xref: /dragonfly/sys/bus/u4b/wlan/if_rum.c (revision 55f88487)
1 /*	$FreeBSD: head/sys/dev/usb/wlan/if_rum.c 298895 2016-05-01 18:53:12Z avos $	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2501USB/RT2601USB chipset driver
24  * http://www.ralinktech.com.tw/
25  */
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 
40 #include <sys/rman.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netproto/802_11/ieee80211_var.h>
52 #include <netproto/802_11/ieee80211_regdomain.h>
53 #include <netproto/802_11/ieee80211_radiotap.h>
54 #include <netproto/802_11/ieee80211_ratectl.h>
55 
56 #include <bus/u4b/usb.h>
57 #include <bus/u4b/usbdi.h>
58 #include "usbdevs.h"
59 
60 #define	USB_DEBUG_VAR rum_debug
61 #include <bus/u4b/usb_debug.h>
62 
63 #include <bus/u4b/wlan/if_rumreg.h>
64 #include <bus/u4b/wlan/if_rumvar.h>
65 #include <bus/u4b/wlan/if_rumfw.h>
66 
67 #ifdef USB_DEBUG
68 static int rum_debug = 0;
69 
70 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
71 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
72     "Debug level");
73 #endif
74 
75 static const STRUCT_USB_HOST_ID rum_devs[] = {
76 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
77     RUM_DEV(ABOCOM, HWU54DM),
78     RUM_DEV(ABOCOM, RT2573_2),
79     RUM_DEV(ABOCOM, RT2573_3),
80     RUM_DEV(ABOCOM, RT2573_4),
81     RUM_DEV(ABOCOM, WUG2700),
82     RUM_DEV(AMIT, CGWLUSB2GO),
83     RUM_DEV(ASUS, RT2573_1),
84     RUM_DEV(ASUS, RT2573_2),
85     RUM_DEV(BELKIN, F5D7050A),
86     RUM_DEV(BELKIN, F5D9050V3),
87     RUM_DEV(CISCOLINKSYS, WUSB54GC),
88     RUM_DEV(CISCOLINKSYS, WUSB54GR),
89     RUM_DEV(CONCEPTRONIC2, C54RU2),
90     RUM_DEV(COREGA, CGWLUSB2GL),
91     RUM_DEV(COREGA, CGWLUSB2GPX),
92     RUM_DEV(DICKSMITH, CWD854F),
93     RUM_DEV(DICKSMITH, RT2573),
94     RUM_DEV(EDIMAX, EW7318USG),
95     RUM_DEV(DLINK2, DWLG122C1),
96     RUM_DEV(DLINK2, WUA1340),
97     RUM_DEV(DLINK2, DWA111),
98     RUM_DEV(DLINK2, DWA110),
99     RUM_DEV(GIGABYTE, GNWB01GS),
100     RUM_DEV(GIGABYTE, GNWI05GS),
101     RUM_DEV(GIGASET, RT2573),
102     RUM_DEV(GOODWAY, RT2573),
103     RUM_DEV(GUILLEMOT, HWGUSB254LB),
104     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
105     RUM_DEV(HUAWEI3COM, WUB320G),
106     RUM_DEV(MELCO, G54HP),
107     RUM_DEV(MELCO, SG54HP),
108     RUM_DEV(MELCO, SG54HG),
109     RUM_DEV(MELCO, WLIUCG),
110     RUM_DEV(MELCO, WLRUCG),
111     RUM_DEV(MELCO, WLRUCGAOSS),
112     RUM_DEV(MSI, RT2573_1),
113     RUM_DEV(MSI, RT2573_2),
114     RUM_DEV(MSI, RT2573_3),
115     RUM_DEV(MSI, RT2573_4),
116     RUM_DEV(NOVATECH, RT2573),
117     RUM_DEV(PLANEX2, GWUS54HP),
118     RUM_DEV(PLANEX2, GWUS54MINI2),
119     RUM_DEV(PLANEX2, GWUSMM),
120     RUM_DEV(QCOM, RT2573),
121     RUM_DEV(QCOM, RT2573_2),
122     RUM_DEV(QCOM, RT2573_3),
123     RUM_DEV(RALINK, RT2573),
124     RUM_DEV(RALINK, RT2573_2),
125     RUM_DEV(RALINK, RT2671),
126     RUM_DEV(SITECOMEU, WL113R2),
127     RUM_DEV(SITECOMEU, WL172),
128     RUM_DEV(SPARKLAN, RT2573),
129     RUM_DEV(SURECOM, RT2573),
130 #undef RUM_DEV
131 };
132 
133 static device_probe_t rum_match;
134 static device_attach_t rum_attach;
135 static device_detach_t rum_detach;
136 
137 static usb_callback_t rum_bulk_read_callback;
138 static usb_callback_t rum_bulk_write_callback;
139 
140 static usb_error_t	rum_do_request(struct rum_softc *sc,
141 			    struct usb_device_request *req, void *data);
142 static usb_error_t	rum_do_mcu_request(struct rum_softc *sc, int);
143 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
144 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
145 			    int, const uint8_t [IEEE80211_ADDR_LEN],
146 			    const uint8_t [IEEE80211_ADDR_LEN]);
147 static void		rum_vap_delete(struct ieee80211vap *);
148 static void		rum_cmdq_cb(void *, int);
149 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
150 			    size_t, uint8_t, CMD_FUNC_PROTO);
151 static void		rum_tx_free(struct rum_tx_data *, int);
152 static void		rum_setup_tx_list(struct rum_softc *);
153 static void		rum_unsetup_tx_list(struct rum_softc *);
154 static void		rum_beacon_miss(struct ieee80211vap *);
155 static void		rum_sta_recv_mgmt(struct ieee80211_node *,
156 			    struct mbuf *, int,
157 			    const struct ieee80211_rx_stats *, int, int);
158 static int		rum_set_power_state(struct rum_softc *, int);
159 static int		rum_newstate(struct ieee80211vap *,
160 			    enum ieee80211_state, int);
161 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
162 static void		rum_setup_tx_desc(struct rum_softc *,
163 			    struct rum_tx_desc *, struct ieee80211_key *,
164 			    uint32_t, uint8_t, uint8_t, int, int, int);
165 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
166 			    struct ieee80211_node *,
167 			    const struct ieee80211_key *);
168 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
169 			    struct ieee80211_node *);
170 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
171 			    struct ieee80211_node *,
172 			    const struct ieee80211_bpf_params *);
173 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
174 			    struct ieee80211_node *);
175 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
176 static void		rum_start(struct rum_softc *);
177 static void		rum_parent(struct ieee80211com *);
178 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
179 			    int);
180 static uint32_t		rum_read(struct rum_softc *, uint16_t);
181 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
182 			    int);
183 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
184 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
185 			    size_t);
186 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
187 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
188 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
189 			    uint32_t);
190 static int		rum_bbp_busy(struct rum_softc *);
191 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
192 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
193 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
194 static void		rum_select_antenna(struct rum_softc *);
195 static void		rum_enable_mrr(struct rum_softc *);
196 static void		rum_set_txpreamble(struct rum_softc *);
197 static void		rum_set_basicrates(struct rum_softc *);
198 static void		rum_select_band(struct rum_softc *,
199 			    struct ieee80211_channel *);
200 static void		rum_set_chan(struct rum_softc *,
201 			    struct ieee80211_channel *);
202 static void		rum_set_maxretry(struct rum_softc *,
203 			    struct ieee80211vap *);
204 static int		rum_enable_tsf_sync(struct rum_softc *);
205 static void		rum_enable_tsf(struct rum_softc *);
206 static void		rum_abort_tsf_sync(struct rum_softc *);
207 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
208 static void		rum_update_slot_cb(struct rum_softc *,
209 			    union sec_param *, uint8_t);
210 static void		rum_update_slot(struct ieee80211com *);
211 static int		rum_wme_update(struct ieee80211com *);
212 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
213 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
214 static void		rum_update_mcast(struct ieee80211com *);
215 static void		rum_update_promisc(struct ieee80211com *);
216 static void		rum_setpromisc(struct rum_softc *);
217 static const char	*rum_get_rf(int);
218 static void		rum_read_eeprom(struct rum_softc *);
219 static int		rum_bbp_wakeup(struct rum_softc *);
220 static int		rum_bbp_init(struct rum_softc *);
221 static void		rum_clr_shkey_regs(struct rum_softc *);
222 static int		rum_init(struct rum_softc *);
223 static void		rum_stop(struct rum_softc *);
224 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
225 			    size_t);
226 static int		rum_set_sleep_time(struct rum_softc *, uint16_t);
227 static int		rum_reset(struct ieee80211vap *, u_long);
228 static int		rum_set_beacon(struct rum_softc *,
229 			    struct ieee80211vap *);
230 static int		rum_alloc_beacon(struct rum_softc *,
231 			    struct ieee80211vap *);
232 static void		rum_update_beacon_cb(struct rum_softc *,
233 			    union sec_param *, uint8_t);
234 static void		rum_update_beacon(struct ieee80211vap *, int);
235 static int		rum_common_key_set(struct rum_softc *,
236 			    struct ieee80211_key *, uint16_t);
237 static void		rum_group_key_set_cb(struct rum_softc *,
238 			    union sec_param *, uint8_t);
239 static void		rum_group_key_del_cb(struct rum_softc *,
240 			    union sec_param *, uint8_t);
241 static void		rum_pair_key_set_cb(struct rum_softc *,
242 			    union sec_param *, uint8_t);
243 static void		rum_pair_key_del_cb(struct rum_softc *,
244 			    union sec_param *, uint8_t);
245 static int		rum_key_alloc(struct ieee80211vap *,
246 			    struct ieee80211_key *, ieee80211_keyix *,
247 			    ieee80211_keyix *);
248 static int		rum_key_set(struct ieee80211vap *,
249 			    const struct ieee80211_key *);
250 static int		rum_key_delete(struct ieee80211vap *,
251 			    const struct ieee80211_key *);
252 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
253 			    const struct ieee80211_bpf_params *);
254 static void		rum_scan_start(struct ieee80211com *);
255 static void		rum_scan_end(struct ieee80211com *);
256 static void		rum_set_channel(struct ieee80211com *);
257 static void		rum_getradiocaps(struct ieee80211com *, int, int *,
258 			    struct ieee80211_channel[]);
259 static int		rum_get_rssi(struct rum_softc *, uint8_t);
260 static void		rum_ratectl_start(struct rum_softc *,
261 			    struct ieee80211_node *);
262 static void		rum_ratectl_timeout(void *);
263 static void		rum_ratectl_task(void *, int);
264 static int		rum_pause(struct rum_softc *, int);
265 
266 static const struct {
267 	uint32_t	reg;
268 	uint32_t	val;
269 } rum_def_mac[] = {
270 	{ RT2573_TXRX_CSR0,  0x025fb032 },
271 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
272 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
273 	{ RT2573_TXRX_CSR3,  0x00858687 },
274 	{ RT2573_TXRX_CSR7,  0x2e31353b },
275 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
276 	{ RT2573_TXRX_CSR15, 0x0000000f },
277 	{ RT2573_MAC_CSR6,   0x00000fff },
278 	{ RT2573_MAC_CSR8,   0x016c030a },
279 	{ RT2573_MAC_CSR10,  0x00000718 },
280 	{ RT2573_MAC_CSR12,  0x00000004 },
281 	{ RT2573_MAC_CSR13,  0x00007f00 },
282 	{ RT2573_SEC_CSR2,   0x00000000 },
283 	{ RT2573_SEC_CSR3,   0x00000000 },
284 	{ RT2573_SEC_CSR4,   0x00000000 },
285 	{ RT2573_PHY_CSR1,   0x000023b0 },
286 	{ RT2573_PHY_CSR5,   0x00040a06 },
287 	{ RT2573_PHY_CSR6,   0x00080606 },
288 	{ RT2573_PHY_CSR7,   0x00000408 },
289 	{ RT2573_AIFSN_CSR,  0x00002273 },
290 	{ RT2573_CWMIN_CSR,  0x00002344 },
291 	{ RT2573_CWMAX_CSR,  0x000034aa }
292 };
293 
294 static const struct {
295 	uint8_t	reg;
296 	uint8_t	val;
297 } rum_def_bbp[] = {
298 	{   3, 0x80 },
299 	{  15, 0x30 },
300 	{  17, 0x20 },
301 	{  21, 0xc8 },
302 	{  22, 0x38 },
303 	{  23, 0x06 },
304 	{  24, 0xfe },
305 	{  25, 0x0a },
306 	{  26, 0x0d },
307 	{  32, 0x0b },
308 	{  34, 0x12 },
309 	{  37, 0x07 },
310 	{  39, 0xf8 },
311 	{  41, 0x60 },
312 	{  53, 0x10 },
313 	{  54, 0x18 },
314 	{  60, 0x10 },
315 	{  61, 0x04 },
316 	{  62, 0x04 },
317 	{  75, 0xfe },
318 	{  86, 0xfe },
319 	{  88, 0xfe },
320 	{  90, 0x0f },
321 	{  99, 0x00 },
322 	{ 102, 0x16 },
323 	{ 107, 0x04 }
324 };
325 
326 static const uint8_t rum_chan_2ghz[] =
327 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
328 
329 static const uint8_t rum_chan_5ghz[] =
330 	{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
331 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
332 	  149, 153, 157, 161, 165 };
333 
334 static const struct rfprog {
335 	uint8_t		chan;
336 	uint32_t	r1, r2, r3, r4;
337 }  rum_rf5226[] = {
338 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
339 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
340 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
341 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
342 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
343 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
344 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
345 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
346 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
347 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
348 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
349 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
350 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
351 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
352 
353 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
354 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
355 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
356 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
357 
358 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
359 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
360 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
361 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
362 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
363 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
364 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
365 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
366 
367 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
368 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
369 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
370 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
371 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
372 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
373 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
374 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
375 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
376 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
377 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
378 
379 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
380 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
381 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
382 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
383 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
384 }, rum_rf5225[] = {
385 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
386 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
387 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
388 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
389 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
390 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
391 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
392 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
393 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
394 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
395 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
396 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
397 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
398 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
399 
400 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
401 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
402 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
403 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
404 
405 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
406 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
407 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
408 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
409 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
410 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
411 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
412 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
413 
414 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
415 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
416 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
417 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
418 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
419 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
420 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
421 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
422 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
423 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
424 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
425 
426 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
427 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
428 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
429 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
430 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
431 };
432 
433 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
434 	[RUM_BULK_WR] = {
435 		.type = UE_BULK,
436 		.endpoint = UE_ADDR_ANY,
437 		.direction = UE_DIR_OUT,
438 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
439 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
440 		.callback = rum_bulk_write_callback,
441 		.timeout = 5000,	/* ms */
442 	},
443 	[RUM_BULK_RD] = {
444 		.type = UE_BULK,
445 		.endpoint = UE_ADDR_ANY,
446 		.direction = UE_DIR_IN,
447 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
448 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
449 		.callback = rum_bulk_read_callback,
450 	},
451 };
452 
453 static int
454 rum_match(device_t self)
455 {
456 	struct usb_attach_arg *uaa = device_get_ivars(self);
457 
458 	if (uaa->usb_mode != USB_MODE_HOST)
459 		return (ENXIO);
460 	if (uaa->info.bConfigIndex != 0)
461 		return (ENXIO);
462 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
463 		return (ENXIO);
464 
465 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
466 }
467 
468 static int
469 rum_attach(device_t self)
470 {
471 	struct usb_attach_arg *uaa = device_get_ivars(self);
472 	struct rum_softc *sc = device_get_softc(self);
473 	struct ieee80211com *ic = &sc->sc_ic;
474 	uint32_t tmp;
475 	uint8_t iface_index;
476 	int error, ntries;
477 
478 	wlan_serialize_enter();
479 	device_set_usb_desc(self);
480 	sc->sc_udev = uaa->device;
481 	sc->sc_dev = self;
482 
483 	RUM_LOCK_INIT(sc);
484 	RUM_CMDQ_LOCK_INIT(sc);
485 	mbufq_init(&sc->sc_snd, ifqmaxlen);
486 
487 	iface_index = RT2573_IFACE_INDEX;
488 	error = usbd_transfer_setup(uaa->device, &iface_index,
489 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_lock);
490 	if (error) {
491 		device_printf(self, "could not allocate USB transfers, "
492 		    "err=%s\n", usbd_errstr(error));
493 		goto detach;
494 	}
495 
496 	RUM_LOCK(sc);
497 	/* retrieve RT2573 rev. no */
498 	for (ntries = 0; ntries < 100; ntries++) {
499 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
500 			break;
501 		if (rum_pause(sc, hz / 100))
502 			break;
503 	}
504 	if (ntries == 100) {
505 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
506 		RUM_UNLOCK(sc);
507 		goto detach;
508 	}
509 
510 	/* retrieve MAC address and various other things from EEPROM */
511 	rum_read_eeprom(sc);
512 
513 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
514 	    tmp, rum_get_rf(sc->rf_rev));
515 
516 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
517 	RUM_UNLOCK(sc);
518 
519 	ic->ic_softc = sc;
520 	ic->ic_name = device_get_nameunit(self);
521 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
522 
523 	/* set device capabilities */
524 	ic->ic_caps =
525 	      IEEE80211_C_STA		/* station mode supported */
526 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
527 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
528 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
529 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
530 	    | IEEE80211_C_TXPMGT	/* tx power management */
531 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
532 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
533 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
534 	    | IEEE80211_C_WPA		/* 802.11i */
535 	    | IEEE80211_C_WME		/* 802.11e */
536 	    | IEEE80211_C_PMGT		/* Station-side power mgmt */
537 	    | IEEE80211_C_SWSLEEP	/* net80211 managed power mgmt */
538 	    ;
539 
540 	ic->ic_cryptocaps =
541 	    IEEE80211_CRYPTO_WEP |
542 	    IEEE80211_CRYPTO_AES_CCM |
543 	    IEEE80211_CRYPTO_TKIPMIC |
544 	    IEEE80211_CRYPTO_TKIP;
545 
546 	rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
547 	    ic->ic_channels);
548 
549 	ieee80211_ifattach(ic);
550 	ic->ic_update_promisc = rum_update_promisc;
551 	ic->ic_raw_xmit = rum_raw_xmit;
552 	ic->ic_scan_start = rum_scan_start;
553 	ic->ic_scan_end = rum_scan_end;
554 	ic->ic_set_channel = rum_set_channel;
555 	ic->ic_getradiocaps = rum_getradiocaps;
556 	ic->ic_transmit = rum_transmit;
557 	ic->ic_parent = rum_parent;
558 	ic->ic_vap_create = rum_vap_create;
559 	ic->ic_vap_delete = rum_vap_delete;
560 	ic->ic_updateslot = rum_update_slot;
561 	ic->ic_wme.wme_update = rum_wme_update;
562 	ic->ic_update_mcast = rum_update_mcast;
563 
564 	ieee80211_radiotap_attach(ic,
565 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
566 		RT2573_TX_RADIOTAP_PRESENT,
567 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
568 		RT2573_RX_RADIOTAP_PRESENT);
569 
570 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
571 
572 	if (bootverbose)
573 		ieee80211_announce(ic);
574 
575 	wlan_serialize_exit();
576 	return (0);
577 
578 detach:
579 	wlan_serialize_exit();
580 	rum_detach(self);
581 	return (ENXIO);			/* failure */
582 }
583 
584 static int
585 rum_detach(device_t self)
586 {
587 	struct rum_softc *sc = device_get_softc(self);
588 	struct ieee80211com *ic = &sc->sc_ic;
589 
590 	/* Prevent further ioctls */
591 	RUM_LOCK(sc);
592 	sc->sc_detached = 1;
593 	RUM_UNLOCK(sc);
594 
595 	/* stop all USB transfers */
596 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
597 
598 	/* free TX list, if any */
599 	RUM_LOCK(sc);
600 	rum_unsetup_tx_list(sc);
601 	RUM_UNLOCK(sc);
602 
603 	if (ic->ic_softc == sc) {
604 		ieee80211_draintask(ic, &sc->cmdq_task);
605 		ieee80211_ifdetach(ic);
606 	}
607 
608 	mbufq_drain(&sc->sc_snd);
609 	RUM_CMDQ_LOCK_DESTROY(sc);
610 	RUM_LOCK_DESTROY(sc);
611 
612 	return (0);
613 }
614 
615 static usb_error_t
616 rum_do_request(struct rum_softc *sc,
617     struct usb_device_request *req, void *data)
618 {
619 	usb_error_t err;
620 	int ntries = 10;
621 
622 	while (ntries--) {
623 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_lock,
624 		    req, data, 0, NULL, 250 /* ms */);
625 		if (err == 0)
626 			break;
627 
628 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
629 		    usbd_errstr(err));
630 		if (rum_pause(sc, hz / 100))
631 			break;
632 	}
633 	return (err);
634 }
635 
636 static usb_error_t
637 rum_do_mcu_request(struct rum_softc *sc, int request)
638 {
639 	struct usb_device_request req;
640 
641 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
642 	req.bRequest = RT2573_MCU_CNTL;
643 	USETW(req.wValue, request);
644 	USETW(req.wIndex, 0);
645 	USETW(req.wLength, 0);
646 
647 	return (rum_do_request(sc, &req, NULL));
648 }
649 
650 static struct ieee80211vap *
651 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
652     enum ieee80211_opmode opmode, int flags,
653     const uint8_t bssid[IEEE80211_ADDR_LEN],
654     const uint8_t mac[IEEE80211_ADDR_LEN])
655 {
656 	struct rum_softc *sc = ic->ic_softc;
657 	struct rum_vap *rvp;
658 	struct ieee80211vap *vap;
659 
660 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
661 		return NULL;
662 	rvp = kmalloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
663 	vap = &rvp->vap;
664 	/* enable s/w bmiss handling for sta mode */
665 
666 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
667 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
668 		/* out of memory */
669 		kfree(rvp, M_80211_VAP);
670 		return (NULL);
671 	}
672 
673 	/* override state transition machine */
674 	rvp->newstate = vap->iv_newstate;
675 	vap->iv_newstate = rum_newstate;
676 	vap->iv_key_alloc = rum_key_alloc;
677 	vap->iv_key_set = rum_key_set;
678 	vap->iv_key_delete = rum_key_delete;
679 	vap->iv_update_beacon = rum_update_beacon;
680 	vap->iv_reset = rum_reset;
681 	vap->iv_max_aid = RT2573_ADDR_MAX;
682 
683 	if (opmode == IEEE80211_M_STA) {
684 		/*
685 		 * Move device to the sleep state when
686 		 * beacon is received and there is no data for us.
687 		 *
688 		 * Used only for IEEE80211_S_SLEEP state.
689 		 */
690 		rvp->recv_mgmt = vap->iv_recv_mgmt;
691 		vap->iv_recv_mgmt = rum_sta_recv_mgmt;
692 
693 		/* Ignored while sleeping. */
694 		rvp->bmiss = vap->iv_bmiss;
695 		vap->iv_bmiss = rum_beacon_miss;
696 	}
697 
698 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_lock, 0);
699 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
700 	ieee80211_ratectl_init(vap);
701 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
702 	/* complete setup */
703 	ieee80211_vap_attach(vap, ieee80211_media_change,
704 	    ieee80211_media_status, mac);
705 	ic->ic_opmode = opmode;
706 	return vap;
707 }
708 
709 static void
710 rum_vap_delete(struct ieee80211vap *vap)
711 {
712 	struct rum_vap *rvp = RUM_VAP(vap);
713 	struct ieee80211com *ic = vap->iv_ic;
714 
715 	m_freem(rvp->bcn_mbuf);
716 	usb_callout_drain(&rvp->ratectl_ch);
717 	ieee80211_draintask(ic, &rvp->ratectl_task);
718 	ieee80211_ratectl_deinit(vap);
719 	ieee80211_vap_detach(vap);
720 	kfree(rvp, M_80211_VAP);
721 }
722 
723 static void
724 rum_cmdq_cb(void *arg, int pending)
725 {
726 	struct rum_softc *sc = arg;
727 	struct rum_cmdq *rc;
728 
729 	RUM_CMDQ_LOCK(sc);
730 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
731 		rc = &sc->cmdq[sc->cmdq_first];
732 		RUM_CMDQ_UNLOCK(sc);
733 
734 		RUM_LOCK(sc);
735 		rc->func(sc, &rc->data, rc->rvp_id);
736 		RUM_UNLOCK(sc);
737 
738 		RUM_CMDQ_LOCK(sc);
739 		memset(rc, 0, sizeof (*rc));
740 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
741 	}
742 	RUM_CMDQ_UNLOCK(sc);
743 }
744 
745 static int
746 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
747     uint8_t rvp_id, CMD_FUNC_PROTO)
748 {
749 	struct ieee80211com *ic = &sc->sc_ic;
750 
751 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
752 
753 	RUM_CMDQ_LOCK(sc);
754 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
755 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
756 		RUM_CMDQ_UNLOCK(sc);
757 
758 		return EAGAIN;
759 	}
760 
761 	if (ptr != NULL)
762 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
763 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
764 	sc->cmdq[sc->cmdq_last].func = func;
765 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
766 	RUM_CMDQ_UNLOCK(sc);
767 
768 	ieee80211_runtask(ic, &sc->cmdq_task);
769 
770 	return 0;
771 }
772 
773 static void
774 rum_tx_free(struct rum_tx_data *data, int txerr)
775 {
776 	struct rum_softc *sc = data->sc;
777 
778 	if (data->m != NULL) {
779 		ieee80211_tx_complete(data->ni, data->m, txerr);
780 		data->m = NULL;
781 		data->ni = NULL;
782 	}
783 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
784 	sc->tx_nfree++;
785 }
786 
787 static void
788 rum_setup_tx_list(struct rum_softc *sc)
789 {
790 	struct rum_tx_data *data;
791 	int i;
792 
793 	sc->tx_nfree = 0;
794 	STAILQ_INIT(&sc->tx_q);
795 	STAILQ_INIT(&sc->tx_free);
796 
797 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
798 		data = &sc->tx_data[i];
799 
800 		data->sc = sc;
801 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
802 		sc->tx_nfree++;
803 	}
804 }
805 
806 static void
807 rum_unsetup_tx_list(struct rum_softc *sc)
808 {
809 	struct rum_tx_data *data;
810 	int i;
811 
812 	/* make sure any subsequent use of the queues will fail */
813 	sc->tx_nfree = 0;
814 	STAILQ_INIT(&sc->tx_q);
815 	STAILQ_INIT(&sc->tx_free);
816 
817 	/* free up all node references and mbufs */
818 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
819 		data = &sc->tx_data[i];
820 
821 		if (data->m != NULL) {
822 			m_freem(data->m);
823 			data->m = NULL;
824 		}
825 		if (data->ni != NULL) {
826 			ieee80211_free_node(data->ni);
827 			data->ni = NULL;
828 		}
829 	}
830 }
831 
832 static void
833 rum_beacon_miss(struct ieee80211vap *vap)
834 {
835 	struct ieee80211com *ic = vap->iv_ic;
836 	struct rum_softc *sc = ic->ic_softc;
837 	struct rum_vap *rvp = RUM_VAP(vap);
838 	int sleep;
839 
840 	RUM_LOCK(sc);
841 	if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
842 		DPRINTFN(12, "dropping 'sleeping' bit, "
843 		    "device must be awake now\n");
844 
845 		sc->sc_sleeping = 0;
846 	}
847 
848 	sleep = sc->sc_sleeping;
849 	RUM_UNLOCK(sc);
850 
851 	if (!sleep)
852 		rvp->bmiss(vap);
853 #ifdef USB_DEBUG
854 	else
855 		DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
856 #endif
857 }
858 
859 static void
860 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
861     const struct ieee80211_rx_stats *rxs,
862     int rssi, int nf)
863 {
864 	struct ieee80211vap *vap = ni->ni_vap;
865 	struct rum_softc *sc = vap->iv_ic->ic_softc;
866 	struct rum_vap *rvp = RUM_VAP(vap);
867 
868 	if (vap->iv_state == IEEE80211_S_SLEEP &&
869 	    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
870 		RUM_LOCK(sc);
871 		DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
872 		    !!(sc->last_rx_flags & RT2573_RX_MYBSS),
873 		    sc->last_rx_flags);
874 
875 		if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
876 		    (RT2573_RX_MYBSS | RT2573_RX_BC)) {
877 			/*
878 			 * Put it to sleep here; in case if there is a data
879 			 * for us, iv_recv_mgmt() will wakeup the device via
880 			 * SLEEP -> RUN state transition.
881 			 */
882 			rum_set_power_state(sc, 1);
883 		}
884 		RUM_UNLOCK(sc);
885 	}
886 
887 	rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
888 }
889 
890 static int
891 rum_set_power_state(struct rum_softc *sc, int sleep)
892 {
893 	usb_error_t uerror;
894 
895 	RUM_LOCK_ASSERT(sc);
896 
897 	DPRINTFN(12, "moving to %s state (sleep time %u)\n",
898 	    sleep ? "sleep" : "awake", sc->sc_sleep_time);
899 
900 	uerror = rum_do_mcu_request(sc,
901 	    sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
902 	if (uerror != USB_ERR_NORMAL_COMPLETION) {
903 		device_printf(sc->sc_dev,
904 		    "%s: could not change power state: %s\n",
905 		    __func__, usbd_errstr(uerror));
906 		return (EIO);
907 	}
908 
909 	sc->sc_sleeping = !!sleep;
910 	sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
911 
912 	return (0);
913 }
914 
915 static int
916 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
917 {
918 	struct rum_vap *rvp = RUM_VAP(vap);
919 	struct ieee80211com *ic = vap->iv_ic;
920 	struct rum_softc *sc = ic->ic_softc;
921 	const struct ieee80211_txparam *tp;
922 	enum ieee80211_state ostate;
923 	struct ieee80211_node *ni;
924 	usb_error_t uerror;
925 	int ret = 0;
926 
927 	ostate = vap->iv_state;
928 	DPRINTF("%s -> %s\n",
929 		ieee80211_state_name[ostate],
930 		ieee80211_state_name[nstate]);
931 
932 	IEEE80211_UNLOCK(ic);
933 	RUM_LOCK(sc);
934 	usb_callout_stop(&rvp->ratectl_ch);
935 
936 	if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
937 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
938 		rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
939 
940 		/*
941 		 * Ignore any errors;
942 		 * any subsequent TX will wakeup it anyway
943 		 */
944 		(void) rum_set_power_state(sc, 0);
945 	}
946 
947 	switch (nstate) {
948 	case IEEE80211_S_INIT:
949 		if (ostate == IEEE80211_S_RUN)
950 			rum_abort_tsf_sync(sc);
951 
952 		break;
953 
954 	case IEEE80211_S_RUN:
955 		if (ostate == IEEE80211_S_SLEEP)
956 			break;		/* already handled */
957 
958 		ni = ieee80211_ref_node(vap->iv_bss);
959 
960 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
961 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
962 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
963 				ret = EINVAL;
964 				goto run_fail;
965 			}
966 			rum_update_slot_cb(sc, NULL, 0);
967 			rum_enable_mrr(sc);
968 			rum_set_txpreamble(sc);
969 			rum_set_basicrates(sc);
970 			rum_set_maxretry(sc, vap);
971 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
972 			rum_set_bssid(sc, sc->sc_bssid);
973 		}
974 
975 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
976 		    vap->iv_opmode == IEEE80211_M_IBSS) {
977 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
978 				goto run_fail;
979 		}
980 
981 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
982 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
983 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
984 				goto run_fail;
985 		} else
986 			rum_enable_tsf(sc);
987 
988 		/* enable automatic rate adaptation */
989 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
990 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
991 			rum_ratectl_start(sc, ni);
992 run_fail:
993 		ieee80211_free_node(ni);
994 		break;
995 	case IEEE80211_S_SLEEP:
996 		/* Implemented for STA mode only. */
997 		if (vap->iv_opmode != IEEE80211_M_STA)
998 			break;
999 
1000 		uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1001 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1002 			ret = EIO;
1003 			break;
1004 		}
1005 
1006 		uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1007 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1008 			ret = EIO;
1009 			break;
1010 		}
1011 
1012 		ret = rum_set_power_state(sc, 1);
1013 		if (ret != 0) {
1014 			device_printf(sc->sc_dev,
1015 			    "%s: could not move to the SLEEP state: %s\n",
1016 			    __func__, usbd_errstr(uerror));
1017 		}
1018 		break;
1019 	default:
1020 		break;
1021 	}
1022 	RUM_UNLOCK(sc);
1023 	IEEE80211_LOCK(ic);
1024 	return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1025 }
1026 
1027 static void
1028 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1029 {
1030 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1031 	struct ieee80211vap *vap;
1032 	struct rum_tx_data *data;
1033 	struct mbuf *m;
1034 	struct usb_page_cache *pc;
1035 	unsigned int len;
1036 	int actlen, sumlen;
1037 
1038 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1039 
1040 	switch (USB_GET_STATE(xfer)) {
1041 	case USB_ST_TRANSFERRED:
1042 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1043 
1044 		/* free resources */
1045 		data = usbd_xfer_get_priv(xfer);
1046 		rum_tx_free(data, 0);
1047 		usbd_xfer_set_priv(xfer, NULL);
1048 
1049 		/* FALLTHROUGH */
1050 	case USB_ST_SETUP:
1051 tr_setup:
1052 		data = STAILQ_FIRST(&sc->tx_q);
1053 		if (data) {
1054 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1055 			m = data->m;
1056 
1057 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1058 				DPRINTFN(0, "data overflow, %u bytes\n",
1059 				    m->m_pkthdr.len);
1060 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1061 			}
1062 			pc = usbd_xfer_get_frame(xfer, 0);
1063 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1064 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1065 			    m->m_pkthdr.len);
1066 
1067 			vap = data->ni->ni_vap;
1068 			if (ieee80211_radiotap_active_vap(vap)) {
1069 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1070 
1071 				tap->wt_flags = 0;
1072 				tap->wt_rate = data->rate;
1073 				rum_get_tsf(sc, &tap->wt_tsf);
1074 				tap->wt_antenna = sc->tx_ant;
1075 
1076 				ieee80211_radiotap_tx(vap, m);
1077 			}
1078 
1079 			/* align end on a 4-bytes boundary */
1080 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1081 			if ((len % 64) == 0)
1082 				len += 4;
1083 
1084 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1085 			    m->m_pkthdr.len, len);
1086 
1087 			usbd_xfer_set_frame_len(xfer, 0, len);
1088 			usbd_xfer_set_priv(xfer, data);
1089 
1090 			usbd_transfer_submit(xfer);
1091 		}
1092 		rum_start(sc);
1093 		break;
1094 
1095 	default:			/* Error */
1096 		DPRINTFN(11, "transfer error, %s\n",
1097 		    usbd_errstr(error));
1098 
1099 #if defined(__DragonFly__)
1100 		++sc->sc_ic.ic_oerrors;
1101 #else
1102 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1103 #endif
1104 		data = usbd_xfer_get_priv(xfer);
1105 		if (data != NULL) {
1106 			rum_tx_free(data, error);
1107 			usbd_xfer_set_priv(xfer, NULL);
1108 		}
1109 
1110 		if (error != USB_ERR_CANCELLED) {
1111 			if (error == USB_ERR_TIMEOUT)
1112 				device_printf(sc->sc_dev, "device timeout\n");
1113 
1114 			/*
1115 			 * Try to clear stall first, also if other
1116 			 * errors occur, hence clearing stall
1117 			 * introduces a 50 ms delay:
1118 			 */
1119 			usbd_xfer_set_stall(xfer);
1120 			goto tr_setup;
1121 		}
1122 		break;
1123 	}
1124 }
1125 
1126 static void
1127 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1128 {
1129 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1130 	struct ieee80211com *ic = &sc->sc_ic;
1131 	struct ieee80211_frame_min *wh;
1132 	struct ieee80211_node *ni;
1133 	struct mbuf *m = NULL;
1134 	struct usb_page_cache *pc;
1135 	uint32_t flags;
1136 	uint8_t rssi = 0;
1137 	int len;
1138 
1139 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1140 
1141 	switch (USB_GET_STATE(xfer)) {
1142 	case USB_ST_TRANSFERRED:
1143 
1144 		DPRINTFN(15, "rx done, actlen=%d\n", len);
1145 
1146 		if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
1147 			DPRINTF("%s: xfer too short %d\n",
1148 			    device_get_nameunit(sc->sc_dev), len);
1149 #if defined(__DragonFly__)
1150 			++ic->ic_ierrors;
1151 #else
1152 			counter_u64_add(ic->ic_ierrors, 1);
1153 #endif
1154 			goto tr_setup;
1155 		}
1156 
1157 		len -= RT2573_RX_DESC_SIZE;
1158 		pc = usbd_xfer_get_frame(xfer, 0);
1159 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1160 
1161 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1162 		flags = le32toh(sc->sc_rx_desc.flags);
1163 		sc->last_rx_flags = flags;
1164 		if (flags & RT2573_RX_CRC_ERROR) {
1165 			/*
1166 		         * This should not happen since we did not
1167 		         * request to receive those frames when we
1168 		         * filled RUM_TXRX_CSR2:
1169 		         */
1170 			DPRINTFN(5, "PHY or CRC error\n");
1171 #if defined(__DragonFly__)
1172 			++ic->ic_ierrors;
1173 #else
1174 			counter_u64_add(ic->ic_ierrors, 1);
1175 #endif
1176 			goto tr_setup;
1177 		}
1178 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1179 			switch (flags & RT2573_RX_DEC_MASK) {
1180 			case RT2573_RX_IV_ERROR:
1181 				DPRINTFN(5, "IV/EIV error\n");
1182 				break;
1183 			case RT2573_RX_MIC_ERROR:
1184 				DPRINTFN(5, "MIC error\n");
1185 				break;
1186 			case RT2573_RX_KEY_ERROR:
1187 				DPRINTFN(5, "Key error\n");
1188 				break;
1189 			}
1190 #if defined(__DragonFly__)
1191 			++ic->ic_ierrors;
1192 #else
1193 			counter_u64_add(ic->ic_ierrors, 1);
1194 #endif
1195 			goto tr_setup;
1196 		}
1197 
1198 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1199 		if (m == NULL) {
1200 			DPRINTF("could not allocate mbuf\n");
1201 #if defined(__DragonFly__)
1202 			++ic->ic_ierrors;
1203 #else
1204 			counter_u64_add(ic->ic_ierrors, 1);
1205 #endif
1206 			goto tr_setup;
1207 		}
1208 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1209 		    mtod(m, uint8_t *), len);
1210 
1211 		wh = mtod(m, struct ieee80211_frame_min *);
1212 
1213 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1214 		    (flags & RT2573_RX_CIP_MASK) !=
1215 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1216 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1217 			m->m_flags |= M_WEP;
1218 		}
1219 
1220 		/* finalize mbuf */
1221 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1222 
1223 		if (ieee80211_radiotap_active(ic)) {
1224 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1225 
1226 			tap->wr_flags = 0;
1227 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1228 			    (flags & RT2573_RX_OFDM) ?
1229 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1230 			rum_get_tsf(sc, &tap->wr_tsf);
1231 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1232 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1233 			tap->wr_antenna = sc->rx_ant;
1234 		}
1235 		/* FALLTHROUGH */
1236 	case USB_ST_SETUP:
1237 tr_setup:
1238 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1239 		usbd_transfer_submit(xfer);
1240 
1241 		/*
1242 		 * At the end of a USB callback it is always safe to unlock
1243 		 * the private mutex of a device! That is why we do the
1244 		 * "ieee80211_input" here, and not some lines up!
1245 		 */
1246 		RUM_UNLOCK(sc);
1247 		if (m) {
1248 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1249 				ni = ieee80211_find_rxnode(ic, wh);
1250 			else
1251 				ni = NULL;
1252 
1253 			if (ni != NULL) {
1254 				(void) ieee80211_input(ni, m, rssi,
1255 				    RT2573_NOISE_FLOOR);
1256 				ieee80211_free_node(ni);
1257 			} else
1258 				(void) ieee80211_input_all(ic, m, rssi,
1259 				    RT2573_NOISE_FLOOR);
1260 		}
1261 		RUM_LOCK(sc);
1262 		rum_start(sc);
1263 		return;
1264 
1265 	default:			/* Error */
1266 		if (error != USB_ERR_CANCELLED) {
1267 			/* try to clear stall first */
1268 			usbd_xfer_set_stall(xfer);
1269 			goto tr_setup;
1270 		}
1271 		return;
1272 	}
1273 }
1274 
1275 static uint8_t
1276 rum_plcp_signal(int rate)
1277 {
1278 	switch (rate) {
1279 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1280 	case 12:	return 0xb;
1281 	case 18:	return 0xf;
1282 	case 24:	return 0xa;
1283 	case 36:	return 0xe;
1284 	case 48:	return 0x9;
1285 	case 72:	return 0xd;
1286 	case 96:	return 0x8;
1287 	case 108:	return 0xc;
1288 
1289 	/* CCK rates (NB: not IEEE std, device-specific) */
1290 	case 2:		return 0x0;
1291 	case 4:		return 0x1;
1292 	case 11:	return 0x2;
1293 	case 22:	return 0x3;
1294 	}
1295 	return 0xff;		/* XXX unsupported/unknown rate */
1296 }
1297 
1298 /*
1299  * Map net80211 cipher to RT2573 security mode.
1300  */
1301 static uint8_t
1302 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1303 {
1304 	switch (cipher) {
1305 	case IEEE80211_CIPHER_WEP:
1306 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1307 	case IEEE80211_CIPHER_TKIP:
1308 		return RT2573_MODE_TKIP;
1309 	case IEEE80211_CIPHER_AES_CCM:
1310 		return RT2573_MODE_AES_CCMP;
1311 	default:
1312 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1313 		return 0;
1314 	}
1315 }
1316 
1317 static void
1318 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1319     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1320     int hdrlen, int len, int rate)
1321 {
1322 	struct ieee80211com *ic = &sc->sc_ic;
1323 	struct wmeParams *wmep = &sc->wme_params[qid];
1324 	uint16_t plcp_length;
1325 	int remainder;
1326 
1327 	flags |= RT2573_TX_VALID;
1328 	flags |= len << 16;
1329 
1330 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1331 		const struct ieee80211_cipher *cip = k->wk_cipher;
1332 
1333 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1334 
1335 		desc->eiv = 0;		/* for WEP */
1336 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1337 	}
1338 
1339 	/* setup PLCP fields */
1340 	desc->plcp_signal  = rum_plcp_signal(rate);
1341 	desc->plcp_service = 4;
1342 
1343 	len += IEEE80211_CRC_LEN;
1344 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1345 		flags |= RT2573_TX_OFDM;
1346 
1347 		plcp_length = len & 0xfff;
1348 		desc->plcp_length_hi = plcp_length >> 6;
1349 		desc->plcp_length_lo = plcp_length & 0x3f;
1350 	} else {
1351 		if (rate == 0)
1352 			rate = 2;	/* avoid division by zero */
1353 		plcp_length = howmany(16 * len, rate);
1354 		if (rate == 22) {
1355 			remainder = (16 * len) % 22;
1356 			if (remainder != 0 && remainder < 7)
1357 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1358 		}
1359 		desc->plcp_length_hi = plcp_length >> 8;
1360 		desc->plcp_length_lo = plcp_length & 0xff;
1361 
1362 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1363 			desc->plcp_signal |= 0x08;
1364 	}
1365 
1366 	desc->flags = htole32(flags);
1367 	desc->hdrlen = hdrlen;
1368 	desc->xflags = xflags;
1369 
1370 	desc->wme = htole16(RT2573_QID(qid) |
1371 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1372 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1373 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1374 }
1375 
1376 static int
1377 rum_sendprot(struct rum_softc *sc,
1378     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1379 {
1380 	struct ieee80211com *ic = ni->ni_ic;
1381 	const struct ieee80211_frame *wh;
1382 	struct rum_tx_data *data;
1383 	struct mbuf *mprot;
1384 	int protrate, pktlen, flags, isshort;
1385 	uint16_t dur;
1386 
1387 	RUM_LOCK_ASSERT(sc);
1388 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1389 	    ("protection %d", prot));
1390 
1391 	wh = mtod(m, const struct ieee80211_frame *);
1392 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1393 
1394 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1395 
1396 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1397 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1398 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1399 	flags = 0;
1400 	if (prot == IEEE80211_PROT_RTSCTS) {
1401 		/* NB: CTS is the same size as an ACK */
1402 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1403 		flags |= RT2573_TX_NEED_ACK;
1404 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1405 	} else {
1406 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1407 	}
1408 	if (mprot == NULL) {
1409 		/* XXX stat + msg */
1410 		return (ENOBUFS);
1411 	}
1412 	data = STAILQ_FIRST(&sc->tx_free);
1413 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1414 	sc->tx_nfree--;
1415 
1416 	data->m = mprot;
1417 	data->ni = ieee80211_ref_node(ni);
1418 	data->rate = protrate;
1419 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1420 	    mprot->m_pkthdr.len, protrate);
1421 
1422 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1423 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1424 
1425 	return 0;
1426 }
1427 
1428 static uint32_t
1429 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1430     const struct ieee80211_key *k)
1431 {
1432 	struct ieee80211vap *vap = ni->ni_vap;
1433 	u_int cipher;
1434 	uint32_t flags = 0;
1435 	uint8_t mode, pos;
1436 
1437 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1438 		cipher = k->wk_cipher->ic_cipher;
1439 		pos = k->wk_keyix;
1440 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1441 		if (mode == 0)
1442 			return 0;
1443 
1444 		flags |= RT2573_TX_CIP_MODE(mode);
1445 
1446 		/* Do not trust GROUP flag */
1447 		if (!(k >= &vap->iv_nw_keys[0] &&
1448 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1449 			flags |= RT2573_TX_KEY_PAIR;
1450 		else
1451 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1452 
1453 		flags |= RT2573_TX_KEY_ID(pos);
1454 
1455 		if (cipher == IEEE80211_CIPHER_TKIP)
1456 			flags |= RT2573_TX_TKIPMIC;
1457 	}
1458 
1459 	return flags;
1460 }
1461 
1462 static int
1463 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1464 {
1465 	struct ieee80211vap *vap = ni->ni_vap;
1466 	struct ieee80211com *ic = &sc->sc_ic;
1467 	struct rum_tx_data *data;
1468 	struct ieee80211_frame *wh;
1469 	const struct ieee80211_txparam *tp;
1470 	struct ieee80211_key *k = NULL;
1471 	uint32_t flags = 0;
1472 	uint16_t dur;
1473 	uint8_t ac, type, xflags = 0;
1474 	int hdrlen;
1475 
1476 	RUM_LOCK_ASSERT(sc);
1477 
1478 	data = STAILQ_FIRST(&sc->tx_free);
1479 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1480 	sc->tx_nfree--;
1481 
1482 	wh = mtod(m0, struct ieee80211_frame *);
1483 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1484 	hdrlen = ieee80211_anyhdrsize(wh);
1485 	ac = M_WME_GETAC(m0);
1486 
1487 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1488 		k = ieee80211_crypto_get_txkey(ni, m0);
1489 		if (k == NULL)
1490 			return (ENOENT);
1491 
1492 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1493 		    !k->wk_cipher->ic_encap(k, m0))
1494 			return (ENOBUFS);
1495 
1496 		wh = mtod(m0, struct ieee80211_frame *);
1497 	}
1498 
1499 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1500 
1501 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1502 		flags |= RT2573_TX_NEED_ACK;
1503 
1504 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1505 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1506 		USETW(wh->i_dur, dur);
1507 
1508 		/* tell hardware to add timestamp for probe responses */
1509 		if (type == IEEE80211_FC0_TYPE_MGT &&
1510 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1511 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1512 			flags |= RT2573_TX_TIMESTAMP;
1513 	}
1514 
1515 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1516 		xflags |= RT2573_TX_HWSEQ;
1517 
1518 	if (k != NULL)
1519 		flags |= rum_tx_crypto_flags(sc, ni, k);
1520 
1521 	data->m = m0;
1522 	data->ni = ni;
1523 	data->rate = tp->mgmtrate;
1524 
1525 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1526 	    m0->m_pkthdr.len, tp->mgmtrate);
1527 
1528 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1529 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1530 
1531 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1532 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1533 
1534 	return (0);
1535 }
1536 
1537 static int
1538 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1539     const struct ieee80211_bpf_params *params)
1540 {
1541 	struct ieee80211com *ic = ni->ni_ic;
1542 	struct ieee80211_frame *wh;
1543 	struct rum_tx_data *data;
1544 	uint32_t flags;
1545 	uint8_t ac, type, xflags = 0;
1546 	int rate, error;
1547 
1548 	RUM_LOCK_ASSERT(sc);
1549 
1550 	wh = mtod(m0, struct ieee80211_frame *);
1551 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1552 
1553 	ac = params->ibp_pri & 3;
1554 
1555 	rate = params->ibp_rate0;
1556 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1557 		return (EINVAL);
1558 
1559 	flags = 0;
1560 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1561 		flags |= RT2573_TX_NEED_ACK;
1562 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1563 		error = rum_sendprot(sc, m0, ni,
1564 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1565 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1566 		    rate);
1567 		if (error || sc->tx_nfree == 0)
1568 			return (ENOBUFS);
1569 
1570 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1571 	}
1572 
1573 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1574 		xflags |= RT2573_TX_HWSEQ;
1575 
1576 	data = STAILQ_FIRST(&sc->tx_free);
1577 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1578 	sc->tx_nfree--;
1579 
1580 	data->m = m0;
1581 	data->ni = ni;
1582 	data->rate = rate;
1583 
1584 	/* XXX need to setup descriptor ourself */
1585 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1586 	    m0->m_pkthdr.len, rate);
1587 
1588 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1589 	    m0->m_pkthdr.len, rate);
1590 
1591 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1592 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1593 
1594 	return 0;
1595 }
1596 
1597 static int
1598 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1599 {
1600 	struct ieee80211vap *vap = ni->ni_vap;
1601 	struct ieee80211com *ic = &sc->sc_ic;
1602 	struct rum_tx_data *data;
1603 	struct ieee80211_frame *wh;
1604 	const struct ieee80211_txparam *tp;
1605 	struct ieee80211_key *k = NULL;
1606 	uint32_t flags = 0;
1607 	uint16_t dur;
1608 	uint8_t ac, type, qos, xflags = 0;
1609 	int error, hdrlen, rate;
1610 
1611 	RUM_LOCK_ASSERT(sc);
1612 
1613 	wh = mtod(m0, struct ieee80211_frame *);
1614 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1615 	hdrlen = ieee80211_anyhdrsize(wh);
1616 
1617 	if (IEEE80211_QOS_HAS_SEQ(wh))
1618 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1619 	else
1620 		qos = 0;
1621 	ac = M_WME_GETAC(m0);
1622 
1623 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1624 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1625 		rate = tp->mcastrate;
1626 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1627 		rate = tp->ucastrate;
1628 	else
1629 		rate = ni->ni_txrate;
1630 
1631 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1632 		k = ieee80211_crypto_get_txkey(ni, m0);
1633 		if (k == NULL) {
1634 			m_freem(m0);
1635 			return (ENOENT);
1636 		}
1637 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1638 		    !k->wk_cipher->ic_encap(k, m0)) {
1639 			m_freem(m0);
1640 			return (ENOBUFS);
1641 		}
1642 
1643 		/* packet header may have moved, reset our local pointer */
1644 		wh = mtod(m0, struct ieee80211_frame *);
1645 	}
1646 
1647 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1648 		xflags |= RT2573_TX_HWSEQ;
1649 
1650 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1651 		int prot = IEEE80211_PROT_NONE;
1652 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1653 			prot = IEEE80211_PROT_RTSCTS;
1654 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1655 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1656 			prot = ic->ic_protmode;
1657 		if (prot != IEEE80211_PROT_NONE) {
1658 			error = rum_sendprot(sc, m0, ni, prot, rate);
1659 			if (error || sc->tx_nfree == 0) {
1660 				m_freem(m0);
1661 				return ENOBUFS;
1662 			}
1663 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1664 		}
1665 	}
1666 
1667 	if (k != NULL)
1668 		flags |= rum_tx_crypto_flags(sc, ni, k);
1669 
1670 	data = STAILQ_FIRST(&sc->tx_free);
1671 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1672 	sc->tx_nfree--;
1673 
1674 	data->m = m0;
1675 	data->ni = ni;
1676 	data->rate = rate;
1677 
1678 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1679 		/* Unicast frame, check if an ACK is expected. */
1680 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1681 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1682 			flags |= RT2573_TX_NEED_ACK;
1683 
1684 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1685 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1686 		USETW(wh->i_dur, dur);
1687 	}
1688 
1689 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1690 	    m0->m_pkthdr.len, rate);
1691 
1692 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1693 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1694 
1695 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1696 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1697 
1698 	return 0;
1699 }
1700 
1701 static int
1702 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1703 {
1704 	struct rum_softc *sc = ic->ic_softc;
1705 	int error;
1706 
1707 	RUM_LOCK(sc);
1708 	if (!sc->sc_running) {
1709 		RUM_UNLOCK(sc);
1710 		return (ENXIO);
1711 	}
1712 	error = mbufq_enqueue(&sc->sc_snd, m);
1713 	if (error) {
1714 		RUM_UNLOCK(sc);
1715 		return (error);
1716 	}
1717 	rum_start(sc);
1718 	RUM_UNLOCK(sc);
1719 
1720 	return (0);
1721 }
1722 
1723 static void
1724 rum_start(struct rum_softc *sc)
1725 {
1726 	struct ieee80211_node *ni;
1727 	struct mbuf *m;
1728 
1729 	RUM_LOCK_ASSERT(sc);
1730 
1731 	if (!sc->sc_running)
1732 		return;
1733 
1734 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1735 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1736 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1737 		if (rum_tx_data(sc, m, ni) != 0) {
1738 			if_inc_counter(ni->ni_vap->iv_ifp,
1739 			    IFCOUNTER_OERRORS, 1);
1740 			ieee80211_free_node(ni);
1741 			break;
1742 		}
1743 	}
1744 }
1745 
1746 static void
1747 rum_parent(struct ieee80211com *ic)
1748 {
1749 	struct rum_softc *sc = ic->ic_softc;
1750 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1751 
1752 	RUM_LOCK(sc);
1753 	if (sc->sc_detached) {
1754 		RUM_UNLOCK(sc);
1755 		return;
1756 	}
1757 	RUM_UNLOCK(sc);
1758 
1759 	if (ic->ic_nrunning > 0) {
1760 		if (rum_init(sc) == 0)
1761 			ieee80211_start_all(ic);
1762 		else
1763 			ieee80211_stop(vap);
1764 	} else
1765 		rum_stop(sc);
1766 }
1767 
1768 static void
1769 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1770 {
1771 	struct usb_device_request req;
1772 	usb_error_t error;
1773 
1774 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1775 	req.bRequest = RT2573_READ_EEPROM;
1776 	USETW(req.wValue, 0);
1777 	USETW(req.wIndex, addr);
1778 	USETW(req.wLength, len);
1779 
1780 	error = rum_do_request(sc, &req, buf);
1781 	if (error != 0) {
1782 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1783 		    usbd_errstr(error));
1784 	}
1785 }
1786 
1787 static uint32_t
1788 rum_read(struct rum_softc *sc, uint16_t reg)
1789 {
1790 	uint32_t val;
1791 
1792 	rum_read_multi(sc, reg, &val, sizeof val);
1793 
1794 	return le32toh(val);
1795 }
1796 
1797 static void
1798 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1799 {
1800 	struct usb_device_request req;
1801 	usb_error_t error;
1802 
1803 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1804 	req.bRequest = RT2573_READ_MULTI_MAC;
1805 	USETW(req.wValue, 0);
1806 	USETW(req.wIndex, reg);
1807 	USETW(req.wLength, len);
1808 
1809 	error = rum_do_request(sc, &req, buf);
1810 	if (error != 0) {
1811 		device_printf(sc->sc_dev,
1812 		    "could not multi read MAC register: %s\n",
1813 		    usbd_errstr(error));
1814 	}
1815 }
1816 
1817 static usb_error_t
1818 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1819 {
1820 	uint32_t tmp = htole32(val);
1821 
1822 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1823 }
1824 
1825 static usb_error_t
1826 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1827 {
1828 	struct usb_device_request req;
1829 	usb_error_t error;
1830 	size_t offset;
1831 
1832 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1833 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1834 	USETW(req.wValue, 0);
1835 
1836 	/* write at most 64 bytes at a time */
1837 	for (offset = 0; offset < len; offset += 64) {
1838 		USETW(req.wIndex, reg + offset);
1839 		USETW(req.wLength, MIN(len - offset, 64));
1840 
1841 		error = rum_do_request(sc, &req, (char *)buf + offset);
1842 		if (error != 0) {
1843 			device_printf(sc->sc_dev,
1844 			    "could not multi write MAC register: %s\n",
1845 			    usbd_errstr(error));
1846 			return (error);
1847 		}
1848 	}
1849 
1850 	return (USB_ERR_NORMAL_COMPLETION);
1851 }
1852 
1853 static usb_error_t
1854 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1855 {
1856 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1857 }
1858 
1859 static usb_error_t
1860 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1861 {
1862 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1863 }
1864 
1865 static usb_error_t
1866 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1867 {
1868 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1869 }
1870 
1871 static int
1872 rum_bbp_busy(struct rum_softc *sc)
1873 {
1874 	int ntries;
1875 
1876 	for (ntries = 0; ntries < 100; ntries++) {
1877 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1878 			break;
1879 		if (rum_pause(sc, hz / 100))
1880 			break;
1881 	}
1882 	if (ntries == 100)
1883 		return (ETIMEDOUT);
1884 
1885 	return (0);
1886 }
1887 
1888 static void
1889 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1890 {
1891 	uint32_t tmp;
1892 
1893 	DPRINTFN(2, "reg=0x%08x\n", reg);
1894 
1895 	if (rum_bbp_busy(sc) != 0) {
1896 		device_printf(sc->sc_dev, "could not write to BBP\n");
1897 		return;
1898 	}
1899 
1900 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1901 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1902 }
1903 
1904 static uint8_t
1905 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1906 {
1907 	uint32_t val;
1908 	int ntries;
1909 
1910 	DPRINTFN(2, "reg=0x%08x\n", reg);
1911 
1912 	if (rum_bbp_busy(sc) != 0) {
1913 		device_printf(sc->sc_dev, "could not read BBP\n");
1914 		return 0;
1915 	}
1916 
1917 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1918 	rum_write(sc, RT2573_PHY_CSR3, val);
1919 
1920 	for (ntries = 0; ntries < 100; ntries++) {
1921 		val = rum_read(sc, RT2573_PHY_CSR3);
1922 		if (!(val & RT2573_BBP_BUSY))
1923 			return val & 0xff;
1924 		if (rum_pause(sc, hz / 100))
1925 			break;
1926 	}
1927 
1928 	device_printf(sc->sc_dev, "could not read BBP\n");
1929 	return 0;
1930 }
1931 
1932 static void
1933 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1934 {
1935 	uint32_t tmp;
1936 	int ntries;
1937 
1938 	for (ntries = 0; ntries < 100; ntries++) {
1939 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1940 			break;
1941 		if (rum_pause(sc, hz / 100))
1942 			break;
1943 	}
1944 	if (ntries == 100) {
1945 		device_printf(sc->sc_dev, "could not write to RF\n");
1946 		return;
1947 	}
1948 
1949 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1950 	    (reg & 3);
1951 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1952 
1953 	/* remember last written value in sc */
1954 	sc->rf_regs[reg] = val;
1955 
1956 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1957 }
1958 
1959 static void
1960 rum_select_antenna(struct rum_softc *sc)
1961 {
1962 	uint8_t bbp4, bbp77;
1963 	uint32_t tmp;
1964 
1965 	bbp4  = rum_bbp_read(sc, 4);
1966 	bbp77 = rum_bbp_read(sc, 77);
1967 
1968 	/* TBD */
1969 
1970 	/* make sure Rx is disabled before switching antenna */
1971 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1972 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1973 
1974 	rum_bbp_write(sc,  4, bbp4);
1975 	rum_bbp_write(sc, 77, bbp77);
1976 
1977 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1978 }
1979 
1980 /*
1981  * Enable multi-rate retries for frames sent at OFDM rates.
1982  * In 802.11b/g mode, allow fallback to CCK rates.
1983  */
1984 static void
1985 rum_enable_mrr(struct rum_softc *sc)
1986 {
1987 	struct ieee80211com *ic = &sc->sc_ic;
1988 
1989 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1990 		rum_setbits(sc, RT2573_TXRX_CSR4,
1991 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
1992 	} else {
1993 		rum_modbits(sc, RT2573_TXRX_CSR4,
1994 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
1995 	}
1996 }
1997 
1998 static void
1999 rum_set_txpreamble(struct rum_softc *sc)
2000 {
2001 	struct ieee80211com *ic = &sc->sc_ic;
2002 
2003 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2004 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2005 	else
2006 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2007 }
2008 
2009 static void
2010 rum_set_basicrates(struct rum_softc *sc)
2011 {
2012 	struct ieee80211com *ic = &sc->sc_ic;
2013 
2014 	/* update basic rate set */
2015 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2016 		/* 11b basic rates: 1, 2Mbps */
2017 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2018 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2019 		/* 11a basic rates: 6, 12, 24Mbps */
2020 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2021 	} else {
2022 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2023 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2024 	}
2025 }
2026 
2027 /*
2028  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2029  * driver.
2030  */
2031 static void
2032 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2033 {
2034 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2035 
2036 	/* update all BBP registers that depend on the band */
2037 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2038 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2039 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2040 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2041 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2042 	}
2043 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2044 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2045 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2046 	}
2047 
2048 	sc->bbp17 = bbp17;
2049 	rum_bbp_write(sc,  17, bbp17);
2050 	rum_bbp_write(sc,  96, bbp96);
2051 	rum_bbp_write(sc, 104, bbp104);
2052 
2053 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2054 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2055 		rum_bbp_write(sc, 75, 0x80);
2056 		rum_bbp_write(sc, 86, 0x80);
2057 		rum_bbp_write(sc, 88, 0x80);
2058 	}
2059 
2060 	rum_bbp_write(sc, 35, bbp35);
2061 	rum_bbp_write(sc, 97, bbp97);
2062 	rum_bbp_write(sc, 98, bbp98);
2063 
2064 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2065 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2066 		    RT2573_PA_PE_5GHZ);
2067 	} else {
2068 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2069 		    RT2573_PA_PE_2GHZ);
2070 	}
2071 }
2072 
2073 static void
2074 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2075 {
2076 	struct ieee80211com *ic = &sc->sc_ic;
2077 	const struct rfprog *rfprog;
2078 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2079 	int8_t power;
2080 	int i, chan;
2081 
2082 	chan = ieee80211_chan2ieee(ic, c);
2083 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2084 		return;
2085 
2086 	/* select the appropriate RF settings based on what EEPROM says */
2087 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2088 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2089 
2090 	/* find the settings for this channel (we know it exists) */
2091 	for (i = 0; rfprog[i].chan != chan; i++);
2092 
2093 	power = sc->txpow[i];
2094 	if (power < 0) {
2095 		bbp94 += power;
2096 		power = 0;
2097 	} else if (power > 31) {
2098 		bbp94 += power - 31;
2099 		power = 31;
2100 	}
2101 
2102 	/*
2103 	 * If we are switching from the 2GHz band to the 5GHz band or
2104 	 * vice-versa, BBP registers need to be reprogrammed.
2105 	 */
2106 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
2107 		rum_select_band(sc, c);
2108 		rum_select_antenna(sc);
2109 	}
2110 	ic->ic_curchan = c;
2111 
2112 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2113 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2114 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2115 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2116 
2117 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2118 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2119 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2120 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2121 
2122 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2123 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2124 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2125 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2126 
2127 	rum_pause(sc, hz / 100);
2128 
2129 	/* enable smart mode for MIMO-capable RFs */
2130 	bbp3 = rum_bbp_read(sc, 3);
2131 
2132 	bbp3 &= ~RT2573_SMART_MODE;
2133 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2134 		bbp3 |= RT2573_SMART_MODE;
2135 
2136 	rum_bbp_write(sc, 3, bbp3);
2137 
2138 	if (bbp94 != RT2573_BBPR94_DEFAULT)
2139 		rum_bbp_write(sc, 94, bbp94);
2140 
2141 	/* give the chip some extra time to do the switchover */
2142 	rum_pause(sc, hz / 100);
2143 }
2144 
2145 static void
2146 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2147 {
2148 	const struct ieee80211_txparam *tp;
2149 	struct ieee80211_node *ni = vap->iv_bss;
2150 	struct rum_vap *rvp = RUM_VAP(vap);
2151 
2152 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2153 	rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf;
2154 
2155 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2156 	    RT2573_LONG_RETRY(rvp->maxretry),
2157 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2158 }
2159 
2160 /*
2161  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2162  * and HostAP operating modes.
2163  */
2164 static int
2165 rum_enable_tsf_sync(struct rum_softc *sc)
2166 {
2167 	struct ieee80211com *ic = &sc->sc_ic;
2168 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2169 	uint32_t tmp;
2170 	uint16_t bintval;
2171 
2172 	if (vap->iv_opmode != IEEE80211_M_STA) {
2173 		/*
2174 		 * Change default 16ms TBTT adjustment to 8ms.
2175 		 * Must be done before enabling beacon generation.
2176 		 */
2177 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2178 			return EIO;
2179 	}
2180 
2181 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2182 
2183 	/* set beacon interval (in 1/16ms unit) */
2184 	bintval = vap->iv_bss->ni_intval;
2185 	tmp |= bintval * 16;
2186 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2187 
2188 	switch (vap->iv_opmode) {
2189 	case IEEE80211_M_STA:
2190 		/*
2191 		 * Local TSF is always updated with remote TSF on beacon
2192 		 * reception.
2193 		 */
2194 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2195 		break;
2196 	case IEEE80211_M_IBSS:
2197 		/*
2198 		 * Local TSF is updated with remote TSF on beacon reception
2199 		 * only if the remote TSF is greater than local TSF.
2200 		 */
2201 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2202 		tmp |= RT2573_BCN_TX_EN;
2203 		break;
2204 	case IEEE80211_M_HOSTAP:
2205 		/* SYNC with nobody */
2206 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2207 		tmp |= RT2573_BCN_TX_EN;
2208 		break;
2209 	default:
2210 		device_printf(sc->sc_dev,
2211 		    "Enabling TSF failed. undefined opmode %d\n",
2212 		    vap->iv_opmode);
2213 		return EINVAL;
2214 	}
2215 
2216 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2217 		return EIO;
2218 
2219 	/* refresh current sleep time */
2220 	return (rum_set_sleep_time(sc, bintval));
2221 }
2222 
2223 static void
2224 rum_enable_tsf(struct rum_softc *sc)
2225 {
2226 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2227 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2228 }
2229 
2230 static void
2231 rum_abort_tsf_sync(struct rum_softc *sc)
2232 {
2233 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2234 }
2235 
2236 static void
2237 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2238 {
2239 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2240 }
2241 
2242 static void
2243 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2244 {
2245 	struct ieee80211com *ic = &sc->sc_ic;
2246 	uint8_t slottime;
2247 
2248 	slottime = IEEE80211_GET_SLOTTIME(ic);
2249 
2250 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2251 
2252 	DPRINTF("setting slot time to %uus\n", slottime);
2253 }
2254 
2255 static void
2256 rum_update_slot(struct ieee80211com *ic)
2257 {
2258 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2259 }
2260 
2261 static int
2262 rum_wme_update(struct ieee80211com *ic)
2263 {
2264 	const struct wmeParams *chanp =
2265 	    ic->ic_wme.wme_chanParams.cap_wmeParams;
2266 	struct rum_softc *sc = ic->ic_softc;
2267 	int error = 0;
2268 
2269 	RUM_LOCK(sc);
2270 	error = rum_write(sc, RT2573_AIFSN_CSR,
2271 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2272 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2273 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2274 	    chanp[WME_AC_BE].wmep_aifsn);
2275 	if (error)
2276 		goto print_err;
2277 	error = rum_write(sc, RT2573_CWMIN_CSR,
2278 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2279 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2280 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2281 	    chanp[WME_AC_BE].wmep_logcwmin);
2282 	if (error)
2283 		goto print_err;
2284 	error = rum_write(sc, RT2573_CWMAX_CSR,
2285 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2286 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2287 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2288 	    chanp[WME_AC_BE].wmep_logcwmax);
2289 	if (error)
2290 		goto print_err;
2291 	error = rum_write(sc, RT2573_TXOP01_CSR,
2292 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2293 	    chanp[WME_AC_BE].wmep_txopLimit);
2294 	if (error)
2295 		goto print_err;
2296 	error = rum_write(sc, RT2573_TXOP23_CSR,
2297 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2298 	    chanp[WME_AC_VI].wmep_txopLimit);
2299 	if (error)
2300 		goto print_err;
2301 
2302 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2303 
2304 print_err:
2305 	RUM_UNLOCK(sc);
2306 	if (error != 0) {
2307 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2308 		    __func__, error);
2309 	}
2310 
2311 	return (error);
2312 }
2313 
2314 static void
2315 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2316 {
2317 
2318 	rum_write(sc, RT2573_MAC_CSR4,
2319 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2320 	rum_write(sc, RT2573_MAC_CSR5,
2321 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2322 }
2323 
2324 static void
2325 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2326 {
2327 
2328 	rum_write(sc, RT2573_MAC_CSR2,
2329 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2330 	rum_write(sc, RT2573_MAC_CSR3,
2331 	    addr[4] | addr[5] << 8 | 0xff << 16);
2332 }
2333 
2334 static void
2335 rum_setpromisc(struct rum_softc *sc)
2336 {
2337 	struct ieee80211com *ic = &sc->sc_ic;
2338 
2339 	if (ic->ic_promisc == 0)
2340 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2341 	else
2342 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2343 
2344 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2345 	    "entering" : "leaving");
2346 }
2347 
2348 static void
2349 rum_update_promisc(struct ieee80211com *ic)
2350 {
2351 	struct rum_softc *sc = ic->ic_softc;
2352 
2353 	RUM_LOCK(sc);
2354 	if (sc->sc_running)
2355 		rum_setpromisc(sc);
2356 	RUM_UNLOCK(sc);
2357 }
2358 
2359 static void
2360 rum_update_mcast(struct ieee80211com *ic)
2361 {
2362 	/* Ignore. */
2363 }
2364 
2365 static const char *
2366 rum_get_rf(int rev)
2367 {
2368 	switch (rev) {
2369 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2370 	case RT2573_RF_2528:	return "RT2528";
2371 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2372 	case RT2573_RF_5226:	return "RT5226";
2373 	default:		return "unknown";
2374 	}
2375 }
2376 
2377 static void
2378 rum_read_eeprom(struct rum_softc *sc)
2379 {
2380 	uint16_t val;
2381 #ifdef RUM_DEBUG
2382 	int i;
2383 #endif
2384 
2385 	/* read MAC address */
2386 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2387 
2388 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2389 	val = le16toh(val);
2390 	sc->rf_rev =   (val >> 11) & 0x1f;
2391 	sc->hw_radio = (val >> 10) & 0x1;
2392 	sc->rx_ant =   (val >> 4)  & 0x3;
2393 	sc->tx_ant =   (val >> 2)  & 0x3;
2394 	sc->nb_ant =   val & 0x3;
2395 
2396 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2397 
2398 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2399 	val = le16toh(val);
2400 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2401 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2402 
2403 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2404 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2405 
2406 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2407 	val = le16toh(val);
2408 	if ((val & 0xff) != 0xff)
2409 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2410 
2411 	/* Only [-10, 10] is valid */
2412 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2413 		sc->rssi_2ghz_corr = 0;
2414 
2415 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2416 	val = le16toh(val);
2417 	if ((val & 0xff) != 0xff)
2418 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2419 
2420 	/* Only [-10, 10] is valid */
2421 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2422 		sc->rssi_5ghz_corr = 0;
2423 
2424 	if (sc->ext_2ghz_lna)
2425 		sc->rssi_2ghz_corr -= 14;
2426 	if (sc->ext_5ghz_lna)
2427 		sc->rssi_5ghz_corr -= 14;
2428 
2429 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2430 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2431 
2432 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2433 	val = le16toh(val);
2434 	if ((val & 0xff) != 0xff)
2435 		sc->rffreq = val & 0xff;
2436 
2437 	DPRINTF("RF freq=%d\n", sc->rffreq);
2438 
2439 	/* read Tx power for all a/b/g channels */
2440 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2441 	/* XXX default Tx power for 802.11a channels */
2442 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2443 #ifdef RUM_DEBUG
2444 	for (i = 0; i < 14; i++)
2445 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2446 #endif
2447 
2448 	/* read default values for BBP registers */
2449 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2450 #ifdef RUM_DEBUG
2451 	for (i = 0; i < 14; i++) {
2452 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2453 			continue;
2454 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2455 		    sc->bbp_prom[i].val);
2456 	}
2457 #endif
2458 }
2459 
2460 static int
2461 rum_bbp_wakeup(struct rum_softc *sc)
2462 {
2463 	unsigned int ntries;
2464 
2465 	for (ntries = 0; ntries < 100; ntries++) {
2466 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2467 			break;
2468 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2469 		if (rum_pause(sc, hz / 100))
2470 			break;
2471 	}
2472 	if (ntries == 100) {
2473 		device_printf(sc->sc_dev,
2474 		    "timeout waiting for BBP/RF to wakeup\n");
2475 		return (ETIMEDOUT);
2476 	}
2477 
2478 	return (0);
2479 }
2480 
2481 static int
2482 rum_bbp_init(struct rum_softc *sc)
2483 {
2484 	int i, ntries;
2485 
2486 	/* wait for BBP to be ready */
2487 	for (ntries = 0; ntries < 100; ntries++) {
2488 		const uint8_t val = rum_bbp_read(sc, 0);
2489 		if (val != 0 && val != 0xff)
2490 			break;
2491 		if (rum_pause(sc, hz / 100))
2492 			break;
2493 	}
2494 	if (ntries == 100) {
2495 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2496 		return EIO;
2497 	}
2498 
2499 	/* initialize BBP registers to default values */
2500 	for (i = 0; i < nitems(rum_def_bbp); i++)
2501 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2502 
2503 	/* write vendor-specific BBP values (from EEPROM) */
2504 	for (i = 0; i < 16; i++) {
2505 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2506 			continue;
2507 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 static void
2514 rum_clr_shkey_regs(struct rum_softc *sc)
2515 {
2516 	rum_write(sc, RT2573_SEC_CSR0, 0);
2517 	rum_write(sc, RT2573_SEC_CSR1, 0);
2518 	rum_write(sc, RT2573_SEC_CSR5, 0);
2519 }
2520 
2521 static int
2522 rum_init(struct rum_softc *sc)
2523 {
2524 	struct ieee80211com *ic = &sc->sc_ic;
2525 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2526 	uint32_t tmp;
2527 	int i, ret;
2528 
2529 	RUM_LOCK(sc);
2530 	if (sc->sc_running) {
2531 		ret = 0;
2532 		goto end;
2533 	}
2534 
2535 	/* initialize MAC registers to default values */
2536 	for (i = 0; i < nitems(rum_def_mac); i++)
2537 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2538 
2539 	/* reset some WME parameters to default values */
2540 	sc->wme_params[0].wmep_aifsn = 2;
2541 	sc->wme_params[0].wmep_logcwmin = 4;
2542 	sc->wme_params[0].wmep_logcwmax = 10;
2543 
2544 	/* set host ready */
2545 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2546 	rum_write(sc, RT2573_MAC_CSR1, 0);
2547 
2548 	/* wait for BBP/RF to wakeup */
2549 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2550 		goto end;
2551 
2552 	if ((ret = rum_bbp_init(sc)) != 0)
2553 		goto end;
2554 
2555 	/* select default channel */
2556 	rum_select_band(sc, ic->ic_curchan);
2557 	rum_select_antenna(sc);
2558 	rum_set_chan(sc, ic->ic_curchan);
2559 
2560 	/* clear STA registers */
2561 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2562 
2563 	/* clear security registers (if required) */
2564 	if (sc->sc_clr_shkeys == 0) {
2565 		rum_clr_shkey_regs(sc);
2566 		sc->sc_clr_shkeys = 1;
2567 	}
2568 
2569 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2570 
2571 	/* initialize ASIC */
2572 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2573 
2574 	/*
2575 	 * Allocate Tx and Rx xfer queues.
2576 	 */
2577 	rum_setup_tx_list(sc);
2578 
2579 	/* update Rx filter */
2580 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2581 
2582 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2583 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2584 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2585 		       RT2573_DROP_ACKCTS;
2586 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2587 			tmp |= RT2573_DROP_TODS;
2588 		if (ic->ic_promisc == 0)
2589 			tmp |= RT2573_DROP_NOT_TO_ME;
2590 	}
2591 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2592 
2593 	sc->sc_running = 1;
2594 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2595 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2596 
2597 end:	RUM_UNLOCK(sc);
2598 
2599 	if (ret != 0)
2600 		rum_stop(sc);
2601 
2602 	return ret;
2603 }
2604 
2605 static void
2606 rum_stop(struct rum_softc *sc)
2607 {
2608 
2609 	RUM_LOCK(sc);
2610 	if (!sc->sc_running) {
2611 		RUM_UNLOCK(sc);
2612 		return;
2613 	}
2614 	sc->sc_running = 0;
2615 	RUM_UNLOCK(sc);
2616 
2617 	/*
2618 	 * Drain the USB transfers, if not already drained:
2619 	 */
2620 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2621 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2622 
2623 	RUM_LOCK(sc);
2624 	rum_unsetup_tx_list(sc);
2625 
2626 	/* disable Rx */
2627 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2628 
2629 	/* reset ASIC */
2630 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2631 	rum_write(sc, RT2573_MAC_CSR1, 0);
2632 	RUM_UNLOCK(sc);
2633 }
2634 
2635 static void
2636 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2637 {
2638 	uint16_t reg = RT2573_MCU_CODE_BASE;
2639 	usb_error_t err;
2640 
2641 	/* copy firmware image into NIC */
2642 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2643 		err = rum_write(sc, reg, UGETDW(ucode));
2644 		if (err) {
2645 			/* firmware already loaded ? */
2646 			device_printf(sc->sc_dev, "Firmware load "
2647 			    "failure! (ignored)\n");
2648 			break;
2649 		}
2650 	}
2651 
2652 	err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2653 	if (err != USB_ERR_NORMAL_COMPLETION) {
2654 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2655 		    usbd_errstr(err));
2656 	}
2657 
2658 	/* give the chip some time to boot */
2659 	rum_pause(sc, hz / 8);
2660 }
2661 
2662 static int
2663 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2664 {
2665 	struct ieee80211com *ic = &sc->sc_ic;
2666 	usb_error_t uerror;
2667 	int exp, delay;
2668 
2669 	RUM_LOCK_ASSERT(sc);
2670 
2671 	exp = ic->ic_lintval / bintval;
2672 	delay = ic->ic_lintval % bintval;
2673 
2674 	if (exp > RT2573_TBCN_EXP_MAX)
2675 		exp = RT2573_TBCN_EXP_MAX;
2676 	if (delay > RT2573_TBCN_DELAY_MAX)
2677 		delay = RT2573_TBCN_DELAY_MAX;
2678 
2679 	uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2680 	    RT2573_TBCN_EXP(exp) |
2681 	    RT2573_TBCN_DELAY(delay),
2682 	    RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2683 	    RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2684 
2685 	if (uerror != USB_ERR_NORMAL_COMPLETION)
2686 		return (EIO);
2687 
2688 	sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2689 
2690 	return (0);
2691 }
2692 
2693 static int
2694 rum_reset(struct ieee80211vap *vap, u_long cmd)
2695 {
2696 	struct ieee80211com *ic = vap->iv_ic;
2697 	struct ieee80211_node *ni;
2698 	struct rum_softc *sc = ic->ic_softc;
2699 	int error;
2700 
2701 	switch (cmd) {
2702 	case IEEE80211_IOC_POWERSAVE:
2703 		error = 0;
2704 		break;
2705 	case IEEE80211_IOC_POWERSAVESLEEP:
2706 		ni = ieee80211_ref_node(vap->iv_bss);
2707 
2708 		RUM_LOCK(sc);
2709 		error = rum_set_sleep_time(sc, ni->ni_intval);
2710 		if (vap->iv_state == IEEE80211_S_SLEEP) {
2711 			/* Use new values for wakeup timer. */
2712 			rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2713 			rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2714 		}
2715 		/* XXX send reassoc */
2716 		RUM_UNLOCK(sc);
2717 
2718 		ieee80211_free_node(ni);
2719 		break;
2720 	default:
2721 		error = ENETRESET;
2722 		break;
2723 	}
2724 
2725 	return (error);
2726 }
2727 
2728 static int
2729 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2730 {
2731 	struct ieee80211com *ic = vap->iv_ic;
2732 	struct rum_vap *rvp = RUM_VAP(vap);
2733 	struct mbuf *m = rvp->bcn_mbuf;
2734 	const struct ieee80211_txparam *tp;
2735 	struct rum_tx_desc desc;
2736 
2737 	RUM_LOCK_ASSERT(sc);
2738 
2739 	if (m == NULL)
2740 		return EINVAL;
2741 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2742 		return EINVAL;
2743 
2744 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2745 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2746 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2747 
2748 	/* copy the Tx descriptor into NIC memory */
2749 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2750 	    RT2573_TX_DESC_SIZE) != 0)
2751 		return EIO;
2752 
2753 	/* copy beacon header and payload into NIC memory */
2754 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2755 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2756 		return EIO;
2757 
2758 	return 0;
2759 }
2760 
2761 static int
2762 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2763 {
2764 	struct rum_vap *rvp = RUM_VAP(vap);
2765 	struct ieee80211_node *ni = vap->iv_bss;
2766 	struct mbuf *m;
2767 
2768 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2769 		return EINVAL;
2770 
2771 	m = ieee80211_beacon_alloc(ni);
2772 	if (m == NULL)
2773 		return ENOMEM;
2774 
2775 	if (rvp->bcn_mbuf != NULL)
2776 		m_freem(rvp->bcn_mbuf);
2777 
2778 	rvp->bcn_mbuf = m;
2779 
2780 	return (rum_set_beacon(sc, vap));
2781 }
2782 
2783 static void
2784 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2785     uint8_t rvp_id)
2786 {
2787 	struct ieee80211vap *vap = data->vap;
2788 
2789 	rum_set_beacon(sc, vap);
2790 }
2791 
2792 static void
2793 rum_update_beacon(struct ieee80211vap *vap, int item)
2794 {
2795 	struct ieee80211com *ic = vap->iv_ic;
2796 	struct rum_softc *sc = ic->ic_softc;
2797 	struct rum_vap *rvp = RUM_VAP(vap);
2798 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2799 	struct ieee80211_node *ni = vap->iv_bss;
2800 	struct mbuf *m = rvp->bcn_mbuf;
2801 	int mcast = 0;
2802 
2803 	RUM_LOCK(sc);
2804 	if (m == NULL) {
2805 		m = ieee80211_beacon_alloc(ni);
2806 		if (m == NULL) {
2807 			device_printf(sc->sc_dev,
2808 			    "%s: could not allocate beacon frame\n", __func__);
2809 			RUM_UNLOCK(sc);
2810 			return;
2811 		}
2812 		rvp->bcn_mbuf = m;
2813 	}
2814 
2815 	switch (item) {
2816 	case IEEE80211_BEACON_ERP:
2817 		rum_update_slot(ic);
2818 		break;
2819 	case IEEE80211_BEACON_TIM:
2820 		mcast = 1;	/*TODO*/
2821 		break;
2822 	default:
2823 		break;
2824 	}
2825 	RUM_UNLOCK(sc);
2826 
2827 	setbit(bo->bo_flags, item);
2828 	ieee80211_beacon_update(ni, m, mcast);
2829 
2830 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2831 }
2832 
2833 static int
2834 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2835     uint16_t base)
2836 {
2837 
2838 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2839 		return EIO;
2840 
2841 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2842 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2843 		    k->wk_txmic, 8))
2844 			return EIO;
2845 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2846 		    k->wk_rxmic, 8))
2847 			return EIO;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static void
2854 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2855     uint8_t rvp_id)
2856 {
2857 	struct ieee80211_key *k = &data->key;
2858 	uint8_t mode;
2859 
2860 	if (sc->sc_clr_shkeys == 0) {
2861 		rum_clr_shkey_regs(sc);
2862 		sc->sc_clr_shkeys = 1;
2863 	}
2864 
2865 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2866 	if (mode == 0)
2867 		goto print_err;
2868 
2869 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2870 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2871 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2872 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2873 
2874 	/* Install the key. */
2875 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2876 		goto print_err;
2877 
2878 	/* Set cipher mode. */
2879 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2880 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2881 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2882 	    != 0)
2883 		goto print_err;
2884 
2885 	/* Mark this key as valid. */
2886 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2887 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2888 		goto print_err;
2889 
2890 	return;
2891 
2892 print_err:
2893 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2894 	    __func__, k->wk_keyix, rvp_id);
2895 }
2896 
2897 static void
2898 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2899     uint8_t rvp_id)
2900 {
2901 	struct ieee80211_key *k = &data->key;
2902 
2903 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2904 	    k->wk_keyix, rvp_id);
2905 	rum_clrbits(sc,
2906 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2907 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2908 	rum_clrbits(sc, RT2573_SEC_CSR0,
2909 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2910 }
2911 
2912 static void
2913 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2914     uint8_t rvp_id)
2915 {
2916 	struct ieee80211_key *k = &data->key;
2917 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2918 	uint8_t mode;
2919 
2920 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2921 	if (mode == 0)
2922 		goto print_err;
2923 
2924 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2925 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2926 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2927 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2928 
2929 	/* Install the key. */
2930 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2931 		goto print_err;
2932 
2933 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2934 	buf[IEEE80211_ADDR_LEN] = mode;
2935 
2936 	/* Set transmitter address and cipher mode. */
2937 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2938 	      buf, sizeof buf) != 0)
2939 		goto print_err;
2940 
2941 	/* Enable key table lookup for this vap. */
2942 	if (sc->vap_key_count[rvp_id]++ == 0)
2943 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2944 			goto print_err;
2945 
2946 	/* Mark this key as valid. */
2947 	if (rum_setbits(sc,
2948 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2949 	      1 << (k->wk_keyix % 32)) != 0)
2950 		goto print_err;
2951 
2952 	return;
2953 
2954 print_err:
2955 	device_printf(sc->sc_dev,
2956 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2957 	    rvp_id);
2958 }
2959 
2960 static void
2961 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2962     uint8_t rvp_id)
2963 {
2964 	struct ieee80211_key *k = &data->key;
2965 
2966 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2967 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2968 	    1 << (k->wk_keyix % 32));
2969 	sc->keys_bmap &= ~(1ULL << k->wk_keyix);
2970 	if (--sc->vap_key_count[rvp_id] == 0)
2971 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
2972 }
2973 
2974 static int
2975 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2976     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2977 {
2978 	struct rum_softc *sc = vap->iv_ic->ic_softc;
2979 	uint8_t i;
2980 
2981 	if (!(&vap->iv_nw_keys[0] <= k &&
2982 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2983 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2984 			RUM_LOCK(sc);
2985 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
2986 				if ((sc->keys_bmap & (1ULL << i)) == 0) {
2987 					sc->keys_bmap |= (1ULL << i);
2988 					*keyix = i;
2989 					break;
2990 				}
2991 			}
2992 			RUM_UNLOCK(sc);
2993 			if (i == RT2573_ADDR_MAX) {
2994 				device_printf(sc->sc_dev,
2995 				    "%s: no free space in the key table\n",
2996 				    __func__);
2997 				return 0;
2998 			}
2999 		} else
3000 			*keyix = 0;
3001 	} else {
3002 		*keyix = k - vap->iv_nw_keys;
3003 	}
3004 	*rxkeyix = *keyix;
3005 	return 1;
3006 }
3007 
3008 static int
3009 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3010 {
3011 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3012 	int group;
3013 
3014 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3015 		/* Not for us. */
3016 		return 1;
3017 	}
3018 
3019 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3020 
3021 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3022 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3023 }
3024 
3025 static int
3026 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3027 {
3028 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3029 	int group;
3030 
3031 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3032 		/* Not for us. */
3033 		return 1;
3034 	}
3035 
3036 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3037 
3038 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3039 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3040 }
3041 
3042 static int
3043 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3044     const struct ieee80211_bpf_params *params)
3045 {
3046 	struct rum_softc *sc = ni->ni_ic->ic_softc;
3047 	int ret;
3048 
3049 	RUM_LOCK(sc);
3050 	/* prevent management frames from being sent if we're not ready */
3051 	if (!sc->sc_running) {
3052 		ret = ENETDOWN;
3053 		goto bad;
3054 	}
3055 	if (sc->tx_nfree < RUM_TX_MINFREE) {
3056 		ret = EIO;
3057 		goto bad;
3058 	}
3059 
3060 	if (params == NULL) {
3061 		/*
3062 		 * Legacy path; interpret frame contents to decide
3063 		 * precisely how to send the frame.
3064 		 */
3065 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3066 			goto bad;
3067 	} else {
3068 		/*
3069 		 * Caller supplied explicit parameters to use in
3070 		 * sending the frame.
3071 		 */
3072 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3073 			goto bad;
3074 	}
3075 	RUM_UNLOCK(sc);
3076 
3077 	return 0;
3078 bad:
3079 	RUM_UNLOCK(sc);
3080 	m_freem(m);
3081 	return ret;
3082 }
3083 
3084 static void
3085 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3086 {
3087 	struct ieee80211vap *vap = ni->ni_vap;
3088 	struct rum_vap *rvp = RUM_VAP(vap);
3089 
3090 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
3091 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3092 
3093 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3094 }
3095 
3096 static void
3097 rum_ratectl_timeout(void *arg)
3098 {
3099 	struct rum_vap *rvp = arg;
3100 	struct ieee80211vap *vap = &rvp->vap;
3101 	struct ieee80211com *ic = vap->iv_ic;
3102 
3103 	ieee80211_runtask(ic, &rvp->ratectl_task);
3104 }
3105 
3106 static void
3107 rum_ratectl_task(void *arg, int pending)
3108 {
3109 	struct rum_vap *rvp = arg;
3110 	struct ieee80211vap *vap = &rvp->vap;
3111 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3112 	struct ieee80211_node *ni;
3113 	int ok[3], fail;
3114 	int sum, success, retrycnt;
3115 
3116 	RUM_LOCK(sc);
3117 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3118 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3119 
3120 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
3121 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
3122 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
3123 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
3124 
3125 	success = ok[0] + ok[1] + ok[2];
3126 	sum = success + fail;
3127 	/* XXX at least */
3128 	retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3129 
3130 	if (sum != 0) {
3131 		ni = ieee80211_ref_node(vap->iv_bss);
3132 		ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
3133 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3134 		ieee80211_free_node(ni);
3135 	}
3136 
3137 	/* count TX retry-fail as Tx errors */
3138 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3139 
3140 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3141 	RUM_UNLOCK(sc);
3142 }
3143 
3144 static void
3145 rum_scan_start(struct ieee80211com *ic)
3146 {
3147 	struct rum_softc *sc = ic->ic_softc;
3148 
3149 	RUM_LOCK(sc);
3150 	rum_abort_tsf_sync(sc);
3151 	rum_set_bssid(sc, ieee80211broadcastaddr);
3152 	RUM_UNLOCK(sc);
3153 
3154 }
3155 
3156 static void
3157 rum_scan_end(struct ieee80211com *ic)
3158 {
3159 	struct rum_softc *sc = ic->ic_softc;
3160 
3161 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3162 		RUM_LOCK(sc);
3163 		if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3164 			rum_enable_tsf_sync(sc);
3165 		else
3166 			rum_enable_tsf(sc);
3167 		rum_set_bssid(sc, sc->sc_bssid);
3168 		RUM_UNLOCK(sc);
3169 	}
3170 }
3171 
3172 static void
3173 rum_set_channel(struct ieee80211com *ic)
3174 {
3175 	struct rum_softc *sc = ic->ic_softc;
3176 
3177 	RUM_LOCK(sc);
3178 	rum_set_chan(sc, ic->ic_curchan);
3179 	RUM_UNLOCK(sc);
3180 }
3181 
3182 static void
3183 rum_getradiocaps(struct ieee80211com *ic,
3184     int maxchans, int *nchans, struct ieee80211_channel chans[])
3185 {
3186 	struct rum_softc *sc = ic->ic_softc;
3187 	uint8_t bands[IEEE80211_MODE_BYTES];
3188 
3189 	memset(bands, 0, sizeof(bands));
3190 	setbit(bands, IEEE80211_MODE_11B);
3191 	setbit(bands, IEEE80211_MODE_11G);
3192 	ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
3193 	    rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0);
3194 
3195 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3196 		setbit(bands, IEEE80211_MODE_11A);
3197 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3198 		    rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3199 	}
3200 }
3201 
3202 static int
3203 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3204 {
3205 	struct ieee80211com *ic = &sc->sc_ic;
3206 	int lna, agc, rssi;
3207 
3208 	lna = (raw >> 5) & 0x3;
3209 	agc = raw & 0x1f;
3210 
3211 	if (lna == 0) {
3212 		/*
3213 		 * No RSSI mapping
3214 		 *
3215 		 * NB: Since RSSI is relative to noise floor, -1 is
3216 		 *     adequate for caller to know error happened.
3217 		 */
3218 		return -1;
3219 	}
3220 
3221 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3222 
3223 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3224 		rssi += sc->rssi_2ghz_corr;
3225 
3226 		if (lna == 1)
3227 			rssi -= 64;
3228 		else if (lna == 2)
3229 			rssi -= 74;
3230 		else if (lna == 3)
3231 			rssi -= 90;
3232 	} else {
3233 		rssi += sc->rssi_5ghz_corr;
3234 
3235 		if (!sc->ext_5ghz_lna && lna != 1)
3236 			rssi += 4;
3237 
3238 		if (lna == 1)
3239 			rssi -= 64;
3240 		else if (lna == 2)
3241 			rssi -= 86;
3242 		else if (lna == 3)
3243 			rssi -= 100;
3244 	}
3245 	return rssi;
3246 }
3247 
3248 static int
3249 rum_pause(struct rum_softc *sc, int timeout)
3250 {
3251 
3252 	usb_pause_mtx(&sc->sc_lock, timeout);
3253 	return (0);
3254 }
3255 
3256 static device_method_t rum_methods[] = {
3257 	/* Device interface */
3258 	DEVMETHOD(device_probe,		rum_match),
3259 	DEVMETHOD(device_attach,	rum_attach),
3260 	DEVMETHOD(device_detach,	rum_detach),
3261 	DEVMETHOD_END
3262 };
3263 
3264 static driver_t rum_driver = {
3265 	.name = "rum",
3266 	.methods = rum_methods,
3267 	.size = sizeof(struct rum_softc),
3268 };
3269 
3270 static devclass_t rum_devclass;
3271 
3272 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, NULL);
3273 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3274 MODULE_DEPEND(rum, usb, 1, 1, 1);
3275 MODULE_VERSION(rum, 1);
3276 #if 0	/* Not implemented by DragonFly */
3277 USB_PNP_HOST_INFO(rum_devs);
3278 #endif
3279