xref: /dragonfly/sys/dev/agp/agp.c (revision 62f7f702)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD: src/sys/dev/agp/agp.c,v 1.58 2007/11/12 21:51:36 jhb Exp $
27  *	$DragonFly: src/sys/dev/agp/agp.c,v 1.30 2008/01/07 01:34:58 corecode Exp $
28  */
29 
30 #include "opt_bus.h"
31 #include "opt_pci.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/ioccom.h>
41 #include <sys/agpio.h>
42 #include <sys/lock.h>
43 #include <sys/proc.h>
44 #include <sys/rman.h>
45 
46 #include <bus/pci/pcivar.h>
47 #include <bus/pci/pcireg.h>
48 #include "agppriv.h"
49 #include "agpvar.h"
50 #include "agpreg.h"
51 
52 #include <vm/vm.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/pmap.h>
57 
58 #include <machine/md_var.h>
59 
60 MODULE_VERSION(agp, 1);
61 
62 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
63 
64 #define CDEV_MAJOR	148
65 				/* agp_drv.c */
66 static d_open_t agp_open;
67 static d_close_t agp_close;
68 static d_ioctl_t agp_ioctl;
69 static d_mmap_t agp_mmap;
70 
71 static struct dev_ops agp_ops = {
72 	{ "agp", CDEV_MAJOR, D_TTY },
73 	.d_open =	agp_open,
74 	.d_close =	agp_close,
75 	.d_ioctl =	agp_ioctl,
76 	.d_mmap =	agp_mmap,
77 };
78 
79 static devclass_t agp_devclass;
80 #define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))
81 
82 /* Helper functions for implementing chipset mini drivers. */
83 
84 void
85 agp_flush_cache(void)
86 {
87 #if defined(__i386__) || defined(__amd64__)
88 	wbinvd();
89 #endif
90 }
91 
92 u_int8_t
93 agp_find_caps(device_t dev)
94 {
95 	u_int32_t status;
96 	u_int8_t ptr, next;
97 
98 	/*
99 	 * Check the CAP_LIST bit of the PCI status register first.
100 	 */
101 	status = pci_read_config(dev, PCIR_STATUS, 2);
102 	if (!(status & 0x10))
103 		return 0;
104 
105 	/*
106 	 * Traverse the capabilities list.
107 	 */
108 	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
109 	     ptr != 0;
110 	     ptr = next) {
111 		u_int32_t capid = pci_read_config(dev, ptr, 4);
112 		next = AGP_CAPID_GET_NEXT_PTR(capid);
113 
114 		/*
115 		 * If this capability entry ID is 2, then we are done.
116 		 */
117 		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
118 			return ptr;
119 	}
120 
121 	return 0;
122 }
123 
124 /*
125  * Find an AGP display device (if any).
126  */
127 static device_t
128 agp_find_display(void)
129 {
130 	devclass_t pci = devclass_find("pci");
131 	device_t bus, dev = 0;
132 	device_t *kids;
133 	int busnum, numkids, i;
134 
135 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
136 		bus = devclass_get_device(pci, busnum);
137 		if (!bus)
138 			continue;
139 		device_get_children(bus, &kids, &numkids);
140 		for (i = 0; i < numkids; i++) {
141 			dev = kids[i];
142 			if (pci_get_class(dev) == PCIC_DISPLAY
143 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
144 				if (agp_find_caps(dev)) {
145 					kfree(kids, M_TEMP);
146 					return dev;
147 				}
148 
149 		}
150 		kfree(kids, M_TEMP);
151 	}
152 
153 	return 0;
154 }
155 
156 struct agp_gatt *
157 agp_alloc_gatt(device_t dev)
158 {
159 	u_int32_t apsize = AGP_GET_APERTURE(dev);
160 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
161 	struct agp_gatt *gatt;
162 
163 	if (bootverbose)
164 		device_printf(dev,
165 			      "allocating GATT for aperture of size %dM\n",
166 			      apsize / (1024*1024));
167 
168 	if (entries == 0) {
169 		device_printf(dev, "bad aperture size\n");
170 		return NULL;
171 	}
172 
173 	gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
174 	gatt->ag_entries = entries;
175 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
176 					M_WAITOK|M_ZERO, 0, ~0, PAGE_SIZE, 0);
177 	if (!gatt->ag_virtual) {
178 		if (bootverbose)
179 			device_printf(dev, "contiguous allocation failed\n");
180 		kfree(gatt, M_AGP);
181 		return 0;
182 	}
183 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
184 	agp_flush_cache();
185 
186 	return gatt;
187 }
188 
189 void
190 agp_free_gatt(struct agp_gatt *gatt)
191 {
192 	contigfree(gatt->ag_virtual,
193 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
194 	kfree(gatt, M_AGP);
195 }
196 
197 static u_int agp_max[][2] = {
198 	{0,	0},
199 	{32,	4},
200 	{64,	28},
201 	{128,	96},
202 	{256,	204},
203 	{512,	440},
204 	{1024,	942},
205 	{2048,	1920},
206 	{4096,	3932}
207 };
208 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
209 
210 /**
211  * Sets the PCI resource which represents the AGP aperture.
212  *
213  * If not called, the default AGP aperture resource of AGP_APBASE will
214  * be used.  Must be called before agp_generic_attach().
215  */
216 void
217 agp_set_aperture_resource(device_t dev, int rid)
218 {
219 	struct agp_softc *sc = device_get_softc(dev);
220 
221 	sc->as_aperture_rid = rid;
222 }
223 
224 int
225 agp_generic_attach(device_t dev)
226 {
227 	struct agp_softc *sc = device_get_softc(dev);
228 	int i;
229 	u_int memsize;
230 
231 	/*
232 	 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
233 	 * because the kernel doesn't need to map it.
234 	 */
235 	if (sc->as_aperture_rid == 0)
236 		sc->as_aperture_rid = AGP_APBASE;
237 
238 	sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
239 	    &sc->as_aperture_rid, RF_SHAREABLE);
240 	if (!sc->as_aperture)
241 		return ENOMEM;
242 
243 	/*
244 	 * Work out an upper bound for agp memory allocation. This
245 	 * uses a heurisitc table from the Linux driver.
246 	 */
247 	memsize = ptoa(Maxmem) >> 20;
248 	for (i = 0; i < agp_max_size; i++) {
249 		if (memsize <= agp_max[i][0])
250 			break;
251 	}
252 	if (i == agp_max_size) i = agp_max_size - 1;
253 	sc->as_maxmem = agp_max[i][1] << 20U;
254 
255 	/*
256 	 * The lock is used to prevent re-entry to
257 	 * agp_generic_bind_memory() since that function can sleep.
258 	 */
259 	lockinit(&sc->as_lock, "agplk", 0, 0);
260 
261 	/*
262 	 * Initialise stuff for the userland device.
263 	 */
264 	agp_devclass = devclass_find("agp");
265 	TAILQ_INIT(&sc->as_memory);
266 	sc->as_nextid = 1;
267 
268 	dev_ops_add(&agp_ops, -1, device_get_unit(dev));
269 	make_dev(&agp_ops, device_get_unit(dev), UID_ROOT, GID_WHEEL,
270 		  0600, "agpgart");
271 
272 	return 0;
273 }
274 
275 void
276 agp_free_cdev(device_t dev)
277 {
278 	dev_ops_remove(&agp_ops, -1, device_get_unit(dev));
279 }
280 
281 void
282 agp_free_res(device_t dev)
283 {
284 	struct agp_softc *sc = device_get_softc(dev);
285 
286 	bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
287 			     sc->as_aperture);
288 	agp_flush_cache();
289 }
290 
291 int
292 agp_generic_detach(device_t dev)
293 {
294 	agp_free_cdev(dev);
295 	agp_free_res(dev);
296 	return 0;
297 }
298 
299 /**
300  * Default AGP aperture size detection which simply returns the size of
301  * the aperture's PCI resource.
302  */
303 int
304 agp_generic_get_aperture(device_t dev)
305 {
306 	struct agp_softc *sc = device_get_softc(dev);
307 
308 	return rman_get_size(sc->as_aperture);
309 }
310 
311 /**
312  * Default AGP aperture size setting function, which simply doesn't allow
313  * changes to resource size.
314  */
315 int
316 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
317 {
318 	u_int32_t current_aperture;
319 
320 	current_aperture = AGP_GET_APERTURE(dev);
321 	if (current_aperture != aperture)
322 		return EINVAL;
323 	else
324 		return 0;
325 }
326 
327 /*
328  * This does the enable logic for v3, with the same topology
329  * restrictions as in place for v2 -- one bus, one device on the bus.
330  */
331 static int
332 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
333 {
334 	u_int32_t tstatus, mstatus;
335 	u_int32_t command;
336 	int rq, sba, fw, rate, arqsz, cal;
337 
338 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
339 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
340 
341 	/* Set RQ to the min of mode, tstatus and mstatus */
342 	rq = AGP_MODE_GET_RQ(mode);
343 	if (AGP_MODE_GET_RQ(tstatus) < rq)
344 		rq = AGP_MODE_GET_RQ(tstatus);
345 	if (AGP_MODE_GET_RQ(mstatus) < rq)
346 		rq = AGP_MODE_GET_RQ(mstatus);
347 
348 	/*
349 	 * ARQSZ - Set the value to the maximum one.
350 	 * Don't allow the mode register to override values.
351 	 */
352 	arqsz = AGP_MODE_GET_ARQSZ(mode);
353 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
354 		rq = AGP_MODE_GET_ARQSZ(tstatus);
355 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
356 		rq = AGP_MODE_GET_ARQSZ(mstatus);
357 
358 	/* Calibration cycle - don't allow override by mode register */
359 	cal = AGP_MODE_GET_CAL(tstatus);
360 	if (AGP_MODE_GET_CAL(mstatus) < cal)
361 		cal = AGP_MODE_GET_CAL(mstatus);
362 
363 	/* SBA must be supported for AGP v3. */
364 	sba = 1;
365 
366 	/* Set FW if all three support it. */
367 	fw = (AGP_MODE_GET_FW(tstatus)
368 	       & AGP_MODE_GET_FW(mstatus)
369 	       & AGP_MODE_GET_FW(mode));
370 
371 	/* Figure out the max rate */
372 	rate = (AGP_MODE_GET_RATE(tstatus)
373 		& AGP_MODE_GET_RATE(mstatus)
374 		& AGP_MODE_GET_RATE(mode));
375 	if (rate & AGP_MODE_V3_RATE_8x)
376 		rate = AGP_MODE_V3_RATE_8x;
377 	else
378 		rate = AGP_MODE_V3_RATE_4x;
379 	if (bootverbose)
380 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
381 
382 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
383 
384 	/* Construct the new mode word and tell the hardware */
385 	command = 0;
386 	command = AGP_MODE_SET_RQ(0, rq);
387 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
388 	command = AGP_MODE_SET_CAL(command, cal);
389 	command = AGP_MODE_SET_SBA(command, sba);
390 	command = AGP_MODE_SET_FW(command, fw);
391 	command = AGP_MODE_SET_RATE(command, rate);
392 	command = AGP_MODE_SET_MODE_3(command, 1);
393 	command = AGP_MODE_SET_AGP(command, 1);
394 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
395 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
396 
397 	return 0;
398 }
399 
400 static int
401 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
402 {
403 	u_int32_t tstatus, mstatus;
404 	u_int32_t command;
405 	int rq, sba, fw, rate;
406 
407 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
408 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
409 
410 	/* Set RQ to the min of mode, tstatus and mstatus */
411 	rq = AGP_MODE_GET_RQ(mode);
412 	if (AGP_MODE_GET_RQ(tstatus) < rq)
413 		rq = AGP_MODE_GET_RQ(tstatus);
414 	if (AGP_MODE_GET_RQ(mstatus) < rq)
415 		rq = AGP_MODE_GET_RQ(mstatus);
416 
417 	/* Set SBA if all three can deal with SBA */
418 	sba = (AGP_MODE_GET_SBA(tstatus)
419 	       & AGP_MODE_GET_SBA(mstatus)
420 	       & AGP_MODE_GET_SBA(mode));
421 
422 	/* Similar for FW */
423 	fw = (AGP_MODE_GET_FW(tstatus)
424 	       & AGP_MODE_GET_FW(mstatus)
425 	       & AGP_MODE_GET_FW(mode));
426 
427 	/* Figure out the max rate */
428 	rate = (AGP_MODE_GET_RATE(tstatus)
429 		& AGP_MODE_GET_RATE(mstatus)
430 		& AGP_MODE_GET_RATE(mode));
431 	if (rate & AGP_MODE_V2_RATE_4x)
432 		rate = AGP_MODE_V2_RATE_4x;
433 	else if (rate & AGP_MODE_V2_RATE_2x)
434 		rate = AGP_MODE_V2_RATE_2x;
435 	else
436 		rate = AGP_MODE_V2_RATE_1x;
437 	if (bootverbose)
438 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
439 
440 	/* Construct the new mode word and tell the hardware */
441 	command = 0;
442 	command = AGP_MODE_SET_RQ(0, rq);
443 	command = AGP_MODE_SET_SBA(command, sba);
444 	command = AGP_MODE_SET_FW(command, fw);
445 	command = AGP_MODE_SET_RATE(command, rate);
446 	command = AGP_MODE_SET_AGP(command, 1);
447 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
448 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
449 
450 	return 0;
451 }
452 
453 int
454 agp_generic_enable(device_t dev, u_int32_t mode)
455 {
456 	device_t mdev = agp_find_display();
457 	u_int32_t tstatus, mstatus;
458 
459 	if (!mdev) {
460 		AGP_DPF("can't find display\n");
461 		return ENXIO;
462 	}
463 
464 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
465 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
466 
467 	/*
468 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
469 	 * more variety in topology than v2, e.g. multiple AGP devices
470 	 * attached to one bridge, or multiple AGP bridges in one
471 	 * system.  This doesn't attempt to address those situations,
472 	 * but should work fine for a classic single AGP slot system
473 	 * with AGP v3.
474 	 */
475 	if (AGP_MODE_GET_MODE_3(mode) &&
476 	    AGP_MODE_GET_MODE_3(tstatus) &&
477 	    AGP_MODE_GET_MODE_3(mstatus))
478 		return (agp_v3_enable(dev, mdev, mode));
479 	else
480 		return (agp_v2_enable(dev, mdev, mode));
481 }
482 
483 struct agp_memory *
484 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
485 {
486 	struct agp_softc *sc = device_get_softc(dev);
487 	struct agp_memory *mem;
488 
489 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
490 		return 0;
491 
492 	if (sc->as_allocated + size > sc->as_maxmem)
493 		return 0;
494 
495 	if (type != 0) {
496 		kprintf("agp_generic_alloc_memory: unsupported type %d\n",
497 			type);
498 		return 0;
499 	}
500 
501 	mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT);
502 	mem->am_id = sc->as_nextid++;
503 	mem->am_size = size;
504 	mem->am_type = 0;
505 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
506 	mem->am_physical = 0;
507 	mem->am_offset = 0;
508 	mem->am_is_bound = 0;
509 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
510 	sc->as_allocated += size;
511 
512 	return mem;
513 }
514 
515 int
516 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
517 {
518 	struct agp_softc *sc = device_get_softc(dev);
519 
520 	if (mem->am_is_bound)
521 		return EBUSY;
522 
523 	sc->as_allocated -= mem->am_size;
524 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
525 	vm_object_deallocate(mem->am_obj);
526 	kfree(mem, M_AGP);
527 	return 0;
528 }
529 
530 int
531 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
532 			vm_offset_t offset)
533 {
534 	struct agp_softc *sc = device_get_softc(dev);
535 	vm_offset_t i, j, k;
536 	vm_page_t m;
537 	int error;
538 
539 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
540 
541 	if (mem->am_is_bound) {
542 		device_printf(dev, "memory already bound\n");
543 		lockmgr(&sc->as_lock, LK_RELEASE);
544 		return EINVAL;
545 	}
546 
547 	if (offset < 0
548 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
549 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
550 		device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
551 			      (int) offset, (int)mem->am_size,
552 			      (int)AGP_GET_APERTURE(dev));
553 		kprintf("Check BIOS's aperature size vs X\n");
554 		lockmgr(&sc->as_lock, LK_RELEASE);
555 		return EINVAL;
556 	}
557 
558 	/*
559 	 * Bind the individual pages and flush the chipset's
560 	 * TLB.
561 	 */
562 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
563 		/*
564 		 * Find a page from the object and wire it
565 		 * down. This page will be mapped using one or more
566 		 * entries in the GATT (assuming that PAGE_SIZE >=
567 		 * AGP_PAGE_SIZE. If this is the first call to bind,
568 		 * the pages will be allocated and zeroed.
569 		 */
570 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
571 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
572 		if ((m->flags & PG_ZERO) == 0)
573 			vm_page_zero_fill(m);
574 		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
575 		vm_page_wire(m);
576 
577 		/*
578 		 * Install entries in the GATT, making sure that if
579 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
580 		 * aligned to PAGE_SIZE, we don't modify too many GATT
581 		 * entries.
582 		 */
583 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
584 		     j += AGP_PAGE_SIZE) {
585 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
586 			AGP_DPF("binding offset %#x to pa %#x\n",
587 				offset + i + j, pa);
588 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
589 			if (error) {
590 				/*
591 				 * Bail out. Reverse all the mappings
592 				 * and unwire the pages.
593 				 */
594 				vm_page_wakeup(m);
595 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
596 					AGP_UNBIND_PAGE(dev, offset + k);
597 				for (k = 0; k <= i; k += PAGE_SIZE) {
598 					m = vm_page_lookup(mem->am_obj,
599 							   OFF_TO_IDX(k));
600 					vm_page_unwire(m, 0);
601 				}
602 				lockmgr(&sc->as_lock, LK_RELEASE);
603 				return error;
604 			}
605 		}
606 		vm_page_wakeup(m);
607 	}
608 
609 	/*
610 	 * Flush the cpu cache since we are providing a new mapping
611 	 * for these pages.
612 	 */
613 	agp_flush_cache();
614 
615 	/*
616 	 * Make sure the chipset gets the new mappings.
617 	 */
618 	AGP_FLUSH_TLB(dev);
619 
620 	mem->am_offset = offset;
621 	mem->am_is_bound = 1;
622 
623 	lockmgr(&sc->as_lock, LK_RELEASE);
624 
625 	return 0;
626 }
627 
628 int
629 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
630 {
631 	struct agp_softc *sc = device_get_softc(dev);
632 	vm_page_t m;
633 	int i;
634 
635 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
636 
637 	if (!mem->am_is_bound) {
638 		device_printf(dev, "memory is not bound\n");
639 		lockmgr(&sc->as_lock, LK_RELEASE);
640 		return EINVAL;
641 	}
642 
643 
644 	/*
645 	 * Unbind the individual pages and flush the chipset's
646 	 * TLB. Unwire the pages so they can be swapped.
647 	 */
648 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
649 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
650 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
651 		m = vm_page_lookup(mem->am_obj, atop(i));
652 		vm_page_unwire(m, 0);
653 	}
654 
655 	agp_flush_cache();
656 	AGP_FLUSH_TLB(dev);
657 
658 	mem->am_offset = 0;
659 	mem->am_is_bound = 0;
660 
661 	lockmgr(&sc->as_lock, LK_RELEASE);
662 
663 	return 0;
664 }
665 
666 /* Helper functions for implementing user/kernel api */
667 
668 static int
669 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
670 {
671 	struct agp_softc *sc = device_get_softc(dev);
672 
673 	if (sc->as_state != AGP_ACQUIRE_FREE)
674 		return EBUSY;
675 	sc->as_state = state;
676 
677 	return 0;
678 }
679 
680 static int
681 agp_release_helper(device_t dev, enum agp_acquire_state state)
682 {
683 	struct agp_softc *sc = device_get_softc(dev);
684 
685 	if (sc->as_state == AGP_ACQUIRE_FREE)
686 		return 0;
687 
688 	if (sc->as_state != state)
689 		return EBUSY;
690 
691 	sc->as_state = AGP_ACQUIRE_FREE;
692 	return 0;
693 }
694 
695 static struct agp_memory *
696 agp_find_memory(device_t dev, int id)
697 {
698 	struct agp_softc *sc = device_get_softc(dev);
699 	struct agp_memory *mem;
700 
701 	AGP_DPF("searching for memory block %d\n", id);
702 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
703 		AGP_DPF("considering memory block %d\n", mem->am_id);
704 		if (mem->am_id == id)
705 			return mem;
706 	}
707 	return 0;
708 }
709 
710 /* Implementation of the userland ioctl api */
711 
712 static int
713 agp_info_user(device_t dev, agp_info *info)
714 {
715 	struct agp_softc *sc = device_get_softc(dev);
716 
717 	bzero(info, sizeof *info);
718 	info->bridge_id = pci_get_devid(dev);
719 	info->agp_mode =
720 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
721 	info->aper_base = rman_get_start(sc->as_aperture);
722 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
723 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
724 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
725 
726 	return 0;
727 }
728 
729 static int
730 agp_setup_user(device_t dev, agp_setup *setup)
731 {
732 	return AGP_ENABLE(dev, setup->agp_mode);
733 }
734 
735 static int
736 agp_allocate_user(device_t dev, agp_allocate *alloc)
737 {
738 	struct agp_memory *mem;
739 
740 	mem = AGP_ALLOC_MEMORY(dev,
741 			       alloc->type,
742 			       alloc->pg_count << AGP_PAGE_SHIFT);
743 	if (mem) {
744 		alloc->key = mem->am_id;
745 		alloc->physical = mem->am_physical;
746 		return 0;
747 	} else {
748 		return ENOMEM;
749 	}
750 }
751 
752 static int
753 agp_deallocate_user(device_t dev, int id)
754 {
755 	struct agp_memory *mem = agp_find_memory(dev, id);
756 
757 	if (mem) {
758 		AGP_FREE_MEMORY(dev, mem);
759 		return 0;
760 	} else {
761 		return ENOENT;
762 	}
763 }
764 
765 static int
766 agp_bind_user(device_t dev, agp_bind *bind)
767 {
768 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
769 
770 	if (!mem)
771 		return ENOENT;
772 
773 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
774 }
775 
776 static int
777 agp_unbind_user(device_t dev, agp_unbind *unbind)
778 {
779 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
780 
781 	if (!mem)
782 		return ENOENT;
783 
784 	return AGP_UNBIND_MEMORY(dev, mem);
785 }
786 
787 static int
788 agp_open(struct dev_open_args *ap)
789 {
790 	cdev_t kdev = ap->a_head.a_dev;
791 	device_t dev = KDEV2DEV(kdev);
792 	struct agp_softc *sc = device_get_softc(dev);
793 
794 	if (!sc->as_isopen) {
795 		sc->as_isopen = 1;
796 		device_busy(dev);
797 	}
798 
799 	return 0;
800 }
801 
802 static int
803 agp_close(struct dev_close_args *ap)
804 {
805 	cdev_t kdev = ap->a_head.a_dev;
806 	device_t dev = KDEV2DEV(kdev);
807 	struct agp_softc *sc = device_get_softc(dev);
808 	struct agp_memory *mem;
809 
810 	/*
811 	 * Clear the GATT and force release on last close
812 	 */
813 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
814 		if (mem->am_is_bound)
815 			AGP_UNBIND_MEMORY(dev, mem);
816 		AGP_FREE_MEMORY(dev, mem);
817 	}
818 	if (sc->as_state == AGP_ACQUIRE_USER)
819 		agp_release_helper(dev, AGP_ACQUIRE_USER);
820 	sc->as_isopen = 0;
821 	device_unbusy(dev);
822 
823 	return 0;
824 }
825 
826 static int
827 agp_ioctl(struct dev_ioctl_args *ap)
828 {
829 	cdev_t kdev = ap->a_head.a_dev;
830 	device_t dev = KDEV2DEV(kdev);
831 
832 	switch (ap->a_cmd) {
833 	case AGPIOC_INFO:
834 		return agp_info_user(dev, (agp_info *)ap->a_data);
835 
836 	case AGPIOC_ACQUIRE:
837 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
838 
839 	case AGPIOC_RELEASE:
840 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
841 
842 	case AGPIOC_SETUP:
843 		return agp_setup_user(dev, (agp_setup *)ap->a_data);
844 
845 	case AGPIOC_ALLOCATE:
846 		return agp_allocate_user(dev, (agp_allocate *)ap->a_data);
847 
848 	case AGPIOC_DEALLOCATE:
849 		return agp_deallocate_user(dev, *(int *)ap->a_data);
850 
851 	case AGPIOC_BIND:
852 		return agp_bind_user(dev, (agp_bind *)ap->a_data);
853 
854 	case AGPIOC_UNBIND:
855 		return agp_unbind_user(dev, (agp_unbind *)ap->a_data);
856 
857 	}
858 
859 	return EINVAL;
860 }
861 
862 static int
863 agp_mmap(struct dev_mmap_args *ap)
864 {
865 	cdev_t kdev = ap->a_head.a_dev;
866 	device_t dev = KDEV2DEV(kdev);
867 	struct agp_softc *sc = device_get_softc(dev);
868 
869 	if (ap->a_offset > AGP_GET_APERTURE(dev))
870 		return EINVAL;
871 	ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset);
872 	return 0;
873 }
874 
875 /* Implementation of the kernel api */
876 
877 device_t
878 agp_find_device(void)
879 {
880 	device_t *children, child;
881 	int i, count;
882 
883 	if (!agp_devclass)
884 		return NULL;
885 	if (devclass_get_devices(agp_devclass, &children, &count) != 0)
886 		return NULL;
887 	child = NULL;
888 	for (i = 0; i < count; i++) {
889 		if (device_is_attached(children[i])) {
890 			child = children[i];
891 			break;
892 		}
893 	}
894 	kfree(children, M_TEMP);
895 	return child;
896 }
897 
898 enum agp_acquire_state
899 agp_state(device_t dev)
900 {
901 	struct agp_softc *sc = device_get_softc(dev);
902 	return sc->as_state;
903 }
904 
905 void
906 agp_get_info(device_t dev, struct agp_info *info)
907 {
908 	struct agp_softc *sc = device_get_softc(dev);
909 
910 	info->ai_mode =
911 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
912 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
913 	info->ai_aperture_size = rman_get_size(sc->as_aperture);
914 	info->ai_memory_allowed = sc->as_maxmem;
915 	info->ai_memory_used = sc->as_allocated;
916 }
917 
918 int
919 agp_acquire(device_t dev)
920 {
921 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
922 }
923 
924 int
925 agp_release(device_t dev)
926 {
927 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
928 }
929 
930 int
931 agp_enable(device_t dev, u_int32_t mode)
932 {
933 	return AGP_ENABLE(dev, mode);
934 }
935 
936 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
937 {
938 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
939 }
940 
941 void agp_free_memory(device_t dev, void *handle)
942 {
943 	struct agp_memory *mem = (struct agp_memory *) handle;
944 	AGP_FREE_MEMORY(dev, mem);
945 }
946 
947 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
948 {
949 	struct agp_memory *mem = (struct agp_memory *) handle;
950 	return AGP_BIND_MEMORY(dev, mem, offset);
951 }
952 
953 int agp_unbind_memory(device_t dev, void *handle)
954 {
955 	struct agp_memory *mem = (struct agp_memory *) handle;
956 	return AGP_UNBIND_MEMORY(dev, mem);
957 }
958 
959 void agp_memory_info(device_t dev, void *handle, struct
960 		     agp_memory_info *mi)
961 {
962 	struct agp_memory *mem = (struct agp_memory *) handle;
963 
964 	mi->ami_size = mem->am_size;
965 	mi->ami_physical = mem->am_physical;
966 	mi->ami_offset = mem->am_offset;
967 	mi->ami_is_bound = mem->am_is_bound;
968 }
969