xref: /dragonfly/sys/dev/acpica/acpi_timer.c (revision 5062ee70)
1 /*-
2  * Copyright (c) 2000, 2001 Michael Smith
3  * Copyright (c) 2000 BSDi
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/acpica/acpi_timer.c,v 1.35 2004/07/22 05:42:14 njl Exp $
28  */
29 #include "opt_acpi.h"
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/sysctl.h>
35 #include <sys/systimer.h>
36 #include <sys/rman.h>
37 
38 #include <machine/lock.h>
39 #include <bus/pci/pcivar.h>
40 
41 #include "acpi.h"
42 #include "accommon.h"
43 #include "acpivar.h"
44 
45 /*
46  * A timecounter based on the free-running ACPI timer.
47  *
48  * Based on the i386-only mp_clock.c by <phk@FreeBSD.ORG>.
49  */
50 
51 /* Hooks for the ACPICA debugging infrastructure */
52 #define _COMPONENT	ACPI_TIMER
53 ACPI_MODULE_NAME("TIMER")
54 
55 static device_t			acpi_timer_dev;
56 static UINT32			acpi_timer_resolution;
57 static sysclock_t		acpi_last_counter;
58 
59 static sysclock_t acpi_timer_get_timecount(void);
60 static sysclock_t acpi_timer_get_timecount24(void);
61 static sysclock_t acpi_timer_get_timecount_safe(void);
62 static void acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock);
63 
64 static struct cputimer acpi_cputimer = {
65 	.next		= SLIST_ENTRY_INITIALIZER,
66 	.name		= "ACPI",
67 	.pri		= CPUTIMER_PRI_ACPI,
68 	.type		= CPUTIMER_ACPI,
69 	.count		= acpi_timer_get_timecount_safe,
70 	.fromhz		= cputimer_default_fromhz,
71 	.fromus		= cputimer_default_fromus,
72 	.construct	= acpi_timer_construct,
73 	.destruct	= cputimer_default_destruct,
74 	.freq		= ACPI_PM_TIMER_FREQUENCY
75 };
76 
77 static int	acpi_timer_identify(driver_t *driver, device_t parent);
78 static int	acpi_timer_probe(device_t dev);
79 static int	acpi_timer_attach(device_t dev);
80 static int	acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS);
81 
82 static int	acpi_timer_test(void);
83 
84 static device_method_t acpi_timer_methods[] = {
85     DEVMETHOD(device_identify,	acpi_timer_identify),
86     DEVMETHOD(device_probe,	acpi_timer_probe),
87     DEVMETHOD(device_attach,	acpi_timer_attach),
88 
89     DEVMETHOD_END
90 };
91 
92 static driver_t acpi_timer_driver = {
93     "acpi_timer",
94     acpi_timer_methods,
95     0,
96     .gpri = KOBJ_GPRI_ACPI+2
97 };
98 
99 static devclass_t acpi_timer_devclass;
100 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, acpi_timer_devclass, NULL, NULL);
101 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1);
102 
103 /*
104  * Locate the ACPI timer using the FADT, set up and allocate the I/O resources
105  * we will be using.
106  */
107 static int
108 acpi_timer_identify(driver_t *driver, device_t parent)
109 {
110     device_t dev;
111 
112     /*
113      * Just try once, do nothing if the 'acpi' bus is rescanned.
114      */
115     if (device_get_state(parent) == DS_ATTACHED)
116 	return (0);
117 
118     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
119 
120     if (acpi_disabled("timer") || (acpi_quirks & ACPI_Q_TIMER) ||
121 	acpi_timer_dev)
122 	return (ENXIO);
123 
124     if ((dev = BUS_ADD_CHILD(parent, parent, 0, "acpi_timer", 0)) == NULL) {
125 	device_printf(parent, "could not add acpi_timer0\n");
126 	return (ENXIO);
127     }
128     acpi_timer_dev = dev;
129 
130     return (0);
131 }
132 
133 static int
134 acpi_timer_probe(device_t dev)
135 {
136     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
137 
138     if (dev != acpi_timer_dev)
139 	return (ENXIO);
140 
141     if (ACPI_FAILURE(AcpiGetTimerResolution(&acpi_timer_resolution)))
142 	return (ENXIO);
143 
144     return (0);
145 }
146 
147 static int
148 acpi_timer_attach(device_t dev)
149 {
150     char desc[40];
151     int i, j;
152 
153     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
154 
155     /*
156      * If all tests of the counter succeed, use the ACPI-fast method.  If
157      * at least one failed, default to using the safe routine, which reads
158      * the timer multiple times to get a consistent value before returning.
159      */
160     j = 0;
161     for (i = 0; i < 10; i++)
162 	j += acpi_timer_test();
163     if (j == 10) {
164 	if (acpi_timer_resolution == 32) {
165 	    acpi_cputimer.name = "ACPI-fast";
166 	    acpi_cputimer.count = acpi_timer_get_timecount;
167 	} else {
168 	    acpi_cputimer.name = "ACPI-fast24";
169 	    acpi_cputimer.count = acpi_timer_get_timecount24;
170 	}
171     } else {
172 	if (acpi_timer_resolution == 32)
173 	    acpi_cputimer.name = "ACPI-safe";
174 	else
175 	    acpi_cputimer.name = "ACPI-safe24";
176 	acpi_cputimer.count = acpi_timer_get_timecount_safe;
177     }
178 
179     ksprintf(desc, "%u-bit timer at 3.579545MHz", acpi_timer_resolution);
180     device_set_desc_copy(dev, desc);
181 
182     cputimer_register(&acpi_cputimer);
183     cputimer_select(&acpi_cputimer, 0);
184 
185     return (0);
186 }
187 
188 /*
189  * Construct the timer.  Adjust the base so the system clock does not
190  * jump weirdly.
191  */
192 static void
193 acpi_timer_construct(struct cputimer *timer, sysclock_t oldclock)
194 {
195     timer->base = 0;
196     timer->base = oldclock - acpi_timer_get_timecount_safe();
197 }
198 
199 /*
200  * Fetch current time value from reliable hardware.
201  *
202  * The cputimer interface requires a 32 bit return value.  If the ACPI timer
203  * is only 24 bits then we have to keep track of the upper 8 bits on our
204  * own.
205  *
206  * XXX we could probably get away with using a per-cpu field for this and
207  * just use interrupt disablement instead of clock_lock.
208  */
209 static sysclock_t
210 acpi_timer_get_timecount24(void)
211 {
212     sysclock_t counter;
213 
214     clock_lock();
215     AcpiGetTimer(&counter);
216     if (counter < acpi_last_counter)
217 	acpi_cputimer.base += 0x01000000;
218     acpi_last_counter = counter;
219     counter += acpi_cputimer.base;
220     clock_unlock();
221     return (counter);
222 }
223 
224 static sysclock_t
225 acpi_timer_get_timecount(void)
226 {
227     sysclock_t counter;
228 
229     AcpiGetTimer(&counter);
230     return (counter + acpi_cputimer.base);
231 }
232 
233 /*
234  * Fetch current time value from hardware that may not correctly
235  * latch the counter.  We need to read until we have three monotonic
236  * samples and then use the middle one, otherwise we are not protected
237  * against the fact that the bits can be wrong in two directions.  If
238  * we only cared about monosity, two reads would be enough.
239  */
240 static sysclock_t
241 acpi_timer_get_timecount_safe(void)
242 {
243     u_int u1, u2, u3;
244 
245     if (acpi_timer_resolution != 32)
246 	clock_lock();
247 
248     AcpiGetTimer(&u2);
249     AcpiGetTimer(&u3);
250     do {
251 	u1 = u2;
252 	u2 = u3;
253 	AcpiGetTimer(&u3);
254     } while (u1 > u2 || u2 > u3);
255 
256     if (acpi_timer_resolution != 32) {
257 	if (u2 < acpi_last_counter)
258 	    acpi_cputimer.base += 0x01000000;
259 	acpi_last_counter = u2;
260 	clock_unlock();
261     }
262     return (u2 + acpi_cputimer.base);
263 }
264 
265 /*
266  * Timecounter freqency adjustment interface.
267  */
268 static int
269 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)
270 {
271     int error;
272     u_int freq;
273 
274     if (acpi_cputimer.freq == 0)
275 	return (EOPNOTSUPP);
276     freq = acpi_cputimer.freq;
277     error = sysctl_handle_int(oidp, &freq, 0, req);
278     if (error == 0 && req->newptr != NULL)
279 	cputimer_set_frequency(&acpi_cputimer, freq);
280 
281     return (error);
282 }
283 
284 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq, CTLTYPE_INT | CTLFLAG_RW,
285     0, sizeof(u_int), acpi_timer_sysctl_freq, "I", "ACPI timer frequency");
286 
287 /*
288  * Some ACPI timers are known or believed to suffer from implementation
289  * problems which can lead to erroneous values being read.  This function
290  * tests for consistent results from the timer and returns 1 if it believes
291  * the timer is consistent, otherwise it returns 0.
292  *
293  * It appears the cause is that the counter is not latched to the PCI bus
294  * clock when read:
295  *
296  * ] 20. ACPI Timer Errata
297  * ]
298  * ]   Problem: The power management timer may return improper result when
299  * ]   read. Although the timer value settles properly after incrementing,
300  * ]   while incrementing there is a 3nS window every 69.8nS where the
301  * ]   timer value is indeterminate (a 4.2% chance that the data will be
302  * ]   incorrect when read). As a result, the ACPI free running count up
303  * ]   timer specification is violated due to erroneous reads.  Implication:
304  * ]   System hangs due to the "inaccuracy" of the timer when used by
305  * ]   software for time critical events and delays.
306  * ]
307  * ] Workaround: Read the register twice and compare.
308  * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed
309  * ] in the PIIX4M.
310  */
311 
312 static int
313 acpi_timer_test(void)
314 {
315     uint32_t	last, this;
316     int		min, max, max2, n, delta;
317     register_t	s;
318 
319     min = INT32_MAX;
320     max = max2 = 0;
321 
322     /* Test the timer with interrupts disabled to get accurate results. */
323 #if defined(__x86_64__)
324     s = read_rflags();
325 #else
326 #error "no read_*flags"
327 #endif
328     cpu_disable_intr();
329     AcpiGetTimer(&last);
330     for (n = 0; n < 2000; n++) {
331 	AcpiGetTimer(&this);
332 	delta = acpi_TimerDelta(this, last);
333 	if (delta > max) {
334 	    max2 = max;
335 	    max = delta;
336 	} else if (delta > max2) {
337 	    max2 = delta;
338 	}
339 	if (delta < min)
340 	    min = delta;
341 	last = this;
342     }
343     /* cpu_enable_intr(); restored to original by write_rflags() */
344 #if defined(__x86_64__)
345     write_rflags(s);
346 #else
347 #error "no read_*flags"
348 #endif
349 
350     delta = max2 - min;
351     if ((max - min > 8 || delta > 3) && vmm_guest == VMM_GUEST_NONE)
352 	n = 0;
353     else if (min < 0 || max == 0 || max2 == 0)
354 	n = 0;
355     else
356 	n = 1;
357     if (bootverbose) {
358 	kprintf("ACPI timer looks %s min = %d, max = %d, width = %d\n",
359 		n ? "GOOD" : "BAD ",
360 		min, max, max - min);
361     }
362 
363     return (n);
364 }
365