xref: /dragonfly/sys/crypto/sha2/sha2.c (revision 2cd2d2b5)
1 /*
2  * $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $
3  * $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $
4  * $DragonFly: src/sys/crypto/sha2/sha2.c,v 1.4 2004/02/12 23:14:05 joerg Exp $
5  */
6 /*
7  * sha2.c
8  *
9  * Version 1.0.0beta1
10  *
11  * Written by Aaron D. Gifford <me@aarongifford.com>
12  *
13  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. Neither the name of the copyright holder nor the names of contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  */
40 
41 
42 #include <sys/types.h>
43 #include <sys/time.h>
44 #include <sys/systm.h>
45 #include <machine/endian.h>
46 #include <crypto/sha2/sha2.h>
47 
48 /*
49  * ASSERT NOTE:
50  * Some sanity checking code is included using assert().  On my FreeBSD
51  * system, this additional code can be removed by compiling with NDEBUG
52  * defined.  Check your own systems manpage on assert() to see how to
53  * compile WITHOUT the sanity checking code on your system.
54  *
55  * UNROLLED TRANSFORM LOOP NOTE:
56  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57  * loop version for the hash transform rounds (defined using macros
58  * later in this file).  Either define on the command line, for example:
59  *
60  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61  *
62  * or define below:
63  *
64  *   #define SHA2_UNROLL_TRANSFORM
65  *
66  */
67 
68 #if defined(__DragonFly__) || defined(__bsdi__) || defined(__FreeBSD__)
69 #define assert(x)
70 #endif
71 
72 
73 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
74 /*
75  * BYTE_ORDER NOTE:
76  *
77  * Please make sure that your system defines BYTE_ORDER.  If your
78  * architecture is little-endian, make sure it also defines
79  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
80  * equivilent.
81  *
82  * If your system does not define the above, then you can do so by
83  * hand like this:
84  *
85  *   #define LITTLE_ENDIAN 1234
86  *   #define BIG_ENDIAN    4321
87  *
88  * And for little-endian machines, add:
89  *
90  *   #define BYTE_ORDER LITTLE_ENDIAN
91  *
92  * Or for big-endian machines:
93  *
94  *   #define BYTE_ORDER BIG_ENDIAN
95  *
96  * The FreeBSD machine this was written on defines BYTE_ORDER
97  * appropriately by including <sys/types.h> (which in turn includes
98  * <machine/endian.h> where the appropriate definitions are actually
99  * made).
100  */
101 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
102 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
103 #endif
104 
105 /*
106  * Define the followingsha2_* types to types of the correct length on
107  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
108  * types.  Machines with very recent ANSI C headers, can use the
109  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
110  * during compile or in the sha.h header file.
111  *
112  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
113  * will need to define these three typedefs below (and the appropriate
114  * ones in sha.h too) by hand according to their system architecture.
115  *
116  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
117  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
118  */
119 #if 0 /*def SHA2_USE_INTTYPES_H*/
120 
121 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
122 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
123 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
124 
125 #else /* SHA2_USE_INTTYPES_H */
126 
127 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
128 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
129 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
130 
131 #endif /* SHA2_USE_INTTYPES_H */
132 
133 
134 /*** SHA-256/384/512 Various Length Definitions ***********************/
135 /* NOTE: Most of these are in sha2.h */
136 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
137 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
138 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
139 
140 
141 /*** ENDIAN REVERSAL MACROS *******************************************/
142 #if BYTE_ORDER == LITTLE_ENDIAN
143 #define REVERSE32(w,x)	{ \
144 	sha2_word32 tmp = (w); \
145 	tmp = (tmp >> 16) | (tmp << 16); \
146 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
147 }
148 #define REVERSE64(w,x)	{ \
149 	sha2_word64 tmp = (w); \
150 	tmp = (tmp >> 32) | (tmp << 32); \
151 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
152 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
153 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
154 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
155 }
156 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
157 
158 /*
159  * Macro for incrementally adding the unsigned 64-bit integer n to the
160  * unsigned 128-bit integer (represented using a two-element array of
161  * 64-bit words):
162  */
163 #define ADDINC128(w,n)	{ \
164 	(w)[0] += (sha2_word64)(n); \
165 	if ((w)[0] < (n)) { \
166 		(w)[1]++; \
167 	} \
168 }
169 
170 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
171 /*
172  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
173  *
174  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
175  *   S is a ROTATION) because the SHA-256/384/512 description document
176  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
177  *   same "backwards" definition.
178  */
179 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
180 #define R(b,x) 		((x) >> (b))
181 /* 32-bit Rotate-right (used in SHA-256): */
182 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
183 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
184 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
185 
186 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
187 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
188 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
189 
190 /* Four of six logical functions used in SHA-256: */
191 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
192 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
193 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
194 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
195 
196 /* Four of six logical functions used in SHA-384 and SHA-512: */
197 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
198 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
199 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
200 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
201 
202 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
203 /* NOTE: These should not be accessed directly from outside this
204  * library -- they are intended for private internal visibility/use
205  * only.
206  */
207 void SHA512_Last(SHA512_CTX*);
208 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
209 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
210 
211 
212 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
213 /* Hash constant words K for SHA-256: */
214 const static sha2_word32 K256[64] = {
215 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
216 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
217 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
218 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
219 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
220 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
221 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
222 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
223 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
224 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
225 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
226 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
227 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
228 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
229 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
230 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
231 };
232 
233 /* Initial hash value H for SHA-256: */
234 const static sha2_word32 sha256_initial_hash_value[8] = {
235 	0x6a09e667UL,
236 	0xbb67ae85UL,
237 	0x3c6ef372UL,
238 	0xa54ff53aUL,
239 	0x510e527fUL,
240 	0x9b05688cUL,
241 	0x1f83d9abUL,
242 	0x5be0cd19UL
243 };
244 
245 /* Hash constant words K for SHA-384 and SHA-512: */
246 const static sha2_word64 K512[80] = {
247 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
248 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
249 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
250 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
251 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
252 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
253 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
254 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
255 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
256 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
257 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
258 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
259 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
260 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
261 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
262 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
263 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
264 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
265 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
266 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
267 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
268 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
269 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
270 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
271 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
272 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
273 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
274 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
275 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
276 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
277 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
278 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
279 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
280 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
281 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
282 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
283 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
284 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
285 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
286 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
287 };
288 
289 /* Initial hash value H for SHA-384 */
290 const static sha2_word64 sha384_initial_hash_value[8] = {
291 	0xcbbb9d5dc1059ed8ULL,
292 	0x629a292a367cd507ULL,
293 	0x9159015a3070dd17ULL,
294 	0x152fecd8f70e5939ULL,
295 	0x67332667ffc00b31ULL,
296 	0x8eb44a8768581511ULL,
297 	0xdb0c2e0d64f98fa7ULL,
298 	0x47b5481dbefa4fa4ULL
299 };
300 
301 /* Initial hash value H for SHA-512 */
302 const static sha2_word64 sha512_initial_hash_value[8] = {
303 	0x6a09e667f3bcc908ULL,
304 	0xbb67ae8584caa73bULL,
305 	0x3c6ef372fe94f82bULL,
306 	0xa54ff53a5f1d36f1ULL,
307 	0x510e527fade682d1ULL,
308 	0x9b05688c2b3e6c1fULL,
309 	0x1f83d9abfb41bd6bULL,
310 	0x5be0cd19137e2179ULL
311 };
312 
313 /*
314  * Constant used by SHA256/384/512_End() functions for converting the
315  * digest to a readable hexadecimal character string:
316  */
317 static const char *sha2_hex_digits = "0123456789abcdef";
318 
319 
320 /*** SHA-256: *********************************************************/
321 void SHA256_Init(SHA256_CTX* context) {
322 	if (context == (SHA256_CTX*)0) {
323 		return;
324 	}
325 	bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
326 	bzero(context->buffer, SHA256_BLOCK_LENGTH);
327 	context->bitcount = 0;
328 }
329 
330 #ifdef SHA2_UNROLL_TRANSFORM
331 
332 /* Unrolled SHA-256 round macros: */
333 
334 #if BYTE_ORDER == LITTLE_ENDIAN
335 
336 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
337 	REVERSE32(*data++, W256[j]); \
338 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
339              K256[j] + W256[j]; \
340 	(d) += T1; \
341 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
342 	j++
343 
344 
345 #else /* BYTE_ORDER == LITTLE_ENDIAN */
346 
347 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
348 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
349 	     K256[j] + (W256[j] = *data++); \
350 	(d) += T1; \
351 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
352 	j++
353 
354 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
355 
356 #define ROUND256(a,b,c,d,e,f,g,h)	\
357 	s0 = W256[(j+1)&0x0f]; \
358 	s0 = sigma0_256(s0); \
359 	s1 = W256[(j+14)&0x0f]; \
360 	s1 = sigma1_256(s1); \
361 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
362 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
363 	(d) += T1; \
364 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
365 	j++
366 
367 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
368 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
369 	sha2_word32	T1, *W256;
370 	int		j;
371 
372 	W256 = (sha2_word32*)context->buffer;
373 
374 	/* Initialize registers with the prev. intermediate value */
375 	a = context->state[0];
376 	b = context->state[1];
377 	c = context->state[2];
378 	d = context->state[3];
379 	e = context->state[4];
380 	f = context->state[5];
381 	g = context->state[6];
382 	h = context->state[7];
383 
384 	j = 0;
385 	do {
386 		/* Rounds 0 to 15 (unrolled): */
387 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
388 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
389 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
390 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
391 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
392 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
393 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
394 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
395 	} while (j < 16);
396 
397 	/* Now for the remaining rounds to 64: */
398 	do {
399 		ROUND256(a,b,c,d,e,f,g,h);
400 		ROUND256(h,a,b,c,d,e,f,g);
401 		ROUND256(g,h,a,b,c,d,e,f);
402 		ROUND256(f,g,h,a,b,c,d,e);
403 		ROUND256(e,f,g,h,a,b,c,d);
404 		ROUND256(d,e,f,g,h,a,b,c);
405 		ROUND256(c,d,e,f,g,h,a,b);
406 		ROUND256(b,c,d,e,f,g,h,a);
407 	} while (j < 64);
408 
409 	/* Compute the current intermediate hash value */
410 	context->state[0] += a;
411 	context->state[1] += b;
412 	context->state[2] += c;
413 	context->state[3] += d;
414 	context->state[4] += e;
415 	context->state[5] += f;
416 	context->state[6] += g;
417 	context->state[7] += h;
418 
419 	/* Clean up */
420 	a = b = c = d = e = f = g = h = T1 = 0;
421 }
422 
423 #else /* SHA2_UNROLL_TRANSFORM */
424 
425 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
426 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
427 	sha2_word32	T1, T2, *W256;
428 	int		j;
429 
430 	W256 = (sha2_word32*)context->buffer;
431 
432 	/* Initialize registers with the prev. intermediate value */
433 	a = context->state[0];
434 	b = context->state[1];
435 	c = context->state[2];
436 	d = context->state[3];
437 	e = context->state[4];
438 	f = context->state[5];
439 	g = context->state[6];
440 	h = context->state[7];
441 
442 	j = 0;
443 	do {
444 #if BYTE_ORDER == LITTLE_ENDIAN
445 		/* Copy data while converting to host byte order */
446 		REVERSE32(*data++,W256[j]);
447 		/* Apply the SHA-256 compression function to update a..h */
448 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
449 #else /* BYTE_ORDER == LITTLE_ENDIAN */
450 		/* Apply the SHA-256 compression function to update a..h with copy */
451 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
452 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
453 		T2 = Sigma0_256(a) + Maj(a, b, c);
454 		h = g;
455 		g = f;
456 		f = e;
457 		e = d + T1;
458 		d = c;
459 		c = b;
460 		b = a;
461 		a = T1 + T2;
462 
463 		j++;
464 	} while (j < 16);
465 
466 	do {
467 		/* Part of the message block expansion: */
468 		s0 = W256[(j+1)&0x0f];
469 		s0 = sigma0_256(s0);
470 		s1 = W256[(j+14)&0x0f];
471 		s1 = sigma1_256(s1);
472 
473 		/* Apply the SHA-256 compression function to update a..h */
474 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
475 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
476 		T2 = Sigma0_256(a) + Maj(a, b, c);
477 		h = g;
478 		g = f;
479 		f = e;
480 		e = d + T1;
481 		d = c;
482 		c = b;
483 		b = a;
484 		a = T1 + T2;
485 
486 		j++;
487 	} while (j < 64);
488 
489 	/* Compute the current intermediate hash value */
490 	context->state[0] += a;
491 	context->state[1] += b;
492 	context->state[2] += c;
493 	context->state[3] += d;
494 	context->state[4] += e;
495 	context->state[5] += f;
496 	context->state[6] += g;
497 	context->state[7] += h;
498 
499 	/* Clean up */
500 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
501 }
502 
503 #endif /* SHA2_UNROLL_TRANSFORM */
504 
505 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
506 	unsigned int	freespace, usedspace;
507 
508 	if (len == 0) {
509 		/* Calling with no data is valid - we do nothing */
510 		return;
511 	}
512 
513 	/* Sanity check: */
514 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
515 
516 	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
517 	if (usedspace > 0) {
518 		/* Calculate how much free space is available in the buffer */
519 		freespace = SHA256_BLOCK_LENGTH - usedspace;
520 
521 		if (len >= freespace) {
522 			/* Fill the buffer completely and process it */
523 			bcopy(data, &context->buffer[usedspace], freespace);
524 			context->bitcount += freespace << 3;
525 			len -= freespace;
526 			data += freespace;
527 			SHA256_Transform(context, (sha2_word32*)context->buffer);
528 		} else {
529 			/* The buffer is not yet full */
530 			bcopy(data, &context->buffer[usedspace], len);
531 			context->bitcount += len << 3;
532 			/* Clean up: */
533 			usedspace = freespace = 0;
534 			return;
535 		}
536 	}
537 	while (len >= SHA256_BLOCK_LENGTH) {
538 		/* Process as many complete blocks as we can */
539 		SHA256_Transform(context, (const sha2_word32*)data);
540 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
541 		len -= SHA256_BLOCK_LENGTH;
542 		data += SHA256_BLOCK_LENGTH;
543 	}
544 	if (len > 0) {
545 		/* There's left-overs, so save 'em */
546 		bcopy(data, context->buffer, len);
547 		context->bitcount += len << 3;
548 	}
549 	/* Clean up: */
550 	usedspace = freespace = 0;
551 }
552 
553 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
554 	sha2_word32	*d = (sha2_word32*)digest;
555 	unsigned int	usedspace;
556 
557 	/* Sanity check: */
558 	assert(context != (SHA256_CTX*)0);
559 
560 	/* If no digest buffer is passed, we don't bother doing this: */
561 	if (digest != (sha2_byte*)0) {
562 		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
563 #if BYTE_ORDER == LITTLE_ENDIAN
564 		/* Convert FROM host byte order */
565 		REVERSE64(context->bitcount,context->bitcount);
566 #endif
567 		if (usedspace > 0) {
568 			/* Begin padding with a 1 bit: */
569 			context->buffer[usedspace++] = 0x80;
570 
571 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
572 				/* Set-up for the last transform: */
573 				bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
574 			} else {
575 				if (usedspace < SHA256_BLOCK_LENGTH) {
576 					bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
577 				}
578 				/* Do second-to-last transform: */
579 				SHA256_Transform(context, (sha2_word32*)context->buffer);
580 
581 				/* And set-up for the last transform: */
582 				bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
583 			}
584 		} else {
585 			/* Set-up for the last transform: */
586 			bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
587 
588 			/* Begin padding with a 1 bit: */
589 			*context->buffer = 0x80;
590 		}
591 		/* Set the bit count: */
592 		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
593 
594 		/* Final transform: */
595 		SHA256_Transform(context, (sha2_word32*)context->buffer);
596 
597 #if BYTE_ORDER == LITTLE_ENDIAN
598 		{
599 			/* Convert TO host byte order */
600 			int	j;
601 			for (j = 0; j < 8; j++) {
602 				REVERSE32(context->state[j],context->state[j]);
603 				*d++ = context->state[j];
604 			}
605 		}
606 #else
607 		bcopy(context->state, d, SHA256_DIGEST_LENGTH);
608 #endif
609 	}
610 
611 	/* Clean up state data: */
612 	bzero(context, sizeof(context));
613 	usedspace = 0;
614 }
615 
616 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
617 	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
618 	int		i;
619 
620 	/* Sanity check: */
621 	assert(context != (SHA256_CTX*)0);
622 
623 	if (buffer != (char*)0) {
624 		SHA256_Final(digest, context);
625 
626 		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
627 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
628 			*buffer++ = sha2_hex_digits[*d & 0x0f];
629 			d++;
630 		}
631 		*buffer = (char)0;
632 	} else {
633 		bzero(context, sizeof(context));
634 	}
635 	bzero(digest, SHA256_DIGEST_LENGTH);
636 	return buffer;
637 }
638 
639 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
640 	SHA256_CTX	context;
641 
642 	SHA256_Init(&context);
643 	SHA256_Update(&context, data, len);
644 	return SHA256_End(&context, digest);
645 }
646 
647 
648 /*** SHA-512: *********************************************************/
649 void SHA512_Init(SHA512_CTX* context) {
650 	if (context == (SHA512_CTX*)0) {
651 		return;
652 	}
653 	bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
654 	bzero(context->buffer, SHA512_BLOCK_LENGTH);
655 	context->bitcount[0] = context->bitcount[1] =  0;
656 }
657 
658 #ifdef SHA2_UNROLL_TRANSFORM
659 
660 /* Unrolled SHA-512 round macros: */
661 #if BYTE_ORDER == LITTLE_ENDIAN
662 
663 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
664 	REVERSE64(*data++, W512[j]); \
665 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
666              K512[j] + W512[j]; \
667 	(d) += T1, \
668 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
669 	j++
670 
671 
672 #else /* BYTE_ORDER == LITTLE_ENDIAN */
673 
674 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
675 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
676              K512[j] + (W512[j] = *data++); \
677 	(d) += T1; \
678 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
679 	j++
680 
681 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
682 
683 #define ROUND512(a,b,c,d,e,f,g,h)	\
684 	s0 = W512[(j+1)&0x0f]; \
685 	s0 = sigma0_512(s0); \
686 	s1 = W512[(j+14)&0x0f]; \
687 	s1 = sigma1_512(s1); \
688 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
689              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
690 	(d) += T1; \
691 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
692 	j++
693 
694 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
695 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
696 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
697 	int		j;
698 
699 	/* Initialize registers with the prev. intermediate value */
700 	a = context->state[0];
701 	b = context->state[1];
702 	c = context->state[2];
703 	d = context->state[3];
704 	e = context->state[4];
705 	f = context->state[5];
706 	g = context->state[6];
707 	h = context->state[7];
708 
709 	j = 0;
710 	do {
711 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
712 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
713 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
714 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
715 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
716 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
717 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
718 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
719 	} while (j < 16);
720 
721 	/* Now for the remaining rounds up to 79: */
722 	do {
723 		ROUND512(a,b,c,d,e,f,g,h);
724 		ROUND512(h,a,b,c,d,e,f,g);
725 		ROUND512(g,h,a,b,c,d,e,f);
726 		ROUND512(f,g,h,a,b,c,d,e);
727 		ROUND512(e,f,g,h,a,b,c,d);
728 		ROUND512(d,e,f,g,h,a,b,c);
729 		ROUND512(c,d,e,f,g,h,a,b);
730 		ROUND512(b,c,d,e,f,g,h,a);
731 	} while (j < 80);
732 
733 	/* Compute the current intermediate hash value */
734 	context->state[0] += a;
735 	context->state[1] += b;
736 	context->state[2] += c;
737 	context->state[3] += d;
738 	context->state[4] += e;
739 	context->state[5] += f;
740 	context->state[6] += g;
741 	context->state[7] += h;
742 
743 	/* Clean up */
744 	a = b = c = d = e = f = g = h = T1 = 0;
745 }
746 
747 #else /* SHA2_UNROLL_TRANSFORM */
748 
749 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
750 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
751 	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
752 	int		j;
753 
754 	/* Initialize registers with the prev. intermediate value */
755 	a = context->state[0];
756 	b = context->state[1];
757 	c = context->state[2];
758 	d = context->state[3];
759 	e = context->state[4];
760 	f = context->state[5];
761 	g = context->state[6];
762 	h = context->state[7];
763 
764 	j = 0;
765 	do {
766 #if BYTE_ORDER == LITTLE_ENDIAN
767 		/* Convert TO host byte order */
768 		REVERSE64(*data++, W512[j]);
769 		/* Apply the SHA-512 compression function to update a..h */
770 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
771 #else /* BYTE_ORDER == LITTLE_ENDIAN */
772 		/* Apply the SHA-512 compression function to update a..h with copy */
773 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
774 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
775 		T2 = Sigma0_512(a) + Maj(a, b, c);
776 		h = g;
777 		g = f;
778 		f = e;
779 		e = d + T1;
780 		d = c;
781 		c = b;
782 		b = a;
783 		a = T1 + T2;
784 
785 		j++;
786 	} while (j < 16);
787 
788 	do {
789 		/* Part of the message block expansion: */
790 		s0 = W512[(j+1)&0x0f];
791 		s0 = sigma0_512(s0);
792 		s1 = W512[(j+14)&0x0f];
793 		s1 =  sigma1_512(s1);
794 
795 		/* Apply the SHA-512 compression function to update a..h */
796 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
797 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
798 		T2 = Sigma0_512(a) + Maj(a, b, c);
799 		h = g;
800 		g = f;
801 		f = e;
802 		e = d + T1;
803 		d = c;
804 		c = b;
805 		b = a;
806 		a = T1 + T2;
807 
808 		j++;
809 	} while (j < 80);
810 
811 	/* Compute the current intermediate hash value */
812 	context->state[0] += a;
813 	context->state[1] += b;
814 	context->state[2] += c;
815 	context->state[3] += d;
816 	context->state[4] += e;
817 	context->state[5] += f;
818 	context->state[6] += g;
819 	context->state[7] += h;
820 
821 	/* Clean up */
822 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
823 }
824 
825 #endif /* SHA2_UNROLL_TRANSFORM */
826 
827 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
828 	unsigned int	freespace, usedspace;
829 
830 	if (len == 0) {
831 		/* Calling with no data is valid - we do nothing */
832 		return;
833 	}
834 
835 	/* Sanity check: */
836 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
837 
838 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
839 	if (usedspace > 0) {
840 		/* Calculate how much free space is available in the buffer */
841 		freespace = SHA512_BLOCK_LENGTH - usedspace;
842 
843 		if (len >= freespace) {
844 			/* Fill the buffer completely and process it */
845 			bcopy(data, &context->buffer[usedspace], freespace);
846 			ADDINC128(context->bitcount, freespace << 3);
847 			len -= freespace;
848 			data += freespace;
849 			SHA512_Transform(context, (sha2_word64*)context->buffer);
850 		} else {
851 			/* The buffer is not yet full */
852 			bcopy(data, &context->buffer[usedspace], len);
853 			ADDINC128(context->bitcount, len << 3);
854 			/* Clean up: */
855 			usedspace = freespace = 0;
856 			return;
857 		}
858 	}
859 	while (len >= SHA512_BLOCK_LENGTH) {
860 		/* Process as many complete blocks as we can */
861 		SHA512_Transform(context, (const sha2_word64*)data);
862 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
863 		len -= SHA512_BLOCK_LENGTH;
864 		data += SHA512_BLOCK_LENGTH;
865 	}
866 	if (len > 0) {
867 		/* There's left-overs, so save 'em */
868 		bcopy(data, context->buffer, len);
869 		ADDINC128(context->bitcount, len << 3);
870 	}
871 	/* Clean up: */
872 	usedspace = freespace = 0;
873 }
874 
875 void SHA512_Last(SHA512_CTX* context) {
876 	unsigned int	usedspace;
877 
878 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
879 #if BYTE_ORDER == LITTLE_ENDIAN
880 	/* Convert FROM host byte order */
881 	REVERSE64(context->bitcount[0],context->bitcount[0]);
882 	REVERSE64(context->bitcount[1],context->bitcount[1]);
883 #endif
884 	if (usedspace > 0) {
885 		/* Begin padding with a 1 bit: */
886 		context->buffer[usedspace++] = 0x80;
887 
888 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
889 			/* Set-up for the last transform: */
890 			bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
891 		} else {
892 			if (usedspace < SHA512_BLOCK_LENGTH) {
893 				bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
894 			}
895 			/* Do second-to-last transform: */
896 			SHA512_Transform(context, (sha2_word64*)context->buffer);
897 
898 			/* And set-up for the last transform: */
899 			bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
900 		}
901 	} else {
902 		/* Prepare for final transform: */
903 		bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
904 
905 		/* Begin padding with a 1 bit: */
906 		*context->buffer = 0x80;
907 	}
908 	/* Store the length of input data (in bits): */
909 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
910 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
911 
912 	/* Final transform: */
913 	SHA512_Transform(context, (sha2_word64*)context->buffer);
914 }
915 
916 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
917 	sha2_word64	*d = (sha2_word64*)digest;
918 
919 	/* Sanity check: */
920 	assert(context != (SHA512_CTX*)0);
921 
922 	/* If no digest buffer is passed, we don't bother doing this: */
923 	if (digest != (sha2_byte*)0) {
924 		SHA512_Last(context);
925 
926 		/* Save the hash data for output: */
927 #if BYTE_ORDER == LITTLE_ENDIAN
928 		{
929 			/* Convert TO host byte order */
930 			int	j;
931 			for (j = 0; j < 8; j++) {
932 				REVERSE64(context->state[j],context->state[j]);
933 				*d++ = context->state[j];
934 			}
935 		}
936 #else
937 		bcopy(context->state, d, SHA512_DIGEST_LENGTH);
938 #endif
939 	}
940 
941 	/* Zero out state data */
942 	bzero(context, sizeof(context));
943 }
944 
945 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
946 	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
947 	int		i;
948 
949 	/* Sanity check: */
950 	assert(context != (SHA512_CTX*)0);
951 
952 	if (buffer != (char*)0) {
953 		SHA512_Final(digest, context);
954 
955 		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
956 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
957 			*buffer++ = sha2_hex_digits[*d & 0x0f];
958 			d++;
959 		}
960 		*buffer = (char)0;
961 	} else {
962 		bzero(context, sizeof(context));
963 	}
964 	bzero(digest, SHA512_DIGEST_LENGTH);
965 	return buffer;
966 }
967 
968 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
969 	SHA512_CTX	context;
970 
971 	SHA512_Init(&context);
972 	SHA512_Update(&context, data, len);
973 	return SHA512_End(&context, digest);
974 }
975 
976 
977 /*** SHA-384: *********************************************************/
978 void SHA384_Init(SHA384_CTX* context) {
979 	if (context == (SHA384_CTX*)0) {
980 		return;
981 	}
982 	bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
983 	bzero(context->buffer, SHA384_BLOCK_LENGTH);
984 	context->bitcount[0] = context->bitcount[1] = 0;
985 }
986 
987 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
988 	SHA512_Update((SHA512_CTX*)context, data, len);
989 }
990 
991 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
992 	sha2_word64	*d = (sha2_word64*)digest;
993 
994 	/* Sanity check: */
995 	assert(context != (SHA384_CTX*)0);
996 
997 	/* If no digest buffer is passed, we don't bother doing this: */
998 	if (digest != (sha2_byte*)0) {
999 		SHA512_Last((SHA512_CTX*)context);
1000 
1001 		/* Save the hash data for output: */
1002 #if BYTE_ORDER == LITTLE_ENDIAN
1003 		{
1004 			/* Convert TO host byte order */
1005 			int	j;
1006 			for (j = 0; j < 6; j++) {
1007 				REVERSE64(context->state[j],context->state[j]);
1008 				*d++ = context->state[j];
1009 			}
1010 		}
1011 #else
1012 		bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1013 #endif
1014 	}
1015 
1016 	/* Zero out state data */
1017 	bzero(context, sizeof(context));
1018 }
1019 
1020 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1021 	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1022 	int		i;
1023 
1024 	/* Sanity check: */
1025 	assert(context != (SHA384_CTX*)0);
1026 
1027 	if (buffer != (char*)0) {
1028 		SHA384_Final(digest, context);
1029 
1030 		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1031 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1032 			*buffer++ = sha2_hex_digits[*d & 0x0f];
1033 			d++;
1034 		}
1035 		*buffer = (char)0;
1036 	} else {
1037 		bzero(context, sizeof(context));
1038 	}
1039 	bzero(digest, SHA384_DIGEST_LENGTH);
1040 	return buffer;
1041 }
1042 
1043 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1044 	SHA384_CTX	context;
1045 
1046 	SHA384_Init(&context);
1047 	SHA384_Update(&context, data, len);
1048 	return SHA384_End(&context, digest);
1049 }
1050 
1051