xref: /dragonfly/sys/bus/u4b/wlan/if_run.c (revision ae071d8d)
1 /*-
2  * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr>
3  * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca>
4  * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/usb/wlan/if_run.c,v 1.40 2013/03/19 02:17:34 svnexp Exp $
19  */
20 
21 /*-
22  * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/sysctl.h>
29 #include <sys/lock.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/linker.h>
39 #include <sys/firmware.h>
40 
41 #include <sys/rman.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ifq_var.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/if_ether.h>
56 #include <netinet/ip.h>
57 
58 #include <netproto/802_11/ieee80211_var.h>
59 #include <netproto/802_11/ieee80211_regdomain.h>
60 #include <netproto/802_11/ieee80211_radiotap.h>
61 #include <netproto/802_11/ieee80211_ratectl.h>
62 
63 #include <bus/u4b/usb.h>
64 #include <bus/u4b/usbdi.h>
65 #include "usbdevs.h"
66 
67 #define USB_DEBUG_VAR run_debug
68 #include <bus/u4b/usb_debug.h>
69 
70 #include <bus/u4b/wlan/if_runreg.h>
71 #include <bus/u4b/wlan/if_runvar.h>
72 
73 #ifdef	USB_DEBUG
74 #define RUN_DEBUG
75 #endif
76 
77 #ifdef	RUN_DEBUG
78 int run_debug = 0;
79 static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run");
80 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0,
81     "run debug level");
82 #endif
83 
84 #define IEEE80211_HAS_ADDR4(wh) \
85 	(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
86 
87 /*
88  * Because of LOR in run_key_delete(), use atomic instead.
89  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
90  */
91 #define RUN_CMDQ_GET(c)	(atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ)
92 
93 static const STRUCT_USB_HOST_ID run_devs[] = {
94 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
95     RUN_DEV(ABOCOM,		RT2770),
96     RUN_DEV(ABOCOM,		RT2870),
97     RUN_DEV(ABOCOM,		RT3070),
98     RUN_DEV(ABOCOM,		RT3071),
99     RUN_DEV(ABOCOM,		RT3072),
100     RUN_DEV(ABOCOM2,		RT2870_1),
101     RUN_DEV(ACCTON,		RT2770),
102     RUN_DEV(ACCTON,		RT2870_1),
103     RUN_DEV(ACCTON,		RT2870_2),
104     RUN_DEV(ACCTON,		RT2870_3),
105     RUN_DEV(ACCTON,		RT2870_4),
106     RUN_DEV(ACCTON,		RT2870_5),
107     RUN_DEV(ACCTON,		RT3070),
108     RUN_DEV(ACCTON,		RT3070_1),
109     RUN_DEV(ACCTON,		RT3070_2),
110     RUN_DEV(ACCTON,		RT3070_3),
111     RUN_DEV(ACCTON,		RT3070_4),
112     RUN_DEV(ACCTON,		RT3070_5),
113     RUN_DEV(AIRTIES,		RT3070),
114     RUN_DEV(ALLWIN,		RT2070),
115     RUN_DEV(ALLWIN,		RT2770),
116     RUN_DEV(ALLWIN,		RT2870),
117     RUN_DEV(ALLWIN,		RT3070),
118     RUN_DEV(ALLWIN,		RT3071),
119     RUN_DEV(ALLWIN,		RT3072),
120     RUN_DEV(ALLWIN,		RT3572),
121     RUN_DEV(AMIGO,		RT2870_1),
122     RUN_DEV(AMIGO,		RT2870_2),
123     RUN_DEV(AMIT,		CGWLUSB2GNR),
124     RUN_DEV(AMIT,		RT2870_1),
125     RUN_DEV(AMIT2,		RT2870),
126     RUN_DEV(ASUS,		RT2870_1),
127     RUN_DEV(ASUS,		RT2870_2),
128     RUN_DEV(ASUS,		RT2870_3),
129     RUN_DEV(ASUS,		RT2870_4),
130     RUN_DEV(ASUS,		RT2870_5),
131     RUN_DEV(ASUS,		USBN13),
132     RUN_DEV(ASUS,		RT3070_1),
133     RUN_DEV(ASUS,		USB_N53),
134     RUN_DEV(ASUS2,		USBN11),
135     RUN_DEV(AZUREWAVE,		RT2870_1),
136     RUN_DEV(AZUREWAVE,		RT2870_2),
137     RUN_DEV(AZUREWAVE,		RT3070_1),
138     RUN_DEV(AZUREWAVE,		RT3070_2),
139     RUN_DEV(AZUREWAVE,		RT3070_3),
140     RUN_DEV(BELKIN,		F5D8053V3),
141     RUN_DEV(BELKIN,		F5D8055),
142     RUN_DEV(BELKIN,		F5D8055V2),
143     RUN_DEV(BELKIN,		F6D4050V1),
144     RUN_DEV(BELKIN,		RT2870_1),
145     RUN_DEV(BELKIN,		RT2870_2),
146     RUN_DEV(CISCOLINKSYS,	AE1000),
147     RUN_DEV(CISCOLINKSYS2,	RT3070),
148     RUN_DEV(CISCOLINKSYS3,	RT3070),
149     RUN_DEV(CONCEPTRONIC2,	RT2870_1),
150     RUN_DEV(CONCEPTRONIC2,	RT2870_2),
151     RUN_DEV(CONCEPTRONIC2,	RT2870_3),
152     RUN_DEV(CONCEPTRONIC2,	RT2870_4),
153     RUN_DEV(CONCEPTRONIC2,	RT2870_5),
154     RUN_DEV(CONCEPTRONIC2,	RT2870_6),
155     RUN_DEV(CONCEPTRONIC2,	RT2870_7),
156     RUN_DEV(CONCEPTRONIC2,	RT2870_8),
157     RUN_DEV(CONCEPTRONIC2,	RT3070_1),
158     RUN_DEV(CONCEPTRONIC2,	RT3070_2),
159     RUN_DEV(CONCEPTRONIC2,	VIGORN61),
160     RUN_DEV(COREGA,		CGWLUSB300GNM),
161     RUN_DEV(COREGA,		RT2870_1),
162     RUN_DEV(COREGA,		RT2870_2),
163     RUN_DEV(COREGA,		RT2870_3),
164     RUN_DEV(COREGA,		RT3070),
165     RUN_DEV(CYBERTAN,		RT2870),
166     RUN_DEV(DLINK,		RT2870),
167     RUN_DEV(DLINK,		RT3072),
168     RUN_DEV(DLINK2,		DWA130),
169     RUN_DEV(DLINK2,		RT2870_1),
170     RUN_DEV(DLINK2,		RT2870_2),
171     RUN_DEV(DLINK2,		RT3070_1),
172     RUN_DEV(DLINK2,		RT3070_2),
173     RUN_DEV(DLINK2,		RT3070_3),
174     RUN_DEV(DLINK2,		RT3070_4),
175     RUN_DEV(DLINK2,		RT3070_5),
176     RUN_DEV(DLINK2,		RT3072),
177     RUN_DEV(DLINK2,		RT3072_1),
178     RUN_DEV(EDIMAX,		EW7717),
179     RUN_DEV(EDIMAX,		EW7718),
180     RUN_DEV(EDIMAX,		RT2870_1),
181     RUN_DEV(ENCORE,		RT3070_1),
182     RUN_DEV(ENCORE,		RT3070_2),
183     RUN_DEV(ENCORE,		RT3070_3),
184     RUN_DEV(GIGABYTE,		GNWB31N),
185     RUN_DEV(GIGABYTE,		GNWB32L),
186     RUN_DEV(GIGABYTE,		RT2870_1),
187     RUN_DEV(GIGASET,		RT3070_1),
188     RUN_DEV(GIGASET,		RT3070_2),
189     RUN_DEV(GUILLEMOT,		HWNU300),
190     RUN_DEV(HAWKING,		HWUN2),
191     RUN_DEV(HAWKING,		RT2870_1),
192     RUN_DEV(HAWKING,		RT2870_2),
193     RUN_DEV(HAWKING,		RT3070),
194     RUN_DEV(IODATA,		RT3072_1),
195     RUN_DEV(IODATA,		RT3072_2),
196     RUN_DEV(IODATA,		RT3072_3),
197     RUN_DEV(IODATA,		RT3072_4),
198     RUN_DEV(LINKSYS4,		RT3070),
199     RUN_DEV(LINKSYS4,		WUSB100),
200     RUN_DEV(LINKSYS4,		WUSB54GCV3),
201     RUN_DEV(LINKSYS4,		WUSB600N),
202     RUN_DEV(LINKSYS4,		WUSB600NV2),
203     RUN_DEV(LOGITEC,		RT2870_1),
204     RUN_DEV(LOGITEC,		RT2870_2),
205     RUN_DEV(LOGITEC,		RT2870_3),
206     RUN_DEV(LOGITEC,		LANW300NU2),
207     RUN_DEV(LOGITEC,		LANW150NU2),
208     RUN_DEV(LOGITEC,		LANW300NU2S),
209     RUN_DEV(MELCO,		RT2870_1),
210     RUN_DEV(MELCO,		RT2870_2),
211     RUN_DEV(MELCO,		WLIUCAG300N),
212     RUN_DEV(MELCO,		WLIUCG300N),
213     RUN_DEV(MELCO,		WLIUCG301N),
214     RUN_DEV(MELCO,		WLIUCGN),
215     RUN_DEV(MELCO,		WLIUCGNM),
216     RUN_DEV(MELCO,		WLIUCGNM2),
217     RUN_DEV(MOTOROLA4,		RT2770),
218     RUN_DEV(MOTOROLA4,		RT3070),
219     RUN_DEV(MSI,		RT3070_1),
220     RUN_DEV(MSI,		RT3070_2),
221     RUN_DEV(MSI,		RT3070_3),
222     RUN_DEV(MSI,		RT3070_4),
223     RUN_DEV(MSI,		RT3070_5),
224     RUN_DEV(MSI,		RT3070_6),
225     RUN_DEV(MSI,		RT3070_7),
226     RUN_DEV(MSI,		RT3070_8),
227     RUN_DEV(MSI,		RT3070_9),
228     RUN_DEV(MSI,		RT3070_10),
229     RUN_DEV(MSI,		RT3070_11),
230     RUN_DEV(OVISLINK,		RT3072),
231     RUN_DEV(PARA,		RT3070),
232     RUN_DEV(PEGATRON,		RT2870),
233     RUN_DEV(PEGATRON,		RT3070),
234     RUN_DEV(PEGATRON,		RT3070_2),
235     RUN_DEV(PEGATRON,		RT3070_3),
236     RUN_DEV(PHILIPS,		RT2870),
237     RUN_DEV(PLANEX2,		GWUS300MINIS),
238     RUN_DEV(PLANEX2,		GWUSMICRON),
239     RUN_DEV(PLANEX2,		RT2870),
240     RUN_DEV(PLANEX2,		RT3070),
241     RUN_DEV(QCOM,		RT2870),
242     RUN_DEV(QUANTA,		RT3070),
243     RUN_DEV(RALINK,		RT2070),
244     RUN_DEV(RALINK,		RT2770),
245     RUN_DEV(RALINK,		RT2870),
246     RUN_DEV(RALINK,		RT3070),
247     RUN_DEV(RALINK,		RT3071),
248     RUN_DEV(RALINK,		RT3072),
249     RUN_DEV(RALINK,		RT3370),
250     RUN_DEV(RALINK,		RT3572),
251     RUN_DEV(RALINK,		RT8070),
252     RUN_DEV(SAMSUNG,		WIS09ABGN),
253     RUN_DEV(SAMSUNG2,		RT2870_1),
254     RUN_DEV(SENAO,		RT2870_1),
255     RUN_DEV(SENAO,		RT2870_2),
256     RUN_DEV(SENAO,		RT2870_3),
257     RUN_DEV(SENAO,		RT2870_4),
258     RUN_DEV(SENAO,		RT3070),
259     RUN_DEV(SENAO,		RT3071),
260     RUN_DEV(SENAO,		RT3072_1),
261     RUN_DEV(SENAO,		RT3072_2),
262     RUN_DEV(SENAO,		RT3072_3),
263     RUN_DEV(SENAO,		RT3072_4),
264     RUN_DEV(SENAO,		RT3072_5),
265     RUN_DEV(SITECOMEU,		RT2770),
266     RUN_DEV(SITECOMEU,		RT2870_1),
267     RUN_DEV(SITECOMEU,		RT2870_2),
268     RUN_DEV(SITECOMEU,		RT2870_3),
269     RUN_DEV(SITECOMEU,		RT2870_4),
270     RUN_DEV(SITECOMEU,		RT3070),
271     RUN_DEV(SITECOMEU,		RT3070_2),
272     RUN_DEV(SITECOMEU,		RT3070_3),
273     RUN_DEV(SITECOMEU,		RT3070_4),
274     RUN_DEV(SITECOMEU,		RT3071),
275     RUN_DEV(SITECOMEU,		RT3072_1),
276     RUN_DEV(SITECOMEU,		RT3072_2),
277     RUN_DEV(SITECOMEU,		RT3072_3),
278     RUN_DEV(SITECOMEU,		RT3072_4),
279     RUN_DEV(SITECOMEU,		RT3072_5),
280     RUN_DEV(SITECOMEU,		RT3072_6),
281     RUN_DEV(SITECOMEU,		WL608),
282     RUN_DEV(SPARKLAN,		RT2870_1),
283     RUN_DEV(SPARKLAN,		RT3070),
284     RUN_DEV(SWEEX2,		LW153),
285     RUN_DEV(SWEEX2,		LW303),
286     RUN_DEV(SWEEX2,		LW313),
287     RUN_DEV(TOSHIBA,		RT3070),
288     RUN_DEV(UMEDIA,		RT2870_1),
289     RUN_DEV(ZCOM,		RT2870_1),
290     RUN_DEV(ZCOM,		RT2870_2),
291     RUN_DEV(ZINWELL,		RT2870_1),
292     RUN_DEV(ZINWELL,		RT2870_2),
293     RUN_DEV(ZINWELL,		RT3070),
294     RUN_DEV(ZINWELL,		RT3072_1),
295     RUN_DEV(ZINWELL,		RT3072_2),
296     RUN_DEV(ZYXEL,		RT2870_1),
297     RUN_DEV(ZYXEL,		RT2870_2),
298 #undef RUN_DEV
299 };
300 
301 static device_probe_t	run_match;
302 static device_attach_t	run_attach;
303 static device_detach_t	run_detach;
304 
305 static usb_callback_t	run_bulk_rx_callback;
306 static usb_callback_t	run_bulk_tx_callback0;
307 static usb_callback_t	run_bulk_tx_callback1;
308 static usb_callback_t	run_bulk_tx_callback2;
309 static usb_callback_t	run_bulk_tx_callback3;
310 static usb_callback_t	run_bulk_tx_callback4;
311 static usb_callback_t	run_bulk_tx_callback5;
312 
313 static void	run_bulk_tx_callbackN(struct usb_xfer *xfer,
314 		    usb_error_t error, unsigned int index);
315 static struct ieee80211vap *run_vap_create(struct ieee80211com *,
316 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
317 		    const uint8_t [IEEE80211_ADDR_LEN],
318 		    const uint8_t [IEEE80211_ADDR_LEN]);
319 static void	run_vap_delete(struct ieee80211vap *);
320 static void	run_cmdq_cb(void *, int);
321 static void	run_setup_tx_list(struct run_softc *,
322 		    struct run_endpoint_queue *);
323 static void	run_unsetup_tx_list(struct run_softc *,
324 		    struct run_endpoint_queue *);
325 static int	run_load_microcode(struct run_softc *);
326 static int	run_reset(struct run_softc *);
327 static usb_error_t run_do_request(struct run_softc *,
328 		    struct usb_device_request *, void *);
329 static int	run_read(struct run_softc *, uint16_t, uint32_t *);
330 static int	run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int);
331 static int	run_write_2(struct run_softc *, uint16_t, uint16_t);
332 static int	run_write(struct run_softc *, uint16_t, uint32_t);
333 static int	run_write_region_1(struct run_softc *, uint16_t,
334 		    const uint8_t *, int);
335 static int	run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
336 static int	run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
337 static int	run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
338 static int	run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
339 static int	run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
340 static int	run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
341 static int	run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
342 static int	run_bbp_write(struct run_softc *, uint8_t, uint8_t);
343 static int	run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
344 static const char *run_get_rf(int);
345 static int	run_read_eeprom(struct run_softc *);
346 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *,
347 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
348 static int	run_media_change(struct ifnet *);
349 static int	run_newstate(struct ieee80211vap *, enum ieee80211_state, int);
350 static int	run_wme_update(struct ieee80211com *);
351 static void	run_wme_update_cb(void *);
352 static void	run_key_update_begin(struct ieee80211vap *);
353 static void	run_key_update_end(struct ieee80211vap *);
354 static void	run_key_set_cb(void *);
355 static int	run_key_set(struct ieee80211vap *, struct ieee80211_key *,
356 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
357 static void	run_key_delete_cb(void *);
358 static int	run_key_delete(struct ieee80211vap *, struct ieee80211_key *);
359 static void	run_ratectl_to(void *);
360 static void	run_ratectl_cb(void *, int);
361 static void	run_drain_fifo(void *);
362 static void	run_iter_func(void *, struct ieee80211_node *);
363 static void	run_newassoc_cb(void *);
364 static void	run_newassoc(struct ieee80211_node *, int);
365 static void	run_rx_frame(struct run_softc *, struct mbuf *, uint32_t);
366 static void	run_tx_free(struct run_endpoint_queue *pq,
367 		    struct run_tx_data *, int);
368 static void	run_set_tx_desc(struct run_softc *, struct run_tx_data *);
369 static int	run_tx(struct run_softc *, struct mbuf *,
370 		    struct ieee80211_node *);
371 static int	run_tx_mgt(struct run_softc *, struct mbuf *,
372 		    struct ieee80211_node *);
373 static int	run_sendprot(struct run_softc *, const struct mbuf *,
374 		    struct ieee80211_node *, int, int);
375 static int	run_tx_param(struct run_softc *, struct mbuf *,
376 		    struct ieee80211_node *,
377 		    const struct ieee80211_bpf_params *);
378 static int	run_raw_xmit(struct ieee80211_node *, struct mbuf *,
379 		    const struct ieee80211_bpf_params *);
380 static void	run_start_locked(struct ifnet *);
381 static void	run_start(struct ifnet *, struct ifaltq_subque *);
382 static int	run_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
383 static void	run_set_agc(struct run_softc *, uint8_t);
384 static void	run_select_chan_group(struct run_softc *, int);
385 static void	run_set_rx_antenna(struct run_softc *, int);
386 static void	run_rt2870_set_chan(struct run_softc *, u_int);
387 static void	run_rt3070_set_chan(struct run_softc *, u_int);
388 static void	run_rt3572_set_chan(struct run_softc *, u_int);
389 static int	run_set_chan(struct run_softc *, struct ieee80211_channel *);
390 static void	run_set_channel(struct ieee80211com *);
391 static void	run_scan_start(struct ieee80211com *);
392 static void	run_scan_end(struct ieee80211com *);
393 static void	run_update_beacon(struct ieee80211vap *, int);
394 static void	run_update_beacon_cb(void *);
395 static void	run_updateprot(struct ieee80211com *);
396 static void	run_updateprot_cb(void *);
397 static void	run_usb_timeout_cb(void *);
398 static void	run_reset_livelock(struct run_softc *);
399 static void	run_enable_tsf_sync(struct run_softc *);
400 static void	run_enable_mrr(struct run_softc *);
401 static void	run_set_txpreamble(struct run_softc *);
402 static void	run_set_basicrates(struct run_softc *);
403 static void	run_set_leds(struct run_softc *, uint16_t);
404 static void	run_set_bssid(struct run_softc *, const uint8_t *);
405 static void	run_set_macaddr(struct run_softc *, const uint8_t *);
406 static void	run_updateslot(struct ifnet *);
407 static void	run_updateslot_cb(void *);
408 static void	run_update_mcast(struct ifnet *);
409 static int8_t	run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
410 static void	run_update_promisc_locked(struct ifnet *);
411 static void	run_update_promisc(struct ifnet *);
412 static int	run_bbp_init(struct run_softc *);
413 static int	run_rt3070_rf_init(struct run_softc *);
414 static int	run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
415 		    uint8_t *);
416 static void	run_rt3070_rf_setup(struct run_softc *);
417 static int	run_txrx_enable(struct run_softc *);
418 static void	run_init(void *);
419 static void	run_init_locked(struct run_softc *);
420 static void	run_stop(void *);
421 static void	run_delay(struct run_softc *, unsigned int);
422 
423 static const struct {
424 	uint16_t	reg;
425 	uint32_t	val;
426 } rt2870_def_mac[] = {
427 	RT2870_DEF_MAC
428 };
429 
430 static const struct {
431 	uint8_t	reg;
432 	uint8_t	val;
433 } rt2860_def_bbp[] = {
434 	RT2860_DEF_BBP
435 };
436 
437 static const struct rfprog {
438 	uint8_t		chan;
439 	uint32_t	r1, r2, r3, r4;
440 } rt2860_rf2850[] = {
441 	RT2860_RF2850
442 };
443 
444 struct {
445 	uint8_t	n, r, k;
446 } rt3070_freqs[] = {
447 	RT3070_RF3052
448 };
449 
450 static const struct {
451 	uint8_t	reg;
452 	uint8_t	val;
453 } rt3070_def_rf[] = {
454 	RT3070_DEF_RF
455 },rt3572_def_rf[] = {
456 	RT3572_DEF_RF
457 };
458 
459 static const struct usb_config run_config[RUN_N_XFER] = {
460     [RUN_BULK_TX_BE] = {
461 	.type = UE_BULK,
462 	.endpoint = UE_ADDR_ANY,
463 	.ep_index = 0,
464 	.direction = UE_DIR_OUT,
465 	.bufsize = RUN_MAX_TXSZ,
466 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
467 	.callback = run_bulk_tx_callback0,
468 	.timeout = 5000,	/* ms */
469     },
470     [RUN_BULK_TX_BK] = {
471 	.type = UE_BULK,
472 	.endpoint = UE_ADDR_ANY,
473 	.direction = UE_DIR_OUT,
474 	.ep_index = 1,
475 	.bufsize = RUN_MAX_TXSZ,
476 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
477 	.callback = run_bulk_tx_callback1,
478 	.timeout = 5000,	/* ms */
479     },
480     [RUN_BULK_TX_VI] = {
481 	.type = UE_BULK,
482 	.endpoint = UE_ADDR_ANY,
483 	.direction = UE_DIR_OUT,
484 	.ep_index = 2,
485 	.bufsize = RUN_MAX_TXSZ,
486 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
487 	.callback = run_bulk_tx_callback2,
488 	.timeout = 5000,	/* ms */
489     },
490     [RUN_BULK_TX_VO] = {
491 	.type = UE_BULK,
492 	.endpoint = UE_ADDR_ANY,
493 	.direction = UE_DIR_OUT,
494 	.ep_index = 3,
495 	.bufsize = RUN_MAX_TXSZ,
496 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
497 	.callback = run_bulk_tx_callback3,
498 	.timeout = 5000,	/* ms */
499     },
500     [RUN_BULK_TX_HCCA] = {
501 	.type = UE_BULK,
502 	.endpoint = UE_ADDR_ANY,
503 	.direction = UE_DIR_OUT,
504 	.ep_index = 4,
505 	.bufsize = RUN_MAX_TXSZ,
506 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
507 	.callback = run_bulk_tx_callback4,
508 	.timeout = 5000,	/* ms */
509     },
510     [RUN_BULK_TX_PRIO] = {
511 	.type = UE_BULK,
512 	.endpoint = UE_ADDR_ANY,
513 	.direction = UE_DIR_OUT,
514 	.ep_index = 5,
515 	.bufsize = RUN_MAX_TXSZ,
516 	.flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,},
517 	.callback = run_bulk_tx_callback5,
518 	.timeout = 5000,	/* ms */
519     },
520     [RUN_BULK_RX] = {
521 	.type = UE_BULK,
522 	.endpoint = UE_ADDR_ANY,
523 	.direction = UE_DIR_IN,
524 	.bufsize = RUN_MAX_RXSZ,
525 	.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
526 	.callback = run_bulk_rx_callback,
527     }
528 };
529 
530 static int
531 run_match(device_t self)
532 {
533 	struct usb_attach_arg *uaa = device_get_ivars(self);
534 
535 	if (uaa->usb_mode != USB_MODE_HOST)
536 		return (ENXIO);
537 	if (uaa->info.bConfigIndex != 0)
538 		return (ENXIO);
539 	if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX)
540 		return (ENXIO);
541 
542 	return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa));
543 }
544 
545 static int
546 run_attach(device_t self)
547 {
548 	struct run_softc *sc = device_get_softc(self);
549 	struct usb_attach_arg *uaa = device_get_ivars(self);
550 	struct ieee80211com *ic;
551 	struct ifnet *ifp;
552 	uint32_t ver;
553 	int i, ntries, error;
554 	uint8_t iface_index, bands;
555 	char ethstr[ETHER_ADDRSTRLEN + 1];
556 
557 	wlan_serialize_enter();
558 
559 	device_set_usb_desc(self);
560 	sc->sc_udev = uaa->device;
561 	sc->sc_dev = self;
562 
563 	lockinit(&sc->sc_lock, device_get_nameunit(sc->sc_dev),
564 	    0, LK_CANRECURSE);
565 
566 	iface_index = RT2860_IFACE_INDEX;
567 
568 	error = usbd_transfer_setup(uaa->device, &iface_index,
569 	    sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_lock);
570 	if (error) {
571 		device_printf(self, "could not allocate USB transfers, "
572 		    "err=%s\n", usbd_errstr(error));
573 		goto detach;
574 	}
575 
576 	RUN_LOCK(sc);
577 
578 	/* wait for the chip to settle */
579 	for (ntries = 0; ntries < 100; ntries++) {
580 		if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) {
581 			RUN_UNLOCK(sc);
582 			goto detach;
583 		}
584 		if (ver != 0 && ver != 0xffffffff)
585 			break;
586 		run_delay(sc, 10);
587 	}
588 	if (ntries == 100) {
589 		device_printf(sc->sc_dev,
590 		    "timeout waiting for NIC to initialize\n");
591 		RUN_UNLOCK(sc);
592 		goto detach;
593 	}
594 	sc->mac_ver = ver >> 16;
595 	sc->mac_rev = ver & 0xffff;
596 
597 	/* retrieve RF rev. no and various other things from EEPROM */
598 	run_read_eeprom(sc);
599 
600 	device_printf(sc->sc_dev,
601 	    "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
602 	    sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev),
603 	    sc->ntxchains, sc->nrxchains, kether_ntoa(sc->sc_bssid, ethstr));
604 
605 	RUN_UNLOCK(sc);
606 
607 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
608 	if (ifp == NULL) {
609 		device_printf(sc->sc_dev, "can not if_alloc()\n");
610 		goto detach;
611 	}
612 	ic = ifp->if_l2com;
613 
614 	ifp->if_softc = sc;
615 	if_initname(ifp, "run", device_get_unit(sc->sc_dev));
616 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
617 	ifp->if_init = run_init;
618 	ifp->if_ioctl = run_ioctl;
619 	ifp->if_start = run_start;
620 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
621 #if 0 /* XXX swildner: see c3d4131842e47b168d93a0650d58d425ebeef789 */
622 	ifq_set_ready(&ifp->if_snd);
623 #endif
624 
625 	ic->ic_ifp = ifp;
626 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
627 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
628 
629 	/* set device capabilities */
630 	ic->ic_caps =
631 	    IEEE80211_C_STA |		/* station mode supported */
632 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
633 	    IEEE80211_C_IBSS |
634 	    IEEE80211_C_HOSTAP |
635 	    IEEE80211_C_WDS |		/* 4-address traffic works */
636 	    IEEE80211_C_MBSS |
637 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
638 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
639 	    IEEE80211_C_WME |		/* WME */
640 	    IEEE80211_C_WPA;		/* WPA1|WPA2(RSN) */
641 
642 	ic->ic_cryptocaps =
643 	    IEEE80211_CRYPTO_WEP |
644 	    IEEE80211_CRYPTO_AES_CCM |
645 	    IEEE80211_CRYPTO_TKIPMIC |
646 	    IEEE80211_CRYPTO_TKIP;
647 
648 	ic->ic_flags |= IEEE80211_F_DATAPAD;
649 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
650 
651 	bands = 0;
652 	setbit(&bands, IEEE80211_MODE_11B);
653 	setbit(&bands, IEEE80211_MODE_11G);
654 	ieee80211_init_channels(ic, NULL, &bands);
655 
656 	/*
657 	 * Do this by own because h/w supports
658 	 * more channels than ieee80211_init_channels()
659 	 */
660 	if (sc->rf_rev == RT2860_RF_2750 ||
661 	    sc->rf_rev == RT2860_RF_2850 ||
662 	    sc->rf_rev == RT3070_RF_3052) {
663 		/* set supported .11a rates */
664 		for (i = 14; i < NELEM(rt2860_rf2850); i++) {
665 			uint8_t chan = rt2860_rf2850[i].chan;
666 			ic->ic_channels[ic->ic_nchans].ic_freq =
667 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
668 			ic->ic_channels[ic->ic_nchans].ic_ieee = chan;
669 			ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A;
670 			ic->ic_channels[ic->ic_nchans].ic_extieee = 0;
671 			ic->ic_nchans++;
672 		}
673 	}
674 
675 	ieee80211_ifattach(ic, sc->sc_bssid);
676 
677 	ic->ic_scan_start = run_scan_start;
678 	ic->ic_scan_end = run_scan_end;
679 	ic->ic_set_channel = run_set_channel;
680 	ic->ic_node_alloc = run_node_alloc;
681 	ic->ic_newassoc = run_newassoc;
682 	ic->ic_updateslot = run_updateslot;
683 	ic->ic_update_mcast = run_update_mcast;
684 	ic->ic_wme.wme_update = run_wme_update;
685 	ic->ic_raw_xmit = run_raw_xmit;
686 	ic->ic_update_promisc = run_update_promisc;
687 
688 	ic->ic_vap_create = run_vap_create;
689 	ic->ic_vap_delete = run_vap_delete;
690 
691 	ieee80211_radiotap_attach(ic,
692 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
693 		RUN_TX_RADIOTAP_PRESENT,
694 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
695 		RUN_RX_RADIOTAP_PRESENT);
696 
697 	TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc);
698 	TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc);
699 	usb_callout_init_mtx(&sc->ratectl_ch, &sc->sc_lock, 1);
700 
701 	if (bootverbose)
702 		ieee80211_announce(ic);
703 
704 	wlan_serialize_exit();
705 	return (0);
706 
707 detach:
708 	wlan_serialize_exit();
709 	run_detach(self);
710 	return (ENXIO);
711 }
712 
713 static int
714 run_detach(device_t self)
715 {
716 	struct run_softc *sc = device_get_softc(self);
717 	struct ifnet *ifp = sc->sc_ifp;
718 	struct ieee80211com *ic;
719 	int i;
720 
721 	wlan_serialize_enter();
722 	sc->sc_detached = 1;
723 
724 	/* stop all USB transfers */
725 	usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER);
726 
727 	RUN_LOCK(sc);
728 
729 	sc->ratectl_run = RUN_RATECTL_OFF;
730 	sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT;
731 
732 	/* free TX list, if any */
733 	for (i = 0; i != RUN_EP_QUEUES; i++)
734 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
735 	RUN_UNLOCK(sc);
736 
737 	if (ifp) {
738 		ic = ifp->if_l2com;
739 		/* drain tasks */
740 		usb_callout_drain(&sc->ratectl_ch);
741 		ieee80211_draintask(ic, &sc->cmdq_task);
742 		ieee80211_draintask(ic, &sc->ratectl_task);
743 		ieee80211_ifdetach(ic);
744 		if_free(ifp);
745 	}
746 
747 	lockuninit(&sc->sc_lock);
748 
749 	wlan_serialize_exit();
750 	return (0);
751 }
752 
753 static struct ieee80211vap *
754 run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
755     enum ieee80211_opmode opmode, int flags,
756     const uint8_t bssid[IEEE80211_ADDR_LEN],
757     const uint8_t mac[IEEE80211_ADDR_LEN])
758 {
759 	struct ifnet *ifp = ic->ic_ifp;
760 	struct run_softc *sc = ifp->if_softc;
761 	struct run_vap *rvp;
762 	struct ieee80211vap *vap;
763 	int i;
764 
765 	if (sc->rvp_cnt >= RUN_VAP_MAX) {
766 		if_printf(ifp, "number of VAPs maxed out\n");
767 		return (NULL);
768 	}
769 
770 	switch (opmode) {
771 	case IEEE80211_M_STA:
772 		/* enable s/w bmiss handling for sta mode */
773 		flags |= IEEE80211_CLONE_NOBEACONS;
774 		/* fall though */
775 	case IEEE80211_M_IBSS:
776 	case IEEE80211_M_MONITOR:
777 	case IEEE80211_M_HOSTAP:
778 	case IEEE80211_M_MBSS:
779 		/* other than WDS vaps, only one at a time */
780 		if (!TAILQ_EMPTY(&ic->ic_vaps))
781 			return (NULL);
782 		break;
783 	case IEEE80211_M_WDS:
784 		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){
785 			if(vap->iv_opmode != IEEE80211_M_HOSTAP)
786 				continue;
787 			/* WDS vap's always share the local mac address. */
788 			flags &= ~IEEE80211_CLONE_BSSID;
789 			break;
790 		}
791 		if (vap == NULL) {
792 			if_printf(ifp, "wds only supported in ap mode\n");
793 			return (NULL);
794 		}
795 		break;
796 	default:
797 		if_printf(ifp, "unknown opmode %d\n", opmode);
798 		return (NULL);
799 	}
800 
801 	rvp = (struct run_vap *) kmalloc(sizeof(struct run_vap),
802 	    M_80211_VAP, M_INTWAIT | M_ZERO);
803 	vap = &rvp->vap;
804 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
805 
806 	vap->iv_key_update_begin = run_key_update_begin;
807 	vap->iv_key_update_end = run_key_update_end;
808 	vap->iv_update_beacon = run_update_beacon;
809 	vap->iv_max_aid = RT2870_WCID_MAX;
810 	/*
811 	 * To delete the right key from h/w, we need wcid.
812 	 * Luckily, there is unused space in ieee80211_key{}, wk_pad,
813 	 * and matching wcid will be written into there. So, cast
814 	 * some spells to remove 'const' from ieee80211_key{}
815 	 */
816 	vap->iv_key_delete = (void *)run_key_delete;
817 	vap->iv_key_set = (void *)run_key_set;
818 
819 	/* override state transition machine */
820 	rvp->newstate = vap->iv_newstate;
821 	vap->iv_newstate = run_newstate;
822 
823 	ieee80211_ratectl_init(vap);
824 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
825 
826 	/* complete setup */
827 	ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status);
828 
829 	/* make sure id is always unique */
830 	for (i = 0; i < RUN_VAP_MAX; i++) {
831 		if((sc->rvp_bmap & 1 << i) == 0){
832 			sc->rvp_bmap |= 1 << i;
833 			rvp->rvp_id = i;
834 			break;
835 		}
836 	}
837 	if (sc->rvp_cnt++ == 0)
838 		ic->ic_opmode = opmode;
839 
840 	if (opmode == IEEE80211_M_HOSTAP)
841 		sc->cmdq_run = RUN_CMDQ_GO;
842 
843 	DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n",
844 	    rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt);
845 
846 	return (vap);
847 }
848 
849 static void
850 run_vap_delete(struct ieee80211vap *vap)
851 {
852 	struct run_vap *rvp = RUN_VAP(vap);
853 	struct ifnet *ifp;
854 	struct ieee80211com *ic;
855 	struct run_softc *sc;
856 	uint8_t rvp_id;
857 
858 	if (vap == NULL)
859 		return;
860 
861 	ic = vap->iv_ic;
862 	ifp = ic->ic_ifp;
863 
864 	sc = ifp->if_softc;
865 
866 	RUN_LOCK(sc);
867 
868 	m_freem(rvp->beacon_mbuf);
869 	rvp->beacon_mbuf = NULL;
870 
871 	rvp_id = rvp->rvp_id;
872 	sc->ratectl_run &= ~(1 << rvp_id);
873 	sc->rvp_bmap &= ~(1 << rvp_id);
874 	run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128);
875 	run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512);
876 	--sc->rvp_cnt;
877 
878 	DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n",
879 	    vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt);
880 
881 	RUN_UNLOCK(sc);
882 
883 	ieee80211_ratectl_deinit(vap);
884 	ieee80211_vap_detach(vap);
885 	kfree(rvp, M_80211_VAP);
886 }
887 
888 /*
889  * There are numbers of functions need to be called in context thread.
890  * Rather than creating taskqueue event for each of those functions,
891  * here is all-for-one taskqueue callback function. This function
892  * gurantees deferred functions are executed in the same order they
893  * were enqueued.
894  * '& RUN_CMDQ_MASQ' is to loop cmdq[].
895  */
896 static void
897 run_cmdq_cb(void *arg, int pending)
898 {
899 	struct run_softc *sc = arg;
900 	uint8_t i;
901 
902 	/* call cmdq[].func locked */
903 	RUN_LOCK(sc);
904 	for (i = sc->cmdq_exec; sc->cmdq[i].func && pending;
905 	    i = sc->cmdq_exec, pending--) {
906 		DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending);
907 		if (sc->cmdq_run == RUN_CMDQ_GO) {
908 			/*
909 			 * If arg0 is NULL, callback func needs more
910 			 * than one arg. So, pass ptr to cmdq struct.
911 			 */
912 			if (sc->cmdq[i].arg0)
913 				sc->cmdq[i].func(sc->cmdq[i].arg0);
914 			else
915 				sc->cmdq[i].func(&sc->cmdq[i]);
916 		}
917 		sc->cmdq[i].arg0 = NULL;
918 		sc->cmdq[i].func = NULL;
919 		sc->cmdq_exec++;
920 		sc->cmdq_exec &= RUN_CMDQ_MASQ;
921 	}
922 	RUN_UNLOCK(sc);
923 }
924 
925 static void
926 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
927 {
928 	struct run_tx_data *data;
929 
930 	memset(pq, 0, sizeof(*pq));
931 
932 	STAILQ_INIT(&pq->tx_qh);
933 	STAILQ_INIT(&pq->tx_fh);
934 
935 	for (data = &pq->tx_data[0];
936 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
937 		data->sc = sc;
938 		STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
939 	}
940 	pq->tx_nfree = RUN_TX_RING_COUNT;
941 }
942 
943 static void
944 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq)
945 {
946 	struct run_tx_data *data;
947 
948 	/* make sure any subsequent use of the queues will fail */
949 	pq->tx_nfree = 0;
950 	STAILQ_INIT(&pq->tx_fh);
951 	STAILQ_INIT(&pq->tx_qh);
952 
953 	/* free up all node references and mbufs */
954 	for (data = &pq->tx_data[0];
955 	    data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) {
956 		if (data->m != NULL) {
957 			m_freem(data->m);
958 			data->m = NULL;
959 		}
960 		if (data->ni != NULL) {
961 			ieee80211_free_node(data->ni);
962 			data->ni = NULL;
963 		}
964 	}
965 }
966 
967 static int
968 run_load_microcode(struct run_softc *sc)
969 {
970 	usb_device_request_t req;
971 	const struct firmware *fw;
972 	const u_char *base;
973 	uint32_t tmp;
974 	int ntries, error;
975 	const uint64_t *temp;
976 	uint64_t bytes;
977 	int wlan_serialized;
978 
979 	wlan_serialized = IS_SERIALIZED(&wlan_global_serializer);
980 	if (wlan_serialized)
981 		wlan_serialize_exit();
982 	fw = firmware_get("runfw");
983 	if (wlan_serialized)
984 		wlan_serialize_enter();
985 	if (fw == NULL) {
986 		device_printf(sc->sc_dev,
987 		    "failed loadfirmware of file %s\n", "runfw");
988 		return ENOENT;
989 	}
990 
991 	if (fw->datasize != 8192) {
992 		device_printf(sc->sc_dev,
993 		    "invalid firmware size (should be 8KB)\n");
994 		error = EINVAL;
995 		goto fail;
996 	}
997 
998 	/*
999 	 * RT3071/RT3072 use a different firmware
1000 	 * run-rt2870 (8KB) contains both,
1001 	 * first half (4KB) is for rt2870,
1002 	 * last half is for rt3071.
1003 	 */
1004 	base = fw->data;
1005 	if ((sc->mac_ver) != 0x2860 &&
1006 	    (sc->mac_ver) != 0x2872 &&
1007 	    (sc->mac_ver) != 0x3070) {
1008 		base += 4096;
1009 	}
1010 
1011 	/* cheap sanity check */
1012 	temp = fw->data;
1013 	bytes = *temp;
1014 	if (bytes != be64toh(0xffffff0210280210)) {
1015 		device_printf(sc->sc_dev, "firmware checksum failed\n");
1016 		error = EINVAL;
1017 		goto fail;
1018 	}
1019 
1020 	run_read(sc, RT2860_ASIC_VER_ID, &tmp);
1021 	/* write microcode image */
1022 	run_write_region_1(sc, RT2870_FW_BASE, base, 4096);
1023 	run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
1024 	run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
1025 
1026 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1027 	req.bRequest = RT2870_RESET;
1028 	USETW(req.wValue, 8);
1029 	USETW(req.wIndex, 0);
1030 	USETW(req.wLength, 0);
1031 	if ((error = usbd_do_request(sc->sc_udev, &sc->sc_lock, &req, NULL))
1032 	    != 0) {
1033 		device_printf(sc->sc_dev, "firmware reset failed\n");
1034 		goto fail;
1035 	}
1036 
1037 	run_delay(sc, 10);
1038 
1039 	run_write(sc, RT2860_H2M_MAILBOX, 0);
1040 	if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
1041 		goto fail;
1042 
1043 	/* wait until microcontroller is ready */
1044 	for (ntries = 0; ntries < 1000; ntries++) {
1045 		if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) {
1046 			goto fail;
1047 		}
1048 		if (tmp & RT2860_MCU_READY)
1049 			break;
1050 		run_delay(sc, 10);
1051 	}
1052 	if (ntries == 1000) {
1053 		device_printf(sc->sc_dev,
1054 		    "timeout waiting for MCU to initialize\n");
1055 		error = ETIMEDOUT;
1056 		goto fail;
1057 	}
1058 	device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n",
1059 	    (base == fw->data) ? "RT2870" : "RT3071",
1060 	    *(base + 4092), *(base + 4093));
1061 
1062 fail:
1063 	firmware_put(fw, FIRMWARE_UNLOAD);
1064 	return (error);
1065 }
1066 
1067 int
1068 run_reset(struct run_softc *sc)
1069 {
1070 	usb_device_request_t req;
1071 	usb_error_t error;
1072 
1073 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1074 	req.bRequest = RT2870_RESET;
1075 	USETW(req.wValue, 1);
1076 	USETW(req.wIndex, 0);
1077 	USETW(req.wLength, 0);
1078 	error = usbd_do_request(sc->sc_udev, &sc->sc_lock, &req, NULL);
1079 	return (error);
1080 }
1081 
1082 static usb_error_t
1083 run_do_request(struct run_softc *sc,
1084     struct usb_device_request *req, void *data)
1085 {
1086 	usb_error_t err;
1087 	int ntries = 10;
1088 
1089 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1090 
1091 	while (ntries--) {
1092 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_lock,
1093 		    req, data, 0, NULL, 250 /* ms */);
1094 		if (err == 0)
1095 			break;
1096 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
1097 		    usbd_errstr(err));
1098 		run_delay(sc, 10);
1099 	}
1100 	return (err);
1101 }
1102 
1103 static int
1104 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
1105 {
1106 	uint32_t tmp;
1107 	int error;
1108 
1109 	error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
1110 	if (error == 0)
1111 		*val = le32toh(tmp);
1112 	else
1113 		*val = 0xffffffff;
1114 	return (error);
1115 }
1116 
1117 static int
1118 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
1119 {
1120 	usb_device_request_t req;
1121 
1122 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1123 	req.bRequest = RT2870_READ_REGION_1;
1124 	USETW(req.wValue, 0);
1125 	USETW(req.wIndex, reg);
1126 	USETW(req.wLength, len);
1127 
1128 	return (run_do_request(sc, &req, buf));
1129 }
1130 
1131 static int
1132 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
1133 {
1134 	usb_device_request_t req;
1135 
1136 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1137 	req.bRequest = RT2870_WRITE_2;
1138 	USETW(req.wValue, val);
1139 	USETW(req.wIndex, reg);
1140 	USETW(req.wLength, 0);
1141 
1142 	return (run_do_request(sc, &req, NULL));
1143 }
1144 
1145 static int
1146 run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
1147 {
1148 	int error;
1149 
1150 	if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
1151 		error = run_write_2(sc, reg + 2, val >> 16);
1152 	return (error);
1153 }
1154 
1155 static int
1156 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
1157     int len)
1158 {
1159 #if 1
1160 	int i, error = 0;
1161 	/*
1162 	 * NB: the WRITE_REGION_1 command is not stable on RT2860.
1163 	 * We thus issue multiple WRITE_2 commands instead.
1164 	 */
1165 	KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n"));
1166 	for (i = 0; i < len && error == 0; i += 2)
1167 		error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
1168 	return (error);
1169 #else
1170 	usb_device_request_t req;
1171 
1172 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1173 	req.bRequest = RT2870_WRITE_REGION_1;
1174 	USETW(req.wValue, 0);
1175 	USETW(req.wIndex, reg);
1176 	USETW(req.wLength, len);
1177 	return (run_do_request(sc, &req, buf));
1178 #endif
1179 }
1180 
1181 static int
1182 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
1183 {
1184 	int i, error = 0;
1185 
1186 	KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n"));
1187 	for (i = 0; i < len && error == 0; i += 4)
1188 		error = run_write(sc, reg + i, val);
1189 	return (error);
1190 }
1191 
1192 /* Read 16-bit from eFUSE ROM (RT3070 only.) */
1193 static int
1194 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1195 {
1196 	uint32_t tmp;
1197 	uint16_t reg;
1198 	int error, ntries;
1199 
1200 	if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1201 		return (error);
1202 
1203 	addr *= 2;
1204 	/*-
1205 	 * Read one 16-byte block into registers EFUSE_DATA[0-3]:
1206 	 * DATA0: F E D C
1207 	 * DATA1: B A 9 8
1208 	 * DATA2: 7 6 5 4
1209 	 * DATA3: 3 2 1 0
1210 	 */
1211 	tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
1212 	tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
1213 	run_write(sc, RT3070_EFUSE_CTRL, tmp);
1214 	for (ntries = 0; ntries < 100; ntries++) {
1215 		if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
1216 			return (error);
1217 		if (!(tmp & RT3070_EFSROM_KICK))
1218 			break;
1219 		run_delay(sc, 2);
1220 	}
1221 	if (ntries == 100)
1222 		return (ETIMEDOUT);
1223 
1224 	if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
1225 		*val = 0xffff;	/* address not found */
1226 		return (0);
1227 	}
1228 	/* determine to which 32-bit register our 16-bit word belongs */
1229 	reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
1230 	if ((error = run_read(sc, reg, &tmp)) != 0)
1231 		return (error);
1232 
1233 	*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
1234 	return (0);
1235 }
1236 
1237 static int
1238 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
1239 {
1240 	usb_device_request_t req;
1241 	uint16_t tmp;
1242 	int error;
1243 
1244 	addr *= 2;
1245 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1246 	req.bRequest = RT2870_EEPROM_READ;
1247 	USETW(req.wValue, 0);
1248 	USETW(req.wIndex, addr);
1249 	USETW(req.wLength, sizeof tmp);
1250 
1251 	error = usbd_do_request(sc->sc_udev, &sc->sc_lock, &req, &tmp);
1252 	if (error == 0)
1253 		*val = le16toh(tmp);
1254 	else
1255 		*val = 0xffff;
1256 	return (error);
1257 }
1258 
1259 static __inline int
1260 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
1261 {
1262 	/* either eFUSE ROM or EEPROM */
1263 	return sc->sc_srom_read(sc, addr, val);
1264 }
1265 
1266 static int
1267 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
1268 {
1269 	uint32_t tmp;
1270 	int error, ntries;
1271 
1272 	for (ntries = 0; ntries < 10; ntries++) {
1273 		if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
1274 			return (error);
1275 		if (!(tmp & RT2860_RF_REG_CTRL))
1276 			break;
1277 	}
1278 	if (ntries == 10)
1279 		return (ETIMEDOUT);
1280 
1281 	/* RF registers are 24-bit on the RT2860 */
1282 	tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
1283 	    (val & 0x3fffff) << 2 | (reg & 3);
1284 	return (run_write(sc, RT2860_RF_CSR_CFG0, tmp));
1285 }
1286 
1287 static int
1288 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1289 {
1290 	uint32_t tmp;
1291 	int error, ntries;
1292 
1293 	for (ntries = 0; ntries < 100; ntries++) {
1294 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1295 			return (error);
1296 		if (!(tmp & RT3070_RF_KICK))
1297 			break;
1298 	}
1299 	if (ntries == 100)
1300 		return (ETIMEDOUT);
1301 
1302 	tmp = RT3070_RF_KICK | reg << 8;
1303 	if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
1304 		return (error);
1305 
1306 	for (ntries = 0; ntries < 100; ntries++) {
1307 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1308 			return (error);
1309 		if (!(tmp & RT3070_RF_KICK))
1310 			break;
1311 	}
1312 	if (ntries == 100)
1313 		return (ETIMEDOUT);
1314 
1315 	*val = tmp & 0xff;
1316 	return (0);
1317 }
1318 
1319 static int
1320 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1321 {
1322 	uint32_t tmp;
1323 	int error, ntries;
1324 
1325 	for (ntries = 0; ntries < 10; ntries++) {
1326 		if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
1327 			return (error);
1328 		if (!(tmp & RT3070_RF_KICK))
1329 			break;
1330 	}
1331 	if (ntries == 10)
1332 		return (ETIMEDOUT);
1333 
1334 	tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
1335 	return (run_write(sc, RT3070_RF_CSR_CFG, tmp));
1336 }
1337 
1338 static int
1339 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
1340 {
1341 	uint32_t tmp;
1342 	int ntries, error;
1343 
1344 	for (ntries = 0; ntries < 10; ntries++) {
1345 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1346 			return (error);
1347 		if (!(tmp & RT2860_BBP_CSR_KICK))
1348 			break;
1349 	}
1350 	if (ntries == 10)
1351 		return (ETIMEDOUT);
1352 
1353 	tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
1354 	if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
1355 		return (error);
1356 
1357 	for (ntries = 0; ntries < 10; ntries++) {
1358 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1359 			return (error);
1360 		if (!(tmp & RT2860_BBP_CSR_KICK))
1361 			break;
1362 	}
1363 	if (ntries == 10)
1364 		return (ETIMEDOUT);
1365 
1366 	*val = tmp & 0xff;
1367 	return (0);
1368 }
1369 
1370 static int
1371 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
1372 {
1373 	uint32_t tmp;
1374 	int ntries, error;
1375 
1376 	for (ntries = 0; ntries < 10; ntries++) {
1377 		if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
1378 			return (error);
1379 		if (!(tmp & RT2860_BBP_CSR_KICK))
1380 			break;
1381 	}
1382 	if (ntries == 10)
1383 		return (ETIMEDOUT);
1384 
1385 	tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
1386 	return (run_write(sc, RT2860_BBP_CSR_CFG, tmp));
1387 }
1388 
1389 /*
1390  * Send a command to the 8051 microcontroller unit.
1391  */
1392 static int
1393 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
1394 {
1395 	uint32_t tmp;
1396 	int error, ntries;
1397 
1398 	for (ntries = 0; ntries < 100; ntries++) {
1399 		if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
1400 			return error;
1401 		if (!(tmp & RT2860_H2M_BUSY))
1402 			break;
1403 	}
1404 	if (ntries == 100)
1405 		return ETIMEDOUT;
1406 
1407 	tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
1408 	if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
1409 		error = run_write(sc, RT2860_HOST_CMD, cmd);
1410 	return (error);
1411 }
1412 
1413 /*
1414  * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
1415  * Used to adjust per-rate Tx power registers.
1416  */
1417 static __inline uint32_t
1418 b4inc(uint32_t b32, int8_t delta)
1419 {
1420 	int8_t i, b4;
1421 
1422 	for (i = 0; i < 8; i++) {
1423 		b4 = b32 & 0xf;
1424 		b4 += delta;
1425 		if (b4 < 0)
1426 			b4 = 0;
1427 		else if (b4 > 0xf)
1428 			b4 = 0xf;
1429 		b32 = b32 >> 4 | b4 << 28;
1430 	}
1431 	return (b32);
1432 }
1433 
1434 static const char *
1435 run_get_rf(int rev)
1436 {
1437 	switch (rev) {
1438 	case RT2860_RF_2820:	return "RT2820";
1439 	case RT2860_RF_2850:	return "RT2850";
1440 	case RT2860_RF_2720:	return "RT2720";
1441 	case RT2860_RF_2750:	return "RT2750";
1442 	case RT3070_RF_3020:	return "RT3020";
1443 	case RT3070_RF_2020:	return "RT2020";
1444 	case RT3070_RF_3021:	return "RT3021";
1445 	case RT3070_RF_3022:	return "RT3022";
1446 	case RT3070_RF_3052:	return "RT3052";
1447 	}
1448 	return ("unknown");
1449 }
1450 
1451 int
1452 run_read_eeprom(struct run_softc *sc)
1453 {
1454 	int8_t delta_2ghz, delta_5ghz;
1455 	uint32_t tmp;
1456 	uint16_t val;
1457 	int ridx, ant, i;
1458 
1459 	/* check whether the ROM is eFUSE ROM or EEPROM */
1460 	sc->sc_srom_read = run_eeprom_read_2;
1461 	if (sc->mac_ver >= 0x3070) {
1462 		run_read(sc, RT3070_EFUSE_CTRL, &tmp);
1463 		DPRINTF("EFUSE_CTRL=0x%08x\n", tmp);
1464 		if (tmp & RT3070_SEL_EFUSE)
1465 			sc->sc_srom_read = run_efuse_read_2;
1466 	}
1467 
1468 	/* read ROM version */
1469 	run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
1470 	DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8);
1471 
1472 	/* read MAC address */
1473 	run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
1474 	sc->sc_bssid[0] = val & 0xff;
1475 	sc->sc_bssid[1] = val >> 8;
1476 	run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
1477 	sc->sc_bssid[2] = val & 0xff;
1478 	sc->sc_bssid[3] = val >> 8;
1479 	run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
1480 	sc->sc_bssid[4] = val & 0xff;
1481 	sc->sc_bssid[5] = val >> 8;
1482 
1483 	/* read vender BBP settings */
1484 	for (i = 0; i < 10; i++) {
1485 		run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
1486 		sc->bbp[i].val = val & 0xff;
1487 		sc->bbp[i].reg = val >> 8;
1488 		DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val);
1489 	}
1490 	if (sc->mac_ver >= 0x3071) {
1491 		/* read vendor RF settings */
1492 		for (i = 0; i < 10; i++) {
1493 			run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val);
1494 			sc->rf[i].val = val & 0xff;
1495 			sc->rf[i].reg = val >> 8;
1496 			DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg,
1497 			    sc->rf[i].val);
1498 		}
1499 	}
1500 
1501 	/* read RF frequency offset from EEPROM */
1502 	run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
1503 	sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
1504 	DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff);
1505 
1506 	if (val >> 8 != 0xff) {
1507 		/* read LEDs operating mode */
1508 		sc->leds = val >> 8;
1509 		run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
1510 		run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
1511 		run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
1512 	} else {
1513 		/* broken EEPROM, use default settings */
1514 		sc->leds = 0x01;
1515 		sc->led[0] = 0x5555;
1516 		sc->led[1] = 0x2221;
1517 		sc->led[2] = 0x5627;	/* differs from RT2860 */
1518 	}
1519 	DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
1520 	    sc->leds, sc->led[0], sc->led[1], sc->led[2]);
1521 
1522 	/* read RF information */
1523 	run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
1524 	if (val == 0xffff) {
1525 		DPRINTF("invalid EEPROM antenna info, using default\n");
1526 		if (sc->mac_ver == 0x3572) {
1527 			/* default to RF3052 2T2R */
1528 			sc->rf_rev = RT3070_RF_3052;
1529 			sc->ntxchains = 2;
1530 			sc->nrxchains = 2;
1531 		} else if (sc->mac_ver >= 0x3070) {
1532 			/* default to RF3020 1T1R */
1533 			sc->rf_rev = RT3070_RF_3020;
1534 			sc->ntxchains = 1;
1535 			sc->nrxchains = 1;
1536 		} else {
1537 			/* default to RF2820 1T2R */
1538 			sc->rf_rev = RT2860_RF_2820;
1539 			sc->ntxchains = 1;
1540 			sc->nrxchains = 2;
1541 		}
1542 	} else {
1543 		sc->rf_rev = (val >> 8) & 0xf;
1544 		sc->ntxchains = (val >> 4) & 0xf;
1545 		sc->nrxchains = val & 0xf;
1546 	}
1547 	DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n",
1548 	    sc->rf_rev, sc->ntxchains, sc->nrxchains);
1549 
1550 	/* check if RF supports automatic Tx access gain control */
1551 	run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
1552 	DPRINTF("EEPROM CFG 0x%04x\n", val);
1553 	/* check if driver should patch the DAC issue */
1554 	if ((val >> 8) != 0xff)
1555 		sc->patch_dac = (val >> 15) & 1;
1556 	if ((val & 0xff) != 0xff) {
1557 		sc->ext_5ghz_lna = (val >> 3) & 1;
1558 		sc->ext_2ghz_lna = (val >> 2) & 1;
1559 		/* check if RF supports automatic Tx access gain control */
1560 		sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
1561 		/* check if we have a hardware radio switch */
1562 		sc->rfswitch = val & 1;
1563 	}
1564 
1565 	/* read power settings for 2GHz channels */
1566 	for (i = 0; i < 14; i += 2) {
1567 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
1568 		sc->txpow1[i + 0] = (int8_t)(val & 0xff);
1569 		sc->txpow1[i + 1] = (int8_t)(val >> 8);
1570 
1571 		run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
1572 		sc->txpow2[i + 0] = (int8_t)(val & 0xff);
1573 		sc->txpow2[i + 1] = (int8_t)(val >> 8);
1574 	}
1575 	/* fix broken Tx power entries */
1576 	for (i = 0; i < 14; i++) {
1577 		if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
1578 			sc->txpow1[i] = 5;
1579 		if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
1580 			sc->txpow2[i] = 5;
1581 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1582 		    rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]);
1583 	}
1584 	/* read power settings for 5GHz channels */
1585 	for (i = 0; i < 40; i += 2) {
1586 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
1587 		sc->txpow1[i + 14] = (int8_t)(val & 0xff);
1588 		sc->txpow1[i + 15] = (int8_t)(val >> 8);
1589 
1590 		run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
1591 		sc->txpow2[i + 14] = (int8_t)(val & 0xff);
1592 		sc->txpow2[i + 15] = (int8_t)(val >> 8);
1593 	}
1594 	/* fix broken Tx power entries */
1595 	for (i = 0; i < 40; i++) {
1596 		if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
1597 			sc->txpow1[14 + i] = 5;
1598 		if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
1599 			sc->txpow2[14 + i] = 5;
1600 		DPRINTF("chan %d: power1=%d, power2=%d\n",
1601 		    rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
1602 		    sc->txpow2[14 + i]);
1603 	}
1604 
1605 	/* read Tx power compensation for each Tx rate */
1606 	run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
1607 	delta_2ghz = delta_5ghz = 0;
1608 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1609 		delta_2ghz = val & 0xf;
1610 		if (!(val & 0x40))	/* negative number */
1611 			delta_2ghz = -delta_2ghz;
1612 	}
1613 	val >>= 8;
1614 	if ((val & 0xff) != 0xff && (val & 0x80)) {
1615 		delta_5ghz = val & 0xf;
1616 		if (!(val & 0x40))	/* negative number */
1617 			delta_5ghz = -delta_5ghz;
1618 	}
1619 	DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n",
1620 	    delta_2ghz, delta_5ghz);
1621 
1622 	for (ridx = 0; ridx < 5; ridx++) {
1623 		uint32_t reg;
1624 
1625 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
1626 		reg = val;
1627 		run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
1628 		reg |= (uint32_t)val << 16;
1629 
1630 		sc->txpow20mhz[ridx] = reg;
1631 		sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
1632 		sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
1633 
1634 		DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
1635 		    "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
1636 		    sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]);
1637 	}
1638 
1639 	/* read RSSI offsets and LNA gains from EEPROM */
1640 	run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
1641 	sc->rssi_2ghz[0] = val & 0xff;	/* Ant A */
1642 	sc->rssi_2ghz[1] = val >> 8;	/* Ant B */
1643 	run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
1644 	if (sc->mac_ver >= 0x3070) {
1645 		/*
1646 		 * On RT3070 chips (limited to 2 Rx chains), this ROM
1647 		 * field contains the Tx mixer gain for the 2GHz band.
1648 		 */
1649 		if ((val & 0xff) != 0xff)
1650 			sc->txmixgain_2ghz = val & 0x7;
1651 		DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz);
1652 	} else
1653 		sc->rssi_2ghz[2] = val & 0xff;	/* Ant C */
1654 	sc->lna[2] = val >> 8;		/* channel group 2 */
1655 
1656 	run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
1657 	sc->rssi_5ghz[0] = val & 0xff;	/* Ant A */
1658 	sc->rssi_5ghz[1] = val >> 8;	/* Ant B */
1659 	run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
1660 	if (sc->mac_ver == 0x3572) {
1661 		/*
1662 		 * On RT3572 chips (limited to 2 Rx chains), this ROM
1663 		 * field contains the Tx mixer gain for the 5GHz band.
1664 		 */
1665 		if ((val & 0xff) != 0xff)
1666 			sc->txmixgain_5ghz = val & 0x7;
1667 		DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz);
1668 	} else
1669 		sc->rssi_5ghz[2] = val & 0xff;	/* Ant C */
1670 	sc->lna[3] = val >> 8;		/* channel group 3 */
1671 
1672 	run_srom_read(sc, RT2860_EEPROM_LNA, &val);
1673 	sc->lna[0] = val & 0xff;	/* channel group 0 */
1674 	sc->lna[1] = val >> 8;		/* channel group 1 */
1675 
1676 	/* fix broken 5GHz LNA entries */
1677 	if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
1678 		DPRINTF("invalid LNA for channel group %d\n", 2);
1679 		sc->lna[2] = sc->lna[1];
1680 	}
1681 	if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
1682 		DPRINTF("invalid LNA for channel group %d\n", 3);
1683 		sc->lna[3] = sc->lna[1];
1684 	}
1685 
1686 	/* fix broken RSSI offset entries */
1687 	for (ant = 0; ant < 3; ant++) {
1688 		if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
1689 			DPRINTF("invalid RSSI%d offset: %d (2GHz)\n",
1690 			    ant + 1, sc->rssi_2ghz[ant]);
1691 			sc->rssi_2ghz[ant] = 0;
1692 		}
1693 		if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
1694 			DPRINTF("invalid RSSI%d offset: %d (5GHz)\n",
1695 			    ant + 1, sc->rssi_5ghz[ant]);
1696 			sc->rssi_5ghz[ant] = 0;
1697 		}
1698 	}
1699 	return (0);
1700 }
1701 
1702 static struct ieee80211_node *
1703 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1704 {
1705 	return kmalloc(sizeof (struct run_node), M_DEVBUF, M_WAITOK | M_ZERO);
1706 }
1707 
1708 static int
1709 run_media_change(struct ifnet *ifp)
1710 {
1711 	struct ieee80211vap *vap = ifp->if_softc;
1712 	struct ieee80211com *ic = vap->iv_ic;
1713 	const struct ieee80211_txparam *tp;
1714 	struct run_softc *sc = ic->ic_ifp->if_softc;
1715 	uint8_t rate, ridx;
1716 	int error;
1717 
1718 	RUN_LOCK(sc);
1719 
1720 	error = ieee80211_media_change(ifp);
1721 	if (error != ENETRESET) {
1722 		RUN_UNLOCK(sc);
1723 		return (error);
1724 	}
1725 
1726 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1727 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1728 		struct ieee80211_node *ni;
1729 		struct run_node	*rn;
1730 
1731 		rate = ic->ic_sup_rates[ic->ic_curmode].
1732 		    rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL;
1733 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
1734 			if (rt2860_rates[ridx].rate == rate)
1735 				break;
1736 		ni = ieee80211_ref_node(vap->iv_bss);
1737 		rn = (struct run_node *)ni;
1738 		rn->fix_ridx = ridx;
1739 		DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx);
1740 		ieee80211_free_node(ni);
1741 	}
1742 
1743 #if 0
1744 	if ((ifp->if_flags & IFF_UP) &&
1745 	    (ifp->if_flags &  IFF_RUNNING)){
1746 		run_init_locked(sc);
1747 	}
1748 #endif
1749 
1750 	RUN_UNLOCK(sc);
1751 
1752 	return (0);
1753 }
1754 
1755 static int
1756 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1757 {
1758 	const struct ieee80211_txparam *tp;
1759 	struct ieee80211com *ic = vap->iv_ic;
1760 	struct run_softc *sc = ic->ic_ifp->if_softc;
1761 	struct run_vap *rvp = RUN_VAP(vap);
1762 	enum ieee80211_state ostate;
1763 	uint32_t sta[3];
1764 	uint32_t tmp;
1765 	uint8_t ratectl;
1766 	uint8_t restart_ratectl = 0;
1767 	uint8_t bid = 1 << rvp->rvp_id;
1768 
1769 	ostate = vap->iv_state;
1770 	DPRINTF("%s -> %s\n",
1771 		ieee80211_state_name[ostate],
1772 		ieee80211_state_name[nstate]);
1773 
1774 	RUN_LOCK(sc);
1775 
1776 	ratectl = sc->ratectl_run; /* remember current state */
1777 	sc->ratectl_run = RUN_RATECTL_OFF;
1778 	usb_callout_stop(&sc->ratectl_ch);
1779 
1780 	if (ostate == IEEE80211_S_RUN) {
1781 		/* turn link LED off */
1782 		run_set_leds(sc, RT2860_LED_RADIO);
1783 	}
1784 
1785 	switch (nstate) {
1786 	case IEEE80211_S_INIT:
1787 		restart_ratectl = 1;
1788 
1789 		if (ostate != IEEE80211_S_RUN)
1790 			break;
1791 
1792 		ratectl &= ~bid;
1793 		sc->runbmap &= ~bid;
1794 
1795 		/* abort TSF synchronization if there is no vap running */
1796 		if (--sc->running == 0) {
1797 			run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
1798 			run_write(sc, RT2860_BCN_TIME_CFG,
1799 			    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
1800 			    RT2860_TBTT_TIMER_EN));
1801 		}
1802 		break;
1803 
1804 	case IEEE80211_S_RUN:
1805 		if (!(sc->runbmap & bid)) {
1806 			if(sc->running++)
1807 				restart_ratectl = 1;
1808 			sc->runbmap |= bid;
1809 		}
1810 
1811 		m_freem(rvp->beacon_mbuf);
1812 		rvp->beacon_mbuf = NULL;
1813 
1814 		switch (vap->iv_opmode) {
1815 		case IEEE80211_M_HOSTAP:
1816 		case IEEE80211_M_MBSS:
1817 			sc->ap_running |= bid;
1818 			ic->ic_opmode = vap->iv_opmode;
1819 			run_update_beacon_cb(vap);
1820 			break;
1821 		case IEEE80211_M_IBSS:
1822 			sc->adhoc_running |= bid;
1823 			if (!sc->ap_running)
1824 				ic->ic_opmode = vap->iv_opmode;
1825 			run_update_beacon_cb(vap);
1826 			break;
1827 		case IEEE80211_M_STA:
1828 			sc->sta_running |= bid;
1829 			if (!sc->ap_running && !sc->adhoc_running)
1830 				ic->ic_opmode = vap->iv_opmode;
1831 
1832 			/* read statistic counters (clear on read) */
1833 			run_read_region_1(sc, RT2860_TX_STA_CNT0,
1834 			    (uint8_t *)sta, sizeof sta);
1835 
1836 			break;
1837 		default:
1838 			ic->ic_opmode = vap->iv_opmode;
1839 			break;
1840 		}
1841 
1842 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1843 			struct ieee80211_node *ni;
1844 
1845 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
1846 				return (-1);
1847 			run_updateslot(ic->ic_ifp);
1848 			run_enable_mrr(sc);
1849 			run_set_txpreamble(sc);
1850 			run_set_basicrates(sc);
1851 			ni = ieee80211_ref_node(vap->iv_bss);
1852 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1853 			run_set_bssid(sc, ni->ni_bssid);
1854 			ieee80211_free_node(ni);
1855 			run_enable_tsf_sync(sc);
1856 
1857 			/* enable automatic rate adaptation */
1858 			tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1859 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1860 				ratectl |= bid;
1861 		}
1862 
1863 		/* turn link LED on */
1864 		run_set_leds(sc, RT2860_LED_RADIO |
1865 		    (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
1866 		     RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
1867 
1868 		break;
1869 	default:
1870 		DPRINTFN(6, "undefined case\n");
1871 		break;
1872 	}
1873 
1874 	/* restart amrr for running VAPs */
1875 	if ((sc->ratectl_run = ratectl) && restart_ratectl)
1876 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
1877 
1878 	RUN_UNLOCK(sc);
1879 
1880 	return(rvp->newstate(vap, nstate, arg));
1881 }
1882 
1883 /* ARGSUSED */
1884 static void
1885 run_wme_update_cb(void *arg)
1886 {
1887 	struct ieee80211com *ic = arg;
1888 	struct run_softc *sc = ic->ic_ifp->if_softc;
1889 	struct ieee80211_wme_state *wmesp = &ic->ic_wme;
1890 	int aci, error = 0;
1891 
1892 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1893 
1894 	/* update MAC TX configuration registers */
1895 	for (aci = 0; aci < WME_NUM_AC; aci++) {
1896 		error = run_write(sc, RT2860_EDCA_AC_CFG(aci),
1897 		    wmesp->wme_params[aci].wmep_logcwmax << 16 |
1898 		    wmesp->wme_params[aci].wmep_logcwmin << 12 |
1899 		    wmesp->wme_params[aci].wmep_aifsn  <<  8 |
1900 		    wmesp->wme_params[aci].wmep_txopLimit);
1901 		if (error) goto err;
1902 	}
1903 
1904 	/* update SCH/DMA registers too */
1905 	error = run_write(sc, RT2860_WMM_AIFSN_CFG,
1906 	    wmesp->wme_params[WME_AC_VO].wmep_aifsn  << 12 |
1907 	    wmesp->wme_params[WME_AC_VI].wmep_aifsn  <<  8 |
1908 	    wmesp->wme_params[WME_AC_BK].wmep_aifsn  <<  4 |
1909 	    wmesp->wme_params[WME_AC_BE].wmep_aifsn);
1910 	if (error) goto err;
1911 	error = run_write(sc, RT2860_WMM_CWMIN_CFG,
1912 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 |
1913 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmin <<  8 |
1914 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmin <<  4 |
1915 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmin);
1916 	if (error) goto err;
1917 	error = run_write(sc, RT2860_WMM_CWMAX_CFG,
1918 	    wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 |
1919 	    wmesp->wme_params[WME_AC_VI].wmep_logcwmax <<  8 |
1920 	    wmesp->wme_params[WME_AC_BK].wmep_logcwmax <<  4 |
1921 	    wmesp->wme_params[WME_AC_BE].wmep_logcwmax);
1922 	if (error) goto err;
1923 	error = run_write(sc, RT2860_WMM_TXOP0_CFG,
1924 	    wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 |
1925 	    wmesp->wme_params[WME_AC_BE].wmep_txopLimit);
1926 	if (error) goto err;
1927 	error = run_write(sc, RT2860_WMM_TXOP1_CFG,
1928 	    wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 |
1929 	    wmesp->wme_params[WME_AC_VI].wmep_txopLimit);
1930 
1931 err:
1932 	if (error)
1933 		DPRINTF("WME update failed\n");
1934 
1935 	return;
1936 }
1937 
1938 static int
1939 run_wme_update(struct ieee80211com *ic)
1940 {
1941 	struct run_softc *sc = ic->ic_ifp->if_softc;
1942 
1943 #if 0 /* XXX swildner */
1944 	/* sometime called without lock */
1945 	if (mtx_owned(&ic->ic_comlock.mtx)) {
1946 		uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
1947 		DPRINTF("cmdq_store=%d\n", i);
1948 		sc->cmdq[i].func = run_wme_update_cb;
1949 		sc->cmdq[i].arg0 = ic;
1950 		ieee80211_runtask(ic, &sc->cmdq_task);
1951 		return (0);
1952 	}
1953 #endif
1954 
1955 	RUN_LOCK(sc);
1956 	run_wme_update_cb(ic);
1957 	RUN_UNLOCK(sc);
1958 
1959 	/* return whatever, upper layer desn't care anyway */
1960 	return (0);
1961 }
1962 
1963 static void
1964 run_key_update_begin(struct ieee80211vap *vap)
1965 {
1966 	/*
1967 	 * To avoid out-of-order events, both run_key_set() and
1968 	 * _delete() are deferred and handled by run_cmdq_cb().
1969 	 * So, there is nothing we need to do here.
1970 	 */
1971 }
1972 
1973 static void
1974 run_key_update_end(struct ieee80211vap *vap)
1975 {
1976 	/* null */
1977 }
1978 
1979 static void
1980 run_key_set_cb(void *arg)
1981 {
1982 	struct run_cmdq *cmdq = arg;
1983 	struct ieee80211vap *vap = cmdq->arg1;
1984 	struct ieee80211_key *k = cmdq->k;
1985 	struct ieee80211com *ic = vap->iv_ic;
1986 	struct run_softc *sc = ic->ic_ifp->if_softc;
1987 	struct ieee80211_node *ni;
1988 	uint32_t attr;
1989 	uint16_t base, associd;
1990 	uint8_t mode, wcid, iv[8];
1991 
1992 	RUN_LOCK_ASSERT(sc, MA_OWNED);
1993 
1994 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1995 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac);
1996 	else
1997 		ni = vap->iv_bss;
1998 	associd = (ni != NULL) ? ni->ni_associd : 0;
1999 
2000 	/* map net80211 cipher to RT2860 security mode */
2001 	switch (k->wk_cipher->ic_cipher) {
2002 	case IEEE80211_CIPHER_WEP:
2003 		if(k->wk_keylen < 8)
2004 			mode = RT2860_MODE_WEP40;
2005 		else
2006 			mode = RT2860_MODE_WEP104;
2007 		break;
2008 	case IEEE80211_CIPHER_TKIP:
2009 		mode = RT2860_MODE_TKIP;
2010 		break;
2011 	case IEEE80211_CIPHER_AES_CCM:
2012 		mode = RT2860_MODE_AES_CCMP;
2013 		break;
2014 	default:
2015 		DPRINTF("undefined case\n");
2016 		return;
2017 	}
2018 
2019 	DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n",
2020 	    associd, k->wk_keyix, mode,
2021 	    (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise",
2022 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2023 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2024 
2025 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2026 		wcid = 0;	/* NB: update WCID0 for group keys */
2027 		base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix);
2028 	} else {
2029 		wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2030 		    1 : RUN_AID2WCID(associd);
2031 		base = RT2860_PKEY(wcid);
2032 	}
2033 
2034 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2035 		if(run_write_region_1(sc, base, k->wk_key, 16))
2036 			return;
2037 		if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8))	/* wk_txmic */
2038 			return;
2039 		if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8))	/* wk_rxmic */
2040 			return;
2041 	} else {
2042 		/* roundup len to 16-bit: XXX fix write_region_1() instead */
2043 		if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1))
2044 			return;
2045 	}
2046 
2047 	if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
2048 	    (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) {
2049 		/* set initial packet number in IV+EIV */
2050 		if (k->wk_cipher == IEEE80211_CIPHER_WEP) {
2051 			memset(iv, 0, sizeof iv);
2052 			iv[3] = vap->iv_def_txkey << 6;
2053 		} else {
2054 			if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2055 				iv[0] = k->wk_keytsc >> 8;
2056 				iv[1] = (iv[0] | 0x20) & 0x7f;
2057 				iv[2] = k->wk_keytsc;
2058 			} else /* CCMP */ {
2059 				iv[0] = k->wk_keytsc;
2060 				iv[1] = k->wk_keytsc >> 8;
2061 				iv[2] = 0;
2062 			}
2063 			iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
2064 			iv[4] = k->wk_keytsc >> 16;
2065 			iv[5] = k->wk_keytsc >> 24;
2066 			iv[6] = k->wk_keytsc >> 32;
2067 			iv[7] = k->wk_keytsc >> 40;
2068 		}
2069 		if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8))
2070 			return;
2071 	}
2072 
2073 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2074 		/* install group key */
2075 		if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr))
2076 			return;
2077 		attr &= ~(0xf << (k->wk_keyix * 4));
2078 		attr |= mode << (k->wk_keyix * 4);
2079 		if (run_write(sc, RT2860_SKEY_MODE_0_7, attr))
2080 			return;
2081 	} else {
2082 		/* install pairwise key */
2083 		if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr))
2084 			return;
2085 		attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
2086 		if (run_write(sc, RT2860_WCID_ATTR(wcid), attr))
2087 			return;
2088 	}
2089 
2090 	/* TODO create a pass-thru key entry? */
2091 
2092 	/* need wcid to delete the right key later */
2093 	k->wk_pad = wcid;
2094 }
2095 
2096 /*
2097  * Don't have to be deferred, but in order to keep order of
2098  * execution, i.e. with run_key_delete(), defer this and let
2099  * run_cmdq_cb() maintain the order.
2100  *
2101  * return 0 on error
2102  */
2103 static int
2104 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k,
2105 		const uint8_t mac[IEEE80211_ADDR_LEN])
2106 {
2107 	struct ieee80211com *ic = vap->iv_ic;
2108 	struct run_softc *sc = ic->ic_ifp->if_softc;
2109 	uint32_t i;
2110 
2111 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2112 	DPRINTF("cmdq_store=%d\n", i);
2113 	sc->cmdq[i].func = run_key_set_cb;
2114 	sc->cmdq[i].arg0 = NULL;
2115 	sc->cmdq[i].arg1 = vap;
2116 	sc->cmdq[i].k = k;
2117 	IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac);
2118 	ieee80211_runtask(ic, &sc->cmdq_task);
2119 
2120 	/*
2121 	 * To make sure key will be set when hostapd
2122 	 * calls iv_key_set() before if_init().
2123 	 */
2124 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2125 		RUN_LOCK(sc);
2126 		sc->cmdq_key_set = RUN_CMDQ_GO;
2127 		RUN_UNLOCK(sc);
2128 	}
2129 
2130 	return (1);
2131 }
2132 
2133 /*
2134  * If wlan is destroyed without being brought down i.e. without
2135  * wlan down or wpa_cli terminate, this function is called after
2136  * vap is gone. Don't refer it.
2137  */
2138 static void
2139 run_key_delete_cb(void *arg)
2140 {
2141 	struct run_cmdq *cmdq = arg;
2142 	struct run_softc *sc = cmdq->arg1;
2143 	struct ieee80211_key *k = &cmdq->key;
2144 	uint32_t attr;
2145 	uint8_t wcid;
2146 
2147 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2148 
2149 	if (k->wk_flags & IEEE80211_KEY_GROUP) {
2150 		/* remove group key */
2151 		DPRINTF("removing group key\n");
2152 		run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
2153 		attr &= ~(0xf << (k->wk_keyix * 4));
2154 		run_write(sc, RT2860_SKEY_MODE_0_7, attr);
2155 	} else {
2156 		/* remove pairwise key */
2157 		DPRINTF("removing key for wcid %x\n", k->wk_pad);
2158 		/* matching wcid was written to wk_pad in run_key_set() */
2159 		wcid = k->wk_pad;
2160 		run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
2161 		attr &= ~0xf;
2162 		run_write(sc, RT2860_WCID_ATTR(wcid), attr);
2163 		run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8);
2164 	}
2165 
2166 	k->wk_pad = 0;
2167 }
2168 
2169 /*
2170  * return 0 on error
2171  */
2172 static int
2173 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k)
2174 {
2175 	struct ieee80211com *ic = vap->iv_ic;
2176 	struct run_softc *sc = ic->ic_ifp->if_softc;
2177 	struct ieee80211_key *k0;
2178 	uint32_t i;
2179 
2180 	/*
2181 	 * When called back, key might be gone. So, make a copy
2182 	 * of some values need to delete keys before deferring.
2183 	 * But, because of LOR with node lock, cannot use lock here.
2184 	 * So, use atomic instead.
2185 	 */
2186 	i = RUN_CMDQ_GET(&sc->cmdq_store);
2187 	DPRINTF("cmdq_store=%d\n", i);
2188 	sc->cmdq[i].func = run_key_delete_cb;
2189 	sc->cmdq[i].arg0 = NULL;
2190 	sc->cmdq[i].arg1 = sc;
2191 	k0 = &sc->cmdq[i].key;
2192 	k0->wk_flags = k->wk_flags;
2193 	k0->wk_keyix = k->wk_keyix;
2194 	/* matching wcid was written to wk_pad in run_key_set() */
2195 	k0->wk_pad = k->wk_pad;
2196 	ieee80211_runtask(ic, &sc->cmdq_task);
2197 	return (1);	/* return fake success */
2198 
2199 }
2200 
2201 static void
2202 run_ratectl_to(void *arg)
2203 {
2204 	struct run_softc *sc = arg;
2205 
2206 	/* do it in a process context, so it can go sleep */
2207 	ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task);
2208 	/* next timeout will be rescheduled in the callback task */
2209 }
2210 
2211 /* ARGSUSED */
2212 static void
2213 run_ratectl_cb(void *arg, int pending)
2214 {
2215 	struct run_softc *sc = arg;
2216 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2217 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2218 
2219 	if (vap == NULL)
2220 		return;
2221 
2222 	if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA)
2223 		run_iter_func(sc, vap->iv_bss);
2224 	else {
2225 		/*
2226 		 * run_reset_livelock() doesn't do anything with AMRR,
2227 		 * but Ralink wants us to call it every 1 sec. So, we
2228 		 * piggyback here rather than creating another callout.
2229 		 * Livelock may occur only in HOSTAP or IBSS mode
2230 		 * (when h/w is sending beacons).
2231 		 */
2232 		RUN_LOCK(sc);
2233 		run_reset_livelock(sc);
2234 		/* just in case, there are some stats to drain */
2235 		run_drain_fifo(sc);
2236 		RUN_UNLOCK(sc);
2237 		ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc);
2238 	}
2239 
2240 	if(sc->ratectl_run != RUN_RATECTL_OFF)
2241 		usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2242 }
2243 
2244 static void
2245 run_drain_fifo(void *arg)
2246 {
2247 	struct run_softc *sc = arg;
2248 	struct ifnet *ifp = sc->sc_ifp;
2249 	uint32_t stat;
2250 	uint16_t (*wstat)[3];
2251 	uint8_t wcid, mcs, pid;
2252 	int8_t retry;
2253 
2254 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2255 
2256 	for (;;) {
2257 		/* drain Tx status FIFO (maxsize = 16) */
2258 		run_read(sc, RT2860_TX_STAT_FIFO, &stat);
2259 		DPRINTFN(4, "tx stat 0x%08x\n", stat);
2260 		if (!(stat & RT2860_TXQ_VLD))
2261 			break;
2262 
2263 		wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
2264 
2265 		/* if no ACK was requested, no feedback is available */
2266 		if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX ||
2267 		    wcid == 0)
2268 			continue;
2269 
2270 		/*
2271 		 * Even though each stat is Tx-complete-status like format,
2272 		 * the device can poll stats. Because there is no guarantee
2273 		 * that the referring node is still around when read the stats.
2274 		 * So that, if we use ieee80211_ratectl_tx_update(), we will
2275 		 * have hard time not to refer already freed node.
2276 		 *
2277 		 * To eliminate such page faults, we poll stats in softc.
2278 		 * Then, update the rates later with ieee80211_ratectl_tx_update().
2279 		 */
2280 		wstat = &(sc->wcid_stats[wcid]);
2281 		(*wstat)[RUN_TXCNT]++;
2282 		if (stat & RT2860_TXQ_OK)
2283 			(*wstat)[RUN_SUCCESS]++;
2284 		else
2285 			ifp->if_oerrors++;
2286 		/*
2287 		 * Check if there were retries, ie if the Tx success rate is
2288 		 * different from the requested rate. Note that it works only
2289 		 * because we do not allow rate fallback from OFDM to CCK.
2290 		 */
2291 		mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
2292 		pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
2293 		if ((retry = pid -1 - mcs) > 0) {
2294 			(*wstat)[RUN_TXCNT] += retry;
2295 			(*wstat)[RUN_RETRY] += retry;
2296 		}
2297 	}
2298 	DPRINTFN(3, "count=%d\n", sc->fifo_cnt);
2299 
2300 	sc->fifo_cnt = 0;
2301 }
2302 
2303 static void
2304 run_iter_func(void *arg, struct ieee80211_node *ni)
2305 {
2306 	struct run_softc *sc = arg;
2307 	struct ieee80211vap *vap = ni->ni_vap;
2308 	struct ieee80211com *ic = ni->ni_ic;
2309 	struct ifnet *ifp = ic->ic_ifp;
2310 	struct run_node *rn = (void *)ni;
2311 	union run_stats sta[2];
2312 	uint16_t (*wstat)[3];
2313 	int txcnt, success, retrycnt, error;
2314 
2315 	RUN_LOCK(sc);
2316 
2317 	if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS ||
2318 	    vap->iv_opmode == IEEE80211_M_STA)) {
2319 		/* read statistic counters (clear on read) and update AMRR state */
2320 		error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
2321 		    sizeof sta);
2322 		if (error != 0)
2323 			goto fail;
2324 
2325 		/* count failed TX as errors */
2326 		ifp->if_oerrors += le16toh(sta[0].error.fail);
2327 
2328 		retrycnt = le16toh(sta[1].tx.retry);
2329 		success = le16toh(sta[1].tx.success);
2330 		txcnt = retrycnt + success + le16toh(sta[0].error.fail);
2331 
2332 		DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n",
2333 			retrycnt, success, le16toh(sta[0].error.fail));
2334 	} else {
2335 		wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]);
2336 
2337 		if (wstat == &(sc->wcid_stats[0]) ||
2338 		    wstat > &(sc->wcid_stats[RT2870_WCID_MAX]))
2339 			goto fail;
2340 
2341 		txcnt = (*wstat)[RUN_TXCNT];
2342 		success = (*wstat)[RUN_SUCCESS];
2343 		retrycnt = (*wstat)[RUN_RETRY];
2344 		DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n",
2345 		    retrycnt, txcnt, success);
2346 
2347 		memset(wstat, 0, sizeof(*wstat));
2348 	}
2349 
2350 	ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt);
2351 	rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0);
2352 
2353 fail:
2354 	RUN_UNLOCK(sc);
2355 
2356 	DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx);
2357 }
2358 
2359 static void
2360 run_newassoc_cb(void *arg)
2361 {
2362 	struct run_cmdq *cmdq = arg;
2363 	struct ieee80211_node *ni = cmdq->arg1;
2364 	struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc;
2365 	uint8_t wcid = cmdq->wcid;
2366 
2367 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2368 
2369 	run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
2370 	    ni->ni_macaddr, IEEE80211_ADDR_LEN);
2371 
2372 	memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid]));
2373 }
2374 
2375 static void
2376 run_newassoc(struct ieee80211_node *ni, int isnew)
2377 {
2378 	struct run_node *rn = (void *)ni;
2379 	struct ieee80211_rateset *rs = &ni->ni_rates;
2380 	struct ieee80211vap *vap = ni->ni_vap;
2381 	struct ieee80211com *ic = vap->iv_ic;
2382 	struct run_softc *sc = ic->ic_ifp->if_softc;
2383 	uint8_t rate;
2384 	uint8_t ridx;
2385 	uint8_t wcid;
2386 	int i, j;
2387 #ifdef RUN_DEBUG
2388 	char ethstr[ETHER_ADDRSTRLEN + 1];
2389 #endif
2390 
2391 	wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
2392 	    1 : RUN_AID2WCID(ni->ni_associd);
2393 
2394 	if (wcid > RT2870_WCID_MAX) {
2395 		device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid);
2396 		return;
2397 	}
2398 
2399 	/* only interested in true associations */
2400 	if (isnew && ni->ni_associd != 0) {
2401 
2402 		/*
2403 		 * This function could is called though timeout function.
2404 		 * Need to defer.
2405 		 */
2406 		uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store);
2407 		DPRINTF("cmdq_store=%d\n", cnt);
2408 		sc->cmdq[cnt].func = run_newassoc_cb;
2409 		sc->cmdq[cnt].arg0 = NULL;
2410 		sc->cmdq[cnt].arg1 = ni;
2411 		sc->cmdq[cnt].wcid = wcid;
2412 		ieee80211_runtask(ic, &sc->cmdq_task);
2413 	}
2414 
2415 	DPRINTF("new assoc isnew=%d associd=%x addr=%s\n",
2416 	    isnew, ni->ni_associd, kether_ntoa(ni->ni_macaddr, ethstr));
2417 
2418 	for (i = 0; i < rs->rs_nrates; i++) {
2419 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2420 		/* convert 802.11 rate to hardware rate index */
2421 		for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2422 			if (rt2860_rates[ridx].rate == rate)
2423 				break;
2424 		rn->ridx[i] = ridx;
2425 		/* determine rate of control response frames */
2426 		for (j = i; j >= 0; j--) {
2427 			if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
2428 			    rt2860_rates[rn->ridx[i]].phy ==
2429 			    rt2860_rates[rn->ridx[j]].phy)
2430 				break;
2431 		}
2432 		if (j >= 0) {
2433 			rn->ctl_ridx[i] = rn->ridx[j];
2434 		} else {
2435 			/* no basic rate found, use mandatory one */
2436 			rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
2437 		}
2438 		DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n",
2439 		    rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]);
2440 	}
2441 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
2442 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
2443 		if (rt2860_rates[ridx].rate == rate)
2444 			break;
2445 	rn->mgt_ridx = ridx;
2446 	DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx);
2447 
2448 	usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc);
2449 }
2450 
2451 /*
2452  * Return the Rx chain with the highest RSSI for a given frame.
2453  */
2454 static __inline uint8_t
2455 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
2456 {
2457 	uint8_t rxchain = 0;
2458 
2459 	if (sc->nrxchains > 1) {
2460 		if (rxwi->rssi[1] > rxwi->rssi[rxchain])
2461 			rxchain = 1;
2462 		if (sc->nrxchains > 2)
2463 			if (rxwi->rssi[2] > rxwi->rssi[rxchain])
2464 				rxchain = 2;
2465 	}
2466 	return (rxchain);
2467 }
2468 
2469 static void
2470 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen)
2471 {
2472 	struct ifnet *ifp = sc->sc_ifp;
2473 	struct ieee80211com *ic = ifp->if_l2com;
2474 	struct ieee80211_frame *wh;
2475 	struct ieee80211_node *ni;
2476 	struct rt2870_rxd *rxd;
2477 	struct rt2860_rxwi *rxwi;
2478 	uint32_t flags;
2479 	uint16_t len, phy;
2480 	uint8_t ant, rssi;
2481 	int8_t nf;
2482 
2483 	rxwi = mtod(m, struct rt2860_rxwi *);
2484 	len = le16toh(rxwi->len) & 0xfff;
2485 	if (__predict_false(len > dmalen)) {
2486 		m_freem(m);
2487 		ifp->if_ierrors++;
2488 		DPRINTF("bad RXWI length %u > %u\n", len, dmalen);
2489 		return;
2490 	}
2491 	/* Rx descriptor is located at the end */
2492 	rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen);
2493 	flags = le32toh(rxd->flags);
2494 
2495 	if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
2496 		m_freem(m);
2497 		ifp->if_ierrors++;
2498 		DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV");
2499 		return;
2500 	}
2501 
2502 	m->m_data += sizeof(struct rt2860_rxwi);
2503 	m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi);
2504 
2505 	wh = mtod(m, struct ieee80211_frame *);
2506 
2507 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2508 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2509 		m->m_flags |= M_WEP;
2510 	}
2511 
2512 	if (flags & RT2860_RX_L2PAD) {
2513 		DPRINTFN(8, "received RT2860_RX_L2PAD frame\n");
2514 		len += 2;
2515 	}
2516 
2517 	ni = ieee80211_find_rxnode(ic,
2518 	    mtod(m, struct ieee80211_frame_min *));
2519 
2520 	if (__predict_false(flags & RT2860_RX_MICERR)) {
2521 		/* report MIC failures to net80211 for TKIP */
2522 		if (ni != NULL)
2523 			ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx);
2524 		m_freem(m);
2525 		ifp->if_ierrors++;
2526 		DPRINTF("MIC error. Someone is lying.\n");
2527 		return;
2528 	}
2529 
2530 	ant = run_maxrssi_chain(sc, rxwi);
2531 	rssi = rxwi->rssi[ant];
2532 	nf = run_rssi2dbm(sc, rssi, ant);
2533 
2534 	m->m_pkthdr.rcvif = ifp;
2535 	m->m_pkthdr.len = m->m_len = len;
2536 
2537 	if (ni != NULL) {
2538 		(void)ieee80211_input(ni, m, rssi, nf);
2539 		ieee80211_free_node(ni);
2540 	} else {
2541 		(void)ieee80211_input_all(ic, m, rssi, nf);
2542 	}
2543 
2544 	if (__predict_false(ieee80211_radiotap_active(ic))) {
2545 		struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
2546 
2547 		tap->wr_flags = 0;
2548 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2549 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2550 		tap->wr_antsignal = rssi;
2551 		tap->wr_antenna = ant;
2552 		tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
2553 		tap->wr_rate = 2;	/* in case it can't be found below */
2554 		phy = le16toh(rxwi->phy);
2555 		switch (phy & RT2860_PHY_MODE) {
2556 		case RT2860_PHY_CCK:
2557 			switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
2558 			case 0:	tap->wr_rate =   2; break;
2559 			case 1:	tap->wr_rate =   4; break;
2560 			case 2:	tap->wr_rate =  11; break;
2561 			case 3:	tap->wr_rate =  22; break;
2562 			}
2563 			if (phy & RT2860_PHY_SHPRE)
2564 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2565 			break;
2566 		case RT2860_PHY_OFDM:
2567 			switch (phy & RT2860_PHY_MCS) {
2568 			case 0:	tap->wr_rate =  12; break;
2569 			case 1:	tap->wr_rate =  18; break;
2570 			case 2:	tap->wr_rate =  24; break;
2571 			case 3:	tap->wr_rate =  36; break;
2572 			case 4:	tap->wr_rate =  48; break;
2573 			case 5:	tap->wr_rate =  72; break;
2574 			case 6:	tap->wr_rate =  96; break;
2575 			case 7:	tap->wr_rate = 108; break;
2576 			}
2577 			break;
2578 		}
2579 	}
2580 }
2581 
2582 static void
2583 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2584 {
2585 	struct run_softc *sc = usbd_xfer_softc(xfer);
2586 	struct ifnet *ifp = sc->sc_ifp;
2587 	struct mbuf *m = NULL;
2588 	struct mbuf *m0;
2589 	uint32_t dmalen;
2590 	int xferlen;
2591 
2592 	usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL);
2593 
2594 	switch (USB_GET_STATE(xfer)) {
2595 	case USB_ST_TRANSFERRED:
2596 
2597 		DPRINTFN(15, "rx done, actlen=%d\n", xferlen);
2598 
2599 		if (xferlen < (int)(sizeof(uint32_t) +
2600 		    sizeof(struct rt2860_rxwi) + sizeof(struct rt2870_rxd))) {
2601 			DPRINTF("xfer too short %d\n", xferlen);
2602 			goto tr_setup;
2603 		}
2604 
2605 		m = sc->rx_m;
2606 		sc->rx_m = NULL;
2607 
2608 		/* FALLTHROUGH */
2609 	case USB_ST_SETUP:
2610 tr_setup:
2611 		if (sc->rx_m == NULL) {
2612 			sc->rx_m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
2613 			    MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */);
2614 		}
2615 		if (sc->rx_m == NULL) {
2616 			DPRINTF("could not allocate mbuf - idle with stall\n");
2617 			ifp->if_ierrors++;
2618 			usbd_xfer_set_stall(xfer);
2619 			usbd_xfer_set_frames(xfer, 0);
2620 		} else {
2621 			/*
2622 			 * Directly loading a mbuf cluster into DMA to
2623 			 * save some data copying. This works because
2624 			 * there is only one cluster.
2625 			 */
2626 			usbd_xfer_set_frame_data(xfer, 0,
2627 			    mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ);
2628 			usbd_xfer_set_frames(xfer, 1);
2629 		}
2630 		usbd_transfer_submit(xfer);
2631 		break;
2632 
2633 	default:	/* Error */
2634 		if (error != USB_ERR_CANCELLED) {
2635 			/* try to clear stall first */
2636 			usbd_xfer_set_stall(xfer);
2637 
2638 			if (error == USB_ERR_TIMEOUT)
2639 				device_printf(sc->sc_dev, "device timeout\n");
2640 
2641 			ifp->if_ierrors++;
2642 
2643 			goto tr_setup;
2644 		}
2645 		if (sc->rx_m != NULL) {
2646 			m_freem(sc->rx_m);
2647 			sc->rx_m = NULL;
2648 		}
2649 		break;
2650 	}
2651 
2652 	if (m == NULL)
2653 		return;
2654 
2655 	/* inputting all the frames must be last */
2656 
2657 	RUN_UNLOCK(sc);
2658 
2659 	m->m_pkthdr.len = m->m_len = xferlen;
2660 
2661 	/* HW can aggregate multiple 802.11 frames in a single USB xfer */
2662 	for(;;) {
2663 		dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff;
2664 
2665 		if ((dmalen >= (uint32_t)-8) || (dmalen == 0) ||
2666 		    ((dmalen & 3) != 0)) {
2667 			DPRINTF("bad DMA length %u\n", dmalen);
2668 			break;
2669 		}
2670 		if ((dmalen + 8) > (uint32_t)xferlen) {
2671 			DPRINTF("bad DMA length %u > %d\n",
2672 			dmalen + 8, xferlen);
2673 			break;
2674 		}
2675 
2676 		/* If it is the last one or a single frame, we won't copy. */
2677 		if ((xferlen -= dmalen + 8) <= 8) {
2678 			/* trim 32-bit DMA-len header */
2679 			m->m_data += 4;
2680 			m->m_pkthdr.len = m->m_len -= 4;
2681 			run_rx_frame(sc, m, dmalen);
2682 			break;
2683 		}
2684 
2685 		/* copy aggregated frames to another mbuf */
2686 		m0 = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2687 		if (__predict_false(m0 == NULL)) {
2688 			DPRINTF("could not allocate mbuf\n");
2689 			ifp->if_ierrors++;
2690 			break;
2691 		}
2692 		m_copydata(m, 4 /* skip 32-bit DMA-len header */,
2693 		    dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t));
2694 		m0->m_pkthdr.len = m0->m_len =
2695 		    dmalen + sizeof(struct rt2870_rxd);
2696 		run_rx_frame(sc, m0, dmalen);
2697 
2698 		/* update data ptr */
2699 		m->m_data += dmalen + 8;
2700 		m->m_pkthdr.len = m->m_len -= dmalen + 8;
2701 	}
2702 
2703 	RUN_LOCK(sc);
2704 }
2705 
2706 static void
2707 run_tx_free(struct run_endpoint_queue *pq,
2708     struct run_tx_data *data, int txerr)
2709 {
2710 	if (data->m != NULL) {
2711 		if (data->m->m_flags & M_TXCB)
2712 			ieee80211_process_callback(data->ni, data->m,
2713 			    txerr ? ETIMEDOUT : 0);
2714 		m_freem(data->m);
2715 		data->m = NULL;
2716 
2717 		if (data->ni == NULL) {
2718 			DPRINTF("no node\n");
2719 		} else {
2720 			ieee80211_free_node(data->ni);
2721 			data->ni = NULL;
2722 		}
2723 	}
2724 
2725 	STAILQ_INSERT_TAIL(&pq->tx_fh, data, next);
2726 	pq->tx_nfree++;
2727 }
2728 
2729 static void
2730 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index)
2731 {
2732 	struct run_softc *sc = usbd_xfer_softc(xfer);
2733 	struct ifnet *ifp = sc->sc_ifp;
2734 	struct ieee80211com *ic = ifp->if_l2com;
2735 	struct run_tx_data *data;
2736 	struct ieee80211vap *vap = NULL;
2737 	struct usb_page_cache *pc;
2738 	struct run_endpoint_queue *pq = &sc->sc_epq[index];
2739 	struct mbuf *m;
2740 	usb_frlength_t size;
2741 	int actlen;
2742 	int sumlen;
2743 
2744 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
2745 
2746 	switch (USB_GET_STATE(xfer)) {
2747 	case USB_ST_TRANSFERRED:
2748 		DPRINTFN(11, "transfer complete: %d "
2749 		    "bytes @ index %d\n", actlen, index);
2750 
2751 		data = usbd_xfer_get_priv(xfer);
2752 
2753 		run_tx_free(pq, data, 0);
2754 		ifq_clr_oactive(&ifp->if_snd);
2755 
2756 		usbd_xfer_set_priv(xfer, NULL);
2757 
2758 		ifp->if_opackets++;
2759 
2760 		/* FALLTHROUGH */
2761 	case USB_ST_SETUP:
2762 tr_setup:
2763 		data = STAILQ_FIRST(&pq->tx_qh);
2764 		if (data == NULL)
2765 			break;
2766 
2767 		STAILQ_REMOVE_HEAD(&pq->tx_qh, next);
2768 
2769 		m = data->m;
2770 		if ((m->m_pkthdr.len +
2771 		    sizeof(data->desc) + 3 + 8) > RUN_MAX_TXSZ) {
2772 			DPRINTF("data overflow, %u bytes\n",
2773 			    m->m_pkthdr.len);
2774 
2775 			ifp->if_oerrors++;
2776 
2777 			run_tx_free(pq, data, 1);
2778 
2779 			goto tr_setup;
2780 		}
2781 
2782 		pc = usbd_xfer_get_frame(xfer, 0);
2783 		size = sizeof(data->desc);
2784 		usbd_copy_in(pc, 0, &data->desc, size);
2785 		usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len);
2786 		size += m->m_pkthdr.len;
2787 		/*
2788 		 * Align end on a 4-byte boundary, pad 8 bytes (CRC +
2789 		 * 4-byte padding), and be sure to zero those trailing
2790 		 * bytes:
2791 		 */
2792 		usbd_frame_zero(pc, size, ((-size) & 3) + 8);
2793 		size += ((-size) & 3) + 8;
2794 
2795 		vap = data->ni->ni_vap;
2796 		if (ieee80211_radiotap_active_vap(vap)) {
2797 			struct run_tx_radiotap_header *tap = &sc->sc_txtap;
2798 			struct rt2860_txwi *txwi =
2799 			    (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd));
2800 
2801 			tap->wt_flags = 0;
2802 			tap->wt_rate = rt2860_rates[data->ridx].rate;
2803 			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2804 			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2805 			tap->wt_hwqueue = index;
2806 			if (le16toh(txwi->phy) & RT2860_PHY_SHPRE)
2807 				tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2808 
2809 			ieee80211_radiotap_tx(vap, m);
2810 		}
2811 
2812 		DPRINTFN(11, "sending frame len=%u/%u  @ index %d\n",
2813 		    m->m_pkthdr.len, size, index);
2814 
2815 		usbd_xfer_set_frame_len(xfer, 0, size);
2816 		usbd_xfer_set_priv(xfer, data);
2817 
2818 		usbd_transfer_submit(xfer);
2819 
2820 		run_start_locked(ifp);
2821 
2822 		break;
2823 
2824 	default:
2825 		DPRINTF("USB transfer error, %s\n",
2826 		    usbd_errstr(error));
2827 
2828 		data = usbd_xfer_get_priv(xfer);
2829 
2830 		ifp->if_oerrors++;
2831 
2832 		if (data != NULL) {
2833 			if(data->ni != NULL)
2834 				vap = data->ni->ni_vap;
2835 			run_tx_free(pq, data, error);
2836 			usbd_xfer_set_priv(xfer, NULL);
2837 		}
2838 		if (vap == NULL)
2839 			vap = TAILQ_FIRST(&ic->ic_vaps);
2840 
2841 		if (error != USB_ERR_CANCELLED) {
2842 			if (error == USB_ERR_TIMEOUT) {
2843 				device_printf(sc->sc_dev, "device timeout\n");
2844 				uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
2845 				DPRINTF("cmdq_store=%d\n", i);
2846 				sc->cmdq[i].func = run_usb_timeout_cb;
2847 				sc->cmdq[i].arg0 = vap;
2848 				ieee80211_runtask(ic, &sc->cmdq_task);
2849 			}
2850 
2851 			/*
2852 			 * Try to clear stall first, also if other
2853 			 * errors occur, hence clearing stall
2854 			 * introduces a 50 ms delay:
2855 			 */
2856 			usbd_xfer_set_stall(xfer);
2857 			goto tr_setup;
2858 		}
2859 		break;
2860 	}
2861 }
2862 
2863 static void
2864 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error)
2865 {
2866 	run_bulk_tx_callbackN(xfer, error, 0);
2867 }
2868 
2869 static void
2870 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error)
2871 {
2872 	run_bulk_tx_callbackN(xfer, error, 1);
2873 }
2874 
2875 static void
2876 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error)
2877 {
2878 	run_bulk_tx_callbackN(xfer, error, 2);
2879 }
2880 
2881 static void
2882 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error)
2883 {
2884 	run_bulk_tx_callbackN(xfer, error, 3);
2885 }
2886 
2887 static void
2888 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error)
2889 {
2890 	run_bulk_tx_callbackN(xfer, error, 4);
2891 }
2892 
2893 static void
2894 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error)
2895 {
2896 	run_bulk_tx_callbackN(xfer, error, 5);
2897 }
2898 
2899 static void
2900 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data)
2901 {
2902 	struct mbuf *m = data->m;
2903 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2904 	struct ieee80211vap *vap = data->ni->ni_vap;
2905 	struct ieee80211_frame *wh;
2906 	struct rt2870_txd *txd;
2907 	struct rt2860_txwi *txwi;
2908 	uint16_t xferlen;
2909 	uint16_t mcs;
2910 	uint8_t ridx = data->ridx;
2911 	uint8_t pad;
2912 
2913 	/* get MCS code from rate index */
2914 	mcs = rt2860_rates[ridx].mcs;
2915 
2916 	xferlen = sizeof(*txwi) + m->m_pkthdr.len;
2917 
2918 	/* roundup to 32-bit alignment */
2919 	xferlen = (xferlen + 3) & ~3;
2920 
2921 	txd = (struct rt2870_txd *)&data->desc;
2922 	txd->len = htole16(xferlen);
2923 
2924 	wh = mtod(m, struct ieee80211_frame *);
2925 
2926 	/*
2927 	 * Ether both are true or both are false, the header
2928 	 * are nicely aligned to 32-bit. So, no L2 padding.
2929 	 */
2930 	if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
2931 		pad = 0;
2932 	else
2933 		pad = 2;
2934 
2935 	/* setup TX Wireless Information */
2936 	txwi = (struct rt2860_txwi *)(txd + 1);
2937 	txwi->len = htole16(m->m_pkthdr.len - pad);
2938 	if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
2939 		txwi->phy = htole16(RT2860_PHY_CCK);
2940 		if (ridx != RT2860_RIDX_CCK1 &&
2941 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2942 			mcs |= RT2860_PHY_SHPRE;
2943 	} else
2944 		txwi->phy = htole16(RT2860_PHY_OFDM);
2945 	txwi->phy |= htole16(mcs);
2946 
2947 	/* check if RTS/CTS or CTS-to-self protection is required */
2948 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2949 	    (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
2950 	     ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2951 	      rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
2952 		txwi->txop |= RT2860_TX_TXOP_HT;
2953 	else
2954 		txwi->txop |= RT2860_TX_TXOP_BACKOFF;
2955 
2956 	if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh))
2957 		txwi->xflags |= RT2860_TX_NSEQ;
2958 }
2959 
2960 /* This function must be called locked */
2961 static int
2962 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2963 {
2964 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2965 	struct ieee80211vap *vap = ni->ni_vap;
2966 	struct ieee80211_frame *wh;
2967 	struct ieee80211_channel *chan;
2968 	const struct ieee80211_txparam *tp;
2969 	struct run_node *rn = (void *)ni;
2970 	struct run_tx_data *data;
2971 	struct rt2870_txd *txd;
2972 	struct rt2860_txwi *txwi;
2973 	uint16_t qos;
2974 	uint16_t dur;
2975 	uint16_t qid;
2976 	uint8_t type;
2977 	uint8_t tid;
2978 	uint8_t ridx;
2979 	uint8_t ctl_ridx;
2980 	uint8_t qflags;
2981 	uint8_t xflags = 0;
2982 	int hasqos;
2983 
2984 #if 0 /* XXX swildner: lock needed? */
2985 	RUN_LOCK_ASSERT(sc, MA_OWNED);
2986 #endif
2987 
2988 	wh = mtod(m, struct ieee80211_frame *);
2989 
2990 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2991 
2992 	/*
2993 	 * There are 7 bulk endpoints: 1 for RX
2994 	 * and 6 for TX (4 EDCAs + HCCA + Prio).
2995 	 * Update 03-14-2009:  some devices like the Planex GW-US300MiniS
2996 	 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
2997 	 */
2998 	if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) {
2999 		uint8_t *frm;
3000 
3001 		if(IEEE80211_HAS_ADDR4(wh))
3002 			frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos;
3003 		else
3004 			frm =((struct ieee80211_qosframe *)wh)->i_qos;
3005 
3006 		qos = le16toh(*(const uint16_t *)frm);
3007 		tid = qos & IEEE80211_QOS_TID;
3008 		qid = TID_TO_WME_AC(tid);
3009 	} else {
3010 		qos = 0;
3011 		tid = 0;
3012 		qid = WME_AC_BE;
3013 	}
3014 	qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA;
3015 
3016 	DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n",
3017 	    qos, qid, tid, qflags);
3018 
3019 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan;
3020 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
3021 
3022 	/* pickup a rate index */
3023 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3024 	    type != IEEE80211_FC0_TYPE_DATA) {
3025 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3026 		    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
3027 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3028 	} else {
3029 		if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3030 			ridx = rn->fix_ridx;
3031 		else
3032 			ridx = rn->amrr_ridx;
3033 		ctl_ridx = rt2860_rates[ridx].ctl_ridx;
3034 	}
3035 
3036 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3037 	    (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3038 	     IEEE80211_QOS_ACKPOLICY_NOACK)) {
3039 		xflags |= RT2860_TX_ACK;
3040 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3041 			dur = rt2860_rates[ctl_ridx].sp_ack_dur;
3042 		else
3043 			dur = rt2860_rates[ctl_ridx].lp_ack_dur;
3044 		*(uint16_t *)wh->i_dur = htole16(dur);
3045 	}
3046 
3047 	/* reserve slots for mgmt packets, just in case */
3048 	if (sc->sc_epq[qid].tx_nfree < 3) {
3049 		DPRINTFN(10, "tx ring %d is full\n", qid);
3050 		return (-1);
3051 	}
3052 
3053 	data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh);
3054 	STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next);
3055 	sc->sc_epq[qid].tx_nfree--;
3056 
3057 	txd = (struct rt2870_txd *)&data->desc;
3058 	txd->flags = qflags;
3059 	txwi = (struct rt2860_txwi *)(txd + 1);
3060 	txwi->xflags = xflags;
3061 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3062 		txwi->wcid = 0;
3063 	} else {
3064 		txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ?
3065 		    1 : RUN_AID2WCID(ni->ni_associd);
3066 	}
3067 	/* clear leftover garbage bits */
3068 	txwi->flags = 0;
3069 	txwi->txop = 0;
3070 
3071 	data->m = m;
3072 	data->ni = ni;
3073 	data->ridx = ridx;
3074 
3075 	run_set_tx_desc(sc, data);
3076 
3077 	/*
3078 	 * The chip keeps track of 2 kind of Tx stats,
3079 	 *  * TX_STAT_FIFO, for per WCID stats, and
3080 	 *  * TX_STA_CNT0 for all-TX-in-one stats.
3081 	 *
3082 	 * To use FIFO stats, we need to store MCS into the driver-private
3083  	 * PacketID field. So that, we can tell whose stats when we read them.
3084  	 * We add 1 to the MCS because setting the PacketID field to 0 means
3085  	 * that we don't want feedback in TX_STAT_FIFO.
3086  	 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job.
3087  	 *
3088  	 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx().
3089  	 */
3090 	if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP ||
3091 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3092 		uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf;
3093 		txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
3094 
3095 		/*
3096 		 * Unlike PCI based devices, we don't get any interrupt from
3097 		 * USB devices, so we simulate FIFO-is-full interrupt here.
3098 		 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots
3099 		 * quickly get fulled. To prevent overflow, increment a counter on
3100 		 * every FIFO stat request, so we know how many slots are left.
3101 		 * We do this only in HOSTAP or multiple vap mode since FIFO stats
3102 		 * are used only in those modes.
3103 		 * We just drain stats. AMRR gets updated every 1 sec by
3104 		 * run_ratectl_cb() via callout.
3105 		 * Call it early. Otherwise overflow.
3106 		 */
3107 		if (sc->fifo_cnt++ == 10) {
3108 			/*
3109 			 * With multiple vaps or if_bridge, if_start() is called
3110 			 * with a non-sleepable lock, tcpinp. So, need to defer.
3111 			 */
3112 			uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store);
3113 			DPRINTFN(6, "cmdq_store=%d\n", i);
3114 			sc->cmdq[i].func = run_drain_fifo;
3115 			sc->cmdq[i].arg0 = sc;
3116 			ieee80211_runtask(ic, &sc->cmdq_task);
3117 		}
3118 	}
3119 
3120         STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next);
3121 
3122 	RUN_LOCK(sc);
3123 	usbd_transfer_start(sc->sc_xfer[qid]);
3124 	RUN_UNLOCK(sc);
3125 
3126 	DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len +
3127 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3128 	    rt2860_rates[ridx].rate, qid);
3129 
3130 	return (0);
3131 }
3132 
3133 static int
3134 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3135 {
3136 	struct ifnet *ifp = sc->sc_ifp;
3137 	struct ieee80211com *ic = ifp->if_l2com;
3138 	struct run_node *rn = (void *)ni;
3139 	struct run_tx_data *data;
3140 	struct ieee80211_frame *wh;
3141 	struct rt2870_txd *txd;
3142 	struct rt2860_txwi *txwi;
3143 	uint16_t dur;
3144 	uint8_t ridx = rn->mgt_ridx;
3145 	uint8_t type;
3146 	uint8_t xflags = 0;
3147 	uint8_t wflags = 0;
3148 
3149 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3150 
3151 	wh = mtod(m, struct ieee80211_frame *);
3152 
3153 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3154 
3155 	/* tell hardware to add timestamp for probe responses */
3156 	if ((wh->i_fc[0] &
3157 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3158 	    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
3159 		wflags |= RT2860_TX_TS;
3160 	else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3161 		xflags |= RT2860_TX_ACK;
3162 
3163 		dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate,
3164 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
3165 		*(uint16_t *)wh->i_dur = htole16(dur);
3166 	}
3167 
3168 	if (sc->sc_epq[0].tx_nfree == 0) {
3169 		/* let caller free mbuf */
3170 		ifq_set_oactive(&ifp->if_snd);
3171 		return (EIO);
3172 	}
3173 	data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3174 	STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3175 	sc->sc_epq[0].tx_nfree--;
3176 
3177 	txd = (struct rt2870_txd *)&data->desc;
3178 	txd->flags = RT2860_TX_QSEL_EDCA;
3179 	txwi = (struct rt2860_txwi *)(txd + 1);
3180 	txwi->wcid = 0xff;
3181 	txwi->flags = wflags;
3182 	txwi->xflags = xflags;
3183 	txwi->txop = 0;	/* clear leftover garbage bits */
3184 
3185 	data->m = m;
3186 	data->ni = ni;
3187 	data->ridx = ridx;
3188 
3189 	run_set_tx_desc(sc, data);
3190 
3191 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len +
3192 	    (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)),
3193 	    rt2860_rates[ridx].rate);
3194 
3195 	STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3196 
3197 	usbd_transfer_start(sc->sc_xfer[0]);
3198 
3199 	return (0);
3200 }
3201 
3202 static int
3203 run_sendprot(struct run_softc *sc,
3204     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
3205 {
3206 	struct ieee80211com *ic = ni->ni_ic;
3207 	struct ieee80211_frame *wh;
3208 	struct run_tx_data *data;
3209 	struct rt2870_txd *txd;
3210 	struct rt2860_txwi *txwi;
3211 	struct mbuf *mprot;
3212 	int ridx;
3213 	int protrate;
3214 	int ackrate;
3215 	int pktlen;
3216 	int isshort;
3217 	uint16_t dur;
3218 	uint8_t type;
3219 	uint8_t wflags = 0;
3220 	uint8_t xflags = 0;
3221 
3222 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3223 
3224 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
3225 	    ("protection %d", prot));
3226 
3227 	wh = mtod(m, struct ieee80211_frame *);
3228 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3229 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3230 
3231 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
3232 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
3233 
3234 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3235 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3236 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3237 	wflags = RT2860_TX_FRAG;
3238 
3239 	/* check that there are free slots before allocating the mbuf */
3240 	if (sc->sc_epq[0].tx_nfree == 0) {
3241 		/* let caller free mbuf */
3242 		ifq_set_oactive(&sc->sc_ifp->if_snd);
3243 		return (ENOBUFS);
3244 	}
3245 
3246 	if (prot == IEEE80211_PROT_RTSCTS) {
3247 		/* NB: CTS is the same size as an ACK */
3248 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3249 		xflags |= RT2860_TX_ACK;
3250 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3251 	} else {
3252 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3253 	}
3254 	if (mprot == NULL) {
3255 		sc->sc_ifp->if_oerrors++;
3256 		DPRINTF("could not allocate mbuf\n");
3257 		return (ENOBUFS);
3258 	}
3259 
3260         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3261         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3262         sc->sc_epq[0].tx_nfree--;
3263 
3264 	txd = (struct rt2870_txd *)&data->desc;
3265 	txd->flags = RT2860_TX_QSEL_EDCA;
3266 	txwi = (struct rt2860_txwi *)(txd + 1);
3267 	txwi->wcid = 0xff;
3268 	txwi->flags = wflags;
3269 	txwi->xflags = xflags;
3270 	txwi->txop = 0;	/* clear leftover garbage bits */
3271 
3272 	data->m = mprot;
3273 	data->ni = ieee80211_ref_node(ni);
3274 
3275 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3276 		if (rt2860_rates[ridx].rate == protrate)
3277 			break;
3278 	data->ridx = ridx;
3279 
3280 	run_set_tx_desc(sc, data);
3281 
3282         DPRINTFN(1, "sending prot len=%u rate=%u\n",
3283             m->m_pkthdr.len, rate);
3284 
3285         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3286 
3287 	usbd_transfer_start(sc->sc_xfer[0]);
3288 
3289 	return (0);
3290 }
3291 
3292 static int
3293 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
3294     const struct ieee80211_bpf_params *params)
3295 {
3296 	struct ieee80211com *ic = ni->ni_ic;
3297 	struct ieee80211_frame *wh;
3298 	struct run_tx_data *data;
3299 	struct rt2870_txd *txd;
3300 	struct rt2860_txwi *txwi;
3301 	uint8_t type;
3302 	uint8_t ridx;
3303 	uint8_t rate;
3304 	uint8_t opflags = 0;
3305 	uint8_t xflags = 0;
3306 	int error;
3307 
3308 	RUN_LOCK_ASSERT(sc, MA_OWNED);
3309 
3310 	KASSERT(params != NULL, ("no raw xmit params"));
3311 
3312 	wh = mtod(m, struct ieee80211_frame *);
3313 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3314 
3315 	rate = params->ibp_rate0;
3316 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3317 		/* let caller free mbuf */
3318 		return (EINVAL);
3319 	}
3320 
3321 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3322 		xflags |= RT2860_TX_ACK;
3323 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
3324 		error = run_sendprot(sc, m, ni,
3325 		    params->ibp_flags & IEEE80211_BPF_RTS ?
3326 			IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
3327 		    rate);
3328 		if (error) {
3329 			/* let caller free mbuf */
3330 			return error;
3331 		}
3332 		opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS;
3333 	}
3334 
3335 	if (sc->sc_epq[0].tx_nfree == 0) {
3336 		/* let caller free mbuf */
3337 		ifq_set_oactive(&sc->sc_ifp->if_snd);
3338 		DPRINTF("sending raw frame, but tx ring is full\n");
3339 		return (EIO);
3340 	}
3341         data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh);
3342         STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next);
3343         sc->sc_epq[0].tx_nfree--;
3344 
3345 	txd = (struct rt2870_txd *)&data->desc;
3346 	txd->flags = RT2860_TX_QSEL_EDCA;
3347 	txwi = (struct rt2860_txwi *)(txd + 1);
3348 	txwi->wcid = 0xff;
3349 	txwi->xflags = xflags;
3350 	txwi->txop = opflags;
3351 	txwi->flags = 0;	/* clear leftover garbage bits */
3352 
3353         data->m = m;
3354         data->ni = ni;
3355 	for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
3356 		if (rt2860_rates[ridx].rate == rate)
3357 			break;
3358 	data->ridx = ridx;
3359 
3360         run_set_tx_desc(sc, data);
3361 
3362         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
3363             m->m_pkthdr.len, rate);
3364 
3365         STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next);
3366 
3367 	usbd_transfer_start(sc->sc_xfer[0]);
3368 
3369         return (0);
3370 }
3371 
3372 static int
3373 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3374     const struct ieee80211_bpf_params *params)
3375 {
3376 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
3377 	struct run_softc *sc = ifp->if_softc;
3378 	int error = 0;
3379 
3380 	RUN_LOCK(sc);
3381 
3382 	/* prevent management frames from being sent if we're not ready */
3383 	if (!(ifp->if_flags & IFF_RUNNING)) {
3384 		error =  ENETDOWN;
3385 		goto done;
3386 	}
3387 
3388 	if (params == NULL) {
3389 		/* tx mgt packet */
3390 		if ((error = run_tx_mgt(sc, m, ni)) != 0) {
3391 			ifp->if_oerrors++;
3392 			DPRINTF("mgt tx failed\n");
3393 			goto done;
3394 		}
3395 	} else {
3396 		/* tx raw packet with param */
3397 		if ((error = run_tx_param(sc, m, ni, params)) != 0) {
3398 			ifp->if_oerrors++;
3399 			DPRINTF("tx with param failed\n");
3400 			goto done;
3401 		}
3402 	}
3403 
3404 	ifp->if_opackets++;
3405 
3406 done:
3407 	RUN_UNLOCK(sc);
3408 
3409 	if (error != 0) {
3410 		if(m != NULL)
3411 			m_freem(m);
3412 		ieee80211_free_node(ni);
3413 	}
3414 
3415 	return (error);
3416 }
3417 
3418 static void
3419 run_start_locked(struct ifnet *ifp)
3420 {
3421 	struct run_softc *sc = ifp->if_softc;
3422 	struct ieee80211_node *ni;
3423 	struct mbuf *m = NULL;
3424 
3425 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3426 		return;
3427 
3428 	for (;;) {
3429 		/* send data frames */
3430 		m = ifq_dequeue(&ifp->if_snd);
3431 		if (m == NULL)
3432 			break;
3433 
3434 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3435 		if (run_tx(sc, m, ni) != 0) {
3436 			ifq_prepend(&ifp->if_snd, m);
3437 			ifq_set_oactive(&ifp->if_snd);
3438 			break;
3439 		}
3440 	}
3441 }
3442 
3443 static void
3444 run_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3445 {
3446 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3447 	run_start_locked(ifp);
3448 }
3449 
3450 static int
3451 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
3452 {
3453 	struct run_softc *sc = ifp->if_softc;
3454 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3455 	struct ifreq *ifr = (struct ifreq *) data;
3456 	int startall = 0;
3457 	int error;
3458 
3459 	RUN_LOCK(sc);
3460 	error = sc->sc_detached ? ENXIO : 0;
3461 	RUN_UNLOCK(sc);
3462 	if (error)
3463 		return (error);
3464 
3465 	switch (cmd) {
3466 	case SIOCSIFFLAGS:
3467 		RUN_LOCK(sc);
3468 		if (ifp->if_flags & IFF_UP) {
3469 			if (!(ifp->if_flags & IFF_RUNNING)){
3470 				startall = 1;
3471 				run_init_locked(sc);
3472 			} else
3473 				run_update_promisc_locked(ifp);
3474 		} else {
3475 			if (ifp->if_flags & IFF_RUNNING &&
3476 			    (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) {
3477 					run_stop(sc);
3478 			}
3479 		}
3480 		RUN_UNLOCK(sc);
3481 		if (startall)
3482 			ieee80211_start_all(ic);
3483 		break;
3484 	case SIOCGIFMEDIA:
3485 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3486 		break;
3487 	case SIOCGIFADDR:
3488 		error = ether_ioctl(ifp, cmd, data);
3489 		break;
3490 	default:
3491 		error = EINVAL;
3492 		break;
3493 	}
3494 
3495 	return (error);
3496 }
3497 
3498 static void
3499 run_set_agc(struct run_softc *sc, uint8_t agc)
3500 {
3501 	uint8_t bbp;
3502 
3503 	if (sc->mac_ver == 0x3572) {
3504 		run_bbp_read(sc, 27, &bbp);
3505 		bbp &= ~(0x3 << 5);
3506 		run_bbp_write(sc, 27, bbp | 0 << 5);	/* select Rx0 */
3507 		run_bbp_write(sc, 66, agc);
3508 		run_bbp_write(sc, 27, bbp | 1 << 5);	/* select Rx1 */
3509 		run_bbp_write(sc, 66, agc);
3510 	} else
3511 		run_bbp_write(sc, 66, agc);
3512 }
3513 
3514 static void
3515 run_select_chan_group(struct run_softc *sc, int group)
3516 {
3517 	uint32_t tmp;
3518 	uint8_t agc;
3519 
3520 	run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
3521 	run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
3522 	run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
3523 	run_bbp_write(sc, 86, 0x00);
3524 
3525 	if (group == 0) {
3526 		if (sc->ext_2ghz_lna) {
3527 			run_bbp_write(sc, 82, 0x62);
3528 			run_bbp_write(sc, 75, 0x46);
3529 		} else {
3530 			run_bbp_write(sc, 82, 0x84);
3531 			run_bbp_write(sc, 75, 0x50);
3532 		}
3533 	} else {
3534 		if (sc->mac_ver == 0x3572)
3535 			run_bbp_write(sc, 82, 0x94);
3536 		else
3537 			run_bbp_write(sc, 82, 0xf2);
3538 		if (sc->ext_5ghz_lna)
3539 			run_bbp_write(sc, 75, 0x46);
3540 		else
3541 			run_bbp_write(sc, 75, 0x50);
3542 	}
3543 
3544 	run_read(sc, RT2860_TX_BAND_CFG, &tmp);
3545 	tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
3546 	tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
3547 	run_write(sc, RT2860_TX_BAND_CFG, tmp);
3548 
3549 	/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
3550 	tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
3551 	if (sc->nrxchains > 1)
3552 		tmp |= RT2860_LNA_PE1_EN;
3553 	if (group == 0) {	/* 2GHz */
3554 		tmp |= RT2860_PA_PE_G0_EN;
3555 		if (sc->ntxchains > 1)
3556 			tmp |= RT2860_PA_PE_G1_EN;
3557 	} else {		/* 5GHz */
3558 		tmp |= RT2860_PA_PE_A0_EN;
3559 		if (sc->ntxchains > 1)
3560 			tmp |= RT2860_PA_PE_A1_EN;
3561 	}
3562 	if (sc->mac_ver == 0x3572) {
3563 		run_rt3070_rf_write(sc, 8, 0x00);
3564 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3565 		run_rt3070_rf_write(sc, 8, 0x80);
3566 	} else
3567 		run_write(sc, RT2860_TX_PIN_CFG, tmp);
3568 
3569 	/* set initial AGC value */
3570 	if (group == 0) {	/* 2GHz band */
3571 		if (sc->mac_ver >= 0x3070)
3572 			agc = 0x1c + sc->lna[0] * 2;
3573 		else
3574 			agc = 0x2e + sc->lna[0];
3575 	} else {		/* 5GHz band */
3576 		if (sc->mac_ver == 0x3572)
3577 			agc = 0x22 + (sc->lna[group] * 5) / 3;
3578 		else
3579 			agc = 0x32 + (sc->lna[group] * 5) / 3;
3580 	}
3581 	run_set_agc(sc, agc);
3582 }
3583 
3584 static void
3585 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan)
3586 {
3587 	const struct rfprog *rfprog = rt2860_rf2850;
3588 	uint32_t r2, r3, r4;
3589 	int8_t txpow1, txpow2;
3590 	int i;
3591 
3592 	/* find the settings for this channel (we know it exists) */
3593 	for (i = 0; rfprog[i].chan != chan; i++);
3594 
3595 	r2 = rfprog[i].r2;
3596 	if (sc->ntxchains == 1)
3597 		r2 |= 1 << 12;		/* 1T: disable Tx chain 2 */
3598 	if (sc->nrxchains == 1)
3599 		r2 |= 1 << 15 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3600 	else if (sc->nrxchains == 2)
3601 		r2 |= 1 << 4;		/* 2R: disable Rx chain 3 */
3602 
3603 	/* use Tx power values from EEPROM */
3604 	txpow1 = sc->txpow1[i];
3605 	txpow2 = sc->txpow2[i];
3606 	if (chan > 14) {
3607 		if (txpow1 >= 0)
3608 			txpow1 = txpow1 << 1 | 1;
3609 		else
3610 			txpow1 = (7 + txpow1) << 1;
3611 		if (txpow2 >= 0)
3612 			txpow2 = txpow2 << 1 | 1;
3613 		else
3614 			txpow2 = (7 + txpow2) << 1;
3615 	}
3616 	r3 = rfprog[i].r3 | txpow1 << 7;
3617 	r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
3618 
3619 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3620 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3621 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3622 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3623 
3624 	run_delay(sc, 10);
3625 
3626 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3627 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3628 	run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
3629 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3630 
3631 	run_delay(sc, 10);
3632 
3633 	run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
3634 	run_rt2870_rf_write(sc, RT2860_RF2, r2);
3635 	run_rt2870_rf_write(sc, RT2860_RF3, r3);
3636 	run_rt2870_rf_write(sc, RT2860_RF4, r4);
3637 }
3638 
3639 static void
3640 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan)
3641 {
3642 	int8_t txpow1, txpow2;
3643 	uint8_t rf;
3644 	int i;
3645 
3646 	/* RT3070 is 2GHz only */
3647 	KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n"));
3648 
3649 	/* find the settings for this channel (we know it exists) */
3650 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3651 
3652 	/* use Tx power values from EEPROM */
3653 	txpow1 = sc->txpow1[i];
3654 	txpow2 = sc->txpow2[i];
3655 
3656 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3657 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3658 	run_rt3070_rf_read(sc, 6, &rf);
3659 	rf = (rf & ~0x03) | rt3070_freqs[i].r;
3660 	run_rt3070_rf_write(sc, 6, rf);
3661 
3662 	/* set Tx0 power */
3663 	run_rt3070_rf_read(sc, 12, &rf);
3664 	rf = (rf & ~0x1f) | txpow1;
3665 	run_rt3070_rf_write(sc, 12, rf);
3666 
3667 	/* set Tx1 power */
3668 	run_rt3070_rf_read(sc, 13, &rf);
3669 	rf = (rf & ~0x1f) | txpow2;
3670 	run_rt3070_rf_write(sc, 13, rf);
3671 
3672 	run_rt3070_rf_read(sc, 1, &rf);
3673 	rf &= ~0xfc;
3674 	if (sc->ntxchains == 1)
3675 		rf |= 1 << 7 | 1 << 5;	/* 1T: disable Tx chains 2 & 3 */
3676 	else if (sc->ntxchains == 2)
3677 		rf |= 1 << 7;		/* 2T: disable Tx chain 3 */
3678 	if (sc->nrxchains == 1)
3679 		rf |= 1 << 6 | 1 << 4;	/* 1R: disable Rx chains 2 & 3 */
3680 	else if (sc->nrxchains == 2)
3681 		rf |= 1 << 6;		/* 2R: disable Rx chain 3 */
3682 	run_rt3070_rf_write(sc, 1, rf);
3683 
3684 	/* set RF offset */
3685 	run_rt3070_rf_read(sc, 23, &rf);
3686 	rf = (rf & ~0x7f) | sc->freq;
3687 	run_rt3070_rf_write(sc, 23, rf);
3688 
3689 	/* program RF filter */
3690 	run_rt3070_rf_read(sc, 24, &rf);	/* Tx */
3691 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3692 	run_rt3070_rf_write(sc, 24, rf);
3693 	run_rt3070_rf_read(sc, 31, &rf);	/* Rx */
3694 	rf = (rf & ~0x3f) | sc->rf24_20mhz;
3695 	run_rt3070_rf_write(sc, 31, rf);
3696 
3697 	/* enable RF tuning */
3698 	run_rt3070_rf_read(sc, 7, &rf);
3699 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3700 }
3701 
3702 static void
3703 run_rt3572_set_chan(struct run_softc *sc, u_int chan)
3704 {
3705 	int8_t txpow1, txpow2;
3706 	uint32_t tmp;
3707 	uint8_t rf;
3708 	int i;
3709 
3710 	/* find the settings for this channel (we know it exists) */
3711 	for (i = 0; rt2860_rf2850[i].chan != chan; i++);
3712 
3713 	/* use Tx power values from EEPROM */
3714 	txpow1 = sc->txpow1[i];
3715 	txpow2 = sc->txpow2[i];
3716 
3717 	if (chan <= 14) {
3718 		run_bbp_write(sc, 25, sc->bbp25);
3719 		run_bbp_write(sc, 26, sc->bbp26);
3720 	} else {
3721 		/* enable IQ phase correction */
3722 		run_bbp_write(sc, 25, 0x09);
3723 		run_bbp_write(sc, 26, 0xff);
3724 	}
3725 
3726 	run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
3727 	run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
3728 	run_rt3070_rf_read(sc, 6, &rf);
3729 	rf  = (rf & ~0x0f) | rt3070_freqs[i].r;
3730 	rf |= (chan <= 14) ? 0x08 : 0x04;
3731 	run_rt3070_rf_write(sc, 6, rf);
3732 
3733 	/* set PLL mode */
3734 	run_rt3070_rf_read(sc, 5, &rf);
3735 	rf &= ~(0x08 | 0x04);
3736 	rf |= (chan <= 14) ? 0x04 : 0x08;
3737 	run_rt3070_rf_write(sc, 5, rf);
3738 
3739 	/* set Tx power for chain 0 */
3740 	if (chan <= 14)
3741 		rf = 0x60 | txpow1;
3742 	else
3743 		rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
3744 	run_rt3070_rf_write(sc, 12, rf);
3745 
3746 	/* set Tx power for chain 1 */
3747 	if (chan <= 14)
3748 		rf = 0x60 | txpow2;
3749 	else
3750 		rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
3751 	run_rt3070_rf_write(sc, 13, rf);
3752 
3753 	/* set Tx/Rx streams */
3754 	run_rt3070_rf_read(sc, 1, &rf);
3755 	rf &= ~0xfc;
3756 	if (sc->ntxchains == 1)
3757 		rf |= 1 << 7 | 1 << 5;  /* 1T: disable Tx chains 2 & 3 */
3758 	else if (sc->ntxchains == 2)
3759 		rf |= 1 << 7;           /* 2T: disable Tx chain 3 */
3760 	if (sc->nrxchains == 1)
3761 		rf |= 1 << 6 | 1 << 4;  /* 1R: disable Rx chains 2 & 3 */
3762 	else if (sc->nrxchains == 2)
3763 		rf |= 1 << 6;           /* 2R: disable Rx chain 3 */
3764 	run_rt3070_rf_write(sc, 1, rf);
3765 
3766 	/* set RF offset */
3767 	run_rt3070_rf_read(sc, 23, &rf);
3768 	rf = (rf & ~0x7f) | sc->freq;
3769 	run_rt3070_rf_write(sc, 23, rf);
3770 
3771 	/* program RF filter */
3772 	rf = sc->rf24_20mhz;
3773 	run_rt3070_rf_write(sc, 24, rf);	/* Tx */
3774 	run_rt3070_rf_write(sc, 31, rf);	/* Rx */
3775 
3776 	/* enable RF tuning */
3777 	run_rt3070_rf_read(sc, 7, &rf);
3778 	rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
3779 	run_rt3070_rf_write(sc, 7, rf);
3780 
3781 	/* TSSI */
3782 	rf = (chan <= 14) ? 0xc3 : 0xc0;
3783 	run_rt3070_rf_write(sc, 9, rf);
3784 
3785 	/* set loop filter 1 */
3786 	run_rt3070_rf_write(sc, 10, 0xf1);
3787 	/* set loop filter 2 */
3788 	run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
3789 
3790 	/* set tx_mx2_ic */
3791 	run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
3792 	/* set tx_mx1_ic */
3793 	if (chan <= 14)
3794 		rf = 0x48 | sc->txmixgain_2ghz;
3795 	else
3796 		rf = 0x78 | sc->txmixgain_5ghz;
3797 	run_rt3070_rf_write(sc, 16, rf);
3798 
3799 	/* set tx_lo1 */
3800 	run_rt3070_rf_write(sc, 17, 0x23);
3801 	/* set tx_lo2 */
3802 	if (chan <= 14)
3803 		rf = 0x93;
3804 	else if (chan <= 64)
3805 		rf = 0xb7;
3806 	else if (chan <= 128)
3807 		rf = 0x74;
3808 	else
3809 		rf = 0x72;
3810 	run_rt3070_rf_write(sc, 19, rf);
3811 
3812 	/* set rx_lo1 */
3813 	if (chan <= 14)
3814 		rf = 0xb3;
3815 	else if (chan <= 64)
3816 		rf = 0xf6;
3817 	else if (chan <= 128)
3818 		rf = 0xf4;
3819 	else
3820 		rf = 0xf3;
3821 	run_rt3070_rf_write(sc, 20, rf);
3822 
3823 	/* set pfd_delay */
3824 	if (chan <= 14)
3825 		rf = 0x15;
3826 	else if (chan <= 64)
3827 		rf = 0x3d;
3828 	else
3829 		rf = 0x01;
3830 	run_rt3070_rf_write(sc, 25, rf);
3831 
3832 	/* set rx_lo2 */
3833 	run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
3834 	/* set ldo_rf_vc */
3835 	run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
3836 	/* set drv_cc */
3837 	run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
3838 
3839 	run_read(sc, RT2860_GPIO_CTRL, &tmp);
3840 	tmp &= ~0x8080;
3841 	if (chan <= 14)
3842 		tmp |= 0x80;
3843 	run_write(sc, RT2860_GPIO_CTRL, tmp);
3844 
3845 	/* enable RF tuning */
3846 	run_rt3070_rf_read(sc, 7, &rf);
3847 	run_rt3070_rf_write(sc, 7, rf | 0x01);
3848 
3849 	run_delay(sc, 2);
3850 }
3851 
3852 static void
3853 run_set_rx_antenna(struct run_softc *sc, int aux)
3854 {
3855 	uint32_t tmp;
3856 
3857 	if (aux) {
3858 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
3859 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3860 		run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
3861 	} else {
3862 		run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1);
3863 		run_read(sc, RT2860_GPIO_CTRL, &tmp);
3864 		run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
3865 	}
3866 }
3867 
3868 static int
3869 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
3870 {
3871 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3872 	uint32_t chan, group;
3873 
3874 	chan = ieee80211_chan2ieee(ic, c);
3875 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
3876 		return (EINVAL);
3877 
3878 	if (sc->mac_ver == 0x3572)
3879 		run_rt3572_set_chan(sc, chan);
3880 	else if (sc->mac_ver >= 0x3070)
3881 		run_rt3070_set_chan(sc, chan);
3882 	else
3883 		run_rt2870_set_chan(sc, chan);
3884 
3885 	/* determine channel group */
3886 	if (chan <= 14)
3887 		group = 0;
3888 	else if (chan <= 64)
3889 		group = 1;
3890 	else if (chan <= 128)
3891 		group = 2;
3892 	else
3893 		group = 3;
3894 
3895 	/* XXX necessary only when group has changed! */
3896 	run_select_chan_group(sc, group);
3897 
3898 	run_delay(sc, 10);
3899 
3900 	return (0);
3901 }
3902 
3903 static void
3904 run_set_channel(struct ieee80211com *ic)
3905 {
3906 	struct run_softc *sc = ic->ic_ifp->if_softc;
3907 
3908 	RUN_LOCK(sc);
3909 	run_set_chan(sc, ic->ic_curchan);
3910 	RUN_UNLOCK(sc);
3911 
3912 	return;
3913 }
3914 
3915 static void
3916 run_scan_start(struct ieee80211com *ic)
3917 {
3918 	struct run_softc *sc = ic->ic_ifp->if_softc;
3919 	uint32_t tmp;
3920 
3921 	RUN_LOCK(sc);
3922 
3923 	/* abort TSF synchronization */
3924 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
3925 	run_write(sc, RT2860_BCN_TIME_CFG,
3926 	    tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
3927 	    RT2860_TBTT_TIMER_EN));
3928 	run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr);
3929 
3930 	RUN_UNLOCK(sc);
3931 
3932 	return;
3933 }
3934 
3935 static void
3936 run_scan_end(struct ieee80211com *ic)
3937 {
3938 	struct run_softc *sc = ic->ic_ifp->if_softc;
3939 
3940 	RUN_LOCK(sc);
3941 
3942 	run_enable_tsf_sync(sc);
3943 	/* XXX keep local copy */
3944 	run_set_bssid(sc, sc->sc_bssid);
3945 
3946 	RUN_UNLOCK(sc);
3947 
3948 	return;
3949 }
3950 
3951 /*
3952  * Could be called from ieee80211_node_timeout()
3953  * (non-sleepable thread)
3954  */
3955 static void
3956 run_update_beacon(struct ieee80211vap *vap, int item)
3957 {
3958 	struct ieee80211com *ic = vap->iv_ic;
3959 	struct run_softc *sc = ic->ic_ifp->if_softc;
3960 	struct run_vap *rvp = RUN_VAP(vap);
3961 	int mcast = 0;
3962 	uint32_t i;
3963 
3964 	KASSERT(vap != NULL, ("no beacon"));
3965 
3966 	switch (item) {
3967 	case IEEE80211_BEACON_ERP:
3968 		run_updateslot(ic->ic_ifp);
3969 		break;
3970 	case IEEE80211_BEACON_HTINFO:
3971 		run_updateprot(ic);
3972 		break;
3973 	case IEEE80211_BEACON_TIM:
3974 		mcast = 1;	/*TODO*/
3975 		break;
3976 	default:
3977 		break;
3978 	}
3979 
3980 	setbit(rvp->bo.bo_flags, item);
3981 	ieee80211_beacon_update(vap->iv_bss, &rvp->bo, rvp->beacon_mbuf, mcast);
3982 
3983 	i = RUN_CMDQ_GET(&sc->cmdq_store);
3984 	DPRINTF("cmdq_store=%d\n", i);
3985 	sc->cmdq[i].func = run_update_beacon_cb;
3986 	sc->cmdq[i].arg0 = vap;
3987 	ieee80211_runtask(ic, &sc->cmdq_task);
3988 
3989 	return;
3990 }
3991 
3992 static void
3993 run_update_beacon_cb(void *arg)
3994 {
3995 	struct ieee80211vap *vap = arg;
3996 	struct run_vap *rvp = RUN_VAP(vap);
3997 	struct ieee80211com *ic = vap->iv_ic;
3998 	struct run_softc *sc = ic->ic_ifp->if_softc;
3999 	struct rt2860_txwi txwi;
4000 	struct mbuf *m;
4001 	uint8_t ridx;
4002 
4003 	if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
4004 		return;
4005 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
4006 		return;
4007 
4008 	/*
4009 	 * No need to call ieee80211_beacon_update(), run_update_beacon()
4010 	 * is taking care of apropriate calls.
4011 	 */
4012 	if (rvp->beacon_mbuf == NULL) {
4013 		rvp->beacon_mbuf = ieee80211_beacon_alloc(vap->iv_bss,
4014 		    &rvp->bo);
4015 		if (rvp->beacon_mbuf == NULL)
4016 			return;
4017 	}
4018 	m = rvp->beacon_mbuf;
4019 
4020 	memset(&txwi, 0, sizeof txwi);
4021 	txwi.wcid = 0xff;
4022 	txwi.len = htole16(m->m_pkthdr.len);
4023 	/* send beacons at the lowest available rate */
4024 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4025 	    RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
4026 	txwi.phy = htole16(rt2860_rates[ridx].mcs);
4027 	if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
4028 	        txwi.phy |= htole16(RT2860_PHY_OFDM);
4029 	txwi.txop = RT2860_TX_TXOP_HT;
4030 	txwi.flags = RT2860_TX_TS;
4031 	txwi.xflags = RT2860_TX_NSEQ;
4032 
4033 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id),
4034 	    (uint8_t *)&txwi, sizeof txwi);
4035 	run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + sizeof txwi,
4036 	    mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);	/* roundup len */
4037 
4038 	return;
4039 }
4040 
4041 static void
4042 run_updateprot(struct ieee80211com *ic)
4043 {
4044 	struct run_softc *sc = ic->ic_ifp->if_softc;
4045 	uint32_t i;
4046 
4047 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4048 	DPRINTF("cmdq_store=%d\n", i);
4049 	sc->cmdq[i].func = run_updateprot_cb;
4050 	sc->cmdq[i].arg0 = ic;
4051 	ieee80211_runtask(ic, &sc->cmdq_task);
4052 }
4053 
4054 static void
4055 run_updateprot_cb(void *arg)
4056 {
4057 	struct ieee80211com *ic = arg;
4058 	struct run_softc *sc = ic->ic_ifp->if_softc;
4059 	uint32_t tmp;
4060 
4061 	tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
4062 	/* setup protection frame rate (MCS code) */
4063 	tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
4064 	    rt2860_rates[RT2860_RIDX_OFDM6].mcs :
4065 	    rt2860_rates[RT2860_RIDX_CCK11].mcs;
4066 
4067 	/* CCK frames don't require protection */
4068 	run_write(sc, RT2860_CCK_PROT_CFG, tmp);
4069 	if (ic->ic_flags & IEEE80211_F_USEPROT) {
4070 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4071 			tmp |= RT2860_PROT_CTRL_RTS_CTS;
4072 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4073 			tmp |= RT2860_PROT_CTRL_CTS;
4074 	}
4075 	run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
4076 }
4077 
4078 static void
4079 run_usb_timeout_cb(void *arg)
4080 {
4081 	struct ieee80211vap *vap = arg;
4082 	struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4083 
4084 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4085 
4086 	if(vap->iv_state == IEEE80211_S_RUN &&
4087 	    vap->iv_opmode != IEEE80211_M_STA)
4088 		run_reset_livelock(sc);
4089 	else if (vap->iv_state == IEEE80211_S_SCAN) {
4090 		DPRINTF("timeout caused by scan\n");
4091 		/* cancel bgscan */
4092 		ieee80211_cancel_scan(vap);
4093 	} else
4094 		DPRINTF("timeout by unknown cause\n");
4095 }
4096 
4097 static void
4098 run_reset_livelock(struct run_softc *sc)
4099 {
4100 	uint32_t tmp;
4101 
4102 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4103 
4104 	/*
4105 	 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC
4106 	 * can run into a livelock and start sending CTS-to-self frames like
4107 	 * crazy if protection is enabled.  Reset MAC/BBP for a while
4108 	 */
4109 	run_read(sc, RT2860_DEBUG, &tmp);
4110 	DPRINTFN(3, "debug reg %08x\n", tmp);
4111 	if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
4112 		DPRINTF("CTS-to-self livelock detected\n");
4113 		run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
4114 		run_delay(sc, 1);
4115 		run_write(sc, RT2860_MAC_SYS_CTRL,
4116 		    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4117 	}
4118 }
4119 
4120 static void
4121 run_update_promisc_locked(struct ifnet *ifp)
4122 {
4123 	struct run_softc *sc = ifp->if_softc;
4124         uint32_t tmp;
4125 
4126 	run_read(sc, RT2860_RX_FILTR_CFG, &tmp);
4127 
4128 	tmp |= RT2860_DROP_UC_NOME;
4129         if (ifp->if_flags & IFF_PROMISC)
4130 		tmp &= ~RT2860_DROP_UC_NOME;
4131 
4132 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4133 
4134         DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
4135             "entering" : "leaving");
4136 }
4137 
4138 static void
4139 run_update_promisc(struct ifnet *ifp)
4140 {
4141 	struct run_softc *sc = ifp->if_softc;
4142 
4143 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4144 		return;
4145 
4146 	RUN_LOCK(sc);
4147 	run_update_promisc_locked(ifp);
4148 	RUN_UNLOCK(sc);
4149 }
4150 
4151 static void
4152 run_enable_tsf_sync(struct run_softc *sc)
4153 {
4154 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4155 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4156 	uint32_t tmp;
4157 
4158 	DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode);
4159 
4160 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4161 	tmp &= ~0x1fffff;
4162 	tmp |= vap->iv_bss->ni_intval * 16;
4163 	tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
4164 
4165 	if (ic->ic_opmode == IEEE80211_M_STA) {
4166 		/*
4167 		 * Local TSF is always updated with remote TSF on beacon
4168 		 * reception.
4169 		 */
4170 		tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
4171 	} else if (ic->ic_opmode == IEEE80211_M_IBSS) {
4172 	        tmp |= RT2860_BCN_TX_EN;
4173 	        /*
4174 	         * Local TSF is updated with remote TSF on beacon reception
4175 	         * only if the remote TSF is greater than local TSF.
4176 	         */
4177 	        tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
4178 	} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4179 		    ic->ic_opmode == IEEE80211_M_MBSS) {
4180 	        tmp |= RT2860_BCN_TX_EN;
4181 	        /* SYNC with nobody */
4182 	        tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
4183 	} else {
4184 		DPRINTF("Enabling TSF failed. undefined opmode\n");
4185 		return;
4186 	}
4187 
4188 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4189 }
4190 
4191 static void
4192 run_enable_mrr(struct run_softc *sc)
4193 {
4194 #define CCK(mcs)	(mcs)
4195 #define OFDM(mcs)	(1 << 3 | (mcs))
4196 	run_write(sc, RT2860_LG_FBK_CFG0,
4197 	    OFDM(6) << 28 |	/* 54->48 */
4198 	    OFDM(5) << 24 |	/* 48->36 */
4199 	    OFDM(4) << 20 |	/* 36->24 */
4200 	    OFDM(3) << 16 |	/* 24->18 */
4201 	    OFDM(2) << 12 |	/* 18->12 */
4202 	    OFDM(1) <<  8 |	/* 12-> 9 */
4203 	    OFDM(0) <<  4 |	/*  9-> 6 */
4204 	    OFDM(0));		/*  6-> 6 */
4205 
4206 	run_write(sc, RT2860_LG_FBK_CFG1,
4207 	    CCK(2) << 12 |	/* 11->5.5 */
4208 	    CCK(1) <<  8 |	/* 5.5-> 2 */
4209 	    CCK(0) <<  4 |	/*   2-> 1 */
4210 	    CCK(0));		/*   1-> 1 */
4211 #undef OFDM
4212 #undef CCK
4213 }
4214 
4215 static void
4216 run_set_txpreamble(struct run_softc *sc)
4217 {
4218 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4219 	uint32_t tmp;
4220 
4221 	run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
4222 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4223 		tmp |= RT2860_CCK_SHORT_EN;
4224 	else
4225 		tmp &= ~RT2860_CCK_SHORT_EN;
4226 	run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
4227 }
4228 
4229 static void
4230 run_set_basicrates(struct run_softc *sc)
4231 {
4232 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4233 
4234 	/* set basic rates mask */
4235 	if (ic->ic_curmode == IEEE80211_MODE_11B)
4236 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
4237 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
4238 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
4239 	else	/* 11g */
4240 		run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
4241 }
4242 
4243 static void
4244 run_set_leds(struct run_softc *sc, uint16_t which)
4245 {
4246 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
4247 	    which | (sc->leds & 0x7f));
4248 }
4249 
4250 static void
4251 run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
4252 {
4253 	run_write(sc, RT2860_MAC_BSSID_DW0,
4254 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
4255 	run_write(sc, RT2860_MAC_BSSID_DW1,
4256 	    bssid[4] | bssid[5] << 8);
4257 }
4258 
4259 static void
4260 run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
4261 {
4262 	run_write(sc, RT2860_MAC_ADDR_DW0,
4263 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
4264 	run_write(sc, RT2860_MAC_ADDR_DW1,
4265 	    addr[4] | addr[5] << 8 | 0xff << 16);
4266 }
4267 
4268 static void
4269 run_updateslot(struct ifnet *ifp)
4270 {
4271 	struct run_softc *sc = ifp->if_softc;
4272 	struct ieee80211com *ic = ifp->if_l2com;
4273 	uint32_t i;
4274 
4275 	i = RUN_CMDQ_GET(&sc->cmdq_store);
4276 	DPRINTF("cmdq_store=%d\n", i);
4277 	sc->cmdq[i].func = run_updateslot_cb;
4278 	sc->cmdq[i].arg0 = ifp;
4279 	ieee80211_runtask(ic, &sc->cmdq_task);
4280 
4281 	return;
4282 }
4283 
4284 /* ARGSUSED */
4285 static void
4286 run_updateslot_cb(void *arg)
4287 {
4288 	struct ifnet *ifp = arg;
4289 	struct run_softc *sc = ifp->if_softc;
4290 	struct ieee80211com *ic = ifp->if_l2com;
4291 	uint32_t tmp;
4292 
4293 	run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
4294 	tmp &= ~0xff;
4295 	tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
4296 	run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
4297 }
4298 
4299 static void
4300 run_update_mcast(struct ifnet *ifp)
4301 {
4302 	/* h/w filter supports getting everything or nothing */
4303 	ifp->if_flags |= IFF_ALLMULTI;
4304 }
4305 
4306 static int8_t
4307 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
4308 {
4309 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4310 	struct ieee80211_channel *c = ic->ic_curchan;
4311 	int delta;
4312 
4313 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4314 		uint32_t chan = ieee80211_chan2ieee(ic, c);
4315 		delta = sc->rssi_5ghz[rxchain];
4316 
4317 		/* determine channel group */
4318 		if (chan <= 64)
4319 			delta -= sc->lna[1];
4320 		else if (chan <= 128)
4321 			delta -= sc->lna[2];
4322 		else
4323 			delta -= sc->lna[3];
4324 	} else
4325 		delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
4326 
4327 	return (-12 - delta - rssi);
4328 }
4329 
4330 static int
4331 run_bbp_init(struct run_softc *sc)
4332 {
4333 	int i, error, ntries;
4334 	uint8_t bbp0;
4335 
4336 	/* wait for BBP to wake up */
4337 	for (ntries = 0; ntries < 20; ntries++) {
4338 		if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
4339 			return error;
4340 		if (bbp0 != 0 && bbp0 != 0xff)
4341 			break;
4342 	}
4343 	if (ntries == 20)
4344 		return (ETIMEDOUT);
4345 
4346 	/* initialize BBP registers to default values */
4347 	for (i = 0; i < NELEM(rt2860_def_bbp); i++) {
4348 		run_bbp_write(sc, rt2860_def_bbp[i].reg,
4349 		    rt2860_def_bbp[i].val);
4350 	}
4351 
4352 	/* fix BBP84 for RT2860E */
4353 	if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
4354 		run_bbp_write(sc, 84, 0x19);
4355 
4356 	if (sc->mac_ver >= 0x3070) {
4357 		run_bbp_write(sc, 79, 0x13);
4358 		run_bbp_write(sc, 80, 0x05);
4359 		run_bbp_write(sc, 81, 0x33);
4360 	} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
4361 		run_bbp_write(sc, 69, 0x16);
4362 		run_bbp_write(sc, 73, 0x12);
4363 	}
4364 	return (0);
4365 }
4366 
4367 static int
4368 run_rt3070_rf_init(struct run_softc *sc)
4369 {
4370 	uint32_t tmp;
4371 	uint8_t rf, target, bbp4;
4372 	int i;
4373 
4374 	run_rt3070_rf_read(sc, 30, &rf);
4375 	/* toggle RF R30 bit 7 */
4376 	run_rt3070_rf_write(sc, 30, rf | 0x80);
4377 	run_delay(sc, 10);
4378 	run_rt3070_rf_write(sc, 30, rf & ~0x80);
4379 
4380 	/* initialize RF registers to default value */
4381 	if (sc->mac_ver == 0x3572) {
4382 		for (i = 0; i < NELEM(rt3572_def_rf); i++) {
4383 			run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
4384 			    rt3572_def_rf[i].val);
4385 		}
4386 	} else {
4387 		for (i = 0; i < NELEM(rt3070_def_rf); i++) {
4388 			run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
4389 			    rt3070_def_rf[i].val);
4390 		}
4391 	}
4392 
4393 	if (sc->mac_ver == 0x3070) {
4394 		/* change voltage from 1.2V to 1.35V for RT3070 */
4395 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4396 		tmp = (tmp & ~0x0f000000) | 0x0d000000;
4397 		run_write(sc, RT3070_LDO_CFG0, tmp);
4398 
4399 	} else if (sc->mac_ver == 0x3071) {
4400 		run_rt3070_rf_read(sc, 6, &rf);
4401 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4402 		run_rt3070_rf_write(sc, 31, 0x14);
4403 
4404 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4405 		tmp &= ~0x1f000000;
4406 		if (sc->mac_rev < 0x0211)
4407 			tmp |= 0x0d000000;	/* 1.3V */
4408 		else
4409 			tmp |= 0x01000000;	/* 1.2V */
4410 		run_write(sc, RT3070_LDO_CFG0, tmp);
4411 
4412 		/* patch LNA_PE_G1 */
4413 		run_read(sc, RT3070_GPIO_SWITCH, &tmp);
4414 		run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
4415 
4416 	} else if (sc->mac_ver == 0x3572) {
4417 		run_rt3070_rf_read(sc, 6, &rf);
4418 		run_rt3070_rf_write(sc, 6, rf | 0x40);
4419 
4420 		/* increase voltage from 1.2V to 1.35V */
4421 		run_read(sc, RT3070_LDO_CFG0, &tmp);
4422 		tmp = (tmp & ~0x1f000000) | 0x0d000000;
4423 		run_write(sc, RT3070_LDO_CFG0, tmp);
4424 
4425 		if (sc->mac_rev < 0x0211 || !sc->patch_dac) {
4426 			run_delay(sc, 1);	/* wait for 1msec */
4427 			/* decrease voltage back to 1.2V */
4428 			tmp = (tmp & ~0x1f000000) | 0x01000000;
4429 			run_write(sc, RT3070_LDO_CFG0, tmp);
4430 		}
4431 	}
4432 
4433 	/* select 20MHz bandwidth */
4434 	run_rt3070_rf_read(sc, 31, &rf);
4435 	run_rt3070_rf_write(sc, 31, rf & ~0x20);
4436 
4437 	/* calibrate filter for 20MHz bandwidth */
4438 	sc->rf24_20mhz = 0x1f;	/* default value */
4439 	target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
4440 	run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
4441 
4442 	/* select 40MHz bandwidth */
4443 	run_bbp_read(sc, 4, &bbp4);
4444 	run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
4445 	run_rt3070_rf_read(sc, 31, &rf);
4446 	run_rt3070_rf_write(sc, 31, rf | 0x20);
4447 
4448 	/* calibrate filter for 40MHz bandwidth */
4449 	sc->rf24_40mhz = 0x2f;	/* default value */
4450 	target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
4451 	run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
4452 
4453 	/* go back to 20MHz bandwidth */
4454 	run_bbp_read(sc, 4, &bbp4);
4455 	run_bbp_write(sc, 4, bbp4 & ~0x18);
4456 
4457 	if (sc->mac_ver == 0x3572) {
4458 		/* save default BBP registers 25 and 26 values */
4459 		run_bbp_read(sc, 25, &sc->bbp25);
4460 		run_bbp_read(sc, 26, &sc->bbp26);
4461 	} else if (sc->mac_rev < 0x0211)
4462 		run_rt3070_rf_write(sc, 27, 0x03);
4463 
4464 	run_read(sc, RT3070_OPT_14, &tmp);
4465 	run_write(sc, RT3070_OPT_14, tmp | 1);
4466 
4467 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4468 		run_rt3070_rf_read(sc, 17, &rf);
4469 		rf &= ~RT3070_TX_LO1;
4470 		if ((sc->mac_ver == 0x3070 ||
4471 		     (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
4472 		    !sc->ext_2ghz_lna)
4473 			rf |= 0x20;	/* fix for long range Rx issue */
4474 		if (sc->txmixgain_2ghz >= 1)
4475 			rf = (rf & ~0x7) | sc->txmixgain_2ghz;
4476 		run_rt3070_rf_write(sc, 17, rf);
4477 	}
4478 
4479 	if (sc->mac_rev == 0x3071) {
4480 		run_rt3070_rf_read(sc, 1, &rf);
4481 		rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
4482 		rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
4483 		run_rt3070_rf_write(sc, 1, rf);
4484 
4485 		run_rt3070_rf_read(sc, 15, &rf);
4486 		run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
4487 
4488 		run_rt3070_rf_read(sc, 20, &rf);
4489 		run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
4490 
4491 		run_rt3070_rf_read(sc, 21, &rf);
4492 		run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
4493 	}
4494 
4495 	if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
4496 		/* fix Tx to Rx IQ glitch by raising RF voltage */
4497 		run_rt3070_rf_read(sc, 27, &rf);
4498 		rf &= ~0x77;
4499 		if (sc->mac_rev < 0x0211)
4500 			rf |= 0x03;
4501 		run_rt3070_rf_write(sc, 27, rf);
4502 	}
4503 	return (0);
4504 }
4505 
4506 static int
4507 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
4508     uint8_t *val)
4509 {
4510 	uint8_t rf22, rf24;
4511 	uint8_t bbp55_pb, bbp55_sb, delta;
4512 	int ntries;
4513 
4514 	/* program filter */
4515 	run_rt3070_rf_read(sc, 24, &rf24);
4516 	rf24 = (rf24 & 0xc0) | init;	/* initial filter value */
4517 	run_rt3070_rf_write(sc, 24, rf24);
4518 
4519 	/* enable baseband loopback mode */
4520 	run_rt3070_rf_read(sc, 22, &rf22);
4521 	run_rt3070_rf_write(sc, 22, rf22 | 0x01);
4522 
4523 	/* set power and frequency of passband test tone */
4524 	run_bbp_write(sc, 24, 0x00);
4525 	for (ntries = 0; ntries < 100; ntries++) {
4526 		/* transmit test tone */
4527 		run_bbp_write(sc, 25, 0x90);
4528 		run_delay(sc, 10);
4529 		/* read received power */
4530 		run_bbp_read(sc, 55, &bbp55_pb);
4531 		if (bbp55_pb != 0)
4532 			break;
4533 	}
4534 	if (ntries == 100)
4535 		return ETIMEDOUT;
4536 
4537 	/* set power and frequency of stopband test tone */
4538 	run_bbp_write(sc, 24, 0x06);
4539 	for (ntries = 0; ntries < 100; ntries++) {
4540 		/* transmit test tone */
4541 		run_bbp_write(sc, 25, 0x90);
4542 		run_delay(sc, 10);
4543 		/* read received power */
4544 		run_bbp_read(sc, 55, &bbp55_sb);
4545 
4546 		delta = bbp55_pb - bbp55_sb;
4547 		if (delta > target)
4548 			break;
4549 
4550 		/* reprogram filter */
4551 		rf24++;
4552 		run_rt3070_rf_write(sc, 24, rf24);
4553 	}
4554 	if (ntries < 100) {
4555 		if (rf24 != init)
4556 			rf24--;	/* backtrack */
4557 		*val = rf24;
4558 		run_rt3070_rf_write(sc, 24, rf24);
4559 	}
4560 
4561 	/* restore initial state */
4562 	run_bbp_write(sc, 24, 0x00);
4563 
4564 	/* disable baseband loopback mode */
4565 	run_rt3070_rf_read(sc, 22, &rf22);
4566 	run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
4567 
4568 	return (0);
4569 }
4570 
4571 static void
4572 run_rt3070_rf_setup(struct run_softc *sc)
4573 {
4574 	uint8_t bbp, rf;
4575 	int i;
4576 
4577 	if (sc->mac_ver == 0x3572) {
4578 		/* enable DC filter */
4579 		if (sc->mac_rev >= 0x0201)
4580 			run_bbp_write(sc, 103, 0xc0);
4581 
4582 		run_bbp_read(sc, 138, &bbp);
4583 		if (sc->ntxchains == 1)
4584 			bbp |= 0x20;	/* turn off DAC1 */
4585 		if (sc->nrxchains == 1)
4586 			bbp &= ~0x02;	/* turn off ADC1 */
4587 		run_bbp_write(sc, 138, bbp);
4588 
4589 		if (sc->mac_rev >= 0x0211) {
4590 			/* improve power consumption */
4591 			run_bbp_read(sc, 31, &bbp);
4592 			run_bbp_write(sc, 31, bbp & ~0x03);
4593 		}
4594 
4595 		run_rt3070_rf_read(sc, 16, &rf);
4596 		rf = (rf & ~0x07) | sc->txmixgain_2ghz;
4597 		run_rt3070_rf_write(sc, 16, rf);
4598 
4599 	} else if (sc->mac_ver == 0x3071) {
4600 		/* enable DC filter */
4601 		if (sc->mac_rev >= 0x0201)
4602 			run_bbp_write(sc, 103, 0xc0);
4603 
4604 		run_bbp_read(sc, 138, &bbp);
4605 		if (sc->ntxchains == 1)
4606 			bbp |= 0x20;	/* turn off DAC1 */
4607 		if (sc->nrxchains == 1)
4608 			bbp &= ~0x02;	/* turn off ADC1 */
4609 		run_bbp_write(sc, 138, bbp);
4610 
4611 		if (sc->mac_rev >= 0x0211) {
4612 			/* improve power consumption */
4613 			run_bbp_read(sc, 31, &bbp);
4614 			run_bbp_write(sc, 31, bbp & ~0x03);
4615 		}
4616 
4617 		run_write(sc, RT2860_TX_SW_CFG1, 0);
4618 		if (sc->mac_rev < 0x0211) {
4619 			run_write(sc, RT2860_TX_SW_CFG2,
4620 			    sc->patch_dac ? 0x2c : 0x0f);
4621 		} else
4622 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4623 
4624 	} else if (sc->mac_ver == 0x3070) {
4625 		if (sc->mac_rev >= 0x0201) {
4626 			/* enable DC filter */
4627 			run_bbp_write(sc, 103, 0xc0);
4628 
4629 			/* improve power consumption */
4630 			run_bbp_read(sc, 31, &bbp);
4631 			run_bbp_write(sc, 31, bbp & ~0x03);
4632 		}
4633 
4634 		if (sc->mac_rev < 0x0211) {
4635 			run_write(sc, RT2860_TX_SW_CFG1, 0);
4636 			run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
4637 		} else
4638 			run_write(sc, RT2860_TX_SW_CFG2, 0);
4639 	}
4640 
4641 	/* initialize RF registers from ROM for >=RT3071*/
4642 	if (sc->mac_ver >= 0x3071) {
4643 		for (i = 0; i < 10; i++) {
4644 			if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
4645 				continue;
4646 			run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
4647 		}
4648 	}
4649 }
4650 
4651 static int
4652 run_txrx_enable(struct run_softc *sc)
4653 {
4654 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4655 	uint32_t tmp;
4656 	int error, ntries;
4657 
4658 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
4659 	for (ntries = 0; ntries < 200; ntries++) {
4660 		if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
4661 			return error;
4662 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4663 			break;
4664 		run_delay(sc, 50);
4665 	}
4666 	if (ntries == 200)
4667 		return ETIMEDOUT;
4668 
4669 	run_delay(sc, 50);
4670 
4671 	tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
4672 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4673 
4674 	/* enable Rx bulk aggregation (set timeout and limit) */
4675 	tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
4676 	    RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
4677 	run_write(sc, RT2860_USB_DMA_CFG, tmp);
4678 
4679 	/* set Rx filter */
4680 	tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
4681 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
4682 		tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
4683 		    RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
4684 		    RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
4685 		    RT2860_DROP_CFACK | RT2860_DROP_CFEND;
4686 		if (ic->ic_opmode == IEEE80211_M_STA)
4687 			tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
4688 	}
4689 	run_write(sc, RT2860_RX_FILTR_CFG, tmp);
4690 
4691 	run_write(sc, RT2860_MAC_SYS_CTRL,
4692 	    RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4693 
4694 	return (0);
4695 }
4696 
4697 static void
4698 run_init_locked(struct run_softc *sc)
4699 {
4700 	struct ifnet *ifp = sc->sc_ifp;
4701 	struct ieee80211com *ic = ifp->if_l2com;
4702 	uint32_t tmp;
4703 	uint8_t bbp1, bbp3;
4704 	int i;
4705 	int ridx;
4706 	int ntries;
4707 
4708 	if (ic->ic_nrunning > 1)
4709 		return;
4710 
4711 	run_stop(sc);
4712 
4713 	if (run_load_microcode(sc) != 0) {
4714 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
4715 		goto fail;
4716 	}
4717 
4718 	for (ntries = 0; ntries < 100; ntries++) {
4719 		if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0)
4720 			goto fail;
4721 		if (tmp != 0 && tmp != 0xffffffff)
4722 			break;
4723 		run_delay(sc, 10);
4724 	}
4725 	if (ntries == 100)
4726 		goto fail;
4727 
4728 	for (i = 0; i != RUN_EP_QUEUES; i++)
4729 		run_setup_tx_list(sc, &sc->sc_epq[i]);
4730 
4731 	run_set_macaddr(sc, IF_LLADDR(ifp));
4732 
4733 	for (ntries = 0; ntries < 100; ntries++) {
4734 		if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0)
4735 			goto fail;
4736 		if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
4737 			break;
4738 		run_delay(sc, 10);
4739 	}
4740 	if (ntries == 100) {
4741 		device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
4742 		goto fail;
4743 	}
4744 	tmp &= 0xff0;
4745 	tmp |= RT2860_TX_WB_DDONE;
4746 	run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
4747 
4748 	/* turn off PME_OEN to solve high-current issue */
4749 	run_read(sc, RT2860_SYS_CTRL, &tmp);
4750 	run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
4751 
4752 	run_write(sc, RT2860_MAC_SYS_CTRL,
4753 	    RT2860_BBP_HRST | RT2860_MAC_SRST);
4754 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4755 
4756 	if (run_reset(sc) != 0) {
4757 		device_printf(sc->sc_dev, "could not reset chipset\n");
4758 		goto fail;
4759 	}
4760 
4761 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4762 
4763 	/* init Tx power for all Tx rates (from EEPROM) */
4764 	for (ridx = 0; ridx < 5; ridx++) {
4765 		if (sc->txpow20mhz[ridx] == 0xffffffff)
4766 			continue;
4767 		run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
4768 	}
4769 
4770 	for (i = 0; i < NELEM(rt2870_def_mac); i++)
4771 		run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
4772 	run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
4773 	run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
4774 	run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
4775 
4776 	if (sc->mac_ver >= 0x3070) {
4777 		/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
4778 		run_write(sc, RT2860_TX_SW_CFG0,
4779 		    4 << RT2860_DLY_PAPE_EN_SHIFT);
4780 	}
4781 
4782 	/* wait while MAC is busy */
4783 	for (ntries = 0; ntries < 100; ntries++) {
4784 		if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0)
4785 			goto fail;
4786 		if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
4787 			break;
4788 		run_delay(sc, 10);
4789 	}
4790 	if (ntries == 100)
4791 		goto fail;
4792 
4793 	/* clear Host to MCU mailbox */
4794 	run_write(sc, RT2860_H2M_BBPAGENT, 0);
4795 	run_write(sc, RT2860_H2M_MAILBOX, 0);
4796 	run_delay(sc, 10);
4797 
4798 	if (run_bbp_init(sc) != 0) {
4799 		device_printf(sc->sc_dev, "could not initialize BBP\n");
4800 		goto fail;
4801 	}
4802 
4803 	/* abort TSF synchronization */
4804 	run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
4805 	tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
4806 	    RT2860_TBTT_TIMER_EN);
4807 	run_write(sc, RT2860_BCN_TIME_CFG, tmp);
4808 
4809 	/* clear RX WCID search table */
4810 	run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
4811 	/* clear WCID attribute table */
4812 	run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
4813 
4814 	/* hostapd sets a key before init. So, don't clear it. */
4815 	if (sc->cmdq_key_set != RUN_CMDQ_GO) {
4816 		/* clear shared key table */
4817 		run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
4818 		/* clear shared key mode */
4819 		run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
4820 	}
4821 
4822 	run_read(sc, RT2860_US_CYC_CNT, &tmp);
4823 	tmp = (tmp & ~0xff) | 0x1e;
4824 	run_write(sc, RT2860_US_CYC_CNT, tmp);
4825 
4826 	if (sc->mac_rev != 0x0101)
4827 		run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
4828 
4829 	run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
4830 	run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
4831 
4832 	/* write vendor-specific BBP values (from EEPROM) */
4833 	for (i = 0; i < 10; i++) {
4834 		if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
4835 			continue;
4836 		run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
4837 	}
4838 
4839 	/* select Main antenna for 1T1R devices */
4840 	if (sc->rf_rev == RT3070_RF_3020)
4841 		run_set_rx_antenna(sc, 0);
4842 
4843 	/* send LEDs operating mode to microcontroller */
4844 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
4845 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
4846 	(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
4847 
4848 	if (sc->mac_ver >= 0x3070)
4849 		run_rt3070_rf_init(sc);
4850 
4851 	/* disable non-existing Rx chains */
4852 	run_bbp_read(sc, 3, &bbp3);
4853 	bbp3 &= ~(1 << 3 | 1 << 4);
4854 	if (sc->nrxchains == 2)
4855 		bbp3 |= 1 << 3;
4856 	else if (sc->nrxchains == 3)
4857 		bbp3 |= 1 << 4;
4858 	run_bbp_write(sc, 3, bbp3);
4859 
4860 	/* disable non-existing Tx chains */
4861 	run_bbp_read(sc, 1, &bbp1);
4862 	if (sc->ntxchains == 1)
4863 		bbp1 &= ~(1 << 3 | 1 << 4);
4864 	run_bbp_write(sc, 1, bbp1);
4865 
4866 	if (sc->mac_ver >= 0x3070)
4867 		run_rt3070_rf_setup(sc);
4868 
4869 	/* select default channel */
4870 	run_set_chan(sc, ic->ic_curchan);
4871 
4872 	/* setup initial protection mode */
4873 	run_updateprot_cb(ic);
4874 
4875 	/* turn radio LED on */
4876 	run_set_leds(sc, RT2860_LED_RADIO);
4877 
4878 	ifq_clr_oactive(&ifp->if_snd);
4879 	ifp->if_flags |= IFF_RUNNING;
4880 	sc->cmdq_run = RUN_CMDQ_GO;
4881 
4882 	for (i = 0; i != RUN_N_XFER; i++)
4883 		usbd_xfer_set_stall(sc->sc_xfer[i]);
4884 
4885 	usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]);
4886 
4887 	if (run_txrx_enable(sc) != 0)
4888 		goto fail;
4889 
4890 	return;
4891 
4892 fail:
4893 	run_stop(sc);
4894 }
4895 
4896 static void
4897 run_init(void *arg)
4898 {
4899 	struct run_softc *sc = arg;
4900 	struct ifnet *ifp = sc->sc_ifp;
4901 	struct ieee80211com *ic = ifp->if_l2com;
4902 
4903 	RUN_LOCK(sc);
4904 	run_init_locked(sc);
4905 	RUN_UNLOCK(sc);
4906 
4907 	if (ifp->if_flags & IFF_RUNNING)
4908 		ieee80211_start_all(ic);
4909 }
4910 
4911 static void
4912 run_stop(void *arg)
4913 {
4914 	struct run_softc *sc = (struct run_softc *)arg;
4915 	struct ifnet *ifp = sc->sc_ifp;
4916 	uint32_t tmp;
4917 	int i;
4918 	int ntries;
4919 
4920 	RUN_LOCK_ASSERT(sc, MA_OWNED);
4921 
4922 	if (ifp->if_flags & IFF_RUNNING)
4923 		run_set_leds(sc, 0);	/* turn all LEDs off */
4924 
4925 	ifp->if_flags &= ~IFF_RUNNING;
4926 	ifq_clr_oactive(&ifp->if_snd);
4927 
4928 	sc->ratectl_run = RUN_RATECTL_OFF;
4929 	sc->cmdq_run = sc->cmdq_key_set;
4930 
4931 	RUN_UNLOCK(sc);
4932 
4933 	for(i = 0; i < RUN_N_XFER; i++)
4934 		usbd_transfer_drain(sc->sc_xfer[i]);
4935 
4936 	RUN_LOCK(sc);
4937 
4938 	if (sc->rx_m != NULL) {
4939 		m_free(sc->rx_m);
4940 		sc->rx_m = NULL;
4941 	}
4942 
4943 	/* disable Tx/Rx */
4944 	run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
4945 	tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
4946 	run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
4947 
4948 	/* wait for pending Tx to complete */
4949 	for (ntries = 0; ntries < 100; ntries++) {
4950 		if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) {
4951 			DPRINTF("Cannot read Tx queue count\n");
4952 			break;
4953 		}
4954 		if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) {
4955 			DPRINTF("All Tx cleared\n");
4956 			break;
4957 		}
4958 		run_delay(sc, 10);
4959 	}
4960 	if (ntries >= 100)
4961 		DPRINTF("There are still pending Tx\n");
4962 	run_delay(sc, 10);
4963 	run_write(sc, RT2860_USB_DMA_CFG, 0);
4964 
4965 	run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
4966 	run_write(sc, RT2860_MAC_SYS_CTRL, 0);
4967 
4968 	for (i = 0; i != RUN_EP_QUEUES; i++)
4969 		run_unsetup_tx_list(sc, &sc->sc_epq[i]);
4970 
4971 	return;
4972 }
4973 
4974 static void
4975 run_delay(struct run_softc *sc, unsigned int ms)
4976 {
4977 	zsleep(sc, &wlan_global_serializer, 0, "rundelay",
4978 	    USB_MS_TO_TICKS(ms));
4979 //	usb_pause_mtx(lockowned(&sc->sc_lock) ?
4980 //	    &sc->sc_lock : NULL, USB_MS_TO_TICKS(ms));
4981 }
4982 
4983 static device_method_t run_methods[] = {
4984 	/* Device interface */
4985 	DEVMETHOD(device_probe,		run_match),
4986 	DEVMETHOD(device_attach,	run_attach),
4987 	DEVMETHOD(device_detach,	run_detach),
4988 	DEVMETHOD_END
4989 };
4990 
4991 static driver_t run_driver = {
4992 	.name = "run",
4993 	.methods = run_methods,
4994 	.size = sizeof(struct run_softc)
4995 };
4996 
4997 static devclass_t run_devclass;
4998 
4999 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0);
5000 MODULE_DEPEND(run, wlan, 1, 1, 1);
5001 MODULE_DEPEND(run, usb, 1, 1, 1);
5002 MODULE_DEPEND(run, firmware, 1, 1, 1);
5003 MODULE_VERSION(run, 1);
5004