xref: /dragonfly/sys/crypto/sha2/sha2.c (revision 235099c3)
1 /*
2  * $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $
3  * $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $
4  * $DragonFly: src/sys/crypto/sha2/sha2.c,v 1.4 2004/02/12 23:14:05 joerg Exp $
5  */
6 /*
7  * sha2.c
8  *
9  * Version 1.0.0beta1
10  *
11  * Written by Aaron D. Gifford <me@aarongifford.com>
12  *
13  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the copyright holder nor the names of contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/time.h>
45 #include <sys/systm.h>
46 #include <machine/endian.h>
47 #include <crypto/sha2/sha2.h>
48 
49 /*
50  * ASSERT NOTE:
51  * Some sanity checking code is included using assert().  On my FreeBSD
52  * system, this additional code can be removed by compiling with NDEBUG
53  * defined.  Check your own systems manpage on assert() to see how to
54  * compile WITHOUT the sanity checking code on your system.
55  *
56  * UNROLLED TRANSFORM LOOP NOTE:
57  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
58  * loop version for the hash transform rounds (defined using macros
59  * later in this file).  Either define on the command line, for example:
60  *
61  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
62  *
63  * or define below:
64  *
65  *   #define SHA2_UNROLL_TRANSFORM
66  *
67  */
68 
69 #if defined(__DragonFly__) || defined(__bsdi__) || defined(__FreeBSD__)
70 #define assert(x)
71 #endif
72 
73 
74 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
75 /*
76  * BYTE_ORDER NOTE:
77  *
78  * Please make sure that your system defines BYTE_ORDER.  If your
79  * architecture is little-endian, make sure it also defines
80  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
81  * equivilent.
82  *
83  * If your system does not define the above, then you can do so by
84  * hand like this:
85  *
86  *   #define LITTLE_ENDIAN 1234
87  *   #define BIG_ENDIAN    4321
88  *
89  * And for little-endian machines, add:
90  *
91  *   #define BYTE_ORDER LITTLE_ENDIAN
92  *
93  * Or for big-endian machines:
94  *
95  *   #define BYTE_ORDER BIG_ENDIAN
96  *
97  * The FreeBSD machine this was written on defines BYTE_ORDER
98  * appropriately by including <sys/types.h> (which in turn includes
99  * <machine/endian.h> where the appropriate definitions are actually
100  * made).
101  */
102 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
103 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
104 #endif
105 
106 /*
107  * Define the followingsha2_* types to types of the correct length on
108  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
109  * types.  Machines with very recent ANSI C headers, can use the
110  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
111  * during compile or in the sha.h header file.
112  *
113  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
114  * will need to define these three typedefs below (and the appropriate
115  * ones in sha.h too) by hand according to their system architecture.
116  *
117  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
118  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
119  */
120 #if 0 /*def SHA2_USE_INTTYPES_H*/
121 
122 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
123 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
124 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
125 
126 #else /* SHA2_USE_INTTYPES_H */
127 
128 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
129 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
130 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
131 
132 #endif /* SHA2_USE_INTTYPES_H */
133 
134 
135 /*** SHA-256/384/512 Various Length Definitions ***********************/
136 /* NOTE: Most of these are in sha2.h */
137 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
138 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
139 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
140 
141 
142 /*** ENDIAN REVERSAL MACROS *******************************************/
143 #if BYTE_ORDER == LITTLE_ENDIAN
144 #define REVERSE32(w,x)	{ \
145 	sha2_word32 tmp = (w); \
146 	tmp = (tmp >> 16) | (tmp << 16); \
147 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
148 }
149 #define REVERSE64(w,x)	{ \
150 	sha2_word64 tmp = (w); \
151 	tmp = (tmp >> 32) | (tmp << 32); \
152 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
153 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
154 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
155 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
156 }
157 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
158 
159 /*
160  * Macro for incrementally adding the unsigned 64-bit integer n to the
161  * unsigned 128-bit integer (represented using a two-element array of
162  * 64-bit words):
163  */
164 #define ADDINC128(w,n)	{ \
165 	(w)[0] += (sha2_word64)(n); \
166 	if ((w)[0] < (n)) { \
167 		(w)[1]++; \
168 	} \
169 }
170 
171 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
172 /*
173  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
174  *
175  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
176  *   S is a ROTATION) because the SHA-256/384/512 description document
177  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
178  *   same "backwards" definition.
179  */
180 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
181 #define R(b,x) 		((x) >> (b))
182 /* 32-bit Rotate-right (used in SHA-256): */
183 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
184 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
185 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
186 
187 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
188 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
189 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
190 
191 /* Four of six logical functions used in SHA-256: */
192 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
193 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
194 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
195 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
196 
197 /* Four of six logical functions used in SHA-384 and SHA-512: */
198 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
199 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
200 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
201 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
202 
203 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
204 /* NOTE: These should not be accessed directly from outside this
205  * library -- they are intended for private internal visibility/use
206  * only.
207  */
208 void SHA512_Last(SHA512_CTX*);
209 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
210 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
211 
212 
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 const static sha2_word32 K256[64] = {
216 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232 };
233 
234 /* Initial hash value H for SHA-256: */
235 const static sha2_word32 sha256_initial_hash_value[8] = {
236 	0x6a09e667UL,
237 	0xbb67ae85UL,
238 	0x3c6ef372UL,
239 	0xa54ff53aUL,
240 	0x510e527fUL,
241 	0x9b05688cUL,
242 	0x1f83d9abUL,
243 	0x5be0cd19UL
244 };
245 
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 const static sha2_word64 K512[80] = {
248 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288 };
289 
290 /* Initial hash value H for SHA-384 */
291 const static sha2_word64 sha384_initial_hash_value[8] = {
292 	0xcbbb9d5dc1059ed8ULL,
293 	0x629a292a367cd507ULL,
294 	0x9159015a3070dd17ULL,
295 	0x152fecd8f70e5939ULL,
296 	0x67332667ffc00b31ULL,
297 	0x8eb44a8768581511ULL,
298 	0xdb0c2e0d64f98fa7ULL,
299 	0x47b5481dbefa4fa4ULL
300 };
301 
302 /* Initial hash value H for SHA-512 */
303 const static sha2_word64 sha512_initial_hash_value[8] = {
304 	0x6a09e667f3bcc908ULL,
305 	0xbb67ae8584caa73bULL,
306 	0x3c6ef372fe94f82bULL,
307 	0xa54ff53a5f1d36f1ULL,
308 	0x510e527fade682d1ULL,
309 	0x9b05688c2b3e6c1fULL,
310 	0x1f83d9abfb41bd6bULL,
311 	0x5be0cd19137e2179ULL
312 };
313 
314 /*
315  * Constant used by SHA256/384/512_End() functions for converting the
316  * digest to a readable hexadecimal character string:
317  */
318 static const char *sha2_hex_digits = "0123456789abcdef";
319 
320 
321 /*** SHA-256: *********************************************************/
322 void SHA256_Init(SHA256_CTX* context) {
323 	if (context == NULL) {
324 		return;
325 	}
326 	bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
327 	bzero(context->buffer, SHA256_BLOCK_LENGTH);
328 	context->bitcount = 0;
329 }
330 
331 #ifdef SHA2_UNROLL_TRANSFORM
332 
333 /* Unrolled SHA-256 round macros: */
334 
335 #if BYTE_ORDER == LITTLE_ENDIAN
336 
337 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
338 	REVERSE32(*data++, W256[j]); \
339 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
340              K256[j] + W256[j]; \
341 	(d) += T1; \
342 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
343 	j++
344 
345 
346 #else /* BYTE_ORDER == LITTLE_ENDIAN */
347 
348 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
349 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
350 	     K256[j] + (W256[j] = *data++); \
351 	(d) += T1; \
352 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
353 	j++
354 
355 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
356 
357 #define ROUND256(a,b,c,d,e,f,g,h)	\
358 	s0 = W256[(j+1)&0x0f]; \
359 	s0 = sigma0_256(s0); \
360 	s1 = W256[(j+14)&0x0f]; \
361 	s1 = sigma1_256(s1); \
362 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
363 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
364 	(d) += T1; \
365 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
366 	j++
367 
368 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
369 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
370 	sha2_word32	T1, *W256;
371 	int		j;
372 
373 	W256 = (sha2_word32*)context->buffer;
374 
375 	/* Initialize registers with the prev. intermediate value */
376 	a = context->state[0];
377 	b = context->state[1];
378 	c = context->state[2];
379 	d = context->state[3];
380 	e = context->state[4];
381 	f = context->state[5];
382 	g = context->state[6];
383 	h = context->state[7];
384 
385 	j = 0;
386 	do {
387 		/* Rounds 0 to 15 (unrolled): */
388 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
389 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
390 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
391 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
392 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
393 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
394 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
395 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
396 	} while (j < 16);
397 
398 	/* Now for the remaining rounds to 64: */
399 	do {
400 		ROUND256(a,b,c,d,e,f,g,h);
401 		ROUND256(h,a,b,c,d,e,f,g);
402 		ROUND256(g,h,a,b,c,d,e,f);
403 		ROUND256(f,g,h,a,b,c,d,e);
404 		ROUND256(e,f,g,h,a,b,c,d);
405 		ROUND256(d,e,f,g,h,a,b,c);
406 		ROUND256(c,d,e,f,g,h,a,b);
407 		ROUND256(b,c,d,e,f,g,h,a);
408 	} while (j < 64);
409 
410 	/* Compute the current intermediate hash value */
411 	context->state[0] += a;
412 	context->state[1] += b;
413 	context->state[2] += c;
414 	context->state[3] += d;
415 	context->state[4] += e;
416 	context->state[5] += f;
417 	context->state[6] += g;
418 	context->state[7] += h;
419 
420 	/* Clean up */
421 	a = b = c = d = e = f = g = h = T1 = 0;
422 }
423 
424 #else /* SHA2_UNROLL_TRANSFORM */
425 
426 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
427 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
428 	sha2_word32	T1, T2, *W256;
429 	int		j;
430 
431 	W256 = (sha2_word32*)context->buffer;
432 
433 	/* Initialize registers with the prev. intermediate value */
434 	a = context->state[0];
435 	b = context->state[1];
436 	c = context->state[2];
437 	d = context->state[3];
438 	e = context->state[4];
439 	f = context->state[5];
440 	g = context->state[6];
441 	h = context->state[7];
442 
443 	j = 0;
444 	do {
445 #if BYTE_ORDER == LITTLE_ENDIAN
446 		/* Copy data while converting to host byte order */
447 		REVERSE32(*data++,W256[j]);
448 		/* Apply the SHA-256 compression function to update a..h */
449 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
450 #else /* BYTE_ORDER == LITTLE_ENDIAN */
451 		/* Apply the SHA-256 compression function to update a..h with copy */
452 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
453 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
454 		T2 = Sigma0_256(a) + Maj(a, b, c);
455 		h = g;
456 		g = f;
457 		f = e;
458 		e = d + T1;
459 		d = c;
460 		c = b;
461 		b = a;
462 		a = T1 + T2;
463 
464 		j++;
465 	} while (j < 16);
466 
467 	do {
468 		/* Part of the message block expansion: */
469 		s0 = W256[(j+1)&0x0f];
470 		s0 = sigma0_256(s0);
471 		s1 = W256[(j+14)&0x0f];
472 		s1 = sigma1_256(s1);
473 
474 		/* Apply the SHA-256 compression function to update a..h */
475 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
476 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
477 		T2 = Sigma0_256(a) + Maj(a, b, c);
478 		h = g;
479 		g = f;
480 		f = e;
481 		e = d + T1;
482 		d = c;
483 		c = b;
484 		b = a;
485 		a = T1 + T2;
486 
487 		j++;
488 	} while (j < 64);
489 
490 	/* Compute the current intermediate hash value */
491 	context->state[0] += a;
492 	context->state[1] += b;
493 	context->state[2] += c;
494 	context->state[3] += d;
495 	context->state[4] += e;
496 	context->state[5] += f;
497 	context->state[6] += g;
498 	context->state[7] += h;
499 
500 	/* Clean up */
501 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
502 }
503 
504 #endif /* SHA2_UNROLL_TRANSFORM */
505 
506 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
507 	unsigned int	freespace, usedspace;
508 
509 	if (len == 0) {
510 		/* Calling with no data is valid - we do nothing */
511 		return;
512 	}
513 
514 	/* Sanity check: */
515 	assert(context != NULL && data != NULL);
516 
517 	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
518 	if (usedspace > 0) {
519 		/* Calculate how much free space is available in the buffer */
520 		freespace = SHA256_BLOCK_LENGTH - usedspace;
521 
522 		if (len >= freespace) {
523 			/* Fill the buffer completely and process it */
524 			bcopy(data, &context->buffer[usedspace], freespace);
525 			context->bitcount += freespace << 3;
526 			len -= freespace;
527 			data += freespace;
528 			SHA256_Transform(context, (sha2_word32*)context->buffer);
529 		} else {
530 			/* The buffer is not yet full */
531 			bcopy(data, &context->buffer[usedspace], len);
532 			context->bitcount += len << 3;
533 			/* Clean up: */
534 			usedspace = freespace = 0;
535 			return;
536 		}
537 	}
538 	while (len >= SHA256_BLOCK_LENGTH) {
539 		/* Process as many complete blocks as we can */
540 		SHA256_Transform(context, (const sha2_word32*)data);
541 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
542 		len -= SHA256_BLOCK_LENGTH;
543 		data += SHA256_BLOCK_LENGTH;
544 	}
545 	if (len > 0) {
546 		/* There's left-overs, so save 'em */
547 		bcopy(data, context->buffer, len);
548 		context->bitcount += len << 3;
549 	}
550 	/* Clean up: */
551 	usedspace = freespace = 0;
552 }
553 
554 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
555 	sha2_word32	*d = (sha2_word32*)digest;
556 	unsigned int	usedspace;
557 
558 	/* Sanity check: */
559 	assert(context != NULL);
560 
561 	/* If no digest buffer is passed, we don't bother doing this: */
562 	if (digest != NULL) {
563 		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
564 #if BYTE_ORDER == LITTLE_ENDIAN
565 		/* Convert FROM host byte order */
566 		REVERSE64(context->bitcount,context->bitcount);
567 #endif
568 		if (usedspace > 0) {
569 			/* Begin padding with a 1 bit: */
570 			context->buffer[usedspace++] = 0x80;
571 
572 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
573 				/* Set-up for the last transform: */
574 				bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
575 			} else {
576 				if (usedspace < SHA256_BLOCK_LENGTH) {
577 					bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
578 				}
579 				/* Do second-to-last transform: */
580 				SHA256_Transform(context, (sha2_word32*)context->buffer);
581 
582 				/* And set-up for the last transform: */
583 				bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
584 			}
585 		} else {
586 			/* Set-up for the last transform: */
587 			bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
588 
589 			/* Begin padding with a 1 bit: */
590 			*context->buffer = 0x80;
591 		}
592 		/* Set the bit count: */
593 		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
594 
595 		/* Final transform: */
596 		SHA256_Transform(context, (sha2_word32*)context->buffer);
597 
598 #if BYTE_ORDER == LITTLE_ENDIAN
599 		{
600 			/* Convert TO host byte order */
601 			int	j;
602 			for (j = 0; j < 8; j++) {
603 				REVERSE32(context->state[j],context->state[j]);
604 				*d++ = context->state[j];
605 			}
606 		}
607 #else
608 		bcopy(context->state, d, SHA256_DIGEST_LENGTH);
609 #endif
610 	}
611 
612 	/* Clean up state data: */
613 	bzero(context, sizeof(context));
614 	usedspace = 0;
615 }
616 
617 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
618 	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
619 	int		i;
620 
621 	/* Sanity check: */
622 	assert(context != NULL);
623 
624 	if (buffer != NULL) {
625 		SHA256_Final(digest, context);
626 
627 		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
628 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
629 			*buffer++ = sha2_hex_digits[*d & 0x0f];
630 			d++;
631 		}
632 		*buffer = (char)0;
633 	} else {
634 		bzero(context, sizeof(context));
635 	}
636 	bzero(digest, SHA256_DIGEST_LENGTH);
637 	return buffer;
638 }
639 
640 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
641 	SHA256_CTX	context;
642 
643 	SHA256_Init(&context);
644 	SHA256_Update(&context, data, len);
645 	return SHA256_End(&context, digest);
646 }
647 
648 
649 /*** SHA-512: *********************************************************/
650 void SHA512_Init(SHA512_CTX* context) {
651 	if (context == NULL) {
652 		return;
653 	}
654 	bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
655 	bzero(context->buffer, SHA512_BLOCK_LENGTH);
656 	context->bitcount[0] = context->bitcount[1] =  0;
657 }
658 
659 #ifdef SHA2_UNROLL_TRANSFORM
660 
661 /* Unrolled SHA-512 round macros: */
662 #if BYTE_ORDER == LITTLE_ENDIAN
663 
664 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
665 	REVERSE64(*data++, W512[j]); \
666 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
667              K512[j] + W512[j]; \
668 	(d) += T1, \
669 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
670 	j++
671 
672 
673 #else /* BYTE_ORDER == LITTLE_ENDIAN */
674 
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
676 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
677              K512[j] + (W512[j] = *data++); \
678 	(d) += T1; \
679 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
680 	j++
681 
682 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
683 
684 #define ROUND512(a,b,c,d,e,f,g,h)	\
685 	s0 = W512[(j+1)&0x0f]; \
686 	s0 = sigma0_512(s0); \
687 	s1 = W512[(j+14)&0x0f]; \
688 	s1 = sigma1_512(s1); \
689 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
690              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
691 	(d) += T1; \
692 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
693 	j++
694 
695 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
696 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
697 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
698 	int		j;
699 
700 	/* Initialize registers with the prev. intermediate value */
701 	a = context->state[0];
702 	b = context->state[1];
703 	c = context->state[2];
704 	d = context->state[3];
705 	e = context->state[4];
706 	f = context->state[5];
707 	g = context->state[6];
708 	h = context->state[7];
709 
710 	j = 0;
711 	do {
712 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
713 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
714 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
715 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
716 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
717 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
718 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
719 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
720 	} while (j < 16);
721 
722 	/* Now for the remaining rounds up to 79: */
723 	do {
724 		ROUND512(a,b,c,d,e,f,g,h);
725 		ROUND512(h,a,b,c,d,e,f,g);
726 		ROUND512(g,h,a,b,c,d,e,f);
727 		ROUND512(f,g,h,a,b,c,d,e);
728 		ROUND512(e,f,g,h,a,b,c,d);
729 		ROUND512(d,e,f,g,h,a,b,c);
730 		ROUND512(c,d,e,f,g,h,a,b);
731 		ROUND512(b,c,d,e,f,g,h,a);
732 	} while (j < 80);
733 
734 	/* Compute the current intermediate hash value */
735 	context->state[0] += a;
736 	context->state[1] += b;
737 	context->state[2] += c;
738 	context->state[3] += d;
739 	context->state[4] += e;
740 	context->state[5] += f;
741 	context->state[6] += g;
742 	context->state[7] += h;
743 
744 	/* Clean up */
745 	a = b = c = d = e = f = g = h = T1 = 0;
746 }
747 
748 #else /* SHA2_UNROLL_TRANSFORM */
749 
750 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
751 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
752 	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
753 	int		j;
754 
755 	/* Initialize registers with the prev. intermediate value */
756 	a = context->state[0];
757 	b = context->state[1];
758 	c = context->state[2];
759 	d = context->state[3];
760 	e = context->state[4];
761 	f = context->state[5];
762 	g = context->state[6];
763 	h = context->state[7];
764 
765 	j = 0;
766 	do {
767 #if BYTE_ORDER == LITTLE_ENDIAN
768 		/* Convert TO host byte order */
769 		REVERSE64(*data++, W512[j]);
770 		/* Apply the SHA-512 compression function to update a..h */
771 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
772 #else /* BYTE_ORDER == LITTLE_ENDIAN */
773 		/* Apply the SHA-512 compression function to update a..h with copy */
774 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
775 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
776 		T2 = Sigma0_512(a) + Maj(a, b, c);
777 		h = g;
778 		g = f;
779 		f = e;
780 		e = d + T1;
781 		d = c;
782 		c = b;
783 		b = a;
784 		a = T1 + T2;
785 
786 		j++;
787 	} while (j < 16);
788 
789 	do {
790 		/* Part of the message block expansion: */
791 		s0 = W512[(j+1)&0x0f];
792 		s0 = sigma0_512(s0);
793 		s1 = W512[(j+14)&0x0f];
794 		s1 =  sigma1_512(s1);
795 
796 		/* Apply the SHA-512 compression function to update a..h */
797 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
798 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
799 		T2 = Sigma0_512(a) + Maj(a, b, c);
800 		h = g;
801 		g = f;
802 		f = e;
803 		e = d + T1;
804 		d = c;
805 		c = b;
806 		b = a;
807 		a = T1 + T2;
808 
809 		j++;
810 	} while (j < 80);
811 
812 	/* Compute the current intermediate hash value */
813 	context->state[0] += a;
814 	context->state[1] += b;
815 	context->state[2] += c;
816 	context->state[3] += d;
817 	context->state[4] += e;
818 	context->state[5] += f;
819 	context->state[6] += g;
820 	context->state[7] += h;
821 
822 	/* Clean up */
823 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
824 }
825 
826 #endif /* SHA2_UNROLL_TRANSFORM */
827 
828 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
829 	unsigned int	freespace, usedspace;
830 
831 	if (len == 0) {
832 		/* Calling with no data is valid - we do nothing */
833 		return;
834 	}
835 
836 	/* Sanity check: */
837 	assert(context != NULL && data != NULL);
838 
839 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
840 	if (usedspace > 0) {
841 		/* Calculate how much free space is available in the buffer */
842 		freespace = SHA512_BLOCK_LENGTH - usedspace;
843 
844 		if (len >= freespace) {
845 			/* Fill the buffer completely and process it */
846 			bcopy(data, &context->buffer[usedspace], freespace);
847 			ADDINC128(context->bitcount, freespace << 3);
848 			len -= freespace;
849 			data += freespace;
850 			SHA512_Transform(context, (sha2_word64*)context->buffer);
851 		} else {
852 			/* The buffer is not yet full */
853 			bcopy(data, &context->buffer[usedspace], len);
854 			ADDINC128(context->bitcount, len << 3);
855 			/* Clean up: */
856 			usedspace = freespace = 0;
857 			return;
858 		}
859 	}
860 	while (len >= SHA512_BLOCK_LENGTH) {
861 		/* Process as many complete blocks as we can */
862 		SHA512_Transform(context, (const sha2_word64*)data);
863 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
864 		len -= SHA512_BLOCK_LENGTH;
865 		data += SHA512_BLOCK_LENGTH;
866 	}
867 	if (len > 0) {
868 		/* There's left-overs, so save 'em */
869 		bcopy(data, context->buffer, len);
870 		ADDINC128(context->bitcount, len << 3);
871 	}
872 	/* Clean up: */
873 	usedspace = freespace = 0;
874 }
875 
876 void SHA512_Last(SHA512_CTX* context) {
877 	unsigned int	usedspace;
878 
879 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
880 #if BYTE_ORDER == LITTLE_ENDIAN
881 	/* Convert FROM host byte order */
882 	REVERSE64(context->bitcount[0],context->bitcount[0]);
883 	REVERSE64(context->bitcount[1],context->bitcount[1]);
884 #endif
885 	if (usedspace > 0) {
886 		/* Begin padding with a 1 bit: */
887 		context->buffer[usedspace++] = 0x80;
888 
889 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
890 			/* Set-up for the last transform: */
891 			bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
892 		} else {
893 			if (usedspace < SHA512_BLOCK_LENGTH) {
894 				bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
895 			}
896 			/* Do second-to-last transform: */
897 			SHA512_Transform(context, (sha2_word64*)context->buffer);
898 
899 			/* And set-up for the last transform: */
900 			bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
901 		}
902 	} else {
903 		/* Prepare for final transform: */
904 		bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
905 
906 		/* Begin padding with a 1 bit: */
907 		*context->buffer = 0x80;
908 	}
909 	/* Store the length of input data (in bits): */
910 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
911 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
912 
913 	/* Final transform: */
914 	SHA512_Transform(context, (sha2_word64*)context->buffer);
915 }
916 
917 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
918 	sha2_word64	*d = (sha2_word64*)digest;
919 
920 	/* Sanity check: */
921 	assert(context != NULL);
922 
923 	/* If no digest buffer is passed, we don't bother doing this: */
924 	if (digest != NULL) {
925 		SHA512_Last(context);
926 
927 		/* Save the hash data for output: */
928 #if BYTE_ORDER == LITTLE_ENDIAN
929 		{
930 			/* Convert TO host byte order */
931 			int	j;
932 			for (j = 0; j < 8; j++) {
933 				REVERSE64(context->state[j],context->state[j]);
934 				*d++ = context->state[j];
935 			}
936 		}
937 #else
938 		bcopy(context->state, d, SHA512_DIGEST_LENGTH);
939 #endif
940 	}
941 
942 	/* Zero out state data */
943 	bzero(context, sizeof(context));
944 }
945 
946 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
947 	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
948 	int		i;
949 
950 	/* Sanity check: */
951 	assert(context != NULL);
952 
953 	if (buffer != NULL) {
954 		SHA512_Final(digest, context);
955 
956 		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
957 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
958 			*buffer++ = sha2_hex_digits[*d & 0x0f];
959 			d++;
960 		}
961 		*buffer = (char)0;
962 	} else {
963 		bzero(context, sizeof(context));
964 	}
965 	bzero(digest, SHA512_DIGEST_LENGTH);
966 	return buffer;
967 }
968 
969 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
970 	SHA512_CTX	context;
971 
972 	SHA512_Init(&context);
973 	SHA512_Update(&context, data, len);
974 	return SHA512_End(&context, digest);
975 }
976 
977 
978 /*** SHA-384: *********************************************************/
979 void SHA384_Init(SHA384_CTX* context) {
980 	if (context == NULL) {
981 		return;
982 	}
983 	bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
984 	bzero(context->buffer, SHA384_BLOCK_LENGTH);
985 	context->bitcount[0] = context->bitcount[1] = 0;
986 }
987 
988 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
989 	SHA512_Update((SHA512_CTX*)context, data, len);
990 }
991 
992 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
993 	sha2_word64	*d = (sha2_word64*)digest;
994 
995 	/* Sanity check: */
996 	assert(context != NULL);
997 
998 	/* If no digest buffer is passed, we don't bother doing this: */
999 	if (digest != NULL) {
1000 		SHA512_Last((SHA512_CTX*)context);
1001 
1002 		/* Save the hash data for output: */
1003 #if BYTE_ORDER == LITTLE_ENDIAN
1004 		{
1005 			/* Convert TO host byte order */
1006 			int	j;
1007 			for (j = 0; j < 6; j++) {
1008 				REVERSE64(context->state[j],context->state[j]);
1009 				*d++ = context->state[j];
1010 			}
1011 		}
1012 #else
1013 		bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1014 #endif
1015 	}
1016 
1017 	/* Zero out state data */
1018 	bzero(context, sizeof(context));
1019 }
1020 
1021 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1022 	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1023 	int		i;
1024 
1025 	/* Sanity check: */
1026 	assert(context != NULL);
1027 
1028 	if (buffer != NULL) {
1029 		SHA384_Final(digest, context);
1030 
1031 		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1032 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1033 			*buffer++ = sha2_hex_digits[*d & 0x0f];
1034 			d++;
1035 		}
1036 		*buffer = (char)0;
1037 	} else {
1038 		bzero(context, sizeof(context));
1039 	}
1040 	bzero(digest, SHA384_DIGEST_LENGTH);
1041 	return buffer;
1042 }
1043 
1044 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1045 	SHA384_CTX	context;
1046 
1047 	SHA384_Init(&context);
1048 	SHA384_Update(&context, data, len);
1049 	return SHA384_End(&context, digest);
1050 }
1051 
1052