xref: /dragonfly/sys/dev/acpica/acpi.c (revision 820c5b08)
1 /*-
2  * Copyright (c) 2000 Takanori Watanabe <takawata@jp.kfreebsd.org>
3  * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.kfreebsd.org>
4  * Copyright (c) 2000, 2001 Michael Smith
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/acpica/acpi.c,v 1.243.2.4.4.1 2009/04/15 03:14:26 kensmith Exp $
30  */
31 
32 #include "opt_acpi.h"
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/proc.h>
36 #include <sys/fcntl.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/conf.h>
41 #include <sys/reboot.h>
42 #include <sys/sysctl.h>
43 #include <sys/ctype.h>
44 #include <sys/linker.h>
45 #include <sys/power.h>
46 #include <sys/sbuf.h>
47 #include <sys/device.h>
48 #include <sys/spinlock.h>
49 #include <sys/spinlock2.h>
50 #include <sys/uuid.h>
51 
52 #include <sys/rman.h>
53 #include <bus/isa/isavar.h>
54 #include <bus/isa/pnpvar.h>
55 
56 #include "acpi.h"
57 #include <dev/acpica/acpivar.h>
58 #include <dev/acpica/acpiio.h>
59 #include <dev/acpica/acpiio_mcall.h>
60 #include "achware.h"
61 #include "acnamesp.h"
62 #include "acglobal.h"
63 
64 #include "pci_if.h"
65 #include <bus/pci/pci_cfgreg.h>
66 #include <bus/pci/pcivar.h>
67 #include <bus/pci/pci_private.h>
68 
69 #include <vm/vm_param.h>
70 
71 MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
72 
73 /* Hooks for the ACPICA debugging infrastructure */
74 #define _COMPONENT	ACPI_BUS
75 ACPI_MODULE_NAME("ACPI");
76 
77 static d_open_t		acpiopen;
78 static d_close_t	acpiclose;
79 static d_ioctl_t	acpiioctl;
80 
81 static struct dev_ops acpi_ops = {
82         { "acpi", 0, 0 },
83         .d_open = acpiopen,
84         .d_close = acpiclose,
85         .d_ioctl = acpiioctl
86 };
87 
88 struct acpi_interface {
89 	ACPI_STRING	*data;
90 	int		num;
91 };
92 
93 /* Global mutex for locking access to the ACPI subsystem. */
94 struct lock acpi_lock;
95 
96 /* Bitmap of device quirks. */
97 int		acpi_quirks;
98 
99 static int	acpi_modevent(struct module *mod, int event, void *junk);
100 static void	acpi_identify(driver_t *driver, device_t parent);
101 static int	acpi_probe(device_t dev);
102 static int	acpi_attach(device_t dev);
103 static int	acpi_suspend(device_t dev);
104 static int	acpi_resume(device_t dev);
105 static int	acpi_shutdown(device_t dev);
106 static device_t	acpi_add_child(device_t bus, device_t parent, int order, const char *name,
107 			int unit);
108 static int	acpi_print_child(device_t bus, device_t child);
109 static void	acpi_probe_nomatch(device_t bus, device_t child);
110 static void	acpi_driver_added(device_t dev, driver_t *driver);
111 static int	acpi_read_ivar(device_t dev, device_t child, int index,
112 			uintptr_t *result);
113 static int	acpi_write_ivar(device_t dev, device_t child, int index,
114 			uintptr_t value);
115 static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
116 static int	acpi_sysres_alloc(device_t dev);
117 static struct resource *acpi_alloc_resource(device_t bus, device_t child,
118 			int type, int *rid, u_long start, u_long end,
119 			u_long count, u_int flags, int cpuid);
120 static int	acpi_release_resource(device_t bus, device_t child, int type,
121 			int rid, struct resource *r);
122 static void	acpi_delete_resource(device_t bus, device_t child, int type,
123 		    int rid);
124 static uint32_t	acpi_isa_get_logicalid(device_t dev);
125 static int	acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
126 static char	*acpi_device_id_probe(device_t bus, device_t dev, char **ids);
127 static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
128 		    ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
129 		    ACPI_BUFFER *ret);
130 static int	acpi_device_pwr_for_sleep(device_t bus, device_t dev,
131 		    int *dstate);
132 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
133 		    void *context, void **retval);
134 static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
135 		    int max_depth, acpi_scan_cb_t user_fn, void *arg);
136 static int	acpi_set_powerstate_method(device_t bus, device_t child,
137 		    int state);
138 static int	acpi_isa_pnp_probe(device_t bus, device_t child,
139 		    struct isa_pnp_id *ids);
140 static void	acpi_probe_children(device_t bus);
141 static void	acpi_probe_order(ACPI_HANDLE handle, int *order);
142 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
143 		    void *context, void **status);
144 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
145 static void	acpi_shutdown_final(void *arg, int howto);
146 static void	acpi_enable_fixed_events(struct acpi_softc *sc);
147 static int	acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
148 static int	acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
149 static int	acpi_wake_prep_walk(int sstate);
150 static int	acpi_wake_sysctl_walk(device_t dev);
151 #ifdef notyet
152 static int	acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
153 #endif
154 static void	acpi_system_eventhandler_sleep(void *arg, int state);
155 static void	acpi_system_eventhandler_wakeup(void *arg, int state);
156 static int	acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
157 static int	acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
158 static int	acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
159 static int	acpi_pm_func(u_long cmd, void *arg, ...);
160 static int	acpi_child_location_str_method(device_t acdev, device_t child,
161 					       char *buf, size_t buflen);
162 static int	acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
163 					      char *buf, size_t buflen);
164 static void	acpi_enable_pcie(void);
165 static void	acpi_reset_interfaces(device_t dev);
166 
167 static device_method_t acpi_methods[] = {
168     /* Device interface */
169     DEVMETHOD(device_identify,		acpi_identify),
170     DEVMETHOD(device_probe,		acpi_probe),
171     DEVMETHOD(device_attach,		acpi_attach),
172     DEVMETHOD(device_shutdown,		acpi_shutdown),
173     DEVMETHOD(device_detach,		bus_generic_detach),
174     DEVMETHOD(device_suspend,		acpi_suspend),
175     DEVMETHOD(device_resume,		acpi_resume),
176 
177     /* Bus interface */
178     DEVMETHOD(bus_add_child,		acpi_add_child),
179     DEVMETHOD(bus_print_child,		acpi_print_child),
180     DEVMETHOD(bus_probe_nomatch,	acpi_probe_nomatch),
181     DEVMETHOD(bus_driver_added,		acpi_driver_added),
182     DEVMETHOD(bus_read_ivar,		acpi_read_ivar),
183     DEVMETHOD(bus_write_ivar,		acpi_write_ivar),
184     DEVMETHOD(bus_get_resource_list,	acpi_get_rlist),
185     DEVMETHOD(bus_set_resource,		bus_generic_rl_set_resource),
186     DEVMETHOD(bus_get_resource,		bus_generic_rl_get_resource),
187     DEVMETHOD(bus_alloc_resource,	acpi_alloc_resource),
188     DEVMETHOD(bus_release_resource,	acpi_release_resource),
189     DEVMETHOD(bus_delete_resource,	acpi_delete_resource),
190     DEVMETHOD(bus_child_pnpinfo_str,	acpi_child_pnpinfo_str_method),
191     DEVMETHOD(bus_child_location_str,	acpi_child_location_str_method),
192     DEVMETHOD(bus_activate_resource,	bus_generic_activate_resource),
193     DEVMETHOD(bus_deactivate_resource,	bus_generic_deactivate_resource),
194     DEVMETHOD(bus_setup_intr,		bus_generic_setup_intr),
195     DEVMETHOD(bus_teardown_intr,	bus_generic_teardown_intr),
196 
197     /* ACPI bus */
198     DEVMETHOD(acpi_id_probe,		acpi_device_id_probe),
199     DEVMETHOD(acpi_evaluate_object,	acpi_device_eval_obj),
200     DEVMETHOD(acpi_pwr_for_sleep,	acpi_device_pwr_for_sleep),
201     DEVMETHOD(acpi_scan_children,	acpi_device_scan_children),
202 
203     /* PCI emulation */
204     DEVMETHOD(pci_set_powerstate,	acpi_set_powerstate_method),
205 
206     /* ISA emulation */
207     DEVMETHOD(isa_pnp_probe,		acpi_isa_pnp_probe),
208 
209     DEVMETHOD_END
210 };
211 
212 static driver_t acpi_driver = {
213     "acpi",
214     acpi_methods,
215     sizeof(struct acpi_softc),
216 };
217 
218 static devclass_t acpi_devclass;
219 DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, NULL);
220 MODULE_VERSION(acpi, 1);
221 
222 ACPI_SERIAL_DECL(acpi, "ACPI serializer");
223 
224 /* Local pools for managing system resources for ACPI child devices. */
225 static struct rman acpi_rman_io, acpi_rman_mem;
226 
227 #define ACPI_MINIMUM_AWAKETIME	5
228 
229 static const char* sleep_state_names[] = {
230     "S0", "S1", "S2", "S3", "S4", "S5", "NONE"};
231 
232 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging");
233 static char acpi_ca_version[12];
234 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
235 	      acpi_ca_version, 0, "Version of Intel ACPICA");
236 
237 /*
238  * Allow overriding _OSI methods.
239  */
240 static char acpi_install_interface[256];
241 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
242     sizeof(acpi_install_interface));
243 static char acpi_remove_interface[256];
244 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
245     sizeof(acpi_remove_interface));
246 
247 /*
248  * Use this tunable to disable the control method auto-serialization
249  * mechanism that was added in 20140214 and superseded the previous
250  * AcpiGbl_SerializeAllMethods global.
251  */
252 static int acpi_auto_serialize_methods = 1;
253 TUNABLE_INT("hw.acpi.auto_serialize_methods", &acpi_auto_serialize_methods);
254 
255 /* Allow users to dump Debug objects without ACPI debugger. */
256 static int acpi_debug_objects;
257 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
258 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
259     CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I",
260     "Enable Debug objects.");
261 
262 /* Allow ignoring the XSDT. */
263 static int acpi_ignore_xsdt;
264 TUNABLE_INT("debug.acpi.ignore_xsdt", &acpi_ignore_xsdt);
265 SYSCTL_INT(_debug_acpi, OID_AUTO, ignore_xsdt, CTLFLAG_RD,
266     &acpi_ignore_xsdt, 1, "Ignore the XSDT, forcing the use of the RSDT.");
267 
268 /* Allow the interpreter to ignore common mistakes in BIOS. */
269 static int acpi_interpreter_slack = 1;
270 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
271 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RD,
272     &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
273 
274 /* Allow preferring 32-bit FADT register addresses over the 64-bit ones. */
275 static int acpi_fadt_addr32;
276 TUNABLE_INT("debug.acpi.fadt_addr32", &acpi_fadt_addr32);
277 SYSCTL_INT(_debug_acpi, OID_AUTO, fadt_addr32, CTLFLAG_RD,
278     &acpi_fadt_addr32, 1,
279     "Prefer 32-bit FADT register addresses over 64-bit ones.");
280 
281 /* Prefer 32-bit FACS table addresses over the 64-bit ones. */
282 static int acpi_facs_addr32 = 1;
283 TUNABLE_INT("debug.acpi.facs_addr32", &acpi_facs_addr32);
284 SYSCTL_INT(_debug_acpi, OID_AUTO, facs_addr32, CTLFLAG_RD,
285     &acpi_facs_addr32, 1,
286     "Prefer 32-bit FACS table addresses over 64-bit ones.");
287 
288 /* Power devices off and on in suspend and resume.  XXX Remove once tested. */
289 static int acpi_do_powerstate = 1;
290 TUNABLE_INT("debug.acpi.do_powerstate", &acpi_do_powerstate);
291 SYSCTL_INT(_debug_acpi, OID_AUTO, do_powerstate, CTLFLAG_RW,
292     &acpi_do_powerstate, 1, "Turn off devices when suspending.");
293 
294 /* Allow users to override quirks. */
295 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
296 
297 /* Allow to call ACPI methods from userland. */
298 static int acpi_allow_mcall;
299 TUNABLE_INT("debug.acpi.allow_method_calls", &acpi_allow_mcall);
300 
301 static int acpi_susp_bounce;
302 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
303     &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
304 
305 /*
306  * ACPI can only be loaded as a module by the loader; activating it after
307  * system bootstrap time is not useful, and can be fatal to the system.
308  * It also cannot be unloaded, since the entire system bus heirarchy hangs
309  * off it.
310  */
311 static int
312 acpi_modevent(struct module *mod, int event, void *junk)
313 {
314     switch (event) {
315     case MOD_LOAD:
316 	if (!cold) {
317 	    kprintf("The ACPI driver cannot be loaded after boot.\n");
318 	    return (EPERM);
319 	}
320 	break;
321     case MOD_UNLOAD:
322 	if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
323 	    return (EBUSY);
324 	break;
325     default:
326 	break;
327     }
328     return (0);
329 }
330 
331 /*
332  * Perform early initialization.
333  */
334 ACPI_STATUS
335 acpi_Startup(void)
336 {
337     static int started = 0;
338     ACPI_STATUS status;
339     int val;
340 
341     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
342 
343     /* Only run the startup code once.  The MADT driver also calls this. */
344     if (started)
345 	return_VALUE (AE_OK);
346     started = 1;
347 
348     /*
349      * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
350      * if more tables exist.
351      */
352     if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
353 	kprintf("ACPI: Table initialisation failed: %s\n",
354 	    AcpiFormatException(status));
355 	return_VALUE (status);
356     }
357 
358     /* Set up any quirks we have for this system. */
359     if (acpi_quirks == ACPI_Q_OK)
360 	acpi_table_quirks(&acpi_quirks);
361 
362     /* If the user manually set the disabled hint to 0, force-enable ACPI. */
363     if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
364 	acpi_quirks &= ~ACPI_Q_BROKEN;
365     if (acpi_quirks & ACPI_Q_BROKEN) {
366 	kprintf("ACPI disabled by blacklist.  Contact your BIOS vendor.\n");
367 	status = AE_SUPPORT;
368     }
369 
370     return_VALUE (status);
371 }
372 
373 /*
374  * Detect ACPI, perform early initialisation
375  */
376 static void
377 acpi_identify(driver_t *driver, device_t parent)
378 {
379     device_t	child;
380 
381     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
382 
383     if (!cold)
384 	return_VOID;
385 
386     /* Check that we haven't been disabled with a hint. */
387     if (resource_disabled("acpi", 0))
388 	return_VOID;
389 
390     /* Make sure we're not being doubly invoked. */
391     if (device_find_child(parent, "acpi", 0) != NULL)
392 	return_VOID;
393 
394     ksnprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
395 
396     /* Initialize root tables. */
397     if (ACPI_FAILURE(acpi_Startup())) {
398 	kprintf("ACPI: Try disabling either ACPI or apic support.\n");
399 	return_VOID;
400     }
401 
402     /* Attach the actual ACPI device. */
403     if ((child = BUS_ADD_CHILD(parent, parent, 10, "acpi", 0)) == NULL) {
404 	device_printf(parent, "device_identify failed\n");
405 	return_VOID;
406     }
407 }
408 
409 /*
410  * Fetch some descriptive data from ACPI to put in our attach message.
411  */
412 static int
413 acpi_probe(device_t dev)
414 {
415     ACPI_TABLE_RSDP	*rsdp;
416     ACPI_TABLE_HEADER	*rsdt;
417     ACPI_PHYSICAL_ADDRESS paddr;
418     char		buf[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
419     struct sbuf		sb;
420 
421     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
422 
423     if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
424 	power_pm_get_type() != POWER_PM_TYPE_ACPI) {
425 	device_printf(dev, "probe failed, other PM system enabled.\n");
426 	return_VALUE (ENXIO);
427     }
428 
429     if ((paddr = AcpiOsGetRootPointer()) == 0 ||
430 	(rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
431 	return_VALUE (ENXIO);
432     if (acpi_ignore_xsdt == 0 &&
433 	rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
434 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
435     else
436 	paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
437     AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
438 
439     if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
440 	return_VALUE (ENXIO);
441     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
442     sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
443     sbuf_trim(&sb);
444     sbuf_putc(&sb, ' ');
445     sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
446     sbuf_trim(&sb);
447     sbuf_finish(&sb);
448     device_set_desc_copy(dev, sbuf_data(&sb));
449     sbuf_delete(&sb);
450     AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
451 
452     return_VALUE (0);
453 }
454 
455 static int
456 acpi_attach(device_t dev)
457 {
458     struct acpi_softc	*sc;
459     ACPI_STATUS		status;
460     int			error, state;
461     UINT32		flags;
462     UINT8		TypeA, TypeB;
463     char		*env;
464 
465     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
466 
467     sc = device_get_softc(dev);
468     sc->acpi_dev = dev;
469     callout_init(&sc->susp_force_to);
470 
471     if ((error = acpi_task_thread_init())) {
472         device_printf(dev, "Could not start task thread.\n");
473         goto out;
474     }
475 
476     error = ENXIO;
477 
478     /* Initialize resource manager. */
479     acpi_rman_io.rm_type = RMAN_ARRAY;
480     acpi_rman_io.rm_start = 0;
481     acpi_rman_io.rm_end = 0xffff;
482     acpi_rman_io.rm_descr = "ACPI I/O ports";
483     if (rman_init(&acpi_rman_io, -1) != 0)
484 	panic("acpi rman_init IO ports failed");
485     acpi_rman_mem.rm_type = RMAN_ARRAY;
486     acpi_rman_mem.rm_start = 0;
487     acpi_rman_mem.rm_end = ~0ul;
488     acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
489     if (rman_init(&acpi_rman_mem, -1) != 0)
490 	panic("acpi rman_init memory failed");
491 
492     /* Initialise the ACPI mutex */
493     ACPI_LOCK_INIT(acpi, "acpi");
494     ACPI_SERIAL_INIT(acpi);
495 
496     /*
497      * Set the globals from our tunables.  This is needed because ACPICA
498      * uses UINT8 for some values and we have no tunable_byte.
499      */
500     AcpiGbl_AutoSerializeMethods = acpi_auto_serialize_methods ? TRUE : FALSE;
501     AcpiGbl_DoNotUseXsdt = acpi_ignore_xsdt ? TRUE : FALSE;
502     AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
503     AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
504     AcpiGbl_Use32BitFadtAddresses = acpi_fadt_addr32 ? TRUE : FALSE;
505     AcpiGbl_Use32BitFacsAddresses = acpi_facs_addr32 ? TRUE : FALSE;
506 
507 #ifndef ACPI_DEBUG
508     /*
509      * Disable Debug Object output.
510      */
511     AcpiDbgLevel &= ~ACPI_LV_DEBUG_OBJECT;
512 #endif
513 
514     /* Start up the ACPICA subsystem. */
515     status = AcpiInitializeSubsystem();
516     if (ACPI_FAILURE(status)) {
517 	device_printf(dev, "Could not initialize Subsystem: %s\n",
518 		      AcpiFormatException(status));
519 	goto out;
520     }
521 
522     /* Override OS interfaces if the user requested. */
523     acpi_reset_interfaces(dev);
524 
525     /* Load ACPI name space. */
526     status = AcpiLoadTables();
527     if (ACPI_FAILURE(status)) {
528 	device_printf(dev, "Could not load Namespace: %s\n",
529 		      AcpiFormatException(status));
530 	goto out;
531     }
532 
533     /* Handle MCFG table if present. */
534     acpi_enable_pcie();
535 
536     /*
537      * Note that some systems (specifically, those with namespace evaluation
538      * issues that require the avoidance of parts of the namespace) must
539      * avoid running _INI and _STA on everything, as well as dodging the final
540      * object init pass.
541      *
542      * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
543      *
544      * XXX We should arrange for the object init pass after we have attached
545      *     all our child devices, but on many systems it works here.
546      */
547     flags = ACPI_FULL_INITIALIZATION;
548     if (ktestenv("debug.acpi.avoid"))
549 	flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
550 
551     /* Bring the hardware and basic handlers online. */
552     if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
553 	device_printf(dev, "Could not enable ACPI: %s\n",
554 		      AcpiFormatException(status));
555 	goto out;
556     }
557 
558     /*
559      * Fix up the interrupt timer after enabling ACPI, so that the
560      * interrupt cputimer that choked by ACPI power management could
561      * be resurrected before probing various devices.
562      */
563     DELAY(5000);
564     cputimer_intr_pmfixup();
565 
566     /*
567      * Call the ECDT probe function to provide EC functionality before
568      * the namespace has been evaluated.
569      *
570      * XXX This happens before the sysresource devices have been probed and
571      * attached so its resources come from nexus0.  In practice, this isn't
572      * a problem but should be addressed eventually.
573      */
574     acpi_ec_ecdt_probe(dev);
575 
576     /* Bring device objects and regions online. */
577     if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
578 	device_printf(dev, "Could not initialize ACPI objects: %s\n",
579 		      AcpiFormatException(status));
580 	goto out;
581     }
582 
583     /*
584      * Setup our sysctl tree.
585      *
586      * XXX: This doesn't check to make sure that none of these fail.
587      */
588     sysctl_ctx_init(&sc->acpi_sysctl_ctx);
589     sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
590 			       SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
591 			       device_get_name(dev), CTLFLAG_RD, 0, "");
592     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
593 	OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD,
594 	0, 0, acpi_supported_sleep_state_sysctl, "A", "");
595     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
596 	OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW,
597 	&sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", "");
598     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
599 	OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW,
600 	&sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", "");
601     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
602 	OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW,
603 	&sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", "");
604     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
605 	OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW,
606 	&sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
607     SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
608 	OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW,
609 	&sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
610     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
611 	OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
612 	"sleep delay");
613     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
614 	OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
615     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
616 	OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
617     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
618 	OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
619 	&sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
620     SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
621 	OID_AUTO, "handle_reboot", CTLFLAG_RW,
622 	&sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
623 
624     /*
625      * Default to 1 second before sleeping to give some machines time to
626      * stabilize.
627      */
628     sc->acpi_sleep_delay = 1;
629     if (bootverbose)
630 	sc->acpi_verbose = 1;
631     if ((env = kgetenv("hw.acpi.verbose")) != NULL) {
632 	if (strcmp(env, "0") != 0)
633 	    sc->acpi_verbose = 1;
634 	kfreeenv(env);
635     }
636 
637     /* Only enable reboot by default if the FADT says it is available. */
638     if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
639 	sc->acpi_handle_reboot = 1;
640 
641     /* Only enable S4BIOS by default if the FACS says it is available. */
642     if (AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
643 	sc->acpi_s4bios = 1;
644 
645     /*
646      * Dispatch the default sleep state to devices.  The lid switch is set
647      * to NONE by default to avoid surprising users.
648      */
649     sc->acpi_power_button_sx = ACPI_STATE_S5;
650     sc->acpi_lid_switch_sx = ACPI_S_STATES_MAX + 1;
651     sc->acpi_standby_sx = ACPI_STATE_S1;
652     sc->acpi_suspend_sx = ACPI_STATE_S3;
653 
654     /* Pick the first valid sleep state for the sleep button default. */
655     sc->acpi_sleep_button_sx = ACPI_S_STATES_MAX + 1;
656     for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
657 	if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) {
658 	    sc->acpi_sleep_button_sx = state;
659 	    break;
660 	}
661 
662     acpi_enable_fixed_events(sc);
663 
664     /*
665      * Scan the namespace and attach/initialise children.
666      */
667 
668     /* Register our shutdown handler. */
669     EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
670 	SHUTDOWN_PRI_LAST);
671 
672     /*
673      * Register our acpi event handlers.
674      * XXX should be configurable eg. via userland policy manager.
675      */
676     EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
677 	sc, ACPI_EVENT_PRI_LAST);
678     EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
679 	sc, ACPI_EVENT_PRI_LAST);
680 
681     /* Flag our initial states. */
682     sc->acpi_enabled = 1;
683     sc->acpi_sstate = ACPI_STATE_S0;
684     sc->acpi_sleep_disabled = 0;
685     /* Create the control device */
686     sc->acpi_dev_t = make_dev(&acpi_ops, 0, UID_ROOT, GID_WHEEL, 0644,
687 			      "acpi");
688     sc->acpi_dev_t->si_drv1 = sc;
689 
690     if ((error = acpi_machdep_init(dev)))
691 	goto out;
692 
693     /* Register ACPI again to pass the correct argument of pm_func. */
694     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
695 
696     if (!acpi_disabled("bus"))
697 	acpi_probe_children(dev);
698 
699     /* Update all GPEs and enable runtime GPEs. */
700     status = AcpiUpdateAllGpes();
701     if (ACPI_FAILURE(status)) {
702 	device_printf(dev, "Could not update all GPEs: %s\n",
703 		      AcpiFormatException(status));
704     }
705 
706     /* Allow sleep request after a while. */
707     /* timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME); */
708 
709     error = 0;
710 
711  out:
712     cputimer_intr_pmfixup();
713     acpi_task_thread_schedule();
714     return_VALUE (error);
715 }
716 
717 static int
718 acpi_suspend(device_t dev)
719 {
720     device_t child, *devlist;
721     int error, i, numdevs, pstate;
722 
723     /* First give child devices a chance to suspend. */
724     error = bus_generic_suspend(dev);
725     if (error)
726 	return (error);
727 
728     /*
729      * Now, set them into the appropriate power state, usually D3.  If the
730      * device has an _SxD method for the next sleep state, use that power
731      * state instead.
732      */
733     device_get_children(dev, &devlist, &numdevs);
734     for (i = 0; i < numdevs; i++) {
735 	/* If the device is not attached, we've powered it down elsewhere. */
736 	child = devlist[i];
737 	if (!device_is_attached(child))
738 	    continue;
739 
740 	/*
741 	 * Default to D3 for all sleep states.  The _SxD method is optional
742 	 * so set the powerstate even if it's absent.
743 	 */
744 	pstate = PCI_POWERSTATE_D3;
745 	error = acpi_device_pwr_for_sleep(device_get_parent(child),
746 	    child, &pstate);
747 	if ((error == 0 || error == ESRCH) && acpi_do_powerstate)
748 	    pci_set_powerstate(child, pstate);
749     }
750     kfree(devlist, M_TEMP);
751     error = 0;
752 
753     return (error);
754 }
755 
756 static int
757 acpi_resume(device_t dev)
758 {
759     ACPI_HANDLE handle;
760     int i, numdevs;
761     device_t child, *devlist;
762 
763     /*
764      * Put all devices in D0 before resuming them.  Call _S0D on each one
765      * since some systems expect this.
766      */
767     device_get_children(dev, &devlist, &numdevs);
768     for (i = 0; i < numdevs; i++) {
769 	child = devlist[i];
770 	handle = acpi_get_handle(child);
771 	if (handle)
772 	    AcpiEvaluateObject(handle, "_S0D", NULL, NULL);
773 	if (device_is_attached(child) && acpi_do_powerstate)
774 	    pci_set_powerstate(child, PCI_POWERSTATE_D0);
775     }
776     kfree(devlist, M_TEMP);
777 
778     return (bus_generic_resume(dev));
779 }
780 
781 static int
782 acpi_shutdown(device_t dev)
783 {
784     /* Allow children to shutdown first. */
785     bus_generic_shutdown(dev);
786 
787     /*
788      * Enable any GPEs that are able to power-on the system (i.e., RTC).
789      * Also, disable any that are not valid for this state (most).
790      */
791     acpi_wake_prep_walk(ACPI_STATE_S5);
792 
793     return (0);
794 }
795 
796 /*
797  * Handle a new device being added
798  */
799 static device_t
800 acpi_add_child(device_t bus, device_t parent, int order, const char *name, int unit)
801 {
802     struct acpi_device	*ad;
803     device_t		child;
804 
805     if ((ad = kmalloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
806 	return (NULL);
807 
808     resource_list_init(&ad->ad_rl);
809     child = device_add_child_ordered(parent, order, name, unit);
810     if (child != NULL)
811 	device_set_ivars(child, ad);
812     else
813 	kfree(ad, M_ACPIDEV);
814     return (child);
815 }
816 
817 static int
818 acpi_print_child(device_t bus, device_t child)
819 {
820     struct acpi_device	 *adev = device_get_ivars(child);
821     struct resource_list *rl = &adev->ad_rl;
822     int retval = 0;
823 
824     retval += bus_print_child_header(bus, child);
825     retval += resource_list_print_type(rl, "port",  SYS_RES_IOPORT, "%#lx");
826     retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx");
827     retval += resource_list_print_type(rl, "irq",   SYS_RES_IRQ,    "%ld");
828     retval += resource_list_print_type(rl, "drq",   SYS_RES_DRQ,    "%ld");
829     if (device_get_flags(child))
830 	retval += kprintf(" flags %#x", device_get_flags(child));
831     retval += bus_print_child_footer(bus, child);
832 
833     return (retval);
834 }
835 
836 /*
837  * If this device is an ACPI child but no one claimed it, attempt
838  * to power it off.  We'll power it back up when a driver is added.
839  *
840  * XXX Disabled for now since many necessary devices (like fdc and
841  * ATA) don't claim the devices we created for them but still expect
842  * them to be powered up.
843  */
844 static void
845 acpi_probe_nomatch(device_t bus, device_t child)
846 {
847 
848     /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */
849 }
850 
851 /*
852  * If a new driver has a chance to probe a child, first power it up.
853  *
854  * XXX Disabled for now (see acpi_probe_nomatch for details).
855  */
856 static void
857 acpi_driver_added(device_t dev, driver_t *driver)
858 {
859     device_t child, *devlist;
860     int i, numdevs;
861 
862     DEVICE_IDENTIFY(driver, dev);
863     device_get_children(dev, &devlist, &numdevs);
864     for (i = 0; i < numdevs; i++) {
865 	child = devlist[i];
866 	if (device_get_state(child) == DS_NOTPRESENT) {
867 	    /* pci_set_powerstate(child, PCI_POWERSTATE_D0); */
868 	    if (device_probe_and_attach(child) != 0)
869 		; /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */
870 	}
871     }
872     kfree(devlist, M_TEMP);
873 }
874 
875 /* Location hint for devctl(8) */
876 static int
877 acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
878     size_t buflen)
879 {
880     struct acpi_device *dinfo = device_get_ivars(child);
881 
882     if (dinfo->ad_handle)
883 	ksnprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
884     else
885 	ksnprintf(buf, buflen, "unknown");
886     return (0);
887 }
888 
889 /* PnP information for devctl(8) */
890 static int
891 acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
892     size_t buflen)
893 {
894     ACPI_DEVICE_INFO *adinfo;
895     struct acpi_device *dinfo = device_get_ivars(child);
896     char *end;
897 
898     if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) {
899 	ksnprintf(buf, buflen, "unknown");
900     } else {
901 	ksnprintf(buf, buflen, "_HID=%s _UID=%lu",
902 		 (adinfo->Valid & ACPI_VALID_HID) ?
903 		 adinfo->HardwareId.String : "none",
904 		 (adinfo->Valid & ACPI_VALID_UID) ?
905 		 strtoul(adinfo->UniqueId.String, &end, 10) : 0);
906 	if (adinfo)
907 	    AcpiOsFree(adinfo);
908     }
909     return (0);
910 }
911 
912 /*
913  * Handle per-device ivars
914  */
915 static int
916 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
917 {
918     struct acpi_device	*ad;
919 
920     if ((ad = device_get_ivars(child)) == NULL) {
921 	device_printf(child, "device has no ivars\n");
922 	return (ENOENT);
923     }
924 
925     /* ACPI and ISA compatibility ivars */
926     switch(index) {
927     case ACPI_IVAR_HANDLE:
928 	*(ACPI_HANDLE *)result = ad->ad_handle;
929 	break;
930     case ACPI_IVAR_MAGIC:
931 	*result = ad->ad_magic;
932 	break;
933     case ACPI_IVAR_PRIVATE:
934 	*(void **)result = ad->ad_private;
935 	break;
936     case ACPI_IVAR_FLAGS:
937 	*(int *)result = ad->ad_flags;
938 	break;
939     case ISA_IVAR_VENDORID:
940     case ISA_IVAR_SERIAL:
941     case ISA_IVAR_COMPATID:
942 	*(int *)result = -1;
943 	break;
944     case ISA_IVAR_LOGICALID:
945 	*(int *)result = acpi_isa_get_logicalid(child);
946 	break;
947     default:
948 	return (ENOENT);
949     }
950 
951     return (0);
952 }
953 
954 static int
955 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
956 {
957     struct acpi_device	*ad;
958 
959     if ((ad = device_get_ivars(child)) == NULL) {
960 	device_printf(child, "device has no ivars\n");
961 	return (ENOENT);
962     }
963 
964     switch(index) {
965     case ACPI_IVAR_HANDLE:
966 	ad->ad_handle = (ACPI_HANDLE)value;
967 	break;
968     case ACPI_IVAR_MAGIC:
969 	ad->ad_magic = value;
970 	break;
971     case ACPI_IVAR_PRIVATE:
972 	ad->ad_private = (void *)value;
973 	break;
974     case ACPI_IVAR_FLAGS:
975 	ad->ad_flags = (int)value;
976 	break;
977     default:
978 	panic("bad ivar write request (%d)", index);
979 	return (ENOENT);
980     }
981 
982     return (0);
983 }
984 
985 /*
986  * Handle child resource allocation/removal
987  */
988 static struct resource_list *
989 acpi_get_rlist(device_t dev, device_t child)
990 {
991     struct acpi_device		*ad;
992 
993     ad = device_get_ivars(child);
994     return (&ad->ad_rl);
995 }
996 
997 /*
998  * Pre-allocate/manage all memory and IO resources.  Since rman can't handle
999  * duplicates, we merge any in the sysresource attach routine.
1000  */
1001 static int
1002 acpi_sysres_alloc(device_t dev)
1003 {
1004     struct resource *res;
1005     struct resource_list *rl;
1006     struct resource_list_entry *rle;
1007     struct rman *rm;
1008     char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
1009     device_t *children;
1010     int child_count, i;
1011     /*
1012      * Probe/attach any sysresource devices.  This would be unnecessary if we
1013      * had multi-pass probe/attach.
1014      */
1015     if (device_get_children(dev, &children, &child_count) != 0)
1016 	return (ENXIO);
1017     for (i = 0; i < child_count; i++) {
1018 	if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL)
1019 	    device_probe_and_attach(children[i]);
1020     }
1021     kfree(children, M_TEMP);
1022 
1023     rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
1024     if(!rl)
1025 	return 0;
1026     SLIST_FOREACH(rle, rl, link) {
1027 	if (rle->res != NULL) {
1028 	    device_printf(dev, "duplicate resource for %lx\n", rle->start);
1029 	    continue;
1030 	}
1031 
1032 	/* Only memory and IO resources are valid here. */
1033 	switch (rle->type) {
1034 	case SYS_RES_IOPORT:
1035 	    rm = &acpi_rman_io;
1036 	    break;
1037 	case SYS_RES_MEMORY:
1038 	    rm = &acpi_rman_mem;
1039 	    break;
1040 	default:
1041 	    continue;
1042 	}
1043 
1044 	/* Pre-allocate resource and add to our rman pool. */
1045 	res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
1046 	    &rle->rid, rle->start, rle->start + rle->count - 1, rle->count,
1047 	    0, -1);
1048 	if (res != NULL) {
1049 	    rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1050 	    rle->res = res;
1051 	} else
1052 	    device_printf(dev, "reservation of %lx, %lx (%d) failed\n",
1053 		rle->start, rle->count, rle->type);
1054     }
1055     return (0);
1056 }
1057 
1058 static struct resource *
1059 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
1060     u_long start, u_long end, u_long count, u_int flags, int cpuid)
1061 {
1062     ACPI_RESOURCE ares;
1063     struct acpi_device *ad = device_get_ivars(child);
1064     struct resource_list *rl = &ad->ad_rl;
1065     struct resource_list_entry *rle;
1066     struct resource *res;
1067     struct rman *rm;
1068 
1069     res = NULL;
1070 
1071     /* We only handle memory and IO resources through rman. */
1072     switch (type) {
1073     case SYS_RES_IOPORT:
1074 	rm = &acpi_rman_io;
1075 	break;
1076     case SYS_RES_MEMORY:
1077 	rm = &acpi_rman_mem;
1078 	break;
1079     default:
1080 	rm = NULL;
1081     }
1082 
1083     ACPI_SERIAL_BEGIN(acpi);
1084 
1085     /*
1086      * If this is an allocation of the "default" range for a given RID, and
1087      * we know what the resources for this device are (i.e., they're on the
1088      * child's resource list), use those start/end values.
1089      */
1090     if (bus == device_get_parent(child) && start == 0UL && end == ~0UL) {
1091 	rle = resource_list_find(rl, type, *rid);
1092 	if (rle == NULL)
1093 	    goto out;
1094 	start = rle->start;
1095 	end = rle->end;
1096 	count = rle->count;
1097 	cpuid = rle->cpuid;
1098     }
1099 
1100     /*
1101      * If this is an allocation of a specific range, see if we can satisfy
1102      * the request from our system resource regions.  If we can't, pass the
1103      * request up to the parent.
1104      */
1105     if (start + count - 1 == end && rm != NULL)
1106 	res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
1107 	    child);
1108     if (res == NULL) {
1109 	res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
1110 	    start, end, count, flags, cpuid);
1111     } else {
1112 	rman_set_rid(res, *rid);
1113 
1114 	/* If requested, activate the resource using the parent's method. */
1115 	if (flags & RF_ACTIVE)
1116 	    if (bus_activate_resource(child, type, *rid, res) != 0) {
1117 		rman_release_resource(res);
1118 		res = NULL;
1119 		goto out;
1120 	    }
1121     }
1122 
1123     if (res != NULL && device_get_parent(child) == bus)
1124 	switch (type) {
1125 	case SYS_RES_IRQ:
1126 	    /*
1127 	     * Since bus_config_intr() takes immediate effect, we cannot
1128 	     * configure the interrupt associated with a device when we
1129 	     * parse the resources but have to defer it until a driver
1130 	     * actually allocates the interrupt via bus_alloc_resource().
1131 	     *
1132 	     * XXX: Should we handle the lookup failing?
1133 	     */
1134 	    if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
1135 		acpi_config_intr(child, &ares);
1136 	    else
1137 		kprintf("irq resource not found\n");
1138 	    break;
1139 	}
1140 
1141 out:
1142     ACPI_SERIAL_END(acpi);
1143     return (res);
1144 }
1145 
1146 static int
1147 acpi_release_resource(device_t bus, device_t child, int type, int rid,
1148     struct resource *r)
1149 {
1150     struct rman *rm;
1151     int ret;
1152 
1153     /* We only handle memory and IO resources through rman. */
1154     switch (type) {
1155     case SYS_RES_IOPORT:
1156 	rm = &acpi_rman_io;
1157 	break;
1158     case SYS_RES_MEMORY:
1159 	rm = &acpi_rman_mem;
1160 	break;
1161     default:
1162 	rm = NULL;
1163     }
1164 
1165     ACPI_SERIAL_BEGIN(acpi);
1166 
1167     /*
1168      * If this resource belongs to one of our internal managers,
1169      * deactivate it and release it to the local pool.  If it doesn't,
1170      * pass this request up to the parent.
1171      */
1172     if (rm != NULL && rman_is_region_manager(r, rm)) {
1173 	if (rman_get_flags(r) & RF_ACTIVE) {
1174 	    ret = bus_deactivate_resource(child, type, rid, r);
1175 	    if (ret != 0)
1176 		goto out;
1177 	}
1178 	ret = rman_release_resource(r);
1179     } else
1180 	ret = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, r);
1181 
1182 out:
1183     ACPI_SERIAL_END(acpi);
1184     return (ret);
1185 }
1186 
1187 static void
1188 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1189 {
1190     struct resource_list *rl;
1191 
1192     rl = acpi_get_rlist(bus, child);
1193     resource_list_delete(rl, type, rid);
1194 }
1195 
1196 /* Allocate an IO port or memory resource, given its GAS. */
1197 int
1198 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
1199     struct resource **res, u_int flags)
1200 {
1201     int error, res_type;
1202 
1203     error = ENOMEM;
1204     if (type == NULL || rid == NULL || gas == NULL || res == NULL)
1205 	return (EINVAL);
1206 
1207     /* We only support memory and IO spaces. */
1208     switch (gas->SpaceId) {
1209     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1210 	res_type = SYS_RES_MEMORY;
1211 	break;
1212     case ACPI_ADR_SPACE_SYSTEM_IO:
1213 	res_type = SYS_RES_IOPORT;
1214 	break;
1215     default:
1216 	return (EOPNOTSUPP);
1217     }
1218 
1219     /*
1220      * If the register width is less than 8, assume the BIOS author means
1221      * it is a bit field and just allocate a byte.
1222      */
1223     if (gas->BitWidth && gas->BitWidth < 8)
1224 	gas->BitWidth = 8;
1225 
1226     /* Validate the address after we're sure we support the space. */
1227     if (gas->Address == 0 || gas->BitWidth == 0)
1228 	return (EINVAL);
1229 
1230     bus_set_resource(dev, res_type, *rid, gas->Address,
1231 	gas->BitWidth / 8, -1);
1232     *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1233     if (*res != NULL) {
1234 	*type = res_type;
1235 	error = 0;
1236     } else
1237 	bus_delete_resource(dev, res_type, *rid);
1238 
1239     return (error);
1240 }
1241 
1242 ACPI_STATUS
1243 acpi_eval_osc(device_t dev, ACPI_HANDLE handle, const char *uuidstr,
1244     int revision, uint32_t *buf, int count)
1245 {
1246     ACPI_BUFFER		retbuf = { ACPI_ALLOCATE_BUFFER, NULL };
1247     ACPI_OBJECT_LIST	arglist;
1248     ACPI_OBJECT		arg[4];
1249     ACPI_OBJECT		*retobj;
1250     ACPI_STATUS		status;
1251     struct uuid		uuid;
1252     uint32_t		error;
1253     uint8_t		oscuuid[16];
1254     int			i;
1255 
1256     if (parse_uuid(uuidstr, &uuid) != 0)
1257 	    return (AE_ERROR);
1258     le_uuid_enc(oscuuid, &uuid);
1259 
1260     arglist.Pointer = arg;
1261     arglist.Count = 4;
1262     arg[0].Type = ACPI_TYPE_BUFFER;
1263     arg[0].Buffer.Length = sizeof(oscuuid);
1264     arg[0].Buffer.Pointer = oscuuid;		/* UUID */
1265     arg[1].Type = ACPI_TYPE_INTEGER;
1266     arg[1].Integer.Value = revision;		/* revision */
1267     arg[2].Type = ACPI_TYPE_INTEGER;
1268     arg[2].Integer.Value = count;		/* # of cap integers */
1269     arg[3].Type = ACPI_TYPE_BUFFER;
1270     arg[3].Buffer.Length = count * sizeof(uint32_t); /* capabilities buffer */
1271     arg[3].Buffer.Pointer = (uint8_t *)buf;
1272 
1273     status = AcpiEvaluateObject(handle, "_OSC", &arglist, &retbuf);
1274     if (ACPI_FAILURE(status))
1275 	goto done;
1276     retobj = retbuf.Pointer;
1277     error = ((uint32_t *)retobj->Buffer.Pointer)[0] & ACPI_OSCERR_MASK;
1278     if (error == 0)
1279 	goto done;
1280     status = AE_ERROR;
1281     if (error & ACPI_OSCERR_OSCFAIL)
1282 	device_printf(dev, "_OSC unable to process request\n");
1283     if (error & ACPI_OSCERR_UUID)
1284 	device_printf(dev, "_OSC unrecognized UUID (%s)\n", uuidstr);
1285     if (error & ACPI_OSCERR_REVISION)
1286 	device_printf(dev, "_OSC unrecognized revision ID (%d)\n", revision);
1287     if (error & ACPI_OSCERR_CAPSMASKED) {
1288 	if ((buf[0] & ACPI_OSC_QUERY_SUPPORT) == 0) {
1289 	    for (i = 1; i < count; i++) {
1290 		device_printf(dev,
1291 		    "_OSC capabilities have been masked: buf[%d]:%#x\n",
1292 		    i, buf[i] & ~((uint32_t *)retobj->Buffer.Pointer)[i]);
1293 	    }
1294 	    status = AE_SUPPORT;
1295 	} else {
1296 	    status = AE_OK;
1297 	}
1298     }
1299 
1300 done:
1301     if (retbuf.Pointer != NULL)
1302 	AcpiOsFree(retbuf.Pointer);
1303     return (status);
1304 }
1305 
1306 /* Probe _HID and _CID for compatible ISA PNP ids. */
1307 static uint32_t
1308 acpi_isa_get_logicalid(device_t dev)
1309 {
1310     ACPI_DEVICE_INFO	*devinfo;
1311     ACPI_HANDLE		h;
1312     uint32_t		pnpid;
1313 
1314     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1315 
1316     devinfo = NULL;
1317     pnpid = 0;
1318 
1319     /* Fetch and validate the HID. */
1320     if ((h = acpi_get_handle(dev)) == NULL ||
1321 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1322 	goto out;
1323 
1324     if ((devinfo->Valid & ACPI_VALID_HID) != 0)
1325 	pnpid = PNP_EISAID(devinfo->HardwareId.String);
1326 
1327 out:
1328     if (devinfo)
1329 	AcpiOsFree(devinfo);
1330     return_VALUE (pnpid);
1331 }
1332 
1333 static int
1334 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1335 {
1336     ACPI_DEVICE_INFO	*devinfo;
1337     ACPI_HANDLE		h;
1338     uint32_t		*pnpid;
1339     int			valid, i;
1340 
1341     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1342 
1343     devinfo = NULL;
1344     pnpid = cids;
1345     valid = 0;
1346 
1347     /* Fetch and validate the CID */
1348     if ((h = acpi_get_handle(dev)) == NULL ||
1349 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)) ||
1350 	(devinfo->Valid & ACPI_VALID_CID) == 0)
1351 	goto out;
1352 
1353     if (devinfo->CompatibleIdList.Count < count)
1354 	count = devinfo->CompatibleIdList.Count;
1355     for (i = 0; i < count; i++) {
1356 	if (strncmp(devinfo->CompatibleIdList.Ids[i].String, "PNP", 3) != 0)
1357 	    continue;
1358 	*pnpid++ = PNP_EISAID(devinfo->CompatibleIdList.Ids[i].String);
1359 	valid++;
1360     }
1361 
1362 out:
1363     if (devinfo)
1364 	AcpiOsFree(devinfo);
1365     return_VALUE (valid);
1366 }
1367 
1368 static char *
1369 acpi_device_id_probe(device_t bus, device_t dev, char **ids)
1370 {
1371     ACPI_HANDLE h;
1372     int i;
1373 
1374     h = acpi_get_handle(dev);
1375     if (ids == NULL || h == NULL || acpi_get_type(dev) != ACPI_TYPE_DEVICE)
1376 	return (NULL);
1377 
1378     /* Try to match one of the array of IDs with a HID or CID. */
1379     for (i = 0; ids[i] != NULL; i++) {
1380 	if (acpi_MatchHid(h, ids[i]))
1381 	    return (ids[i]);
1382     }
1383     return (NULL);
1384 }
1385 
1386 static ACPI_STATUS
1387 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1388     ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1389 {
1390     ACPI_HANDLE h;
1391 
1392     if (dev == NULL)
1393 	h = ACPI_ROOT_OBJECT;
1394     else if ((h = acpi_get_handle(dev)) == NULL)
1395 	return (AE_BAD_PARAMETER);
1396     return (AcpiEvaluateObject(h, pathname, parameters, ret));
1397 }
1398 
1399 static int
1400 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
1401 {
1402     struct acpi_softc *sc;
1403     ACPI_HANDLE handle;
1404     ACPI_STATUS status;
1405     char sxd[8];
1406     int error;
1407 
1408     sc = device_get_softc(bus);
1409     handle = acpi_get_handle(dev);
1410 
1411     /*
1412      * XXX If we find these devices, don't try to power them down.
1413      * The serial and IRDA ports on my T23 hang the system when
1414      * set to D3 and it appears that such legacy devices may
1415      * need special handling in their drivers.
1416      */
1417     if (handle == NULL ||
1418 	acpi_MatchHid(handle, "PNP0500") ||
1419 	acpi_MatchHid(handle, "PNP0501") ||
1420 	acpi_MatchHid(handle, "PNP0502") ||
1421 	acpi_MatchHid(handle, "PNP0510") ||
1422 	acpi_MatchHid(handle, "PNP0511"))
1423 	return (ENXIO);
1424 
1425     /*
1426      * Override next state with the value from _SxD, if present.  If no
1427      * dstate argument was provided, don't fetch the return value.
1428      */
1429     ksnprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
1430     if (dstate)
1431 	status = acpi_GetInteger(handle, sxd, dstate);
1432     else
1433 	status = AcpiEvaluateObject(handle, sxd, NULL, NULL);
1434 
1435     switch (status) {
1436     case AE_OK:
1437 	error = 0;
1438 	break;
1439     case AE_NOT_FOUND:
1440 	error = ESRCH;
1441 	break;
1442     default:
1443 	error = ENXIO;
1444 	break;
1445     }
1446 
1447     return (error);
1448 }
1449 
1450 /* Callback arg for our implementation of walking the namespace. */
1451 struct acpi_device_scan_ctx {
1452     acpi_scan_cb_t	user_fn;
1453     void		*arg;
1454     ACPI_HANDLE		parent;
1455 };
1456 
1457 static ACPI_STATUS
1458 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
1459 {
1460     struct acpi_device_scan_ctx *ctx;
1461     device_t dev, old_dev;
1462     ACPI_STATUS status;
1463     ACPI_OBJECT_TYPE type;
1464 
1465     /*
1466      * Skip this device if we think we'll have trouble with it or it is
1467      * the parent where the scan began.
1468      */
1469     ctx = (struct acpi_device_scan_ctx *)arg;
1470     if (acpi_avoid(h) || h == ctx->parent)
1471 	return (AE_OK);
1472 
1473     /* If this is not a valid device type (e.g., a method), skip it. */
1474     if (ACPI_FAILURE(AcpiGetType(h, &type)))
1475 	return (AE_OK);
1476     if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
1477 	type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
1478 	return (AE_OK);
1479 
1480     /*
1481      * Call the user function with the current device.  If it is unchanged
1482      * afterwards, return.  Otherwise, we update the handle to the new dev.
1483      */
1484     old_dev = acpi_get_device(h);
1485     dev = old_dev;
1486     status = ctx->user_fn(h, &dev, level, ctx->arg);
1487     if (ACPI_FAILURE(status) || old_dev == dev)
1488 	return (status);
1489 
1490     /* Remove the old child and its connection to the handle. */
1491     if (old_dev != NULL) {
1492 	device_delete_child(device_get_parent(old_dev), old_dev);
1493 	AcpiDetachData(h, acpi_fake_objhandler);
1494     }
1495 
1496     /* Recreate the handle association if the user created a device. */
1497     if (dev != NULL)
1498 	AcpiAttachData(h, acpi_fake_objhandler, dev);
1499 
1500     return (AE_OK);
1501 }
1502 
1503 static ACPI_STATUS
1504 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
1505     acpi_scan_cb_t user_fn, void *arg)
1506 {
1507     ACPI_HANDLE h;
1508     struct acpi_device_scan_ctx ctx;
1509 
1510     if (acpi_disabled("children"))
1511 	return (AE_OK);
1512 
1513     if (dev == NULL)
1514 	h = ACPI_ROOT_OBJECT;
1515     else if ((h = acpi_get_handle(dev)) == NULL)
1516 	return (AE_BAD_PARAMETER);
1517     ctx.user_fn = user_fn;
1518     ctx.arg = arg;
1519     ctx.parent = h;
1520     return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
1521 	acpi_device_scan_cb, NULL, &ctx, NULL));
1522 }
1523 
1524 /*
1525  * Even though ACPI devices are not PCI, we use the PCI approach for setting
1526  * device power states since it's close enough to ACPI.
1527  */
1528 static int
1529 acpi_set_powerstate_method(device_t bus, device_t child, int state)
1530 {
1531     ACPI_HANDLE h;
1532     ACPI_STATUS status;
1533     int error;
1534 
1535     error = 0;
1536     h = acpi_get_handle(child);
1537     if (state < ACPI_STATE_D0 || state > ACPI_STATE_D3)
1538 	return (EINVAL);
1539     if (h == NULL)
1540 	return (0);
1541 
1542     /* Ignore errors if the power methods aren't present. */
1543     status = acpi_pwr_switch_consumer(h, state);
1544     if (ACPI_FAILURE(status) && status != AE_NOT_FOUND
1545 	&& status != AE_BAD_PARAMETER)
1546 	device_printf(bus, "failed to set ACPI power state D%d on %s: %s\n",
1547 	    state, acpi_name(h), AcpiFormatException(status));
1548 
1549     return (error);
1550 }
1551 
1552 static int
1553 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
1554 {
1555     int			result, cid_count, i;
1556     uint32_t		lid, cids[8];
1557 
1558     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1559 
1560     /*
1561      * ISA-style drivers attached to ACPI may persist and
1562      * probe manually if we return ENOENT.  We never want
1563      * that to happen, so don't ever return it.
1564      */
1565     result = ENXIO;
1566 
1567     /* Scan the supplied IDs for a match */
1568     lid = acpi_isa_get_logicalid(child);
1569     cid_count = acpi_isa_get_compatid(child, cids, 8);
1570     while (ids && ids->ip_id) {
1571 	if (lid == ids->ip_id) {
1572 	    result = 0;
1573 	    goto out;
1574 	}
1575 	for (i = 0; i < cid_count; i++) {
1576 	    if (cids[i] == ids->ip_id) {
1577 		result = 0;
1578 		goto out;
1579 	    }
1580 	}
1581 	ids++;
1582     }
1583 
1584  out:
1585     if (result == 0 && ids->ip_desc)
1586 	device_set_desc(child, ids->ip_desc);
1587 
1588     return_VALUE (result);
1589 }
1590 
1591 /*
1592  * Look for a MCFG table.  If it is present, use the settings for
1593  * domain (segment) 0 to setup PCI config space access via the memory
1594  * map.
1595  */
1596 static void
1597 acpi_enable_pcie(void)
1598 {
1599 	ACPI_TABLE_HEADER *hdr;
1600 	ACPI_MCFG_ALLOCATION *alloc, *end;
1601 	ACPI_STATUS status;
1602 
1603 	status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
1604 	if (ACPI_FAILURE(status))
1605 		return;
1606 
1607 	end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
1608 	alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
1609 	while (alloc < end) {
1610 		if (alloc->PciSegment == 0) {
1611 			pcie_cfgregopen(alloc->Address, alloc->StartBusNumber,
1612 			    alloc->EndBusNumber);
1613 			return;
1614 		}
1615 		alloc++;
1616 	}
1617 }
1618 
1619 /*
1620  * Scan all of the ACPI namespace and attach child devices.
1621  *
1622  * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
1623  * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
1624  * However, in violation of the spec, some systems place their PCI link
1625  * devices in \, so we have to walk the whole namespace.  We check the
1626  * type of namespace nodes, so this should be ok.
1627  */
1628 static void
1629 acpi_probe_children(device_t bus)
1630 {
1631 
1632     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1633 
1634     /*
1635      * Scan the namespace and insert placeholders for all the devices that
1636      * we find.  We also probe/attach any early devices.
1637      *
1638      * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
1639      * we want to create nodes for all devices, not just those that are
1640      * currently present. (This assumes that we don't want to create/remove
1641      * devices as they appear, which might be smarter.)
1642      */
1643     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
1644     AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100,
1645 	acpi_probe_child, NULL, bus, NULL);
1646 
1647     /* Pre-allocate resources for our rman from any sysresource devices. */
1648     acpi_sysres_alloc(bus);
1649     /* Create any static children by calling device identify methods. */
1650     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
1651     bus_generic_probe(bus);
1652 
1653     /* Probe/attach all children, created staticly and from the namespace. */
1654     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "first bus_generic_attach\n"));
1655     bus_generic_attach(bus);
1656 
1657     /*
1658      * Some of these children may have attached others as part of their attach
1659      * process (eg. the root PCI bus driver), so rescan.
1660      */
1661     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "second bus_generic_attach\n"));
1662     bus_generic_attach(bus);
1663 
1664     /* Attach wake sysctls. */
1665     acpi_wake_sysctl_walk(bus);
1666 
1667     ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
1668     return_VOID;
1669 }
1670 
1671 /*
1672  * Determine the probe order for a given device.
1673  */
1674 static void
1675 acpi_probe_order(ACPI_HANDLE handle, int *order)
1676 {
1677     ACPI_OBJECT_TYPE type;
1678 
1679     /*
1680      * 1. I/O port and memory system resource holders
1681      * 2. Embedded controllers (to handle early accesses)
1682      * 3. PCI Link Devices
1683      * 100000. CPUs
1684      */
1685     AcpiGetType(handle, &type);
1686     if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02"))
1687 	*order = 1;
1688     else if (acpi_MatchHid(handle, "PNP0C09"))
1689 	*order = 2;
1690     else if (acpi_MatchHid(handle, "PNP0C0F"))
1691 	*order = 3;
1692     else if (type == ACPI_TYPE_PROCESSOR)
1693 	*order = 100000;
1694 }
1695 
1696 /*
1697  * Evaluate a child device and determine whether we might attach a device to
1698  * it.
1699  */
1700 static ACPI_STATUS
1701 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
1702 {
1703     struct acpi_prw_data prw;
1704     ACPI_OBJECT_TYPE type;
1705     ACPI_HANDLE h;
1706     device_t bus, child;
1707     int order;
1708     char *handle_str;
1709 
1710     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1711 
1712     if (acpi_disabled("children"))
1713 	return_ACPI_STATUS (AE_OK);
1714 
1715     /* Skip this device if we think we'll have trouble with it. */
1716     if (acpi_avoid(handle))
1717 	return_ACPI_STATUS (AE_OK);
1718 
1719     bus = (device_t)context;
1720     if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
1721 	handle_str = acpi_name(handle);
1722 	switch (type) {
1723 	case ACPI_TYPE_DEVICE:
1724 	    /*
1725 	     * Since we scan from \, be sure to skip system scope objects.
1726 	     * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
1727 	     * BIOS bugs.  For example, \_SB_ is to allow \_SB_._INI to be run
1728 	     * during the intialization and \_TZ_ is to support Notify() on it.
1729 	     */
1730 	    if (strcmp(handle_str, "\\_SB_") == 0 ||
1731 		strcmp(handle_str, "\\_TZ_") == 0)
1732 		break;
1733 
1734 	    if (acpi_parse_prw(handle, &prw) == 0)
1735 		AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
1736 
1737 	    /* FALLTHROUGH */
1738 	case ACPI_TYPE_PROCESSOR:
1739 	case ACPI_TYPE_THERMAL:
1740 	case ACPI_TYPE_POWER:
1741 	    /*
1742 	     * Create a placeholder device for this node.  Sort the
1743 	     * placeholder so that the probe/attach passes will run
1744 	     * breadth-first.  Orders less than ACPI_DEV_BASE_ORDER
1745 	     * are reserved for special objects (i.e., system
1746 	     * resources).  CPU devices have a very high order to
1747 	     * ensure they are probed after other devices.
1748 	     */
1749 	    ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
1750 	    order = level * 10 + 100;
1751 	    acpi_probe_order(handle, &order);
1752 	    child = BUS_ADD_CHILD(bus, bus, order, NULL, -1);
1753 	    if (child == NULL)
1754 		break;
1755 
1756 	    /* Associate the handle with the device_t and vice versa. */
1757 	    acpi_set_handle(child, handle);
1758 	    AcpiAttachData(handle, acpi_fake_objhandler, child);
1759 
1760 	    /*
1761 	     * Check that the device is present.  If it's not present,
1762 	     * leave it disabled (so that we have a device_t attached to
1763 	     * the handle, but we don't probe it).
1764 	     *
1765 	     * XXX PCI link devices sometimes report "present" but not
1766 	     * "functional" (i.e. if disabled).  Go ahead and probe them
1767 	     * anyway since we may enable them later.
1768 	     */
1769 	    if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
1770 		/* Never disable PCI link devices. */
1771 		if (acpi_MatchHid(handle, "PNP0C0F"))
1772 		    break;
1773 		/*
1774 		 * Docking stations should remain enabled since the system
1775 		 * may be undocked at boot.
1776 		 */
1777 		if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
1778 		    break;
1779 
1780 		device_disable(child);
1781 		break;
1782 	    }
1783 
1784 	    /*
1785 	     * Get the device's resource settings and attach them.
1786 	     * Note that if the device has _PRS but no _CRS, we need
1787 	     * to decide when it's appropriate to try to configure the
1788 	     * device.  Ignore the return value here; it's OK for the
1789 	     * device not to have any resources.
1790 	     */
1791 	    acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
1792 	    break;
1793 	}
1794     }
1795 
1796     return_ACPI_STATUS (AE_OK);
1797 }
1798 
1799 /*
1800  * AcpiAttachData() requires an object handler but never uses it.  This is a
1801  * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
1802  */
1803 void
1804 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
1805 {
1806 }
1807 
1808 static void
1809 acpi_shutdown_final(void *arg, int howto)
1810 {
1811     struct acpi_softc *sc;
1812     ACPI_STATUS status;
1813 
1814     /*
1815      * XXX Shutdown code should only run on the BSP (cpuid 0).
1816      * Some chipsets do not power off the system correctly if called from
1817      * an AP.
1818      */
1819     sc = arg;
1820     if ((howto & RB_POWEROFF) != 0) {
1821 	status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
1822 	if (ACPI_FAILURE(status)) {
1823 	    device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
1824 		   AcpiFormatException(status));
1825 	    return;
1826 	}
1827 	device_printf(sc->acpi_dev, "Powering system off\n");
1828 	ACPI_DISABLE_IRQS();
1829 	status = AcpiEnterSleepState(ACPI_STATE_S5);
1830 	if (ACPI_FAILURE(status)) {
1831 	    device_printf(sc->acpi_dev, "power-off failed - %s\n",
1832 		AcpiFormatException(status));
1833 	} else {
1834 	    DELAY(1000000);
1835 	    device_printf(sc->acpi_dev, "power-off failed - timeout\n");
1836 	}
1837     } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
1838 	/* Reboot using the reset register. */
1839 	status = AcpiReset();
1840 	if (ACPI_FAILURE(status)) {
1841 	    if (status != AE_NOT_EXIST)
1842 		    device_printf(sc->acpi_dev, "reset failed - %s\n",
1843 			AcpiFormatException(status));
1844 	} else {
1845 	    DELAY(1000000);
1846 	    device_printf(sc->acpi_dev, "reset failed - timeout\n");
1847 	}
1848     } else if (sc->acpi_do_disable && panicstr == NULL) {
1849 	/*
1850 	 * Only disable ACPI if the user requested.  On some systems, writing
1851 	 * the disable value to SMI_CMD hangs the system.
1852 	 */
1853 	device_printf(sc->acpi_dev, "Shutting down\n");
1854 	AcpiTerminate();
1855     }
1856 }
1857 
1858 static void
1859 acpi_enable_fixed_events(struct acpi_softc *sc)
1860 {
1861     static int	first_time = 1;
1862 
1863     /* Enable and clear fixed events and install handlers. */
1864     if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
1865 	AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
1866 	AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
1867 				     acpi_event_power_button_sleep, sc);
1868 	if (first_time)
1869 	    device_printf(sc->acpi_dev, "Power Button (fixed)\n");
1870     }
1871     if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
1872 	AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
1873 	AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
1874 				     acpi_event_sleep_button_sleep, sc);
1875 	if (first_time)
1876 	    device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
1877     }
1878 
1879     first_time = 0;
1880 }
1881 
1882 /*
1883  * Returns true if the device is actually present and should
1884  * be attached to.  This requires the present, enabled, UI-visible
1885  * and diagnostics-passed bits to be set.
1886  */
1887 BOOLEAN
1888 acpi_DeviceIsPresent(device_t dev)
1889 {
1890     ACPI_DEVICE_INFO	*devinfo;
1891     ACPI_HANDLE		h;
1892     int			ret;
1893 
1894     ret = FALSE;
1895     if ((h = acpi_get_handle(dev)) == NULL ||
1896 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1897 	return (FALSE);
1898 
1899     /* If no _STA method, must be present */
1900     if ((devinfo->Valid & ACPI_VALID_STA) == 0)
1901 	ret = TRUE;
1902 
1903     /* Return true for 'present' and 'functioning' */
1904     if (ACPI_DEVICE_PRESENT(devinfo->CurrentStatus))
1905 	ret = TRUE;
1906 
1907     AcpiOsFree(devinfo);
1908     return (ret);
1909 }
1910 
1911 /*
1912  * Returns true if the battery is actually present and inserted.
1913  */
1914 BOOLEAN
1915 acpi_BatteryIsPresent(device_t dev)
1916 {
1917     ACPI_DEVICE_INFO	*devinfo;
1918     ACPI_HANDLE		h;
1919     int			ret;
1920 
1921     ret = FALSE;
1922     if ((h = acpi_get_handle(dev)) == NULL ||
1923 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1924 	return (FALSE);
1925 
1926     /* If no _STA method, must be present */
1927     if ((devinfo->Valid & ACPI_VALID_STA) == 0)
1928 	ret = TRUE;
1929 
1930     /* Return true for 'present', 'battery present', and 'functioning' */
1931     if (ACPI_BATTERY_PRESENT(devinfo->CurrentStatus))
1932 	ret = TRUE;
1933 
1934     AcpiOsFree(devinfo);
1935     return (ret);
1936 }
1937 
1938 /*
1939  * Match a HID string against a handle
1940  */
1941 BOOLEAN
1942 acpi_MatchHid(ACPI_HANDLE h, const char *hid)
1943 {
1944     ACPI_DEVICE_INFO	*devinfo;
1945     int			ret, i;
1946 
1947     ret = FALSE;
1948     if (hid == NULL || h == NULL ||
1949 	ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1950 	return (ret);
1951 
1952     if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
1953 	strcmp(hid, devinfo->HardwareId.String) == 0)
1954 	    ret = TRUE;
1955     else if ((devinfo->Valid & ACPI_VALID_CID) != 0) {
1956 	for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
1957 	    if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
1958 		ret = TRUE;
1959 		break;
1960 	    }
1961 	}
1962     }
1963 
1964     AcpiOsFree(devinfo);
1965     return (ret);
1966 }
1967 
1968 /*
1969  * Return the handle of a named object within our scope, ie. that of (parent)
1970  * or one if its parents.
1971  */
1972 ACPI_STATUS
1973 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
1974 {
1975     ACPI_HANDLE		r;
1976     ACPI_STATUS		status;
1977 
1978     /* Walk back up the tree to the root */
1979     for (;;) {
1980 	status = AcpiGetHandle(parent, path, &r);
1981 	if (ACPI_SUCCESS(status)) {
1982 	    *result = r;
1983 	    return (AE_OK);
1984 	}
1985 	/* XXX Return error here? */
1986 	if (status != AE_NOT_FOUND)
1987 	    return (AE_OK);
1988 	if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
1989 	    return (AE_NOT_FOUND);
1990 	parent = r;
1991     }
1992 }
1993 
1994 /*
1995  * Allocate a buffer with a preset data size.
1996  */
1997 ACPI_BUFFER *
1998 acpi_AllocBuffer(int size)
1999 {
2000     ACPI_BUFFER	*buf;
2001 
2002     if ((buf = kmalloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2003 	return (NULL);
2004     buf->Length = size;
2005     buf->Pointer = (void *)(buf + 1);
2006     return (buf);
2007 }
2008 
2009 ACPI_STATUS
2010 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2011 {
2012     ACPI_OBJECT arg1;
2013     ACPI_OBJECT_LIST args;
2014 
2015     arg1.Type = ACPI_TYPE_INTEGER;
2016     arg1.Integer.Value = number;
2017     args.Count = 1;
2018     args.Pointer = &arg1;
2019 
2020     return (AcpiEvaluateObject(handle, path, &args, NULL));
2021 }
2022 
2023 /*
2024  * Evaluate a path that should return an integer.
2025  */
2026 ACPI_STATUS
2027 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2028 {
2029     ACPI_STATUS	status;
2030     ACPI_BUFFER	buf;
2031     ACPI_OBJECT	param;
2032 
2033     if (handle == NULL)
2034 	handle = ACPI_ROOT_OBJECT;
2035 
2036     /*
2037      * Assume that what we've been pointed at is an Integer object, or
2038      * a method that will return an Integer.
2039      */
2040     buf.Pointer = &param;
2041     buf.Length = sizeof(param);
2042     status = AcpiEvaluateObject(handle, path, NULL, &buf);
2043     if (ACPI_SUCCESS(status)) {
2044 	if (param.Type == ACPI_TYPE_INTEGER)
2045 	    *number = param.Integer.Value;
2046 	else
2047 	    status = AE_TYPE;
2048     }
2049 
2050     /*
2051      * In some applications, a method that's expected to return an Integer
2052      * may instead return a Buffer (probably to simplify some internal
2053      * arithmetic).  We'll try to fetch whatever it is, and if it's a Buffer,
2054      * convert it into an Integer as best we can.
2055      *
2056      * This is a hack.
2057      */
2058     if (status == AE_BUFFER_OVERFLOW) {
2059 	if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2060 	    status = AE_NO_MEMORY;
2061 	} else {
2062 	    status = AcpiEvaluateObject(handle, path, NULL, &buf);
2063 	    if (ACPI_SUCCESS(status))
2064 		status = acpi_ConvertBufferToInteger(&buf, number);
2065 	    AcpiOsFree(buf.Pointer);
2066 	}
2067     }
2068     return (status);
2069 }
2070 
2071 ACPI_STATUS
2072 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2073 {
2074     ACPI_OBJECT	*p;
2075     UINT8	*val;
2076     int		i;
2077 
2078     p = (ACPI_OBJECT *)bufp->Pointer;
2079     if (p->Type == ACPI_TYPE_INTEGER) {
2080 	*number = p->Integer.Value;
2081 	return (AE_OK);
2082     }
2083     if (p->Type != ACPI_TYPE_BUFFER)
2084 	return (AE_TYPE);
2085     if (p->Buffer.Length > sizeof(int))
2086 	return (AE_BAD_DATA);
2087 
2088     *number = 0;
2089     val = p->Buffer.Pointer;
2090     for (i = 0; i < p->Buffer.Length; i++)
2091 	*number += val[i] << (i * 8);
2092     return (AE_OK);
2093 }
2094 
2095 /*
2096  * Iterate over the elements of an a package object, calling the supplied
2097  * function for each element.
2098  *
2099  * XXX possible enhancement might be to abort traversal on error.
2100  */
2101 ACPI_STATUS
2102 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2103 	void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2104 {
2105     ACPI_OBJECT	*comp;
2106     int		i;
2107 
2108     if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2109 	return (AE_BAD_PARAMETER);
2110 
2111     /* Iterate over components */
2112     i = 0;
2113     comp = pkg->Package.Elements;
2114     for (; i < pkg->Package.Count; i++, comp++)
2115 	func(comp, arg);
2116 
2117     return (AE_OK);
2118 }
2119 
2120 /*
2121  * Find the (index)th resource object in a set.
2122  */
2123 ACPI_STATUS
2124 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2125 {
2126     ACPI_RESOURCE	*rp;
2127     int			i;
2128 
2129     rp = (ACPI_RESOURCE *)buf->Pointer;
2130     i = index;
2131     while (i-- > 0) {
2132 	/* Range check */
2133 	if (rp > (ACPI_RESOURCE *)((uint8_t *)buf->Pointer + buf->Length))
2134 	    return (AE_BAD_PARAMETER);
2135 
2136 	/* Check for terminator */
2137 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2138 	    return (AE_NOT_FOUND);
2139 	rp = ACPI_NEXT_RESOURCE(rp);
2140     }
2141     if (resp != NULL)
2142 	*resp = rp;
2143 
2144     return (AE_OK);
2145 }
2146 
2147 /*
2148  * Append an ACPI_RESOURCE to an ACPI_BUFFER.
2149  *
2150  * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2151  * provided to contain it.  If the ACPI_BUFFER is empty, allocate a sensible
2152  * backing block.  If the ACPI_RESOURCE is NULL, return an empty set of
2153  * resources.
2154  */
2155 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE	512
2156 
2157 ACPI_STATUS
2158 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2159 {
2160     ACPI_RESOURCE	*rp;
2161     void		*newp;
2162 
2163     /* Initialise the buffer if necessary. */
2164     if (buf->Pointer == NULL) {
2165 	buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2166 	if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2167 	    return (AE_NO_MEMORY);
2168 	rp = (ACPI_RESOURCE *)buf->Pointer;
2169 	rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2170 	rp->Length = ACPI_RS_SIZE_MIN;
2171     }
2172     if (res == NULL)
2173 	return (AE_OK);
2174 
2175     /*
2176      * Scan the current buffer looking for the terminator.
2177      * This will either find the terminator or hit the end
2178      * of the buffer and return an error.
2179      */
2180     rp = (ACPI_RESOURCE *)buf->Pointer;
2181     for (;;) {
2182 	/* Range check, don't go outside the buffer */
2183 	if (rp >= (ACPI_RESOURCE *)((uint8_t *)buf->Pointer + buf->Length))
2184 	    return (AE_BAD_PARAMETER);
2185 	if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2186 	    break;
2187 	rp = ACPI_NEXT_RESOURCE(rp);
2188     }
2189 
2190     /*
2191      * Check the size of the buffer and expand if required.
2192      *
2193      * Required size is:
2194      *	size of existing resources before terminator +
2195      *	size of new resource and header +
2196      * 	size of terminator.
2197      *
2198      * Note that this loop should really only run once, unless
2199      * for some reason we are stuffing a *really* huge resource.
2200      */
2201     while ((((uint8_t *)rp - (uint8_t *)buf->Pointer) +
2202 	    res->Length + ACPI_RS_SIZE_NO_DATA +
2203 	    ACPI_RS_SIZE_MIN) >= buf->Length) {
2204 	if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
2205 	    return (AE_NO_MEMORY);
2206 	bcopy(buf->Pointer, newp, buf->Length);
2207 	rp = (ACPI_RESOURCE *)((uint8_t *)newp +
2208 			       ((uint8_t *)rp - (uint8_t *)buf->Pointer));
2209 	AcpiOsFree(buf->Pointer);
2210 	buf->Pointer = newp;
2211 	buf->Length += buf->Length;
2212     }
2213 
2214     /* Insert the new resource. */
2215     bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
2216 
2217     /* And add the terminator. */
2218     rp = ACPI_NEXT_RESOURCE(rp);
2219     rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2220     rp->Length = ACPI_RS_SIZE_MIN;
2221 
2222     return (AE_OK);
2223 }
2224 
2225 /*
2226  * Set interrupt model.
2227  */
2228 ACPI_STATUS
2229 acpi_SetIntrModel(int model)
2230 {
2231 
2232     return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
2233 }
2234 
2235 /*
2236  * DEPRECATED.  This interface has serious deficiencies and will be
2237  * removed.
2238  *
2239  * Immediately enter the sleep state.  In the old model, acpiconf(8) ran
2240  * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
2241  */
2242 ACPI_STATUS
2243 acpi_SetSleepState(struct acpi_softc *sc, int state)
2244 {
2245     static int once;
2246 
2247     if (!once) {
2248 	device_printf(sc->acpi_dev,
2249 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
2250 	once = 1;
2251     }
2252     return (acpi_EnterSleepState(sc, state));
2253 }
2254 
2255 static void
2256 acpi_sleep_force(void *arg)
2257 {
2258     struct acpi_softc *sc;
2259 
2260     sc = arg;
2261     device_printf(sc->acpi_dev,
2262 	"suspend request timed out, forcing sleep now\n");
2263     if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2264 	device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
2265 	    sc->acpi_next_sstate);
2266 }
2267 
2268 /*
2269  * Request that the system enter the given suspend state.  All /dev/apm
2270  * devices and devd(8) will be notified.  Userland then has a chance to
2271  * save state and acknowledge the request.  The system sleeps once all
2272  * acks are in.
2273  */
2274 int
2275 acpi_ReqSleepState(struct acpi_softc *sc, int state)
2276 {
2277 #ifdef notyet
2278     struct apm_clone_data *clone;
2279 #endif
2280 
2281     if (state < ACPI_STATE_S1 || state > ACPI_STATE_S5)
2282 	return (EINVAL);
2283 
2284     /* S5 (soft-off) should be entered directly with no waiting. */
2285     if (state == ACPI_STATE_S5) {
2286 	if (ACPI_SUCCESS(acpi_EnterSleepState(sc, state)))
2287 	    return (0);
2288 	else
2289 	    return (ENXIO);
2290     }
2291 
2292     /* This platform does not support acpi suspend/resume. */
2293     return (EOPNOTSUPP);
2294 
2295     /* If a suspend request is already in progress, just return. */
2296     ACPI_LOCK(acpi);
2297     if (sc->acpi_next_sstate != 0) {
2298 	ACPI_UNLOCK(acpi);
2299 	return (0);
2300     }
2301 
2302     /* Record the pending state and notify all apm devices. */
2303     sc->acpi_next_sstate = state;
2304 #if 0
2305     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2306 	clone->notify_status = APM_EV_NONE;
2307 	if ((clone->flags & ACPI_EVF_DEVD) == 0) {
2308 	    KNOTE(&clone->sel_read.si_note, 0);
2309 	}
2310     }
2311 #endif
2312 
2313     /* If devd(8) is not running, immediately enter the sleep state. */
2314     if (devctl_process_running() == FALSE) {
2315 	ACPI_UNLOCK(acpi);
2316 	if (ACPI_SUCCESS(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) {
2317 	    return (0);
2318 	} else {
2319 	    return (ENXIO);
2320 	}
2321     }
2322 
2323     /* Now notify devd(8) also. */
2324     acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
2325 
2326     /*
2327      * Set a timeout to fire if userland doesn't ack the suspend request
2328      * in time.  This way we still eventually go to sleep if we were
2329      * overheating or running low on battery, even if userland is hung.
2330      * We cancel this timeout once all userland acks are in or the
2331      * suspend request is aborted.
2332      */
2333     callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
2334     ACPI_UNLOCK(acpi);
2335     return (0);
2336 }
2337 
2338 /*
2339  * Acknowledge (or reject) a pending sleep state.  The caller has
2340  * prepared for suspend and is now ready for it to proceed.  If the
2341  * error argument is non-zero, it indicates suspend should be cancelled
2342  * and gives an errno value describing why.  Once all votes are in,
2343  * we suspend the system.
2344  */
2345 int
2346 acpi_AckSleepState(struct apm_clone_data *clone, int error)
2347 {
2348     struct acpi_softc *sc;
2349     int ret, sleeping;
2350 
2351     /* This platform does not support acpi suspend/resume. */
2352     return (EOPNOTSUPP);
2353 
2354     /* If no pending sleep state, return an error. */
2355     ACPI_LOCK(acpi);
2356     sc = clone->acpi_sc;
2357     if (sc->acpi_next_sstate == 0) {
2358 	ACPI_UNLOCK(acpi);
2359 	return (ENXIO);
2360     }
2361 
2362     /* Caller wants to abort suspend process. */
2363     if (error) {
2364 	sc->acpi_next_sstate = 0;
2365 	callout_stop(&sc->susp_force_to);
2366 	device_printf(sc->acpi_dev,
2367 	    "listener on %s cancelled the pending suspend\n",
2368 	    devtoname(clone->cdev));
2369 	ACPI_UNLOCK(acpi);
2370 	return (0);
2371     }
2372 
2373     /*
2374      * Mark this device as acking the suspend request.  Then, walk through
2375      * all devices, seeing if they agree yet.  We only count devices that
2376      * are writable since read-only devices couldn't ack the request.
2377      */
2378     clone->notify_status = APM_EV_ACKED;
2379     sleeping = TRUE;
2380     STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
2381 	if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
2382 	    clone->notify_status != APM_EV_ACKED) {
2383 	    sleeping = FALSE;
2384 	    break;
2385 	}
2386     }
2387 
2388     /* If all devices have voted "yes", we will suspend now. */
2389     if (sleeping)
2390 	callout_stop(&sc->susp_force_to);
2391     ACPI_UNLOCK(acpi);
2392     ret = 0;
2393     if (sleeping) {
2394 	if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
2395 		ret = ENODEV;
2396     }
2397 
2398     return (ret);
2399 }
2400 
2401 static void
2402 acpi_sleep_enable(void *arg)
2403 {
2404     ((struct acpi_softc *)arg)->acpi_sleep_disabled = 0;
2405 }
2406 
2407 enum acpi_sleep_state {
2408     ACPI_SS_NONE,
2409     ACPI_SS_GPE_SET,
2410     ACPI_SS_DEV_SUSPEND,
2411     ACPI_SS_SLP_PREP,
2412     ACPI_SS_SLEPT,
2413 };
2414 
2415 /*
2416  * Enter the desired system sleep state.
2417  *
2418  * Currently we support S1-S5 but S4 is only S4BIOS
2419  */
2420 static ACPI_STATUS
2421 acpi_EnterSleepState(struct acpi_softc *sc, int state)
2422 {
2423     ACPI_STATUS	status;
2424     UINT8	TypeA;
2425     UINT8	TypeB;
2426     enum acpi_sleep_state slp_state;
2427 
2428     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
2429 
2430     /* Re-entry once we're suspending is not allowed. */
2431     status = AE_OK;
2432     ACPI_LOCK(acpi);
2433     if (sc->acpi_sleep_disabled) {
2434 	ACPI_UNLOCK(acpi);
2435 	device_printf(sc->acpi_dev,
2436 	    "suspend request ignored (not ready yet)\n");
2437 	return (AE_ERROR);
2438     }
2439     sc->acpi_sleep_disabled = 1;
2440     ACPI_UNLOCK(acpi);
2441 
2442     /*
2443      * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
2444      * drivers need this.
2445      */
2446     //get_mplock();
2447     slp_state = ACPI_SS_NONE;
2448     switch (state) {
2449     case ACPI_STATE_S1:
2450     case ACPI_STATE_S2:
2451     case ACPI_STATE_S3:
2452     case ACPI_STATE_S4:
2453 	status = AcpiGetSleepTypeData(state, &TypeA, &TypeB);
2454 	if (status == AE_NOT_FOUND) {
2455 	    device_printf(sc->acpi_dev,
2456 			  "Sleep state S%d not supported by BIOS\n", state);
2457 	    break;
2458 	} else if (ACPI_FAILURE(status)) {
2459 	    device_printf(sc->acpi_dev, "AcpiGetSleepTypeData failed - %s\n",
2460 			  AcpiFormatException(status));
2461 	    break;
2462 	}
2463 
2464 	sc->acpi_sstate = state;
2465 
2466 	/* Enable any GPEs as appropriate and requested by the user. */
2467 	acpi_wake_prep_walk(state);
2468 	slp_state = ACPI_SS_GPE_SET;
2469 
2470 	/*
2471 	 * Inform all devices that we are going to sleep.  If at least one
2472 	 * device fails, DEVICE_SUSPEND() automatically resumes the tree.
2473 	 *
2474 	 * XXX Note that a better two-pass approach with a 'veto' pass
2475 	 * followed by a "real thing" pass would be better, but the current
2476 	 * bus interface does not provide for this.
2477 	 */
2478 	if (DEVICE_SUSPEND(root_bus) != 0) {
2479 	    device_printf(sc->acpi_dev, "device_suspend failed\n");
2480 	    break;
2481 	}
2482 	slp_state = ACPI_SS_DEV_SUSPEND;
2483 
2484 	/* If testing device suspend only, back out of everything here. */
2485 	if (acpi_susp_bounce)
2486 	    break;
2487 
2488 	status = AcpiEnterSleepStatePrep(state);
2489 	if (ACPI_FAILURE(status)) {
2490 	    device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2491 			  AcpiFormatException(status));
2492 	    break;
2493 	}
2494 	slp_state = ACPI_SS_SLP_PREP;
2495 
2496 	if (sc->acpi_sleep_delay > 0)
2497 	    DELAY(sc->acpi_sleep_delay * 1000000);
2498 
2499 	if (state != ACPI_STATE_S1) {
2500 	    acpi_sleep_machdep(sc, state);
2501 
2502 	    /* Re-enable ACPI hardware on wakeup from sleep state 4. */
2503 	    if (state == ACPI_STATE_S4)
2504 		AcpiEnable();
2505 	} else {
2506 	    ACPI_DISABLE_IRQS();
2507 	    status = AcpiEnterSleepState(state);
2508 	    if (ACPI_FAILURE(status)) {
2509 		device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
2510 			      AcpiFormatException(status));
2511 		break;
2512 	    }
2513 	}
2514 	slp_state = ACPI_SS_SLEPT;
2515 	break;
2516     case ACPI_STATE_S5:
2517 	/*
2518 	 * Shut down cleanly and power off.  This will call us back through the
2519 	 * shutdown handlers.
2520 	 */
2521 	shutdown_nice(RB_POWEROFF);
2522 	break;
2523     case ACPI_STATE_S0:
2524     default:
2525 	status = AE_BAD_PARAMETER;
2526 	break;
2527     }
2528 
2529     /*
2530      * Back out state according to how far along we got in the suspend
2531      * process.  This handles both the error and success cases.
2532      */
2533     sc->acpi_next_sstate = 0;
2534     if (slp_state >= ACPI_SS_GPE_SET) {
2535 	acpi_wake_prep_walk(state);
2536 	sc->acpi_sstate = ACPI_STATE_S0;
2537     }
2538     if (slp_state >= ACPI_SS_SLP_PREP)
2539 	AcpiLeaveSleepState(state);
2540     if (slp_state >= ACPI_SS_DEV_SUSPEND)
2541 	DEVICE_RESUME(root_bus);
2542     if (slp_state >= ACPI_SS_SLEPT)
2543 	acpi_enable_fixed_events(sc);
2544 
2545     /* Allow another sleep request after a while. */
2546     /* XXX: needs timeout */
2547     if (state != ACPI_STATE_S5)
2548 	      acpi_sleep_enable(sc);
2549 
2550     /* Run /etc/rc.resume after we are back. */
2551     acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
2552 
2553     //rel_mplock();
2554     return_ACPI_STATUS (status);
2555 }
2556 
2557 /* Enable or disable the device's GPE. */
2558 int
2559 acpi_wake_set_enable(device_t dev, int enable)
2560 {
2561     struct acpi_prw_data prw;
2562     ACPI_STATUS status;
2563     int flags;
2564 
2565     /* Make sure the device supports waking the system and get the GPE. */
2566     if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
2567 	return (ENXIO);
2568 
2569     flags = acpi_get_flags(dev);
2570     if (enable) {
2571 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
2572                                     ACPI_GPE_ENABLE);
2573 	if (ACPI_FAILURE(status)) {
2574 	    device_printf(dev, "enable wake failed\n");
2575 	    return (ENXIO);
2576 	}
2577 	acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
2578     } else {
2579 	status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
2580                                     ACPI_GPE_DISABLE);
2581 	if (ACPI_FAILURE(status)) {
2582 	    device_printf(dev, "disable wake failed\n");
2583 	    return (ENXIO);
2584 	}
2585 	acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
2586     }
2587 
2588     return (0);
2589 }
2590 
2591 static int
2592 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
2593 {
2594     struct acpi_prw_data prw;
2595     device_t dev;
2596 
2597     /* Check that this is a wake-capable device and get its GPE. */
2598     if (acpi_parse_prw(handle, &prw) != 0)
2599 	return (ENXIO);
2600     dev = acpi_get_device(handle);
2601 
2602     /*
2603      * The destination sleep state must be less than (i.e., higher power)
2604      * or equal to the value specified by _PRW.  If this GPE cannot be
2605      * enabled for the next sleep state, then disable it.  If it can and
2606      * the user requested it be enabled, turn on any required power resources
2607      * and set _PSW.
2608      */
2609     if (sstate > prw.lowest_wake) {
2610 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
2611 	if (bootverbose)
2612 	    device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
2613 		acpi_name(handle), sstate);
2614     } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
2615 	acpi_pwr_wake_enable(handle, 1);
2616 	acpi_SetInteger(handle, "_PSW", 1);
2617 	if (bootverbose)
2618 	    device_printf(dev, "wake_prep enabled for %s (S%d)\n",
2619 		acpi_name(handle), sstate);
2620     }
2621 
2622     return (0);
2623 }
2624 
2625 static int
2626 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
2627 {
2628     struct acpi_prw_data prw;
2629     device_t dev;
2630 
2631     /*
2632      * Check that this is a wake-capable device and get its GPE.  Return
2633      * now if the user didn't enable this device for wake.
2634      */
2635     if (acpi_parse_prw(handle, &prw) != 0)
2636 	return (ENXIO);
2637     dev = acpi_get_device(handle);
2638     if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
2639 	return (0);
2640 
2641     /*
2642      * If this GPE couldn't be enabled for the previous sleep state, it was
2643      * disabled before going to sleep so re-enable it.  If it was enabled,
2644      * clear _PSW and turn off any power resources it used.
2645      */
2646     if (sstate > prw.lowest_wake) {
2647 	AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
2648 	if (bootverbose)
2649 	    device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
2650     } else {
2651 	acpi_SetInteger(handle, "_PSW", 0);
2652 	acpi_pwr_wake_enable(handle, 0);
2653 	if (bootverbose)
2654 	    device_printf(dev, "run_prep cleaned up for %s\n",
2655 		acpi_name(handle));
2656     }
2657 
2658     return (0);
2659 }
2660 
2661 static ACPI_STATUS
2662 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2663 {
2664     int sstate;
2665 
2666     /* If suspending, run the sleep prep function, otherwise wake. */
2667     sstate = *(int *)context;
2668     if (AcpiGbl_SystemAwakeAndRunning)
2669 	acpi_wake_sleep_prep(handle, sstate);
2670     else
2671 	acpi_wake_run_prep(handle, sstate);
2672     return (AE_OK);
2673 }
2674 
2675 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
2676 static int
2677 acpi_wake_prep_walk(int sstate)
2678 {
2679     ACPI_HANDLE sb_handle;
2680 
2681     if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) {
2682 	AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
2683 	    acpi_wake_prep, NULL, &sstate, NULL);
2684     }
2685     return (0);
2686 }
2687 
2688 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
2689 static int
2690 acpi_wake_sysctl_walk(device_t dev)
2691 {
2692 #ifdef notyet
2693     int error, i, numdevs;
2694     device_t *devlist;
2695     device_t child;
2696     ACPI_STATUS status;
2697 
2698     error = device_get_children(dev, &devlist, &numdevs);
2699     if (error != 0 || numdevs == 0) {
2700 	if (numdevs == 0)
2701 	    kfree(devlist, M_TEMP);
2702 	return (error);
2703     }
2704     for (i = 0; i < numdevs; i++) {
2705 	child = devlist[i];
2706 	acpi_wake_sysctl_walk(child);
2707 	if (!device_is_attached(child))
2708 	    continue;
2709 	status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
2710 	if (ACPI_SUCCESS(status)) {
2711 	    SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
2712 		SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
2713 		"wake", CTLTYPE_INT | CTLFLAG_RW, child, 0,
2714 		acpi_wake_set_sysctl, "I", "Device set to wake the system");
2715 	}
2716     }
2717     kfree(devlist, M_TEMP);
2718 #endif
2719 
2720     return (0);
2721 }
2722 
2723 #ifdef notyet
2724 /* Enable or disable wake from userland. */
2725 static int
2726 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
2727 {
2728     int enable, error;
2729     device_t dev;
2730 
2731     dev = (device_t)arg1;
2732     enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
2733 
2734     error = sysctl_handle_int(oidp, &enable, 0, req);
2735     if (error != 0 || req->newptr == NULL)
2736 	return (error);
2737     if (enable != 0 && enable != 1)
2738 	return (EINVAL);
2739 
2740     return (acpi_wake_set_enable(dev, enable));
2741 }
2742 #endif
2743 
2744 /* Parse a device's _PRW into a structure. */
2745 int
2746 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
2747 {
2748     ACPI_STATUS			status;
2749     ACPI_BUFFER			prw_buffer;
2750     ACPI_OBJECT			*res, *res2;
2751     int				error, i, power_count;
2752 
2753     if (h == NULL || prw == NULL)
2754 	return (EINVAL);
2755 
2756     /*
2757      * The _PRW object (7.2.9) is only required for devices that have the
2758      * ability to wake the system from a sleeping state.
2759      */
2760     error = EINVAL;
2761     prw_buffer.Pointer = NULL;
2762     prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
2763     status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
2764     if (ACPI_FAILURE(status))
2765 	return (ENOENT);
2766     res = (ACPI_OBJECT *)prw_buffer.Pointer;
2767     if (res == NULL)
2768 	return (ENOENT);
2769     if (!ACPI_PKG_VALID(res, 2))
2770 	goto out;
2771 
2772     /*
2773      * Element 1 of the _PRW object:
2774      * The lowest power system sleeping state that can be entered while still
2775      * providing wake functionality.  The sleeping state being entered must
2776      * be less than (i.e., higher power) or equal to this value.
2777      */
2778     if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
2779 	goto out;
2780 
2781     /*
2782      * Element 0 of the _PRW object:
2783      */
2784     switch (res->Package.Elements[0].Type) {
2785     case ACPI_TYPE_INTEGER:
2786 	/*
2787 	 * If the data type of this package element is numeric, then this
2788 	 * _PRW package element is the bit index in the GPEx_EN, in the
2789 	 * GPE blocks described in the FADT, of the enable bit that is
2790 	 * enabled for the wake event.
2791 	 */
2792 	prw->gpe_handle = NULL;
2793 	prw->gpe_bit = res->Package.Elements[0].Integer.Value;
2794 	error = 0;
2795 	break;
2796     case ACPI_TYPE_PACKAGE:
2797 	/*
2798 	 * If the data type of this package element is a package, then this
2799 	 * _PRW package element is itself a package containing two
2800 	 * elements.  The first is an object reference to the GPE Block
2801 	 * device that contains the GPE that will be triggered by the wake
2802 	 * event.  The second element is numeric and it contains the bit
2803 	 * index in the GPEx_EN, in the GPE Block referenced by the
2804 	 * first element in the package, of the enable bit that is enabled for
2805 	 * the wake event.
2806 	 *
2807 	 * For example, if this field is a package then it is of the form:
2808 	 * Package() {\_SB.PCI0.ISA.GPE, 2}
2809 	 */
2810 	res2 = &res->Package.Elements[0];
2811 	if (!ACPI_PKG_VALID(res2, 2))
2812 	    goto out;
2813 	prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
2814 	if (prw->gpe_handle == NULL)
2815 	    goto out;
2816 	if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
2817 	    goto out;
2818 	error = 0;
2819 	break;
2820     default:
2821 	goto out;
2822     }
2823 
2824     /* Elements 2 to N of the _PRW object are power resources. */
2825     power_count = res->Package.Count - 2;
2826     if (power_count > ACPI_PRW_MAX_POWERRES) {
2827 	kprintf("ACPI device %s has too many power resources\n", acpi_name(h));
2828 	power_count = 0;
2829     }
2830     prw->power_res_count = power_count;
2831     for (i = 0; i < power_count; i++)
2832 	prw->power_res[i] = res->Package.Elements[i];
2833 
2834 out:
2835     if (prw_buffer.Pointer != NULL)
2836 	AcpiOsFree(prw_buffer.Pointer);
2837     return (error);
2838 }
2839 
2840 /*
2841  * ACPI Event Handlers
2842  */
2843 
2844 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
2845 
2846 static void
2847 acpi_system_eventhandler_sleep(void *arg, int state)
2848 {
2849     struct acpi_softc *sc;
2850     int ret;
2851 
2852     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
2853 
2854     sc = arg;
2855 
2856     /* Check if button action is disabled. */
2857     if (state == ACPI_S_STATES_MAX + 1)
2858 	return;
2859 
2860     /* Request that the system prepare to enter the given suspend state. */
2861     ret = acpi_ReqSleepState((struct acpi_softc *)arg, state);
2862     if (ret != 0)
2863 	device_printf(sc->acpi_dev,
2864 	    "request to enter state S%d failed (err %d)\n", state, ret);
2865 
2866     return_VOID;
2867 }
2868 
2869 static void
2870 acpi_system_eventhandler_wakeup(void *arg, int state)
2871 {
2872 
2873     ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
2874 
2875     /* Currently, nothing to do for wakeup. */
2876 
2877     return_VOID;
2878 }
2879 
2880 /*
2881  * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
2882  */
2883 UINT32
2884 acpi_event_power_button_sleep(void *context)
2885 {
2886     struct acpi_softc	*sc = (struct acpi_softc *)context;
2887 
2888     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2889 
2890     EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_power_button_sx);
2891 
2892     return_VALUE (ACPI_INTERRUPT_HANDLED);
2893 }
2894 
2895 UINT32
2896 acpi_event_power_button_wake(void *context)
2897 {
2898     struct acpi_softc	*sc = (struct acpi_softc *)context;
2899 
2900     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2901 
2902     EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_power_button_sx);
2903 
2904     return_VALUE (ACPI_INTERRUPT_HANDLED);
2905 }
2906 
2907 UINT32
2908 acpi_event_sleep_button_sleep(void *context)
2909 {
2910     struct acpi_softc	*sc = (struct acpi_softc *)context;
2911 
2912     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2913 
2914     EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_sleep_button_sx);
2915 
2916     return_VALUE (ACPI_INTERRUPT_HANDLED);
2917 }
2918 
2919 UINT32
2920 acpi_event_sleep_button_wake(void *context)
2921 {
2922     struct acpi_softc	*sc = (struct acpi_softc *)context;
2923 
2924     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2925 
2926     EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_sleep_button_sx);
2927 
2928     return_VALUE (ACPI_INTERRUPT_HANDLED);
2929 }
2930 
2931 /*
2932  * XXX This static buffer is suboptimal.  There is no locking so only
2933  * use this for single-threaded callers.
2934  */
2935 char *
2936 acpi_name(ACPI_HANDLE handle)
2937 {
2938     ACPI_BUFFER buf;
2939     static char data[256];
2940 
2941     buf.Length = sizeof(data);
2942     buf.Pointer = data;
2943 
2944     if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
2945 	return (data);
2946     return ("(unknown)");
2947 }
2948 
2949 /*
2950  * Debugging/bug-avoidance.  Avoid trying to fetch info on various
2951  * parts of the namespace.
2952  */
2953 int
2954 acpi_avoid(ACPI_HANDLE handle)
2955 {
2956     char	*cp, *env, *np;
2957     int		len;
2958 
2959     np = acpi_name(handle);
2960     if (*np == '\\')
2961 	np++;
2962     if ((env = kgetenv("debug.acpi.avoid")) == NULL)
2963 	return (0);
2964 
2965     /* Scan the avoid list checking for a match */
2966     cp = env;
2967     for (;;) {
2968 	while (*cp != 0 && isspace(*cp))
2969 	    cp++;
2970 	if (*cp == 0)
2971 	    break;
2972 	len = 0;
2973 	while (cp[len] != 0 && !isspace(cp[len]))
2974 	    len++;
2975 	if (!strncmp(cp, np, len)) {
2976 	    kfreeenv(env);
2977 	    return(1);
2978 	}
2979 	cp += len;
2980     }
2981     kfreeenv(env);
2982 
2983     return (0);
2984 }
2985 
2986 /*
2987  * Debugging/bug-avoidance.  Disable ACPI subsystem components.
2988  */
2989 int
2990 acpi_disabled(char *subsys)
2991 {
2992     char	*cp, *env;
2993     int		len;
2994 
2995     if ((env = kgetenv("debug.acpi.disabled")) == NULL)
2996 	return (0);
2997     if (strcmp(env, "all") == 0) {
2998 	kfreeenv(env);
2999 	return (1);
3000     }
3001 
3002     /* Scan the disable list, checking for a match. */
3003     cp = env;
3004     for (;;) {
3005 	while (*cp != '\0' && isspace(*cp))
3006 	    cp++;
3007 	if (*cp == '\0')
3008 	    break;
3009 	len = 0;
3010 	while (cp[len] != '\0' && !isspace(cp[len]))
3011 	    len++;
3012 	if (strncmp(cp, subsys, len) == 0) {
3013 	    kfreeenv(env);
3014 	    return (1);
3015 	}
3016 	cp += len;
3017     }
3018     kfreeenv(env);
3019 
3020     return (0);
3021 }
3022 
3023 /*
3024  * Debugging/bug-avoidance.  Enable ACPI subsystem components.  Most
3025  * components are enabled by default.  The ones that are not have to be
3026  * enabled via debug.acpi.enabled.
3027  */
3028 int
3029 acpi_enabled(char *subsys)
3030 {
3031     char        *cp, *env;
3032     int         len;
3033 
3034     if ((env = kgetenv("debug.acpi.enabled")) == NULL)
3035         return (0);
3036     if (strcmp(env, "all") == 0) {
3037         kfreeenv(env);
3038         return (1);
3039     }
3040 
3041     /* Scan the enable list, checking for a match. */
3042     cp = env;
3043     for (;;) {
3044         while (*cp != '\0' && isspace(*cp))
3045             cp++;
3046         if (*cp == '\0')
3047             break;
3048         len = 0;
3049         while (cp[len] != '\0' && !isspace(cp[len]))
3050             len++;
3051         if (strncmp(cp, subsys, len) == 0) {
3052             kfreeenv(env);
3053             return (1);
3054         }
3055         cp += len;
3056     }
3057     kfreeenv(env);
3058 
3059     return (0);
3060 }
3061 
3062 /*
3063  * Control interface.
3064  *
3065  * We multiplex ioctls for all participating ACPI devices here.  Individual
3066  * drivers wanting to be accessible via /dev/acpi should use the
3067  * register/deregister interface to make their handlers visible.
3068  */
3069 struct acpi_ioctl_hook
3070 {
3071     TAILQ_ENTRY(acpi_ioctl_hook) link;
3072     u_long			 cmd;
3073     acpi_ioctl_fn		 fn;
3074     void			 *arg;
3075 };
3076 
3077 static TAILQ_HEAD(,acpi_ioctl_hook)	acpi_ioctl_hooks;
3078 static int				acpi_ioctl_hooks_initted;
3079 
3080 int
3081 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
3082 {
3083     struct acpi_ioctl_hook	*hp;
3084 
3085     if ((hp = kmalloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
3086 	return (ENOMEM);
3087     hp->cmd = cmd;
3088     hp->fn = fn;
3089     hp->arg = arg;
3090 
3091     ACPI_LOCK(acpi);
3092     if (acpi_ioctl_hooks_initted == 0) {
3093 	TAILQ_INIT(&acpi_ioctl_hooks);
3094 	acpi_ioctl_hooks_initted = 1;
3095     }
3096     TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
3097     ACPI_UNLOCK(acpi);
3098 
3099     return (0);
3100 }
3101 
3102 void
3103 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
3104 {
3105     struct acpi_ioctl_hook	*hp;
3106 
3107     ACPI_LOCK(acpi);
3108     TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
3109 	if (hp->cmd == cmd && hp->fn == fn)
3110 	    break;
3111 
3112     if (hp != NULL) {
3113 	TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
3114 	kfree(hp, M_ACPIDEV);
3115     }
3116     ACPI_UNLOCK(acpi);
3117 }
3118 
3119 static int
3120 acpiopen(struct dev_open_args *ap)
3121 {
3122     return (0);
3123 }
3124 
3125 static int
3126 acpiclose(struct dev_close_args *ap)
3127 {
3128     return (0);
3129 }
3130 
3131 static int
3132 acpiioctl(struct dev_ioctl_args *ap)
3133 {
3134     struct acpi_softc		*sc;
3135     struct acpi_ioctl_hook	*hp;
3136     int				error, state;
3137 
3138     error = 0;
3139     hp = NULL;
3140     sc = ap->a_head.a_dev->si_drv1;
3141 
3142     /*
3143      * Scan the list of registered ioctls, looking for handlers.
3144      */
3145     ACPI_LOCK(acpi);
3146     if (acpi_ioctl_hooks_initted)
3147 	TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
3148 	    if (hp->cmd == ap->a_cmd)
3149 		break;
3150 	}
3151     ACPI_UNLOCK(acpi);
3152     if (hp)
3153 	return (hp->fn(ap->a_cmd, ap->a_data, hp->arg));
3154 
3155     /*
3156      * Core ioctls are not permitted for non-writable user.
3157      * Currently, other ioctls just fetch information.
3158      * Not changing system behavior.
3159      */
3160     if ((ap->a_fflag & FWRITE) == 0)
3161 	return (EPERM);
3162 
3163     /* Core system ioctls. */
3164     switch (ap->a_cmd) {
3165     case ACPIIO_REQSLPSTATE:
3166 	state = *(int *)ap->a_data;
3167 	if (state != ACPI_STATE_S5)
3168 	    error = acpi_ReqSleepState(sc, state);
3169 	else {
3170 	    device_printf(sc->acpi_dev,
3171 		"power off via acpi ioctl not supported\n");
3172 	    error = ENXIO;
3173 	}
3174 	break;
3175     case ACPIIO_ACKSLPSTATE:
3176 	error = EOPNOTSUPP;
3177 #if 0 /* notyet */
3178 	error = *(int *)ap->a_data;
3179 	error = acpi_AckSleepState(sc->acpi_clone, error);
3180 #endif
3181 	break;
3182     case ACPIIO_SETSLPSTATE:	/* DEPRECATED */
3183 	error = EINVAL;
3184 	state = *(int *)ap->a_data;
3185 	if (state >= ACPI_STATE_S0 && state <= ACPI_S_STATES_MAX)
3186 	    if (ACPI_SUCCESS(acpi_SetSleepState(sc, state)))
3187 		error = 0;
3188 	break;
3189     case ACPIIO_DO_MCALL:
3190 	if (acpi_allow_mcall == 1) {
3191 	    struct acpi_mcall_ioctl_arg *params;
3192 	    ACPI_BUFFER result = { ACPI_ALLOCATE_BUFFER, NULL };
3193 	    ACPI_OBJECT *resobj;
3194 
3195 	    error = EINVAL;
3196 	    params = (struct acpi_mcall_ioctl_arg *)ap->a_data;
3197 	    params->retval = AcpiEvaluateObject(NULL, params->path,
3198 		&params->args, &result);
3199 	    if (ACPI_SUCCESS(params->retval) && result.Pointer != NULL &&
3200 		params->result.Pointer != NULL) {
3201 		params->result.Length = min(params->result.Length,
3202 		    result.Length);
3203 		copyout(result.Pointer, params->result.Pointer,
3204 		    params->result.Length);
3205 		params->reslen = result.Length;
3206 		if (result.Length >= sizeof(ACPI_OBJECT)) {
3207 		    resobj = (ACPI_OBJECT *)params->result.Pointer;
3208 		    switch (resobj->Type) {
3209 		    case ACPI_TYPE_STRING:
3210 			resobj->String.Pointer = (char *)
3211 			    ((UINT8 *)(resobj->String.Pointer) -
3212 				(UINT8 *)result.Pointer +
3213 				(UINT8 *)resobj);
3214 			break;
3215 		    case ACPI_TYPE_BUFFER:
3216 			resobj->Buffer.Pointer -= (UINT8 *)result.Pointer -
3217 			    (UINT8 *)resobj;
3218 			break;
3219 		    }
3220 		}
3221 		error = 0;
3222 	    }
3223 	    if (result.Pointer != NULL)
3224 		AcpiOsFree(result.Pointer);
3225 	} else {
3226 		device_printf(sc->acpi_dev,
3227 		    "debug.acpi.allow_method_calls must be set\n");
3228 		error = ENXIO;
3229 	}
3230 	break;
3231     default:
3232 	error = ENXIO;
3233 	break;
3234     }
3235     return (error);
3236 }
3237 
3238 static int
3239 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3240 {
3241     int error;
3242     struct sbuf sb;
3243     UINT8 state, TypeA, TypeB;
3244 
3245     sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
3246     for (state = ACPI_STATE_S1; state < ACPI_S_STATES_MAX + 1; state++)
3247 	if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
3248 	    sbuf_printf(&sb, "S%d ", state);
3249     sbuf_trim(&sb);
3250     sbuf_finish(&sb);
3251     error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
3252     sbuf_delete(&sb);
3253     return (error);
3254 }
3255 
3256 static int
3257 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
3258 {
3259     char sleep_state[10];
3260     int error;
3261     u_int new_state, old_state;
3262 
3263     old_state = *(u_int *)oidp->oid_arg1;
3264     if (old_state > ACPI_S_STATES_MAX + 1)
3265 	strlcpy(sleep_state, "unknown", sizeof(sleep_state));
3266     else
3267 	strlcpy(sleep_state, sleep_state_names[old_state], sizeof(sleep_state));
3268     error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
3269     if (error == 0 && req->newptr != NULL) {
3270 	new_state = ACPI_STATE_S0;
3271 	for (; new_state <= ACPI_S_STATES_MAX + 1; new_state++)
3272 	    if (strcmp(sleep_state, sleep_state_names[new_state]) == 0)
3273 		break;
3274 	if (new_state <= ACPI_S_STATES_MAX + 1) {
3275 	    if (new_state != old_state)
3276 		*(u_int *)oidp->oid_arg1 = new_state;
3277 	} else
3278 	    error = EINVAL;
3279     }
3280 
3281     return (error);
3282 }
3283 
3284 /* Inform devctl(4) when we receive a Notify. */
3285 void
3286 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
3287 {
3288     char		notify_buf[16];
3289     ACPI_BUFFER		handle_buf;
3290     ACPI_STATUS		status;
3291 
3292     if (subsystem == NULL)
3293 	return;
3294 
3295     handle_buf.Pointer = NULL;
3296     handle_buf.Length = ACPI_ALLOCATE_BUFFER;
3297     status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
3298     if (ACPI_FAILURE(status))
3299 	return;
3300     ksnprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
3301     devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
3302     AcpiOsFree(handle_buf.Pointer);
3303 }
3304 
3305 #ifdef ACPI_DEBUG
3306 /*
3307  * Support for parsing debug options from the kernel environment.
3308  *
3309  * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
3310  * by specifying the names of the bits in the debug.acpi.layer and
3311  * debug.acpi.level environment variables.  Bits may be unset by
3312  * prefixing the bit name with !.
3313  */
3314 struct debugtag
3315 {
3316     char	*name;
3317     UINT32	value;
3318 };
3319 
3320 static struct debugtag	dbg_layer[] = {
3321     {"ACPI_UTILITIES",		ACPI_UTILITIES},
3322     {"ACPI_HARDWARE",		ACPI_HARDWARE},
3323     {"ACPI_EVENTS",		ACPI_EVENTS},
3324     {"ACPI_TABLES",		ACPI_TABLES},
3325     {"ACPI_NAMESPACE",		ACPI_NAMESPACE},
3326     {"ACPI_PARSER",		ACPI_PARSER},
3327     {"ACPI_DISPATCHER",		ACPI_DISPATCHER},
3328     {"ACPI_EXECUTER",		ACPI_EXECUTER},
3329     {"ACPI_RESOURCES",		ACPI_RESOURCES},
3330     {"ACPI_CA_DEBUGGER",	ACPI_CA_DEBUGGER},
3331     {"ACPI_OS_SERVICES",	ACPI_OS_SERVICES},
3332     {"ACPI_CA_DISASSEMBLER",	ACPI_CA_DISASSEMBLER},
3333     {"ACPI_ALL_COMPONENTS",	ACPI_ALL_COMPONENTS},
3334 
3335     {"ACPI_AC_ADAPTER",		ACPI_AC_ADAPTER},
3336     {"ACPI_BATTERY",		ACPI_BATTERY},
3337     {"ACPI_BUS",		ACPI_BUS},
3338     {"ACPI_BUTTON",		ACPI_BUTTON},
3339     {"ACPI_EC", 		ACPI_EC},
3340     {"ACPI_FAN",		ACPI_FAN},
3341     {"ACPI_POWERRES",		ACPI_POWERRES},
3342     {"ACPI_PROCESSOR",		ACPI_PROCESSOR},
3343     {"ACPI_THERMAL",		ACPI_THERMAL},
3344     {"ACPI_TIMER",		ACPI_TIMER},
3345     {"ACPI_ALL_DRIVERS",	ACPI_ALL_DRIVERS},
3346     {NULL, 0}
3347 };
3348 
3349 static struct debugtag dbg_level[] = {
3350     {"ACPI_LV_INIT",		ACPI_LV_INIT},
3351     {"ACPI_LV_DEBUG_OBJECT",	ACPI_LV_DEBUG_OBJECT},
3352     {"ACPI_LV_INFO",		ACPI_LV_INFO},
3353     {"ACPI_LV_REPAIR",		ACPI_LV_REPAIR},
3354     {"ACPI_LV_ALL_EXCEPTIONS",	ACPI_LV_ALL_EXCEPTIONS},
3355 
3356     /* Trace verbosity level 1 [Standard Trace Level] */
3357     {"ACPI_LV_INIT_NAMES",	ACPI_LV_INIT_NAMES},
3358     {"ACPI_LV_PARSE",		ACPI_LV_PARSE},
3359     {"ACPI_LV_LOAD",		ACPI_LV_LOAD},
3360     {"ACPI_LV_DISPATCH",	ACPI_LV_DISPATCH},
3361     {"ACPI_LV_EXEC",		ACPI_LV_EXEC},
3362     {"ACPI_LV_NAMES",		ACPI_LV_NAMES},
3363     {"ACPI_LV_OPREGION",	ACPI_LV_OPREGION},
3364     {"ACPI_LV_BFIELD",		ACPI_LV_BFIELD},
3365     {"ACPI_LV_TABLES",		ACPI_LV_TABLES},
3366     {"ACPI_LV_VALUES",		ACPI_LV_VALUES},
3367     {"ACPI_LV_OBJECTS",		ACPI_LV_OBJECTS},
3368     {"ACPI_LV_RESOURCES",	ACPI_LV_RESOURCES},
3369     {"ACPI_LV_USER_REQUESTS",	ACPI_LV_USER_REQUESTS},
3370     {"ACPI_LV_PACKAGE",		ACPI_LV_PACKAGE},
3371     {"ACPI_LV_VERBOSITY1",	ACPI_LV_VERBOSITY1},
3372 
3373     /* Trace verbosity level 2 [Function tracing and memory allocation] */
3374     {"ACPI_LV_ALLOCATIONS",	ACPI_LV_ALLOCATIONS},
3375     {"ACPI_LV_FUNCTIONS",	ACPI_LV_FUNCTIONS},
3376     {"ACPI_LV_OPTIMIZATIONS",	ACPI_LV_OPTIMIZATIONS},
3377     {"ACPI_LV_VERBOSITY2",	ACPI_LV_VERBOSITY2},
3378     {"ACPI_LV_ALL",		ACPI_LV_ALL},
3379 
3380     /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
3381     {"ACPI_LV_MUTEX",		ACPI_LV_MUTEX},
3382     {"ACPI_LV_THREADS",		ACPI_LV_THREADS},
3383     {"ACPI_LV_IO",		ACPI_LV_IO},
3384     {"ACPI_LV_INTERRUPTS",	ACPI_LV_INTERRUPTS},
3385     {"ACPI_LV_VERBOSITY3",	ACPI_LV_VERBOSITY3},
3386 
3387     /* Exceptionally verbose output -- also used in the global "DebugLevel"  */
3388     {"ACPI_LV_AML_DISASSEMBLE",	ACPI_LV_AML_DISASSEMBLE},
3389     {"ACPI_LV_VERBOSE_INFO",	ACPI_LV_VERBOSE_INFO},
3390     {"ACPI_LV_FULL_TABLES",	ACPI_LV_FULL_TABLES},
3391     {"ACPI_LV_EVENTS",		ACPI_LV_EVENTS},
3392     {"ACPI_LV_VERBOSE",		ACPI_LV_VERBOSE},
3393     {NULL, 0}
3394 };
3395 
3396 static void
3397 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
3398 {
3399     char	*ep;
3400     int		i, l;
3401     int		set;
3402 
3403     while (*cp) {
3404 	if (isspace(*cp)) {
3405 	    cp++;
3406 	    continue;
3407 	}
3408 	ep = cp;
3409 	while (*ep && !isspace(*ep))
3410 	    ep++;
3411 	if (*cp == '!') {
3412 	    set = 0;
3413 	    cp++;
3414 	    if (cp == ep)
3415 		continue;
3416 	} else {
3417 	    set = 1;
3418 	}
3419 	l = ep - cp;
3420 	for (i = 0; tag[i].name != NULL; i++) {
3421 	    if (!strncmp(cp, tag[i].name, l)) {
3422 		if (set)
3423 		    *flag |= tag[i].value;
3424 		else
3425 		    *flag &= ~tag[i].value;
3426 	    }
3427 	}
3428 	cp = ep;
3429     }
3430 }
3431 
3432 static void
3433 acpi_set_debugging(void *junk)
3434 {
3435     char	*layer, *level;
3436 
3437     if (cold) {
3438 	AcpiDbgLayer = 0;
3439 	AcpiDbgLevel = 0;
3440     }
3441 
3442     layer = kgetenv("debug.acpi.layer");
3443     level = kgetenv("debug.acpi.level");
3444     if (layer == NULL && level == NULL)
3445 	return;
3446 
3447     kprintf("ACPI set debug");
3448     if (layer != NULL) {
3449 	if (strcmp("NONE", layer) != 0)
3450 	    kprintf(" layer '%s'", layer);
3451 	acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
3452 	kfreeenv(layer);
3453     }
3454     if (level != NULL) {
3455 	if (strcmp("NONE", level) != 0)
3456 	    kprintf(" level '%s'", level);
3457 	acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
3458 	kfreeenv(level);
3459     }
3460     kprintf("\n");
3461 }
3462 
3463 SYSINIT(acpi_debugging, SI_BOOT1_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
3464 	NULL);
3465 
3466 static int
3467 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
3468 {
3469     int		 error, *dbg;
3470     struct	 debugtag *tag;
3471     struct	 sbuf sb;
3472 
3473     if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
3474 	return (ENOMEM);
3475     if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
3476 	tag = &dbg_layer[0];
3477 	dbg = &AcpiDbgLayer;
3478     } else {
3479 	tag = &dbg_level[0];
3480 	dbg = &AcpiDbgLevel;
3481     }
3482 
3483     /* Get old values if this is a get request. */
3484     ACPI_SERIAL_BEGIN(acpi);
3485     if (*dbg == 0) {
3486 	sbuf_cpy(&sb, "NONE");
3487     } else if (req->newptr == NULL) {
3488 	for (; tag->name != NULL; tag++) {
3489 	    if ((*dbg & tag->value) == tag->value)
3490 		sbuf_printf(&sb, "%s ", tag->name);
3491 	}
3492     }
3493     sbuf_trim(&sb);
3494     sbuf_finish(&sb);
3495 
3496     /* Copy out the old values to the user. */
3497     error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb));
3498     sbuf_delete(&sb);
3499 
3500     /* If the user is setting a string, parse it. */
3501     if (error == 0 && req->newptr != NULL) {
3502 	*dbg = 0;
3503 	ksetenv((char *)oidp->oid_arg1, (char *)req->newptr);
3504 	acpi_set_debugging(NULL);
3505     }
3506     ACPI_SERIAL_END(acpi);
3507 
3508     return (error);
3509 }
3510 
3511 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING,
3512 	    "debug.acpi.layer", 0, acpi_debug_sysctl, "A", "");
3513 SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING,
3514 	    "debug.acpi.level", 0, acpi_debug_sysctl, "A", "");
3515 #endif /* ACPI_DEBUG */
3516 
3517 static int
3518 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
3519 {
3520 	int	error;
3521 	int	old;
3522 
3523 	old = acpi_debug_objects;
3524 	error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
3525 	if (error != 0 || req->newptr == NULL)
3526 		return (error);
3527 	if (old == acpi_debug_objects || (old && acpi_debug_objects))
3528 		return (0);
3529 
3530 	ACPI_SERIAL_BEGIN(acpi);
3531 	AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
3532 	ACPI_SERIAL_END(acpi);
3533 
3534 	return (0);
3535 }
3536 
3537 
3538 static int
3539 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
3540 {
3541 	char *p;
3542 	size_t len;
3543 	int i, j;
3544 
3545 	p = str;
3546 	while (isspace(*p) || *p == ',')
3547 		p++;
3548 	len = strlen(p);
3549 	if (len == 0)
3550 		return (0);
3551 	p = kstrdup(p, M_TEMP);
3552 	for (i = 0; i < len; i++)
3553 		if (p[i] == ',')
3554 			p[i] = '\0';
3555 	i = j = 0;
3556 	while (i < len)
3557 		if (isspace(p[i]) || p[i] == '\0')
3558 			i++;
3559 		else {
3560 			i += strlen(p + i) + 1;
3561 			j++;
3562 		}
3563 	if (j == 0) {
3564 		kfree(p, M_TEMP);
3565 		return (0);
3566 	}
3567 	iface->data = kmalloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
3568 	iface->num = j;
3569 	i = j = 0;
3570 	while (i < len)
3571 		if (isspace(p[i]) || p[i] == '\0')
3572 			i++;
3573 		else {
3574 			iface->data[j] = p + i;
3575 			i += strlen(p + i) + 1;
3576 			j++;
3577 		}
3578 
3579 	return (j);
3580 }
3581 
3582 static void
3583 acpi_free_interfaces(struct acpi_interface *iface)
3584 {
3585 	kfree(iface->data[0], M_TEMP);
3586 	kfree(iface->data, M_TEMP);
3587 }
3588 
3589 static void
3590 acpi_reset_interfaces(device_t dev)
3591 {
3592 	struct acpi_interface list;
3593 	ACPI_STATUS status;
3594 	int i;
3595 
3596 	if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
3597 		for (i = 0; i < list.num; i++) {
3598 			status = AcpiInstallInterface(list.data[i]);
3599 			if (ACPI_FAILURE(status))
3600 				device_printf(dev,
3601 				    "failed to install _OSI(\"%s\"): %s\n",
3602 				    list.data[i], AcpiFormatException(status));
3603 			else if (bootverbose)
3604 				device_printf(dev, "installed _OSI(\"%s\")\n",
3605 				    list.data[i]);
3606 		}
3607 		acpi_free_interfaces(&list);
3608 	}
3609 	if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
3610 		for (i = 0; i < list.num; i++) {
3611 			status = AcpiRemoveInterface(list.data[i]);
3612 			if (ACPI_FAILURE(status))
3613 				device_printf(dev,
3614 				    "failed to remove _OSI(\"%s\"): %s\n",
3615 				    list.data[i], AcpiFormatException(status));
3616 			else if (bootverbose)
3617 				device_printf(dev, "removed _OSI(\"%s\")\n",
3618 				    list.data[i]);
3619 		}
3620 		acpi_free_interfaces(&list);
3621 	}
3622 }
3623 
3624 static int
3625 acpi_pm_func(u_long cmd, void *arg, ...)
3626 {
3627 	int	state, acpi_state;
3628 	int	error;
3629 	struct	acpi_softc *sc;
3630 	va_list	ap;
3631 
3632 	error = 0;
3633 	switch (cmd) {
3634 	case POWER_CMD_SUSPEND:
3635 		sc = (struct acpi_softc *)arg;
3636 		if (sc == NULL) {
3637 			error = EINVAL;
3638 			goto out;
3639 		}
3640 
3641 		va_start(ap, arg);
3642 		state = va_arg(ap, int);
3643 		va_end(ap);
3644 
3645 		switch (state) {
3646 		case POWER_SLEEP_STATE_STANDBY:
3647 			acpi_state = sc->acpi_standby_sx;
3648 			break;
3649 		case POWER_SLEEP_STATE_SUSPEND:
3650 			acpi_state = sc->acpi_suspend_sx;
3651 			break;
3652 		case POWER_SLEEP_STATE_HIBERNATE:
3653 			acpi_state = ACPI_STATE_S4;
3654 			break;
3655 		default:
3656 			error = EINVAL;
3657 			goto out;
3658 		}
3659 
3660 		if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
3661 			error = ENXIO;
3662 		break;
3663 	default:
3664 		error = EINVAL;
3665 		goto out;
3666 	}
3667 
3668 out:
3669 	return (error);
3670 }
3671 
3672 static void
3673 acpi_pm_register(void *arg)
3674 {
3675     if (!cold || resource_disabled("acpi", 0))
3676 	return;
3677 
3678     power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
3679 }
3680 
3681 SYSINIT(power, SI_BOOT2_KLD, SI_ORDER_ANY, acpi_pm_register, 0);
3682