == UE_BULK) ||
2670 		    (type == UE_INTERRUPT)) {
2671 			uint8_t did_stall;
2672 
2673 			did_stall = 1;
2674 
2675 			if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2676 				(udev->bus->methods->set_stall) (
2677 				    udev, ep, &did_stall);
2678 			} else if (udev->ctrl_xfer[1]) {
2679 				info = udev->ctrl_xfer[1]->xroot;
2680 				usb_proc_msignal(
2681 				    USB_BUS_NON_GIANT_PROC(info->bus),
2682 				    &udev->cs_msg[0], &udev->cs_msg[1]);
2683 			} else {
2684 				/* should not happen */
2685 				DPRINTFN(0, "No stall handler\n");
2686 			}
2687 			/*
2688 			 * Check if we should stall. Some USB hardware
2689 			 * handles set- and clear-stall in hardware.
2690 			 */
2691 			if (did_stall) {
2692 				/*
2693 				 * The transfer will be continued when
2694 				 * the clear-stall control endpoint
2695 				 * message is received.
2696 				 */
2697 				ep->is_stalled = 1;
2698 				return;
2699 			}
2700 		} else if (type == UE_ISOCHRONOUS) {
2701 
2702 			/*
2703 			 * Make sure any FIFO overflow or other FIFO
2704 			 * error conditions go away by resetting the
2705 			 * endpoint FIFO through the clear stall
2706 			 * method.
2707 			 */
2708 			if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2709 				(udev->bus->methods->clear_stall) (udev, ep);
2710 			}
2711 		}
2712 	}
2713 	/* Set or clear stall complete - special case */
2714 	if (xfer->nframes == 0) {
2715 		/* we are complete */
2716 		xfer->aframes = 0;
2717 		usbd_transfer_done(xfer, 0);
2718 		return;
2719 	}
2720 	/*
2721 	 * Handled cases:
2722 	 *
2723 	 * 1) Start the first transfer queued.
2724 	 *
2725 	 * 2) Re-start the current USB transfer.
2726 	 */
2727 	/*
2728 	 * Check if there should be any
2729 	 * pre transfer start delay:
2730 	 */
2731 	if (xfer->interval > 0) {
2732 		type = (ep->edesc->bmAttributes & UE_XFERTYPE);
2733 		if ((type == UE_BULK) ||
2734 		    (type == UE_CONTROL)) {
2735 			usbd_transfer_timeout_ms(xfer,
2736 			    &usbd_transfer_start_cb,
2737 			    xfer->interval);
2738 			return;
2739 		}
2740 	}
2741 	DPRINTF("start\n");
2742 
2743 #if USB_HAVE_PF
2744 	usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
2745 #endif
2746 	/* the transfer can now be cancelled */
2747 	xfer->flags_int.can_cancel_immed = 1;
2748 
2749 	/* start USB transfer, if no error */
2750 	if (xfer->error == 0)
2751 		(ep->methods->start) (xfer);
2752 
2753 	/* check for transfer error */
2754 	if (xfer->error) {
2755 		/* some error has happened */
2756 		usbd_transfer_done(xfer, 0);
2757 	}
2758 }
2759 
2760 /*------------------------------------------------------------------------*
2761  *	usbd_transfer_timeout_ms
2762  *
2763  * This function is used to setup a timeout on the given USB
2764  * transfer. If the timeout has been deferred the callback given by
2765  * "cb" will get called after "ms" milliseconds.
2766  *------------------------------------------------------------------------*/
2767 void
2768 usbd_transfer_timeout_ms(struct usb_xfer *xfer,
2769     void (*cb) (void *arg), usb_timeout_t ms)
2770 {
2771 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus);
2772 
2773 	/* defer delay */
2774 	usb_callout_reset(&xfer->timeout_handle,
2775 	    USB_MS_TO_TICKS(ms), cb, xfer);
2776 }
2777 
2778 /*------------------------------------------------------------------------*
2779  *	usbd_callback_wrapper_sub
2780  *
2781  *  - This function will update variables in an USB transfer after
2782  *  that the USB transfer is complete.
2783  *
2784  *  - This function is used to start the next USB transfer on the
2785  *  ep transfer queue, if any.
2786  *
2787  * NOTE: In some special cases the USB transfer will not be removed from
2788  * the pipe queue, but remain first. To enforce USB transfer removal call
2789  * this function passing the error code "USB_ERR_CANCELLED".
2790  *
2791  * Return values:
2792  * 0: Success.
2793  * Else: The callback has been deferred.
2794  *------------------------------------------------------------------------*/
2795 static uint8_t
2796 usbd_callback_wrapper_sub(struct usb_xfer *xfer)
2797 {
2798 	struct usb_endpoint *ep;
2799 	struct usb_bus *bus;
2800 	usb_frcount_t x;
2801 
2802 	bus = xfer->xroot->bus;
2803 
2804 	if ((!xfer->flags_int.open) &&
2805 	    (!xfer->flags_int.did_close)) {
2806 		DPRINTF("close\n");
2807 		USB_BUS_LOCK(bus);
2808 		(xfer->endpoint->methods->close) (xfer);
2809 		USB_BUS_UNLOCK(bus);
2810 		/* only close once */
2811 		xfer->flags_int.did_close = 1;
2812 		return (1);		/* wait for new callback */
2813 	}
2814 	/*
2815 	 * If we have a non-hardware induced error we
2816 	 * need to do the DMA delay!
2817 	 */
2818 	if (xfer->error != 0 && !xfer->flags_int.did_dma_delay &&
2819 	    (xfer->error == USB_ERR_CANCELLED ||
2820 	    xfer->error == USB_ERR_TIMEOUT ||
2821 	    bus->methods->start_dma_delay != NULL)) {
2822 
2823 		usb_timeout_t temp;
2824 
2825 		/* only delay once */
2826 		xfer->flags_int.did_dma_delay = 1;
2827 
2828 		/* we can not cancel this delay */
2829 		xfer->flags_int.can_cancel_immed = 0;
2830 
2831 		temp = usbd_get_dma_delay(xfer->xroot->udev);
2832 
2833 		DPRINTFN(3, "DMA delay, %u ms, "
2834 		    "on %p\n", temp, xfer);
2835 
2836 		if (temp != 0) {
2837 			USB_BUS_LOCK(bus);
2838 			/*
2839 			 * Some hardware solutions have dedicated
2840 			 * events when it is safe to free DMA'ed
2841 			 * memory. For the other hardware platforms we
2842 			 * use a static delay.
2843 			 */
2844 			if (bus->methods->start_dma_delay != NULL) {
2845 				(bus->methods->start_dma_delay) (xfer);
2846 			} else {
2847 				usbd_transfer_timeout_ms(xfer,
2848 					(void (*)(void *))&usb_dma_delay_done_cb,
2849 					temp);
2850 			}
2851 			USB_BUS_UNLOCK(bus);
2852 			return (1);	/* wait for new callback */
2853 		}
2854 	}
2855 	/* check actual number of frames */
2856 	if (xfer->aframes > xfer->nframes) {
2857 		if (xfer->error == 0) {
2858 			panic("%s: actual number of frames, %d, is "
2859 			    "greater than initial number of frames, %d\n",
2860 			    __func__, xfer->aframes, xfer->nframes);
2861 		} else {
2862 			/* just set some valid value */
2863 			xfer->aframes = xfer->nframes;
2864 		}
2865 	}
2866 	/* compute actual length */
2867 	xfer->actlen = 0;
2868 
2869 	for (x = 0; x != xfer->aframes; x++) {
2870 		xfer->actlen += xfer->frlengths[x];
2871 	}
2872 
2873 	/*
2874 	 * Frames that were not transferred get zero actual length in
2875 	 * case the USB device driver does not check the actual number
2876 	 * of frames transferred, "xfer->aframes":
2877 	 */
2878 	for (; x < xfer->nframes; x++) {
2879 		usbd_xfer_set_frame_len(xfer, x, 0);
2880 	}
2881 
2882 	/* check actual length */
2883 	if (xfer->actlen > xfer->sumlen) {
2884 		if (xfer->error == 0) {
2885 			panic("%s: actual length, %d, is greater than "
2886 			    "initial length, %d\n",
2887 			    __func__, xfer->actlen, xfer->sumlen);
2888 		} else {
2889 			/* just set some valid value */
2890 			xfer->actlen = xfer->sumlen;
2891 		}
2892 	}
2893 	DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n",
2894 	    xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen,
2895 	    xfer->aframes, xfer->nframes);
2896 
2897 	if (xfer->error) {
2898 		/* end of control transfer, if any */
2899 		xfer->flags_int.control_act = 0;
2900 
2901 		/* check if we should block the execution queue */
2902 		if ((xfer->error != USB_ERR_CANCELLED) &&
2903 		    (xfer->flags.pipe_bof)) {
2904 			DPRINTFN(2, "xfer=%p: Block On Failure "
2905 			    "on endpoint=%p\n", xfer, xfer->endpoint);
2906 			goto done;
2907 		}
2908 	} else {
2909 		/* check for short transfers */
2910 		if (xfer->actlen < xfer->sumlen) {
2911 
2912 			/* end of control transfer, if any */
2913 			xfer->flags_int.control_act = 0;
2914 
2915 			if (!xfer->flags_int.short_xfer_ok) {
2916 				xfer->error = USB_ERR_SHORT_XFER;
2917 				if (xfer->flags.pipe_bof) {
2918 					DPRINTFN(2, "xfer=%p: Block On Failure on "
2919 					    "Short Transfer on endpoint %p.\n",
2920 					    xfer, xfer->endpoint);
2921 					goto done;
2922 				}
2923 			}
2924 		} else {
2925 			/*
2926 			 * Check if we are in the middle of a
2927 			 * control transfer:
2928 			 */
2929 			if (xfer->flags_int.control_act) {
2930 				DPRINTFN(5, "xfer=%p: Control transfer "
2931 				    "active on endpoint=%p\n", xfer, xfer->endpoint);
2932 				goto done;
2933 			}
2934 		}
2935 	}
2936 
2937 	ep = xfer->endpoint;
2938 
2939 	/*
2940 	 * If the current USB transfer is completing we need to start the
2941 	 * next one:
2942 	 */
2943 	USB_BUS_LOCK(bus);
2944 	if (ep->endpoint_q[xfer->stream_id].curr == xfer) {
2945 		usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL);
2946 
2947 		if (ep->endpoint_q[xfer->stream_id].curr != NULL ||
2948 		    TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) {
2949 			/* there is another USB transfer waiting */
2950 		} else {
2951 			/* this is the last USB transfer */
2952 			/* clear isochronous sync flag */
2953 			xfer->endpoint->is_synced = 0;
2954 		}
2955 	}
2956 	USB_BUS_UNLOCK(bus);
2957 done:
2958 	return (0);
2959 }
2960 
2961 /*------------------------------------------------------------------------*
2962  *	usb_command_wrapper
2963  *
2964  * This function is used to execute commands non-recursivly on an USB
2965  * transfer.
2966  *------------------------------------------------------------------------*/
2967 void
2968 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
2969 {
2970 	if (xfer) {
2971 		/*
2972 		 * If the transfer is not already processing,
2973 		 * queue it!
2974 		 */
2975 		if (pq->curr != xfer) {
2976 			usbd_transfer_enqueue(pq, xfer);
2977 			if (pq->curr != NULL) {
2978 				/* something is already processing */
2979 				DPRINTFN(6, "busy %p\n", pq->curr);
2980 				return;
2981 			}
2982 		}
2983 	} else {
2984 		/* Get next element in queue */
2985 		pq->curr = NULL;
2986 	}
2987 
2988 	if (!pq->recurse_1) {
2989 
2990 		do {
2991 
2992 			/* set both recurse flags */
2993 			pq->recurse_1 = 1;
2994 			pq->recurse_2 = 1;
2995 
2996 			if (pq->curr == NULL) {
2997 				xfer = TAILQ_FIRST(&pq->head);
2998 				if (xfer) {
2999 					TAILQ_REMOVE(&pq->head, xfer,
3000 					    wait_entry);
3001 					xfer->wait_queue = NULL;
3002 					pq->curr = xfer;
3003 				} else {
3004 					break;
3005 				}
3006 			}
3007 			DPRINTFN(6, "cb %p (enter)\n", pq->curr);
3008 			(pq->command) (pq);
3009 			DPRINTFN(6, "cb %p (leave)\n", pq->curr);
3010 
3011 		} while (!pq->recurse_2);
3012 
3013 		/* clear first recurse flag */
3014 		pq->recurse_1 = 0;
3015 
3016 	} else {
3017 		/* clear second recurse flag */
3018 		pq->recurse_2 = 0;
3019 	}
3020 }
3021 
3022 /*------------------------------------------------------------------------*
3023  *	usbd_ctrl_transfer_setup
3024  *
3025  * This function is used to setup the default USB control endpoint
3026  * transfer.
3027  *------------------------------------------------------------------------*/
3028 void
3029 usbd_ctrl_transfer_setup(struct usb_device *udev)
3030 {
3031 	struct usb_xfer *xfer;
3032 	uint8_t no_resetup;
3033 	uint8_t iface_index;
3034 
3035 	/* check for root HUB */
3036 	if (udev->parent_hub == NULL)
3037 		return;
3038 repeat:
3039 
3040 	xfer = udev->ctrl_xfer[0];
3041 	if (xfer) {
3042 		USB_XFER_LOCK(xfer);
3043 		no_resetup =
3044 		    ((xfer->address == udev->address) &&
3045 		    (udev->ctrl_ep_desc.wMaxPacketSize[0] ==
3046 		    udev->ddesc.bMaxPacketSize));
3047 		if (udev->flags.usb_mode == USB_MODE_DEVICE) {
3048 			if (no_resetup) {
3049 				/*
3050 				 * NOTE: checking "xfer->address" and
3051 				 * starting the USB transfer must be
3052 				 * atomic!
3053 				 */
3054 				usbd_transfer_start(xfer);
3055 			}
3056 		}
3057 		USB_XFER_UNLOCK(xfer);
3058 	} else {
3059 		no_resetup = 0;
3060 	}
3061 
3062 	if (no_resetup) {
3063 		/*
3064 	         * All parameters are exactly the same like before.
3065 	         * Just return.
3066 	         */
3067 		return;
3068 	}
3069 	/*
3070 	 * Update wMaxPacketSize for the default control endpoint:
3071 	 */
3072 	udev->ctrl_ep_desc.wMaxPacketSize[0] =
3073 	    udev->ddesc.bMaxPacketSize;
3074 
3075 	/*
3076 	 * Unsetup any existing USB transfer:
3077 	 */
3078 	usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX);
3079 
3080 	/*
3081 	 * Reset clear stall error counter.
3082 	 */
3083 	udev->clear_stall_errors = 0;
3084 
3085 	/*
3086 	 * Try to setup a new USB transfer for the
3087 	 * default control endpoint:
3088 	 */
3089 	iface_index = 0;
3090 	if (usbd_transfer_setup(udev, &iface_index,
3091 	    udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL,
3092 	    &udev->device_lock)) {
3093 		DPRINTFN(0, "could not setup default "
3094 		    "USB transfer\n");
3095 	} else {
3096 		goto repeat;
3097 	}
3098 }
3099 
3100 /*------------------------------------------------------------------------*
3101  *	usbd_clear_data_toggle - factored out code
3102  *
3103  * NOTE: the intention of this function is not to reset the hardware
3104  * data toggle.
3105  *------------------------------------------------------------------------*/
3106 void
3107 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep)
3108 {
3109 	USB_BUS_LOCK_ASSERT(udev->bus);
3110 
3111 	/* check that we have a valid case */
3112 	if (udev->flags.usb_mode == USB_MODE_HOST &&
3113 	    udev->parent_hub != NULL &&
3114 	    udev->bus->methods->clear_stall != NULL &&
3115 	    ep->methods != NULL) {
3116 		(udev->bus->methods->clear_stall) (udev, ep);
3117 	}
3118 }
3119 
3120 /*------------------------------------------------------------------------*
3121  *	usbd_clear_data_toggle - factored out code
3122  *
3123  * NOTE: the intention of this function is not to reset the hardware
3124  * data toggle on the USB device side.
3125  *------------------------------------------------------------------------*/
3126 void
3127 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep)
3128 {
3129 	DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep);
3130 
3131 	USB_BUS_LOCK(udev->bus);
3132 	ep->toggle_next = 0;
3133 	/* some hardware needs a callback to clear the data toggle */
3134 	usbd_clear_stall_locked(udev, ep);
3135 	USB_BUS_UNLOCK(udev->bus);
3136 }
3137 
3138 /*------------------------------------------------------------------------*
3139  *	usbd_clear_stall_callback - factored out clear stall callback
3140  *
3141  * Input parameters:
3142  *  xfer1: Clear Stall Control Transfer
3143  *  xfer2: Stalled USB Transfer
3144  *
3145  * This function is NULL safe.
3146  *
3147  * Return values:
3148  *   0: In progress
3149  *   Else: Finished
3150  *
3151  * Clear stall config example:
3152  *
3153  * static const struct usb_config my_clearstall =  {
3154  *	.type = UE_CONTROL,
3155  *	.endpoint = 0,
3156  *	.direction = UE_DIR_ANY,
3157  *	.interval = 50, //50 milliseconds
3158  *	.bufsize = sizeof(struct usb_device_request),
3159  *	.timeout = 1000, //1.000 seconds
3160  *	.callback = &my_clear_stall_callback, // **
3161  *	.usb_mode = USB_MODE_HOST,
3162  * };
3163  *
3164  * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback"
3165  * passing the correct parameters.
3166  *------------------------------------------------------------------------*/
3167 uint8_t
3168 usbd_clear_stall_callback(struct usb_xfer *xfer1,
3169     struct usb_xfer *xfer2)
3170 {
3171 	struct usb_device_request req;
3172 
3173 	if (xfer2 == NULL) {
3174 		/* looks like we are tearing down */
3175 		DPRINTF("NULL input parameter\n");
3176 		return (0);
3177 	}
3178 	USB_XFER_LOCK_ASSERT(xfer1);
3179 	USB_XFER_LOCK_ASSERT(xfer2);
3180 
3181 	switch (USB_GET_STATE(xfer1)) {
3182 	case USB_ST_SETUP:
3183 
3184 		/*
3185 		 * pre-clear the data toggle to DATA0 ("umass.c" and
3186 		 * "ata-usb.c" depends on this)
3187 		 */
3188 
3189 		usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint);
3190 
3191 		/* setup a clear-stall packet */
3192 
3193 		req.bmRequestType = UT_WRITE_ENDPOINT;
3194 		req.bRequest = UR_CLEAR_FEATURE;
3195 		USETW(req.wValue, UF_ENDPOINT_HALT);
3196 		req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress;
3197 		req.wIndex[1] = 0;
3198 		USETW(req.wLength, 0);
3199 
3200 		/*
3201 		 * "usbd_transfer_setup_sub()" will ensure that
3202 		 * we have sufficient room in the buffer for
3203 		 * the request structure!
3204 		 */
3205 
3206 		/* copy in the transfer */
3207 
3208 		usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req));
3209 
3210 		/* set length */
3211 		xfer1->frlengths[0] = sizeof(req);
3212 		xfer1->nframes = 1;
3213 
3214 		usbd_transfer_submit(xfer1);
3215 		return (0);
3216 
3217 	case USB_ST_TRANSFERRED:
3218 		break;
3219 
3220 	default:			/* Error */
3221 		if (xfer1->error == USB_ERR_CANCELLED) {
3222 			return (0);
3223 		}
3224 		break;
3225 	}
3226 	return (1);			/* Clear Stall Finished */
3227 }
3228 
3229 /*------------------------------------------------------------------------*
3230  *	usbd_transfer_poll
3231  *
3232  * The following function gets called from the USB keyboard driver and
3233  * UMASS when the system has paniced.
3234  *
3235  * NOTE: It is currently not possible to resume normal operation on
3236  * the USB controller which has been polled, due to clearing of the
3237  * "up_dsleep" and "up_msleep" flags.
3238  *------------------------------------------------------------------------*/
3239 void
3240 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max)
3241 {
3242 	struct usb_xfer *xfer;
3243 	struct usb_xfer_root *xroot;
3244 	struct usb_device *udev;
3245 	struct usb_proc_msg *pm;
3246 	uint16_t n;
3247 	uint16_t drop_bus;
3248 	uint16_t drop_xfer;
3249 
3250 	for (n = 0; n != max; n++) {
3251 		/* Extra checks to avoid panic */
3252 		xfer = ppxfer[n];
3253 		if (xfer == NULL)
3254 			continue;	/* no USB transfer */
3255 		xroot = xfer->xroot;
3256 		if (xroot == NULL)
3257 			continue;	/* no USB root */
3258 		udev = xroot->udev;
3259 		if (udev == NULL)
3260 			continue;	/* no USB device */
3261 		if (udev->bus == NULL)
3262 			continue;	/* no BUS structure */
3263 		if (udev->bus->methods == NULL)
3264 			continue;	/* no BUS methods */
3265 		if (udev->bus->methods->xfer_poll == NULL)
3266 			continue;	/* no poll method */
3267 
3268 		/* make sure that the BUS mutex is not locked */
3269 		drop_bus = 0;
3270 		while (lockowned(&xroot->udev->bus->bus_lock)) {
3271 			lockmgr(&xroot->udev->bus->bus_lock, LK_RELEASE);
3272 			drop_bus++;
3273 		}
3274 
3275 		/* make sure that the transfer mutex is not locked */
3276 		drop_xfer = 0;
3277 		while (lockowned(xroot->xfer_lock)) {
3278 			lockmgr(xroot->xfer_lock, LK_RELEASE);
3279 			drop_xfer++;
3280 		}
3281 
3282 		/* Make sure cv_signal() and cv_broadcast() is not called */
3283 		USB_BUS_CONTROL_XFER_PROC(udev->bus)->up_msleep = 0;
3284 		USB_BUS_EXPLORE_PROC(udev->bus)->up_msleep = 0;
3285 		USB_BUS_GIANT_PROC(udev->bus)->up_msleep = 0;
3286 		USB_BUS_NON_GIANT_PROC(udev->bus)->up_msleep = 0;
3287 
3288 		/* poll USB hardware */
3289 		(udev->bus->methods->xfer_poll) (udev->bus);
3290 
3291 		USB_BUS_LOCK(xroot->bus);
3292 
3293 		/* check for clear stall */
3294 		if (udev->ctrl_xfer[1] != NULL) {
3295 
3296 			/* poll clear stall start */
3297 			pm = &udev->cs_msg[0].hdr;
3298 			(pm->pm_callback) (pm);
3299 			/* poll clear stall done thread */
3300 			pm = &udev->ctrl_xfer[1]->
3301 			    xroot->done_m[0].hdr;
3302 			(pm->pm_callback) (pm);
3303 		}
3304 
3305 		/* poll done thread */
3306 		pm = &xroot->done_m[0].hdr;
3307 		(pm->pm_callback) (pm);
3308 
3309 		USB_BUS_UNLOCK(xroot->bus);
3310 
3311 		/* restore transfer mutex */
3312 		while (drop_xfer--)
3313 			lockmgr(xroot->xfer_lock, LK_EXCLUSIVE);
3314 
3315 		/* restore BUS mutex */
3316 		while (drop_bus--)
3317 			lockmgr(&xroot->udev->bus->bus_lock, LK_EXCLUSIVE);
3318 	}
3319 }
3320 
3321 static void
3322 usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
3323     uint8_t type, enum usb_dev_speed speed)
3324 {
3325 	static const uint16_t intr_range_max[USB_SPEED_MAX] = {
3326 		[USB_SPEED_LOW] = 8,
3327 		[USB_SPEED_FULL] = 64,
3328 		[USB_SPEED_HIGH] = 1024,
3329 		[USB_SPEED_VARIABLE] = 1024,
3330 		[USB_SPEED_SUPER] = 1024,
3331 	};
3332 
3333 	static const uint16_t isoc_range_max[USB_SPEED_MAX] = {
3334 		[USB_SPEED_LOW] = 0,	/* invalid */
3335 		[USB_SPEED_FULL] = 1023,
3336 		[USB_SPEED_HIGH] = 1024,
3337 		[USB_SPEED_VARIABLE] = 3584,
3338 		[USB_SPEED_SUPER] = 1024,
3339 	};
3340 
3341 	static const uint16_t control_min[USB_SPEED_MAX] = {
3342 		[USB_SPEED_LOW] = 8,
3343 		[USB_SPEED_FULL] = 8,
3344 		[USB_SPEED_HIGH] = 64,
3345 		[USB_SPEED_VARIABLE] = 512,
3346 		[USB_SPEED_SUPER] = 512,
3347 	};
3348 
3349 	static const uint16_t bulk_min[USB_SPEED_MAX] = {
3350 		[USB_SPEED_LOW] = 8,
3351 		[USB_SPEED_FULL] = 8,
3352 		[USB_SPEED_HIGH] = 512,
3353 		[USB_SPEED_VARIABLE] = 512,
3354 		[USB_SPEED_SUPER] = 1024,
3355 	};
3356 
3357 	uint16_t temp;
3358 
3359 	memset(ptr, 0, sizeof(*ptr));
3360 
3361 	switch (type) {
3362 	case UE_INTERRUPT:
3363 		ptr->range.max = intr_range_max[speed];
3364 		break;
3365 	case UE_ISOCHRONOUS:
3366 		ptr->range.max = isoc_range_max[speed];
3367 		break;
3368 	default:
3369 		if (type == UE_BULK)
3370 			temp = bulk_min[speed];
3371 		else /* UE_CONTROL */
3372 			temp = control_min[speed];
3373 
3374 		/* default is fixed */
3375 		ptr->fixed[0] = temp;
3376 		ptr->fixed[1] = temp;
3377 		ptr->fixed[2] = temp;
3378 		ptr->fixed[3] = temp;
3379 
3380 		if (speed == USB_SPEED_FULL) {
3381 			/* multiple sizes */
3382 			ptr->fixed[1] = 16;
3383 			ptr->fixed[2] = 32;
3384 			ptr->fixed[3] = 64;
3385 		}
3386 		if ((speed == USB_SPEED_VARIABLE) &&
3387 		    (type == UE_BULK)) {
3388 			/* multiple sizes */
3389 			ptr->fixed[2] = 1024;
3390 			ptr->fixed[3] = 1536;
3391 		}
3392 		break;
3393 	}
3394 }
3395 
3396 void	*
3397 usbd_xfer_softc(struct usb_xfer *xfer)
3398 {
3399 	return (xfer->priv_sc);
3400 }
3401 
3402 void *
3403 usbd_xfer_get_priv(struct usb_xfer *xfer)
3404 {
3405 	return (xfer->priv_fifo);
3406 }
3407 
3408 void
3409 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr)
3410 {
3411 	xfer->priv_fifo = ptr;
3412 }
3413 
3414 uint8_t
3415 usbd_xfer_state(struct usb_xfer *xfer)
3416 {
3417 	return (xfer->usb_state);
3418 }
3419 
3420 void
3421 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag)
3422 {
3423 	switch (flag) {
3424 		case USB_FORCE_SHORT_XFER:
3425 			xfer->flags.force_short_xfer = 1;
3426 			break;
3427 		case USB_SHORT_XFER_OK:
3428 			xfer->flags.short_xfer_ok = 1;
3429 			break;
3430 		case USB_MULTI_SHORT_OK:
3431 			xfer->flags.short_frames_ok = 1;
3432 			break;
3433 		case USB_MANUAL_STATUS:
3434 			xfer->flags.manual_status = 1;
3435 			break;
3436 	}
3437 }
3438 
3439 void
3440 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag)
3441 {
3442 	switch (flag) {
3443 		case USB_FORCE_SHORT_XFER:
3444 			xfer->flags.force_short_xfer = 0;
3445 			break;
3446 		case USB_SHORT_XFER_OK:
3447 			xfer->flags.short_xfer_ok = 0;
3448 			break;
3449 		case USB_MULTI_SHORT_OK:
3450 			xfer->flags.short_frames_ok = 0;
3451 			break;
3452 		case USB_MANUAL_STATUS:
3453 			xfer->flags.manual_status = 0;
3454 			break;
3455 	}
3456 }
3457 
3458 /*
3459  * The following function returns in milliseconds when the isochronous
3460  * transfer was completed by the hardware. The returned value wraps
3461  * around 65536 milliseconds.
3462  */
3463 uint16_t
3464 usbd_xfer_get_timestamp(struct usb_xfer *xfer)
3465 {
3466 	return (xfer->isoc_time_complete);
3467 }
3468