xref: /dragonfly/sys/dev/agp/agp.c (revision 0bb9290e)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD: src/sys/pci/agp.c,v 1.3.2.4 2002/08/11 19:58:12 alc Exp $
27  *	$DragonFly: src/sys/dev/agp/agp.c,v 1.22 2006/08/03 16:40:46 swildner Exp $
28  */
29 
30 #include "opt_bus.h"
31 #include "opt_pci.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/ioccom.h>
41 #include <sys/agpio.h>
42 #include <sys/lock.h>
43 #include <sys/proc.h>
44 
45 #include <bus/pci/pcivar.h>
46 #include <bus/pci/pcireg.h>
47 #include "agppriv.h"
48 #include "agpvar.h"
49 #include "agpreg.h"
50 
51 #include <vm/vm.h>
52 #include <vm/vm_object.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_pageout.h>
55 #include <vm/pmap.h>
56 
57 #include <machine/md_var.h>
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 MODULE_VERSION(agp, 1);
63 
64 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
65 
66 #define CDEV_MAJOR	148
67 				/* agp_drv.c */
68 static d_open_t agp_open;
69 static d_close_t agp_close;
70 static d_ioctl_t agp_ioctl;
71 static d_mmap_t agp_mmap;
72 
73 static struct dev_ops agp_ops = {
74 	{ "agp", CDEV_MAJOR, D_TTY },
75 	.d_open =	agp_open,
76 	.d_close =	agp_close,
77 	.d_ioctl =	agp_ioctl,
78 	.d_mmap =	agp_mmap,
79 };
80 
81 static devclass_t agp_devclass;
82 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
83 
84 /* Helper functions for implementing chipset mini drivers. */
85 
86 void
87 agp_flush_cache(void)
88 {
89 #ifdef __i386__
90 	wbinvd();
91 #endif
92 }
93 
94 u_int8_t
95 agp_find_caps(device_t dev)
96 {
97 	u_int32_t status;
98 	u_int8_t ptr, next;
99 
100 	/*
101 	 * Check the CAP_LIST bit of the PCI status register first.
102 	 */
103 	status = pci_read_config(dev, PCIR_STATUS, 2);
104 	if (!(status & 0x10))
105 		return 0;
106 
107 	/*
108 	 * Traverse the capabilities list.
109 	 */
110 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
111 	     ptr != 0;
112 	     ptr = next) {
113 		u_int32_t capid = pci_read_config(dev, ptr, 4);
114 		next = AGP_CAPID_GET_NEXT_PTR(capid);
115 
116 		/*
117 		 * If this capability entry ID is 2, then we are done.
118 		 */
119 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
120 			return ptr;
121 	}
122 
123 	return 0;
124 }
125 
126 /*
127  * Find an AGP display device (if any).
128  */
129 static device_t
130 agp_find_display(void)
131 {
132 	devclass_t pci = devclass_find("pci");
133 	device_t bus, dev = 0;
134 	device_t *kids;
135 	int busnum, numkids, i;
136 
137 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
138 		bus = devclass_get_device(pci, busnum);
139 		if (!bus)
140 			continue;
141 		device_get_children(bus, &kids, &numkids);
142 		for (i = 0; i < numkids; i++) {
143 			dev = kids[i];
144 			if (pci_get_class(dev) == PCIC_DISPLAY
145 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
146 				if (agp_find_caps(dev)) {
147 					free(kids, M_TEMP);
148 					return dev;
149 				}
150 
151 		}
152 		free(kids, M_TEMP);
153 	}
154 
155 	return 0;
156 }
157 
158 struct agp_gatt *
159 agp_alloc_gatt(device_t dev)
160 {
161 	u_int32_t apsize = AGP_GET_APERTURE(dev);
162 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
163 	struct agp_gatt *gatt;
164 
165 	if (bootverbose)
166 		device_printf(dev,
167 			      "allocating GATT for aperture of size %dM\n",
168 			      apsize / (1024*1024));
169 
170 	if (entries == 0) {
171 		device_printf(dev, "bad aperture size\n");
172 		return NULL;
173 	}
174 
175 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
176 	gatt->ag_entries = entries;
177 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
178 					M_WAITOK, 0, ~0, PAGE_SIZE, 0);
179 	if (!gatt->ag_virtual) {
180 		if (bootverbose)
181 			device_printf(dev, "contiguous allocation failed\n");
182 		free(gatt, M_AGP);
183 		return 0;
184 	}
185 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
186 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
187 	agp_flush_cache();
188 
189 	return gatt;
190 }
191 
192 void
193 agp_free_gatt(struct agp_gatt *gatt)
194 {
195 	contigfree(gatt->ag_virtual,
196 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
197 	free(gatt, M_AGP);
198 }
199 
200 static int agp_max[][2] = {
201 	{0,	0},
202 	{32,	4},
203 	{64,	28},
204 	{128,	96},
205 	{256,	204},
206 	{512,	440},
207 	{1024,	942},
208 	{2048,	1920},
209 	{4096,	3932}
210 };
211 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
212 
213 int
214 agp_generic_attach(device_t dev)
215 {
216 	struct agp_softc *sc = device_get_softc(dev);
217 	int rid, memsize, i;
218 
219 	/*
220 	 * Find and map the aperture.
221 	 */
222 	rid = AGP_APBASE;
223 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
224 					     0, ~0, 1, RF_ACTIVE);
225 	if (!sc->as_aperture)
226 		return ENOMEM;
227 
228 	/*
229 	 * Work out an upper bound for agp memory allocation. This
230 	 * uses a heurisitc table from the Linux driver.
231 	 */
232 	memsize = ptoa(Maxmem) >> 20;
233 	for (i = 0; i < agp_max_size; i++) {
234 		if (memsize <= agp_max[i][0])
235 			break;
236 	}
237 	if (i == agp_max_size) i = agp_max_size - 1;
238 	sc->as_maxmem = agp_max[i][1] << 20U;
239 
240 	/*
241 	 * The lock is used to prevent re-entry to
242 	 * agp_generic_bind_memory() since that function can sleep.
243 	 */
244 	lockinit(&sc->as_lock, "agplk", 0, 0);
245 
246 	/*
247 	 * Initialise stuff for the userland device.
248 	 */
249 	agp_devclass = devclass_find("agp");
250 	TAILQ_INIT(&sc->as_memory);
251 	sc->as_nextid = 1;
252 
253 	dev_ops_add(&agp_ops, -1, device_get_unit(dev));
254 	make_dev(&agp_ops, device_get_unit(dev), UID_ROOT, GID_WHEEL,
255 		  0600, "agpgart");
256 
257 	return 0;
258 }
259 
260 int
261 agp_generic_detach(device_t dev)
262 {
263 	struct agp_softc *sc = device_get_softc(dev);
264 
265 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
266 	agp_flush_cache();
267 	dev_ops_remove(&agp_ops, -1, device_get_unit(dev));
268 	return 0;
269 }
270 
271 /*
272  * This does the enable logic for v3, with the same topology
273  * restrictions as in place for v2 -- one bus, one device on the bus.
274  */
275 static int
276 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
277 {
278 	u_int32_t tstatus, mstatus;
279 	u_int32_t command;
280 	int rq, sba, fw, rate, arqsz, cal;
281 
282 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
283 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
284 
285 	/* Set RQ to the min of mode, tstatus and mstatus */
286 	rq = AGP_MODE_GET_RQ(mode);
287 	if (AGP_MODE_GET_RQ(tstatus) < rq)
288 		rq = AGP_MODE_GET_RQ(tstatus);
289 	if (AGP_MODE_GET_RQ(mstatus) < rq)
290 		rq = AGP_MODE_GET_RQ(mstatus);
291 
292 	/*
293 	 * ARQSZ - Set the value to the maximum one.
294 	 * Don't allow the mode register to override values.
295 	 */
296 	arqsz = AGP_MODE_GET_ARQSZ(mode);
297 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
298 		rq = AGP_MODE_GET_ARQSZ(tstatus);
299 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
300 		rq = AGP_MODE_GET_ARQSZ(mstatus);
301 
302 	/* Calibration cycle - don't allow override by mode register */
303 	cal = AGP_MODE_GET_CAL(tstatus);
304 	if (AGP_MODE_GET_CAL(mstatus) < cal)
305 		cal = AGP_MODE_GET_CAL(mstatus);
306 
307 	/* SBA must be supported for AGP v3. */
308 	sba = 1;
309 
310 	/* Set FW if all three support it. */
311 	fw = (AGP_MODE_GET_FW(tstatus)
312 	       & AGP_MODE_GET_FW(mstatus)
313 	       & AGP_MODE_GET_FW(mode));
314 
315 	/* Figure out the max rate */
316 	rate = (AGP_MODE_GET_RATE(tstatus)
317 		& AGP_MODE_GET_RATE(mstatus)
318 		& AGP_MODE_GET_RATE(mode));
319 	if (rate & AGP_MODE_V3_RATE_8x)
320 		rate = AGP_MODE_V3_RATE_8x;
321 	else
322 		rate = AGP_MODE_V3_RATE_4x;
323 	if (bootverbose)
324 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
325 
326 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
327 
328 	/* Construct the new mode word and tell the hardware */
329 	command = AGP_MODE_SET_RQ(0, rq);
330 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
331 	command = AGP_MODE_SET_CAL(command, cal);
332 	command = AGP_MODE_SET_SBA(command, sba);
333 	command = AGP_MODE_SET_FW(command, fw);
334 	command = AGP_MODE_SET_RATE(command, rate);
335 	command = AGP_MODE_SET_AGP(command, 1);
336 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
337 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
338 
339 	return 0;
340 }
341 
342 static int
343 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
344 {
345 	u_int32_t tstatus, mstatus;
346 	u_int32_t command;
347 	int rq, sba, fw, rate;
348 
349 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
350 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
351 
352 	/* Set RQ to the min of mode, tstatus and mstatus */
353 	rq = AGP_MODE_GET_RQ(mode);
354 	if (AGP_MODE_GET_RQ(tstatus) < rq)
355 		rq = AGP_MODE_GET_RQ(tstatus);
356 	if (AGP_MODE_GET_RQ(mstatus) < rq)
357 		rq = AGP_MODE_GET_RQ(mstatus);
358 
359 	/* Set SBA if all three can deal with SBA */
360 	sba = (AGP_MODE_GET_SBA(tstatus)
361 	       & AGP_MODE_GET_SBA(mstatus)
362 	       & AGP_MODE_GET_SBA(mode));
363 
364 	/* Similar for FW */
365 	fw = (AGP_MODE_GET_FW(tstatus)
366 	       & AGP_MODE_GET_FW(mstatus)
367 	       & AGP_MODE_GET_FW(mode));
368 
369 	/* Figure out the max rate */
370 	rate = (AGP_MODE_GET_RATE(tstatus)
371 		& AGP_MODE_GET_RATE(mstatus)
372 		& AGP_MODE_GET_RATE(mode));
373 	if (rate & AGP_MODE_V2_RATE_4x)
374 		rate = AGP_MODE_V2_RATE_4x;
375 	else if (rate & AGP_MODE_V2_RATE_2x)
376 		rate = AGP_MODE_V2_RATE_2x;
377 	else
378 		rate = AGP_MODE_V2_RATE_1x;
379 	if (bootverbose)
380 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
381 
382 	/* Construct the new mode word and tell the hardware */
383 	command = AGP_MODE_SET_RQ(0, rq);
384 	command = AGP_MODE_SET_SBA(command, sba);
385 	command = AGP_MODE_SET_FW(command, fw);
386 	command = AGP_MODE_SET_RATE(command, rate);
387 	command = AGP_MODE_SET_AGP(command, 1);
388 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
389 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
390 
391 	return 0;
392 }
393 
394 int
395 agp_generic_enable(device_t dev, u_int32_t mode)
396 {
397 	device_t mdev = agp_find_display();
398 	u_int32_t tstatus, mstatus;
399 
400 	if (!mdev) {
401 		AGP_DPF("can't find display\n");
402 		return ENXIO;
403 	}
404 
405 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
406 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
407 
408 	/*
409 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
410 	 * more variety in topology than v2, e.g. multiple AGP devices
411 	 * attached to one bridge, or multiple AGP bridges in one
412 	 * system.  This doesn't attempt to address those situations,
413 	 * but should work fine for a classic single AGP slot system
414 	 * with AGP v3.
415 	 */
416 	if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus))
417 		return (agp_v3_enable(dev, mdev, mode));
418 	else
419 		return (agp_v2_enable(dev, mdev, mode));
420 }
421 
422 struct agp_memory *
423 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
424 {
425 	struct agp_softc *sc = device_get_softc(dev);
426 	struct agp_memory *mem;
427 
428 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
429 		return 0;
430 
431 	if (sc->as_allocated + size > sc->as_maxmem)
432 		return 0;
433 
434 	if (type != 0) {
435 		printf("agp_generic_alloc_memory: unsupported type %d\n",
436 		       type);
437 		return 0;
438 	}
439 
440 	mem = malloc(sizeof *mem, M_AGP, M_INTWAIT);
441 	mem->am_id = sc->as_nextid++;
442 	mem->am_size = size;
443 	mem->am_type = 0;
444 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
445 	mem->am_physical = 0;
446 	mem->am_offset = 0;
447 	mem->am_is_bound = 0;
448 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
449 	sc->as_allocated += size;
450 
451 	return mem;
452 }
453 
454 int
455 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
456 {
457 	struct agp_softc *sc = device_get_softc(dev);
458 
459 	if (mem->am_is_bound)
460 		return EBUSY;
461 
462 	sc->as_allocated -= mem->am_size;
463 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
464 	vm_object_deallocate(mem->am_obj);
465 	free(mem, M_AGP);
466 	return 0;
467 }
468 
469 int
470 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
471 			vm_offset_t offset)
472 {
473 	struct agp_softc *sc = device_get_softc(dev);
474 	vm_offset_t i, j, k;
475 	vm_page_t m;
476 	int error;
477 
478 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
479 
480 	if (mem->am_is_bound) {
481 		device_printf(dev, "memory already bound\n");
482 		lockmgr(&sc->as_lock, LK_RELEASE);
483 		return EINVAL;
484 	}
485 
486 	if (offset < 0
487 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
488 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
489 		device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
490 			      (int) offset, (int)mem->am_size,
491 			      (int)AGP_GET_APERTURE(dev));
492 		printf("Check BIOS's aperature size vs X\n");
493 		lockmgr(&sc->as_lock, LK_RELEASE);
494 		return EINVAL;
495 	}
496 
497 	/*
498 	 * Bind the individual pages and flush the chipset's
499 	 * TLB.
500 	 */
501 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
502 		/*
503 		 * Find a page from the object and wire it
504 		 * down. This page will be mapped using one or more
505 		 * entries in the GATT (assuming that PAGE_SIZE >=
506 		 * AGP_PAGE_SIZE. If this is the first call to bind,
507 		 * the pages will be allocated and zeroed.
508 		 */
509 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
510 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
511 		if ((m->flags & PG_ZERO) == 0)
512 			vm_page_zero_fill(m);
513 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
514 		vm_page_wire(m);
515 
516 		/*
517 		 * Install entries in the GATT, making sure that if
518 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
519 		 * aligned to PAGE_SIZE, we don't modify too many GATT
520 		 * entries.
521 		 */
522 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
523 		     j += AGP_PAGE_SIZE) {
524 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
525 			AGP_DPF("binding offset %#x to pa %#x\n",
526 				offset + i + j, pa);
527 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
528 			if (error) {
529 				/*
530 				 * Bail out. Reverse all the mappings
531 				 * and unwire the pages.
532 				 */
533 				vm_page_wakeup(m);
534 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
535 					AGP_UNBIND_PAGE(dev, offset + k);
536 				for (k = 0; k <= i; k += PAGE_SIZE) {
537 					m = vm_page_lookup(mem->am_obj,
538 							   OFF_TO_IDX(k));
539 					vm_page_unwire(m, 0);
540 				}
541 				lockmgr(&sc->as_lock, LK_RELEASE);
542 				return error;
543 			}
544 		}
545 		vm_page_wakeup(m);
546 	}
547 
548 	/*
549 	 * Flush the cpu cache since we are providing a new mapping
550 	 * for these pages.
551 	 */
552 	agp_flush_cache();
553 
554 	/*
555 	 * Make sure the chipset gets the new mappings.
556 	 */
557 	AGP_FLUSH_TLB(dev);
558 
559 	mem->am_offset = offset;
560 	mem->am_is_bound = 1;
561 
562 	lockmgr(&sc->as_lock, LK_RELEASE);
563 
564 	return 0;
565 }
566 
567 int
568 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
569 {
570 	struct agp_softc *sc = device_get_softc(dev);
571 	vm_page_t m;
572 	int i;
573 
574 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
575 
576 	if (!mem->am_is_bound) {
577 		device_printf(dev, "memory is not bound\n");
578 		lockmgr(&sc->as_lock, LK_RELEASE);
579 		return EINVAL;
580 	}
581 
582 
583 	/*
584 	 * Unbind the individual pages and flush the chipset's
585 	 * TLB. Unwire the pages so they can be swapped.
586 	 */
587 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
588 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
589 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
590 		m = vm_page_lookup(mem->am_obj, atop(i));
591 		vm_page_unwire(m, 0);
592 	}
593 
594 	agp_flush_cache();
595 	AGP_FLUSH_TLB(dev);
596 
597 	mem->am_offset = 0;
598 	mem->am_is_bound = 0;
599 
600 	lockmgr(&sc->as_lock, LK_RELEASE);
601 
602 	return 0;
603 }
604 
605 /* Helper functions for implementing user/kernel api */
606 
607 static int
608 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
609 {
610 	struct agp_softc *sc = device_get_softc(dev);
611 
612 	if (sc->as_state != AGP_ACQUIRE_FREE)
613 		return EBUSY;
614 	sc->as_state = state;
615 
616 	return 0;
617 }
618 
619 static int
620 agp_release_helper(device_t dev, enum agp_acquire_state state)
621 {
622 	struct agp_softc *sc = device_get_softc(dev);
623 
624 	if (sc->as_state == AGP_ACQUIRE_FREE)
625 		return 0;
626 
627 	if (sc->as_state != state)
628 		return EBUSY;
629 
630 	sc->as_state = AGP_ACQUIRE_FREE;
631 	return 0;
632 }
633 
634 static struct agp_memory *
635 agp_find_memory(device_t dev, int id)
636 {
637 	struct agp_softc *sc = device_get_softc(dev);
638 	struct agp_memory *mem;
639 
640 	AGP_DPF("searching for memory block %d\n", id);
641 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
642 		AGP_DPF("considering memory block %d\n", mem->am_id);
643 		if (mem->am_id == id)
644 			return mem;
645 	}
646 	return 0;
647 }
648 
649 /* Implementation of the userland ioctl api */
650 
651 static int
652 agp_info_user(device_t dev, agp_info *info)
653 {
654 	struct agp_softc *sc = device_get_softc(dev);
655 
656 	bzero(info, sizeof *info);
657 	info->bridge_id = pci_get_devid(dev);
658 	info->agp_mode =
659 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
660 	info->aper_base = rman_get_start(sc->as_aperture);
661 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
662 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
663 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
664 
665 	return 0;
666 }
667 
668 static int
669 agp_setup_user(device_t dev, agp_setup *setup)
670 {
671 	return AGP_ENABLE(dev, setup->agp_mode);
672 }
673 
674 static int
675 agp_allocate_user(device_t dev, agp_allocate *alloc)
676 {
677 	struct agp_memory *mem;
678 
679 	mem = AGP_ALLOC_MEMORY(dev,
680 			       alloc->type,
681 			       alloc->pg_count << AGP_PAGE_SHIFT);
682 	if (mem) {
683 		alloc->key = mem->am_id;
684 		alloc->physical = mem->am_physical;
685 		return 0;
686 	} else {
687 		return ENOMEM;
688 	}
689 }
690 
691 static int
692 agp_deallocate_user(device_t dev, int id)
693 {
694 	struct agp_memory *mem = agp_find_memory(dev, id);
695 
696 	if (mem) {
697 		AGP_FREE_MEMORY(dev, mem);
698 		return 0;
699 	} else {
700 		return ENOENT;
701 	}
702 }
703 
704 static int
705 agp_bind_user(device_t dev, agp_bind *bind)
706 {
707 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
708 
709 	if (!mem)
710 		return ENOENT;
711 
712 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
713 }
714 
715 static int
716 agp_unbind_user(device_t dev, agp_unbind *unbind)
717 {
718 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
719 
720 	if (!mem)
721 		return ENOENT;
722 
723 	return AGP_UNBIND_MEMORY(dev, mem);
724 }
725 
726 static int
727 agp_open(struct dev_open_args *ap)
728 {
729 	dev_t kdev = ap->a_head.a_dev;
730 	device_t dev = KDEV2DEV(kdev);
731 	struct agp_softc *sc = device_get_softc(dev);
732 
733 	if (!sc->as_isopen) {
734 		sc->as_isopen = 1;
735 		device_busy(dev);
736 	}
737 
738 	return 0;
739 }
740 
741 static int
742 agp_close(struct dev_close_args *ap)
743 {
744 	dev_t kdev = ap->a_head.a_dev;
745 	device_t dev = KDEV2DEV(kdev);
746 	struct agp_softc *sc = device_get_softc(dev);
747 	struct agp_memory *mem;
748 
749 	/*
750 	 * Clear the GATT and force release on last close
751 	 */
752 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
753 		if (mem->am_is_bound)
754 			AGP_UNBIND_MEMORY(dev, mem);
755 		AGP_FREE_MEMORY(dev, mem);
756 	}
757 	if (sc->as_state == AGP_ACQUIRE_USER)
758 		agp_release_helper(dev, AGP_ACQUIRE_USER);
759 	sc->as_isopen = 0;
760 	device_unbusy(dev);
761 
762 	return 0;
763 }
764 
765 static int
766 agp_ioctl(struct dev_ioctl_args *ap)
767 {
768 	dev_t kdev = ap->a_head.a_dev;
769 	device_t dev = KDEV2DEV(kdev);
770 
771 	switch (ap->a_cmd) {
772 	case AGPIOC_INFO:
773 		return agp_info_user(dev, (agp_info *)ap->a_data);
774 
775 	case AGPIOC_ACQUIRE:
776 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
777 
778 	case AGPIOC_RELEASE:
779 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
780 
781 	case AGPIOC_SETUP:
782 		return agp_setup_user(dev, (agp_setup *)ap->a_data);
783 
784 	case AGPIOC_ALLOCATE:
785 		return agp_allocate_user(dev, (agp_allocate *)ap->a_data);
786 
787 	case AGPIOC_DEALLOCATE:
788 		return agp_deallocate_user(dev, *(int *)ap->a_data);
789 
790 	case AGPIOC_BIND:
791 		return agp_bind_user(dev, (agp_bind *)ap->a_data);
792 
793 	case AGPIOC_UNBIND:
794 		return agp_unbind_user(dev, (agp_unbind *)ap->a_data);
795 
796 	}
797 
798 	return EINVAL;
799 }
800 
801 static int
802 agp_mmap(struct dev_mmap_args *ap)
803 {
804 	dev_t kdev = ap->a_head.a_dev;
805 	device_t dev = KDEV2DEV(kdev);
806 	struct agp_softc *sc = device_get_softc(dev);
807 
808 	if (ap->a_offset > AGP_GET_APERTURE(dev))
809 		return EINVAL;
810 	ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset);
811 	return(0);
812 }
813 
814 /* Implementation of the kernel api */
815 
816 device_t
817 agp_find_device(void)
818 {
819 	if (!agp_devclass)
820 		return 0;
821 	return devclass_get_device(agp_devclass, 0);
822 }
823 
824 enum agp_acquire_state
825 agp_state(device_t dev)
826 {
827 	struct agp_softc *sc = device_get_softc(dev);
828 	return sc->as_state;
829 }
830 
831 void
832 agp_get_info(device_t dev, struct agp_info *info)
833 {
834 	struct agp_softc *sc = device_get_softc(dev);
835 
836 	info->ai_mode =
837 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
838 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
839 	info->ai_aperture_size = (rman_get_end(sc->as_aperture)
840 				  - rman_get_start(sc->as_aperture)) + 1;
841 	info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
842 	info->ai_memory_allowed = sc->as_maxmem;
843 	info->ai_memory_used = sc->as_allocated;
844 }
845 
846 int
847 agp_acquire(device_t dev)
848 {
849 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
850 }
851 
852 int
853 agp_release(device_t dev)
854 {
855 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
856 }
857 
858 int
859 agp_enable(device_t dev, u_int32_t mode)
860 {
861 	return AGP_ENABLE(dev, mode);
862 }
863 
864 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
865 {
866 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
867 }
868 
869 void agp_free_memory(device_t dev, void *handle)
870 {
871 	struct agp_memory *mem = (struct agp_memory *) handle;
872 	AGP_FREE_MEMORY(dev, mem);
873 }
874 
875 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
876 {
877 	struct agp_memory *mem = (struct agp_memory *) handle;
878 	return AGP_BIND_MEMORY(dev, mem, offset);
879 }
880 
881 int agp_unbind_memory(device_t dev, void *handle)
882 {
883 	struct agp_memory *mem = (struct agp_memory *) handle;
884 	return AGP_UNBIND_MEMORY(dev, mem);
885 }
886 
887 void agp_memory_info(device_t dev, void *handle, struct
888 		     agp_memory_info *mi)
889 {
890 	struct agp_memory *mem = (struct agp_memory *) handle;
891 
892 	mi->ami_size = mem->am_size;
893 	mi->ami_physical = mem->am_physical;
894 	mi->ami_offset = mem->am_offset;
895 	mi->ami_is_bound = mem->am_is_bound;
896 }
897