xref: /dragonfly/sys/dev/agp/agp.c (revision 2cd2d2b5)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD: src/sys/pci/agp.c,v 1.3.2.4 2002/08/11 19:58:12 alc Exp $
27  *	$DragonFly: src/sys/dev/agp/agp.c,v 1.14 2004/07/29 00:48:41 dillon Exp $
28  */
29 
30 #include "opt_bus.h"
31 #include "opt_pci.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/agpio.h>
41 #include <sys/lock.h>
42 #include <sys/proc.h>
43 
44 #include <bus/pci/pcivar.h>
45 #include <bus/pci/pcireg.h>
46 #include "agppriv.h"
47 #include "agpvar.h"
48 #include "agpreg.h"
49 
50 #include <vm/vm.h>
51 #include <vm/vm_object.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_pageout.h>
54 #include <vm/pmap.h>
55 
56 #include <machine/md_var.h>
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 #include <sys/rman.h>
60 
61 MODULE_VERSION(agp, 1);
62 
63 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
64 
65 #define CDEV_MAJOR	148
66 				/* agp_drv.c */
67 static d_open_t agp_open;
68 static d_close_t agp_close;
69 static d_ioctl_t agp_ioctl;
70 static d_mmap_t agp_mmap;
71 
72 static struct cdevsw agp_cdevsw = {
73 	/* name */	"agp",
74 	/* maj */	CDEV_MAJOR,
75 	/* flags */	D_TTY,
76 	/* port */	NULL,
77 	/* clone */	NULL,
78 
79 	/* open */	agp_open,
80 	/* close */	agp_close,
81 	/* read */	noread,
82 	/* write */	nowrite,
83 	/* ioctl */	agp_ioctl,
84 	/* poll */	nopoll,
85 	/* mmap */	agp_mmap,
86 	/* strategy */	nostrategy,
87 	/* dump */	nodump,
88 	/* psize */	nopsize
89 };
90 
91 static devclass_t agp_devclass;
92 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
93 
94 /* Helper functions for implementing chipset mini drivers. */
95 
96 void
97 agp_flush_cache()
98 {
99 #ifdef __i386__
100 	wbinvd();
101 #endif
102 }
103 
104 u_int8_t
105 agp_find_caps(device_t dev)
106 {
107 	u_int32_t status;
108 	u_int8_t ptr, next;
109 
110 	/*
111 	 * Check the CAP_LIST bit of the PCI status register first.
112 	 */
113 	status = pci_read_config(dev, PCIR_STATUS, 2);
114 	if (!(status & 0x10))
115 		return 0;
116 
117 	/*
118 	 * Traverse the capabilities list.
119 	 */
120 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
121 	     ptr != 0;
122 	     ptr = next) {
123 		u_int32_t capid = pci_read_config(dev, ptr, 4);
124 		next = AGP_CAPID_GET_NEXT_PTR(capid);
125 
126 		/*
127 		 * If this capability entry ID is 2, then we are done.
128 		 */
129 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
130 			return ptr;
131 	}
132 
133 	return 0;
134 }
135 
136 /*
137  * Find an AGP display device (if any).
138  */
139 static device_t
140 agp_find_display(void)
141 {
142 	devclass_t pci = devclass_find("pci");
143 	device_t bus, dev = 0;
144 	device_t *kids;
145 	int busnum, numkids, i;
146 
147 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
148 		bus = devclass_get_device(pci, busnum);
149 		if (!bus)
150 			continue;
151 		device_get_children(bus, &kids, &numkids);
152 		for (i = 0; i < numkids; i++) {
153 			dev = kids[i];
154 			if (pci_get_class(dev) == PCIC_DISPLAY
155 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
156 				if (agp_find_caps(dev)) {
157 					free(kids, M_TEMP);
158 					return dev;
159 				}
160 
161 		}
162 		free(kids, M_TEMP);
163 	}
164 
165 	return 0;
166 }
167 
168 struct agp_gatt *
169 agp_alloc_gatt(device_t dev)
170 {
171 	u_int32_t apsize = AGP_GET_APERTURE(dev);
172 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
173 	struct agp_gatt *gatt;
174 
175 	if (bootverbose)
176 		device_printf(dev,
177 			      "allocating GATT for aperture of size %dM\n",
178 			      apsize / (1024*1024));
179 
180 	if (entries == 0) {
181 		device_printf(dev, "bad aperture size\n");
182 		return NULL;
183 	}
184 
185 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
186 	gatt->ag_entries = entries;
187 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
188 					M_WAITOK, 0, ~0, PAGE_SIZE, 0);
189 	if (!gatt->ag_virtual) {
190 		if (bootverbose)
191 			device_printf(dev, "contiguous allocation failed\n");
192 		free(gatt, M_AGP);
193 		return 0;
194 	}
195 	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
196 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
197 	agp_flush_cache();
198 
199 	return gatt;
200 }
201 
202 void
203 agp_free_gatt(struct agp_gatt *gatt)
204 {
205 	contigfree(gatt->ag_virtual,
206 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
207 	free(gatt, M_AGP);
208 }
209 
210 static int agp_max[][2] = {
211 	{0,	0},
212 	{32,	4},
213 	{64,	28},
214 	{128,	96},
215 	{256,	204},
216 	{512,	440},
217 	{1024,	942},
218 	{2048,	1920},
219 	{4096,	3932}
220 };
221 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
222 
223 int
224 agp_generic_attach(device_t dev)
225 {
226 	struct agp_softc *sc = device_get_softc(dev);
227 	int rid, memsize, i;
228 
229 	/*
230 	 * Find and map the aperture.
231 	 */
232 	rid = AGP_APBASE;
233 	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
234 					     0, ~0, 1, RF_ACTIVE);
235 	if (!sc->as_aperture)
236 		return ENOMEM;
237 
238 	/*
239 	 * Work out an upper bound for agp memory allocation. This
240 	 * uses a heurisitc table from the Linux driver.
241 	 */
242 	memsize = ptoa(Maxmem) >> 20;
243 	for (i = 0; i < agp_max_size; i++) {
244 		if (memsize <= agp_max[i][0])
245 			break;
246 	}
247 	if (i == agp_max_size) i = agp_max_size - 1;
248 	sc->as_maxmem = agp_max[i][1] << 20U;
249 
250 	/*
251 	 * The lock is used to prevent re-entry to
252 	 * agp_generic_bind_memory() since that function can sleep.
253 	 */
254 	lockinit(&sc->as_lock, PCATCH, "agplk", 0, 0);
255 
256 	/*
257 	 * Initialise stuff for the userland device.
258 	 */
259 	agp_devclass = devclass_find("agp");
260 	TAILQ_INIT(&sc->as_memory);
261 	sc->as_nextid = 1;
262 
263 	cdevsw_add(&agp_cdevsw, -1, device_get_unit(dev));
264 	make_dev(&agp_cdevsw, device_get_unit(dev), UID_ROOT, GID_WHEEL,
265 		  0600, "agpgart");
266 
267 	return 0;
268 }
269 
270 int
271 agp_generic_detach(device_t dev)
272 {
273 	struct agp_softc *sc = device_get_softc(dev);
274 	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
275 	lockmgr(&sc->as_lock, LK_DRAIN, NULL, curthread); /* XXX */
276 	agp_flush_cache();
277 	cdevsw_remove(&agp_cdevsw, -1, device_get_unit(dev));
278 	return 0;
279 }
280 
281 /*
282  * This does the enable logic for v3, with the same topology
283  * restrictions as in place for v2 -- one bus, one device on the bus.
284  */
285 static int
286 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
287 {
288 	u_int32_t tstatus, mstatus;
289 	u_int32_t command;
290 	int rq, sba, fw, rate, arqsz, cal;
291 
292 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
293 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
294 
295 	/* Set RQ to the min of mode, tstatus and mstatus */
296 	rq = AGP_MODE_GET_RQ(mode);
297 	if (AGP_MODE_GET_RQ(tstatus) < rq)
298 		rq = AGP_MODE_GET_RQ(tstatus);
299 	if (AGP_MODE_GET_RQ(mstatus) < rq)
300 		rq = AGP_MODE_GET_RQ(mstatus);
301 
302 	/*
303 	 * ARQSZ - Set the value to the maximum one.
304 	 * Don't allow the mode register to override values.
305 	 */
306 	arqsz = AGP_MODE_GET_ARQSZ(mode);
307 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
308 		rq = AGP_MODE_GET_ARQSZ(tstatus);
309 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
310 		rq = AGP_MODE_GET_ARQSZ(mstatus);
311 
312 	/* Calibration cycle - don't allow override by mode register */
313 	cal = AGP_MODE_GET_CAL(tstatus);
314 	if (AGP_MODE_GET_CAL(mstatus) < cal)
315 		cal = AGP_MODE_GET_CAL(mstatus);
316 
317 	/* SBA must be supported for AGP v3. */
318 	sba = 1;
319 
320 	/* Set FW if all three support it. */
321 	fw = (AGP_MODE_GET_FW(tstatus)
322 	       & AGP_MODE_GET_FW(mstatus)
323 	       & AGP_MODE_GET_FW(mode));
324 
325 	/* Figure out the max rate */
326 	rate = (AGP_MODE_GET_RATE(tstatus)
327 		& AGP_MODE_GET_RATE(mstatus)
328 		& AGP_MODE_GET_RATE(mode));
329 	if (rate & AGP_MODE_V3_RATE_8x)
330 		rate = AGP_MODE_V3_RATE_8x;
331 	else
332 		rate = AGP_MODE_V3_RATE_4x;
333 	if (bootverbose)
334 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
335 
336 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
337 
338 	/* Construct the new mode word and tell the hardware */
339 	command = AGP_MODE_SET_RQ(0, rq);
340 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
341 	command = AGP_MODE_SET_CAL(command, cal);
342 	command = AGP_MODE_SET_SBA(command, sba);
343 	command = AGP_MODE_SET_FW(command, fw);
344 	command = AGP_MODE_SET_RATE(command, rate);
345 	command = AGP_MODE_SET_AGP(command, 1);
346 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
347 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
348 
349 	return 0;
350 }
351 
352 static int
353 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
354 {
355 	u_int32_t tstatus, mstatus;
356 	u_int32_t command;
357 	int rq, sba, fw, rate;
358 
359 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
360 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
361 
362 	/* Set RQ to the min of mode, tstatus and mstatus */
363 	rq = AGP_MODE_GET_RQ(mode);
364 	if (AGP_MODE_GET_RQ(tstatus) < rq)
365 		rq = AGP_MODE_GET_RQ(tstatus);
366 	if (AGP_MODE_GET_RQ(mstatus) < rq)
367 		rq = AGP_MODE_GET_RQ(mstatus);
368 
369 	/* Set SBA if all three can deal with SBA */
370 	sba = (AGP_MODE_GET_SBA(tstatus)
371 	       & AGP_MODE_GET_SBA(mstatus)
372 	       & AGP_MODE_GET_SBA(mode));
373 
374 	/* Similar for FW */
375 	fw = (AGP_MODE_GET_FW(tstatus)
376 	       & AGP_MODE_GET_FW(mstatus)
377 	       & AGP_MODE_GET_FW(mode));
378 
379 	/* Figure out the max rate */
380 	rate = (AGP_MODE_GET_RATE(tstatus)
381 		& AGP_MODE_GET_RATE(mstatus)
382 		& AGP_MODE_GET_RATE(mode));
383 	if (rate & AGP_MODE_V2_RATE_4x)
384 		rate = AGP_MODE_V2_RATE_4x;
385 	else if (rate & AGP_MODE_V2_RATE_2x)
386 		rate = AGP_MODE_V2_RATE_2x;
387 	else
388 		rate = AGP_MODE_V2_RATE_1x;
389 	if (bootverbose)
390 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
391 
392 	/* Construct the new mode word and tell the hardware */
393 	command = AGP_MODE_SET_RQ(0, rq);
394 	command = AGP_MODE_SET_SBA(command, sba);
395 	command = AGP_MODE_SET_FW(command, fw);
396 	command = AGP_MODE_SET_RATE(command, rate);
397 	command = AGP_MODE_SET_AGP(command, 1);
398 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
399 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
400 
401 	return 0;
402 }
403 
404 int
405 agp_generic_enable(device_t dev, u_int32_t mode)
406 {
407 	device_t mdev = agp_find_display();
408 	u_int32_t tstatus, mstatus;
409 
410 	if (!mdev) {
411 		AGP_DPF("can't find display\n");
412 		return ENXIO;
413 	}
414 
415 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
416 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
417 
418 	/*
419 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
420 	 * more variety in topology than v2, e.g. multiple AGP devices
421 	 * attached to one bridge, or multiple AGP bridges in one
422 	 * system.  This doesn't attempt to address those situations,
423 	 * but should work fine for a classic single AGP slot system
424 	 * with AGP v3.
425 	 */
426 	if (AGP_MODE_GET_MODE_3(tstatus) && AGP_MODE_GET_MODE_3(mstatus))
427 		return (agp_v3_enable(dev, mdev, mode));
428 	else
429 		return (agp_v2_enable(dev, mdev, mode));
430 }
431 
432 struct agp_memory *
433 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
434 {
435 	struct agp_softc *sc = device_get_softc(dev);
436 	struct agp_memory *mem;
437 
438 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
439 		return 0;
440 
441 	if (sc->as_allocated + size > sc->as_maxmem)
442 		return 0;
443 
444 	if (type != 0) {
445 		printf("agp_generic_alloc_memory: unsupported type %d\n",
446 		       type);
447 		return 0;
448 	}
449 
450 	mem = malloc(sizeof *mem, M_AGP, M_INTWAIT);
451 	mem->am_id = sc->as_nextid++;
452 	mem->am_size = size;
453 	mem->am_type = 0;
454 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
455 	mem->am_physical = 0;
456 	mem->am_offset = 0;
457 	mem->am_is_bound = 0;
458 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
459 	sc->as_allocated += size;
460 
461 	return mem;
462 }
463 
464 int
465 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
466 {
467 	struct agp_softc *sc = device_get_softc(dev);
468 
469 	if (mem->am_is_bound)
470 		return EBUSY;
471 
472 	sc->as_allocated -= mem->am_size;
473 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
474 	vm_object_deallocate(mem->am_obj);
475 	free(mem, M_AGP);
476 	return 0;
477 }
478 
479 int
480 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
481 			vm_offset_t offset)
482 {
483 	struct agp_softc *sc = device_get_softc(dev);
484 	vm_offset_t i, j, k;
485 	vm_page_t m;
486 	int error;
487 
488 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, NULL, curthread); /* XXX */
489 
490 	if (mem->am_is_bound) {
491 		device_printf(dev, "memory already bound\n");
492 		return EINVAL;
493 	}
494 
495 	if (offset < 0
496 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
497 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
498 		device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
499 			      (int) offset, (int)mem->am_size,
500 			      (int)AGP_GET_APERTURE(dev));
501 		printf("Check BIOS's aperature size vs X\n");
502 		return EINVAL;
503 	}
504 
505 	/*
506 	 * Bind the individual pages and flush the chipset's
507 	 * TLB.
508 	 *
509 	 * XXX Presumably, this needs to be the pci address on alpha
510 	 * (i.e. use alpha_XXX_dmamap()). I don't have access to any
511 	 * alpha AGP hardware to check.
512 	 */
513 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
514 		/*
515 		 * Find a page from the object and wire it
516 		 * down. This page will be mapped using one or more
517 		 * entries in the GATT (assuming that PAGE_SIZE >=
518 		 * AGP_PAGE_SIZE. If this is the first call to bind,
519 		 * the pages will be allocated and zeroed.
520 		 */
521 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
522 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
523 		if ((m->flags & PG_ZERO) == 0)
524 			vm_page_zero_fill(m);
525 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
526 		vm_page_wire(m);
527 
528 		/*
529 		 * Install entries in the GATT, making sure that if
530 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
531 		 * aligned to PAGE_SIZE, we don't modify too many GATT
532 		 * entries.
533 		 */
534 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
535 		     j += AGP_PAGE_SIZE) {
536 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
537 			AGP_DPF("binding offset %#x to pa %#x\n",
538 				offset + i + j, pa);
539 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
540 			if (error) {
541 				/*
542 				 * Bail out. Reverse all the mappings
543 				 * and unwire the pages.
544 				 */
545 				vm_page_wakeup(m);
546 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
547 					AGP_UNBIND_PAGE(dev, offset + k);
548 				for (k = 0; k <= i; k += PAGE_SIZE) {
549 					m = vm_page_lookup(mem->am_obj,
550 							   OFF_TO_IDX(k));
551 					vm_page_unwire(m, 0);
552 				}
553 				lockmgr(&sc->as_lock, LK_RELEASE, NULL, curthread); /* XXX */
554 				return error;
555 			}
556 		}
557 		vm_page_wakeup(m);
558 	}
559 
560 	/*
561 	 * Flush the cpu cache since we are providing a new mapping
562 	 * for these pages.
563 	 */
564 	agp_flush_cache();
565 
566 	/*
567 	 * Make sure the chipset gets the new mappings.
568 	 */
569 	AGP_FLUSH_TLB(dev);
570 
571 	mem->am_offset = offset;
572 	mem->am_is_bound = 1;
573 
574 	lockmgr(&sc->as_lock, LK_RELEASE, NULL, curthread); /* XXX */
575 
576 	return 0;
577 }
578 
579 int
580 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
581 {
582 	struct agp_softc *sc = device_get_softc(dev);
583 	vm_page_t m;
584 	int i;
585 
586 	lockmgr(&sc->as_lock, LK_EXCLUSIVE, NULL, curthread); /* XXX */
587 
588 	if (!mem->am_is_bound) {
589 		device_printf(dev, "memory is not bound\n");
590 		return EINVAL;
591 	}
592 
593 
594 	/*
595 	 * Unbind the individual pages and flush the chipset's
596 	 * TLB. Unwire the pages so they can be swapped.
597 	 */
598 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
599 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
600 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
601 		m = vm_page_lookup(mem->am_obj, atop(i));
602 		vm_page_unwire(m, 0);
603 	}
604 
605 	agp_flush_cache();
606 	AGP_FLUSH_TLB(dev);
607 
608 	mem->am_offset = 0;
609 	mem->am_is_bound = 0;
610 
611 	lockmgr(&sc->as_lock, LK_RELEASE, NULL, curthread); /* XXX */
612 
613 	return 0;
614 }
615 
616 /* Helper functions for implementing user/kernel api */
617 
618 static int
619 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
620 {
621 	struct agp_softc *sc = device_get_softc(dev);
622 
623 	if (sc->as_state != AGP_ACQUIRE_FREE)
624 		return EBUSY;
625 	sc->as_state = state;
626 
627 	return 0;
628 }
629 
630 static int
631 agp_release_helper(device_t dev, enum agp_acquire_state state)
632 {
633 	struct agp_softc *sc = device_get_softc(dev);
634 
635 	if (sc->as_state == AGP_ACQUIRE_FREE)
636 		return 0;
637 
638 	if (sc->as_state != state)
639 		return EBUSY;
640 
641 	sc->as_state = AGP_ACQUIRE_FREE;
642 	return 0;
643 }
644 
645 static struct agp_memory *
646 agp_find_memory(device_t dev, int id)
647 {
648 	struct agp_softc *sc = device_get_softc(dev);
649 	struct agp_memory *mem;
650 
651 	AGP_DPF("searching for memory block %d\n", id);
652 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
653 		AGP_DPF("considering memory block %d\n", mem->am_id);
654 		if (mem->am_id == id)
655 			return mem;
656 	}
657 	return 0;
658 }
659 
660 /* Implementation of the userland ioctl api */
661 
662 static int
663 agp_info_user(device_t dev, agp_info *info)
664 {
665 	struct agp_softc *sc = device_get_softc(dev);
666 
667 	bzero(info, sizeof *info);
668 	info->bridge_id = pci_get_devid(dev);
669 	info->agp_mode =
670 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
671 	info->aper_base = rman_get_start(sc->as_aperture);
672 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
673 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
674 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
675 
676 	return 0;
677 }
678 
679 static int
680 agp_setup_user(device_t dev, agp_setup *setup)
681 {
682 	return AGP_ENABLE(dev, setup->agp_mode);
683 }
684 
685 static int
686 agp_allocate_user(device_t dev, agp_allocate *alloc)
687 {
688 	struct agp_memory *mem;
689 
690 	mem = AGP_ALLOC_MEMORY(dev,
691 			       alloc->type,
692 			       alloc->pg_count << AGP_PAGE_SHIFT);
693 	if (mem) {
694 		alloc->key = mem->am_id;
695 		alloc->physical = mem->am_physical;
696 		return 0;
697 	} else {
698 		return ENOMEM;
699 	}
700 }
701 
702 static int
703 agp_deallocate_user(device_t dev, int id)
704 {
705 	struct agp_memory *mem = agp_find_memory(dev, id);;
706 
707 	if (mem) {
708 		AGP_FREE_MEMORY(dev, mem);
709 		return 0;
710 	} else {
711 		return ENOENT;
712 	}
713 }
714 
715 static int
716 agp_bind_user(device_t dev, agp_bind *bind)
717 {
718 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
719 
720 	if (!mem)
721 		return ENOENT;
722 
723 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
724 }
725 
726 static int
727 agp_unbind_user(device_t dev, agp_unbind *unbind)
728 {
729 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
730 
731 	if (!mem)
732 		return ENOENT;
733 
734 	return AGP_UNBIND_MEMORY(dev, mem);
735 }
736 
737 static int
738 agp_open(dev_t kdev, int oflags, int devtype, struct thread *td)
739 {
740 	device_t dev = KDEV2DEV(kdev);
741 	struct agp_softc *sc = device_get_softc(dev);
742 
743 	if (!sc->as_isopen) {
744 		sc->as_isopen = 1;
745 		device_busy(dev);
746 	}
747 
748 	return 0;
749 }
750 
751 static int
752 agp_close(dev_t kdev, int fflag, int devtype, struct thread *td)
753 {
754 	device_t dev = KDEV2DEV(kdev);
755 	struct agp_softc *sc = device_get_softc(dev);
756 	struct agp_memory *mem;
757 
758 	/*
759 	 * Clear the GATT and force release on last close
760 	 */
761 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
762 		if (mem->am_is_bound)
763 			AGP_UNBIND_MEMORY(dev, mem);
764 		AGP_FREE_MEMORY(dev, mem);
765 	}
766 	if (sc->as_state == AGP_ACQUIRE_USER)
767 		agp_release_helper(dev, AGP_ACQUIRE_USER);
768 	sc->as_isopen = 0;
769 	device_unbusy(dev);
770 
771 	return 0;
772 }
773 
774 static int
775 agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
776 {
777 	device_t dev = KDEV2DEV(kdev);
778 
779 	switch (cmd) {
780 	case AGPIOC_INFO:
781 		return agp_info_user(dev, (agp_info *) data);
782 
783 	case AGPIOC_ACQUIRE:
784 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
785 
786 	case AGPIOC_RELEASE:
787 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
788 
789 	case AGPIOC_SETUP:
790 		return agp_setup_user(dev, (agp_setup *)data);
791 
792 	case AGPIOC_ALLOCATE:
793 		return agp_allocate_user(dev, (agp_allocate *)data);
794 
795 	case AGPIOC_DEALLOCATE:
796 		return agp_deallocate_user(dev, *(int *) data);
797 
798 	case AGPIOC_BIND:
799 		return agp_bind_user(dev, (agp_bind *)data);
800 
801 	case AGPIOC_UNBIND:
802 		return agp_unbind_user(dev, (agp_unbind *)data);
803 
804 	}
805 
806 	return EINVAL;
807 }
808 
809 static int
810 agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
811 {
812 	device_t dev = KDEV2DEV(kdev);
813 	struct agp_softc *sc = device_get_softc(dev);
814 
815 	if (offset > AGP_GET_APERTURE(dev))
816 		return -1;
817 	return atop(rman_get_start(sc->as_aperture) + offset);
818 }
819 
820 /* Implementation of the kernel api */
821 
822 device_t
823 agp_find_device()
824 {
825 	if (!agp_devclass)
826 		return 0;
827 	return devclass_get_device(agp_devclass, 0);
828 }
829 
830 enum agp_acquire_state
831 agp_state(device_t dev)
832 {
833 	struct agp_softc *sc = device_get_softc(dev);
834 	return sc->as_state;
835 }
836 
837 void
838 agp_get_info(device_t dev, struct agp_info *info)
839 {
840 	struct agp_softc *sc = device_get_softc(dev);
841 
842 	info->ai_mode =
843 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
844 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
845 	info->ai_aperture_size = (rman_get_end(sc->as_aperture)
846 				  - rman_get_start(sc->as_aperture)) + 1;
847 	info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
848 	info->ai_memory_allowed = sc->as_maxmem;
849 	info->ai_memory_used = sc->as_allocated;
850 }
851 
852 int
853 agp_acquire(device_t dev)
854 {
855 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
856 }
857 
858 int
859 agp_release(device_t dev)
860 {
861 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
862 }
863 
864 int
865 agp_enable(device_t dev, u_int32_t mode)
866 {
867 	return AGP_ENABLE(dev, mode);
868 }
869 
870 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
871 {
872 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
873 }
874 
875 void agp_free_memory(device_t dev, void *handle)
876 {
877 	struct agp_memory *mem = (struct agp_memory *) handle;
878 	AGP_FREE_MEMORY(dev, mem);
879 }
880 
881 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
882 {
883 	struct agp_memory *mem = (struct agp_memory *) handle;
884 	return AGP_BIND_MEMORY(dev, mem, offset);
885 }
886 
887 int agp_unbind_memory(device_t dev, void *handle)
888 {
889 	struct agp_memory *mem = (struct agp_memory *) handle;
890 	return AGP_UNBIND_MEMORY(dev, mem);
891 }
892 
893 void agp_memory_info(device_t dev, void *handle, struct
894 		     agp_memory_info *mi)
895 {
896 	struct agp_memory *mem = (struct agp_memory *) handle;
897 
898 	mi->ami_size = mem->am_size;
899 	mi->ami_physical = mem->am_physical;
900 	mi->ami_offset = mem->am_offset;
901 	mi->ami_is_bound = mem->am_is_bound;
902 }
903