1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 
30 
31 void
32 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33 {
34     struct ath_hal_9300 *ahp = AH9300(ah);
35     *hangs = 0;
36 
37     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38         *hangs |= HAL_RIFS_BB_HANG_WAR;
39     }
40     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41         *hangs |= HAL_DFS_BB_HANG_WAR;
42     }
43     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44         == HAL_OK)
45     {
46         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47     }
48     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49         *hangs |= HAL_MAC_HANG_WAR;
50     }
51     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52         == HAL_OK)
53     {
54         *hangs |= HAL_PHYRESTART_CLR_WAR;
55     }
56 
57     ahp->ah_hang_wars = *hangs;
58 }
59 
60 /*
61  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62  * HT20, HT40, fast-clock, turbo mode, etc.
63  */
64 static u_int
65 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66 {
67 #if 0
68     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69 
70     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71         return (ath_hal_mac_usec(ah, clks) / 2);
72     } else {
73         return (ath_hal_mac_usec(ah, clks));
74     }
75 #endif
76     return (ath_hal_mac_usec(ah, clks));
77 }
78 
79 u_int
80 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81 {
82 #if 0
83     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84 
85     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86         return (ath_hal_mac_clks(ah, usecs) * 2);
87     } else {
88         return (ath_hal_mac_clks(ah, usecs));
89     }
90 #endif
91     return (ath_hal_mac_clks(ah, usecs));
92 }
93 
94 void
95 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96 {
97     struct ath_hal_9300 *ahp = AH9300(ah);
98 
99     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100 }
101 
102 HAL_BOOL
103 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104 {
105     struct ath_hal_9300 *ahp = AH9300(ah);
106 
107     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108     return AH_TRUE;
109 }
110 
111 void
112 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113 {
114     struct ath_hal_9300 *ahp = AH9300(ah);
115 
116     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117 }
118 
119 HAL_BOOL
120 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121 {
122     struct ath_hal_9300 *ahp = AH9300(ah);
123 
124     /* save it since it must be rewritten on reset */
125     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126 
127     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129     return AH_TRUE;
130 }
131 
132 /*
133  * Attempt to change the cards operating regulatory domain to the given value
134  * Returns: A_EINVAL for an unsupported regulatory domain.
135  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136  */
137 HAL_BOOL
138 ar9300_set_regulatory_domain(struct ath_hal *ah,
139         u_int16_t reg_domain, HAL_STATUS *status)
140 {
141     HAL_STATUS ecode;
142 
143     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145         return AH_TRUE;
146     }
147     ecode = HAL_EIO;
148 
149 #if 0
150 bad:
151 #endif
152     if (status) {
153         *status = ecode;
154     }
155     return AH_FALSE;
156 }
157 
158 /*
159  * Return the wireless modes (a,b,g,t) supported by hardware.
160  *
161  * This value is what is actually supported by the hardware
162  * and is unaffected by regulatory/country code settings.
163  *
164  */
165 u_int
166 ar9300_get_wireless_modes(struct ath_hal *ah)
167 {
168     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169 }
170 
171 /*
172  * Set the interrupt and GPIO values so the ISR can disable RF
173  * on a switch signal.  Assumes GPIO port and interrupt polarity
174  * are set prior to call.
175  */
176 void
177 ar9300_enable_rf_kill(struct ath_hal *ah)
178 {
179     /* TODO - can this really be above the hal on the GPIO interface for
180      * TODO - the client only?
181      */
182     struct ath_hal_9300    *ahp = AH9300(ah);
183 
184     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                            AR_RFSILENT_FORCE);
189             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190         }
191         else {
192             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                            AR_RFSILENT_FORCE);
194             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195         }
196     }
197     else {
198         /* Connect rfsilent_bb_l to baseband */
199         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201 
202         /* Set input mux for rfsilent_bb_l to GPIO #0 */
203         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204             AR_GPIO_INPUT_MUX2_RFSILENT);
205         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             (ahp->ah_gpio_select & 0x0f) << 4);
207 
208         /*
209          * Configure the desired GPIO port for input and
210          * enable baseband rf silence
211          */
212         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214     }
215 
216     /*
217      * If radio disable switch connection to GPIO bit x is enabled
218      * program GPIO interrupt.
219      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220      * verified that it is a later version of eeprom, it has a place for
221      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222      * connection is present.
223      */
224      /*
225       * RFKill uses polling not interrupt,
226       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227       */
228     if (ath_hal_hasrfkill_int(ah)) {
229         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230             /* switch already closed, set to interrupt upon open */
231             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232         } else {
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234         }
235     }
236 }
237 
238 /*
239  * Change the LED blinking pattern to correspond to the connectivity
240  */
241 void
242 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243 {
244     static const u_int32_t ledbits[8] = {
245         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252         AR_CFG_LED_ASSOC_NONE,
253     };
254 
255     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256 }
257 
258 /*
259  * Sets the Power LED on the cardbus without affecting the Network LED.
260  */
261 void
262 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263 {
264     u_int32_t    val;
265 
266     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268 }
269 
270 /*
271  * Sets the Network LED on the cardbus without affecting the Power LED.
272  */
273 void
274 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275 {
276     u_int32_t    val;
277 
278     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280 }
281 
282 /*
283  * Change association related fields programmed into the hardware.
284  * Writing a valid BSSID to the hardware effectively enables the hardware
285  * to synchronize its TSF to the correct beacons and receive frames coming
286  * from that BSSID. It is called by the SME JOIN operation.
287  */
288 void
289 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290     u_int16_t assoc_id)
291 {
292     struct ath_hal_9300 *ahp = AH9300(ah);
293 
294     /* save bssid and assoc_id for restore on reset */
295     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296     ahp->ah_assoc_id = assoc_id;
297 
298     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301 }
302 
303 /*
304  * Get the current hardware tsf for stamlme
305  */
306 u_int64_t
307 ar9300_get_tsf64(struct ath_hal *ah)
308 {
309     u_int64_t tsf;
310 
311     /* XXX sync multi-word read? */
312     tsf = OS_REG_READ(ah, AR_TSF_U32);
313     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314     return tsf;
315 }
316 
317 void
318 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319 {
320     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322 }
323 
324 /*
325  * Get the current hardware tsf for stamlme
326  */
327 u_int32_t
328 ar9300_get_tsf32(struct ath_hal *ah)
329 {
330     return OS_REG_READ(ah, AR_TSF_L32);
331 }
332 
333 u_int32_t
334 ar9300_get_tsf2_32(struct ath_hal *ah)
335 {
336     return OS_REG_READ(ah, AR_TSF2_L32);
337 }
338 
339 /*
340  * Reset the current hardware tsf for stamlme.
341  */
342 void
343 ar9300_reset_tsf(struct ath_hal *ah)
344 {
345     int count;
346 
347     count = 0;
348     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349         count++;
350         if (count > 10) {
351             HALDEBUG(ah, HAL_DEBUG_RESET,
352                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353             break;
354         }
355         OS_DELAY(10);
356     }
357     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358 }
359 
360 /*
361  * Set or clear hardware basic rate bit
362  * Set hardware basic rate set if basic rate is found
363  * and basic rate is equal or less than 2Mbps
364  */
365 void
366 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367 {
368     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369     u_int32_t reg;
370     u_int8_t xset;
371     int i;
372 
373     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374         return;
375     }
376     xset = 0;
377     for (i = 0; i < rs->rs_count; i++) {
378         u_int8_t rset = rs->rs_rates[i];
379         /* Basic rate defined? */
380         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381             xset = rset;
382         }
383     }
384     /*
385      * Set the h/w bit to reflect whether or not the basic
386      * rate is found to be equal or less than 2Mbps.
387      */
388     reg = OS_REG_READ(ah, AR_STA_ID1);
389     if (xset && xset / 2 <= 2) {
390         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391     } else {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393     }
394 }
395 
396 /*
397  * Grab a semi-random value from hardware registers - may not
398  * change often
399  */
400 u_int32_t
401 ar9300_get_random_seed(struct ath_hal *ah)
402 {
403     u_int32_t nf;
404 
405     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406     if (nf & 0x100) {
407         nf = 0 - ((nf ^ 0x1ff) + 1);
408     }
409     return (OS_REG_READ(ah, AR_TSF_U32) ^
410         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411 }
412 
413 /*
414  * Detect if our card is present
415  */
416 HAL_BOOL
417 ar9300_detect_card_present(struct ath_hal *ah)
418 {
419     u_int16_t mac_version, mac_rev;
420     u_int32_t v;
421 
422     /*
423      * Read the Silicon Revision register and compare that
424      * to what we read at attach time.  If the same, we say
425      * a card/device is present.
426      */
427     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428     if (v == 0xFF) {
429         /* new SREV format */
430         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431         /*
432          * Include 6-bit Chip Type (masked to 0) to differentiate
433          * from pre-Sowl versions
434          */
435         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436         mac_rev = MS(v, AR_SREV_REVISION2);
437     } else {
438         mac_version = MS(v, AR_SREV_VERSION);
439         mac_rev = v & AR_SREV_REVISION;
440     }
441     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442             AH_PRIVATE(ah)->ah_macRev == mac_rev);
443 }
444 
445 /*
446  * Update MIB Counters
447  */
448 void
449 ar9300_update_mib_mac_stats(struct ath_hal *ah)
450 {
451     struct ath_hal_9300 *ahp = AH9300(ah);
452     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453 
454     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459 }
460 
461 void
462 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463 {
464     struct ath_hal_9300 *ahp = AH9300(ah);
465     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466 
467     stats->ackrcv_bad = istats->ackrcv_bad;
468     stats->rts_bad    = istats->rts_bad;
469     stats->fcs_bad    = istats->fcs_bad;
470     stats->rts_good   = istats->rts_good;
471     stats->beacons    = istats->beacons;
472 }
473 
474 /*
475  * Detect if the HW supports spreading a CCK signal on channel 14
476  */
477 HAL_BOOL
478 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479 {
480     return AH_TRUE;
481 }
482 
483 /*
484  * Get the rssi of frame curently being received.
485  */
486 u_int32_t
487 ar9300_get_cur_rssi(struct ath_hal *ah)
488 {
489     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490     /* get combined RSSI */
491     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492 }
493 
494 #if ATH_GEN_RANDOMNESS
495 /*
496  * Get the rssi value from BB on ctl chain0.
497  */
498 u_int32_t
499 ar9300_get_rssi_chain0(struct ath_hal *ah)
500 {
501     /* get ctl chain0 RSSI */
502     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503 }
504 #endif
505 
506 u_int
507 ar9300_get_def_antenna(struct ath_hal *ah)
508 {
509     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510 }
511 
512 /* Setup coverage class */
513 void
514 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515 {
516 }
517 
518 void
519 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520 {
521     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522 }
523 
524 HAL_BOOL
525 ar9300_set_antenna_switch(struct ath_hal *ah,
526     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528 {
529     struct ath_hal_9300 *ahp = AH9300(ah);
530 
531     /*
532      * Owl does not support diversity or changing antennas.
533      *
534      * Instead this API and function are defined differently for AR9300.
535      * To support Tablet PC's, this interface allows the system
536      * to dramatically reduce the TX power on a particular chain.
537      *
538      * Based on the value of (redefined) diversity_control, the
539      * reset code will decrease power on chain 0 or chain 1/2.
540      *
541      * Based on the value of bit 0 of antenna_switch_swap,
542      * the mapping between OID call and chain is defined as:
543      *  0:  map A -> 0, B -> 1;
544      *  1:  map A -> 1, B -> 0;
545      *
546      * NOTE:
547      *   The devices that use this OID should use a tx_chain_mask and
548      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549      *   used in order to ensure an active transmit antenna.  This
550      *   API will allow the host to turn off the only transmitting
551      *   antenna to ensure the antenna closest to the user's body is
552      *   powered-down.
553      */
554     /*
555      * Set antenna control for use during reset sequence by
556      * ar9300_decrease_chain_power()
557      */
558     ahp->ah_diversity_control = settings;
559 
560     return AH_TRUE;
561 }
562 
563 HAL_BOOL
564 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565 {
566     return AH_TRUE;
567 }
568 
569 HAL_BOOL
570 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571 {
572     struct ath_hal_9300 *ahp = AH9300(ah);
573     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576         return AH_FALSE;
577     } else {
578         /* convert to system clocks */
579         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580         ahp->ah_slot_time = us;
581         return AH_TRUE;
582     }
583 }
584 
585 HAL_BOOL
586 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587 {
588     struct ath_hal_9300 *ahp = AH9300(ah);
589 
590     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593         return AH_FALSE;
594     } else {
595         /* convert to system clocks */
596         OS_REG_RMW_FIELD(ah,
597             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598         ahp->ah_ack_timeout = us;
599         return AH_TRUE;
600     }
601 }
602 
603 u_int
604 ar9300_get_ack_timeout(struct ath_hal *ah)
605 {
606     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608 }
609 
610 HAL_STATUS
611 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                  u_int32_t next_start, HAL_QUIET_FLAG flag)
613 {
614 #define	TU_TO_USEC(_tu)		((_tu) << 10)
615     HAL_STATUS status = HAL_EIO;
616     u_int32_t tsf = 0, j, next_start_us = 0;
617     if (flag & HAL_QUIET_ENABLE) {
618         for (j = 0; j < 2; j++) {
619             next_start_us = TU_TO_USEC(next_start);
620             tsf = OS_REG_READ(ah, AR_TSF_L32);
621             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                 next_start_us += tsf;
623             }
624             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                 next_start_us +=
626                     ah->ah_config.ah_sw_beacon_response_time;
627             }
628             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                 status = HAL_OK;
635                 break;
636             }
637             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639             /* TSF shouldn't count twice or reg access is taking forever */
640             HALASSERT(j < 1);
641         }
642     } else {
643         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644         status = HAL_OK;
645     }
646 
647     return status;
648 #undef	TU_TO_USEC
649 }
650 #ifdef ATH_SUPPORT_DFS
651 void
652 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653 {
654     u32 reg1, reg2;
655 
656     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658     AH9300(ah)->ah_cac_quiet_enabled = enable;
659 
660     if (enable) {
661         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                      reg1 | AR_PCU_FORCE_QUIET_COLL);
663         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665     } else {
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670     }
671 }
672 #endif /* ATH_SUPPORT_DFS */
673 
674 void
675 ar9300_set_pcu_config(struct ath_hal *ah)
676 {
677     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678 }
679 
680 HAL_STATUS
681 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682     u_int32_t capability, u_int32_t *result)
683 {
684     struct ath_hal_9300 *ahp = AH9300(ah);
685     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686     struct ar9300_ani_state *ani;
687 
688     switch (type) {
689     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
690         switch (capability) {
691         case HAL_CIPHER_AES_CCM:
692         case HAL_CIPHER_AES_OCB:
693         case HAL_CIPHER_TKIP:
694         case HAL_CIPHER_WEP:
695         case HAL_CIPHER_MIC:
696         case HAL_CIPHER_CLR:
697             return HAL_OK;
698         default:
699             return HAL_ENOTSUPP;
700         }
701     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
702         switch (capability) {
703         case 0:         /* hardware capability */
704             return HAL_OK;
705         case 1:
706             return (ahp->ah_sta_id1_defaults &
707                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
708         default:
709             return HAL_ENOTSUPP;
710         }
711     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
712         switch (capability) {
713         case 0: /* hardware capability */
714             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
715         case 1: /* current setting */
716             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
717                 HAL_ENXIO : HAL_OK;
718         default:
719             return HAL_ENOTSUPP;
720         }
721     case HAL_CAP_WME_TKIPMIC:
722         /* hardware can do TKIP MIC when WMM is turned on */
723         return HAL_OK;
724     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
725         return HAL_OK;
726     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
727         switch (capability) {
728         case 0:                 /* hardware capability */
729             return HAL_OK;
730         case 1:                 /* current setting */
731             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
732                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
733                             HAL_OK : HAL_ENXIO;
734         }
735         return HAL_EINVAL;
736     case HAL_CAP_TPC:
737         switch (capability) {
738         case 0:                 /* hardware capability */
739             return HAL_OK;
740         case 1:
741             return ah->ah_config.ath_hal_desc_tpc ?
742                                HAL_OK : HAL_ENXIO;
743         }
744         return HAL_OK;
745     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
746         return HAL_OK;
747     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
748         switch (capability) {
749         case 0:                 /* hardware capability */
750             return HAL_OK;
751         case 1:
752             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
753                 /*
754                  * Owl and Merlin have problems in mcast key search.
755                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
756                  * 26802
757                  */
758                 return HAL_ENXIO;
759             } else {
760                 return (ahp->ah_sta_id1_defaults &
761                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
762             }
763         }
764         return HAL_EINVAL;
765     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
766         switch (capability) {
767         case 0:                 /* hardware capability */
768             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
769         case 1:
770             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
771                 HAL_OK : HAL_ENXIO;
772         }
773         return HAL_EINVAL;
774     case HAL_CAP_RFSILENT:      /* rfsilent support  */
775         if (capability == 3) {  /* rfkill interrupt */
776             /*
777              * XXX: Interrupt-based notification of RF Kill state
778              *      changes not working yet. Report that this feature
779              *      is not supported so that polling is used instead.
780              */
781             return (HAL_ENOTSUPP);
782         }
783         return ath_hal_getcapability(ah, type, capability, result);
784     case HAL_CAP_4ADDR_AGGR:
785         return HAL_OK;
786     case HAL_CAP_BB_RIFS_HANG:
787         return HAL_ENOTSUPP;
788     case HAL_CAP_BB_DFS_HANG:
789         return HAL_ENOTSUPP;
790     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
791         /* Track chips that are known to have BB hangs related
792          * to rx_clear stuck low.
793          */
794         return HAL_ENOTSUPP;
795     case HAL_CAP_MAC_HANG:
796         /* Track chips that are known to have MAC hangs.
797          */
798         return HAL_OK;
799     case HAL_CAP_RIFS_RX_ENABLED:
800         /* Is RIFS RX currently enabled */
801         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
802 #if 0
803     case HAL_CAP_ANT_CFG_2GHZ:
804         *result = p_cap->halNumAntCfg2Ghz;
805         return HAL_OK;
806     case HAL_CAP_ANT_CFG_5GHZ:
807         *result = p_cap->halNumAntCfg5Ghz;
808         return HAL_OK;
809     case HAL_CAP_RX_STBC:
810         *result = p_cap->hal_rx_stbc_support;
811         return HAL_OK;
812     case HAL_CAP_TX_STBC:
813         *result = p_cap->hal_tx_stbc_support;
814         return HAL_OK;
815 #endif
816     case HAL_CAP_LDPC:
817         *result = p_cap->halLDPCSupport;
818         return HAL_OK;
819     case HAL_CAP_DYNAMIC_SMPS:
820         return HAL_OK;
821     case HAL_CAP_DS:
822         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
823                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
824                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
825             HAL_ENOTSUPP : HAL_OK;
826     case HAL_CAP_TS:
827         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
828                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
829                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
830             HAL_ENOTSUPP : HAL_OK;
831     case HAL_CAP_OL_PWRCTRL:
832         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
833             HAL_OK : HAL_ENOTSUPP;
834     case HAL_CAP_CRDC:
835 #if ATH_SUPPORT_CRDC
836         return (AR_SREV_WASP(ah) &&
837                 ah->ah_config.ath_hal_crdc_enable) ?
838                     HAL_OK : HAL_ENOTSUPP;
839 #else
840         return HAL_ENOTSUPP;
841 #endif
842 #if 0
843     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
844         *result = (u_int32_t)(-1);
845         return HAL_OK;
846     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849 #endif
850     case HAL_CAP_BB_PANIC_WATCHDOG:
851         return HAL_OK;
852     case HAL_CAP_PHYRESTART_CLR_WAR:
853         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
854             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
855         {
856             return HAL_OK;
857         }
858         else
859         {
860             return HAL_ENOTSUPP;
861         }
862     case HAL_CAP_ENTERPRISE_MODE:
863         *result = ahp->ah_enterprise_mode >> 16;
864         /*
865          * WAR for EV 77658 - Add delimiters to first sub-frame when using
866          * RTS/CTS with aggregation and non-enterprise Osprey.
867          *
868          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
869          */
870         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
871                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
872                 AR_SREV_WASP_10(ah))) {
873             *result |= AH_ENT_RTSCTS_DELIM_WAR;
874         }
875         return HAL_OK;
876     case HAL_CAP_LDPCWAR:
877         /* WAR for RIFS+LDPC issue is required for all chips currently
878          * supported by ar9300 HAL.
879          */
880         return HAL_OK;
881     case HAL_CAP_ENABLE_APM:
882         *result = p_cap->halApmEnable;
883         return HAL_OK;
884     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
885         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
886     case HAL_CAP_PCIE_LCR_OFFSET:
887         *result = p_cap->hal_pcie_lcr_offset;
888         return HAL_OK;
889     case HAL_CAP_SMARTANTENNA:
890         /* FIXME A request is pending with h/w team to add feature bit in
891          * caldata to detect if board has smart antenna or not, once added
892          * we need to fix his piece of code to read and return value without
893          * any compile flags
894          */
895 #if UMAC_SUPPORT_SMARTANTENNA
896         /* enable smart antenna for  Peacock, Wasp and scorpion
897            for future chips need to modify */
898         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
899             return HAL_OK;
900         } else {
901             return HAL_ENOTSUPP;
902         }
903 #else
904         return HAL_ENOTSUPP;
905 #endif
906 
907 #ifdef ATH_TRAFFIC_FAST_RECOVER
908     case HAL_CAP_TRAFFIC_FAST_RECOVER:
909         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
910             return HAL_OK;
911         } else {
912             return HAL_ENOTSUPP;
913         }
914 #endif
915 
916     /* FreeBSD ANI */
917     case HAL_CAP_INTMIT:            /* interference mitigation */
918             switch (capability) {
919             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
920                     return HAL_OK;
921             case HAL_CAP_INTMIT_ENABLE:
922                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
923                             HAL_OK : HAL_ENXIO;
924             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
925             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
926 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
927             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
928             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
929                     ani = ar9300_ani_get_current_state(ah);
930                     if (ani == AH_NULL)
931                             return HAL_ENXIO;
932                     switch (capability) {
933                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
934                     case 2: *result = ani->ofdm_noise_immunity_level; break;
935                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
936  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
937                     case 5: *result = ani->firstep_level; break;
938                     case 6: *result = ani->spur_immunity_level; break;
939                     }
940                     return HAL_OK;
941             }
942             return HAL_EINVAL;
943     case HAL_CAP_ENFORCE_TXOP:
944         if (capability == 0)
945             return (HAL_OK);
946         if (capability != 1)
947             return (HAL_ENOTSUPP);
948         (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
949         return (HAL_OK);
950     default:
951         return ath_hal_getcapability(ah, type, capability, result);
952     }
953 }
954 
955 HAL_BOOL
956 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
957         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
958 {
959     struct ath_hal_9300 *ahp = AH9300(ah);
960     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
961     u_int32_t v;
962 
963     switch (type) {
964     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
965         if (! p_cap->halTkipMicTxRxKeySupport)
966             return AH_FALSE;
967 
968         if (setting)
969             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
970         else
971             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
972 
973         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
974         return AH_TRUE;
975 
976     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
977         if (setting) {
978             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
979         } else {
980             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
981         }
982         return AH_TRUE;
983     case HAL_CAP_DIVERSITY:
984         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
985         if (setting) {
986             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
987         } else {
988             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
989         }
990         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
991         return AH_TRUE;
992     case HAL_CAP_DIAG:              /* hardware diagnostic support */
993         /*
994          * NB: could split this up into virtual capabilities,
995          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
996          *     seems worth the additional complexity.
997          */
998 #ifdef AH_DEBUG
999         AH_PRIVATE(ah)->ah_diagreg = setting;
1000 #else
1001         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1002 #endif
1003         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1004         return AH_TRUE;
1005     case HAL_CAP_TPC:
1006         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1007         return AH_TRUE;
1008     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1009         if (setting) {
1010             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1011         } else {
1012             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1013         }
1014         return AH_TRUE;
1015     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1016         if (p_cap->halTsfAddSupport) {
1017             if (setting) {
1018                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1019             } else {
1020                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1021             }
1022             return AH_TRUE;
1023         }
1024         return AH_FALSE;
1025 
1026     /* FreeBSD interrupt mitigation / ANI */
1027     case HAL_CAP_INTMIT: {          /* interference mitigation */
1028             /* This maps the public ANI commands to the internal ANI commands */
1029             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1030             static const HAL_ANI_CMD cmds[] = {
1031                     HAL_ANI_PRESENT,
1032                     HAL_ANI_MODE,
1033                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1034                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1035                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1036                     HAL_ANI_FIRSTEP_LEVEL,
1037                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1038             };
1039             return capability < nitems(cmds) ?
1040                     ar9300_ani_control(ah, cmds[capability], setting) :
1041                     AH_FALSE;
1042     }
1043 
1044     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1045         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1046         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1047         return AH_TRUE;
1048 
1049     case HAL_CAP_ENFORCE_TXOP:
1050         if (capability != 1)
1051             return AH_FALSE;
1052         if (setting) {
1053             ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1054             OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1055         } else {
1056             ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1057             OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1058         }
1059         return AH_TRUE;
1060 
1061         /* fall thru... */
1062     default:
1063         return ath_hal_setcapability(ah, type, capability, setting, status);
1064     }
1065 }
1066 
1067 #ifdef AH_DEBUG
1068 static void
1069 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1070 {
1071     u_int32_t i = 0;
1072 
1073     /* Read 0x80d0 to trigger pcie analyzer */
1074     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1075         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1076 
1077     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1078         struct ath_hal_9300 *ahp = AH9300(ah);
1079         u_int32_t tf, rf, rc, cc;
1080 
1081         tf = OS_REG_READ(ah, AR_TFCNT);
1082         rf = OS_REG_READ(ah, AR_RFCNT);
1083         rc = OS_REG_READ(ah, AR_RCCNT);
1084         cc = OS_REG_READ(ah, AR_CCCNT);
1085 
1086         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1087             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1088         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1089             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1090         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1091             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1092         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1093             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1094 
1095         ahp->last_tf = tf;
1096         ahp->last_rf = rf;
1097         ahp->last_rc = rc;
1098         ahp->last_cc = cc;
1099 
1100         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1101             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1102         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1103             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1104         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1105             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1106         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1107             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1108         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1109             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1110         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1111             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1112         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1113             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1114         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1115             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1116     }
1117 
1118     if (args & HAL_DIAG_PRINT_REG_ALL) {
1119         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1120             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1121                 i, OS_REG_READ(ah, i));
1122         }
1123 
1124         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1125             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1126                 i, OS_REG_READ(ah, i));
1127         }
1128 
1129         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1130             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1131 
1132         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1133             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1134 
1135         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1136             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1137                 i, OS_REG_READ(ah, i));
1138         }
1139 
1140         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1141             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1142                 i, OS_REG_READ(ah, i));
1143         }
1144 
1145         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1146             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1147                 i, OS_REG_READ(ah, i));
1148         }
1149 
1150         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1151             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1152                 i, OS_REG_READ(ah, i));
1153         }
1154 
1155         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1156             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1157                 i, OS_REG_READ(ah, i));
1158         }
1159 
1160         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1161             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1162                 i, OS_REG_READ(ah, i));
1163         }
1164 
1165         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1166             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1167                 i, OS_REG_READ(ah, i));
1168         }
1169 
1170         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1171             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1172                 i, OS_REG_READ(ah, i));
1173         }
1174 
1175         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1176             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1177                 i, OS_REG_READ(ah, i));
1178         }
1179 
1180         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1181             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1182                 i, OS_REG_READ(ah, i));
1183         }
1184 
1185         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1186             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1187                 i, OS_REG_READ(ah, i));
1188         }
1189     }
1190 }
1191 #endif
1192 
1193 HAL_BOOL
1194 ar9300_get_diag_state(struct ath_hal *ah, int request,
1195         const void *args, u_int32_t argsize,
1196         void **result, u_int32_t *resultsize)
1197 {
1198     struct ath_hal_9300 *ahp = AH9300(ah);
1199     struct ar9300_ani_state *ani;
1200 
1201     (void) ahp;
1202     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1203         return AH_TRUE;
1204     }
1205     switch (request) {
1206 #ifdef AH_PRIVATE_DIAG
1207     case HAL_DIAG_EEPROM:
1208         *result = &ahp->ah_eeprom;
1209         *resultsize = sizeof(ar9300_eeprom_t);
1210         return AH_TRUE;
1211 
1212 #if 0   /* XXX - TODO */
1213     case HAL_DIAG_EEPROM_EXP_11A:
1214     case HAL_DIAG_EEPROM_EXP_11B:
1215     case HAL_DIAG_EEPROM_EXP_11G:
1216         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1217         *result = pe->p_channels;
1218         *resultsize = (*result == AH_NULL) ? 0 :
1219             roundup(sizeof(u_int16_t) * pe->num_channels,
1220             sizeof(u_int32_t)) +
1221                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1222         return AH_TRUE;
1223 #endif
1224     case HAL_DIAG_RFGAIN:
1225         *result = &ahp->ah_gain_values;
1226         *resultsize = sizeof(GAIN_VALUES);
1227         return AH_TRUE;
1228     case HAL_DIAG_RFGAIN_CURSTEP:
1229         *result = (void *) ahp->ah_gain_values.curr_step;
1230         *resultsize = (*result == AH_NULL) ?
1231                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1232         return AH_TRUE;
1233 #if 0   /* XXX - TODO */
1234     case HAL_DIAG_PCDAC:
1235         *result = ahp->ah_pcdac_table;
1236         *resultsize = ahp->ah_pcdac_table_size;
1237         return AH_TRUE;
1238 #endif
1239     case HAL_DIAG_ANI_CURRENT:
1240 
1241         ani = ar9300_ani_get_current_state(ah);
1242         if (ani == AH_NULL)
1243             return AH_FALSE;
1244         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1245         /* XXX TODO: add all of these to the HAL ANI state structure */
1246         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1247         /* XXX should this be OFDM or CCK noise immunity level? */
1248         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1249         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1250         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1251         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1252         /* mrc_cck_off */
1253         /* cck_noise_immunity_level */
1254 
1255         ahp->ext_ani_state.listenTime = ani->listen_time;
1256 
1257         *result = &ahp->ext_ani_state;
1258         *resultsize = sizeof(ahp->ext_ani_state);
1259 #if 0
1260         *result = ar9300_ani_get_current_state(ah);
1261         *resultsize = (*result == AH_NULL) ?
1262             0 : sizeof(struct ar9300_ani_state);
1263 #endif
1264         return AH_TRUE;
1265     case HAL_DIAG_ANI_STATS:
1266         *result = ar9300_ani_get_current_stats(ah);
1267         *resultsize = (*result == AH_NULL) ?
1268             0 : sizeof(HAL_ANI_STATS);
1269         return AH_TRUE;
1270     case HAL_DIAG_ANI_CMD:
1271         if (argsize != 2*sizeof(u_int32_t)) {
1272             return AH_FALSE;
1273         }
1274         ar9300_ani_control(
1275             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1276         return AH_TRUE;
1277 #if 0
1278     case HAL_DIAG_TXCONT:
1279         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1280         return AH_TRUE;
1281 #endif /* 0 */
1282 #endif /* AH_PRIVATE_DIAG */
1283     case HAL_DIAG_CHANNELS:
1284 #if 0
1285         *result = &(ahp->ah_priv.ah_channels[0]);
1286         *resultsize =
1287             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1288 #endif
1289         return AH_TRUE;
1290 #ifdef AH_DEBUG
1291     case HAL_DIAG_PRINT_REG:
1292         ar9300_print_reg(ah, *((const u_int32_t *)args));
1293         return AH_TRUE;
1294 #endif
1295     default:
1296         break;
1297     }
1298 
1299     return AH_FALSE;
1300 }
1301 
1302 void
1303 ar9300_dma_reg_dump(struct ath_hal *ah)
1304 {
1305 #ifdef AH_DEBUG
1306 #define NUM_DMA_DEBUG_REGS  8
1307 #define NUM_QUEUES          10
1308 
1309     u_int32_t val[NUM_DMA_DEBUG_REGS];
1310     int       qcu_offset = 0, dcu_offset = 0;
1311     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1312     int       i, j, k;
1313     int16_t nfarray[HAL_NUM_NF_READINGS];
1314 #ifdef	ATH_NF_PER_CHAN
1315     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1316 #endif	/* ATH_NF_PER_CHAN */
1317     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1318 
1319      /* selecting DMA OBS 8 */
1320     OS_REG_WRITE(ah, AR_MACMISC,
1321         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1322          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1323 
1324     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1325     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1326         if (i % 4 == 0) {
1327             ath_hal_printf(ah, "\n");
1328         }
1329 
1330         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1331         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1332     }
1333 
1334     ath_hal_printf(ah, "\n\n");
1335     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1336 
1337     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1338         if (i == 8) {
1339             /* only 8 QCU entries in val[0] */
1340             qcu_offset = 0;
1341             qcu_base++;
1342         }
1343 
1344         if (i == 6) {
1345             /* only 6 DCU entries in val[4] */
1346             dcu_offset = 0;
1347             dcu_base++;
1348         }
1349 
1350         ath_hal_printf(ah,
1351             "%2d          %2x      %1x     %2x           %2x\n",
1352             i,
1353             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1354             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1355             val[2] & (0x7 << (i * 3)) >> (i * 3),
1356             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1357     }
1358 
1359     ath_hal_printf(ah, "\n");
1360     ath_hal_printf(ah,
1361         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1362         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1363     ath_hal_printf(ah,
1364         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1365         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1366     ath_hal_printf(ah,
1367         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1368         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1369     ath_hal_printf(ah,
1370         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1371         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1372     ath_hal_printf(ah,
1373         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1374         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1375     ath_hal_printf(ah,
1376         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1377         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1378     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1379     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1380 
1381     ar9300_upload_noise_floor(ah, 1, nfarray);
1382     ath_hal_printf(ah, "2G:\n");
1383     ath_hal_printf(ah, "Min CCA Out:\n");
1384     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1385     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1386                    nfarray[0], nfarray[1], nfarray[2]);
1387     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1388                    nfarray[3], nfarray[4], nfarray[5]);
1389 
1390     ar9300_upload_noise_floor(ah, 0, nfarray);
1391     ath_hal_printf(ah, "5G:\n");
1392     ath_hal_printf(ah, "Min CCA Out:\n");
1393     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1394     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1395                    nfarray[0], nfarray[1], nfarray[2]);
1396     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1397                    nfarray[3], nfarray[4], nfarray[5]);
1398 
1399     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1400         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1401                        ((i < 3) ? "Control " : "Extension "), i%3);
1402         for (j = 0, k = h->base.curr_index;
1403              j < HAL_NF_CAL_HIST_LEN_FULL;
1404              j++, k++) {
1405             ath_hal_printf(ah, "Element %d: %d\n",
1406                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1407         }
1408         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1409     }
1410 
1411     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1412     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1413                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1414                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1415     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1416     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1417                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1418                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1419     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1420                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1421                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1422     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1423     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1424                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1425                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1426     reg = OS_REG_READ(ah, AR_PHY_AGC);
1427     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1428                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1429                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1430     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1431                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1432                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1433     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1434                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1435                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1436     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1437     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1438                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1439     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1440                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1441                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1442     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1443                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1444                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1445     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1446     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1447                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1448     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1449                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1450                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1451 
1452 
1453     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1454     reg = OS_REG_READ(ah, 0xa360);
1455     reg &= ~0x00800000;
1456     OS_REG_WRITE(ah, 0xa360, reg);
1457 
1458     /* Step 2a: Set register 0xa364 to 0x1000 */
1459     reg = 0x1000;
1460     OS_REG_WRITE(ah, 0xa364, reg);
1461 
1462     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1463     reg = OS_REG_READ(ah, 0x9c20);
1464     reg &= 0x0003ffff;
1465     ath_hal_printf(ah,
1466         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1467         __func__, reg);
1468 
1469     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1470     reg = OS_REG_READ(ah, 0xa360);
1471     reg &= ~0x00800000;
1472     OS_REG_WRITE(ah, 0xa360, reg);
1473 
1474     /* Step 2b: Set register 0xa364 to 0x1400 */
1475     reg = 0x1400;
1476     OS_REG_WRITE(ah, 0xa364, reg);
1477 
1478     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1479     reg = OS_REG_READ(ah, 0x9c20);
1480     reg &= 0x0003ffff;
1481     ath_hal_printf(ah,
1482         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1483         __func__, reg);
1484 
1485     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1486     reg = OS_REG_READ(ah, 0xa360);
1487     reg &= ~0x00800000;
1488     OS_REG_WRITE(ah, 0xa360, reg);
1489 
1490     /* Step 2c: Set register 0xa364 to 0x3C00 */
1491     reg = 0x3c00;
1492     OS_REG_WRITE(ah, 0xa364, reg);
1493 
1494     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1495     reg = OS_REG_READ(ah, 0x9c20);
1496     reg &= 0x0003ffff;
1497     ath_hal_printf(ah,
1498         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1499         __func__, reg);
1500 
1501     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1502     reg = OS_REG_READ(ah, 0xa360);
1503     reg &= ~0x001040000;
1504     OS_REG_WRITE(ah, 0xa360, reg);
1505 
1506     /* Step 2d: Set register 0xa364 to 0x5005D */
1507     reg = 0x5005D;
1508     OS_REG_WRITE(ah, 0xa364, reg);
1509 
1510     /* Step 3d: Read bits 17:0 of register 0xa368 */
1511     reg = OS_REG_READ(ah, 0xa368);
1512     reg &= 0x0003ffff;
1513     ath_hal_printf(ah,
1514         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1515         __func__, reg);
1516 
1517     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1518     reg = OS_REG_READ(ah, 0xa360);
1519     reg &= ~0x001040000;
1520     OS_REG_WRITE(ah, 0xa360, reg);
1521 
1522     /* Step 2e: Set register 0xa364 to 0x7005D */
1523     reg = 0x7005D;
1524     OS_REG_WRITE(ah, 0xa364, reg);
1525 
1526     /* Step 3e: Read bits 17:0 of register 0xa368 */
1527     reg = OS_REG_READ(ah, 0xa368);
1528     reg &= 0x0003ffff;
1529     ath_hal_printf(ah,
1530         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1531        __func__, reg);
1532 
1533     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1534     reg = OS_REG_READ(ah, 0xa360);
1535     reg &= ~0x001000000;
1536     reg |= 0x40000;
1537     OS_REG_WRITE(ah, 0xa360, reg);
1538 
1539     /* Step 2f: Set register 0xa364 to 0x3005D */
1540     reg = 0x3005D;
1541     OS_REG_WRITE(ah, 0xa364, reg);
1542 
1543     /* Step 3f: Read bits 17:0 of register 0xa368 */
1544     reg = OS_REG_READ(ah, 0xa368);
1545     reg &= 0x0003ffff;
1546     ath_hal_printf(ah,
1547         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1548         __func__, reg);
1549 
1550     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1551     reg = OS_REG_READ(ah, 0xa360);
1552     reg &= ~0x001000000;
1553     reg |= 0x40000;
1554     OS_REG_WRITE(ah, 0xa360, reg);
1555 
1556     /* Step 2g: Set register 0xa364 to 0x6005D */
1557     reg = 0x6005D;
1558     OS_REG_WRITE(ah, 0xa364, reg);
1559 
1560     /* Step 3g: Read bits 17:0 of register 0xa368 */
1561     reg = OS_REG_READ(ah, 0xa368);
1562     reg &= 0x0003ffff;
1563     ath_hal_printf(ah,
1564         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1565         __func__, reg);
1566 #endif /* AH_DEBUG */
1567 }
1568 
1569 /*
1570  * Return the busy for rx_frame, rx_clear, and tx_frame
1571  */
1572 u_int32_t
1573 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1574     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1575 {
1576     struct ath_hal_9300 *ahp = AH9300(ah);
1577     u_int32_t good = 1;
1578 
1579     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1580     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1581     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1582     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1583 
1584     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1585         /*
1586          * Cycle counter wrap (or initial call); it's not possible
1587          * to accurately calculate a value because the registers
1588          * right shift rather than wrap--so punt and return 0.
1589          */
1590         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1591             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1592         good = 0;
1593     } else {
1594         u_int32_t cc_d = cc - ahp->ah_cycles;
1595         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1596         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1597         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1598 
1599         if (cc_d != 0) {
1600             *rxc_pcnt = rc_d * 100 / cc_d;
1601             *rxf_pcnt = rf_d * 100 / cc_d;
1602             *txf_pcnt = tf_d * 100 / cc_d;
1603         } else {
1604             good = 0;
1605         }
1606     }
1607 
1608     ahp->ah_cycles = cc;
1609     ahp->ah_rx_frame = rf;
1610     ahp->ah_rx_clear = rc;
1611     ahp->ah_tx_frame = tf;
1612 
1613     return good;
1614 }
1615 
1616 /*
1617  * Return approximation of extension channel busy over an time interval
1618  * 0% (clear) -> 100% (busy)
1619  * -1 for invalid estimate
1620  */
1621 uint32_t
1622 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1623 {
1624     /*
1625      * Overflow condition to check before multiplying to get %
1626      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1627      */
1628 #define OVERFLOW_LIMIT  0x28F5C28
1629 #define ERROR_CODE      -1
1630 
1631     struct ath_hal_9300 *ahp = AH9300(ah);
1632     u_int32_t busy = 0; /* percentage */
1633     int8_t busyper = 0;
1634     u_int32_t cycle_count, ctl_busy, ext_busy;
1635 
1636     /* cycle_count will always be the first to wrap; therefore, read it last
1637      * This sequence of reads is not atomic, and MIB counter wrap
1638      * could happen during it ?
1639      */
1640     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1641     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1642     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1643 
1644     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1645         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1646     {
1647         /*
1648          * Cycle counter wrap (or initial call); it's not possible
1649          * to accurately calculate a value because the registers
1650          * right shift rather than wrap--so punt and return 0.
1651          */
1652         busyper = ERROR_CODE;
1653         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1654             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1655     } else {
1656         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1657         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1658 
1659         /*
1660          * Compute extension channel busy percentage
1661          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1662          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1663          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1664          * and shift necessitated by large ext_busy_delta.
1665          * Due to timing difference to read the registers and counter overflow,
1666          * it may still happen that cycle_delta >> 7 = 0.
1667          *
1668          */
1669         if (cycle_delta) {
1670             if (ext_busy_delta > OVERFLOW_LIMIT) {
1671                 if (cycle_delta >> 7) {
1672                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1673                 } else {
1674                     busyper = ERROR_CODE;
1675                 }
1676             } else {
1677                 busy = (ext_busy_delta * 100) / cycle_delta;
1678             }
1679         } else {
1680             busyper = ERROR_CODE;
1681         }
1682 
1683         if (busy > 100) {
1684             busy = 100;
1685         }
1686         if ( busyper != ERROR_CODE ) {
1687             busyper = busy;
1688         }
1689     }
1690 
1691     ahp->ah_cycle_count = cycle_count;
1692     ahp->ah_ctl_busy = ctl_busy;
1693     ahp->ah_ext_busy = ext_busy;
1694 
1695     return busyper;
1696 #undef OVERFLOW_LIMIT
1697 #undef ERROR_CODE
1698 }
1699 
1700 /* BB Panic Watchdog declarations */
1701 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1702 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1703 
1704 void
1705 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1706 {
1707 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1708     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1709     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1710     u_int32_t val, idle_count;
1711 
1712     if (idle_tmo_ms != 0) {
1713         /* enable IRQ, disable chip-reset for BB panic */
1714         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1715             AR_PHY_BB_PANIC_CNTL2_MASK;
1716         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1717             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1718         /* bound limit to 10 secs */
1719         if (idle_tmo_ms > 10000) {
1720             idle_tmo_ms = 10000;
1721         }
1722         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1723             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1724         } else {
1725             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1726         }
1727         /*
1728          * enable panic in non-IDLE mode,
1729          * disable in IDLE mode,
1730          * set idle time-out
1731          */
1732 
1733         // EV92527 : Enable IDLE mode panic
1734 
1735         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1736                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1737                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1738                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1739                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1740     } else {
1741         /* disable IRQ, disable chip-reset for BB panic */
1742         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1743             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1744             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1745         /* disable panic in non-IDLE mode, disable in IDLE mode */
1746         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1747             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1748             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1749     }
1750 
1751     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1752              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1753 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1754 }
1755 
1756 
1757 void
1758 ar9300_handle_bb_panic(struct ath_hal *ah)
1759 {
1760     u_int32_t status;
1761     /*
1762      * we want to avoid printing in ISR context so we save
1763      * panic watchdog status to be printed later in DPC context
1764      */
1765     AH9300(ah)->ah_bb_panic_last_status = status =
1766         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1767     /*
1768      * panic watchdog timer should reset on status read
1769      * but to make sure we write 0 to the watchdog status bit
1770      */
1771     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1772 }
1773 
1774 int
1775 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1776 {
1777     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1778 
1779     /*
1780      * For signature 04000539 do not print anything.
1781      * This is a very common occurence as a compromise between
1782      * BB Panic and AH_FALSE detects (EV71009). It indicates
1783      * radar hang, which can be cleared by reprogramming
1784      * radar related register and does not requre a chip reset
1785      */
1786 
1787     /* Suppress BB Status mesg following signature */
1788     switch (bb_panic->status) {
1789         case 0x04000539:
1790         case 0x04008009:
1791         case 0x04000b09:
1792         case 0x1300000a:
1793         return -1;
1794     }
1795 
1796     bb_panic->tsf = ar9300_get_tsf32(ah);
1797     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1798     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1799     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1800     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1801     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1802     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1803     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1804     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1805     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1806     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1807     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1808     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1809     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1810     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1811                                         &bb_panic->rxc_pcnt,
1812                                         &bb_panic->rxf_pcnt,
1813                                         &bb_panic->txf_pcnt);
1814 
1815     if (ah->ah_config.ath_hal_show_bb_panic) {
1816         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1817             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1818         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1819             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1820             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1821             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1822             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1823         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1824             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1825         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1826             bb_panic->phy_gen_ctrl);
1827         if (bb_panic->cycles) {
1828             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1829                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1830                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1831         }
1832         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1833     }
1834 
1835     return 0; //The returned data will be stored for athstats to retrieve it
1836 }
1837 
1838 /* set the reason for HAL reset */
1839 void
1840 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1841 {
1842     AH9300(ah)->ah_reset_reason = resetreason;
1843 }
1844 
1845 /*
1846  * Configure 20/40 operation
1847  *
1848  * 20/40 = joint rx clear (control and extension)
1849  * 20    = rx clear (control)
1850  *
1851  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1852  *         when changing from 20/40 => 20 only
1853  */
1854 void
1855 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1856 {
1857     u_int32_t macmode;
1858 
1859     /* Configure MAC for 20/40 operation */
1860     if (mode == HAL_HT_MACMODE_2040 &&
1861         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1862         macmode = AR_2040_JOINED_RX_CLEAR;
1863     } else {
1864         macmode = 0;
1865     }
1866     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1867 }
1868 
1869 /*
1870  * Get Rx clear (control/extension channel)
1871  *
1872  * Returns active low (busy) for ctrl/ext channel
1873  * Owl 2.0
1874  */
1875 HAL_HT_RXCLEAR
1876 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1877 {
1878     HAL_HT_RXCLEAR rxclear = 0;
1879     u_int32_t val;
1880 
1881     val = OS_REG_READ(ah, AR_DIAG_SW);
1882 
1883     /* control channel */
1884     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1885         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1886     }
1887     /* extension channel */
1888     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1889         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1890     }
1891     return rxclear;
1892 }
1893 
1894 /*
1895  * Set Rx clear (control/extension channel)
1896  *
1897  * Useful for forcing the channel to appear busy for
1898  * debugging/diagnostics
1899  * Owl 2.0
1900  */
1901 void
1902 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1903 {
1904     /* control channel */
1905     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1906         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1907     } else {
1908         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1909     }
1910     /* extension channel */
1911     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1912         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1913     } else {
1914         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1915     }
1916 }
1917 
1918 
1919 /*
1920  * HAL support code for force ppm tracking workaround.
1921  */
1922 
1923 u_int32_t
1924 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1925 {
1926     u_int32_t retval;
1927     u_int32_t off1;
1928     u_int32_t off2;
1929 
1930     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1931         off1 = 0x2000;
1932         off2 = 0x1000;
1933     } else {
1934         off1 = 0x1000;
1935         off2 = 0x2000;
1936     }
1937 
1938     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1939              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1940              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1941 
1942     return retval;
1943 }
1944 
1945 u_int32_t
1946 ar9300_ppm_force(struct ath_hal *ah)
1947 {
1948     u_int32_t data_fine;
1949     u_int32_t data4;
1950     //u_int32_t off1;
1951     //u_int32_t off2;
1952     HAL_BOOL signed_val = AH_FALSE;
1953 
1954 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1955 //        off1 = 0x2000;
1956 //        off2 = 0x1000;
1957 //    } else {
1958 //        off1 = 0x1000;
1959 //        off2 = 0x2000;
1960 //    }
1961     data_fine =
1962         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1963         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1964 
1965     /*
1966      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1967      * So check value from bit[10:0].
1968      * Now get the abs val of the ppm value read in bit[0:11].
1969      * After that do bound check on abs value.
1970      * if value is off limit, CAP the value and and restore signed bit.
1971      */
1972     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1973     {
1974         /* get the positive value */
1975         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1976         signed_val = AH_TRUE;
1977     }
1978     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1979     {
1980         HALDEBUG(ah, HAL_DEBUG_REGIO,
1981             "%s Correcting ppm out of range %x\n",
1982             __func__, (data_fine & 0x7ff));
1983         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1984     }
1985     /*
1986      * Restore signed value if changed above.
1987      * Use typecast to avoid compilation errors
1988      */
1989     if (signed_val) {
1990         data_fine = (-(int32_t)data_fine) &
1991             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1992     }
1993 
1994     /* write value */
1995     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1996         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1997     OS_REG_WRITE(ah, AR_PHY_TIMING2,
1998         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
1999 
2000     return data_fine;
2001 }
2002 
2003 void
2004 ar9300_ppm_un_force(struct ath_hal *ah)
2005 {
2006     u_int32_t data4;
2007 
2008     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2009     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2010 }
2011 
2012 u_int32_t
2013 ar9300_ppm_arm_trigger(struct ath_hal *ah)
2014 {
2015     u_int32_t val;
2016     u_int32_t ret;
2017 
2018     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2019     ret = OS_REG_READ(ah, AR_TSF_L32);
2020     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2021         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2022 
2023     /* return low word of TSF at arm time */
2024     return ret;
2025 }
2026 
2027 int
2028 ar9300_ppm_get_trigger(struct ath_hal *ah)
2029 {
2030     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2031         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2032     {
2033         /* has not triggered yet, return AH_FALSE */
2034         return 0;
2035     }
2036 
2037     /* else triggered, return AH_TRUE */
2038     return 1;
2039 }
2040 
2041 void
2042 ar9300_mark_phy_inactive(struct ath_hal *ah)
2043 {
2044     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2045 }
2046 
2047 /* DEBUG */
2048 u_int32_t
2049 ar9300_ppm_get_force_state(struct ath_hal *ah)
2050 {
2051     return
2052         OS_REG_READ(ah, AR_PHY_TIMING2) &
2053         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2054 }
2055 
2056 /*
2057  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2058  */
2059 HAL_BOOL
2060 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2061 {
2062     /*
2063      * XXX FreeBSD todo: reimplement this
2064      */
2065 #if 0
2066     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2067     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2068     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2069     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2070     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2071                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2072     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2073                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2074 #endif
2075     return AH_FALSE;
2076 }
2077 
2078 void
2079 ar9300_clear_mib_counters(struct ath_hal *ah)
2080 {
2081     u_int32_t reg_val;
2082 
2083     reg_val = OS_REG_READ(ah, AR_MIBC);
2084     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2085     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2086 }
2087 
2088 
2089 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2090 HAL_BOOL
2091 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2092 {
2093     struct ath_hal_9300 *ahp = AH9300(ah);
2094     HAL_CHANNEL_INTERNAL *ichan =
2095       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2096     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2097     u_int32_t tmp = 0;
2098 
2099     if (enable) {
2100         if (ahp->ah_rifs_enabled == AH_TRUE) {
2101             return AH_TRUE;
2102         }
2103 
2104         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2105         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2106                      ahp->ah_rifs_reg[1]);
2107 
2108         ahp->ah_rifs_enabled = AH_TRUE;
2109         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2110     } else {
2111         if (ahp->ah_rifs_enabled == AH_TRUE) {
2112             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2113                                               AR_PHY_SEARCH_START_DELAY);
2114             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2115         }
2116         /* Change rifs init delay to 0 */
2117         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2118                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2119         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2120         if (is_chan_2g) {
2121             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2122                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2123             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2124                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2125             }
2126         } else {
2127             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2128                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2129             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2130                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2131             }
2132         }
2133 
2134         ahp->ah_rifs_enabled = AH_FALSE;
2135     }
2136     return AH_TRUE;
2137 
2138 } /* ar9300_set_rifs_delay () */
2139 
2140 /* Set the current RIFS Rx setting */
2141 HAL_BOOL
2142 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2143 {
2144     /* Non-Owl 11n chips */
2145     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2146         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2147             return ar9300_set_rifs_delay(ah, enable);
2148         }
2149         return AH_FALSE;
2150     }
2151 
2152     return AH_TRUE;
2153 } /* ar9300_set_11n_rx_rifs () */
2154 
2155 static hal_mac_hangs_t
2156 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2157   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2158 {
2159     int i = 0;
2160     hal_mac_hangs_t found_hangs = 0;
2161 
2162     if (hangs & dcu_chain_state) {
2163         for (i = 0; i < 6; i++) {
2164             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2165                  hang_check.dcu_chain_state)
2166             {
2167                 found_hangs |= dcu_chain_state;
2168                 *dcu_chain = i;
2169             }
2170         }
2171         for (i = 0; i < 4; i++) {
2172             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2173                   hang_check.dcu_chain_state)
2174             {
2175                 found_hangs |= dcu_chain_state;
2176                 *dcu_chain = i + 6;
2177             }
2178         }
2179     }
2180 
2181     if (hangs & dcu_complete_state) {
2182         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2183             found_hangs |= dcu_complete_state;
2184         }
2185     }
2186 
2187     return found_hangs;
2188 
2189 } /* end - ar9300_compare_dbg_hang */
2190 
2191 #define NUM_STATUS_READS 50
2192 HAL_BOOL
2193 ar9300_detect_mac_hang(struct ath_hal *ah)
2194 {
2195     struct ath_hal_9300 *ahp = AH9300(ah);
2196     mac_dbg_regs_t mac_dbg;
2197     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2198     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2199     int i = 0;
2200     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2201 
2202     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2203         return AH_FALSE;
2204     }
2205 
2206     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2207 
2208     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2209     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2210     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2211 
2212     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2213             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2214             mac_dbg.dma_dbg_6);
2215 
2216     if (hang_sig1 !=
2217             ar9300_compare_dbg_hang(ah, mac_dbg,
2218                  hang_sig1_val, hang_sig1, &dcu_chain))
2219     {
2220         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2221         return AH_FALSE;
2222     }
2223 
2224     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2225     shift_val *= 5;
2226 
2227     for (i = 1; i <= NUM_STATUS_READS; i++) {
2228         if (dcu_chain < 6) {
2229             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2230             current_dcu_chain_state =
2231                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2232         } else {
2233             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2234             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2235         }
2236         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2237 
2238         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2239             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2240             return AH_FALSE;
2241         }
2242     }
2243     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2244              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2245     ahp->ah_hang[MAC_HANG_SIG1]++;
2246     return AH_TRUE;
2247 
2248 } /* end - ar9300_detect_mac_hang */
2249 
2250 /* Determine if the baseband is hung by reading the Observation Bus Register */
2251 HAL_BOOL
2252 ar9300_detect_bb_hang(struct ath_hal *ah)
2253 {
2254     struct ath_hal_9300 *ahp = AH9300(ah);
2255     u_int32_t hang_sig = 0;
2256     int i = 0;
2257     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2258      *
2259      * 4 known BB hang signatures -
2260      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2261      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2262      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2263      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2264      *     Rx State (bits 20-24) is 0x7.
2265      */
2266     hal_hw_hang_check_t hang_list [] =
2267     {
2268      /* Offset        Reg Value   Reg Mask    Hang Offset */
2269        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2270        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2271        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2272        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2273     };
2274 
2275     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2276                                HAL_DFS_BB_HANG_WAR |
2277                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2278         return AH_FALSE;
2279     }
2280 
2281     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2282     for (i = 1; i <= NUM_STATUS_READS; i++) {
2283         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2284             return AH_FALSE;
2285         }
2286     }
2287 
2288     for (i = 0; i < nitems(hang_list); i++) {
2289         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2290             ahp->ah_hang[hang_list[i].hang_offset]++;
2291             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2292                      "sig3count=%d sig4count=%d\n", __func__,
2293                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2294                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2295             return AH_TRUE;
2296         }
2297     }
2298 
2299     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2300                               "<0x806c>=0x%x\n", __func__, hang_sig);
2301 
2302     return AH_FALSE;
2303 
2304 } /* end - ar9300_detect_bb_hang () */
2305 
2306 #undef NUM_STATUS_READS
2307 
2308 HAL_STATUS
2309 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2310 {
2311     struct ath_hal_9300     *ahp = AH9300(ah);
2312     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2313     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2314     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2315     u_int16_t               ant_config;
2316     u_int32_t               hal_num_ant_config;
2317 
2318     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2319         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2320 
2321     if (cfg < hal_num_ant_config) {
2322         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2323             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2324             return HAL_OK;
2325         }
2326     }
2327 
2328     return HAL_EINVAL;
2329 }
2330 
2331 /*
2332  * Functions to get/set DCS mode
2333  */
2334 void
2335 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2336 {
2337     AH9300(ah)->ah_dcs_enable = mode;
2338 }
2339 
2340 u_int32_t
2341 ar9300_get_dcs_mode(struct ath_hal *ah)
2342 {
2343     return AH9300(ah)->ah_dcs_enable;
2344 }
2345 
2346 #if ATH_BT_COEX
2347 void
2348 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2349 {
2350     struct ath_hal_9300 *ahp = AH9300(ah);
2351 
2352     ahp->ah_bt_module = btinfo->bt_module;
2353     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2354     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2355     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2356     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2357     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2358     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2359     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2360 }
2361 
2362 void
2363 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2364 {
2365     struct ath_hal_9300 *ahp = AH9300(ah);
2366     HAL_BOOL rx_clear_polarity;
2367 
2368     /*
2369      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2370      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2371      */
2372     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2373 
2374     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2375         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2376         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2377         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2378         SM(btconf->bt_mode, AR_BT_MODE) |
2379         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2380         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2381         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2382         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2383 
2384     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2385 
2386     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2387         /* Enable ACK to go out even though BT has higher priority. */
2388         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2389     }
2390 }
2391 
2392 void
2393 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2394 {
2395     struct ath_hal_9300 *ahp = AH9300(ah);
2396 
2397     /* clear the old value, then set the new value */
2398     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2399     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2400 }
2401 
2402 void
2403 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2404 {
2405     struct ath_hal_9300 *ahp = AH9300(ah);
2406 
2407     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2408     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2409     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2410     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2411 
2412     switch (stomp_type) {
2413     case HAL_BT_COEX_STOMP_ALL:
2414         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2415         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2416         break;
2417     case HAL_BT_COEX_STOMP_LOW:
2418         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2419         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2420         break;
2421     case HAL_BT_COEX_STOMP_ALL_FORCE:
2422         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2423         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2424         break;
2425     case HAL_BT_COEX_STOMP_LOW_FORCE:
2426         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2427         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2428         break;
2429     case HAL_BT_COEX_STOMP_NONE:
2430     case HAL_BT_COEX_NO_STOMP:
2431         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2432         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2433         break;
2434     default:
2435         /* There is a force_weight from registry */
2436         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2437         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2438         break;
2439     }
2440 }
2441 
2442 void
2443 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2444 {
2445     struct ath_hal_9300 *ahp = AH9300(ah);
2446 
2447     /* clear the old value, then set the new value */
2448     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2449     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2450 }
2451 
2452 static void
2453 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2454 {
2455     struct ath_hal_9300 *ahp = AH9300(ah);
2456 #if ATH_ANT_DIV_COMB
2457     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2458     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2459 #endif
2460 
2461     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2462     {
2463         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2464         {
2465             /* Config antenna diversity */
2466 #if ATH_ANT_DIV_COMB
2467             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2468 #endif
2469         }
2470     }
2471 }
2472 
2473 
2474 void
2475 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2476     u_int32_t value)
2477 {
2478     struct ath_hal_9300 *ahp = AH9300(ah);
2479     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2480 
2481     switch (type) {
2482         case HAL_BT_COEX_SET_ACK_PWR:
2483             if (value) {
2484                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2485             } else {
2486                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2487             }
2488             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2489                 ahpriv->ah_extraTxPow, 0);
2490             break;
2491 
2492         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2493             if (AR_SREV_POSEIDON(ah)) {
2494                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2495                 if (value) {
2496                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2497                 }
2498                 else {
2499                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2500                 }
2501                 ar9300_bt_coex_antenna_diversity(ah, value);
2502             }
2503             break;
2504         case HAL_BT_COEX_LOWER_TX_PWR:
2505             if (value) {
2506                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2507             }
2508             else {
2509                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2510             }
2511             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2512                                       ahpriv->ah_extraTxPow, 0);
2513             break;
2514 #if ATH_SUPPORT_MCI
2515         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2516             if ((ah->ah_config.ath_hal_mci_config &
2517                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2518             {
2519                 if (value) {
2520                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2521                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2522                 }
2523                 else {
2524                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2525                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2526                 }
2527                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2528                                           ahpriv->ah_extraTxPow, 0);
2529             }
2530             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2531                      ahp->ah_mci_concur_tx_en);
2532             break;
2533         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2534             if (value) {
2535                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2536             }
2537             else {
2538                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2539             }
2540             break;
2541 #endif
2542         default:
2543             break;
2544     }
2545 }
2546 
2547 void
2548 ar9300_bt_coex_disable(struct ath_hal *ah)
2549 {
2550     struct ath_hal_9300 *ahp = AH9300(ah);
2551 
2552     /* Always drive rx_clear_external output as 0 */
2553     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2554         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2555 
2556     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2557         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2558         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2559     }
2560 
2561     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2562     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2563     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2564     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2565     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2566     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2567     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2568     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2569 
2570     ahp->ah_bt_coex_enabled = AH_FALSE;
2571 }
2572 
2573 int
2574 ar9300_bt_coex_enable(struct ath_hal *ah)
2575 {
2576     struct ath_hal_9300 *ahp = AH9300(ah);
2577 
2578     /* Program coex mode and weight registers to actually enable coex */
2579     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2580     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2581     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2582     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2583     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2584     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2585     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2586     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2587 
2588     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2589         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2590     } else {
2591         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2592     }
2593 
2594     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2595     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2596         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2597     } else {
2598         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2599     }
2600 
2601     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2602         /* For 3-wire, configure the desired GPIO port for rx_clear */
2603         ath_hal_gpioCfgOutput(ah,
2604             ahp->ah_wlan_active_gpio_select,
2605             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2606     }
2607     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2608         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2609     {
2610         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2611         ath_hal_gpioCfgOutput(ah,
2612             ahp->ah_wlan_active_gpio_select,
2613             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2614     }
2615 
2616     /*
2617      * Enable a weak pull down on BT_ACTIVE.
2618      * When BT device is disabled, BT_ACTIVE might be floating.
2619      */
2620     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2621         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2622         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2623 
2624     ahp->ah_bt_coex_enabled = AH_TRUE;
2625 
2626     return 0;
2627 }
2628 
2629 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2630 {
2631     return 0;
2632 }
2633 
2634 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2635 {
2636     return bOn;
2637 }
2638 
2639 void
2640 ar9300_init_bt_coex(struct ath_hal *ah)
2641 {
2642     struct ath_hal_9300 *ahp = AH9300(ah);
2643 
2644     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2645         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2646                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2647                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2648 
2649         /*
2650          * Set input mux for bt_prority_async and
2651          * bt_active_async to GPIO pins
2652          */
2653         OS_REG_RMW_FIELD(ah,
2654             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2655             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2656             ahp->ah_bt_active_gpio_select);
2657         OS_REG_RMW_FIELD(ah,
2658             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2659             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2660             ahp->ah_bt_priority_gpio_select);
2661 
2662         /* Configure the desired GPIO ports for input */
2663         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2664         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2665 
2666         if (ahp->ah_bt_coex_enabled) {
2667             ar9300_bt_coex_enable(ah);
2668         } else {
2669             ar9300_bt_coex_disable(ah);
2670         }
2671     }
2672     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2673         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2674     {
2675         /* 2-wire */
2676         if (ahp->ah_bt_coex_enabled) {
2677             /* Connect bt_active_async to baseband */
2678             OS_REG_CLR_BIT(ah,
2679                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2680                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2681                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2682             OS_REG_SET_BIT(ah,
2683                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2684                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2685 
2686             /*
2687              * Set input mux for bt_prority_async and
2688              * bt_active_async to GPIO pins
2689              */
2690             OS_REG_RMW_FIELD(ah,
2691                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2692                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2693                 ahp->ah_bt_active_gpio_select);
2694 
2695             /* Configure the desired GPIO ports for input */
2696             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2697 
2698             /* Enable coexistence on initialization */
2699             ar9300_bt_coex_enable(ah);
2700         }
2701     }
2702 #if ATH_SUPPORT_MCI
2703     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2704         if (ahp->ah_bt_coex_enabled) {
2705             ar9300_mci_bt_coex_enable(ah);
2706         }
2707         else {
2708             ar9300_mci_bt_coex_disable(ah);
2709         }
2710     }
2711 #endif /* ATH_SUPPORT_MCI */
2712 }
2713 
2714 #endif /* ATH_BT_COEX */
2715 
2716 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2717 {
2718     u_int32_t val;
2719     int wasp_mm_rev;
2720 
2721 #define AR_SOC_RST_REVISION_ID      0xB8060090
2722 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2723     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2724             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2725             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2726 #undef AR_SOC_RST_REVISION_ID
2727 #undef REG_READ
2728 
2729     /*
2730      * Azimuth (ProxySTA) Mode is only supported correctly by
2731      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2732      *
2733      * Enable this feature for Scorpion at this time. The silicon
2734      * still needs to be validated.
2735      */
2736     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2737         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2738         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2739           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2740            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2741             wasp_mm_rev >= 0 /* 1 */))))
2742     {
2743         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2744                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2745                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2746                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2747         return HAL_ENOTSUPP;
2748     }
2749 
2750     OS_REG_WRITE(ah,
2751         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2752 
2753     /* turn on mode bit[24] for proxy sta */
2754     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2755         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2756 
2757     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2758     if (enable) {
2759         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2760                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2761                AR_AZIMUTH_BA_USES_AD1;
2762         /* turn off filter pass hold (bit 9) */
2763         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2764     } else {
2765         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2766                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2767                  AR_AZIMUTH_BA_USES_AD1);
2768     }
2769     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2770 
2771     /* enable promiscous mode */
2772     OS_REG_WRITE(ah, AR_RX_FILTER,
2773         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2774     /* enable promiscous in azimuth mode */
2775     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2776     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2777 
2778     /* turn on filter pass hold (bit 9) */
2779     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2780         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2781 
2782     return HAL_OK;
2783 }
2784 
2785 #if 0
2786 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2787 {
2788     /*
2789      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2790      * mitigation and turn on key search always for better performance.
2791      */
2792     struct ath_hal_9300 *ahp = AH9300(ah);
2793     struct ath_hal_private *ap = AH_PRIVATE(ah);
2794 
2795     ahp->ah_intr_mitigation_rx = !enable;
2796     if (ahp->ah_intr_mitigation_rx) {
2797         /*
2798          * Enable Interrupt Mitigation for Rx.
2799          * If no build-specific limits for the rx interrupt mitigation
2800          * timer have been specified, use conservative defaults.
2801          */
2802         #ifndef AH_RIMT_VAL_LAST
2803             #define AH_RIMT_LAST_MICROSEC 500
2804         #endif
2805         #ifndef AH_RIMT_VAL_FIRST
2806             #define AH_RIMT_FIRST_MICROSEC 2000
2807         #endif
2808         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2809         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2810     } else {
2811         OS_REG_WRITE(ah, AR_RIMT, 0);
2812     }
2813 
2814     ahp->ah_enable_keysearch_always = !!enable;
2815     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2816 }
2817 #endif
2818 
2819 void ar9300_enable_tpc(struct ath_hal *ah)
2820 {
2821     u_int32_t val = 0;
2822 
2823     ah->ah_config.ath_hal_desc_tpc = 1;
2824 
2825     /* Enable TPC */
2826     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2827 
2828     /*
2829      * Disable per chain power reduction since we are already
2830      * accounting for this in our calculations
2831      */
2832     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2833     if (AR_SREV_WASP(ah)) {
2834         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2835                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2836     } else {
2837         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2838                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2839     }
2840 }
2841 
2842 
2843 /*
2844  * ar9300_force_tsf_sync
2845  * This function forces the TSF sync to the given bssid, this is implemented
2846  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2847  * mode of operation, where we sync the TSF to RootAP TSF values
2848  */
2849 void
2850 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2851     u_int16_t assoc_id)
2852 {
2853     ar9300_set_operating_mode(ah, HAL_M_STA);
2854     ar9300_write_associd(ah, bssid, assoc_id);
2855 }
2856 
2857 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2858 {
2859     struct ath_hal_9300 *ahp = AH9300(ah);
2860     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2861     u_int32_t           temp_powertx_rate9_reg_val;
2862     int8_t              olpc_power_offset = 0;
2863     int8_t              tmp_olpc_val = 0;
2864     HAL_RSSI_TX_POWER   old_greentx_status;
2865     u_int8_t            target_power_val_t[ar9300_rate_size];
2866     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2867 
2868     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2869         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2870         return;
2871     }
2872 
2873     old_greentx_status = AH9300(ah)->green_tx_status;
2874     if (ahp->ah_hw_green_tx_enable) {
2875         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2876         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2877     } else {
2878         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2879         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2880     }
2881 
2882     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2883         && (rssi > tmp_rss1_thr1))
2884     {
2885         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2886             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2887         }
2888     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2889         && (rssi > tmp_rss1_thr2))
2890     {
2891         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2892             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2893         }
2894     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2895         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2896             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2897         }
2898     }
2899 
2900     /* If status is not change, don't do anything */
2901     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2902         return;
2903     }
2904 
2905     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2906     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2907         && AR_SREV_POSEIDON(ah))
2908     {
2909         if (ahp->ah_hw_green_tx_enable) {
2910             switch (AH9300(ah)->green_tx_status) {
2911             case HAL_RSSI_TX_POWER_SHORT:
2912                 /* 1. TxPower Config */
2913                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2914                     sizeof(target_power_val_t));
2915                 /* 1.1 Store OLPC Delta Calibration Offset*/
2916                 olpc_power_offset = 0;
2917                 /* 2. Store OB/DB */
2918                 /* 3. Store TPC settting */
2919                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2920                                     SM(14, AR_TPC_CTS) |
2921                                     SM(14, AR_TPC_CHIRP) |
2922                                     SM(14, AR_TPC_RPT));
2923                 /* 4. Store BB_powertx_rate9 value */
2924                 temp_powertx_rate9_reg_val =
2925                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2926                 break;
2927             case HAL_RSSI_TX_POWER_MIDDLE:
2928                 /* 1. TxPower Config */
2929                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2930                     sizeof(target_power_val_t));
2931                 /* 1.1 Store OLPC Delta Calibration Offset*/
2932                 olpc_power_offset = 0;
2933                 /* 2. Store OB/DB */
2934                 /* 3. Store TPC settting */
2935                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2936                                     SM(18, AR_TPC_CTS) |
2937                                     SM(18, AR_TPC_CHIRP) |
2938                                     SM(18, AR_TPC_RPT));
2939                 /* 4. Store BB_powertx_rate9 value */
2940                 temp_powertx_rate9_reg_val =
2941                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2942                 break;
2943             case HAL_RSSI_TX_POWER_LONG:
2944             default:
2945                 /* 1. TxPower Config */
2946                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2947                     sizeof(target_power_val_t));
2948                 /* 1.1 Store OLPC Delta Calibration Offset*/
2949                 olpc_power_offset = 0;
2950                 /* 2. Store OB/DB1/DB2 */
2951                 /* 3. Store TPC settting */
2952                 temp_tcp_reg_val =
2953                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2954                 /* 4. Store BB_powertx_rate9 value */
2955                 temp_powertx_rate9_reg_val =
2956                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2957                 break;
2958             }
2959         } else {
2960             switch (AH9300(ah)->green_tx_status) {
2961             case HAL_RSSI_TX_POWER_SHORT:
2962                 /* 1. TxPower Config */
2963                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2964                     sizeof(target_power_val_t));
2965                 /* 1.1 Store OLPC Delta Calibration Offset*/
2966                 olpc_power_offset =
2967                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2968                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2969                 /* 2. Store OB/DB */
2970                 temp_obdb_reg_val =
2971                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2972                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2973                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2974                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2975                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2976                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2977                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2978                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2979                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2980                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2981                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2982                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2983                 /* 3. Store TPC settting */
2984                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2985                                     SM(6, AR_TPC_CTS) |
2986                                     SM(6, AR_TPC_CHIRP) |
2987                                     SM(6, AR_TPC_RPT));
2988                 /* 4. Store BB_powertx_rate9 value */
2989                 temp_powertx_rate9_reg_val =
2990                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2991                 break;
2992             case HAL_RSSI_TX_POWER_MIDDLE:
2993                 /* 1. TxPower Config */
2994                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2995                     sizeof(target_power_val_t));
2996                 /* 1.1 Store OLPC Delta Calibration Offset*/
2997                 olpc_power_offset =
2998                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
2999                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3000                 /* 2. Store OB/DB */
3001                 temp_obdb_reg_val =
3002                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3003                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3004                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3005                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3006                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3007                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3008                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3009                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3010                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3011                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3012                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3013                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3014                 /* 3. Store TPC settting */
3015                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3016                                     SM(14, AR_TPC_CTS) |
3017                                     SM(14, AR_TPC_CHIRP) |
3018                                     SM(14, AR_TPC_RPT));
3019                 /* 4. Store BB_powertx_rate9 value */
3020                 temp_powertx_rate9_reg_val =
3021                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3022                 break;
3023             case HAL_RSSI_TX_POWER_LONG:
3024             default:
3025                 /* 1. TxPower Config */
3026                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3027                     sizeof(target_power_val_t));
3028                 /* 1.1 Store OLPC Delta Calibration Offset*/
3029                 olpc_power_offset =
3030                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3031                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3032                 /* 2. Store OB/DB1/DB2 */
3033                 temp_obdb_reg_val =
3034                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3035                 /* 3. Store TPC settting */
3036                 temp_tcp_reg_val =
3037                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3038                 /* 4. Store BB_powertx_rate9 value */
3039                 temp_powertx_rate9_reg_val =
3040                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3041                 break;
3042             }
3043         }
3044         /* 1.1 Do OLPC Delta Calibration Offset */
3045         tmp_olpc_val =
3046             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3047         tmp_olpc_val += olpc_power_offset;
3048         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3049             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3050             AR_PHY_TPC_OLPC_GAIN_DELTA);
3051 
3052         /* 1.2 TxPower Config */
3053         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3054         /* 2. Config OB/DB */
3055         if (!ahp->ah_hw_green_tx_enable) {
3056             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3057         }
3058         /* 3. config TPC settting */
3059         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3060         /* 4. config BB_powertx_rate9 value */
3061         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3062     }
3063 }
3064 
3065 #if 0
3066 void
3067 ar9300_get_vow_stats(
3068     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3069 {
3070     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3071         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3072     }
3073     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3074         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3075     }
3076     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3077         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3078     }
3079     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3080         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3081     }
3082     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3083         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3084     }
3085 }
3086 #endif
3087 
3088 /*
3089  * ar9300_is_skip_paprd_by_greentx
3090  *
3091  * This function check if we need to skip PAPRD tuning
3092  * when GreenTx in specific state.
3093  */
3094 HAL_BOOL
3095 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3096 {
3097     if (AR_SREV_POSEIDON(ah) &&
3098         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3099         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3100          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3101     {
3102         return AH_TRUE;
3103     }
3104     return AH_FALSE;
3105 }
3106 
3107 void
3108 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3109 {
3110     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3111     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3112     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3113     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3114     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3115     struct ath_hal_9300 *ahp = AH9300(ah);
3116 
3117     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3118         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3119                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3120         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3121                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3122         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3123                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3124         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3125                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3126         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3127                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3128     }
3129 }
3130 
3131 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3132 {
3133     struct ath_hal_9300 *ahp = AH9300(ah);
3134 
3135     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3136         if ((value == 0) || (value == 1)) {
3137             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3138                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3139         }
3140     }
3141 }
3142 
3143 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3144 {
3145     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3146 }
3147 
3148 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3149 {
3150     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3151 
3152     /* RSSI format is 8.4.  Ignore lowest four bits */
3153     val = val >> 4;
3154     return val;
3155 }
3156 
3157 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3158                                         u_int32_t rssi_threshold)
3159 {
3160     struct ath_hal_9300 *ahp = AH9300(ah);
3161 
3162     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3163 
3164     /* save value for restoring after chip reset */
3165     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3166 }
3167 
3168 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3169 {
3170     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3171 }
3172 
3173 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3174 {
3175     if (on) {
3176         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3177                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3178     }
3179     else {
3180         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3181                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3182     }
3183 }
3184 /*
3185  * Gets the contents of the specified key cache entry.
3186  */
3187 HAL_BOOL
3188 ar9300_print_keycache(struct ath_hal *ah)
3189 {
3190 
3191     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3192     u_int32_t key0, key1, key2, key3, key4;
3193     u_int32_t mac_hi, mac_lo;
3194     u_int16_t entry = 0;
3195     u_int32_t valid = 0;
3196     u_int32_t key_type;
3197 
3198     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3199 
3200     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3201         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3202         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3203         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3204         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3205         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3206 
3207         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3208 
3209         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3210         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3211 
3212         if (mac_hi & AR_KEYTABLE_VALID) {
3213             valid = 1;
3214         } else {
3215             valid = 0;
3216         }
3217 
3218         if ((mac_hi != 0) && (mac_lo != 0)) {
3219             mac_hi &= ~0x8000;
3220             mac_hi <<= 1;
3221             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3222             mac_lo <<= 1;
3223         }
3224 
3225         ath_hal_printf(ah,
3226             "%03d    "
3227             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3228             "   %02d     %02d    "
3229             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3230             entry,
3231             (key0 << 24) >> 24, (key0 << 16) >> 24,
3232             (key0 << 8) >> 24, key0 >> 24,
3233             (key1 << 24) >> 24, (key1 << 16) >> 24,
3234             //(key1 << 8) >> 24, key1 >> 24,
3235             (key2 << 24) >> 24, (key2 << 16) >> 24,
3236             (key2 << 8) >> 24, key2 >> 24,
3237             (key3 << 24) >> 24, (key3 << 16) >> 24,
3238             //(key3 << 8) >> 24, key3 >> 24,
3239             (key4 << 24) >> 24, (key4 << 16) >> 24,
3240             (key4 << 8) >> 24, key4 >> 24,
3241             valid, key_type,
3242             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3243             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3244     }
3245 
3246     return AH_TRUE;
3247 }
3248 
3249 /* enable/disable smart antenna mode */
3250 HAL_BOOL
3251 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3252 {
3253     struct ath_hal_9300 *ahp = AH9300(ah);
3254 
3255     if (enable) {
3256         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3257     } else {
3258         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3259     }
3260 
3261     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3262      * and swcom2 with 0
3263      * FIXME Ideally these registers need to be made read from caldata.
3264      * Until the calibration team gets them, keep them along with board
3265      * configuration.
3266      */
3267     if (enable && AR_SREV_SCORPION(ah) &&
3268            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3269 
3270        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3271        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3272     }
3273 
3274     ahp->ah_smartantenna_enable = enable;
3275     return 1;
3276 }
3277 
3278 #ifdef ATH_TX99_DIAG
3279 #ifndef ATH_SUPPORT_HTC
3280 void
3281 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3282     u_int32_t txpower)
3283 {
3284 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3285     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3286     int32_t i;
3287 
3288     /* The max power is limited to 63 */
3289     if (txpower <= AR9300_MAX_RATE_POWER) {
3290         for (i = 0; i < ar9300_rate_size; i++) {
3291             p_pwr_array[i] = txpower;
3292         }
3293     } else {
3294         for (i = 0; i < ar9300_rate_size; i++) {
3295             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3296         }
3297     }
3298 
3299     OS_REG_WRITE(ah, 0xa458, 0);
3300 
3301     /* Write the OFDM power per rate set */
3302     /* 6 (LSB), 9, 12, 18 (MSB) */
3303     OS_REG_WRITE(ah, 0xa3c0,
3304         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3305           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3306           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3307           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3308     );
3309     /* 24 (LSB), 36, 48, 54 (MSB) */
3310     OS_REG_WRITE(ah, 0xa3c4,
3311         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3312           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3313           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3314           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3315     );
3316 
3317     /* Write the CCK power per rate set */
3318     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3319     OS_REG_WRITE(ah, 0xa3c8,
3320         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3321           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3322           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3323           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3324     );
3325     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3326     OS_REG_WRITE(ah, 0xa3cc,
3327         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3328           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3329           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3330           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3331     );
3332 
3333     /* Write the HT20 power per rate set */
3334     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3335     OS_REG_WRITE(ah, 0xa3d0,
3336         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3337           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3338           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3339           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3340     );
3341 
3342     /* 6 (LSB), 7, 12, 13 (MSB) */
3343     OS_REG_WRITE(ah, 0xa3d4,
3344         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3345           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3346           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3347           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3348     );
3349 
3350     /* 14 (LSB), 15, 20, 21 */
3351     OS_REG_WRITE(ah, 0xa3e4,
3352         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3353           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3354           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3355           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3356     );
3357 
3358     /* Mixed HT20 and HT40 rates */
3359     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3360     OS_REG_WRITE(ah, 0xa3e8,
3361         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3362           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3363           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3364           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3365     );
3366 
3367     /* Write the HT40 power per rate set */
3368     /* correct PAR difference between HT40 and HT20/LEGACY */
3369     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3370     OS_REG_WRITE(ah, 0xa3d8,
3371         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3372           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3373           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3374           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3375     );
3376 
3377     /* 6 (LSB), 7, 12, 13 (MSB) */
3378     OS_REG_WRITE(ah, 0xa3dc,
3379         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3380           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3381           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3382           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3383     );
3384 
3385     /* 14 (LSB), 15, 20, 21 */
3386     OS_REG_WRITE(ah, 0xa3ec,
3387         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3388           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3389           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3390           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3391     );
3392 #undef PWR_MAS
3393 }
3394 
3395 void
3396 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3397 {
3398     if (tx_chainmask == 0x5) {
3399         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3400             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3401     }
3402     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3403     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3404 
3405     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3406     if (tx_chainmask == 0x5) {
3407         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3408             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3409     }
3410 }
3411 
3412 void
3413 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3414     int chtype)
3415 {
3416     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3417     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3418     OS_REG_WRITE(ah, 0xa350,
3419         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3420 
3421     /* 11G mode */
3422     if (!chtype) {
3423         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3424             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3425         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3426             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3427                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3428             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3429                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3430                         | (0x1 << 26)  | (0x7 << 24))
3431                         & ~(0x1 << 22));
3432         } else {
3433             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3434                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3435             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3436                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3437                         | (0x1 << 26)  | (0x7 << 24))
3438                         & ~(0x1 << 22));
3439         }
3440 
3441         /* chain zero */
3442         if ((tx_chain_mask & 0x01) == 0x01) {
3443             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3444                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3445                       | (0x1 << 31) | (0x5 << 15)
3446                       | (0x3 << 9)) & ~(0x1 << 27)
3447                       & ~(0x1 << 12));
3448             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3449                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3450                       | (0x1 << 12) | (0x1 << 10)
3451                       | (0x1 << 9)  | (0x1 << 8)
3452                       | (0x1 << 7)) & ~(0x1 << 11));
3453             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3454                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3455                       | (0x1 << 29) | (0x1 << 25)
3456                       | (0x1 << 23) | (0x1 << 19)
3457                       | (0x1 << 10) | (0x1 << 9)
3458                       | (0x1 << 8)  | (0x1 << 3))
3459                       & ~(0x1 << 28)& ~(0x1 << 24)
3460                       & ~(0x1 << 22)& ~(0x1 << 7));
3461             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3462                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3463                       | (0x1 << 23))& ~(0x1 << 21));
3464             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3465                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3466                       | (0x1 << 12) | (0x1 << 10)
3467                       | (0x1 << 9)  | (0x1 << 8)
3468                       | (0x1 << 6)  | (0x1 << 5)
3469                       | (0x1 << 4)  | (0x1 << 3)
3470                       | (0x1 << 2));
3471             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3472                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3473         }
3474         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3475             /* chain one */
3476             if ((tx_chain_mask & 0x02) == 0x02 ) {
3477                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3478                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3479                           | (0x1 << 31) | (0x5 << 15)
3480                           | (0x3 << 9)) & ~(0x1 << 27)
3481                           & ~(0x1 << 12));
3482                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3483                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3484                           | (0x1 << 12) | (0x1 << 10)
3485                           | (0x1 << 9)  | (0x1 << 8)
3486                           | (0x1 << 7)) & ~(0x1 << 11));
3487                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3488                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3489                           | (0x1 << 29) | (0x1 << 25)
3490                           | (0x1 << 23) | (0x1 << 19)
3491                           | (0x1 << 10) | (0x1 << 9)
3492                           | (0x1 << 8)  | (0x1 << 3))
3493                           & ~(0x1 << 28)& ~(0x1 << 24)
3494                           & ~(0x1 << 22)& ~(0x1 << 7));
3495                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3496                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3497                           | (0x1 << 23))& ~(0x1 << 21));
3498                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3499                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3500                           | (0x1 << 12) | (0x1 << 10)
3501                           | (0x1 << 9)  | (0x1 << 8)
3502                           | (0x1 << 6)  | (0x1 << 5)
3503                           | (0x1 << 4)  | (0x1 << 3)
3504                           | (0x1 << 2));
3505                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3506                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3507             }
3508         }
3509         if (AR_SREV_OSPREY(ah)) {
3510             /* chain two */
3511             if ((tx_chain_mask & 0x04) == 0x04 ) {
3512                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3513                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3514                           | (0x1 << 31) | (0x5 << 15)
3515                           | (0x3 << 9)) & ~(0x1 << 27)
3516                           & ~(0x1 << 12));
3517                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3518                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3519                           | (0x1 << 12) | (0x1 << 10)
3520                           | (0x1 << 9)  | (0x1 << 8)
3521                           | (0x1 << 7)) & ~(0x1 << 11));
3522                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3523                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3524                           | (0x1 << 29) | (0x1 << 25)
3525                           | (0x1 << 23) | (0x1 << 19)
3526                           | (0x1 << 10) | (0x1 << 9)
3527                           | (0x1 << 8)  | (0x1 << 3))
3528                           & ~(0x1 << 28)& ~(0x1 << 24)
3529                           & ~(0x1 << 22)& ~(0x1 << 7));
3530                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3531                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3532                           | (0x1 << 23))& ~(0x1 << 21));
3533                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3534                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3535                           | (0x1 << 12) | (0x1 << 10)
3536                           | (0x1 << 9)  | (0x1 << 8)
3537                           | (0x1 << 6)  | (0x1 << 5)
3538                           | (0x1 << 4)  | (0x1 << 3)
3539                           | (0x1 << 2));
3540                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3541                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3542             }
3543         }
3544 
3545         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3546         OS_REG_WRITE(ah, 0xa288, 0x111);
3547     } else {
3548         /* chain zero */
3549         if ((tx_chain_mask & 0x01) == 0x01) {
3550             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3551                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3552                       | (0x1 << 31) | (0x1 << 27)
3553                       | (0x3 << 23) | (0x1 << 19)
3554                       | (0x1 << 15) | (0x3 << 9))
3555                       & ~(0x1 << 12));
3556             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3557                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3558                       | (0x1 << 12) | (0x1 << 10)
3559                       | (0x1 << 9)  | (0x1 << 8)
3560                       | (0x1 << 7)  | (0x1 << 3)
3561                       | (0x1 << 2)  | (0x1 << 1))
3562                       & ~(0x1 << 11)& ~(0x1 << 0));
3563             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3564                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3565                       | (0x1 << 29) | (0x1 << 25)
3566                       | (0x1 << 23) | (0x1 << 19)
3567                       | (0x1 << 10) | (0x1 << 9)
3568                       | (0x1 << 8)  | (0x1 << 3))
3569                       & ~(0x1 << 28)& ~(0x1 << 24)
3570                       & ~(0x1 << 22)& ~(0x1 << 7));
3571             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3572                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3573                       | (0x1 << 23))& ~(0x1 << 21));
3574             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3575                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3576                       | (0x3 << 3)  | (0x3 << 0));
3577             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3578                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3579                       | (0x3 << 29) | (0x3 << 26)
3580                       | (0x2 << 23) | (0x2 << 20)
3581                       | (0x2 << 17))& ~(0x1 << 14));
3582             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3583                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3584                       | (0x1 << 12) | (0x1 << 10)
3585                       | (0x1 << 9)  | (0x1 << 8)
3586                       | (0x1 << 6)  | (0x1 << 5)
3587                       | (0x1 << 4)  | (0x1 << 3)
3588                       | (0x1 << 2));
3589             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3590                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3591             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3592                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3593                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3594                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3595                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3596                           | (0x1 << 26) | (0x7 << 24)
3597                           | (0x3 << 22));
3598             } else {
3599                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3600                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3601                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3602                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3603                           | (0x1 << 26) | (0x7 << 24)
3604                           | (0x3 << 22));
3605             }
3606 
3607             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3608                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3609                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3610                           | (0x1 << 3)  | (0x1 << 2)
3611                           | (0x1 << 1)) & ~(0x1 << 0));
3612                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3613                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3614                           | (0x1 << 19) | (0x1 << 3));
3615                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3616                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3617             }
3618             if (AR_SREV_OSPREY(ah)) {
3619                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3620                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3621                           | (0x1 << 3)  | (0x1 << 2)
3622                           | (0x1 << 1)) & ~(0x1 << 0));
3623                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3624                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3625                           | (0x1 << 19) | (0x1 << 3));
3626                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3627                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3628             }
3629         }
3630         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3631             /* chain one */
3632             if ((tx_chain_mask & 0x02) == 0x02 ) {
3633                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3634                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3635                           | (0x1 << 3)  | (0x1 << 2)
3636                           | (0x1 << 1)) & ~(0x1 << 0));
3637                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3638                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3639                           | (0x1 << 19) | (0x1 << 3));
3640                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3641                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3642                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3643                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3644                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3645                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3646                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3647                               | (0x1 << 26) | (0x7 << 24)
3648                               | (0x3 << 22));
3649                 } else {
3650                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3651                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3652                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3653                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3654                               | (0x1 << 26) | (0x7 << 24)
3655                               | (0x3 << 22));
3656                 }
3657 
3658                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3659                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3660                           | (0x1 << 31) | (0x1 << 27)
3661                           | (0x3 << 23) | (0x1 << 19)
3662                           | (0x1 << 15) | (0x3 << 9))
3663                           & ~(0x1 << 12));
3664                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3665                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3666                           | (0x1 << 12) | (0x1 << 10)
3667                           | (0x1 << 9)  | (0x1 << 8)
3668                           | (0x1 << 7)  | (0x1 << 3)
3669                           | (0x1 << 2)  | (0x1 << 1))
3670                           & ~(0x1 << 11)& ~(0x1 << 0));
3671                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3672                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3673                           | (0x1 << 29) | (0x1 << 25)
3674                           | (0x1 << 23) | (0x1 << 19)
3675                           | (0x1 << 10) | (0x1 << 9)
3676                           | (0x1 << 8)  | (0x1 << 3))
3677                           & ~(0x1 << 28)& ~(0x1 << 24)
3678                           & ~(0x1 << 22)& ~(0x1 << 7));
3679                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3680                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3681                           | (0x1 << 23))& ~(0x1 << 21));
3682                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3683                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3684                           | (0x3 << 3)  | (0x3 << 0));
3685                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3686                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3687                           | (0x3 << 29) | (0x3 << 26)
3688                           | (0x2 << 23) | (0x2 << 20)
3689                           | (0x2 << 17))& ~(0x1 << 14));
3690                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3691                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3692                           | (0x1 << 12) | (0x1 << 10)
3693                           | (0x1 << 9)  | (0x1 << 8)
3694                           | (0x1 << 6)  | (0x1 << 5)
3695                           | (0x1 << 4)  | (0x1 << 3)
3696                           | (0x1 << 2));
3697                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3698                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3699 
3700                 if (AR_SREV_OSPREY(ah)) {
3701                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3702                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3703                               | (0x1 << 3)  | (0x1 << 2)
3704                               | (0x1 << 1)) & ~(0x1 << 0));
3705                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3706                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3707                               | (0x1 << 19) | (0x1 << 3));
3708                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3709                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3710                 }
3711             }
3712         }
3713         if (AR_SREV_OSPREY(ah)) {
3714             /* chain two */
3715             if ((tx_chain_mask & 0x04) == 0x04 ) {
3716                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3717                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3718                           | (0x1 << 3)  | (0x1 << 2)
3719                           | (0x1 << 1)) & ~(0x1 << 0));
3720                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3721                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3722                           | (0x1 << 19) | (0x1 << 3));
3723                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3724                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3725                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3726                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3727                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3728                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3729                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3730                               | (0x1 << 26) | (0x7 << 24)
3731                               | (0x3 << 22));
3732                 } else {
3733                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3734                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3735                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3736                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3737                               | (0x1 << 26) | (0x7 << 24)
3738                               | (0x3 << 22));
3739                 }
3740 
3741                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3742                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3743                           | (0x1 << 3)  | (0x1 << 2)
3744                           | (0x1 << 1)) & ~(0x1 << 0));
3745                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3746                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3747                           | (0x1 << 19) | (0x1 << 3));
3748                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3749                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3750 
3751                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3752                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3753                           | (0x1 << 31) | (0x1 << 27)
3754                           | (0x3 << 23) | (0x1 << 19)
3755                           | (0x1 << 15) | (0x3 << 9))
3756                           & ~(0x1 << 12));
3757                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3758                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3759                           | (0x1 << 12) | (0x1 << 10)
3760                           | (0x1 << 9)  | (0x1 << 8)
3761                           | (0x1 << 7)  | (0x1 << 3)
3762                           | (0x1 << 2)  | (0x1 << 1))
3763                           & ~(0x1 << 11)& ~(0x1 << 0));
3764                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3765                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3766                           | (0x1 << 29) | (0x1 << 25)
3767                           | (0x1 << 23) | (0x1 << 19)
3768                           | (0x1 << 10) | (0x1 << 9)
3769                           | (0x1 << 8)  | (0x1 << 3))
3770                           & ~(0x1 << 28)& ~(0x1 << 24)
3771                           & ~(0x1 << 22)& ~(0x1 << 7));
3772                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3773                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3774                           | (0x1 << 23))& ~(0x1 << 21));
3775                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3776                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3777                           | (0x3 << 3)  | (0x3 << 0));
3778                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3779                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3780                           | (0x3 << 29) | (0x3 << 26)
3781                           | (0x2 << 23) | (0x2 << 20)
3782                           | (0x2 << 17))& ~(0x1 << 14));
3783                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3784                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3785                           | (0x1 << 12) | (0x1 << 10)
3786                           | (0x1 << 9)  | (0x1 << 8)
3787                           | (0x1 << 6)  | (0x1 << 5)
3788                           | (0x1 << 4)  | (0x1 << 3)
3789                           | (0x1 << 2));
3790                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3791                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3792             }
3793         }
3794 
3795         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3796         OS_REG_WRITE(ah, 0xa288, 0x222);
3797     }
3798 }
3799 
3800 void
3801 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3802 {
3803     u_int32_t val;
3804     u_int32_t qnum = (u_int32_t)data;
3805 
3806     /* Disable AGC to A2 */
3807     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3808     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3809 
3810     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3811     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3812     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3813     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3814     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3815     /* 200 ok for HT20, 400 ok for HT40 */
3816     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3817     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3818 
3819     /* set QCU modes to early termination */
3820     val = OS_REG_READ(ah, AR_QMISC(qnum));
3821     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3822 }
3823 
3824 void
3825 ar9300_tx99_stop(struct ath_hal *ah)
3826 {
3827     /* this should follow the setting of start */
3828     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3829     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3830 }
3831 #endif /* ATH_TX99_DIAG */
3832 #endif /* ATH_SUPPORT_HTC */
3833 
3834 HAL_BOOL
3835 ar9300Get3StreamSignature(struct ath_hal *ah)
3836 {
3837     return AH_FALSE;
3838 }
3839 
3840 HAL_BOOL
3841 ar9300ForceVCS(struct ath_hal *ah)
3842 {
3843    return AH_FALSE;
3844 }
3845 
3846 HAL_BOOL
3847 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3848 {
3849    return AH_FALSE;
3850 }
3851 
3852 HAL_BOOL
3853 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3854 {
3855     struct ath_hal_9300 *ahp = AH9300(ah);
3856     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3857     u_int8_t *ctl_index;
3858     u_int32_t offset = 0;
3859 
3860     if (!ctl_array)
3861         return AH_FALSE;
3862 
3863     /* copy 2G ctl freqbin and power data */
3864     ctl_index = p_eep_data->ctl_index_2g;
3865     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3866                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3867                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3868     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3869             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3870 
3871 
3872     /* copy 2G ctl freqbin and power data */
3873     ctl_index = p_eep_data->ctl_index_5g;
3874     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3875                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3876                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3877 
3878     return AH_FALSE;
3879 }
3880 
3881 void
3882 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3883 {
3884     struct ath_hal_9300 *ahp = AH9300(ah);
3885 
3886     /* optional txchainmask should be subset of primary txchainmask */
3887     if ((mask & ahp->ah_tx_chainmask) != mask) {
3888         ahp->ah_tx_chainmaskopt = 0;
3889         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3890         return;
3891     }
3892 
3893     ahp->ah_tx_chainmaskopt = mask;
3894 }
3895