1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 
30 
31 void
32 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
33 {
34     struct ath_hal_9300 *ahp = AH9300(ah);
35     *hangs = 0;
36 
37     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
38         *hangs |= HAL_RIFS_BB_HANG_WAR;
39     }
40     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
41         *hangs |= HAL_DFS_BB_HANG_WAR;
42     }
43     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
44         == HAL_OK)
45     {
46         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
47     }
48     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
49         *hangs |= HAL_MAC_HANG_WAR;
50     }
51     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
52         == HAL_OK)
53     {
54         *hangs |= HAL_PHYRESTART_CLR_WAR;
55     }
56 
57     ahp->ah_hang_wars = *hangs;
58 }
59 
60 /*
61  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
62  * HT20, HT40, fast-clock, turbo mode, etc.
63  */
64 static u_int
65 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
66 {
67 #if 0
68     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
69 
70     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
71         return (ath_hal_mac_usec(ah, clks) / 2);
72     } else {
73         return (ath_hal_mac_usec(ah, clks));
74     }
75 #endif
76     return (ath_hal_mac_usec(ah, clks));
77 }
78 
79 u_int
80 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
81 {
82 #if 0
83     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
84 
85     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
86         return (ath_hal_mac_clks(ah, usecs) * 2);
87     } else {
88         return (ath_hal_mac_clks(ah, usecs));
89     }
90 #endif
91     return (ath_hal_mac_clks(ah, usecs));
92 }
93 
94 void
95 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
96 {
97     struct ath_hal_9300 *ahp = AH9300(ah);
98 
99     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
100 }
101 
102 HAL_BOOL
103 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
104 {
105     struct ath_hal_9300 *ahp = AH9300(ah);
106 
107     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
108     return AH_TRUE;
109 }
110 
111 void
112 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
113 {
114     struct ath_hal_9300 *ahp = AH9300(ah);
115 
116     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
117 }
118 
119 HAL_BOOL
120 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
121 {
122     struct ath_hal_9300 *ahp = AH9300(ah);
123 
124     /* save it since it must be rewritten on reset */
125     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
126 
127     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
128     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
129     return AH_TRUE;
130 }
131 
132 /*
133  * Attempt to change the cards operating regulatory domain to the given value
134  * Returns: A_EINVAL for an unsupported regulatory domain.
135  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
136  */
137 HAL_BOOL
138 ar9300_set_regulatory_domain(struct ath_hal *ah,
139         u_int16_t reg_domain, HAL_STATUS *status)
140 {
141     HAL_STATUS ecode;
142 
143     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
144         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
145         return AH_TRUE;
146     }
147     ecode = HAL_EIO;
148 
149 #if 0
150 bad:
151 #endif
152     if (status) {
153         *status = ecode;
154     }
155     return AH_FALSE;
156 }
157 
158 /*
159  * Return the wireless modes (a,b,g,t) supported by hardware.
160  *
161  * This value is what is actually supported by the hardware
162  * and is unaffected by regulatory/country code settings.
163  *
164  */
165 u_int
166 ar9300_get_wireless_modes(struct ath_hal *ah)
167 {
168     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
169 }
170 
171 /*
172  * Set the interrupt and GPIO values so the ISR can disable RF
173  * on a switch signal.  Assumes GPIO port and interrupt polarity
174  * are set prior to call.
175  */
176 void
177 ar9300_enable_rf_kill(struct ath_hal *ah)
178 {
179     /* TODO - can this really be above the hal on the GPIO interface for
180      * TODO - the client only?
181      */
182     struct ath_hal_9300    *ahp = AH9300(ah);
183 
184     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
185     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
186     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
187             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
188                            AR_RFSILENT_FORCE);
189             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
190         }
191         else {
192             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
193                            AR_RFSILENT_FORCE);
194             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
195         }
196     }
197     else {
198         /* Connect rfsilent_bb_l to baseband */
199         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
200             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
201 
202         /* Set input mux for rfsilent_bb_l to GPIO #0 */
203         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
204             AR_GPIO_INPUT_MUX2_RFSILENT);
205         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             (ahp->ah_gpio_select & 0x0f) << 4);
207 
208         /*
209          * Configure the desired GPIO port for input and
210          * enable baseband rf silence
211          */
212         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
213         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
214     }
215 
216     /*
217      * If radio disable switch connection to GPIO bit x is enabled
218      * program GPIO interrupt.
219      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
220      * verified that it is a later version of eeprom, it has a place for
221      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
222      * connection is present.
223      */
224      /*
225       * RFKill uses polling not interrupt,
226       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
227       */
228     if (ath_hal_hasrfkill_int(ah)) {
229         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
230             /* switch already closed, set to interrupt upon open */
231             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
232         } else {
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
234         }
235     }
236 }
237 
238 /*
239  * Change the LED blinking pattern to correspond to the connectivity
240  */
241 void
242 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
243 {
244     static const u_int32_t ledbits[8] = {
245         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
246         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
247         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
250         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
251         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
252         AR_CFG_LED_ASSOC_NONE,
253     };
254 
255     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
256 }
257 
258 /*
259  * Sets the Power LED on the cardbus without affecting the Network LED.
260  */
261 void
262 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
263 {
264     u_int32_t    val;
265 
266     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
267     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
268 }
269 
270 /*
271  * Sets the Network LED on the cardbus without affecting the Power LED.
272  */
273 void
274 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
275 {
276     u_int32_t    val;
277 
278     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
279     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
280 }
281 
282 /*
283  * Change association related fields programmed into the hardware.
284  * Writing a valid BSSID to the hardware effectively enables the hardware
285  * to synchronize its TSF to the correct beacons and receive frames coming
286  * from that BSSID. It is called by the SME JOIN operation.
287  */
288 void
289 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
290     u_int16_t assoc_id)
291 {
292     struct ath_hal_9300 *ahp = AH9300(ah);
293 
294     /* save bssid and assoc_id for restore on reset */
295     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
296     ahp->ah_assoc_id = assoc_id;
297 
298     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
299     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
300                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
301 }
302 
303 /*
304  * Get the current hardware tsf for stamlme
305  */
306 u_int64_t
307 ar9300_get_tsf64(struct ath_hal *ah)
308 {
309     u_int64_t tsf;
310 
311     /* XXX sync multi-word read? */
312     tsf = OS_REG_READ(ah, AR_TSF_U32);
313     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
314     return tsf;
315 }
316 
317 void
318 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
319 {
320     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
321     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
322 }
323 
324 /*
325  * Get the current hardware tsf for stamlme
326  */
327 u_int32_t
328 ar9300_get_tsf32(struct ath_hal *ah)
329 {
330     return OS_REG_READ(ah, AR_TSF_L32);
331 }
332 
333 u_int32_t
334 ar9300_get_tsf2_32(struct ath_hal *ah)
335 {
336     return OS_REG_READ(ah, AR_TSF2_L32);
337 }
338 
339 /*
340  * Reset the current hardware tsf for stamlme.
341  */
342 void
343 ar9300_reset_tsf(struct ath_hal *ah)
344 {
345     int count;
346 
347     count = 0;
348     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
349         count++;
350         if (count > 10) {
351             HALDEBUG(ah, HAL_DEBUG_RESET,
352                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
353             break;
354         }
355         OS_DELAY(10);
356     }
357     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
358 }
359 
360 /*
361  * Set or clear hardware basic rate bit
362  * Set hardware basic rate set if basic rate is found
363  * and basic rate is equal or less than 2Mbps
364  */
365 void
366 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
367 {
368     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
369     u_int32_t reg;
370     u_int8_t xset;
371     int i;
372 
373     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
374         return;
375     }
376     xset = 0;
377     for (i = 0; i < rs->rs_count; i++) {
378         u_int8_t rset = rs->rs_rates[i];
379         /* Basic rate defined? */
380         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
381             xset = rset;
382         }
383     }
384     /*
385      * Set the h/w bit to reflect whether or not the basic
386      * rate is found to be equal or less than 2Mbps.
387      */
388     reg = OS_REG_READ(ah, AR_STA_ID1);
389     if (xset && xset / 2 <= 2) {
390         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
391     } else {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
393     }
394 }
395 
396 /*
397  * Grab a semi-random value from hardware registers - may not
398  * change often
399  */
400 u_int32_t
401 ar9300_get_random_seed(struct ath_hal *ah)
402 {
403     u_int32_t nf;
404 
405     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
406     if (nf & 0x100) {
407         nf = 0 - ((nf ^ 0x1ff) + 1);
408     }
409     return (OS_REG_READ(ah, AR_TSF_U32) ^
410         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
411 }
412 
413 /*
414  * Detect if our card is present
415  */
416 HAL_BOOL
417 ar9300_detect_card_present(struct ath_hal *ah)
418 {
419     u_int16_t mac_version, mac_rev;
420     u_int32_t v;
421 
422     /*
423      * Read the Silicon Revision register and compare that
424      * to what we read at attach time.  If the same, we say
425      * a card/device is present.
426      */
427     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
428     if (v == 0xFF) {
429         /* new SREV format */
430         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
431         /*
432          * Include 6-bit Chip Type (masked to 0) to differentiate
433          * from pre-Sowl versions
434          */
435         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
436         mac_rev = MS(v, AR_SREV_REVISION2);
437     } else {
438         mac_version = MS(v, AR_SREV_VERSION);
439         mac_rev = v & AR_SREV_REVISION;
440     }
441     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
442             AH_PRIVATE(ah)->ah_macRev == mac_rev);
443 }
444 
445 /*
446  * Update MIB Counters
447  */
448 void
449 ar9300_update_mib_mac_stats(struct ath_hal *ah)
450 {
451     struct ath_hal_9300 *ahp = AH9300(ah);
452     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
453 
454     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
455     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
456     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
457     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
458     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
459 }
460 
461 void
462 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
463 {
464     struct ath_hal_9300 *ahp = AH9300(ah);
465     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
466 
467     stats->ackrcv_bad = istats->ackrcv_bad;
468     stats->rts_bad    = istats->rts_bad;
469     stats->fcs_bad    = istats->fcs_bad;
470     stats->rts_good   = istats->rts_good;
471     stats->beacons    = istats->beacons;
472 }
473 
474 /*
475  * Detect if the HW supports spreading a CCK signal on channel 14
476  */
477 HAL_BOOL
478 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
479 {
480     return AH_TRUE;
481 }
482 
483 /*
484  * Get the rssi of frame curently being received.
485  */
486 u_int32_t
487 ar9300_get_cur_rssi(struct ath_hal *ah)
488 {
489     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
490     /* get combined RSSI */
491     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
492 }
493 
494 #if ATH_GEN_RANDOMNESS
495 /*
496  * Get the rssi value from BB on ctl chain0.
497  */
498 u_int32_t
499 ar9300_get_rssi_chain0(struct ath_hal *ah)
500 {
501     /* get ctl chain0 RSSI */
502     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
503 }
504 #endif
505 
506 u_int
507 ar9300_get_def_antenna(struct ath_hal *ah)
508 {
509     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
510 }
511 
512 /* Setup coverage class */
513 void
514 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
515 {
516 }
517 
518 void
519 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
520 {
521     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
522 }
523 
524 HAL_BOOL
525 ar9300_set_antenna_switch(struct ath_hal *ah,
526     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
527     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
528 {
529     struct ath_hal_9300 *ahp = AH9300(ah);
530 
531     /*
532      * Owl does not support diversity or changing antennas.
533      *
534      * Instead this API and function are defined differently for AR9300.
535      * To support Tablet PC's, this interface allows the system
536      * to dramatically reduce the TX power on a particular chain.
537      *
538      * Based on the value of (redefined) diversity_control, the
539      * reset code will decrease power on chain 0 or chain 1/2.
540      *
541      * Based on the value of bit 0 of antenna_switch_swap,
542      * the mapping between OID call and chain is defined as:
543      *  0:  map A -> 0, B -> 1;
544      *  1:  map A -> 1, B -> 0;
545      *
546      * NOTE:
547      *   The devices that use this OID should use a tx_chain_mask and
548      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
549      *   used in order to ensure an active transmit antenna.  This
550      *   API will allow the host to turn off the only transmitting
551      *   antenna to ensure the antenna closest to the user's body is
552      *   powered-down.
553      */
554     /*
555      * Set antenna control for use during reset sequence by
556      * ar9300_decrease_chain_power()
557      */
558     ahp->ah_diversity_control = settings;
559 
560     return AH_TRUE;
561 }
562 
563 HAL_BOOL
564 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
565 {
566     return AH_TRUE;
567 }
568 
569 HAL_BOOL
570 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
571 {
572     struct ath_hal_9300 *ahp = AH9300(ah);
573     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
574         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
575         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
576         return AH_FALSE;
577     } else {
578         /* convert to system clocks */
579         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
580         ahp->ah_slot_time = us;
581         return AH_TRUE;
582     }
583 }
584 
585 HAL_BOOL
586 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
587 {
588     struct ath_hal_9300 *ahp = AH9300(ah);
589 
590     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
591         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
592         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
593         return AH_FALSE;
594     } else {
595         /* convert to system clocks */
596         OS_REG_RMW_FIELD(ah,
597             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
598         ahp->ah_ack_timeout = us;
599         return AH_TRUE;
600     }
601 }
602 
603 u_int
604 ar9300_get_ack_timeout(struct ath_hal *ah)
605 {
606     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
607     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
608 }
609 
610 HAL_STATUS
611 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
612                  u_int32_t next_start, HAL_QUIET_FLAG flag)
613 {
614 #define	TU_TO_USEC(_tu)		((_tu) << 10)
615     HAL_STATUS status = HAL_EIO;
616     u_int32_t tsf = 0, j, next_start_us = 0;
617     if (flag & HAL_QUIET_ENABLE) {
618         for (j = 0; j < 2; j++) {
619             next_start_us = TU_TO_USEC(next_start);
620             tsf = OS_REG_READ(ah, AR_TSF_L32);
621             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
622                 next_start_us += tsf;
623             }
624             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
625                 next_start_us +=
626                     ah->ah_config.ah_sw_beacon_response_time;
627             }
628             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
629             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
630             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
631             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
632             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
633             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
634                 status = HAL_OK;
635                 break;
636             }
637             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
638                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
639             /* TSF shouldn't count twice or reg access is taking forever */
640             HALASSERT(j < 1);
641         }
642     } else {
643         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
644         status = HAL_OK;
645     }
646 
647     return status;
648 #undef	TU_TO_USEC
649 }
650 #ifdef ATH_SUPPORT_DFS
651 void
652 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
653 {
654     u32 reg1, reg2;
655 
656     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
657     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
658     AH9300(ah)->ah_cac_quiet_enabled = enable;
659 
660     if (enable) {
661         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
662                      reg1 | AR_PCU_FORCE_QUIET_COLL);
663         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
664                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
665     } else {
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
667                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
668         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
669                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
670     }
671 }
672 #endif /* ATH_SUPPORT_DFS */
673 
674 void
675 ar9300_set_pcu_config(struct ath_hal *ah)
676 {
677     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
678 }
679 
680 HAL_STATUS
681 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
682     u_int32_t capability, u_int32_t *result)
683 {
684     struct ath_hal_9300 *ahp = AH9300(ah);
685     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
686     struct ar9300_ani_state *ani;
687 
688     switch (type) {
689     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
690         switch (capability) {
691         case HAL_CIPHER_AES_CCM:
692         case HAL_CIPHER_AES_OCB:
693         case HAL_CIPHER_TKIP:
694         case HAL_CIPHER_WEP:
695         case HAL_CIPHER_MIC:
696         case HAL_CIPHER_CLR:
697             return HAL_OK;
698         default:
699             return HAL_ENOTSUPP;
700         }
701     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
702         switch (capability) {
703         case 0:         /* hardware capability */
704             return HAL_OK;
705         case 1:
706             return (ahp->ah_sta_id1_defaults &
707                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
708         default:
709             return HAL_ENOTSUPP;
710         }
711     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
712         switch (capability) {
713         case 0: /* hardware capability */
714             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
715         case 1: /* current setting */
716             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
717                 HAL_ENXIO : HAL_OK;
718         default:
719             return HAL_ENOTSUPP;
720         }
721     case HAL_CAP_WME_TKIPMIC:
722         /* hardware can do TKIP MIC when WMM is turned on */
723         return HAL_OK;
724     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
725         return HAL_OK;
726     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
727         switch (capability) {
728         case 0:                 /* hardware capability */
729             return HAL_OK;
730         case 1:                 /* current setting */
731             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
732                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
733                             HAL_OK : HAL_ENXIO;
734         }
735         return HAL_EINVAL;
736     case HAL_CAP_TPC:
737         switch (capability) {
738         case 0:                 /* hardware capability */
739             return HAL_OK;
740         case 1:
741             return ah->ah_config.ath_hal_desc_tpc ?
742                                HAL_OK : HAL_ENXIO;
743         }
744         return HAL_OK;
745     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
746         return HAL_OK;
747     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
748         switch (capability) {
749         case 0:                 /* hardware capability */
750             return HAL_OK;
751         case 1:
752             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
753                 /*
754                  * Owl and Merlin have problems in mcast key search.
755                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
756                  * 26802
757                  */
758                 return HAL_ENXIO;
759             } else {
760                 return (ahp->ah_sta_id1_defaults &
761                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
762             }
763         }
764         return HAL_EINVAL;
765     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
766         switch (capability) {
767         case 0:                 /* hardware capability */
768             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
769         case 1:
770             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
771                 HAL_OK : HAL_ENXIO;
772         }
773         return HAL_EINVAL;
774     case HAL_CAP_RFSILENT:      /* rfsilent support  */
775         if (capability == 3) {  /* rfkill interrupt */
776             /*
777              * XXX: Interrupt-based notification of RF Kill state
778              *      changes not working yet. Report that this feature
779              *      is not supported so that polling is used instead.
780              */
781             return (HAL_ENOTSUPP);
782         }
783         return ath_hal_getcapability(ah, type, capability, result);
784     case HAL_CAP_4ADDR_AGGR:
785         return HAL_OK;
786     case HAL_CAP_BB_RIFS_HANG:
787         return HAL_ENOTSUPP;
788     case HAL_CAP_BB_DFS_HANG:
789         return HAL_ENOTSUPP;
790     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
791         /* Track chips that are known to have BB hangs related
792          * to rx_clear stuck low.
793          */
794         return HAL_ENOTSUPP;
795     case HAL_CAP_MAC_HANG:
796         /* Track chips that are known to have MAC hangs.
797          */
798         return HAL_OK;
799     case HAL_CAP_RIFS_RX_ENABLED:
800         /* Is RIFS RX currently enabled */
801         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
802 #if 0
803     case HAL_CAP_ANT_CFG_2GHZ:
804         *result = p_cap->halNumAntCfg2Ghz;
805         return HAL_OK;
806     case HAL_CAP_ANT_CFG_5GHZ:
807         *result = p_cap->halNumAntCfg5Ghz;
808         return HAL_OK;
809     case HAL_CAP_RX_STBC:
810         *result = p_cap->hal_rx_stbc_support;
811         return HAL_OK;
812     case HAL_CAP_TX_STBC:
813         *result = p_cap->hal_tx_stbc_support;
814         return HAL_OK;
815 #endif
816     case HAL_CAP_LDPC:
817         *result = p_cap->halLDPCSupport;
818         return HAL_OK;
819     case HAL_CAP_DYNAMIC_SMPS:
820         return HAL_OK;
821     case HAL_CAP_DS:
822         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
823                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
824                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
825             HAL_ENOTSUPP : HAL_OK;
826     case HAL_CAP_TS:
827         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
828                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
829                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
830             HAL_ENOTSUPP : HAL_OK;
831     case HAL_CAP_OL_PWRCTRL:
832         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
833             HAL_OK : HAL_ENOTSUPP;
834     case HAL_CAP_CRDC:
835 #if ATH_SUPPORT_CRDC
836         return (AR_SREV_WASP(ah) &&
837                 ah->ah_config.ath_hal_crdc_enable) ?
838                     HAL_OK : HAL_ENOTSUPP;
839 #else
840         return HAL_ENOTSUPP;
841 #endif
842 #if 0
843     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
844         *result = (u_int32_t)(-1);
845         return HAL_OK;
846     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849 #endif
850     case HAL_CAP_BB_PANIC_WATCHDOG:
851         return HAL_OK;
852     case HAL_CAP_PHYRESTART_CLR_WAR:
853         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
854             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
855         {
856             return HAL_OK;
857         }
858         else
859         {
860             return HAL_ENOTSUPP;
861         }
862     case HAL_CAP_ENTERPRISE_MODE:
863         *result = ahp->ah_enterprise_mode >> 16;
864         /*
865          * WAR for EV 77658 - Add delimiters to first sub-frame when using
866          * RTS/CTS with aggregation and non-enterprise Osprey.
867          *
868          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
869          */
870         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
871                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
872                 AR_SREV_WASP_10(ah))) {
873             *result |= AH_ENT_RTSCTS_DELIM_WAR;
874         }
875         return HAL_OK;
876     case HAL_CAP_LDPCWAR:
877         /* WAR for RIFS+LDPC issue is required for all chips currently
878          * supported by ar9300 HAL.
879          */
880         return HAL_OK;
881     case HAL_CAP_ENABLE_APM:
882         *result = p_cap->halApmEnable;
883         return HAL_OK;
884     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
885         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
886     case HAL_CAP_PCIE_LCR_OFFSET:
887         *result = p_cap->hal_pcie_lcr_offset;
888         return HAL_OK;
889     case HAL_CAP_SMARTANTENNA:
890         /* FIXME A request is pending with h/w team to add feature bit in
891          * caldata to detect if board has smart antenna or not, once added
892          * we need to fix his piece of code to read and return value without
893          * any compile flags
894          */
895 #if UMAC_SUPPORT_SMARTANTENNA
896         /* enable smart antenna for  Peacock, Wasp and scorpion
897            for future chips need to modify */
898         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
899             return HAL_OK;
900         } else {
901             return HAL_ENOTSUPP;
902         }
903 #else
904         return HAL_ENOTSUPP;
905 #endif
906 
907 #ifdef ATH_TRAFFIC_FAST_RECOVER
908     case HAL_CAP_TRAFFIC_FAST_RECOVER:
909         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
910             return HAL_OK;
911         } else {
912             return HAL_ENOTSUPP;
913         }
914 #endif
915 
916     /* FreeBSD ANI */
917     case HAL_CAP_INTMIT:            /* interference mitigation */
918             switch (capability) {
919             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
920                     return HAL_OK;
921             case HAL_CAP_INTMIT_ENABLE:
922                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
923                             HAL_OK : HAL_ENXIO;
924             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
925             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
926 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
927             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
928             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
929                     ani = ar9300_ani_get_current_state(ah);
930                     if (ani == AH_NULL)
931                             return HAL_ENXIO;
932                     switch (capability) {
933                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
934                     case 2: *result = ani->ofdm_noise_immunity_level; break;
935                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
936  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
937                     case 5: *result = ani->firstep_level; break;
938                     case 6: *result = ani->spur_immunity_level; break;
939                     }
940                     return HAL_OK;
941             }
942             return HAL_EINVAL;
943     case HAL_CAP_ENFORCE_TXOP:
944         if (capability == 0)
945             return (HAL_OK);
946         if (capability != 1)
947             return (HAL_ENOTSUPP);
948         (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
949         return (HAL_OK);
950     default:
951         return ath_hal_getcapability(ah, type, capability, result);
952     }
953 }
954 
955 HAL_BOOL
956 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
957         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
958 {
959     struct ath_hal_9300 *ahp = AH9300(ah);
960     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
961     u_int32_t v;
962 
963     switch (type) {
964     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
965         if (! p_cap->halTkipMicTxRxKeySupport)
966             return AH_FALSE;
967 
968         if (setting)
969             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
970         else
971             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
972 
973         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
974         return AH_TRUE;
975 
976     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
977         if (setting) {
978             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
979         } else {
980             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
981         }
982         return AH_TRUE;
983     case HAL_CAP_DIVERSITY:
984         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
985         if (setting) {
986             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
987         } else {
988             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
989         }
990         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
991         return AH_TRUE;
992     case HAL_CAP_DIAG:              /* hardware diagnostic support */
993         /*
994          * NB: could split this up into virtual capabilities,
995          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
996          *     seems worth the additional complexity.
997          */
998 #ifdef AH_DEBUG
999         AH_PRIVATE(ah)->ah_diagreg = setting;
1000 #else
1001         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1002 #endif
1003         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1004         return AH_TRUE;
1005     case HAL_CAP_TPC:
1006         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1007         return AH_TRUE;
1008     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1009         if (setting) {
1010             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1011         } else {
1012             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1013         }
1014         return AH_TRUE;
1015     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1016         if (p_cap->halTsfAddSupport) {
1017             if (setting) {
1018                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1019             } else {
1020                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1021             }
1022             return AH_TRUE;
1023         }
1024         return AH_FALSE;
1025 
1026     /* FreeBSD interrupt mitigation / ANI */
1027     case HAL_CAP_INTMIT: {          /* interference mitigation */
1028             /* This maps the public ANI commands to the internal ANI commands */
1029             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1030             static const HAL_ANI_CMD cmds[] = {
1031                     HAL_ANI_PRESENT,
1032                     HAL_ANI_MODE,
1033                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1034                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1035                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1036                     HAL_ANI_FIRSTEP_LEVEL,
1037                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1038             };
1039 #define N(a)    (sizeof(a) / sizeof(a[0]))
1040             return capability < N(cmds) ?
1041                     ar9300_ani_control(ah, cmds[capability], setting) :
1042                     AH_FALSE;
1043 #undef N
1044     }
1045 
1046     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1047         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1048         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1049         return AH_TRUE;
1050 
1051     case HAL_CAP_ENFORCE_TXOP:
1052         if (capability != 1)
1053             return AH_FALSE;
1054         if (setting) {
1055             ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1056             OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1057         } else {
1058             ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1059             OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1060         }
1061         return AH_TRUE;
1062 
1063         /* fall thru... */
1064     default:
1065         return ath_hal_setcapability(ah, type, capability, setting, status);
1066     }
1067 }
1068 
1069 #ifdef AH_DEBUG
1070 static void
1071 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1072 {
1073     u_int32_t i = 0;
1074 
1075     /* Read 0x80d0 to trigger pcie analyzer */
1076     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1077         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1078 
1079     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1080         struct ath_hal_9300 *ahp = AH9300(ah);
1081         u_int32_t tf, rf, rc, cc;
1082 
1083         tf = OS_REG_READ(ah, AR_TFCNT);
1084         rf = OS_REG_READ(ah, AR_RFCNT);
1085         rc = OS_REG_READ(ah, AR_RCCNT);
1086         cc = OS_REG_READ(ah, AR_CCCNT);
1087 
1088         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1089             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1090         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1091             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1092         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1093             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1094         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1095             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1096 
1097         ahp->last_tf = tf;
1098         ahp->last_rf = rf;
1099         ahp->last_rc = rc;
1100         ahp->last_cc = cc;
1101 
1102         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1103             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1104         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1105             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1106         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1107             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1108         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1109             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1110         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1111             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1112         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1113             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1114         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1115             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1116         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1117             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1118     }
1119 
1120     if (args & HAL_DIAG_PRINT_REG_ALL) {
1121         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1122             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1123                 i, OS_REG_READ(ah, i));
1124         }
1125 
1126         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1127             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1128                 i, OS_REG_READ(ah, i));
1129         }
1130 
1131         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1132             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1133 
1134         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1135             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1136 
1137         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1138             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1139                 i, OS_REG_READ(ah, i));
1140         }
1141 
1142         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1143             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1144                 i, OS_REG_READ(ah, i));
1145         }
1146 
1147         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1148             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1149                 i, OS_REG_READ(ah, i));
1150         }
1151 
1152         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1153             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1154                 i, OS_REG_READ(ah, i));
1155         }
1156 
1157         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1158             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1159                 i, OS_REG_READ(ah, i));
1160         }
1161 
1162         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1163             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1164                 i, OS_REG_READ(ah, i));
1165         }
1166 
1167         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1168             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1169                 i, OS_REG_READ(ah, i));
1170         }
1171 
1172         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1173             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1174                 i, OS_REG_READ(ah, i));
1175         }
1176 
1177         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1178             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1179                 i, OS_REG_READ(ah, i));
1180         }
1181 
1182         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1183             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1184                 i, OS_REG_READ(ah, i));
1185         }
1186 
1187         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1188             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1189                 i, OS_REG_READ(ah, i));
1190         }
1191     }
1192 }
1193 #endif
1194 
1195 HAL_BOOL
1196 ar9300_get_diag_state(struct ath_hal *ah, int request,
1197         const void *args, u_int32_t argsize,
1198         void **result, u_int32_t *resultsize)
1199 {
1200     struct ath_hal_9300 *ahp = AH9300(ah);
1201     struct ar9300_ani_state *ani;
1202 
1203     (void) ahp;
1204     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1205         return AH_TRUE;
1206     }
1207     switch (request) {
1208 #ifdef AH_PRIVATE_DIAG
1209     case HAL_DIAG_EEPROM:
1210         *result = &ahp->ah_eeprom;
1211         *resultsize = sizeof(ar9300_eeprom_t);
1212         return AH_TRUE;
1213 
1214 #if 0   /* XXX - TODO */
1215     case HAL_DIAG_EEPROM_EXP_11A:
1216     case HAL_DIAG_EEPROM_EXP_11B:
1217     case HAL_DIAG_EEPROM_EXP_11G:
1218         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1219         *result = pe->p_channels;
1220         *resultsize = (*result == AH_NULL) ? 0 :
1221             roundup(sizeof(u_int16_t) * pe->num_channels,
1222             sizeof(u_int32_t)) +
1223                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1224         return AH_TRUE;
1225 #endif
1226     case HAL_DIAG_RFGAIN:
1227         *result = &ahp->ah_gain_values;
1228         *resultsize = sizeof(GAIN_VALUES);
1229         return AH_TRUE;
1230     case HAL_DIAG_RFGAIN_CURSTEP:
1231         *result = (void *) ahp->ah_gain_values.curr_step;
1232         *resultsize = (*result == AH_NULL) ?
1233                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1234         return AH_TRUE;
1235 #if 0   /* XXX - TODO */
1236     case HAL_DIAG_PCDAC:
1237         *result = ahp->ah_pcdac_table;
1238         *resultsize = ahp->ah_pcdac_table_size;
1239         return AH_TRUE;
1240 #endif
1241     case HAL_DIAG_ANI_CURRENT:
1242 
1243         ani = ar9300_ani_get_current_state(ah);
1244         if (ani == AH_NULL)
1245             return AH_FALSE;
1246         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1247         /* XXX TODO: add all of these to the HAL ANI state structure */
1248         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1249         /* XXX should this be OFDM or CCK noise immunity level? */
1250         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1251         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1252         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1253         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1254         /* mrc_cck_off */
1255         /* cck_noise_immunity_level */
1256 
1257         ahp->ext_ani_state.listenTime = ani->listen_time;
1258 
1259         *result = &ahp->ext_ani_state;
1260         *resultsize = sizeof(ahp->ext_ani_state);
1261 #if 0
1262         *result = ar9300_ani_get_current_state(ah);
1263         *resultsize = (*result == AH_NULL) ?
1264             0 : sizeof(struct ar9300_ani_state);
1265 #endif
1266         return AH_TRUE;
1267     case HAL_DIAG_ANI_STATS:
1268         *result = ar9300_ani_get_current_stats(ah);
1269         *resultsize = (*result == AH_NULL) ?
1270             0 : sizeof(HAL_ANI_STATS);
1271         return AH_TRUE;
1272     case HAL_DIAG_ANI_CMD:
1273         if (argsize != 2*sizeof(u_int32_t)) {
1274             return AH_FALSE;
1275         }
1276         ar9300_ani_control(
1277             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1278         return AH_TRUE;
1279 #if 0
1280     case HAL_DIAG_TXCONT:
1281         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1282         return AH_TRUE;
1283 #endif /* 0 */
1284 #endif /* AH_PRIVATE_DIAG */
1285     case HAL_DIAG_CHANNELS:
1286 #if 0
1287         *result = &(ahp->ah_priv.ah_channels[0]);
1288         *resultsize =
1289             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1290 #endif
1291         return AH_TRUE;
1292 #ifdef AH_DEBUG
1293     case HAL_DIAG_PRINT_REG:
1294         ar9300_print_reg(ah, *((const u_int32_t *)args));
1295         return AH_TRUE;
1296 #endif
1297     default:
1298         break;
1299     }
1300 
1301     return AH_FALSE;
1302 }
1303 
1304 void
1305 ar9300_dma_reg_dump(struct ath_hal *ah)
1306 {
1307 #ifdef AH_DEBUG
1308 #define NUM_DMA_DEBUG_REGS  8
1309 #define NUM_QUEUES          10
1310 
1311     u_int32_t val[NUM_DMA_DEBUG_REGS];
1312     int       qcu_offset = 0, dcu_offset = 0;
1313     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1314     int       i, j, k;
1315     int16_t nfarray[HAL_NUM_NF_READINGS];
1316 #ifdef	ATH_NF_PER_CHAN
1317     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1318 #endif	/* ATH_NF_PER_CHAN */
1319     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1320 
1321      /* selecting DMA OBS 8 */
1322     OS_REG_WRITE(ah, AR_MACMISC,
1323         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1324          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1325 
1326     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1327     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1328         if (i % 4 == 0) {
1329             ath_hal_printf(ah, "\n");
1330         }
1331 
1332         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1333         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1334     }
1335 
1336     ath_hal_printf(ah, "\n\n");
1337     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1338 
1339     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1340         if (i == 8) {
1341             /* only 8 QCU entries in val[0] */
1342             qcu_offset = 0;
1343             qcu_base++;
1344         }
1345 
1346         if (i == 6) {
1347             /* only 6 DCU entries in val[4] */
1348             dcu_offset = 0;
1349             dcu_base++;
1350         }
1351 
1352         ath_hal_printf(ah,
1353             "%2d          %2x      %1x     %2x           %2x\n",
1354             i,
1355             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1356             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1357             val[2] & (0x7 << (i * 3)) >> (i * 3),
1358             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1359     }
1360 
1361     ath_hal_printf(ah, "\n");
1362     ath_hal_printf(ah,
1363         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1364         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1365     ath_hal_printf(ah,
1366         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1367         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1368     ath_hal_printf(ah,
1369         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1370         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1371     ath_hal_printf(ah,
1372         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1373         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1374     ath_hal_printf(ah,
1375         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1376         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1377     ath_hal_printf(ah,
1378         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1379         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1380     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1381     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1382 
1383     ar9300_upload_noise_floor(ah, 1, nfarray);
1384     ath_hal_printf(ah, "2G:\n");
1385     ath_hal_printf(ah, "Min CCA Out:\n");
1386     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1387     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1388                    nfarray[0], nfarray[1], nfarray[2]);
1389     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1390                    nfarray[3], nfarray[4], nfarray[5]);
1391 
1392     ar9300_upload_noise_floor(ah, 0, nfarray);
1393     ath_hal_printf(ah, "5G:\n");
1394     ath_hal_printf(ah, "Min CCA Out:\n");
1395     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1396     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1397                    nfarray[0], nfarray[1], nfarray[2]);
1398     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1399                    nfarray[3], nfarray[4], nfarray[5]);
1400 
1401     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1402         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1403                        ((i < 3) ? "Control " : "Extension "), i%3);
1404         for (j = 0, k = h->base.curr_index;
1405              j < HAL_NF_CAL_HIST_LEN_FULL;
1406              j++, k++) {
1407             ath_hal_printf(ah, "Element %d: %d\n",
1408                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1409         }
1410         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1411     }
1412 
1413     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1414     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1415                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1416                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1417     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1418     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1419                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1420                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1421     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1422                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1423                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1424     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1425     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1426                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1427                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1428     reg = OS_REG_READ(ah, AR_PHY_AGC);
1429     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1430                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1431                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1432     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1433                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1434                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1435     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1436                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1437                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1438     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1439     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1440                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1441     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1442                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1443                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1444     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1445                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1446                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1447     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1448     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1449                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1450     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1451                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1452                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1453 
1454 
1455     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1456     reg = OS_REG_READ(ah, 0xa360);
1457     reg &= ~0x00800000;
1458     OS_REG_WRITE(ah, 0xa360, reg);
1459 
1460     /* Step 2a: Set register 0xa364 to 0x1000 */
1461     reg = 0x1000;
1462     OS_REG_WRITE(ah, 0xa364, reg);
1463 
1464     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1465     reg = OS_REG_READ(ah, 0x9c20);
1466     reg &= 0x0003ffff;
1467     ath_hal_printf(ah,
1468         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1469         __func__, reg);
1470 
1471     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1472     reg = OS_REG_READ(ah, 0xa360);
1473     reg &= ~0x00800000;
1474     OS_REG_WRITE(ah, 0xa360, reg);
1475 
1476     /* Step 2b: Set register 0xa364 to 0x1400 */
1477     reg = 0x1400;
1478     OS_REG_WRITE(ah, 0xa364, reg);
1479 
1480     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1481     reg = OS_REG_READ(ah, 0x9c20);
1482     reg &= 0x0003ffff;
1483     ath_hal_printf(ah,
1484         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1485         __func__, reg);
1486 
1487     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1488     reg = OS_REG_READ(ah, 0xa360);
1489     reg &= ~0x00800000;
1490     OS_REG_WRITE(ah, 0xa360, reg);
1491 
1492     /* Step 2c: Set register 0xa364 to 0x3C00 */
1493     reg = 0x3c00;
1494     OS_REG_WRITE(ah, 0xa364, reg);
1495 
1496     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1497     reg = OS_REG_READ(ah, 0x9c20);
1498     reg &= 0x0003ffff;
1499     ath_hal_printf(ah,
1500         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1501         __func__, reg);
1502 
1503     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1504     reg = OS_REG_READ(ah, 0xa360);
1505     reg &= ~0x001040000;
1506     OS_REG_WRITE(ah, 0xa360, reg);
1507 
1508     /* Step 2d: Set register 0xa364 to 0x5005D */
1509     reg = 0x5005D;
1510     OS_REG_WRITE(ah, 0xa364, reg);
1511 
1512     /* Step 3d: Read bits 17:0 of register 0xa368 */
1513     reg = OS_REG_READ(ah, 0xa368);
1514     reg &= 0x0003ffff;
1515     ath_hal_printf(ah,
1516         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1517         __func__, reg);
1518 
1519     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1520     reg = OS_REG_READ(ah, 0xa360);
1521     reg &= ~0x001040000;
1522     OS_REG_WRITE(ah, 0xa360, reg);
1523 
1524     /* Step 2e: Set register 0xa364 to 0x7005D */
1525     reg = 0x7005D;
1526     OS_REG_WRITE(ah, 0xa364, reg);
1527 
1528     /* Step 3e: Read bits 17:0 of register 0xa368 */
1529     reg = OS_REG_READ(ah, 0xa368);
1530     reg &= 0x0003ffff;
1531     ath_hal_printf(ah,
1532         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1533        __func__, reg);
1534 
1535     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1536     reg = OS_REG_READ(ah, 0xa360);
1537     reg &= ~0x001000000;
1538     reg |= 0x40000;
1539     OS_REG_WRITE(ah, 0xa360, reg);
1540 
1541     /* Step 2f: Set register 0xa364 to 0x3005D */
1542     reg = 0x3005D;
1543     OS_REG_WRITE(ah, 0xa364, reg);
1544 
1545     /* Step 3f: Read bits 17:0 of register 0xa368 */
1546     reg = OS_REG_READ(ah, 0xa368);
1547     reg &= 0x0003ffff;
1548     ath_hal_printf(ah,
1549         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1550         __func__, reg);
1551 
1552     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1553     reg = OS_REG_READ(ah, 0xa360);
1554     reg &= ~0x001000000;
1555     reg |= 0x40000;
1556     OS_REG_WRITE(ah, 0xa360, reg);
1557 
1558     /* Step 2g: Set register 0xa364 to 0x6005D */
1559     reg = 0x6005D;
1560     OS_REG_WRITE(ah, 0xa364, reg);
1561 
1562     /* Step 3g: Read bits 17:0 of register 0xa368 */
1563     reg = OS_REG_READ(ah, 0xa368);
1564     reg &= 0x0003ffff;
1565     ath_hal_printf(ah,
1566         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1567         __func__, reg);
1568 #endif /* AH_DEBUG */
1569 }
1570 
1571 /*
1572  * Return the busy for rx_frame, rx_clear, and tx_frame
1573  */
1574 u_int32_t
1575 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1576     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1577 {
1578     struct ath_hal_9300 *ahp = AH9300(ah);
1579     u_int32_t good = 1;
1580 
1581     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1582     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1583     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1584     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1585 
1586     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1587         /*
1588          * Cycle counter wrap (or initial call); it's not possible
1589          * to accurately calculate a value because the registers
1590          * right shift rather than wrap--so punt and return 0.
1591          */
1592         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1593             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1594         good = 0;
1595     } else {
1596         u_int32_t cc_d = cc - ahp->ah_cycles;
1597         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1598         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1599         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1600 
1601         if (cc_d != 0) {
1602             *rxc_pcnt = rc_d * 100 / cc_d;
1603             *rxf_pcnt = rf_d * 100 / cc_d;
1604             *txf_pcnt = tf_d * 100 / cc_d;
1605         } else {
1606             good = 0;
1607         }
1608     }
1609 
1610     ahp->ah_cycles = cc;
1611     ahp->ah_rx_frame = rf;
1612     ahp->ah_rx_clear = rc;
1613     ahp->ah_tx_frame = tf;
1614 
1615     return good;
1616 }
1617 
1618 /*
1619  * Return approximation of extension channel busy over an time interval
1620  * 0% (clear) -> 100% (busy)
1621  * -1 for invalid estimate
1622  */
1623 uint32_t
1624 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1625 {
1626     /*
1627      * Overflow condition to check before multiplying to get %
1628      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1629      */
1630 #define OVERFLOW_LIMIT  0x28F5C28
1631 #define ERROR_CODE      -1
1632 
1633     struct ath_hal_9300 *ahp = AH9300(ah);
1634     u_int32_t busy = 0; /* percentage */
1635     int8_t busyper = 0;
1636     u_int32_t cycle_count, ctl_busy, ext_busy;
1637 
1638     /* cycle_count will always be the first to wrap; therefore, read it last
1639      * This sequence of reads is not atomic, and MIB counter wrap
1640      * could happen during it ?
1641      */
1642     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1643     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1644     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1645 
1646     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1647         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1648     {
1649         /*
1650          * Cycle counter wrap (or initial call); it's not possible
1651          * to accurately calculate a value because the registers
1652          * right shift rather than wrap--so punt and return 0.
1653          */
1654         busyper = ERROR_CODE;
1655         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1656             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1657     } else {
1658         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1659         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1660 
1661         /*
1662          * Compute extension channel busy percentage
1663          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1664          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1665          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1666          * and shift necessitated by large ext_busy_delta.
1667          * Due to timing difference to read the registers and counter overflow,
1668          * it may still happen that cycle_delta >> 7 = 0.
1669          *
1670          */
1671         if (cycle_delta) {
1672             if (ext_busy_delta > OVERFLOW_LIMIT) {
1673                 if (cycle_delta >> 7) {
1674                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1675                 } else {
1676                     busyper = ERROR_CODE;
1677                 }
1678             } else {
1679                 busy = (ext_busy_delta * 100) / cycle_delta;
1680             }
1681         } else {
1682             busyper = ERROR_CODE;
1683         }
1684 
1685         if (busy > 100) {
1686             busy = 100;
1687         }
1688         if ( busyper != ERROR_CODE ) {
1689             busyper = busy;
1690         }
1691     }
1692 
1693     ahp->ah_cycle_count = cycle_count;
1694     ahp->ah_ctl_busy = ctl_busy;
1695     ahp->ah_ext_busy = ext_busy;
1696 
1697     return busyper;
1698 #undef OVERFLOW_LIMIT
1699 #undef ERROR_CODE
1700 }
1701 
1702 /* BB Panic Watchdog declarations */
1703 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1704 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1705 
1706 void
1707 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1708 {
1709 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1710     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1711     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1712     u_int32_t val, idle_count;
1713 
1714     if (idle_tmo_ms != 0) {
1715         /* enable IRQ, disable chip-reset for BB panic */
1716         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1717             AR_PHY_BB_PANIC_CNTL2_MASK;
1718         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1719             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1720         /* bound limit to 10 secs */
1721         if (idle_tmo_ms > 10000) {
1722             idle_tmo_ms = 10000;
1723         }
1724         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1725             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1726         } else {
1727             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1728         }
1729         /*
1730          * enable panic in non-IDLE mode,
1731          * disable in IDLE mode,
1732          * set idle time-out
1733          */
1734 
1735         // EV92527 : Enable IDLE mode panic
1736 
1737         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1738                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1739                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1740                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1741                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1742     } else {
1743         /* disable IRQ, disable chip-reset for BB panic */
1744         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1745             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1746             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1747         /* disable panic in non-IDLE mode, disable in IDLE mode */
1748         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1749             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1750             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1751     }
1752 
1753     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1754              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1755 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1756 }
1757 
1758 
1759 void
1760 ar9300_handle_bb_panic(struct ath_hal *ah)
1761 {
1762     u_int32_t status;
1763     /*
1764      * we want to avoid printing in ISR context so we save
1765      * panic watchdog status to be printed later in DPC context
1766      */
1767     AH9300(ah)->ah_bb_panic_last_status = status =
1768         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1769     /*
1770      * panic watchdog timer should reset on status read
1771      * but to make sure we write 0 to the watchdog status bit
1772      */
1773     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1774 }
1775 
1776 int
1777 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1778 {
1779     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1780 
1781     /*
1782      * For signature 04000539 do not print anything.
1783      * This is a very common occurence as a compromise between
1784      * BB Panic and AH_FALSE detects (EV71009). It indicates
1785      * radar hang, which can be cleared by reprogramming
1786      * radar related register and does not requre a chip reset
1787      */
1788 
1789     /* Suppress BB Status mesg following signature */
1790     switch (bb_panic->status) {
1791         case 0x04000539:
1792         case 0x04008009:
1793         case 0x04000b09:
1794         case 0x1300000a:
1795         return -1;
1796     }
1797 
1798     bb_panic->tsf = ar9300_get_tsf32(ah);
1799     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1800     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1801     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1802     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1803     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1804     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1805     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1806     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1807     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1808     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1809     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1810     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1811     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1812     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1813                                         &bb_panic->rxc_pcnt,
1814                                         &bb_panic->rxf_pcnt,
1815                                         &bb_panic->txf_pcnt);
1816 
1817     if (ah->ah_config.ath_hal_show_bb_panic) {
1818         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1819             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1820         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1821             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1822             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1823             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1824             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1825         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1826             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1827         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1828             bb_panic->phy_gen_ctrl);
1829         if (bb_panic->cycles) {
1830             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1831                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1832                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1833         }
1834         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1835     }
1836 
1837     return 0; //The returned data will be stored for athstats to retrieve it
1838 }
1839 
1840 /* set the reason for HAL reset */
1841 void
1842 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1843 {
1844     AH9300(ah)->ah_reset_reason = resetreason;
1845 }
1846 
1847 /*
1848  * Configure 20/40 operation
1849  *
1850  * 20/40 = joint rx clear (control and extension)
1851  * 20    = rx clear (control)
1852  *
1853  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1854  *         when changing from 20/40 => 20 only
1855  */
1856 void
1857 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1858 {
1859     u_int32_t macmode;
1860 
1861     /* Configure MAC for 20/40 operation */
1862     if (mode == HAL_HT_MACMODE_2040 &&
1863         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1864         macmode = AR_2040_JOINED_RX_CLEAR;
1865     } else {
1866         macmode = 0;
1867     }
1868     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1869 }
1870 
1871 /*
1872  * Get Rx clear (control/extension channel)
1873  *
1874  * Returns active low (busy) for ctrl/ext channel
1875  * Owl 2.0
1876  */
1877 HAL_HT_RXCLEAR
1878 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1879 {
1880     HAL_HT_RXCLEAR rxclear = 0;
1881     u_int32_t val;
1882 
1883     val = OS_REG_READ(ah, AR_DIAG_SW);
1884 
1885     /* control channel */
1886     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1887         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1888     }
1889     /* extension channel */
1890     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1891         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1892     }
1893     return rxclear;
1894 }
1895 
1896 /*
1897  * Set Rx clear (control/extension channel)
1898  *
1899  * Useful for forcing the channel to appear busy for
1900  * debugging/diagnostics
1901  * Owl 2.0
1902  */
1903 void
1904 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1905 {
1906     /* control channel */
1907     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1908         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1909     } else {
1910         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1911     }
1912     /* extension channel */
1913     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1914         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1915     } else {
1916         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1917     }
1918 }
1919 
1920 
1921 /*
1922  * HAL support code for force ppm tracking workaround.
1923  */
1924 
1925 u_int32_t
1926 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1927 {
1928     u_int32_t retval;
1929     u_int32_t off1;
1930     u_int32_t off2;
1931 
1932     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1933         off1 = 0x2000;
1934         off2 = 0x1000;
1935     } else {
1936         off1 = 0x1000;
1937         off2 = 0x2000;
1938     }
1939 
1940     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1941              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1942              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1943 
1944     return retval;
1945 }
1946 
1947 u_int32_t
1948 ar9300_ppm_force(struct ath_hal *ah)
1949 {
1950     u_int32_t data_fine;
1951     u_int32_t data4;
1952     //u_int32_t off1;
1953     //u_int32_t off2;
1954     HAL_BOOL signed_val = AH_FALSE;
1955 
1956 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1957 //        off1 = 0x2000;
1958 //        off2 = 0x1000;
1959 //    } else {
1960 //        off1 = 0x1000;
1961 //        off2 = 0x2000;
1962 //    }
1963     data_fine =
1964         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1965         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1966 
1967     /*
1968      * bit [11-0] is new ppm value. bit 11 is the signed bit.
1969      * So check value from bit[10:0].
1970      * Now get the abs val of the ppm value read in bit[0:11].
1971      * After that do bound check on abs value.
1972      * if value is off limit, CAP the value and and restore signed bit.
1973      */
1974     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1975     {
1976         /* get the positive value */
1977         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1978         signed_val = AH_TRUE;
1979     }
1980     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
1981     {
1982         HALDEBUG(ah, HAL_DEBUG_REGIO,
1983             "%s Correcting ppm out of range %x\n",
1984             __func__, (data_fine & 0x7ff));
1985         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
1986     }
1987     /*
1988      * Restore signed value if changed above.
1989      * Use typecast to avoid compilation errors
1990      */
1991     if (signed_val) {
1992         data_fine = (-(int32_t)data_fine) &
1993             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1994     }
1995 
1996     /* write value */
1997     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
1998         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
1999     OS_REG_WRITE(ah, AR_PHY_TIMING2,
2000         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2001 
2002     return data_fine;
2003 }
2004 
2005 void
2006 ar9300_ppm_un_force(struct ath_hal *ah)
2007 {
2008     u_int32_t data4;
2009 
2010     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2011     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2012 }
2013 
2014 u_int32_t
2015 ar9300_ppm_arm_trigger(struct ath_hal *ah)
2016 {
2017     u_int32_t val;
2018     u_int32_t ret;
2019 
2020     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2021     ret = OS_REG_READ(ah, AR_TSF_L32);
2022     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2023         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2024 
2025     /* return low word of TSF at arm time */
2026     return ret;
2027 }
2028 
2029 int
2030 ar9300_ppm_get_trigger(struct ath_hal *ah)
2031 {
2032     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2033         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2034     {
2035         /* has not triggered yet, return AH_FALSE */
2036         return 0;
2037     }
2038 
2039     /* else triggered, return AH_TRUE */
2040     return 1;
2041 }
2042 
2043 void
2044 ar9300_mark_phy_inactive(struct ath_hal *ah)
2045 {
2046     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2047 }
2048 
2049 /* DEBUG */
2050 u_int32_t
2051 ar9300_ppm_get_force_state(struct ath_hal *ah)
2052 {
2053     return
2054         OS_REG_READ(ah, AR_PHY_TIMING2) &
2055         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2056 }
2057 
2058 /*
2059  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2060  */
2061 HAL_BOOL
2062 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2063 {
2064     /*
2065      * XXX FreeBSD todo: reimplement this
2066      */
2067 #if 0
2068     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2069     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2070     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2071     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2072     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2073                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2074     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2075                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2076 #endif
2077     return AH_FALSE;
2078 }
2079 
2080 void
2081 ar9300_clear_mib_counters(struct ath_hal *ah)
2082 {
2083     u_int32_t reg_val;
2084 
2085     reg_val = OS_REG_READ(ah, AR_MIBC);
2086     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2087     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2088 }
2089 
2090 
2091 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2092 HAL_BOOL
2093 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2094 {
2095     struct ath_hal_9300 *ahp = AH9300(ah);
2096     HAL_CHANNEL_INTERNAL *ichan =
2097       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2098     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2099     u_int32_t tmp = 0;
2100 
2101     if (enable) {
2102         if (ahp->ah_rifs_enabled == AH_TRUE) {
2103             return AH_TRUE;
2104         }
2105 
2106         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2107         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2108                      ahp->ah_rifs_reg[1]);
2109 
2110         ahp->ah_rifs_enabled = AH_TRUE;
2111         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2112     } else {
2113         if (ahp->ah_rifs_enabled == AH_TRUE) {
2114             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2115                                               AR_PHY_SEARCH_START_DELAY);
2116             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2117         }
2118         /* Change rifs init delay to 0 */
2119         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2120                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2121         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2122         if (is_chan_2g) {
2123             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2124                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2125             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2126                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2127             }
2128         } else {
2129             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2130                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2131             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2132                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2133             }
2134         }
2135 
2136         ahp->ah_rifs_enabled = AH_FALSE;
2137     }
2138     return AH_TRUE;
2139 
2140 } /* ar9300_set_rifs_delay () */
2141 
2142 /* Set the current RIFS Rx setting */
2143 HAL_BOOL
2144 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2145 {
2146     /* Non-Owl 11n chips */
2147     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2148         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2149             return ar9300_set_rifs_delay(ah, enable);
2150         }
2151         return AH_FALSE;
2152     }
2153 
2154     return AH_TRUE;
2155 } /* ar9300_set_11n_rx_rifs () */
2156 
2157 static hal_mac_hangs_t
2158 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2159   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2160 {
2161     int i = 0;
2162     hal_mac_hangs_t found_hangs = 0;
2163 
2164     if (hangs & dcu_chain_state) {
2165         for (i = 0; i < 6; i++) {
2166             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2167                  hang_check.dcu_chain_state)
2168             {
2169                 found_hangs |= dcu_chain_state;
2170                 *dcu_chain = i;
2171             }
2172         }
2173         for (i = 0; i < 4; i++) {
2174             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2175                   hang_check.dcu_chain_state)
2176             {
2177                 found_hangs |= dcu_chain_state;
2178                 *dcu_chain = i + 6;
2179             }
2180         }
2181     }
2182 
2183     if (hangs & dcu_complete_state) {
2184         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2185             found_hangs |= dcu_complete_state;
2186         }
2187     }
2188 
2189     return found_hangs;
2190 
2191 } /* end - ar9300_compare_dbg_hang */
2192 
2193 #define NUM_STATUS_READS 50
2194 HAL_BOOL
2195 ar9300_detect_mac_hang(struct ath_hal *ah)
2196 {
2197     struct ath_hal_9300 *ahp = AH9300(ah);
2198     mac_dbg_regs_t mac_dbg;
2199     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2200     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2201     int i = 0;
2202     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2203 
2204     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2205         return AH_FALSE;
2206     }
2207 
2208     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2209 
2210     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2211     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2212     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2213 
2214     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2215             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2216             mac_dbg.dma_dbg_6);
2217 
2218     if (hang_sig1 !=
2219             ar9300_compare_dbg_hang(ah, mac_dbg,
2220                  hang_sig1_val, hang_sig1, &dcu_chain))
2221     {
2222         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2223         return AH_FALSE;
2224     }
2225 
2226     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2227     shift_val *= 5;
2228 
2229     for (i = 1; i <= NUM_STATUS_READS; i++) {
2230         if (dcu_chain < 6) {
2231             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2232             current_dcu_chain_state =
2233                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2234         } else {
2235             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2236             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2237         }
2238         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2239 
2240         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2241             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2242             return AH_FALSE;
2243         }
2244     }
2245     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2246              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2247     ahp->ah_hang[MAC_HANG_SIG1]++;
2248     return AH_TRUE;
2249 
2250 } /* end - ar9300_detect_mac_hang */
2251 
2252 /* Determine if the baseband is hung by reading the Observation Bus Register */
2253 HAL_BOOL
2254 ar9300_detect_bb_hang(struct ath_hal *ah)
2255 {
2256 #define N(a) (sizeof(a) / sizeof(a[0]))
2257     struct ath_hal_9300 *ahp = AH9300(ah);
2258     u_int32_t hang_sig = 0;
2259     int i = 0;
2260     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2261      *
2262      * 4 known BB hang signatures -
2263      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2264      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2265      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2266      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2267      *     Rx State (bits 20-24) is 0x7.
2268      */
2269     hal_hw_hang_check_t hang_list [] =
2270     {
2271      /* Offset        Reg Value   Reg Mask    Hang Offset */
2272        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2273        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2274        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2275        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2276     };
2277 
2278     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2279                                HAL_DFS_BB_HANG_WAR |
2280                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2281         return AH_FALSE;
2282     }
2283 
2284     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2285     for (i = 1; i <= NUM_STATUS_READS; i++) {
2286         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2287             return AH_FALSE;
2288         }
2289     }
2290 
2291     for (i = 0; i < N(hang_list); i++) {
2292         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2293             ahp->ah_hang[hang_list[i].hang_offset]++;
2294             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2295                      "sig3count=%d sig4count=%d\n", __func__,
2296                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2297                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2298             return AH_TRUE;
2299         }
2300     }
2301 
2302     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2303                               "<0x806c>=0x%x\n", __func__, hang_sig);
2304 
2305     return AH_FALSE;
2306 
2307 #undef N
2308 } /* end - ar9300_detect_bb_hang () */
2309 
2310 #undef NUM_STATUS_READS
2311 
2312 HAL_STATUS
2313 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2314 {
2315     struct ath_hal_9300     *ahp = AH9300(ah);
2316     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2317     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2318     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2319     u_int16_t               ant_config;
2320     u_int32_t               hal_num_ant_config;
2321 
2322     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2323         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2324 
2325     if (cfg < hal_num_ant_config) {
2326         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2327             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2328             return HAL_OK;
2329         }
2330     }
2331 
2332     return HAL_EINVAL;
2333 }
2334 
2335 /*
2336  * Functions to get/set DCS mode
2337  */
2338 void
2339 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2340 {
2341     AH9300(ah)->ah_dcs_enable = mode;
2342 }
2343 
2344 u_int32_t
2345 ar9300_get_dcs_mode(struct ath_hal *ah)
2346 {
2347     return AH9300(ah)->ah_dcs_enable;
2348 }
2349 
2350 #if ATH_BT_COEX
2351 void
2352 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2353 {
2354     struct ath_hal_9300 *ahp = AH9300(ah);
2355 
2356     ahp->ah_bt_module = btinfo->bt_module;
2357     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2358     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2359     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2360     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2361     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2362     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2363     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2364 }
2365 
2366 void
2367 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2368 {
2369     struct ath_hal_9300 *ahp = AH9300(ah);
2370     HAL_BOOL rx_clear_polarity;
2371 
2372     /*
2373      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2374      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2375      */
2376     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2377 
2378     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2379         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2380         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2381         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2382         SM(btconf->bt_mode, AR_BT_MODE) |
2383         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2384         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2385         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2386         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2387 
2388     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2389 
2390     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2391         /* Enable ACK to go out even though BT has higher priority. */
2392         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2393     }
2394 }
2395 
2396 void
2397 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2398 {
2399     struct ath_hal_9300 *ahp = AH9300(ah);
2400 
2401     /* clear the old value, then set the new value */
2402     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2403     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2404 }
2405 
2406 void
2407 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2408 {
2409     struct ath_hal_9300 *ahp = AH9300(ah);
2410 
2411     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2412     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2413     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2414     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2415 
2416     switch (stomp_type) {
2417     case HAL_BT_COEX_STOMP_ALL:
2418         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2419         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2420         break;
2421     case HAL_BT_COEX_STOMP_LOW:
2422         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2423         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2424         break;
2425     case HAL_BT_COEX_STOMP_ALL_FORCE:
2426         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2427         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2428         break;
2429     case HAL_BT_COEX_STOMP_LOW_FORCE:
2430         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2431         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2432         break;
2433     case HAL_BT_COEX_STOMP_NONE:
2434     case HAL_BT_COEX_NO_STOMP:
2435         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2436         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2437         break;
2438     default:
2439         /* There is a force_weight from registry */
2440         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2441         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2442         break;
2443     }
2444 }
2445 
2446 void
2447 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2448 {
2449     struct ath_hal_9300 *ahp = AH9300(ah);
2450 
2451     /* clear the old value, then set the new value */
2452     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2453     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2454 }
2455 
2456 static void
2457 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2458 {
2459     struct ath_hal_9300 *ahp = AH9300(ah);
2460 #if ATH_ANT_DIV_COMB
2461     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2462     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2463 #endif
2464 
2465     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2466     {
2467         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2468         {
2469             /* Config antenna diversity */
2470 #if ATH_ANT_DIV_COMB
2471             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2472 #endif
2473         }
2474     }
2475 }
2476 
2477 
2478 void
2479 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2480     u_int32_t value)
2481 {
2482     struct ath_hal_9300 *ahp = AH9300(ah);
2483     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2484 
2485     switch (type) {
2486         case HAL_BT_COEX_SET_ACK_PWR:
2487             if (value) {
2488                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2489             } else {
2490                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2491             }
2492             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2493                 ahpriv->ah_extraTxPow, 0);
2494             break;
2495 
2496         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2497             if (AR_SREV_POSEIDON(ah)) {
2498                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2499                 if (value) {
2500                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2501                 }
2502                 else {
2503                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2504                 }
2505                 ar9300_bt_coex_antenna_diversity(ah, value);
2506             }
2507             break;
2508         case HAL_BT_COEX_LOWER_TX_PWR:
2509             if (value) {
2510                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2511             }
2512             else {
2513                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2514             }
2515             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2516                                       ahpriv->ah_extraTxPow, 0);
2517             break;
2518 #if ATH_SUPPORT_MCI
2519         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2520             if ((ah->ah_config.ath_hal_mci_config &
2521                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2522             {
2523                 if (value) {
2524                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2525                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2526                 }
2527                 else {
2528                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2529                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2530                 }
2531                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2532                                           ahpriv->ah_extraTxPow, 0);
2533             }
2534             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2535                      ahp->ah_mci_concur_tx_en);
2536             break;
2537         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2538             if (value) {
2539                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2540             }
2541             else {
2542                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2543             }
2544             break;
2545 #endif
2546         default:
2547             break;
2548     }
2549 }
2550 
2551 void
2552 ar9300_bt_coex_disable(struct ath_hal *ah)
2553 {
2554     struct ath_hal_9300 *ahp = AH9300(ah);
2555 
2556     /* Always drive rx_clear_external output as 0 */
2557     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2558         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2559 
2560     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2561         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2562         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2563     }
2564 
2565     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2566     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2567     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2568     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2569     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2570     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2571     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2572     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2573 
2574     ahp->ah_bt_coex_enabled = AH_FALSE;
2575 }
2576 
2577 int
2578 ar9300_bt_coex_enable(struct ath_hal *ah)
2579 {
2580     struct ath_hal_9300 *ahp = AH9300(ah);
2581 
2582     /* Program coex mode and weight registers to actually enable coex */
2583     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2584     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2585     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2586     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2587     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2588     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2589     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2590     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2591 
2592     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2593         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2594     } else {
2595         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2596     }
2597 
2598     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2599     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2600         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2601     } else {
2602         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2603     }
2604 
2605     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2606         /* For 3-wire, configure the desired GPIO port for rx_clear */
2607         ath_hal_gpioCfgOutput(ah,
2608             ahp->ah_wlan_active_gpio_select,
2609             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2610     }
2611     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2612         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2613     {
2614         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2615         ath_hal_gpioCfgOutput(ah,
2616             ahp->ah_wlan_active_gpio_select,
2617             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2618     }
2619 
2620     /*
2621      * Enable a weak pull down on BT_ACTIVE.
2622      * When BT device is disabled, BT_ACTIVE might be floating.
2623      */
2624     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2625         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2626         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2627 
2628     ahp->ah_bt_coex_enabled = AH_TRUE;
2629 
2630     return 0;
2631 }
2632 
2633 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2634 {
2635     return 0;
2636 }
2637 
2638 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2639 {
2640     return bOn;
2641 }
2642 
2643 void
2644 ar9300_init_bt_coex(struct ath_hal *ah)
2645 {
2646     struct ath_hal_9300 *ahp = AH9300(ah);
2647 
2648     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2649         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2650                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2651                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2652 
2653         /*
2654          * Set input mux for bt_prority_async and
2655          * bt_active_async to GPIO pins
2656          */
2657         OS_REG_RMW_FIELD(ah,
2658             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2659             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2660             ahp->ah_bt_active_gpio_select);
2661         OS_REG_RMW_FIELD(ah,
2662             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2663             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2664             ahp->ah_bt_priority_gpio_select);
2665 
2666         /* Configure the desired GPIO ports for input */
2667         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2668         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2669 
2670         if (ahp->ah_bt_coex_enabled) {
2671             ar9300_bt_coex_enable(ah);
2672         } else {
2673             ar9300_bt_coex_disable(ah);
2674         }
2675     }
2676     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2677         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2678     {
2679         /* 2-wire */
2680         if (ahp->ah_bt_coex_enabled) {
2681             /* Connect bt_active_async to baseband */
2682             OS_REG_CLR_BIT(ah,
2683                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2684                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2685                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2686             OS_REG_SET_BIT(ah,
2687                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2688                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2689 
2690             /*
2691              * Set input mux for bt_prority_async and
2692              * bt_active_async to GPIO pins
2693              */
2694             OS_REG_RMW_FIELD(ah,
2695                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2696                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2697                 ahp->ah_bt_active_gpio_select);
2698 
2699             /* Configure the desired GPIO ports for input */
2700             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2701 
2702             /* Enable coexistence on initialization */
2703             ar9300_bt_coex_enable(ah);
2704         }
2705     }
2706 #if ATH_SUPPORT_MCI
2707     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2708         if (ahp->ah_bt_coex_enabled) {
2709             ar9300_mci_bt_coex_enable(ah);
2710         }
2711         else {
2712             ar9300_mci_bt_coex_disable(ah);
2713         }
2714     }
2715 #endif /* ATH_SUPPORT_MCI */
2716 }
2717 
2718 #endif /* ATH_BT_COEX */
2719 
2720 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2721 {
2722     u_int32_t val;
2723     int wasp_mm_rev;
2724 
2725 #define AR_SOC_RST_REVISION_ID      0xB8060090
2726 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2727     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2728             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2729             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2730 #undef AR_SOC_RST_REVISION_ID
2731 #undef REG_READ
2732 
2733     /*
2734      * Azimuth (ProxySTA) Mode is only supported correctly by
2735      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2736      *
2737      * Enable this feature for Scorpion at this time. The silicon
2738      * still needs to be validated.
2739      */
2740     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2741         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2742         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2743           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2744            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2745             wasp_mm_rev >= 0 /* 1 */))))
2746     {
2747         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2748                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2749                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2750                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2751         return HAL_ENOTSUPP;
2752     }
2753 
2754     OS_REG_WRITE(ah,
2755         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2756 
2757     /* turn on mode bit[24] for proxy sta */
2758     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2759         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2760 
2761     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2762     if (enable) {
2763         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2764                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2765                AR_AZIMUTH_BA_USES_AD1;
2766         /* turn off filter pass hold (bit 9) */
2767         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2768     } else {
2769         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2770                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2771                  AR_AZIMUTH_BA_USES_AD1);
2772     }
2773     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2774 
2775     /* enable promiscous mode */
2776     OS_REG_WRITE(ah, AR_RX_FILTER,
2777         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2778     /* enable promiscous in azimuth mode */
2779     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2780     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2781 
2782     /* turn on filter pass hold (bit 9) */
2783     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2784         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2785 
2786     return HAL_OK;
2787 }
2788 
2789 #if 0
2790 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2791 {
2792     /*
2793      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2794      * mitigation and turn on key search always for better performance.
2795      */
2796     struct ath_hal_9300 *ahp = AH9300(ah);
2797     struct ath_hal_private *ap = AH_PRIVATE(ah);
2798 
2799     ahp->ah_intr_mitigation_rx = !enable;
2800     if (ahp->ah_intr_mitigation_rx) {
2801         /*
2802          * Enable Interrupt Mitigation for Rx.
2803          * If no build-specific limits for the rx interrupt mitigation
2804          * timer have been specified, use conservative defaults.
2805          */
2806         #ifndef AH_RIMT_VAL_LAST
2807             #define AH_RIMT_LAST_MICROSEC 500
2808         #endif
2809         #ifndef AH_RIMT_VAL_FIRST
2810             #define AH_RIMT_FIRST_MICROSEC 2000
2811         #endif
2812         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2813         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2814     } else {
2815         OS_REG_WRITE(ah, AR_RIMT, 0);
2816     }
2817 
2818     ahp->ah_enable_keysearch_always = !!enable;
2819     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2820 }
2821 #endif
2822 
2823 void ar9300_enable_tpc(struct ath_hal *ah)
2824 {
2825     u_int32_t val = 0;
2826 
2827     ah->ah_config.ath_hal_desc_tpc = 1;
2828 
2829     /* Enable TPC */
2830     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2831 
2832     /*
2833      * Disable per chain power reduction since we are already
2834      * accounting for this in our calculations
2835      */
2836     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2837     if (AR_SREV_WASP(ah)) {
2838         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2839                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2840     } else {
2841         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2842                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2843     }
2844 }
2845 
2846 
2847 /*
2848  * ar9300_force_tsf_sync
2849  * This function forces the TSF sync to the given bssid, this is implemented
2850  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2851  * mode of operation, where we sync the TSF to RootAP TSF values
2852  */
2853 void
2854 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2855     u_int16_t assoc_id)
2856 {
2857     ar9300_set_operating_mode(ah, HAL_M_STA);
2858     ar9300_write_associd(ah, bssid, assoc_id);
2859 }
2860 
2861 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2862 {
2863     struct ath_hal_9300 *ahp = AH9300(ah);
2864     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2865     u_int32_t           temp_powertx_rate9_reg_val;
2866     int8_t              olpc_power_offset = 0;
2867     int8_t              tmp_olpc_val = 0;
2868     HAL_RSSI_TX_POWER   old_greentx_status;
2869     u_int8_t            target_power_val_t[ar9300_rate_size];
2870     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2871 
2872     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2873         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2874         return;
2875     }
2876 
2877     old_greentx_status = AH9300(ah)->green_tx_status;
2878     if (ahp->ah_hw_green_tx_enable) {
2879         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2880         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2881     } else {
2882         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2883         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2884     }
2885 
2886     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2887         && (rssi > tmp_rss1_thr1))
2888     {
2889         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2890             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2891         }
2892     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2893         && (rssi > tmp_rss1_thr2))
2894     {
2895         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2896             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2897         }
2898     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2899         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2900             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2901         }
2902     }
2903 
2904     /* If status is not change, don't do anything */
2905     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2906         return;
2907     }
2908 
2909     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2910     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2911         && AR_SREV_POSEIDON(ah))
2912     {
2913         if (ahp->ah_hw_green_tx_enable) {
2914             switch (AH9300(ah)->green_tx_status) {
2915             case HAL_RSSI_TX_POWER_SHORT:
2916                 /* 1. TxPower Config */
2917                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2918                     sizeof(target_power_val_t));
2919                 /* 1.1 Store OLPC Delta Calibration Offset*/
2920                 olpc_power_offset = 0;
2921                 /* 2. Store OB/DB */
2922                 /* 3. Store TPC settting */
2923                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2924                                     SM(14, AR_TPC_CTS) |
2925                                     SM(14, AR_TPC_CHIRP) |
2926                                     SM(14, AR_TPC_RPT));
2927                 /* 4. Store BB_powertx_rate9 value */
2928                 temp_powertx_rate9_reg_val =
2929                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2930                 break;
2931             case HAL_RSSI_TX_POWER_MIDDLE:
2932                 /* 1. TxPower Config */
2933                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2934                     sizeof(target_power_val_t));
2935                 /* 1.1 Store OLPC Delta Calibration Offset*/
2936                 olpc_power_offset = 0;
2937                 /* 2. Store OB/DB */
2938                 /* 3. Store TPC settting */
2939                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2940                                     SM(18, AR_TPC_CTS) |
2941                                     SM(18, AR_TPC_CHIRP) |
2942                                     SM(18, AR_TPC_RPT));
2943                 /* 4. Store BB_powertx_rate9 value */
2944                 temp_powertx_rate9_reg_val =
2945                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2946                 break;
2947             case HAL_RSSI_TX_POWER_LONG:
2948             default:
2949                 /* 1. TxPower Config */
2950                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2951                     sizeof(target_power_val_t));
2952                 /* 1.1 Store OLPC Delta Calibration Offset*/
2953                 olpc_power_offset = 0;
2954                 /* 2. Store OB/DB1/DB2 */
2955                 /* 3. Store TPC settting */
2956                 temp_tcp_reg_val =
2957                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2958                 /* 4. Store BB_powertx_rate9 value */
2959                 temp_powertx_rate9_reg_val =
2960                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2961                 break;
2962             }
2963         } else {
2964             switch (AH9300(ah)->green_tx_status) {
2965             case HAL_RSSI_TX_POWER_SHORT:
2966                 /* 1. TxPower Config */
2967                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2968                     sizeof(target_power_val_t));
2969                 /* 1.1 Store OLPC Delta Calibration Offset*/
2970                 olpc_power_offset =
2971                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2972                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2973                 /* 2. Store OB/DB */
2974                 temp_obdb_reg_val =
2975                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2976                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2977                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2978                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
2979                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
2980                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
2981                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2982                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
2983                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2984                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
2985                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
2986                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
2987                 /* 3. Store TPC settting */
2988                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
2989                                     SM(6, AR_TPC_CTS) |
2990                                     SM(6, AR_TPC_CHIRP) |
2991                                     SM(6, AR_TPC_RPT));
2992                 /* 4. Store BB_powertx_rate9 value */
2993                 temp_powertx_rate9_reg_val =
2994                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
2995                 break;
2996             case HAL_RSSI_TX_POWER_MIDDLE:
2997                 /* 1. TxPower Config */
2998                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
2999                     sizeof(target_power_val_t));
3000                 /* 1.1 Store OLPC Delta Calibration Offset*/
3001                 olpc_power_offset =
3002                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3003                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3004                 /* 2. Store OB/DB */
3005                 temp_obdb_reg_val =
3006                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3007                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3008                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3009                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3010                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3011                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3012                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3013                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3014                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3015                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3016                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3017                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3018                 /* 3. Store TPC settting */
3019                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3020                                     SM(14, AR_TPC_CTS) |
3021                                     SM(14, AR_TPC_CHIRP) |
3022                                     SM(14, AR_TPC_RPT));
3023                 /* 4. Store BB_powertx_rate9 value */
3024                 temp_powertx_rate9_reg_val =
3025                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3026                 break;
3027             case HAL_RSSI_TX_POWER_LONG:
3028             default:
3029                 /* 1. TxPower Config */
3030                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3031                     sizeof(target_power_val_t));
3032                 /* 1.1 Store OLPC Delta Calibration Offset*/
3033                 olpc_power_offset =
3034                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3035                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3036                 /* 2. Store OB/DB1/DB2 */
3037                 temp_obdb_reg_val =
3038                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3039                 /* 3. Store TPC settting */
3040                 temp_tcp_reg_val =
3041                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3042                 /* 4. Store BB_powertx_rate9 value */
3043                 temp_powertx_rate9_reg_val =
3044                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3045                 break;
3046             }
3047         }
3048         /* 1.1 Do OLPC Delta Calibration Offset */
3049         tmp_olpc_val =
3050             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3051         tmp_olpc_val += olpc_power_offset;
3052         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3053             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3054             AR_PHY_TPC_OLPC_GAIN_DELTA);
3055 
3056         /* 1.2 TxPower Config */
3057         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3058         /* 2. Config OB/DB */
3059         if (!ahp->ah_hw_green_tx_enable) {
3060             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3061         }
3062         /* 3. config TPC settting */
3063         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3064         /* 4. config BB_powertx_rate9 value */
3065         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3066     }
3067 }
3068 
3069 #if 0
3070 void
3071 ar9300_get_vow_stats(
3072     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3073 {
3074     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3075         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3076     }
3077     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3078         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3079     }
3080     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3081         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3082     }
3083     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3084         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3085     }
3086     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3087         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3088     }
3089 }
3090 #endif
3091 
3092 /*
3093  * ar9300_is_skip_paprd_by_greentx
3094  *
3095  * This function check if we need to skip PAPRD tuning
3096  * when GreenTx in specific state.
3097  */
3098 HAL_BOOL
3099 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3100 {
3101     if (AR_SREV_POSEIDON(ah) &&
3102         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3103         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3104          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3105     {
3106         return AH_TRUE;
3107     }
3108     return AH_FALSE;
3109 }
3110 
3111 void
3112 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3113 {
3114     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3115     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3116     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3117     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3118     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3119     struct ath_hal_9300 *ahp = AH9300(ah);
3120 
3121     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3122         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3123                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3124         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3125                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3126         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3127                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3128         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3129                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3130         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3131                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3132     }
3133 }
3134 
3135 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3136 {
3137     struct ath_hal_9300 *ahp = AH9300(ah);
3138 
3139     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3140         if ((value == 0) || (value == 1)) {
3141             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3142                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3143         }
3144     }
3145 }
3146 
3147 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3148 {
3149     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3150 }
3151 
3152 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3153 {
3154     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3155 
3156     /* RSSI format is 8.4.  Ignore lowest four bits */
3157     val = val >> 4;
3158     return val;
3159 }
3160 
3161 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3162                                         u_int32_t rssi_threshold)
3163 {
3164     struct ath_hal_9300 *ahp = AH9300(ah);
3165 
3166     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3167 
3168     /* save value for restoring after chip reset */
3169     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3170 }
3171 
3172 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3173 {
3174     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3175 }
3176 
3177 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3178 {
3179     if (on) {
3180         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3181                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3182     }
3183     else {
3184         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3185                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3186     }
3187 }
3188 /*
3189  * Gets the contents of the specified key cache entry.
3190  */
3191 HAL_BOOL
3192 ar9300_print_keycache(struct ath_hal *ah)
3193 {
3194 
3195     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3196     u_int32_t key0, key1, key2, key3, key4;
3197     u_int32_t mac_hi, mac_lo;
3198     u_int16_t entry = 0;
3199     u_int32_t valid = 0;
3200     u_int32_t key_type;
3201 
3202     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3203 
3204     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3205         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3206         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3207         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3208         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3209         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3210 
3211         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3212 
3213         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3214         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3215 
3216         if (mac_hi & AR_KEYTABLE_VALID) {
3217             valid = 1;
3218         } else {
3219             valid = 0;
3220         }
3221 
3222         if ((mac_hi != 0) && (mac_lo != 0)) {
3223             mac_hi &= ~0x8000;
3224             mac_hi <<= 1;
3225             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3226             mac_lo <<= 1;
3227         }
3228 
3229         ath_hal_printf(ah,
3230             "%03d    "
3231             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3232             "   %02d     %02d    "
3233             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3234             entry,
3235             (key0 << 24) >> 24, (key0 << 16) >> 24,
3236             (key0 << 8) >> 24, key0 >> 24,
3237             (key1 << 24) >> 24, (key1 << 16) >> 24,
3238             //(key1 << 8) >> 24, key1 >> 24,
3239             (key2 << 24) >> 24, (key2 << 16) >> 24,
3240             (key2 << 8) >> 24, key2 >> 24,
3241             (key3 << 24) >> 24, (key3 << 16) >> 24,
3242             //(key3 << 8) >> 24, key3 >> 24,
3243             (key4 << 24) >> 24, (key4 << 16) >> 24,
3244             (key4 << 8) >> 24, key4 >> 24,
3245             valid, key_type,
3246             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3247             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3248     }
3249 
3250     return AH_TRUE;
3251 }
3252 
3253 /* enable/disable smart antenna mode */
3254 HAL_BOOL
3255 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3256 {
3257     struct ath_hal_9300 *ahp = AH9300(ah);
3258 
3259     if (enable) {
3260         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3261     } else {
3262         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3263     }
3264 
3265     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3266      * and swcom2 with 0
3267      * FIXME Ideally these registers need to be made read from caldata.
3268      * Until the calibration team gets them, keep them along with board
3269      * configuration.
3270      */
3271     if (enable && AR_SREV_SCORPION(ah) &&
3272            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3273 
3274        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3275        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3276     }
3277 
3278     ahp->ah_smartantenna_enable = enable;
3279     return 1;
3280 }
3281 
3282 #ifdef ATH_TX99_DIAG
3283 #ifndef ATH_SUPPORT_HTC
3284 void
3285 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3286     u_int32_t txpower)
3287 {
3288 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3289     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3290     int32_t i;
3291 
3292     /* The max power is limited to 63 */
3293     if (txpower <= AR9300_MAX_RATE_POWER) {
3294         for (i = 0; i < ar9300_rate_size; i++) {
3295             p_pwr_array[i] = txpower;
3296         }
3297     } else {
3298         for (i = 0; i < ar9300_rate_size; i++) {
3299             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3300         }
3301     }
3302 
3303     OS_REG_WRITE(ah, 0xa458, 0);
3304 
3305     /* Write the OFDM power per rate set */
3306     /* 6 (LSB), 9, 12, 18 (MSB) */
3307     OS_REG_WRITE(ah, 0xa3c0,
3308         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3309           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3310           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3311           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3312     );
3313     /* 24 (LSB), 36, 48, 54 (MSB) */
3314     OS_REG_WRITE(ah, 0xa3c4,
3315         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3316           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3317           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3318           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3319     );
3320 
3321     /* Write the CCK power per rate set */
3322     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3323     OS_REG_WRITE(ah, 0xa3c8,
3324         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3325           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3326           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3327           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3328     );
3329     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3330     OS_REG_WRITE(ah, 0xa3cc,
3331         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3332           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3333           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3334           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3335     );
3336 
3337     /* Write the HT20 power per rate set */
3338     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3339     OS_REG_WRITE(ah, 0xa3d0,
3340         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3341           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3342           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3343           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3344     );
3345 
3346     /* 6 (LSB), 7, 12, 13 (MSB) */
3347     OS_REG_WRITE(ah, 0xa3d4,
3348         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3349           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3350           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3351           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3352     );
3353 
3354     /* 14 (LSB), 15, 20, 21 */
3355     OS_REG_WRITE(ah, 0xa3e4,
3356         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3357           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3358           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3359           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3360     );
3361 
3362     /* Mixed HT20 and HT40 rates */
3363     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3364     OS_REG_WRITE(ah, 0xa3e8,
3365         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3366           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3367           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3368           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3369     );
3370 
3371     /* Write the HT40 power per rate set */
3372     /* correct PAR difference between HT40 and HT20/LEGACY */
3373     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3374     OS_REG_WRITE(ah, 0xa3d8,
3375         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3376           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3377           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3378           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3379     );
3380 
3381     /* 6 (LSB), 7, 12, 13 (MSB) */
3382     OS_REG_WRITE(ah, 0xa3dc,
3383         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3384           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3385           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3386           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3387     );
3388 
3389     /* 14 (LSB), 15, 20, 21 */
3390     OS_REG_WRITE(ah, 0xa3ec,
3391         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3392           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3393           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3394           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3395     );
3396 #undef PWR_MAS
3397 }
3398 
3399 void
3400 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3401 {
3402     if (tx_chainmask == 0x5) {
3403         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3404             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3405     }
3406     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3407     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3408 
3409     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3410     if (tx_chainmask == 0x5) {
3411         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3412             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3413     }
3414 }
3415 
3416 void
3417 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3418     int chtype)
3419 {
3420     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3421     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3422     OS_REG_WRITE(ah, 0xa350,
3423         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3424 
3425     /* 11G mode */
3426     if (!chtype) {
3427         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3428             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3429         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3430             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3431                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3432             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3433                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3434                         | (0x1 << 26)  | (0x7 << 24))
3435                         & ~(0x1 << 22));
3436         } else {
3437             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3438                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3439             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3440                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3441                         | (0x1 << 26)  | (0x7 << 24))
3442                         & ~(0x1 << 22));
3443         }
3444 
3445         /* chain zero */
3446         if ((tx_chain_mask & 0x01) == 0x01) {
3447             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3448                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3449                       | (0x1 << 31) | (0x5 << 15)
3450                       | (0x3 << 9)) & ~(0x1 << 27)
3451                       & ~(0x1 << 12));
3452             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3453                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3454                       | (0x1 << 12) | (0x1 << 10)
3455                       | (0x1 << 9)  | (0x1 << 8)
3456                       | (0x1 << 7)) & ~(0x1 << 11));
3457             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3458                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3459                       | (0x1 << 29) | (0x1 << 25)
3460                       | (0x1 << 23) | (0x1 << 19)
3461                       | (0x1 << 10) | (0x1 << 9)
3462                       | (0x1 << 8)  | (0x1 << 3))
3463                       & ~(0x1 << 28)& ~(0x1 << 24)
3464                       & ~(0x1 << 22)& ~(0x1 << 7));
3465             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3466                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3467                       | (0x1 << 23))& ~(0x1 << 21));
3468             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3469                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3470                       | (0x1 << 12) | (0x1 << 10)
3471                       | (0x1 << 9)  | (0x1 << 8)
3472                       | (0x1 << 6)  | (0x1 << 5)
3473                       | (0x1 << 4)  | (0x1 << 3)
3474                       | (0x1 << 2));
3475             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3476                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3477         }
3478         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3479             /* chain one */
3480             if ((tx_chain_mask & 0x02) == 0x02 ) {
3481                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3482                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3483                           | (0x1 << 31) | (0x5 << 15)
3484                           | (0x3 << 9)) & ~(0x1 << 27)
3485                           & ~(0x1 << 12));
3486                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3487                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3488                           | (0x1 << 12) | (0x1 << 10)
3489                           | (0x1 << 9)  | (0x1 << 8)
3490                           | (0x1 << 7)) & ~(0x1 << 11));
3491                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3492                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3493                           | (0x1 << 29) | (0x1 << 25)
3494                           | (0x1 << 23) | (0x1 << 19)
3495                           | (0x1 << 10) | (0x1 << 9)
3496                           | (0x1 << 8)  | (0x1 << 3))
3497                           & ~(0x1 << 28)& ~(0x1 << 24)
3498                           & ~(0x1 << 22)& ~(0x1 << 7));
3499                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3500                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3501                           | (0x1 << 23))& ~(0x1 << 21));
3502                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3503                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3504                           | (0x1 << 12) | (0x1 << 10)
3505                           | (0x1 << 9)  | (0x1 << 8)
3506                           | (0x1 << 6)  | (0x1 << 5)
3507                           | (0x1 << 4)  | (0x1 << 3)
3508                           | (0x1 << 2));
3509                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3510                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3511             }
3512         }
3513         if (AR_SREV_OSPREY(ah)) {
3514             /* chain two */
3515             if ((tx_chain_mask & 0x04) == 0x04 ) {
3516                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3517                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3518                           | (0x1 << 31) | (0x5 << 15)
3519                           | (0x3 << 9)) & ~(0x1 << 27)
3520                           & ~(0x1 << 12));
3521                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3522                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3523                           | (0x1 << 12) | (0x1 << 10)
3524                           | (0x1 << 9)  | (0x1 << 8)
3525                           | (0x1 << 7)) & ~(0x1 << 11));
3526                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3527                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3528                           | (0x1 << 29) | (0x1 << 25)
3529                           | (0x1 << 23) | (0x1 << 19)
3530                           | (0x1 << 10) | (0x1 << 9)
3531                           | (0x1 << 8)  | (0x1 << 3))
3532                           & ~(0x1 << 28)& ~(0x1 << 24)
3533                           & ~(0x1 << 22)& ~(0x1 << 7));
3534                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3535                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3536                           | (0x1 << 23))& ~(0x1 << 21));
3537                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3538                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3539                           | (0x1 << 12) | (0x1 << 10)
3540                           | (0x1 << 9)  | (0x1 << 8)
3541                           | (0x1 << 6)  | (0x1 << 5)
3542                           | (0x1 << 4)  | (0x1 << 3)
3543                           | (0x1 << 2));
3544                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3545                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3546             }
3547         }
3548 
3549         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3550         OS_REG_WRITE(ah, 0xa288, 0x111);
3551     } else {
3552         /* chain zero */
3553         if ((tx_chain_mask & 0x01) == 0x01) {
3554             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3555                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3556                       | (0x1 << 31) | (0x1 << 27)
3557                       | (0x3 << 23) | (0x1 << 19)
3558                       | (0x1 << 15) | (0x3 << 9))
3559                       & ~(0x1 << 12));
3560             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3561                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3562                       | (0x1 << 12) | (0x1 << 10)
3563                       | (0x1 << 9)  | (0x1 << 8)
3564                       | (0x1 << 7)  | (0x1 << 3)
3565                       | (0x1 << 2)  | (0x1 << 1))
3566                       & ~(0x1 << 11)& ~(0x1 << 0));
3567             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3568                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3569                       | (0x1 << 29) | (0x1 << 25)
3570                       | (0x1 << 23) | (0x1 << 19)
3571                       | (0x1 << 10) | (0x1 << 9)
3572                       | (0x1 << 8)  | (0x1 << 3))
3573                       & ~(0x1 << 28)& ~(0x1 << 24)
3574                       & ~(0x1 << 22)& ~(0x1 << 7));
3575             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3576                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3577                       | (0x1 << 23))& ~(0x1 << 21));
3578             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3579                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3580                       | (0x3 << 3)  | (0x3 << 0));
3581             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3582                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3583                       | (0x3 << 29) | (0x3 << 26)
3584                       | (0x2 << 23) | (0x2 << 20)
3585                       | (0x2 << 17))& ~(0x1 << 14));
3586             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3587                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3588                       | (0x1 << 12) | (0x1 << 10)
3589                       | (0x1 << 9)  | (0x1 << 8)
3590                       | (0x1 << 6)  | (0x1 << 5)
3591                       | (0x1 << 4)  | (0x1 << 3)
3592                       | (0x1 << 2));
3593             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3594                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3595             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3596                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3597                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3598                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3599                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3600                           | (0x1 << 26) | (0x7 << 24)
3601                           | (0x3 << 22));
3602             } else {
3603                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3604                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3605                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3606                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3607                           | (0x1 << 26) | (0x7 << 24)
3608                           | (0x3 << 22));
3609             }
3610 
3611             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3612                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3613                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3614                           | (0x1 << 3)  | (0x1 << 2)
3615                           | (0x1 << 1)) & ~(0x1 << 0));
3616                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3617                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3618                           | (0x1 << 19) | (0x1 << 3));
3619                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3620                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3621             }
3622             if (AR_SREV_OSPREY(ah)) {
3623                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3624                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3625                           | (0x1 << 3)  | (0x1 << 2)
3626                           | (0x1 << 1)) & ~(0x1 << 0));
3627                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3628                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3629                           | (0x1 << 19) | (0x1 << 3));
3630                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3631                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3632             }
3633         }
3634         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3635             /* chain one */
3636             if ((tx_chain_mask & 0x02) == 0x02 ) {
3637                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3638                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3639                           | (0x1 << 3)  | (0x1 << 2)
3640                           | (0x1 << 1)) & ~(0x1 << 0));
3641                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3642                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3643                           | (0x1 << 19) | (0x1 << 3));
3644                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3645                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3646                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3647                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3648                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3649                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3650                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3651                               | (0x1 << 26) | (0x7 << 24)
3652                               | (0x3 << 22));
3653                 } else {
3654                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3655                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3656                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3657                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3658                               | (0x1 << 26) | (0x7 << 24)
3659                               | (0x3 << 22));
3660                 }
3661 
3662                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3663                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3664                           | (0x1 << 31) | (0x1 << 27)
3665                           | (0x3 << 23) | (0x1 << 19)
3666                           | (0x1 << 15) | (0x3 << 9))
3667                           & ~(0x1 << 12));
3668                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3669                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3670                           | (0x1 << 12) | (0x1 << 10)
3671                           | (0x1 << 9)  | (0x1 << 8)
3672                           | (0x1 << 7)  | (0x1 << 3)
3673                           | (0x1 << 2)  | (0x1 << 1))
3674                           & ~(0x1 << 11)& ~(0x1 << 0));
3675                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3676                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3677                           | (0x1 << 29) | (0x1 << 25)
3678                           | (0x1 << 23) | (0x1 << 19)
3679                           | (0x1 << 10) | (0x1 << 9)
3680                           | (0x1 << 8)  | (0x1 << 3))
3681                           & ~(0x1 << 28)& ~(0x1 << 24)
3682                           & ~(0x1 << 22)& ~(0x1 << 7));
3683                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3684                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3685                           | (0x1 << 23))& ~(0x1 << 21));
3686                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3687                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3688                           | (0x3 << 3)  | (0x3 << 0));
3689                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3690                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3691                           | (0x3 << 29) | (0x3 << 26)
3692                           | (0x2 << 23) | (0x2 << 20)
3693                           | (0x2 << 17))& ~(0x1 << 14));
3694                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3695                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3696                           | (0x1 << 12) | (0x1 << 10)
3697                           | (0x1 << 9)  | (0x1 << 8)
3698                           | (0x1 << 6)  | (0x1 << 5)
3699                           | (0x1 << 4)  | (0x1 << 3)
3700                           | (0x1 << 2));
3701                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3702                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3703 
3704                 if (AR_SREV_OSPREY(ah)) {
3705                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3706                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3707                               | (0x1 << 3)  | (0x1 << 2)
3708                               | (0x1 << 1)) & ~(0x1 << 0));
3709                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3710                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3711                               | (0x1 << 19) | (0x1 << 3));
3712                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3713                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3714                 }
3715             }
3716         }
3717         if (AR_SREV_OSPREY(ah)) {
3718             /* chain two */
3719             if ((tx_chain_mask & 0x04) == 0x04 ) {
3720                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3721                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3722                           | (0x1 << 3)  | (0x1 << 2)
3723                           | (0x1 << 1)) & ~(0x1 << 0));
3724                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3725                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3726                           | (0x1 << 19) | (0x1 << 3));
3727                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3728                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3729                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3730                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3731                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3732                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3733                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3734                               | (0x1 << 26) | (0x7 << 24)
3735                               | (0x3 << 22));
3736                 } else {
3737                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3738                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3739                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3740                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3741                               | (0x1 << 26) | (0x7 << 24)
3742                               | (0x3 << 22));
3743                 }
3744 
3745                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3746                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3747                           | (0x1 << 3)  | (0x1 << 2)
3748                           | (0x1 << 1)) & ~(0x1 << 0));
3749                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3750                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3751                           | (0x1 << 19) | (0x1 << 3));
3752                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3753                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3754 
3755                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3756                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3757                           | (0x1 << 31) | (0x1 << 27)
3758                           | (0x3 << 23) | (0x1 << 19)
3759                           | (0x1 << 15) | (0x3 << 9))
3760                           & ~(0x1 << 12));
3761                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3762                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3763                           | (0x1 << 12) | (0x1 << 10)
3764                           | (0x1 << 9)  | (0x1 << 8)
3765                           | (0x1 << 7)  | (0x1 << 3)
3766                           | (0x1 << 2)  | (0x1 << 1))
3767                           & ~(0x1 << 11)& ~(0x1 << 0));
3768                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3769                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3770                           | (0x1 << 29) | (0x1 << 25)
3771                           | (0x1 << 23) | (0x1 << 19)
3772                           | (0x1 << 10) | (0x1 << 9)
3773                           | (0x1 << 8)  | (0x1 << 3))
3774                           & ~(0x1 << 28)& ~(0x1 << 24)
3775                           & ~(0x1 << 22)& ~(0x1 << 7));
3776                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3777                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3778                           | (0x1 << 23))& ~(0x1 << 21));
3779                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3780                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3781                           | (0x3 << 3)  | (0x3 << 0));
3782                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3783                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3784                           | (0x3 << 29) | (0x3 << 26)
3785                           | (0x2 << 23) | (0x2 << 20)
3786                           | (0x2 << 17))& ~(0x1 << 14));
3787                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3788                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3789                           | (0x1 << 12) | (0x1 << 10)
3790                           | (0x1 << 9)  | (0x1 << 8)
3791                           | (0x1 << 6)  | (0x1 << 5)
3792                           | (0x1 << 4)  | (0x1 << 3)
3793                           | (0x1 << 2));
3794                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3795                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3796             }
3797         }
3798 
3799         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3800         OS_REG_WRITE(ah, 0xa288, 0x222);
3801     }
3802 }
3803 
3804 void
3805 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3806 {
3807     u_int32_t val;
3808     u_int32_t qnum = (u_int32_t)data;
3809 
3810     /* Disable AGC to A2 */
3811     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3812     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3813 
3814     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3815     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3816     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3817     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3818     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3819     /* 200 ok for HT20, 400 ok for HT40 */
3820     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3821     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3822 
3823     /* set QCU modes to early termination */
3824     val = OS_REG_READ(ah, AR_QMISC(qnum));
3825     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3826 }
3827 
3828 void
3829 ar9300_tx99_stop(struct ath_hal *ah)
3830 {
3831     /* this should follow the setting of start */
3832     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3833     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3834 }
3835 #endif /* ATH_TX99_DIAG */
3836 #endif /* ATH_SUPPORT_HTC */
3837 
3838 HAL_BOOL
3839 ar9300Get3StreamSignature(struct ath_hal *ah)
3840 {
3841     return AH_FALSE;
3842 }
3843 
3844 HAL_BOOL
3845 ar9300ForceVCS(struct ath_hal *ah)
3846 {
3847    return AH_FALSE;
3848 }
3849 
3850 HAL_BOOL
3851 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3852 {
3853    return AH_FALSE;
3854 }
3855 
3856 HAL_BOOL
3857 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3858 {
3859     struct ath_hal_9300 *ahp = AH9300(ah);
3860     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3861     u_int8_t *ctl_index;
3862     u_int32_t offset = 0;
3863 
3864     if (!ctl_array)
3865         return AH_FALSE;
3866 
3867     /* copy 2G ctl freqbin and power data */
3868     ctl_index = p_eep_data->ctl_index_2g;
3869     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3870                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3871                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3872     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3873             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3874 
3875 
3876     /* copy 2G ctl freqbin and power data */
3877     ctl_index = p_eep_data->ctl_index_5g;
3878     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3879                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3880                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3881 
3882     return AH_FALSE;
3883 }
3884 
3885 void
3886 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3887 {
3888     struct ath_hal_9300 *ahp = AH9300(ah);
3889 
3890     /* optional txchainmask should be subset of primary txchainmask */
3891     if ((mask & ahp->ah_tx_chainmask) != mask) {
3892         ahp->ah_tx_chainmaskopt = 0;
3893         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3894         return;
3895     }
3896 
3897     ahp->ah_tx_chainmaskopt = mask;
3898 }
3899