xref: /dragonfly/sys/crypto/sha2/sha2.c (revision 6e285212)
1 /*	$FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $	*/
2 /*	$DragonFly: src/sys/crypto/sha2/sha2.c,v 1.2 2003/06/17 04:28:20 dillon Exp $	*/
3 /*	$KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $	*/
4 
5 /*
6  * sha2.c
7  *
8  * Version 1.0.0beta1
9  *
10  * Written by Aaron D. Gifford <me@aarongifford.com>
11  *
12  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the copyright holder nor the names of contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  */
39 
40 
41 #include <sys/types.h>
42 #include <sys/time.h>
43 #include <sys/systm.h>
44 #include <machine/endian.h>
45 #include <crypto/sha2/sha2.h>
46 
47 /*
48  * ASSERT NOTE:
49  * Some sanity checking code is included using assert().  On my FreeBSD
50  * system, this additional code can be removed by compiling with NDEBUG
51  * defined.  Check your own systems manpage on assert() to see how to
52  * compile WITHOUT the sanity checking code on your system.
53  *
54  * UNROLLED TRANSFORM LOOP NOTE:
55  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
56  * loop version for the hash transform rounds (defined using macros
57  * later in this file).  Either define on the command line, for example:
58  *
59  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
60  *
61  * or define below:
62  *
63  *   #define SHA2_UNROLL_TRANSFORM
64  *
65  */
66 
67 #if defined(__bsdi__) || defined(__FreeBSD__)
68 #define assert(x)
69 #endif
70 
71 
72 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
73 /*
74  * BYTE_ORDER NOTE:
75  *
76  * Please make sure that your system defines BYTE_ORDER.  If your
77  * architecture is little-endian, make sure it also defines
78  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
79  * equivilent.
80  *
81  * If your system does not define the above, then you can do so by
82  * hand like this:
83  *
84  *   #define LITTLE_ENDIAN 1234
85  *   #define BIG_ENDIAN    4321
86  *
87  * And for little-endian machines, add:
88  *
89  *   #define BYTE_ORDER LITTLE_ENDIAN
90  *
91  * Or for big-endian machines:
92  *
93  *   #define BYTE_ORDER BIG_ENDIAN
94  *
95  * The FreeBSD machine this was written on defines BYTE_ORDER
96  * appropriately by including <sys/types.h> (which in turn includes
97  * <machine/endian.h> where the appropriate definitions are actually
98  * made).
99  */
100 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
101 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
102 #endif
103 
104 /*
105  * Define the followingsha2_* types to types of the correct length on
106  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
107  * types.  Machines with very recent ANSI C headers, can use the
108  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
109  * during compile or in the sha.h header file.
110  *
111  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
112  * will need to define these three typedefs below (and the appropriate
113  * ones in sha.h too) by hand according to their system architecture.
114  *
115  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
116  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
117  */
118 #if 0 /*def SHA2_USE_INTTYPES_H*/
119 
120 typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
121 typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
122 typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
123 
124 #else /* SHA2_USE_INTTYPES_H */
125 
126 typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
127 typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
128 typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
129 
130 #endif /* SHA2_USE_INTTYPES_H */
131 
132 
133 /*** SHA-256/384/512 Various Length Definitions ***********************/
134 /* NOTE: Most of these are in sha2.h */
135 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
136 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
137 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
138 
139 
140 /*** ENDIAN REVERSAL MACROS *******************************************/
141 #if BYTE_ORDER == LITTLE_ENDIAN
142 #define REVERSE32(w,x)	{ \
143 	sha2_word32 tmp = (w); \
144 	tmp = (tmp >> 16) | (tmp << 16); \
145 	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
146 }
147 #define REVERSE64(w,x)	{ \
148 	sha2_word64 tmp = (w); \
149 	tmp = (tmp >> 32) | (tmp << 32); \
150 	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
151 	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
152 	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
153 	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
154 }
155 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
156 
157 /*
158  * Macro for incrementally adding the unsigned 64-bit integer n to the
159  * unsigned 128-bit integer (represented using a two-element array of
160  * 64-bit words):
161  */
162 #define ADDINC128(w,n)	{ \
163 	(w)[0] += (sha2_word64)(n); \
164 	if ((w)[0] < (n)) { \
165 		(w)[1]++; \
166 	} \
167 }
168 
169 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
170 /*
171  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
172  *
173  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
174  *   S is a ROTATION) because the SHA-256/384/512 description document
175  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
176  *   same "backwards" definition.
177  */
178 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
179 #define R(b,x) 		((x) >> (b))
180 /* 32-bit Rotate-right (used in SHA-256): */
181 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
182 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
183 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
184 
185 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
186 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
187 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
188 
189 /* Four of six logical functions used in SHA-256: */
190 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
191 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
192 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
193 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
194 
195 /* Four of six logical functions used in SHA-384 and SHA-512: */
196 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
197 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
198 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
199 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
200 
201 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
202 /* NOTE: These should not be accessed directly from outside this
203  * library -- they are intended for private internal visibility/use
204  * only.
205  */
206 void SHA512_Last(SHA512_CTX*);
207 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
208 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
209 
210 
211 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
212 /* Hash constant words K for SHA-256: */
213 const static sha2_word32 K256[64] = {
214 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
215 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
216 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
217 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
218 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
219 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
220 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
221 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
222 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
223 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
224 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
225 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
226 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
227 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
228 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
229 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
230 };
231 
232 /* Initial hash value H for SHA-256: */
233 const static sha2_word32 sha256_initial_hash_value[8] = {
234 	0x6a09e667UL,
235 	0xbb67ae85UL,
236 	0x3c6ef372UL,
237 	0xa54ff53aUL,
238 	0x510e527fUL,
239 	0x9b05688cUL,
240 	0x1f83d9abUL,
241 	0x5be0cd19UL
242 };
243 
244 /* Hash constant words K for SHA-384 and SHA-512: */
245 const static sha2_word64 K512[80] = {
246 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
247 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
248 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
249 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
250 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
251 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
252 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
253 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
254 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
255 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
256 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
257 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
258 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
259 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
260 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
261 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
262 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
263 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
264 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
265 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
266 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
267 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
268 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
269 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
270 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
271 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
272 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
273 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
274 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
275 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
276 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
277 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
278 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
279 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
280 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
281 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
282 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
283 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
284 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
285 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
286 };
287 
288 /* Initial hash value H for SHA-384 */
289 const static sha2_word64 sha384_initial_hash_value[8] = {
290 	0xcbbb9d5dc1059ed8ULL,
291 	0x629a292a367cd507ULL,
292 	0x9159015a3070dd17ULL,
293 	0x152fecd8f70e5939ULL,
294 	0x67332667ffc00b31ULL,
295 	0x8eb44a8768581511ULL,
296 	0xdb0c2e0d64f98fa7ULL,
297 	0x47b5481dbefa4fa4ULL
298 };
299 
300 /* Initial hash value H for SHA-512 */
301 const static sha2_word64 sha512_initial_hash_value[8] = {
302 	0x6a09e667f3bcc908ULL,
303 	0xbb67ae8584caa73bULL,
304 	0x3c6ef372fe94f82bULL,
305 	0xa54ff53a5f1d36f1ULL,
306 	0x510e527fade682d1ULL,
307 	0x9b05688c2b3e6c1fULL,
308 	0x1f83d9abfb41bd6bULL,
309 	0x5be0cd19137e2179ULL
310 };
311 
312 /*
313  * Constant used by SHA256/384/512_End() functions for converting the
314  * digest to a readable hexadecimal character string:
315  */
316 static const char *sha2_hex_digits = "0123456789abcdef";
317 
318 
319 /*** SHA-256: *********************************************************/
320 void SHA256_Init(SHA256_CTX* context) {
321 	if (context == (SHA256_CTX*)0) {
322 		return;
323 	}
324 	bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
325 	bzero(context->buffer, SHA256_BLOCK_LENGTH);
326 	context->bitcount = 0;
327 }
328 
329 #ifdef SHA2_UNROLL_TRANSFORM
330 
331 /* Unrolled SHA-256 round macros: */
332 
333 #if BYTE_ORDER == LITTLE_ENDIAN
334 
335 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
336 	REVERSE32(*data++, W256[j]); \
337 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
338              K256[j] + W256[j]; \
339 	(d) += T1; \
340 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
341 	j++
342 
343 
344 #else /* BYTE_ORDER == LITTLE_ENDIAN */
345 
346 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
347 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
348 	     K256[j] + (W256[j] = *data++); \
349 	(d) += T1; \
350 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
351 	j++
352 
353 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
354 
355 #define ROUND256(a,b,c,d,e,f,g,h)	\
356 	s0 = W256[(j+1)&0x0f]; \
357 	s0 = sigma0_256(s0); \
358 	s1 = W256[(j+14)&0x0f]; \
359 	s1 = sigma1_256(s1); \
360 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
361 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
362 	(d) += T1; \
363 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
364 	j++
365 
366 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
367 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
368 	sha2_word32	T1, *W256;
369 	int		j;
370 
371 	W256 = (sha2_word32*)context->buffer;
372 
373 	/* Initialize registers with the prev. intermediate value */
374 	a = context->state[0];
375 	b = context->state[1];
376 	c = context->state[2];
377 	d = context->state[3];
378 	e = context->state[4];
379 	f = context->state[5];
380 	g = context->state[6];
381 	h = context->state[7];
382 
383 	j = 0;
384 	do {
385 		/* Rounds 0 to 15 (unrolled): */
386 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
387 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
388 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
389 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
390 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
391 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
392 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
393 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
394 	} while (j < 16);
395 
396 	/* Now for the remaining rounds to 64: */
397 	do {
398 		ROUND256(a,b,c,d,e,f,g,h);
399 		ROUND256(h,a,b,c,d,e,f,g);
400 		ROUND256(g,h,a,b,c,d,e,f);
401 		ROUND256(f,g,h,a,b,c,d,e);
402 		ROUND256(e,f,g,h,a,b,c,d);
403 		ROUND256(d,e,f,g,h,a,b,c);
404 		ROUND256(c,d,e,f,g,h,a,b);
405 		ROUND256(b,c,d,e,f,g,h,a);
406 	} while (j < 64);
407 
408 	/* Compute the current intermediate hash value */
409 	context->state[0] += a;
410 	context->state[1] += b;
411 	context->state[2] += c;
412 	context->state[3] += d;
413 	context->state[4] += e;
414 	context->state[5] += f;
415 	context->state[6] += g;
416 	context->state[7] += h;
417 
418 	/* Clean up */
419 	a = b = c = d = e = f = g = h = T1 = 0;
420 }
421 
422 #else /* SHA2_UNROLL_TRANSFORM */
423 
424 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
425 	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
426 	sha2_word32	T1, T2, *W256;
427 	int		j;
428 
429 	W256 = (sha2_word32*)context->buffer;
430 
431 	/* Initialize registers with the prev. intermediate value */
432 	a = context->state[0];
433 	b = context->state[1];
434 	c = context->state[2];
435 	d = context->state[3];
436 	e = context->state[4];
437 	f = context->state[5];
438 	g = context->state[6];
439 	h = context->state[7];
440 
441 	j = 0;
442 	do {
443 #if BYTE_ORDER == LITTLE_ENDIAN
444 		/* Copy data while converting to host byte order */
445 		REVERSE32(*data++,W256[j]);
446 		/* Apply the SHA-256 compression function to update a..h */
447 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
448 #else /* BYTE_ORDER == LITTLE_ENDIAN */
449 		/* Apply the SHA-256 compression function to update a..h with copy */
450 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
451 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
452 		T2 = Sigma0_256(a) + Maj(a, b, c);
453 		h = g;
454 		g = f;
455 		f = e;
456 		e = d + T1;
457 		d = c;
458 		c = b;
459 		b = a;
460 		a = T1 + T2;
461 
462 		j++;
463 	} while (j < 16);
464 
465 	do {
466 		/* Part of the message block expansion: */
467 		s0 = W256[(j+1)&0x0f];
468 		s0 = sigma0_256(s0);
469 		s1 = W256[(j+14)&0x0f];
470 		s1 = sigma1_256(s1);
471 
472 		/* Apply the SHA-256 compression function to update a..h */
473 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
474 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
475 		T2 = Sigma0_256(a) + Maj(a, b, c);
476 		h = g;
477 		g = f;
478 		f = e;
479 		e = d + T1;
480 		d = c;
481 		c = b;
482 		b = a;
483 		a = T1 + T2;
484 
485 		j++;
486 	} while (j < 64);
487 
488 	/* Compute the current intermediate hash value */
489 	context->state[0] += a;
490 	context->state[1] += b;
491 	context->state[2] += c;
492 	context->state[3] += d;
493 	context->state[4] += e;
494 	context->state[5] += f;
495 	context->state[6] += g;
496 	context->state[7] += h;
497 
498 	/* Clean up */
499 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
500 }
501 
502 #endif /* SHA2_UNROLL_TRANSFORM */
503 
504 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
505 	unsigned int	freespace, usedspace;
506 
507 	if (len == 0) {
508 		/* Calling with no data is valid - we do nothing */
509 		return;
510 	}
511 
512 	/* Sanity check: */
513 	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
514 
515 	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
516 	if (usedspace > 0) {
517 		/* Calculate how much free space is available in the buffer */
518 		freespace = SHA256_BLOCK_LENGTH - usedspace;
519 
520 		if (len >= freespace) {
521 			/* Fill the buffer completely and process it */
522 			bcopy(data, &context->buffer[usedspace], freespace);
523 			context->bitcount += freespace << 3;
524 			len -= freespace;
525 			data += freespace;
526 			SHA256_Transform(context, (sha2_word32*)context->buffer);
527 		} else {
528 			/* The buffer is not yet full */
529 			bcopy(data, &context->buffer[usedspace], len);
530 			context->bitcount += len << 3;
531 			/* Clean up: */
532 			usedspace = freespace = 0;
533 			return;
534 		}
535 	}
536 	while (len >= SHA256_BLOCK_LENGTH) {
537 		/* Process as many complete blocks as we can */
538 		SHA256_Transform(context, (const sha2_word32*)data);
539 		context->bitcount += SHA256_BLOCK_LENGTH << 3;
540 		len -= SHA256_BLOCK_LENGTH;
541 		data += SHA256_BLOCK_LENGTH;
542 	}
543 	if (len > 0) {
544 		/* There's left-overs, so save 'em */
545 		bcopy(data, context->buffer, len);
546 		context->bitcount += len << 3;
547 	}
548 	/* Clean up: */
549 	usedspace = freespace = 0;
550 }
551 
552 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
553 	sha2_word32	*d = (sha2_word32*)digest;
554 	unsigned int	usedspace;
555 
556 	/* Sanity check: */
557 	assert(context != (SHA256_CTX*)0);
558 
559 	/* If no digest buffer is passed, we don't bother doing this: */
560 	if (digest != (sha2_byte*)0) {
561 		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
562 #if BYTE_ORDER == LITTLE_ENDIAN
563 		/* Convert FROM host byte order */
564 		REVERSE64(context->bitcount,context->bitcount);
565 #endif
566 		if (usedspace > 0) {
567 			/* Begin padding with a 1 bit: */
568 			context->buffer[usedspace++] = 0x80;
569 
570 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
571 				/* Set-up for the last transform: */
572 				bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
573 			} else {
574 				if (usedspace < SHA256_BLOCK_LENGTH) {
575 					bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
576 				}
577 				/* Do second-to-last transform: */
578 				SHA256_Transform(context, (sha2_word32*)context->buffer);
579 
580 				/* And set-up for the last transform: */
581 				bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
582 			}
583 		} else {
584 			/* Set-up for the last transform: */
585 			bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
586 
587 			/* Begin padding with a 1 bit: */
588 			*context->buffer = 0x80;
589 		}
590 		/* Set the bit count: */
591 		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
592 
593 		/* Final transform: */
594 		SHA256_Transform(context, (sha2_word32*)context->buffer);
595 
596 #if BYTE_ORDER == LITTLE_ENDIAN
597 		{
598 			/* Convert TO host byte order */
599 			int	j;
600 			for (j = 0; j < 8; j++) {
601 				REVERSE32(context->state[j],context->state[j]);
602 				*d++ = context->state[j];
603 			}
604 		}
605 #else
606 		bcopy(context->state, d, SHA256_DIGEST_LENGTH);
607 #endif
608 	}
609 
610 	/* Clean up state data: */
611 	bzero(context, sizeof(context));
612 	usedspace = 0;
613 }
614 
615 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
616 	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
617 	int		i;
618 
619 	/* Sanity check: */
620 	assert(context != (SHA256_CTX*)0);
621 
622 	if (buffer != (char*)0) {
623 		SHA256_Final(digest, context);
624 
625 		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
626 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
627 			*buffer++ = sha2_hex_digits[*d & 0x0f];
628 			d++;
629 		}
630 		*buffer = (char)0;
631 	} else {
632 		bzero(context, sizeof(context));
633 	}
634 	bzero(digest, SHA256_DIGEST_LENGTH);
635 	return buffer;
636 }
637 
638 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
639 	SHA256_CTX	context;
640 
641 	SHA256_Init(&context);
642 	SHA256_Update(&context, data, len);
643 	return SHA256_End(&context, digest);
644 }
645 
646 
647 /*** SHA-512: *********************************************************/
648 void SHA512_Init(SHA512_CTX* context) {
649 	if (context == (SHA512_CTX*)0) {
650 		return;
651 	}
652 	bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
653 	bzero(context->buffer, SHA512_BLOCK_LENGTH);
654 	context->bitcount[0] = context->bitcount[1] =  0;
655 }
656 
657 #ifdef SHA2_UNROLL_TRANSFORM
658 
659 /* Unrolled SHA-512 round macros: */
660 #if BYTE_ORDER == LITTLE_ENDIAN
661 
662 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
663 	REVERSE64(*data++, W512[j]); \
664 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
665              K512[j] + W512[j]; \
666 	(d) += T1, \
667 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
668 	j++
669 
670 
671 #else /* BYTE_ORDER == LITTLE_ENDIAN */
672 
673 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
674 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
675              K512[j] + (W512[j] = *data++); \
676 	(d) += T1; \
677 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
678 	j++
679 
680 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
681 
682 #define ROUND512(a,b,c,d,e,f,g,h)	\
683 	s0 = W512[(j+1)&0x0f]; \
684 	s0 = sigma0_512(s0); \
685 	s1 = W512[(j+14)&0x0f]; \
686 	s1 = sigma1_512(s1); \
687 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
688              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
689 	(d) += T1; \
690 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
691 	j++
692 
693 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
694 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
695 	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
696 	int		j;
697 
698 	/* Initialize registers with the prev. intermediate value */
699 	a = context->state[0];
700 	b = context->state[1];
701 	c = context->state[2];
702 	d = context->state[3];
703 	e = context->state[4];
704 	f = context->state[5];
705 	g = context->state[6];
706 	h = context->state[7];
707 
708 	j = 0;
709 	do {
710 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
711 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
712 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
713 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
714 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
715 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
716 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
717 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
718 	} while (j < 16);
719 
720 	/* Now for the remaining rounds up to 79: */
721 	do {
722 		ROUND512(a,b,c,d,e,f,g,h);
723 		ROUND512(h,a,b,c,d,e,f,g);
724 		ROUND512(g,h,a,b,c,d,e,f);
725 		ROUND512(f,g,h,a,b,c,d,e);
726 		ROUND512(e,f,g,h,a,b,c,d);
727 		ROUND512(d,e,f,g,h,a,b,c);
728 		ROUND512(c,d,e,f,g,h,a,b);
729 		ROUND512(b,c,d,e,f,g,h,a);
730 	} while (j < 80);
731 
732 	/* Compute the current intermediate hash value */
733 	context->state[0] += a;
734 	context->state[1] += b;
735 	context->state[2] += c;
736 	context->state[3] += d;
737 	context->state[4] += e;
738 	context->state[5] += f;
739 	context->state[6] += g;
740 	context->state[7] += h;
741 
742 	/* Clean up */
743 	a = b = c = d = e = f = g = h = T1 = 0;
744 }
745 
746 #else /* SHA2_UNROLL_TRANSFORM */
747 
748 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
749 	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
750 	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
751 	int		j;
752 
753 	/* Initialize registers with the prev. intermediate value */
754 	a = context->state[0];
755 	b = context->state[1];
756 	c = context->state[2];
757 	d = context->state[3];
758 	e = context->state[4];
759 	f = context->state[5];
760 	g = context->state[6];
761 	h = context->state[7];
762 
763 	j = 0;
764 	do {
765 #if BYTE_ORDER == LITTLE_ENDIAN
766 		/* Convert TO host byte order */
767 		REVERSE64(*data++, W512[j]);
768 		/* Apply the SHA-512 compression function to update a..h */
769 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
770 #else /* BYTE_ORDER == LITTLE_ENDIAN */
771 		/* Apply the SHA-512 compression function to update a..h with copy */
772 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
773 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
774 		T2 = Sigma0_512(a) + Maj(a, b, c);
775 		h = g;
776 		g = f;
777 		f = e;
778 		e = d + T1;
779 		d = c;
780 		c = b;
781 		b = a;
782 		a = T1 + T2;
783 
784 		j++;
785 	} while (j < 16);
786 
787 	do {
788 		/* Part of the message block expansion: */
789 		s0 = W512[(j+1)&0x0f];
790 		s0 = sigma0_512(s0);
791 		s1 = W512[(j+14)&0x0f];
792 		s1 =  sigma1_512(s1);
793 
794 		/* Apply the SHA-512 compression function to update a..h */
795 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
796 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
797 		T2 = Sigma0_512(a) + Maj(a, b, c);
798 		h = g;
799 		g = f;
800 		f = e;
801 		e = d + T1;
802 		d = c;
803 		c = b;
804 		b = a;
805 		a = T1 + T2;
806 
807 		j++;
808 	} while (j < 80);
809 
810 	/* Compute the current intermediate hash value */
811 	context->state[0] += a;
812 	context->state[1] += b;
813 	context->state[2] += c;
814 	context->state[3] += d;
815 	context->state[4] += e;
816 	context->state[5] += f;
817 	context->state[6] += g;
818 	context->state[7] += h;
819 
820 	/* Clean up */
821 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
822 }
823 
824 #endif /* SHA2_UNROLL_TRANSFORM */
825 
826 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
827 	unsigned int	freespace, usedspace;
828 
829 	if (len == 0) {
830 		/* Calling with no data is valid - we do nothing */
831 		return;
832 	}
833 
834 	/* Sanity check: */
835 	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
836 
837 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
838 	if (usedspace > 0) {
839 		/* Calculate how much free space is available in the buffer */
840 		freespace = SHA512_BLOCK_LENGTH - usedspace;
841 
842 		if (len >= freespace) {
843 			/* Fill the buffer completely and process it */
844 			bcopy(data, &context->buffer[usedspace], freespace);
845 			ADDINC128(context->bitcount, freespace << 3);
846 			len -= freespace;
847 			data += freespace;
848 			SHA512_Transform(context, (sha2_word64*)context->buffer);
849 		} else {
850 			/* The buffer is not yet full */
851 			bcopy(data, &context->buffer[usedspace], len);
852 			ADDINC128(context->bitcount, len << 3);
853 			/* Clean up: */
854 			usedspace = freespace = 0;
855 			return;
856 		}
857 	}
858 	while (len >= SHA512_BLOCK_LENGTH) {
859 		/* Process as many complete blocks as we can */
860 		SHA512_Transform(context, (const sha2_word64*)data);
861 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
862 		len -= SHA512_BLOCK_LENGTH;
863 		data += SHA512_BLOCK_LENGTH;
864 	}
865 	if (len > 0) {
866 		/* There's left-overs, so save 'em */
867 		bcopy(data, context->buffer, len);
868 		ADDINC128(context->bitcount, len << 3);
869 	}
870 	/* Clean up: */
871 	usedspace = freespace = 0;
872 }
873 
874 void SHA512_Last(SHA512_CTX* context) {
875 	unsigned int	usedspace;
876 
877 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
878 #if BYTE_ORDER == LITTLE_ENDIAN
879 	/* Convert FROM host byte order */
880 	REVERSE64(context->bitcount[0],context->bitcount[0]);
881 	REVERSE64(context->bitcount[1],context->bitcount[1]);
882 #endif
883 	if (usedspace > 0) {
884 		/* Begin padding with a 1 bit: */
885 		context->buffer[usedspace++] = 0x80;
886 
887 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
888 			/* Set-up for the last transform: */
889 			bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
890 		} else {
891 			if (usedspace < SHA512_BLOCK_LENGTH) {
892 				bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
893 			}
894 			/* Do second-to-last transform: */
895 			SHA512_Transform(context, (sha2_word64*)context->buffer);
896 
897 			/* And set-up for the last transform: */
898 			bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
899 		}
900 	} else {
901 		/* Prepare for final transform: */
902 		bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
903 
904 		/* Begin padding with a 1 bit: */
905 		*context->buffer = 0x80;
906 	}
907 	/* Store the length of input data (in bits): */
908 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
909 	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
910 
911 	/* Final transform: */
912 	SHA512_Transform(context, (sha2_word64*)context->buffer);
913 }
914 
915 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
916 	sha2_word64	*d = (sha2_word64*)digest;
917 
918 	/* Sanity check: */
919 	assert(context != (SHA512_CTX*)0);
920 
921 	/* If no digest buffer is passed, we don't bother doing this: */
922 	if (digest != (sha2_byte*)0) {
923 		SHA512_Last(context);
924 
925 		/* Save the hash data for output: */
926 #if BYTE_ORDER == LITTLE_ENDIAN
927 		{
928 			/* Convert TO host byte order */
929 			int	j;
930 			for (j = 0; j < 8; j++) {
931 				REVERSE64(context->state[j],context->state[j]);
932 				*d++ = context->state[j];
933 			}
934 		}
935 #else
936 		bcopy(context->state, d, SHA512_DIGEST_LENGTH);
937 #endif
938 	}
939 
940 	/* Zero out state data */
941 	bzero(context, sizeof(context));
942 }
943 
944 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
945 	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
946 	int		i;
947 
948 	/* Sanity check: */
949 	assert(context != (SHA512_CTX*)0);
950 
951 	if (buffer != (char*)0) {
952 		SHA512_Final(digest, context);
953 
954 		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
955 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
956 			*buffer++ = sha2_hex_digits[*d & 0x0f];
957 			d++;
958 		}
959 		*buffer = (char)0;
960 	} else {
961 		bzero(context, sizeof(context));
962 	}
963 	bzero(digest, SHA512_DIGEST_LENGTH);
964 	return buffer;
965 }
966 
967 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
968 	SHA512_CTX	context;
969 
970 	SHA512_Init(&context);
971 	SHA512_Update(&context, data, len);
972 	return SHA512_End(&context, digest);
973 }
974 
975 
976 /*** SHA-384: *********************************************************/
977 void SHA384_Init(SHA384_CTX* context) {
978 	if (context == (SHA384_CTX*)0) {
979 		return;
980 	}
981 	bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
982 	bzero(context->buffer, SHA384_BLOCK_LENGTH);
983 	context->bitcount[0] = context->bitcount[1] = 0;
984 }
985 
986 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
987 	SHA512_Update((SHA512_CTX*)context, data, len);
988 }
989 
990 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
991 	sha2_word64	*d = (sha2_word64*)digest;
992 
993 	/* Sanity check: */
994 	assert(context != (SHA384_CTX*)0);
995 
996 	/* If no digest buffer is passed, we don't bother doing this: */
997 	if (digest != (sha2_byte*)0) {
998 		SHA512_Last((SHA512_CTX*)context);
999 
1000 		/* Save the hash data for output: */
1001 #if BYTE_ORDER == LITTLE_ENDIAN
1002 		{
1003 			/* Convert TO host byte order */
1004 			int	j;
1005 			for (j = 0; j < 6; j++) {
1006 				REVERSE64(context->state[j],context->state[j]);
1007 				*d++ = context->state[j];
1008 			}
1009 		}
1010 #else
1011 		bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1012 #endif
1013 	}
1014 
1015 	/* Zero out state data */
1016 	bzero(context, sizeof(context));
1017 }
1018 
1019 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1020 	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1021 	int		i;
1022 
1023 	/* Sanity check: */
1024 	assert(context != (SHA384_CTX*)0);
1025 
1026 	if (buffer != (char*)0) {
1027 		SHA384_Final(digest, context);
1028 
1029 		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1030 			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1031 			*buffer++ = sha2_hex_digits[*d & 0x0f];
1032 			d++;
1033 		}
1034 		*buffer = (char)0;
1035 	} else {
1036 		bzero(context, sizeof(context));
1037 	}
1038 	bzero(digest, SHA384_DIGEST_LENGTH);
1039 	return buffer;
1040 }
1041 
1042 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1043 	SHA384_CTX	context;
1044 
1045 	SHA384_Init(&context);
1046 	SHA384_Update(&context, data, len);
1047 	return SHA384_End(&context, digest);
1048 }
1049 
1050