xref: /dragonfly/sys/cpu/x86_64/include/cpufunc.h (revision 77b0c609)
1 /*-
2  * Copyright (c) 2003 Peter Wemm.
3  * Copyright (c) 1993 The Regents of the University of California.
4  * Copyright (c) 2008 The DragonFly Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/amd64/include/cpufunc.h,v 1.139 2004/01/28 23:53:04 peter Exp $
36  */
37 
38 /*
39  * Functions to provide access to special i386 instructions.
40  * This in included in sys/systm.h, and that file should be
41  * used in preference to this.
42  */
43 
44 #ifndef _CPU_CPUFUNC_H_
45 #define	_CPU_CPUFUNC_H_
46 
47 #include <sys/cdefs.h>
48 #include <machine/psl.h>
49 
50 struct thread;
51 struct region_descriptor;
52 
53 __BEGIN_DECLS
54 #define readb(va)	(*(volatile u_int8_t *) (va))
55 #define readw(va)	(*(volatile u_int16_t *) (va))
56 #define readl(va)	(*(volatile u_int32_t *) (va))
57 #define readq(va)	(*(volatile u_int64_t *) (va))
58 
59 #define writeb(va, d)	(*(volatile u_int8_t *) (va) = (d))
60 #define writew(va, d)	(*(volatile u_int16_t *) (va) = (d))
61 #define writel(va, d)	(*(volatile u_int32_t *) (va) = (d))
62 #define writeq(va, d)	(*(volatile u_int64_t *) (va) = (d))
63 
64 #ifdef	__GNUC__
65 
66 #ifdef SMP
67 #include <machine/lock.h>		/* XXX */
68 #endif
69 
70 static __inline void
71 breakpoint(void)
72 {
73 	__asm __volatile("int $3");
74 }
75 
76 static __inline void
77 cpu_pause(void)
78 {
79 	__asm __volatile("pause");
80 }
81 
82 static __inline u_int
83 bsfl(u_int mask)
84 {
85 	u_int	result;
86 
87 	__asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask));
88 	return (result);
89 }
90 
91 static __inline u_long
92 bsfq(u_long mask)
93 {
94 	u_long	result;
95 
96 	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
97 	return (result);
98 }
99 
100 static __inline u_long
101 bsflong(u_long mask)
102 {
103 	u_long	result;
104 
105 	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
106 	return (result);
107 }
108 
109 static __inline u_int
110 bsrl(u_int mask)
111 {
112 	u_int	result;
113 
114 	__asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask));
115 	return (result);
116 }
117 
118 static __inline u_long
119 bsrq(u_long mask)
120 {
121 	u_long	result;
122 
123 	__asm __volatile("bsrq %1,%0" : "=r" (result) : "rm" (mask));
124 	return (result);
125 }
126 
127 static __inline void
128 clflush(u_long addr)
129 {
130 	__asm __volatile("clflush %0" : : "m" (*(char *) addr));
131 }
132 
133 static __inline void
134 do_cpuid(u_int ax, u_int *p)
135 {
136 	__asm __volatile("cpuid"
137 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
138 			 :  "0" (ax));
139 }
140 
141 static __inline void
142 cpuid_count(u_int ax, u_int cx, u_int *p)
143 {
144 	__asm __volatile("cpuid"
145 			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
146 			 :  "0" (ax), "c" (cx));
147 }
148 
149 #ifndef _CPU_DISABLE_INTR_DEFINED
150 
151 static __inline void
152 cpu_disable_intr(void)
153 {
154 	__asm __volatile("cli" : : : "memory");
155 }
156 
157 #endif
158 
159 #ifndef _CPU_ENABLE_INTR_DEFINED
160 
161 static __inline void
162 cpu_enable_intr(void)
163 {
164 	__asm __volatile("sti");
165 }
166 
167 #endif
168 
169 /*
170  * Cpu and compiler memory ordering fence.  mfence ensures strong read and
171  * write ordering.
172  *
173  * A serializing or fence instruction is required here.  A locked bus
174  * cycle on data for which we already own cache mastership is the most
175  * portable.
176  */
177 static __inline void
178 cpu_mfence(void)
179 {
180 #ifdef SMP
181 	__asm __volatile("mfence" : : : "memory");
182 #else
183 	__asm __volatile("" : : : "memory");
184 #endif
185 }
186 
187 /*
188  * cpu_lfence() ensures strong read ordering for reads issued prior
189  * to the instruction verses reads issued afterwords.
190  *
191  * A serializing or fence instruction is required here.  A locked bus
192  * cycle on data for which we already own cache mastership is the most
193  * portable.
194  */
195 static __inline void
196 cpu_lfence(void)
197 {
198 #ifdef SMP
199 	__asm __volatile("lfence" : : : "memory");
200 #else
201 	__asm __volatile("" : : : "memory");
202 #endif
203 }
204 
205 /*
206  * cpu_sfence() ensures strong write ordering for writes issued prior
207  * to the instruction verses writes issued afterwords.  Writes are
208  * ordered on intel cpus so we do not actually have to do anything.
209  */
210 static __inline void
211 cpu_sfence(void)
212 {
213 	/*
214 	 * NOTE:
215 	 * Don't use 'sfence' here, as it will create a lot of
216 	 * unnecessary stalls.
217 	 */
218 	__asm __volatile("" : : : "memory");
219 }
220 
221 /*
222  * cpu_ccfence() prevents the compiler from reordering instructions, in
223  * particular stores, relative to the current cpu.  Use cpu_sfence() if
224  * you need to guarentee ordering by both the compiler and by the cpu.
225  *
226  * This also prevents the compiler from caching memory loads into local
227  * variables across the routine.
228  */
229 static __inline void
230 cpu_ccfence(void)
231 {
232 	__asm __volatile("" : : : "memory");
233 }
234 
235 /*
236  * This is a horrible, horrible hack that might have to be put at the
237  * end of certain procedures (on a case by case basis), just before it
238  * returns to avoid what we believe to be an unreported AMD cpu bug.
239  * Found to occur on both a Phenom II X4 820 (two of them), as well
240  * as a 48-core built around an Opteron 6168 (Id = 0x100f91  Stepping = 1).
241  * The problem does not appear to occur w/Intel cpus.
242  *
243  * The bug is likely related to either a write combining issue or the
244  * Return Address Stack (RAS) hardware cache.
245  *
246  * In particular, we had to do this for GCC's fill_sons_in_loop() routine
247  * which due to its deep recursion and stack flow appears to be able to
248  * tickle the amd cpu bug (w/ gcc-4.4.7).  Adding a single 'nop' to the
249  * end of the routine just before it returns works around the bug.
250  *
251  * The bug appears to be extremely sensitive to %rip and %rsp values, to
252  * the point where even just inserting an instruction in an unrelated
253  * procedure (shifting the entire code base being run) effects the outcome.
254  * DragonFly is probably able to more readily reproduce the bug due to
255  * the stackgap randomization code.  We would expect OpenBSD (where we got
256  * the stackgap randomization code from) to also be able to reproduce the
257  * issue.  To date we have only reproduced the issue in DragonFly.
258  */
259 #define __AMDCPUBUG_DFLY01_AVAILABLE__
260 
261 static __inline void
262 cpu_amdcpubug_dfly01(void)
263 {
264 	__asm __volatile("nop" : : : "memory");
265 }
266 
267 #ifdef _KERNEL
268 
269 #define	HAVE_INLINE_FFS
270 
271 static __inline int
272 ffs(int mask)
273 {
274 #if 0
275 	/*
276 	 * Note that gcc-2's builtin ffs would be used if we didn't declare
277 	 * this inline or turn off the builtin.  The builtin is faster but
278 	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and later
279 	 * versions.
280 	 */
281 	return (mask == 0 ? mask : (int)bsfl((u_int)mask) + 1);
282 #else
283 	/* Actually, the above is way out of date.  The builtins use cmov etc */
284 	return (__builtin_ffs(mask));
285 #endif
286 }
287 
288 #define	HAVE_INLINE_FFSL
289 
290 static __inline int
291 ffsl(long mask)
292 {
293 	return (mask == 0 ? mask : (int)bsfq((u_long)mask) + 1);
294 }
295 
296 #define	HAVE_INLINE_FLS
297 
298 static __inline int
299 fls(int mask)
300 {
301 	return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
302 }
303 
304 #define	HAVE_INLINE_FLSL
305 
306 static __inline int
307 flsl(long mask)
308 {
309 	return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
310 }
311 
312 #endif /* _KERNEL */
313 
314 static __inline void
315 halt(void)
316 {
317 	__asm __volatile("hlt");
318 }
319 
320 /*
321  * The following complications are to get around gcc not having a
322  * constraint letter for the range 0..255.  We still put "d" in the
323  * constraint because "i" isn't a valid constraint when the port
324  * isn't constant.  This only matters for -O0 because otherwise
325  * the non-working version gets optimized away.
326  *
327  * Use an expression-statement instead of a conditional expression
328  * because gcc-2.6.0 would promote the operands of the conditional
329  * and produce poor code for "if ((inb(var) & const1) == const2)".
330  *
331  * The unnecessary test `(port) < 0x10000' is to generate a warning if
332  * the `port' has type u_short or smaller.  Such types are pessimal.
333  * This actually only works for signed types.  The range check is
334  * careful to avoid generating warnings.
335  */
336 #define	inb(port) __extension__ ({					\
337 	u_char	_data;							\
338 	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
339 	    && (port) < 0x10000)					\
340 		_data = inbc(port);					\
341 	else								\
342 		_data = inbv(port);					\
343 	_data; })
344 
345 #define	outb(port, data) (						\
346 	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
347 	&& (port) < 0x10000						\
348 	? outbc(port, data) : outbv(port, data))
349 
350 static __inline u_char
351 inbc(u_int port)
352 {
353 	u_char	data;
354 
355 	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
356 	return (data);
357 }
358 
359 static __inline void
360 outbc(u_int port, u_char data)
361 {
362 	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
363 }
364 
365 static __inline u_char
366 inbv(u_int port)
367 {
368 	u_char	data;
369 	/*
370 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
371 	 * %edx, while gcc generates inferior code (movw instead of movl)
372 	 * if we tell it to load (u_short) port.
373 	 */
374 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
375 	return (data);
376 }
377 
378 static __inline u_int
379 inl(u_int port)
380 {
381 	u_int	data;
382 
383 	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
384 	return (data);
385 }
386 
387 static __inline void
388 insb(u_int port, void *addr, size_t cnt)
389 {
390 	__asm __volatile("cld; rep; insb"
391 			 : "+D" (addr), "+c" (cnt)
392 			 : "d" (port)
393 			 : "memory");
394 }
395 
396 static __inline void
397 insw(u_int port, void *addr, size_t cnt)
398 {
399 	__asm __volatile("cld; rep; insw"
400 			 : "+D" (addr), "+c" (cnt)
401 			 : "d" (port)
402 			 : "memory");
403 }
404 
405 static __inline void
406 insl(u_int port, void *addr, size_t cnt)
407 {
408 	__asm __volatile("cld; rep; insl"
409 			 : "+D" (addr), "+c" (cnt)
410 			 : "d" (port)
411 			 : "memory");
412 }
413 
414 static __inline void
415 invd(void)
416 {
417 	__asm __volatile("invd");
418 }
419 
420 #if defined(_KERNEL)
421 
422 /*
423  * If we are not a true-SMP box then smp_invltlb() is a NOP.  Note that this
424  * will cause the invl*() functions to be equivalent to the cpu_invl*()
425  * functions.
426  */
427 #ifdef SMP
428 void smp_invltlb(void);
429 void smp_invltlb_intr(void);
430 #else
431 #define smp_invltlb()
432 #endif
433 
434 #ifndef _CPU_INVLPG_DEFINED
435 
436 /*
437  * Invalidate a patricular VA on this cpu only
438  */
439 static __inline void
440 cpu_invlpg(void *addr)
441 {
442 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
443 }
444 
445 #endif
446 
447 static __inline void
448 cpu_nop(void)
449 {
450 	__asm __volatile("rep; nop");
451 }
452 
453 #endif	/* _KERNEL */
454 
455 static __inline u_short
456 inw(u_int port)
457 {
458 	u_short	data;
459 
460 	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
461 	return (data);
462 }
463 
464 static __inline u_int
465 loadandclear(volatile u_int *addr)
466 {
467 	u_int   result;
468 
469 	__asm __volatile("xorl %0,%0; xchgl %1,%0"
470 			: "=&r" (result) : "m" (*addr));
471 	return (result);
472 }
473 
474 static __inline void
475 outbv(u_int port, u_char data)
476 {
477 	u_char	al;
478 	/*
479 	 * Use an unnecessary assignment to help gcc's register allocator.
480 	 * This make a large difference for gcc-1.40 and a tiny difference
481 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
482 	 * best results.  gcc-2.6.0 can't handle this.
483 	 */
484 	al = data;
485 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
486 }
487 
488 static __inline void
489 outl(u_int port, u_int data)
490 {
491 	/*
492 	 * outl() and outw() aren't used much so we haven't looked at
493 	 * possible micro-optimizations such as the unnecessary
494 	 * assignment for them.
495 	 */
496 	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
497 }
498 
499 static __inline void
500 outsb(u_int port, const void *addr, size_t cnt)
501 {
502 	__asm __volatile("cld; rep; outsb"
503 			 : "+S" (addr), "+c" (cnt)
504 			 : "d" (port));
505 }
506 
507 static __inline void
508 outsw(u_int port, const void *addr, size_t cnt)
509 {
510 	__asm __volatile("cld; rep; outsw"
511 			 : "+S" (addr), "+c" (cnt)
512 			 : "d" (port));
513 }
514 
515 static __inline void
516 outsl(u_int port, const void *addr, size_t cnt)
517 {
518 	__asm __volatile("cld; rep; outsl"
519 			 : "+S" (addr), "+c" (cnt)
520 			 : "d" (port));
521 }
522 
523 static __inline void
524 outw(u_int port, u_short data)
525 {
526 	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
527 }
528 
529 static __inline void
530 ia32_pause(void)
531 {
532 	__asm __volatile("pause");
533 }
534 
535 static __inline u_long
536 read_rflags(void)
537 {
538 	u_long	rf;
539 
540 	__asm __volatile("pushfq; popq %0" : "=r" (rf));
541 	return (rf);
542 }
543 
544 static __inline u_int64_t
545 rdmsr(u_int msr)
546 {
547 	u_int32_t low, high;
548 
549 	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
550 	return (low | ((u_int64_t)high << 32));
551 }
552 
553 static __inline u_int64_t
554 rdpmc(u_int pmc)
555 {
556 	u_int32_t low, high;
557 
558 	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
559 	return (low | ((u_int64_t)high << 32));
560 }
561 
562 #define _RDTSC_SUPPORTED_
563 
564 static __inline u_int64_t
565 rdtsc(void)
566 {
567 	u_int32_t low, high;
568 
569 	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
570 	return (low | ((u_int64_t)high << 32));
571 }
572 
573 static __inline void
574 wbinvd(void)
575 {
576 	__asm __volatile("wbinvd");
577 }
578 
579 static __inline void
580 write_rflags(u_long rf)
581 {
582 	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
583 }
584 
585 static __inline void
586 wrmsr(u_int msr, u_int64_t newval)
587 {
588 	u_int32_t low, high;
589 
590 	low = newval;
591 	high = newval >> 32;
592 	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
593 }
594 
595 static __inline void
596 load_cr0(u_long data)
597 {
598 
599 	__asm __volatile("movq %0,%%cr0" : : "r" (data));
600 }
601 
602 static __inline u_long
603 rcr0(void)
604 {
605 	u_long	data;
606 
607 	__asm __volatile("movq %%cr0,%0" : "=r" (data));
608 	return (data);
609 }
610 
611 static __inline u_long
612 rcr2(void)
613 {
614 	u_long	data;
615 
616 	__asm __volatile("movq %%cr2,%0" : "=r" (data));
617 	return (data);
618 }
619 
620 static __inline void
621 load_cr3(u_long data)
622 {
623 
624 	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
625 }
626 
627 static __inline u_long
628 rcr3(void)
629 {
630 	u_long	data;
631 
632 	__asm __volatile("movq %%cr3,%0" : "=r" (data));
633 	return (data);
634 }
635 
636 static __inline void
637 load_cr4(u_long data)
638 {
639 	__asm __volatile("movq %0,%%cr4" : : "r" (data));
640 }
641 
642 static __inline u_long
643 rcr4(void)
644 {
645 	u_long	data;
646 
647 	__asm __volatile("movq %%cr4,%0" : "=r" (data));
648 	return (data);
649 }
650 
651 #ifndef _CPU_INVLTLB_DEFINED
652 
653 /*
654  * Invalidate the TLB on this cpu only
655  */
656 static __inline void
657 cpu_invltlb(void)
658 {
659 	load_cr3(rcr3());
660 #if defined(SWTCH_OPTIM_STATS)
661 	++tlb_flush_count;
662 #endif
663 }
664 
665 #endif
666 
667 /*
668  * TLB flush for an individual page (even if it has PG_G).
669  * Only works on 486+ CPUs (i386 does not have PG_G).
670  */
671 static __inline void
672 invlpg(u_long addr)
673 {
674 
675 	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
676 }
677 
678 static __inline u_short
679 rfs(void)
680 {
681 	u_short sel;
682 	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
683 	return (sel);
684 }
685 
686 static __inline u_short
687 rgs(void)
688 {
689 	u_short sel;
690 	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
691 	return (sel);
692 }
693 
694 static __inline void
695 load_ds(u_short sel)
696 {
697 	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
698 }
699 
700 static __inline void
701 load_es(u_short sel)
702 {
703 	__asm __volatile("movw %0,%%es" : : "rm" (sel));
704 }
705 
706 #ifdef _KERNEL
707 /* This is defined in <machine/specialreg.h> but is too painful to get to */
708 #ifndef	MSR_FSBASE
709 #define	MSR_FSBASE	0xc0000100
710 #endif
711 static __inline void
712 load_fs(u_short sel)
713 {
714 	/* Preserve the fsbase value across the selector load */
715 	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
716             : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
717 }
718 
719 #ifndef	MSR_GSBASE
720 #define	MSR_GSBASE	0xc0000101
721 #endif
722 static __inline void
723 load_gs(u_short sel)
724 {
725 	/*
726 	 * Preserve the gsbase value across the selector load.
727 	 * Note that we have to disable interrupts because the gsbase
728 	 * being trashed happens to be the kernel gsbase at the time.
729 	 */
730 	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
731             : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
732 }
733 #else
734 /* Usable by userland */
735 static __inline void
736 load_fs(u_short sel)
737 {
738 	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
739 }
740 
741 static __inline void
742 load_gs(u_short sel)
743 {
744 	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
745 }
746 #endif
747 
748 /* void lidt(struct region_descriptor *addr); */
749 static __inline void
750 lidt(struct region_descriptor *addr)
751 {
752 	__asm __volatile("lidt (%0)" : : "r" (addr));
753 }
754 
755 /* void lldt(u_short sel); */
756 static __inline void
757 lldt(u_short sel)
758 {
759 	__asm __volatile("lldt %0" : : "r" (sel));
760 }
761 
762 /* void ltr(u_short sel); */
763 static __inline void
764 ltr(u_short sel)
765 {
766 	__asm __volatile("ltr %0" : : "r" (sel));
767 }
768 
769 static __inline u_int64_t
770 rdr0(void)
771 {
772 	u_int64_t data;
773 	__asm __volatile("movq %%dr0,%0" : "=r" (data));
774 	return (data);
775 }
776 
777 static __inline void
778 load_dr0(u_int64_t dr0)
779 {
780 	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
781 }
782 
783 static __inline u_int64_t
784 rdr1(void)
785 {
786 	u_int64_t data;
787 	__asm __volatile("movq %%dr1,%0" : "=r" (data));
788 	return (data);
789 }
790 
791 static __inline void
792 load_dr1(u_int64_t dr1)
793 {
794 	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
795 }
796 
797 static __inline u_int64_t
798 rdr2(void)
799 {
800 	u_int64_t data;
801 	__asm __volatile("movq %%dr2,%0" : "=r" (data));
802 	return (data);
803 }
804 
805 static __inline void
806 load_dr2(u_int64_t dr2)
807 {
808 	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
809 }
810 
811 static __inline u_int64_t
812 rdr3(void)
813 {
814 	u_int64_t data;
815 	__asm __volatile("movq %%dr3,%0" : "=r" (data));
816 	return (data);
817 }
818 
819 static __inline void
820 load_dr3(u_int64_t dr3)
821 {
822 	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
823 }
824 
825 static __inline u_int64_t
826 rdr4(void)
827 {
828 	u_int64_t data;
829 	__asm __volatile("movq %%dr4,%0" : "=r" (data));
830 	return (data);
831 }
832 
833 static __inline void
834 load_dr4(u_int64_t dr4)
835 {
836 	__asm __volatile("movq %0,%%dr4" : : "r" (dr4));
837 }
838 
839 static __inline u_int64_t
840 rdr5(void)
841 {
842 	u_int64_t data;
843 	__asm __volatile("movq %%dr5,%0" : "=r" (data));
844 	return (data);
845 }
846 
847 static __inline void
848 load_dr5(u_int64_t dr5)
849 {
850 	__asm __volatile("movq %0,%%dr5" : : "r" (dr5));
851 }
852 
853 static __inline u_int64_t
854 rdr6(void)
855 {
856 	u_int64_t data;
857 	__asm __volatile("movq %%dr6,%0" : "=r" (data));
858 	return (data);
859 }
860 
861 static __inline void
862 load_dr6(u_int64_t dr6)
863 {
864 	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
865 }
866 
867 static __inline u_int64_t
868 rdr7(void)
869 {
870 	u_int64_t data;
871 	__asm __volatile("movq %%dr7,%0" : "=r" (data));
872 	return (data);
873 }
874 
875 static __inline void
876 load_dr7(u_int64_t dr7)
877 {
878 	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
879 }
880 
881 static __inline register_t
882 intr_disable(void)
883 {
884 	register_t rflags;
885 
886 	rflags = read_rflags();
887 	cpu_disable_intr();
888 	return (rflags);
889 }
890 
891 static __inline void
892 intr_restore(register_t rflags)
893 {
894 	write_rflags(rflags);
895 }
896 
897 #else /* !__GNUC__ */
898 
899 int	breakpoint(void);
900 void	cpu_pause(void);
901 u_int	bsfl(u_int mask);
902 u_int	bsrl(u_int mask);
903 void	cpu_disable_intr(void);
904 void	cpu_enable_intr(void);
905 void	cpu_invlpg(u_long addr);
906 void	cpu_invlpg_range(u_long start, u_long end);
907 void	do_cpuid(u_int ax, u_int *p);
908 void	halt(void);
909 u_char	inb(u_int port);
910 u_int	inl(u_int port);
911 void	insb(u_int port, void *addr, size_t cnt);
912 void	insl(u_int port, void *addr, size_t cnt);
913 void	insw(u_int port, void *addr, size_t cnt);
914 void	invd(void);
915 void	invlpg(u_int addr);
916 void	invlpg_range(u_int start, u_int end);
917 void	cpu_invltlb(void);
918 u_short	inw(u_int port);
919 void	load_cr0(u_int cr0);
920 void	load_cr3(u_int cr3);
921 void	load_cr4(u_int cr4);
922 void	load_fs(u_int sel);
923 void	load_gs(u_int sel);
924 struct region_descriptor;
925 void	lidt(struct region_descriptor *addr);
926 void	lldt(u_short sel);
927 void	ltr(u_short sel);
928 void	outb(u_int port, u_char data);
929 void	outl(u_int port, u_int data);
930 void	outsb(u_int port, void *addr, size_t cnt);
931 void	outsl(u_int port, void *addr, size_t cnt);
932 void	outsw(u_int port, void *addr, size_t cnt);
933 void	outw(u_int port, u_short data);
934 void	ia32_pause(void);
935 u_int	rcr0(void);
936 u_int	rcr2(void);
937 u_int	rcr3(void);
938 u_int	rcr4(void);
939 u_short	rfs(void);
940 u_short	rgs(void);
941 u_int64_t rdmsr(u_int msr);
942 u_int64_t rdpmc(u_int pmc);
943 u_int64_t rdtsc(void);
944 u_int	read_rflags(void);
945 void	wbinvd(void);
946 void	write_rflags(u_int rf);
947 void	wrmsr(u_int msr, u_int64_t newval);
948 u_int64_t	rdr0(void);
949 void	load_dr0(u_int64_t dr0);
950 u_int64_t	rdr1(void);
951 void	load_dr1(u_int64_t dr1);
952 u_int64_t	rdr2(void);
953 void	load_dr2(u_int64_t dr2);
954 u_int64_t	rdr3(void);
955 void	load_dr3(u_int64_t dr3);
956 u_int64_t	rdr4(void);
957 void	load_dr4(u_int64_t dr4);
958 u_int64_t	rdr5(void);
959 void	load_dr5(u_int64_t dr5);
960 u_int64_t	rdr6(void);
961 void	load_dr6(u_int64_t dr6);
962 u_int64_t	rdr7(void);
963 void	load_dr7(u_int64_t dr7);
964 register_t	intr_disable(void);
965 void	intr_restore(register_t rf);
966 
967 #endif	/* __GNUC__ */
968 
969 int	rdmsr_safe(u_int msr, uint64_t *val);
970 void	reset_dbregs(void);
971 
972 __END_DECLS
973 
974 #endif /* !_CPU_CPUFUNC_H_ */
975