xref: /dragonfly/sys/dev/acpica/acpi_cpu_cstate.c (revision 0dace59e)
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/acpica/acpi_cpu.c,v 1.72 2008/04/12 12:06:00 rpaulo Exp $
28  */
29 
30 #include "opt_acpi.h"
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/globaldata.h>
36 #include <sys/power.h>
37 #include <sys/proc.h>
38 #include <sys/sbuf.h>
39 #include <sys/thread2.h>
40 #include <sys/mplock2.h>
41 
42 #include <bus/pci/pcivar.h>
43 #include <machine/atomic.h>
44 #include <machine/globaldata.h>
45 #include <machine/md_var.h>
46 #include <machine/smp.h>
47 #include <sys/rman.h>
48 
49 #include "acpi.h"
50 #include "acpivar.h"
51 #include "acpi_cpu.h"
52 
53 /*
54  * Support for ACPI Processor devices, including C[1-3] sleep states.
55  */
56 
57 /* Hooks for the ACPI CA debugging infrastructure */
58 #define _COMPONENT	ACPI_PROCESSOR
59 ACPI_MODULE_NAME("PROCESSOR")
60 
61 struct acpi_cx {
62     struct resource	*p_lvlx;	/* Register to read to enter state. */
63     int			 rid;		/* rid of p_lvlx */
64     uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
65     uint32_t		 trans_lat;	/* Transition latency (usec). */
66     uint32_t		 power;		/* Power consumed (mW). */
67     int			 res_type;	/* Resource type for p_lvlx. */
68 };
69 #define MAX_CX_STATES	 8
70 
71 struct acpi_cpu_softc {
72     device_t		 cpu_dev;
73     struct acpi_cpux_softc *cpu_parent;
74     ACPI_HANDLE		 cpu_handle;
75     struct mdglobaldata *md;
76     uint32_t		 cpu_acpi_id;	/* ACPI processor id */
77     uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
78     uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
79     struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
80     int			 cpu_cx_count;	/* Number of valid Cx states. */
81     int			 cpu_prev_sleep;/* Last idle sleep duration. */
82     /* Runtime state. */
83     int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
84     u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
85     /* Values for sysctl. */
86     int			 cpu_cx_lowest;
87     char 		 cpu_cx_supported[64];
88 };
89 
90 struct acpi_cpu_device {
91     struct resource_list	ad_rl;
92 };
93 
94 #define CPU_GET_REG(reg, width) 					\
95     (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
96 		      rman_get_bushandle((reg)), 0))
97 #define CPU_SET_REG(reg, width, val)					\
98     (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
99 		       rman_get_bushandle((reg)), 0, (val)))
100 
101 #define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
102 
103 #define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
104 
105 #define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
106 #define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
107 
108 #define PCI_VENDOR_INTEL	0x8086
109 #define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
110 #define PCI_REVISION_A_STEP	0
111 #define PCI_REVISION_B_STEP	1
112 #define PCI_REVISION_4E		2
113 #define PCI_REVISION_4M		3
114 #define PIIX4_DEVACTB_REG	0x58
115 #define PIIX4_BRLD_EN_IRQ0	(1<<0)
116 #define PIIX4_BRLD_EN_IRQ	(1<<1)
117 #define PIIX4_BRLD_EN_IRQ8	(1<<5)
118 #define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
119 #define PIIX4_PCNTRL_BST_EN	(1<<10)
120 
121 /* Platform hardware resource information. */
122 static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
123 static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
124 static int		 cpu_quirks;	/* Indicate any hardware bugs. */
125 
126 /* Runtime state. */
127 static int		 cpu_disable_idle; /* Disable entry to idle function */
128 static int		 cpu_cx_count;	/* Number of valid Cx states */
129 
130 /* Values for sysctl. */
131 static int		 cpu_cx_generic;
132 static int		 cpu_cx_lowest;
133 
134 /* C3 state transition */
135 static int		 cpu_c3_ncpus;
136 
137 static device_t		*cpu_devices;
138 static int		 cpu_ndevices;
139 static struct acpi_cpu_softc **cpu_softc;
140 
141 static int	acpi_cpu_cst_probe(device_t dev);
142 static int	acpi_cpu_cst_attach(device_t dev);
143 static int	acpi_cpu_cst_suspend(device_t dev);
144 static int	acpi_cpu_cst_resume(device_t dev);
145 static struct resource_list *acpi_cpu_cst_get_rlist(device_t dev,
146 		    device_t child);
147 static device_t	acpi_cpu_cst_add_child(device_t bus, device_t parent,
148 		    int order, const char *name, int unit);
149 static int	acpi_cpu_cst_read_ivar(device_t dev, device_t child,
150 		    int index, uintptr_t *result);
151 static int	acpi_cpu_cst_shutdown(device_t dev);
152 static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
153 static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
154 static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
155 static void	acpi_cpu_startup(void *arg);
156 static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
157 static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
158 static void	acpi_cpu_idle(void);
159 static void	acpi_cpu_cst_notify(device_t);
160 static int	acpi_cpu_quirks(void);
161 static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
162 static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
163 static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
164 static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
165 
166 static void	acpi_cpu_c1(void);	/* XXX */
167 
168 static device_method_t acpi_cpu_cst_methods[] = {
169     /* Device interface */
170     DEVMETHOD(device_probe,	acpi_cpu_cst_probe),
171     DEVMETHOD(device_attach,	acpi_cpu_cst_attach),
172     DEVMETHOD(device_detach,	bus_generic_detach),
173     DEVMETHOD(device_shutdown,	acpi_cpu_cst_shutdown),
174     DEVMETHOD(device_suspend,	acpi_cpu_cst_suspend),
175     DEVMETHOD(device_resume,	acpi_cpu_cst_resume),
176 
177     /* Bus interface */
178     DEVMETHOD(bus_add_child,	acpi_cpu_cst_add_child),
179     DEVMETHOD(bus_read_ivar,	acpi_cpu_cst_read_ivar),
180     DEVMETHOD(bus_get_resource_list, acpi_cpu_cst_get_rlist),
181     DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
182     DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
183     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
184     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
185     DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
186     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
187     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
188     DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
189     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
190     DEVMETHOD_END
191 };
192 
193 static driver_t acpi_cpu_cst_driver = {
194     "cpu_cst",
195     acpi_cpu_cst_methods,
196     sizeof(struct acpi_cpu_softc),
197 };
198 
199 static devclass_t acpi_cpu_cst_devclass;
200 DRIVER_MODULE(cpu_cst, cpu, acpi_cpu_cst_driver, acpi_cpu_cst_devclass, NULL, NULL);
201 MODULE_DEPEND(cpu_cst, acpi, 1, 1, 1);
202 
203 static int
204 acpi_cpu_cst_probe(device_t dev)
205 {
206     int cpu_id;
207 
208     if (acpi_disabled("cpu_cst") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
209 	return (ENXIO);
210 
211     cpu_id = acpi_get_magic(dev);
212 
213     if (cpu_softc == NULL)
214 	cpu_softc = kmalloc(sizeof(struct acpi_cpu_softc *) *
215 	    SMP_MAXCPU, M_TEMP /* XXX */, M_INTWAIT | M_ZERO);
216 
217     /*
218      * Check if we already probed this processor.  We scan the bus twice
219      * so it's possible we've already seen this one.
220      */
221     if (cpu_softc[cpu_id] != NULL) {
222 	device_printf(dev, "CPU%d cstate already exist\n", cpu_id);
223 	return (ENXIO);
224     }
225 
226     /* Mark this processor as in-use and save our derived id for attach. */
227     cpu_softc[cpu_id] = (void *)1;
228     device_set_desc(dev, "ACPI CPU C-State");
229 
230     return (0);
231 }
232 
233 static int
234 acpi_cpu_cst_attach(device_t dev)
235 {
236     ACPI_BUFFER		   buf;
237     ACPI_OBJECT		   *obj;
238     struct mdglobaldata	  *md;
239     struct acpi_cpu_softc *sc;
240     ACPI_STATUS		   status;
241     int			   cpu_id;
242 
243     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
244 
245     sc = device_get_softc(dev);
246     sc->cpu_dev = dev;
247     sc->cpu_parent = device_get_softc(device_get_parent(dev));
248     sc->cpu_handle = acpi_get_handle(dev);
249     cpu_id = acpi_get_magic(dev);
250     cpu_softc[cpu_id] = sc;
251     md = (struct mdglobaldata *)globaldata_find(device_get_unit(dev));
252     sc->md = md;
253     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
254     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
255 
256     buf.Pointer = NULL;
257     buf.Length = ACPI_ALLOCATE_BUFFER;
258     status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
259     if (ACPI_FAILURE(status)) {
260 	device_printf(dev, "attach failed to get Processor obj - %s\n",
261 		      AcpiFormatException(status));
262 	return (ENXIO);
263     }
264     obj = (ACPI_OBJECT *)buf.Pointer;
265     sc->cpu_p_blk = obj->Processor.PblkAddress;
266     sc->cpu_p_blk_len = obj->Processor.PblkLength;
267     sc->cpu_acpi_id = obj->Processor.ProcId;
268     AcpiOsFree(obj);
269     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
270 		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
271 
272     /*
273      * If this is the first cpu we attach, create and initialize the generic
274      * resources that will be used by all acpi cpu devices.
275      */
276     if (device_get_unit(dev) == 0) {
277 	/* Assume we won't be using generic Cx mode by default */
278 	cpu_cx_generic = FALSE;
279 
280 	/* Queue post cpu-probing task handler */
281 	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
282     }
283 
284     /* Probe for Cx state support. */
285     acpi_cpu_cx_probe(sc);
286 
287     /* Finally,  call identify and probe/attach for child devices. */
288     bus_generic_probe(dev);
289     bus_generic_attach(dev);
290 
291     return (0);
292 }
293 
294 /*
295  * Disable any entry to the idle function during suspend and re-enable it
296  * during resume.
297  */
298 static int
299 acpi_cpu_cst_suspend(device_t dev)
300 {
301     int error;
302 
303     error = bus_generic_suspend(dev);
304     if (error)
305 	return (error);
306     cpu_disable_idle = TRUE;
307     return (0);
308 }
309 
310 static int
311 acpi_cpu_cst_resume(device_t dev)
312 {
313 
314     cpu_disable_idle = FALSE;
315     return (bus_generic_resume(dev));
316 }
317 
318 static struct resource_list *
319 acpi_cpu_cst_get_rlist(device_t dev, device_t child)
320 {
321     struct acpi_cpu_device *ad;
322 
323     ad = device_get_ivars(child);
324     if (ad == NULL)
325 	return (NULL);
326     return (&ad->ad_rl);
327 }
328 
329 static device_t
330 acpi_cpu_cst_add_child(device_t bus, device_t parent, int order,
331     const char *name, int unit)
332 {
333     struct acpi_cpu_device *ad;
334     device_t child;
335 
336     if ((ad = kmalloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
337 	return (NULL);
338 
339     resource_list_init(&ad->ad_rl);
340 
341     child = device_add_child_ordered(parent, order, name, unit);
342     if (child != NULL)
343 	device_set_ivars(child, ad);
344     else
345 	kfree(ad, M_TEMP);
346     return (child);
347 }
348 
349 static int
350 acpi_cpu_cst_read_ivar(device_t dev, device_t child, int index,
351     uintptr_t *result)
352 {
353     struct acpi_cpu_softc *sc;
354 
355     sc = device_get_softc(dev);
356     switch (index) {
357     case ACPI_IVAR_HANDLE:
358 	*result = (uintptr_t)sc->cpu_handle;
359 	break;
360 #if 0
361     case CPU_IVAR_PCPU:
362 	*result = (uintptr_t)sc->cpu_pcpu;
363 	break;
364 #endif
365     default:
366 	return (ENOENT);
367     }
368     return (0);
369 }
370 
371 static int
372 acpi_cpu_cst_shutdown(device_t dev)
373 {
374     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
375 
376     /* Allow children to shutdown first. */
377     bus_generic_shutdown(dev);
378 
379     /*
380      * Disable any entry to the idle function.  There is a small race where
381      * an idle thread have passed this check but not gone to sleep.  This
382      * is ok since device_shutdown() does not free the softc, otherwise
383      * we'd have to be sure all threads were evicted before returning.
384      */
385     cpu_disable_idle = TRUE;
386 
387     return_VALUE (0);
388 }
389 
390 static void
391 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
392 {
393     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
394 
395     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
396     sc->cpu_prev_sleep = 1000000;
397     sc->cpu_cx_lowest = 0;
398 
399     /*
400      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
401      * any, we'll revert to generic FADT/P_BLK Cx control method which will
402      * be handled by acpi_cpu_startup. We need to defer to after having
403      * probed all the cpus in the system before probing for generic Cx
404      * states as we may already have found cpus with valid _CST packages
405      */
406     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
407 	/*
408 	 * We were unable to find a _CST package for this cpu or there
409 	 * was an error parsing it. Switch back to generic mode.
410 	 */
411 	cpu_cx_generic = TRUE;
412 	if (bootverbose)
413 	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
414     }
415 
416     /*
417      * TODO: _CSD Package should be checked here.
418      */
419 }
420 
421 static void
422 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
423 {
424     ACPI_GENERIC_ADDRESS	 gas;
425     struct acpi_cx		*cx_ptr;
426 
427     sc->cpu_cx_count = 0;
428     cx_ptr = sc->cpu_cx_states;
429 
430     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
431     sc->cpu_prev_sleep = 1000000;
432 
433     /* C1 has been required since just after ACPI 1.0 */
434     cx_ptr->type = ACPI_STATE_C1;
435     cx_ptr->trans_lat = 0;
436     cx_ptr++;
437     sc->cpu_cx_count++;
438 
439     /*
440      * The spec says P_BLK must be 6 bytes long.  However, some systems
441      * use it to indicate a fractional set of features present so we
442      * take 5 as C2.  Some may also have a value of 7 to indicate
443      * another C3 but most use _CST for this (as required) and having
444      * "only" C1-C3 is not a hardship.
445      */
446     if (sc->cpu_p_blk_len < 5)
447 	return;
448 
449     /* Validate and allocate resources for C2 (P_LVL2). */
450     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
451     gas.BitWidth = 8;
452     if (AcpiGbl_FADT.C2Latency <= 100) {
453 	gas.Address = sc->cpu_p_blk + 4;
454 
455 	cx_ptr->rid = sc->cpu_parent->cpux_next_rid;
456 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->type, &cx_ptr->rid, &gas, &cx_ptr->p_lvlx,
457 					    RF_SHAREABLE);
458 	if (cx_ptr->p_lvlx != NULL) {
459 	    sc->cpu_parent->cpux_next_rid++;
460 	    cx_ptr->type = ACPI_STATE_C2;
461 	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
462 	    cx_ptr++;
463 	    sc->cpu_cx_count++;
464 	}
465     }
466     if (sc->cpu_p_blk_len < 6)
467 	return;
468 
469     /* Validate and allocate resources for C3 (P_LVL3). */
470     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
471 	gas.Address = sc->cpu_p_blk + 5;
472 
473 	cx_ptr->rid = sc->cpu_parent->cpux_next_rid;
474 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->type, &cx_ptr->rid, &gas,
475 					    &cx_ptr->p_lvlx, RF_SHAREABLE);
476 	if (cx_ptr->p_lvlx != NULL) {
477 	    sc->cpu_parent->cpux_next_rid++;
478 	    cx_ptr->type = ACPI_STATE_C3;
479 	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
480 	    cx_ptr++;
481 	    sc->cpu_cx_count++;
482 	}
483     }
484 }
485 
486 /*
487  * Parse a _CST package and set up its Cx states.  Since the _CST object
488  * can change dynamically, our notify handler may call this function
489  * to clean up and probe the new _CST package.
490  */
491 static int
492 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
493 {
494     struct	 acpi_cx *cx_ptr;
495     ACPI_STATUS	 status;
496     ACPI_BUFFER	 buf;
497     ACPI_OBJECT	*top;
498     ACPI_OBJECT	*pkg;
499     uint32_t	 count;
500     int		 i;
501 
502     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
503 
504     buf.Pointer = NULL;
505     buf.Length = ACPI_ALLOCATE_BUFFER;
506     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
507     if (ACPI_FAILURE(status))
508 	return (ENXIO);
509 
510     /* _CST is a package with a count and at least one Cx package. */
511     top = (ACPI_OBJECT *)buf.Pointer;
512     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
513 	device_printf(sc->cpu_dev, "invalid _CST package\n");
514 	AcpiOsFree(buf.Pointer);
515 	return (ENXIO);
516     }
517     if (count != top->Package.Count - 1) {
518 	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
519 	       count, top->Package.Count - 1);
520 	count = top->Package.Count - 1;
521     }
522     if (count > MAX_CX_STATES) {
523 	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
524 	count = MAX_CX_STATES;
525     }
526 
527     /* Set up all valid states. */
528     sc->cpu_cx_count = 0;
529     cx_ptr = sc->cpu_cx_states;
530     for (i = 0; i < count; i++) {
531 	pkg = &top->Package.Elements[i + 1];
532 	if (!ACPI_PKG_VALID(pkg, 4) ||
533 	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
534 	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
535 	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
536 
537 	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
538 	    continue;
539 	}
540 
541 	/* Validate the state to see if we should use it. */
542 	switch (cx_ptr->type) {
543 	case ACPI_STATE_C1:
544 	    sc->cpu_non_c3 = i;
545 	    cx_ptr++;
546 	    sc->cpu_cx_count++;
547 	    continue;
548 	case ACPI_STATE_C2:
549 	    sc->cpu_non_c3 = i;
550 	    break;
551 	case ACPI_STATE_C3:
552 	default:
553 	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
554 
555 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
556 				 "acpi_cpu%d: C3[%d] not available.\n",
557 				 device_get_unit(sc->cpu_dev), i));
558 		continue;
559 	    }
560 	    break;
561 	}
562 
563 #ifdef notyet
564 	/* Free up any previous register. */
565 	if (cx_ptr->p_lvlx != NULL) {
566 	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
567 	    cx_ptr->p_lvlx = NULL;
568 	}
569 #endif
570 
571 	/* Allocate the control register for C2 or C3. */
572 	cx_ptr->rid = sc->cpu_parent->cpux_next_rid;
573 	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->rid, &cx_ptr->p_lvlx,
574 		    RF_SHAREABLE);
575 	if (cx_ptr->p_lvlx) {
576 	    sc->cpu_parent->cpux_next_rid++;
577 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
578 			     "acpi_cpu%d: Got C%d - %d latency\n",
579 			     device_get_unit(sc->cpu_dev), cx_ptr->type,
580 			     cx_ptr->trans_lat));
581 	    cx_ptr++;
582 	    sc->cpu_cx_count++;
583 	}
584     }
585     AcpiOsFree(buf.Pointer);
586 
587     return (0);
588 }
589 
590 /*
591  * Call this *after* all CPUs have been attached.
592  */
593 static void
594 acpi_cpu_startup(void *arg)
595 {
596     struct acpi_cpu_softc *sc;
597     int i;
598 
599     /* Get set of CPU devices */
600     devclass_get_devices(acpi_cpu_cst_devclass, &cpu_devices, &cpu_ndevices);
601 
602     /*
603      * Setup any quirks that might necessary now that we have probed
604      * all the CPUs
605      */
606     acpi_cpu_quirks();
607 
608     cpu_cx_count = 0;
609     if (cpu_cx_generic) {
610 	/*
611 	 * We are using generic Cx mode, probe for available Cx states
612 	 * for all processors.
613 	 */
614 	for (i = 0; i < cpu_ndevices; i++) {
615 	    sc = device_get_softc(cpu_devices[i]);
616 	    acpi_cpu_generic_cx_probe(sc);
617 	    if (sc->cpu_cx_count > cpu_cx_count)
618 		    cpu_cx_count = sc->cpu_cx_count;
619 	}
620 
621 	/*
622 	 * Find the highest Cx state common to all CPUs
623 	 * in the system, taking quirks into account.
624 	 */
625 	for (i = 0; i < cpu_ndevices; i++) {
626 	    sc = device_get_softc(cpu_devices[i]);
627 	    if (sc->cpu_cx_count < cpu_cx_count)
628 		cpu_cx_count = sc->cpu_cx_count;
629 	}
630     } else {
631 	/*
632 	 * We are using _CST mode, remove C3 state if necessary.
633 	 * Update the largest Cx state supported in the global cpu_cx_count.
634 	 * It will be used in the global Cx sysctl handler.
635 	 * As we now know for sure that we will be using _CST mode
636 	 * install our notify handler.
637 	 */
638 	for (i = 0; i < cpu_ndevices; i++) {
639 	    sc = device_get_softc(cpu_devices[i]);
640 	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
641 		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
642 	    }
643 	    if (sc->cpu_cx_count > cpu_cx_count)
644 		cpu_cx_count = sc->cpu_cx_count;
645 	    sc->cpu_parent->cpux_cst_notify = acpi_cpu_cst_notify;
646 	}
647     }
648 
649     /* Perform Cx final initialization. */
650     for (i = 0; i < cpu_ndevices; i++) {
651 	sc = device_get_softc(cpu_devices[i]);
652 	acpi_cpu_startup_cx(sc);
653 
654 	if (sc->cpu_parent->glob_sysctl_tree != NULL) {
655 	    struct acpi_cpux_softc *cpux = sc->cpu_parent;
656 
657 	    /* Add a sysctl handler to handle global Cx lowest setting */
658 	    SYSCTL_ADD_PROC(&cpux->glob_sysctl_ctx,
659 	    		    SYSCTL_CHILDREN(cpux->glob_sysctl_tree),
660 			    OID_AUTO, "cx_lowest",
661 			    CTLTYPE_STRING | CTLFLAG_RW, NULL, 0,
662 			    acpi_cpu_global_cx_lowest_sysctl, "A",
663 			    "Global lowest Cx sleep state to use");
664 	}
665     }
666 
667     /* Take over idling from cpu_idle_default(). */
668     cpu_cx_lowest = 0;
669     cpu_disable_idle = FALSE;
670     cpu_idle_hook = acpi_cpu_idle;
671 }
672 
673 static void
674 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
675 {
676     struct sbuf sb;
677     int i;
678 
679     /*
680      * Set up the list of Cx states
681      */
682     sc->cpu_non_c3 = 0;
683     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
684 	SBUF_FIXEDLEN);
685     for (i = 0; i < sc->cpu_cx_count; i++) {
686 	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
687 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
688 	    sc->cpu_non_c3 = i;
689     }
690     sbuf_trim(&sb);
691     sbuf_finish(&sb);
692 }
693 
694 static void
695 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
696 {
697     struct acpi_cpux_softc *cpux = sc->cpu_parent;
698 
699     acpi_cpu_cx_list(sc);
700 
701     SYSCTL_ADD_STRING(&cpux->pcpu_sysctl_ctx,
702 		      SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree),
703 		      OID_AUTO, "cx_supported", CTLFLAG_RD,
704 		      sc->cpu_cx_supported, 0,
705 		      "Cx/microsecond values for supported Cx states");
706     SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx,
707 		    SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree),
708 		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
709 		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
710 		    "lowest Cx sleep state to use");
711     SYSCTL_ADD_PROC(&cpux->pcpu_sysctl_ctx,
712 		    SYSCTL_CHILDREN(cpux->pcpu_sysctl_tree),
713 		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
714 		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
715 		    "percent usage for each Cx state");
716 
717 #ifdef notyet
718     /* Signal platform that we can handle _CST notification. */
719     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
720 	ACPI_LOCK(acpi);
721 	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
722 	ACPI_UNLOCK(acpi);
723     }
724 #endif
725 }
726 
727 /*
728  * Idle the CPU in the lowest state possible.  This function is called with
729  * interrupts disabled.  Note that once it re-enables interrupts, a task
730  * switch can occur so do not access shared data (i.e. the softc) after
731  * interrupts are re-enabled.
732  */
733 static void
734 acpi_cpu_idle(void)
735 {
736     struct	acpi_cpu_softc *sc;
737     struct	acpi_cx *cx_next;
738     uint64_t	start_time, end_time;
739     int		bm_active, cx_next_idx, i;
740 
741     /* If disabled, return immediately. */
742     if (cpu_disable_idle) {
743 	ACPI_ENABLE_IRQS();
744 	return;
745     }
746 
747     /*
748      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
749      * since there is no ACPI processor object for this CPU.  This occurs
750      * for logical CPUs in the HTT case.
751      */
752     sc = cpu_softc[mdcpu->mi.gd_cpuid];
753     if (sc == NULL) {
754 	acpi_cpu_c1();
755 	return;
756     }
757 
758     /* Find the lowest state that has small enough latency. */
759     cx_next_idx = 0;
760     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
761 	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
762 	    cx_next_idx = i;
763 	    break;
764 	}
765     }
766 
767     /*
768      * Check for bus master activity.  If there was activity, clear
769      * the bit and use the lowest non-C3 state.  Note that the USB
770      * driver polling for new devices keeps this bit set all the
771      * time if USB is loaded.
772      */
773     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
774 	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
775 	if (bm_active != 0) {
776 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
777 	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
778 	}
779     }
780 
781     /* Select the next state and update statistics. */
782     cx_next = &sc->cpu_cx_states[cx_next_idx];
783     sc->cpu_cx_stats[cx_next_idx]++;
784     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
785 
786     /*
787      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
788      * calculate the time spent in C1 since the place we wake up is an
789      * ISR.  Assume we slept half of quantum and return.
790      */
791     if (cx_next->type == ACPI_STATE_C1) {
792 	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4;
793 	acpi_cpu_c1();
794 	return;
795     }
796 
797     /*
798      * For C3, disable bus master arbitration and enable bus master wake
799      * if BM control is available, otherwise flush the CPU cache.
800      */
801     if (cx_next->type == ACPI_STATE_C3) {
802 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
803 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
804 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
805 	} else
806 	    ACPI_FLUSH_CPU_CACHE();
807     }
808 
809     /*
810      * Read from P_LVLx to enter C2(+), checking time spent asleep.
811      * Use the ACPI timer for measuring sleep time.  Since we need to
812      * get the time very close to the CPU start/stop clock logic, this
813      * is the only reliable time source.
814      */
815     AcpiRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
816     CPU_GET_REG(cx_next->p_lvlx, 1);
817 
818     /*
819      * Read the end time twice.  Since it may take an arbitrary time
820      * to enter the idle state, the first read may be executed before
821      * the processor has stopped.  Doing it again provides enough
822      * margin that we are certain to have a correct value.
823      */
824     AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
825     AcpiRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
826 
827     /* Enable bus master arbitration and disable bus master wakeup. */
828     if (cx_next->type == ACPI_STATE_C3) {
829 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
830 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
831 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
832 	}
833     }
834     ACPI_ENABLE_IRQS();
835 
836     /* Find the actual time asleep in microseconds. */
837     end_time = acpi_TimerDelta(end_time, start_time);
838     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
839 }
840 
841 /*
842  * Re-evaluate the _CST object when we are notified that it changed.
843  *
844  * XXX Re-evaluation disabled until locking is done.
845  */
846 static void
847 acpi_cpu_cst_notify(device_t dev)
848 {
849     struct acpi_cpu_softc *sc = device_get_softc(dev);
850     struct acpi_cpu_softc *isc;
851     int i;
852 
853     /* Update the list of Cx states. */
854     acpi_cpu_cx_cst(sc);
855     acpi_cpu_cx_list(sc);
856 
857     /* Update the new lowest useable Cx state for all CPUs. */
858     crit_enter();
859     cpu_cx_count = 0;
860     for (i = 0; i < cpu_ndevices; i++) {
861 	isc = device_get_softc(cpu_devices[i]);
862 	if (isc->cpu_cx_count > cpu_cx_count)
863 	    cpu_cx_count = isc->cpu_cx_count;
864     }
865     crit_exit();
866 }
867 
868 static int
869 acpi_cpu_quirks(void)
870 {
871     device_t acpi_dev;
872     uint32_t val;
873 
874     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
875 
876     /*
877      * Bus mastering arbitration control is needed to keep caches coherent
878      * while sleeping in C3.  If it's not present but a working flush cache
879      * instruction is present, flush the caches before entering C3 instead.
880      * Otherwise, just disable C3 completely.
881      */
882     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
883 	AcpiGbl_FADT.Pm2ControlLength == 0) {
884 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
885 	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
886 	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
887 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
888 		"acpi_cpu: no BM control, using flush cache method\n"));
889 	} else {
890 	    cpu_quirks |= CPU_QUIRK_NO_C3;
891 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
892 		"acpi_cpu: no BM control, C3 not available\n"));
893 	}
894     }
895 
896     /*
897      * If we are using generic Cx mode, C3 on multiple CPUs requires using
898      * the expensive flush cache instruction.
899      */
900     if (cpu_cx_generic && ncpus > 1) {
901 	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
902 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
903 	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
904     }
905 
906     /* Look for various quirks of the PIIX4 part. */
907     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
908     if (acpi_dev != NULL) {
909 	switch (pci_get_revid(acpi_dev)) {
910 	/*
911 	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
912 	 * do not report the BMIDE status to the BM status register and
913 	 * others have a livelock bug if Type-F DMA is enabled.  Linux
914 	 * works around the BMIDE bug by reading the BM status directly
915 	 * but we take the simpler approach of disabling C3 for these
916 	 * parts.
917 	 *
918 	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
919 	 * Livelock") from the January 2002 PIIX4 specification update.
920 	 * Applies to all PIIX4 models.
921 	 *
922 	 * Also, make sure that all interrupts cause a "Stop Break"
923 	 * event to exit from C2 state.
924 	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
925 	 * should be set to zero, otherwise it causes C2 to short-sleep.
926 	 * PIIX4 doesn't properly support C3 and bus master activity
927 	 * need not break out of C2.
928 	 */
929 	case PCI_REVISION_A_STEP:
930 	case PCI_REVISION_B_STEP:
931 	case PCI_REVISION_4E:
932 	case PCI_REVISION_4M:
933 	    cpu_quirks |= CPU_QUIRK_NO_C3;
934 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
935 		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
936 
937 	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
938 	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
939 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
940 		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
941 	    	val |= PIIX4_STOP_BREAK_MASK;
942 		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
943 	    }
944 	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
945 	    if (val) {
946 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
947 		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
948 		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
949 	    }
950 	    break;
951 	default:
952 	    break;
953 	}
954     }
955 
956     return (0);
957 }
958 
959 static int
960 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
961 {
962     struct acpi_cpu_softc *sc;
963     struct sbuf	 sb;
964     char	 buf[128];
965     int		 i;
966     uintmax_t	 fract, sum, whole;
967 
968     sc = (struct acpi_cpu_softc *) arg1;
969     sum = 0;
970     for (i = 0; i < sc->cpu_cx_count; i++)
971 	sum += sc->cpu_cx_stats[i];
972     sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
973     for (i = 0; i < sc->cpu_cx_count; i++) {
974 	if (sum > 0) {
975 	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
976 	    fract = (whole % sum) * 100;
977 	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
978 		(u_int)(fract / sum));
979 	} else
980 	    sbuf_printf(&sb, "0.00%% ");
981     }
982     sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
983     sbuf_trim(&sb);
984     sbuf_finish(&sb);
985     sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
986     sbuf_delete(&sb);
987 
988     return (0);
989 }
990 
991 static int
992 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
993 {
994     int i, old_lowest, error = 0;
995     uint32_t old_type, type;
996 
997     get_mplock();
998 
999     old_lowest = atomic_swap_int(&sc->cpu_cx_lowest, val);
1000 
1001     old_type = sc->cpu_cx_states[old_lowest].type;
1002     type = sc->cpu_cx_states[val].type;
1003     if (old_type == ACPI_STATE_C3 && type != ACPI_STATE_C3) {
1004 	KKASSERT(cpu_c3_ncpus > 0);
1005 	if (atomic_fetchadd_int(&cpu_c3_ncpus, -1) == 1) {
1006 	    /*
1007 	     * All of the CPUs exit C3 state, use a better
1008 	     * one shot timer.
1009 	     */
1010 	    error = cputimer_intr_select_caps(CPUTIMER_INTR_CAP_NONE);
1011 	    KKASSERT(!error);
1012 	    cputimer_intr_restart();
1013     	}
1014     } else if (type == ACPI_STATE_C3 && old_type != ACPI_STATE_C3) {
1015 	if (atomic_fetchadd_int(&cpu_c3_ncpus, 1) == 0) {
1016 	    /*
1017 	     * When the first CPU enters C3 state, switch
1018 	     * to an one shot timer, which could handle
1019 	     * C3 state, i.e. the timer will not hang.
1020 	     */
1021 	    error = cputimer_intr_select_caps(CPUTIMER_INTR_CAP_PS);
1022 	    if (!error) {
1023 		cputimer_intr_restart();
1024 	    } else {
1025 		kprintf("no suitable intr cputimer found\n");
1026 
1027 		/* Restore */
1028 		sc->cpu_cx_lowest = old_lowest;
1029 		atomic_fetchadd_int(&cpu_c3_ncpus, -1);
1030 	    }
1031 	}
1032     }
1033 
1034     rel_mplock();
1035 
1036     if (error)
1037 	return error;
1038 
1039     /* If not disabling, cache the new lowest non-C3 state. */
1040     sc->cpu_non_c3 = 0;
1041     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1042 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1043 	    sc->cpu_non_c3 = i;
1044 	    break;
1045 	}
1046     }
1047 
1048     /* Reset the statistics counters. */
1049     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1050     return (0);
1051 }
1052 
1053 static int
1054 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1055 {
1056     struct	 acpi_cpu_softc *sc;
1057     char	 state[8];
1058     int		 val, error;
1059 
1060     sc = (struct acpi_cpu_softc *) arg1;
1061     ksnprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1062     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1063     if (error != 0 || req->newptr == NULL)
1064 	return (error);
1065     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1066 	return (EINVAL);
1067     val = (int) strtol(state + 1, NULL, 10) - 1;
1068     if (val < 0 || val > sc->cpu_cx_count - 1)
1069 	return (EINVAL);
1070 
1071     crit_enter();
1072     error = acpi_cpu_set_cx_lowest(sc, val);
1073     crit_exit();
1074 
1075     return error;
1076 }
1077 
1078 static int
1079 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1080 {
1081     struct	acpi_cpu_softc *sc;
1082     char	state[8];
1083     int		val, error, i;
1084 
1085     ksnprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1086     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1087     if (error != 0 || req->newptr == NULL)
1088 	return (error);
1089     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1090 	return (EINVAL);
1091     val = (int) strtol(state + 1, NULL, 10) - 1;
1092     if (val < 0 || val > cpu_cx_count - 1)
1093 	return (EINVAL);
1094     cpu_cx_lowest = val;
1095 
1096     /* Update the new lowest useable Cx state for all CPUs. */
1097     crit_enter();
1098     for (i = 0; i < cpu_ndevices; i++) {
1099 	sc = device_get_softc(cpu_devices[i]);
1100 	error = acpi_cpu_set_cx_lowest(sc, val);
1101 	if (error) {
1102 	    KKASSERT(i == 0);
1103 	    break;
1104 	}
1105     }
1106     crit_exit();
1107 
1108     return error;
1109 }
1110 
1111 /*
1112  * Put the CPU in C1 in a machine-dependant way.
1113  * XXX: shouldn't be here!
1114  */
1115 static void
1116 acpi_cpu_c1(void)
1117 {
1118 #ifdef __ia64__
1119     ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
1120 #else
1121     splz();
1122     if ((mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0)
1123         __asm __volatile("sti; hlt");
1124     else
1125         __asm __volatile("sti; pause");
1126 #endif /* !__ia64__ */
1127 }
1128