xref: /dragonfly/sys/dev/agp/agp.c (revision 23265324)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD: src/sys/pci/agp.c,v 1.3.2.4 2002/08/11 19:58:12 alc Exp $
27  *	$DragonFly: src/sys/dev/agp/agp.c,v 1.26 2006/12/22 23:26:14 swildner Exp $
28  */
29 
30 #include "opt_bus.h"
31 #include "opt_pci.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/ioccom.h>
41 #include <sys/agpio.h>
42 #include <sys/lock.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 
46 #include <bus/pci/pcivar.h>
47 #include <bus/pci/pcireg.h>
48 #include "agppriv.h"
49 #include "agpvar.h"
50 #include "agpreg.h"
51 
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/pmap.h>
57 
58 #include <machine/md_var.h>
59 
60 MODULE_VERSION(agp, 1);
61 
62 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
63 
64 #define CDEV_MAJOR	148
65 				/* agp_drv.c */
66 static d_open_t agp_open;
67 static d_close_t agp_close;
68 static d_ioctl_t agp_ioctl;
69 static d_mmap_t agp_mmap;
70 
71 static struct dev_ops agp_ops = {
72 	{ "agp", CDEV_MAJOR, D_TTY },
73 	.d_open =	agp_open,
74 	.d_close =	agp_close,
75 	.d_ioctl =	agp_ioctl,
76 	.d_mmap =	agp_mmap,
77 };
78 
79 static devclass_t agp_devclass;
80 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
81 
82 /* Helper functions for implementing chipset mini drivers. */
83 
84 void
85 agp_flush_cache(void)
86 {
87 #ifdef __i386__
88 	wbinvd();
89 #endif
90 }
91 
92 u_int8_t
93 agp_find_caps(device_t dev)
94 {
95 	u_int32_t status;
96 	u_int8_t ptr, next;
97 
98 	/*
99 	 * Check the CAP_LIST bit of the PCI status register first.
100 	 */
101 	status = pci_read_config(dev, PCIR_STATUS, 2);
102 	if (!(status & 0x10))
103 		return 0;
104 
105 	/*
106 	 * Traverse the capabilities list.
107 	 */
108 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
109 	     ptr != 0;
110 	     ptr = next) {
111 		u_int32_t capid = pci_read_config(dev, ptr, 4);
112 		next = AGP_CAPID_GET_NEXT_PTR(capid);
113 
114 		/*
115 		 * If this capability entry ID is 2, then we are done.
116 		 */
117 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
118 			return ptr;
119 	}
120 
121 	return 0;
122 }
123 
124 /*
125  * Find an AGP display device (if any).
126  */
127 static device_t
128 agp_find_display(void)
129 {
130 	devclass_t pci = devclass_find("pci");
131 	device_t bus, dev = 0;
132 	device_t *kids;
133 	int busnum, numkids, i;
134 
135 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
136 		bus = devclass_get_device(pci, busnum);
137 		if (!bus)
138 			continue;
139 		device_get_children(bus, &kids, &numkids);
140 		for (i = 0; i < numkids; i++) {
141 			dev = kids[i];
142 			if (pci_get_class(dev) == PCIC_DISPLAY
143 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
144 				if (agp_find_caps(dev)) {
145 					kfree(kids, M_TEMP);
146 					return dev;
147 				}
148 
149 		}
150 		kfree(kids, M_TEMP);
151 	}
152 
153 	return 0;
154 }
155 
156 struct agp_gatt *
157 agp_alloc_gatt(device_t dev)
158 {
159 	u_int32_t apsize = AGP_GET_APERTURE(dev);
160 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
161 	struct agp_gatt *gatt;
162 
163 	if (bootverbose)
164 		device_printf(dev,
165 			      "allocating GATT for aperture of size %dM\n",
166 			      apsize / (1024*1024));
167 
168 	if (entries == 0) {
169 		device_printf(dev, "bad aperture size\n");
170 		return NULL;
171 	}
172 
173 	gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
174 	gatt->ag_entries = entries;
175 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
176 					M_WAITOK, 0, ~0, PAGE_SIZE, 0);
177 	if (!gatt->ag_virtual) {
178 		if (bootverbose)
179 			device_printf(dev, "contiguous allocation failed\n");
180 		kfree(gatt, M_AGP);
181 		return 0;
182 	}
183 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
184 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
185 	agp_flush_cache();
186 
187 	return gatt;
188 }
189 
190 void
191 agp_free_gatt(struct agp_gatt *gatt)
192 {
193 	contigfree(gatt->ag_virtual,
194 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
195 	kfree(gatt, M_AGP);
196 }
197 
198 static int agp_max[][2] = {
199 	{0,	0},
200 	{32,	4},
201 	{64,	28},
202 	{128,	96},
203 	{256,	204},
204 	{512,	440},
205 	{1024,	942},
206 	{2048,	1920},
207 	{4096,	3932}
208 };
209 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
210 
211 int
212 agp_generic_attach(device_t dev)
213 {
214 	struct agp_softc *sc = device_get_softc(dev);
215 	int rid, memsize, i;
216 
217 	/*
218 	 * Find and map the aperture.
219 	 */
220 	rid = AGP_APBASE;
221 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
222 					     0, ~0, 1, RF_ACTIVE);
223 	if (!sc->as_aperture)
224 		return ENOMEM;
225 
226 	/*
227 	 * Work out an upper bound for agp memory allocation. This
228 	 * uses a heurisitc table from the Linux driver.
229 	 */
230 	memsize = ptoa(Maxmem) >> 20;
231 	for (i = 0; i < agp_max_size; i++) {
232 		if (memsize <= agp_max[i][0])
233 			break;
234 	}
235 	if (i == agp_max_size) i = agp_max_size - 1;
236 	sc->as_maxmem = agp_max[i][1] << 20U;
237 
238 	/*
239 	 * The lock is used to prevent re-entry to
240 	 * agp_generic_bind_memory() since that function can sleep.
241 	 */
242 	lockinit(&sc->as_lock, "agplk", 0, 0);
243 
244 	/*
245 	 * Initialise stuff for the userland device.
246 	 */
247 	agp_devclass = devclass_find("agp");
248 	TAILQ_INIT(&sc->as_memory);
249 	sc->as_nextid = 1;
250 
251 	dev_ops_add(&agp_ops, -1, device_get_unit(dev));
252 	make_dev(&agp_ops, device_get_unit(dev), UID_ROOT, GID_WHEEL,
253 		  0600, "agpgart");
254 
255 	return 0;
256 }
257 
258 int
259 agp_generic_detach(device_t dev)
260 {
261 	struct agp_softc *sc = device_get_softc(dev);
262 
263 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
264 	agp_flush_cache();
265 	dev_ops_remove(&agp_ops, -1, device_get_unit(dev));
266 	return 0;
267 }
268 
269 /*
270  * This does the enable logic for v3, with the same topology
271  * restrictions as in place for v2 -- one bus, one device on the bus.
272  */
273 static int
274 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
275 {
276 	u_int32_t tstatus, mstatus;
277 	u_int32_t command;
278 	int rq, sba, fw, rate, arqsz, cal;
279 
280 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
281 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
282 
283 	/* Set RQ to the min of mode, tstatus and mstatus */
284 	rq = AGP_MODE_GET_RQ(mode);
285 	if (AGP_MODE_GET_RQ(tstatus) < rq)
286 		rq = AGP_MODE_GET_RQ(tstatus);
287 	if (AGP_MODE_GET_RQ(mstatus) < rq)
288 		rq = AGP_MODE_GET_RQ(mstatus);
289 
290 	/*
291 	 * ARQSZ - Set the value to the maximum one.
292 	 * Don't allow the mode register to override values.
293 	 */
294 	arqsz = AGP_MODE_GET_ARQSZ(mode);
295 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
296 		rq = AGP_MODE_GET_ARQSZ(tstatus);
297 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
298 		rq = AGP_MODE_GET_ARQSZ(mstatus);
299 
300 	/* Calibration cycle - don't allow override by mode register */
301 	cal = AGP_MODE_GET_CAL(tstatus);
302 	if (AGP_MODE_GET_CAL(mstatus) < cal)
303 		cal = AGP_MODE_GET_CAL(mstatus);
304 
305 	/* SBA must be supported for AGP v3. */
306 	sba = 1;
307 
308 	/* Set FW if all three support it. */
309 	fw = (AGP_MODE_GET_FW(tstatus)
310 	       & AGP_MODE_GET_FW(mstatus)
311 	       & AGP_MODE_GET_FW(mode));
312 
313 	/* Figure out the max rate */
314 	rate = (AGP_MODE_GET_RATE(tstatus)
315 		& AGP_MODE_GET_RATE(mstatus)
316 		& AGP_MODE_GET_RATE(mode));
317 	if (rate & AGP_MODE_V3_RATE_8x)
318 		rate = AGP_MODE_V3_RATE_8x;
319 	else
320 		rate = AGP_MODE_V3_RATE_4x;
321 	if (bootverbose)
322 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
323 
324 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
325 
326 	/* Construct the new mode word and tell the hardware */
327 	command = AGP_MODE_SET_RQ(0, rq);
328 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
329 	command = AGP_MODE_SET_CAL(command, cal);
330 	command = AGP_MODE_SET_SBA(command, sba);
331 	command = AGP_MODE_SET_FW(command, fw);
332 	command = AGP_MODE_SET_RATE(command, rate);
333 	command = AGP_MODE_SET_AGP(command, 1);
334 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
335 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
336 
337 	return 0;
338 }
339 
340 static int
341 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
342 {
343 	u_int32_t tstatus, mstatus;
344 	u_int32_t command;
345 	int rq, sba, fw, rate;
346 
347 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
348 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
349 
350 	/* Set RQ to the min of mode, tstatus and mstatus */
351 	rq = AGP_MODE_GET_RQ(mode);
352 	if (AGP_MODE_GET_RQ(tstatus) < rq)
353 		rq = AGP_MODE_GET_RQ(tstatus);
354 	if (AGP_MODE_GET_RQ(mstatus) < rq)
355 		rq = AGP_MODE_GET_RQ(mstatus);
356 
357 	/* Set SBA if all three can deal with SBA */
358 	sba = (AGP_MODE_GET_SBA(tstatus)
359 	       & AGP_MODE_GET_SBA(mstatus)
360 	       & AGP_MODE_GET_SBA(mode));
361 
362 	/* Similar for FW */
363 	fw = (AGP_MODE_GET_FW(tstatus)
364 	       & AGP_MODE_GET_FW(mstatus)
365 	       & AGP_MODE_GET_FW(mode));
366 
367 	/* Figure out the max rate */
368 	rate = (AGP_MODE_GET_RATE(tstatus)
369 		& AGP_MODE_GET_RATE(mstatus)
370 		& AGP_MODE_GET_RATE(mode));
371 	if (rate & AGP_MODE_V2_RATE_4x)
372 		rate = AGP_MODE_V2_RATE_4x;
373 	else if (rate & AGP_MODE_V2_RATE_2x)
374 		rate = AGP_MODE_V2_RATE_2x;
375 	else
376 		rate = AGP_MODE_V2_RATE_1x;
377 	if (bootverbose)
378 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
379 
380 	/* Construct the new mode word and tell the hardware */
381 	command = AGP_MODE_SET_RQ(0, rq);
382 	command = AGP_MODE_SET_SBA(command, sba);
383 	command = AGP_MODE_SET_FW(command, fw);
384 	command = AGP_MODE_SET_RATE(command, rate);
385 	command = AGP_MODE_SET_AGP(command, 1);
386 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
387 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
388 
389 	return 0;
390 }
391 
392 int
393 agp_generic_enable(device_t dev, u_int32_t mode)
394 {
395 	device_t mdev = agp_find_display();
396 	u_int32_t tstatus, mstatus;
397 
398 	if (!mdev) {
399 		AGP_DPF("can't find display\n");
400 		return ENXIO;
401 	}
402 
403 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
404 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
405 
406 	/*
407 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
408 	 * more variety in topology than v2, e.g. multiple AGP devices
409 	 * attached to one bridge, or multiple AGP bridges in one
410 	 * system.  This doesn't attempt to address those situations,
411 	 * but should work fine for a classic single AGP slot system
412 	 * with AGP v3.
413 	 */
414 	if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus))
415 		return (agp_v3_enable(dev, mdev, mode));
416 	else
417 		return (agp_v2_enable(dev, mdev, mode));
418 }
419 
420 struct agp_memory *
421 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
422 {
423 	struct agp_softc *sc = device_get_softc(dev);
424 	struct agp_memory *mem;
425 
426 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
427 		return 0;
428 
429 	if (sc->as_allocated + size > sc->as_maxmem)
430 		return 0;
431 
432 	if (type != 0) {
433 		kprintf("agp_generic_alloc_memory: unsupported type %d\n",
434 		       type);
435 		return 0;
436 	}
437 
438 	mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT);
439 	mem->am_id = sc->as_nextid++;
440 	mem->am_size = size;
441 	mem->am_type = 0;
442 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
443 	mem->am_physical = 0;
444 	mem->am_offset = 0;
445 	mem->am_is_bound = 0;
446 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
447 	sc->as_allocated += size;
448 
449 	return mem;
450 }
451 
452 int
453 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
454 {
455 	struct agp_softc *sc = device_get_softc(dev);
456 
457 	if (mem->am_is_bound)
458 		return EBUSY;
459 
460 	sc->as_allocated -= mem->am_size;
461 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
462 	vm_object_deallocate(mem->am_obj);
463 	kfree(mem, M_AGP);
464 	return 0;
465 }
466 
467 int
468 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
469 			vm_offset_t offset)
470 {
471 	struct agp_softc *sc = device_get_softc(dev);
472 	vm_offset_t i, j, k;
473 	vm_page_t m;
474 	int error;
475 
476 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
477 
478 	if (mem->am_is_bound) {
479 		device_printf(dev, "memory already bound\n");
480 		lockmgr(&sc->as_lock, LK_RELEASE);
481 		return EINVAL;
482 	}
483 
484 	if (offset < 0
485 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
486 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
487 		device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
488 			      (int) offset, (int)mem->am_size,
489 			      (int)AGP_GET_APERTURE(dev));
490 		kprintf("Check BIOS's aperature size vs X\n");
491 		lockmgr(&sc->as_lock, LK_RELEASE);
492 		return EINVAL;
493 	}
494 
495 	/*
496 	 * Bind the individual pages and flush the chipset's
497 	 * TLB.
498 	 */
499 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
500 		/*
501 		 * Find a page from the object and wire it
502 		 * down. This page will be mapped using one or more
503 		 * entries in the GATT (assuming that PAGE_SIZE >=
504 		 * AGP_PAGE_SIZE. If this is the first call to bind,
505 		 * the pages will be allocated and zeroed.
506 		 */
507 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
508 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
509 		if ((m->flags & PG_ZERO) == 0)
510 			vm_page_zero_fill(m);
511 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
512 		vm_page_wire(m);
513 
514 		/*
515 		 * Install entries in the GATT, making sure that if
516 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
517 		 * aligned to PAGE_SIZE, we don't modify too many GATT
518 		 * entries.
519 		 */
520 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
521 		     j += AGP_PAGE_SIZE) {
522 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
523 			AGP_DPF("binding offset %#x to pa %#x\n",
524 				offset + i + j, pa);
525 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
526 			if (error) {
527 				/*
528 				 * Bail out. Reverse all the mappings
529 				 * and unwire the pages.
530 				 */
531 				vm_page_wakeup(m);
532 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
533 					AGP_UNBIND_PAGE(dev, offset + k);
534 				for (k = 0; k <= i; k += PAGE_SIZE) {
535 					m = vm_page_lookup(mem->am_obj,
536 							   OFF_TO_IDX(k));
537 					vm_page_unwire(m, 0);
538 				}
539 				lockmgr(&sc->as_lock, LK_RELEASE);
540 				return error;
541 			}
542 		}
543 		vm_page_wakeup(m);
544 	}
545 
546 	/*
547 	 * Flush the cpu cache since we are providing a new mapping
548 	 * for these pages.
549 	 */
550 	agp_flush_cache();
551 
552 	/*
553 	 * Make sure the chipset gets the new mappings.
554 	 */
555 	AGP_FLUSH_TLB(dev);
556 
557 	mem->am_offset = offset;
558 	mem->am_is_bound = 1;
559 
560 	lockmgr(&sc->as_lock, LK_RELEASE);
561 
562 	return 0;
563 }
564 
565 int
566 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
567 {
568 	struct agp_softc *sc = device_get_softc(dev);
569 	vm_page_t m;
570 	int i;
571 
572 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
573 
574 	if (!mem->am_is_bound) {
575 		device_printf(dev, "memory is not bound\n");
576 		lockmgr(&sc->as_lock, LK_RELEASE);
577 		return EINVAL;
578 	}
579 
580 
581 	/*
582 	 * Unbind the individual pages and flush the chipset's
583 	 * TLB. Unwire the pages so they can be swapped.
584 	 */
585 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
586 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
587 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
588 		m = vm_page_lookup(mem->am_obj, atop(i));
589 		vm_page_unwire(m, 0);
590 	}
591 
592 	agp_flush_cache();
593 	AGP_FLUSH_TLB(dev);
594 
595 	mem->am_offset = 0;
596 	mem->am_is_bound = 0;
597 
598 	lockmgr(&sc->as_lock, LK_RELEASE);
599 
600 	return 0;
601 }
602 
603 /* Helper functions for implementing user/kernel api */
604 
605 static int
606 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
607 {
608 	struct agp_softc *sc = device_get_softc(dev);
609 
610 	if (sc->as_state != AGP_ACQUIRE_FREE)
611 		return EBUSY;
612 	sc->as_state = state;
613 
614 	return 0;
615 }
616 
617 static int
618 agp_release_helper(device_t dev, enum agp_acquire_state state)
619 {
620 	struct agp_softc *sc = device_get_softc(dev);
621 
622 	if (sc->as_state == AGP_ACQUIRE_FREE)
623 		return 0;
624 
625 	if (sc->as_state != state)
626 		return EBUSY;
627 
628 	sc->as_state = AGP_ACQUIRE_FREE;
629 	return 0;
630 }
631 
632 static struct agp_memory *
633 agp_find_memory(device_t dev, int id)
634 {
635 	struct agp_softc *sc = device_get_softc(dev);
636 	struct agp_memory *mem;
637 
638 	AGP_DPF("searching for memory block %d\n", id);
639 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
640 		AGP_DPF("considering memory block %d\n", mem->am_id);
641 		if (mem->am_id == id)
642 			return mem;
643 	}
644 	return 0;
645 }
646 
647 /* Implementation of the userland ioctl api */
648 
649 static int
650 agp_info_user(device_t dev, agp_info *info)
651 {
652 	struct agp_softc *sc = device_get_softc(dev);
653 
654 	bzero(info, sizeof *info);
655 	info->bridge_id = pci_get_devid(dev);
656 	info->agp_mode =
657 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
658 	info->aper_base = rman_get_start(sc->as_aperture);
659 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
660 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
661 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
662 
663 	return 0;
664 }
665 
666 static int
667 agp_setup_user(device_t dev, agp_setup *setup)
668 {
669 	return AGP_ENABLE(dev, setup->agp_mode);
670 }
671 
672 static int
673 agp_allocate_user(device_t dev, agp_allocate *alloc)
674 {
675 	struct agp_memory *mem;
676 
677 	mem = AGP_ALLOC_MEMORY(dev,
678 			       alloc->type,
679 			       alloc->pg_count << AGP_PAGE_SHIFT);
680 	if (mem) {
681 		alloc->key = mem->am_id;
682 		alloc->physical = mem->am_physical;
683 		return 0;
684 	} else {
685 		return ENOMEM;
686 	}
687 }
688 
689 static int
690 agp_deallocate_user(device_t dev, int id)
691 {
692 	struct agp_memory *mem = agp_find_memory(dev, id);
693 
694 	if (mem) {
695 		AGP_FREE_MEMORY(dev, mem);
696 		return 0;
697 	} else {
698 		return ENOENT;
699 	}
700 }
701 
702 static int
703 agp_bind_user(device_t dev, agp_bind *bind)
704 {
705 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
706 
707 	if (!mem)
708 		return ENOENT;
709 
710 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
711 }
712 
713 static int
714 agp_unbind_user(device_t dev, agp_unbind *unbind)
715 {
716 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
717 
718 	if (!mem)
719 		return ENOENT;
720 
721 	return AGP_UNBIND_MEMORY(dev, mem);
722 }
723 
724 static int
725 agp_open(struct dev_open_args *ap)
726 {
727 	cdev_t kdev = ap->a_head.a_dev;
728 	device_t dev = KDEV2DEV(kdev);
729 	struct agp_softc *sc = device_get_softc(dev);
730 
731 	if (!sc->as_isopen) {
732 		sc->as_isopen = 1;
733 		device_busy(dev);
734 	}
735 
736 	return 0;
737 }
738 
739 static int
740 agp_close(struct dev_close_args *ap)
741 {
742 	cdev_t kdev = ap->a_head.a_dev;
743 	device_t dev = KDEV2DEV(kdev);
744 	struct agp_softc *sc = device_get_softc(dev);
745 	struct agp_memory *mem;
746 
747 	/*
748 	 * Clear the GATT and force release on last close
749 	 */
750 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
751 		if (mem->am_is_bound)
752 			AGP_UNBIND_MEMORY(dev, mem);
753 		AGP_FREE_MEMORY(dev, mem);
754 	}
755 	if (sc->as_state == AGP_ACQUIRE_USER)
756 		agp_release_helper(dev, AGP_ACQUIRE_USER);
757 	sc->as_isopen = 0;
758 	device_unbusy(dev);
759 
760 	return 0;
761 }
762 
763 static int
764 agp_ioctl(struct dev_ioctl_args *ap)
765 {
766 	cdev_t kdev = ap->a_head.a_dev;
767 	device_t dev = KDEV2DEV(kdev);
768 
769 	switch (ap->a_cmd) {
770 	case AGPIOC_INFO:
771 		return agp_info_user(dev, (agp_info *)ap->a_data);
772 
773 	case AGPIOC_ACQUIRE:
774 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
775 
776 	case AGPIOC_RELEASE:
777 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
778 
779 	case AGPIOC_SETUP:
780 		return agp_setup_user(dev, (agp_setup *)ap->a_data);
781 
782 	case AGPIOC_ALLOCATE:
783 		return agp_allocate_user(dev, (agp_allocate *)ap->a_data);
784 
785 	case AGPIOC_DEALLOCATE:
786 		return agp_deallocate_user(dev, *(int *)ap->a_data);
787 
788 	case AGPIOC_BIND:
789 		return agp_bind_user(dev, (agp_bind *)ap->a_data);
790 
791 	case AGPIOC_UNBIND:
792 		return agp_unbind_user(dev, (agp_unbind *)ap->a_data);
793 
794 	}
795 
796 	return EINVAL;
797 }
798 
799 static int
800 agp_mmap(struct dev_mmap_args *ap)
801 {
802 	cdev_t kdev = ap->a_head.a_dev;
803 	device_t dev = KDEV2DEV(kdev);
804 	struct agp_softc *sc = device_get_softc(dev);
805 
806 	if (ap->a_offset > AGP_GET_APERTURE(dev))
807 		return EINVAL;
808 	ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset);
809 	return(0);
810 }
811 
812 /* Implementation of the kernel api */
813 
814 device_t
815 agp_find_device(void)
816 {
817 	if (!agp_devclass)
818 		return 0;
819 	return devclass_get_device(agp_devclass, 0);
820 }
821 
822 enum agp_acquire_state
823 agp_state(device_t dev)
824 {
825 	struct agp_softc *sc = device_get_softc(dev);
826 	return sc->as_state;
827 }
828 
829 void
830 agp_get_info(device_t dev, struct agp_info *info)
831 {
832 	struct agp_softc *sc = device_get_softc(dev);
833 
834 	info->ai_mode =
835 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
836 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
837 	info->ai_aperture_size = (rman_get_end(sc->as_aperture)
838 				  - rman_get_start(sc->as_aperture)) + 1;
839 	info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
840 	info->ai_memory_allowed = sc->as_maxmem;
841 	info->ai_memory_used = sc->as_allocated;
842 }
843 
844 int
845 agp_acquire(device_t dev)
846 {
847 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
848 }
849 
850 int
851 agp_release(device_t dev)
852 {
853 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
854 }
855 
856 int
857 agp_enable(device_t dev, u_int32_t mode)
858 {
859 	return AGP_ENABLE(dev, mode);
860 }
861 
862 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
863 {
864 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
865 }
866 
867 void agp_free_memory(device_t dev, void *handle)
868 {
869 	struct agp_memory *mem = (struct agp_memory *) handle;
870 	AGP_FREE_MEMORY(dev, mem);
871 }
872 
873 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
874 {
875 	struct agp_memory *mem = (struct agp_memory *) handle;
876 	return AGP_BIND_MEMORY(dev, mem, offset);
877 }
878 
879 int agp_unbind_memory(device_t dev, void *handle)
880 {
881 	struct agp_memory *mem = (struct agp_memory *) handle;
882 	return AGP_UNBIND_MEMORY(dev, mem);
883 }
884 
885 void agp_memory_info(device_t dev, void *handle, struct
886 		     agp_memory_info *mi)
887 {
888 	struct agp_memory *mem = (struct agp_memory *) handle;
889 
890 	mi->ami_size = mem->am_size;
891 	mi->ami_physical = mem->am_physical;
892 	mi->ami_offset = mem->am_offset;
893 	mi->ami_is_bound = mem->am_is_bound;
894 }
895