xref: /dragonfly/sys/dev/agp/agp.c (revision cd1c6085)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/agp/agp.c,v 1.62 2009/02/06 20:57:10 wkoszek Exp $
27  */
28 
29 #include "opt_agp.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/device.h>
34 #include <sys/conf.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/bus.h>
38 #include <sys/agpio.h>
39 #include <sys/lock.h>
40 #include <sys/proc.h>
41 #include <sys/rman.h>
42 
43 #include <bus/pci/pcivar.h>
44 #include <bus/pci/pcireg.h>
45 #include "agppriv.h"
46 #include "agpvar.h"
47 #include "agpreg.h"
48 
49 #include <vm/vm.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/pmap.h>
54 
55 #include <machine/md_var.h>
56 
57 MODULE_VERSION(agp, 1);
58 
59 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
60 
61 static d_open_t agp_open;
62 static d_close_t agp_close;
63 static d_ioctl_t agp_ioctl;
64 static d_mmap_t agp_mmap;
65 
66 static struct dev_ops agp_ops = {
67 	{ "agp", 0, D_TTY },
68 	.d_open =	agp_open,
69 	.d_close =	agp_close,
70 	.d_ioctl =	agp_ioctl,
71 	.d_mmap =	agp_mmap,
72 };
73 
74 static devclass_t agp_devclass;
75 
76 /* Helper functions for implementing chipset mini drivers. */
77 
78 void
79 agp_flush_cache(void)
80 {
81 #if defined(__i386__) || defined(__x86_64__)
82 	wbinvd();
83 #endif
84 }
85 
86 u_int8_t
87 agp_find_caps(device_t dev)
88 {
89 	int capreg;
90 
91 	if (pci_find_extcap(dev, PCIY_AGP, &capreg) != 0)
92 		capreg = 0;
93 	return (capreg);
94 }
95 
96 /*
97  * Find an AGP display device (if any).
98  */
99 static device_t
100 agp_find_display(void)
101 {
102 	devclass_t pci = devclass_find("pci");
103 	device_t bus, dev = 0;
104 	device_t *kids;
105 	int busnum, numkids, i;
106 
107 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
108 		bus = devclass_get_device(pci, busnum);
109 		if (!bus)
110 			continue;
111 		device_get_children(bus, &kids, &numkids);
112 		for (i = 0; i < numkids; i++) {
113 			dev = kids[i];
114 			if (pci_get_class(dev) == PCIC_DISPLAY)
115 				if (agp_find_caps(dev)) {
116 					kfree(kids, M_TEMP);
117 					return dev;
118 				}
119 
120 		}
121 		kfree(kids, M_TEMP);
122 	}
123 
124 	return 0;
125 }
126 
127 struct agp_gatt *
128 agp_alloc_gatt(device_t dev)
129 {
130 	u_int32_t apsize = AGP_GET_APERTURE(dev);
131 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
132 	struct agp_gatt *gatt;
133 
134 	if (bootverbose)
135 		device_printf(dev,
136 			      "allocating GATT for aperture of size %dM\n",
137 			      apsize / (1024*1024));
138 
139 	if (entries == 0) {
140 		device_printf(dev, "bad aperture size\n");
141 		return NULL;
142 	}
143 
144 	gatt = kmalloc(sizeof(struct agp_gatt), M_AGP, M_INTWAIT);
145 	gatt->ag_entries = entries;
146 	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP,
147 					M_WAITOK|M_ZERO, 0, ~0, PAGE_SIZE, 0);
148 	if (!gatt->ag_virtual) {
149 		if (bootverbose)
150 			device_printf(dev, "contiguous allocation failed\n");
151 		kfree(gatt, M_AGP);
152 		return 0;
153 	}
154 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
155 	agp_flush_cache();
156 
157 	return gatt;
158 }
159 
160 void
161 agp_free_gatt(struct agp_gatt *gatt)
162 {
163 	contigfree(gatt->ag_virtual,
164 		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
165 	kfree(gatt, M_AGP);
166 }
167 
168 static u_int agp_max[][2] = {
169 	{0,	0},
170 	{32,	4},
171 	{64,	28},
172 	{128,	96},
173 	{256,	204},
174 	{512,	440},
175 	{1024,	942},
176 	{2048,	1920},
177 	{4096,	3932}
178 };
179 #define agp_max_size	NELEM(agp_max)
180 
181 /**
182  * Sets the PCI resource which represents the AGP aperture.
183  *
184  * If not called, the default AGP aperture resource of AGP_APBASE will
185  * be used.  Must be called before agp_generic_attach().
186  */
187 void
188 agp_set_aperture_resource(device_t dev, int rid)
189 {
190 	struct agp_softc *sc = device_get_softc(dev);
191 
192 	sc->as_aperture_rid = rid;
193 }
194 
195 int
196 agp_generic_attach(device_t dev)
197 {
198 	struct agp_softc *sc = device_get_softc(dev);
199 	int i;
200 	u_int memsize;
201 
202 	/*
203 	 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
204 	 * because the kernel doesn't need to map it.
205 	 */
206 	if (sc->as_aperture_rid == 0)
207 		sc->as_aperture_rid = AGP_APBASE;
208 
209 	sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
210 	    &sc->as_aperture_rid, RF_SHAREABLE);
211 	if (!sc->as_aperture)
212 		return ENOMEM;
213 
214 	/*
215 	 * Work out an upper bound for agp memory allocation. This
216 	 * uses a heurisitc table from the Linux driver.
217 	 */
218 	memsize = ptoa(Maxmem) >> 20;
219 	for (i = 0; i < agp_max_size; i++) {
220 		if (memsize <= agp_max[i][0])
221 			break;
222 	}
223 	if (i == agp_max_size)
224 		i = agp_max_size - 1;
225 	sc->as_maxmem = agp_max[i][1] << 20U;
226 
227 	/*
228 	 * The lock is used to prevent re-entry to
229 	 * agp_generic_bind_memory() since that function can sleep.
230 	 */
231 	lockinit(&sc->as_lock, "agplk", 0, 0);
232 
233 	/*
234 	 * Initialise stuff for the userland device.
235 	 */
236 	agp_devclass = devclass_find("agp");
237 	TAILQ_INIT(&sc->as_memory);
238 	sc->as_nextid = 1;
239 
240 	sc->as_devnode = make_dev(&agp_ops,
241 	    0, UID_ROOT, GID_WHEEL, 0600, "agpgart");
242 	sc->as_devnode->si_drv1 = dev;
243 
244 	return 0;
245 }
246 
247 void
248 agp_free_cdev(device_t dev)
249 {
250 	dev_ops_remove_minor(&agp_ops, device_get_unit(dev));
251 }
252 
253 void
254 agp_free_res(device_t dev)
255 {
256 	struct agp_softc *sc = device_get_softc(dev);
257 
258 	bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
259 			     sc->as_aperture);
260 	agp_flush_cache();
261 }
262 
263 int
264 agp_generic_detach(device_t dev)
265 {
266 	agp_free_cdev(dev);
267 	agp_free_res(dev);
268 	return 0;
269 }
270 
271 /**
272  * Default AGP aperture size detection which simply returns the size of
273  * the aperture's PCI resource.
274  */
275 u_int32_t
276 agp_generic_get_aperture(device_t dev)
277 {
278 	struct agp_softc *sc = device_get_softc(dev);
279 
280 	return rman_get_size(sc->as_aperture);
281 }
282 
283 /**
284  * Default AGP aperture size setting function, which simply doesn't allow
285  * changes to resource size.
286  */
287 int
288 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
289 {
290 	u_int32_t current_aperture;
291 
292 	current_aperture = AGP_GET_APERTURE(dev);
293 	if (current_aperture != aperture)
294 		return EINVAL;
295 	else
296 		return 0;
297 }
298 
299 /*
300  * This does the enable logic for v3, with the same topology
301  * restrictions as in place for v2 -- one bus, one device on the bus.
302  */
303 static int
304 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
305 {
306 	u_int32_t tstatus, mstatus;
307 	u_int32_t command;
308 	int rq, sba, fw, rate, arqsz, cal;
309 
310 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
311 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
312 
313 	/* Set RQ to the min of mode, tstatus and mstatus */
314 	rq = AGP_MODE_GET_RQ(mode);
315 	if (AGP_MODE_GET_RQ(tstatus) < rq)
316 		rq = AGP_MODE_GET_RQ(tstatus);
317 	if (AGP_MODE_GET_RQ(mstatus) < rq)
318 		rq = AGP_MODE_GET_RQ(mstatus);
319 
320 	/*
321 	 * ARQSZ - Set the value to the maximum one.
322 	 * Don't allow the mode register to override values.
323 	 */
324 	arqsz = AGP_MODE_GET_ARQSZ(mode);
325 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
326 		rq = AGP_MODE_GET_ARQSZ(tstatus);
327 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
328 		rq = AGP_MODE_GET_ARQSZ(mstatus);
329 
330 	/* Calibration cycle - don't allow override by mode register */
331 	cal = AGP_MODE_GET_CAL(tstatus);
332 	if (AGP_MODE_GET_CAL(mstatus) < cal)
333 		cal = AGP_MODE_GET_CAL(mstatus);
334 
335 	/* SBA must be supported for AGP v3. */
336 	sba = 1;
337 
338 	/* Set FW if all three support it. */
339 	fw = (AGP_MODE_GET_FW(tstatus)
340 	       & AGP_MODE_GET_FW(mstatus)
341 	       & AGP_MODE_GET_FW(mode));
342 
343 	/* Figure out the max rate */
344 	rate = (AGP_MODE_GET_RATE(tstatus)
345 		& AGP_MODE_GET_RATE(mstatus)
346 		& AGP_MODE_GET_RATE(mode));
347 	if (rate & AGP_MODE_V3_RATE_8x)
348 		rate = AGP_MODE_V3_RATE_8x;
349 	else
350 		rate = AGP_MODE_V3_RATE_4x;
351 	if (bootverbose)
352 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
353 
354 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
355 
356 	/* Construct the new mode word and tell the hardware */
357 	command = 0;
358 	command = AGP_MODE_SET_RQ(0, rq);
359 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
360 	command = AGP_MODE_SET_CAL(command, cal);
361 	command = AGP_MODE_SET_SBA(command, sba);
362 	command = AGP_MODE_SET_FW(command, fw);
363 	command = AGP_MODE_SET_RATE(command, rate);
364 	command = AGP_MODE_SET_MODE_3(command, 1);
365 	command = AGP_MODE_SET_AGP(command, 1);
366 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
367 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
368 
369 	return 0;
370 }
371 
372 static int
373 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
374 {
375 	u_int32_t tstatus, mstatus;
376 	u_int32_t command;
377 	int rq, sba, fw, rate;
378 
379 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
380 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
381 
382 	/* Set RQ to the min of mode, tstatus and mstatus */
383 	rq = AGP_MODE_GET_RQ(mode);
384 	if (AGP_MODE_GET_RQ(tstatus) < rq)
385 		rq = AGP_MODE_GET_RQ(tstatus);
386 	if (AGP_MODE_GET_RQ(mstatus) < rq)
387 		rq = AGP_MODE_GET_RQ(mstatus);
388 
389 	/* Set SBA if all three can deal with SBA */
390 	sba = (AGP_MODE_GET_SBA(tstatus)
391 	       & AGP_MODE_GET_SBA(mstatus)
392 	       & AGP_MODE_GET_SBA(mode));
393 
394 	/* Similar for FW */
395 	fw = (AGP_MODE_GET_FW(tstatus)
396 	       & AGP_MODE_GET_FW(mstatus)
397 	       & AGP_MODE_GET_FW(mode));
398 
399 	/* Figure out the max rate */
400 	rate = (AGP_MODE_GET_RATE(tstatus)
401 		& AGP_MODE_GET_RATE(mstatus)
402 		& AGP_MODE_GET_RATE(mode));
403 	if (rate & AGP_MODE_V2_RATE_4x)
404 		rate = AGP_MODE_V2_RATE_4x;
405 	else if (rate & AGP_MODE_V2_RATE_2x)
406 		rate = AGP_MODE_V2_RATE_2x;
407 	else
408 		rate = AGP_MODE_V2_RATE_1x;
409 	if (bootverbose)
410 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
411 
412 	/* Construct the new mode word and tell the hardware */
413 	command = 0;
414 	command = AGP_MODE_SET_RQ(0, rq);
415 	command = AGP_MODE_SET_SBA(command, sba);
416 	command = AGP_MODE_SET_FW(command, fw);
417 	command = AGP_MODE_SET_RATE(command, rate);
418 	command = AGP_MODE_SET_AGP(command, 1);
419 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
420 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
421 
422 	return 0;
423 }
424 
425 int
426 agp_generic_enable(device_t dev, u_int32_t mode)
427 {
428 	device_t mdev = agp_find_display();
429 	u_int32_t tstatus, mstatus;
430 
431 	if (!mdev) {
432 		AGP_DPF("can't find display\n");
433 		return ENXIO;
434 	}
435 
436 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
437 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
438 
439 	/*
440 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
441 	 * more variety in topology than v2, e.g. multiple AGP devices
442 	 * attached to one bridge, or multiple AGP bridges in one
443 	 * system.  This doesn't attempt to address those situations,
444 	 * but should work fine for a classic single AGP slot system
445 	 * with AGP v3.
446 	 */
447 	if (AGP_MODE_GET_MODE_3(mode) &&
448 	    AGP_MODE_GET_MODE_3(tstatus) &&
449 	    AGP_MODE_GET_MODE_3(mstatus))
450 		return (agp_v3_enable(dev, mdev, mode));
451 	else
452 		return (agp_v2_enable(dev, mdev, mode));
453 }
454 
455 struct agp_memory *
456 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
457 {
458 	struct agp_softc *sc = device_get_softc(dev);
459 	struct agp_memory *mem;
460 
461 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
462 		return 0;
463 
464 	if (sc->as_allocated + size > sc->as_maxmem)
465 		return 0;
466 
467 	if (type != 0) {
468 		kprintf("agp_generic_alloc_memory: unsupported type %d\n",
469 			type);
470 		return 0;
471 	}
472 
473 	mem = kmalloc(sizeof *mem, M_AGP, M_INTWAIT);
474 	mem->am_id = sc->as_nextid++;
475 	mem->am_size = size;
476 	mem->am_type = 0;
477 	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
478 	mem->am_physical = 0;
479 	mem->am_offset = 0;
480 	mem->am_is_bound = 0;
481 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
482 	sc->as_allocated += size;
483 
484 	return mem;
485 }
486 
487 int
488 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
489 {
490 	struct agp_softc *sc = device_get_softc(dev);
491 
492 	if (mem->am_is_bound)
493 		return EBUSY;
494 
495 	sc->as_allocated -= mem->am_size;
496 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
497 	vm_object_deallocate(mem->am_obj);
498 	kfree(mem, M_AGP);
499 	return 0;
500 }
501 
502 int
503 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
504 			vm_offset_t offset)
505 {
506 	struct agp_softc *sc = device_get_softc(dev);
507 	vm_offset_t i, j, k;
508 	vm_page_t m;
509 	int error;
510 
511 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
512 
513 	if (mem->am_is_bound) {
514 		device_printf(dev, "memory already bound\n");
515 		lockmgr(&sc->as_lock, LK_RELEASE);
516 		return EINVAL;
517 	}
518 
519 	/* Do some sanity checks first. */
520 	if (offset < 0
521 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
522 	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
523 		device_printf(dev, "binding memory at bad offset %#x,%#x,%#x\n",
524 			      (int) offset, (int)mem->am_size,
525 			      (int)AGP_GET_APERTURE(dev));
526 		kprintf("Check BIOS's aperature size vs X\n");
527 		lockmgr(&sc->as_lock, LK_RELEASE);
528 		return EINVAL;
529 	}
530 
531 	/*
532 	 * Bind the individual pages and flush the chipset's
533 	 * TLB.
534 	 */
535 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
536 		/*
537 		 * Find a page from the object and wire it down. This page
538 		 * will be mapped using one or more entries in the GATT
539 		 * (assuming that PAGE_SIZE >= AGP_PAGE_SIZE. If this is
540 		 * the first call to bind, the pages will be allocated
541 		 * and zeroed.
542 		 */
543 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
544 				 VM_ALLOC_NORMAL | VM_ALLOC_ZERO |
545 				 VM_ALLOC_RETRY);
546 		AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m));
547 		vm_page_wire(m);
548 
549 		/*
550 		 * Install entries in the GATT, making sure that if
551 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
552 		 * aligned to PAGE_SIZE, we don't modify too many GATT
553 		 * entries.
554 		 */
555 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
556 		     j += AGP_PAGE_SIZE) {
557 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
558 			AGP_DPF("binding offset %#jx to pa %#jx\n",
559 				(uintmax_t)offset + i + j, (uintmax_t)pa);
560 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
561 			if (error) {
562 				/*
563 				 * Bail out. Reverse all the mappings
564 				 * and unwire the pages.
565 				 */
566 				vm_page_wakeup(m);
567 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
568 					AGP_UNBIND_PAGE(dev, offset + k);
569 				vm_object_hold(mem->am_obj);
570 				for (k = 0; k <= i; k += PAGE_SIZE) {
571 					m = vm_page_lookup_busy_wait(
572 						mem->am_obj, OFF_TO_IDX(k),
573 						FALSE, "agppg");
574 					vm_page_unwire(m, 0);
575 					vm_page_wakeup(m);
576 				}
577 				vm_object_drop(mem->am_obj);
578 				lockmgr(&sc->as_lock, LK_RELEASE);
579 				return error;
580 			}
581 		}
582 		vm_page_wakeup(m);
583 	}
584 
585 	/*
586 	 * Flush the cpu cache since we are providing a new mapping
587 	 * for these pages.
588 	 */
589 	agp_flush_cache();
590 
591 	/*
592 	 * Make sure the chipset gets the new mappings.
593 	 */
594 	AGP_FLUSH_TLB(dev);
595 
596 	mem->am_offset = offset;
597 	mem->am_is_bound = 1;
598 
599 	lockmgr(&sc->as_lock, LK_RELEASE);
600 
601 	return 0;
602 }
603 
604 int
605 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
606 {
607 	struct agp_softc *sc = device_get_softc(dev);
608 	vm_page_t m;
609 	int i;
610 
611 	lockmgr(&sc->as_lock, LK_EXCLUSIVE);
612 
613 	if (!mem->am_is_bound) {
614 		device_printf(dev, "memory is not bound\n");
615 		lockmgr(&sc->as_lock, LK_RELEASE);
616 		return EINVAL;
617 	}
618 
619 
620 	/*
621 	 * Unbind the individual pages and flush the chipset's
622 	 * TLB. Unwire the pages so they can be swapped.
623 	 */
624 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
625 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
626 	vm_object_hold(mem->am_obj);
627 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
628 		m = vm_page_lookup_busy_wait(mem->am_obj, atop(i),
629 					     FALSE, "agppg");
630 		vm_page_unwire(m, 0);
631 		vm_page_wakeup(m);
632 	}
633 	vm_object_drop(mem->am_obj);
634 
635 	agp_flush_cache();
636 	AGP_FLUSH_TLB(dev);
637 
638 	mem->am_offset = 0;
639 	mem->am_is_bound = 0;
640 
641 	lockmgr(&sc->as_lock, LK_RELEASE);
642 
643 	return 0;
644 }
645 
646 /* Helper functions for implementing user/kernel api */
647 
648 static int
649 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
650 {
651 	struct agp_softc *sc = device_get_softc(dev);
652 
653 	if (sc->as_state != AGP_ACQUIRE_FREE)
654 		return EBUSY;
655 	sc->as_state = state;
656 
657 	return 0;
658 }
659 
660 static int
661 agp_release_helper(device_t dev, enum agp_acquire_state state)
662 {
663 	struct agp_softc *sc = device_get_softc(dev);
664 
665 	if (sc->as_state == AGP_ACQUIRE_FREE)
666 		return 0;
667 
668 	if (sc->as_state != state)
669 		return EBUSY;
670 
671 	sc->as_state = AGP_ACQUIRE_FREE;
672 	return 0;
673 }
674 
675 static struct agp_memory *
676 agp_find_memory(device_t dev, int id)
677 {
678 	struct agp_softc *sc = device_get_softc(dev);
679 	struct agp_memory *mem;
680 
681 	AGP_DPF("searching for memory block %d\n", id);
682 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
683 		AGP_DPF("considering memory block %d\n", mem->am_id);
684 		if (mem->am_id == id)
685 			return mem;
686 	}
687 	return 0;
688 }
689 
690 /* Implementation of the userland ioctl api */
691 
692 static int
693 agp_info_user(device_t dev, agp_info *info)
694 {
695 	struct agp_softc *sc = device_get_softc(dev);
696 
697 	bzero(info, sizeof *info);
698 	info->bridge_id = pci_get_devid(dev);
699 	info->agp_mode =
700 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
701 	info->aper_base = rman_get_start(sc->as_aperture);
702 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
703 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
704 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
705 
706 	return 0;
707 }
708 
709 static int
710 agp_setup_user(device_t dev, agp_setup *setup)
711 {
712 	return AGP_ENABLE(dev, setup->agp_mode);
713 }
714 
715 static int
716 agp_allocate_user(device_t dev, agp_allocate *alloc)
717 {
718 	struct agp_memory *mem;
719 
720 	mem = AGP_ALLOC_MEMORY(dev,
721 			       alloc->type,
722 			       alloc->pg_count << AGP_PAGE_SHIFT);
723 	if (mem) {
724 		alloc->key = mem->am_id;
725 		alloc->physical = mem->am_physical;
726 		return 0;
727 	} else {
728 		return ENOMEM;
729 	}
730 }
731 
732 static int
733 agp_deallocate_user(device_t dev, int id)
734 {
735 	struct agp_memory *mem = agp_find_memory(dev, id);
736 
737 	if (mem) {
738 		AGP_FREE_MEMORY(dev, mem);
739 		return 0;
740 	} else {
741 		return ENOENT;
742 	}
743 }
744 
745 static int
746 agp_bind_user(device_t dev, agp_bind *bind)
747 {
748 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
749 
750 	if (!mem)
751 		return ENOENT;
752 
753 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
754 }
755 
756 static int
757 agp_unbind_user(device_t dev, agp_unbind *unbind)
758 {
759 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
760 
761 	if (!mem)
762 		return ENOENT;
763 
764 	return AGP_UNBIND_MEMORY(dev, mem);
765 }
766 
767 static int
768 agp_chipset_flush(device_t dev)
769 {
770 
771 	return (AGP_CHIPSET_FLUSH(dev));
772 }
773 
774 static int
775 agp_open(struct dev_open_args *ap)
776 {
777 	cdev_t kdev = ap->a_head.a_dev;
778 	device_t dev = kdev->si_drv1;
779 	struct agp_softc *sc = device_get_softc(dev);
780 
781 	if (!sc->as_isopen) {
782 		sc->as_isopen = 1;
783 		device_busy(dev);
784 	}
785 
786 	return 0;
787 }
788 
789 static int
790 agp_close(struct dev_close_args *ap)
791 {
792 	cdev_t kdev = ap->a_head.a_dev;
793 	device_t dev = kdev->si_drv1;
794 	struct agp_softc *sc = device_get_softc(dev);
795 	struct agp_memory *mem;
796 
797 	/*
798 	 * Clear the GATT and force release on last close
799 	 */
800 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) {
801 		if (mem->am_is_bound)
802 			AGP_UNBIND_MEMORY(dev, mem);
803 		AGP_FREE_MEMORY(dev, mem);
804 	}
805 	if (sc->as_state == AGP_ACQUIRE_USER)
806 		agp_release_helper(dev, AGP_ACQUIRE_USER);
807 	if (sc->as_isopen) {
808 		sc->as_isopen = 0;
809 		device_unbusy(dev);
810 	}
811 
812 	return 0;
813 }
814 
815 static int
816 agp_ioctl(struct dev_ioctl_args *ap)
817 {
818 	cdev_t kdev = ap->a_head.a_dev;
819 	device_t dev = kdev->si_drv1;
820 
821 	switch (ap->a_cmd) {
822 	case AGPIOC_INFO:
823 		return agp_info_user(dev, (agp_info *)ap->a_data);
824 
825 	case AGPIOC_ACQUIRE:
826 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
827 
828 	case AGPIOC_RELEASE:
829 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
830 
831 	case AGPIOC_SETUP:
832 		return agp_setup_user(dev, (agp_setup *)ap->a_data);
833 
834 	case AGPIOC_ALLOCATE:
835 		return agp_allocate_user(dev, (agp_allocate *)ap->a_data);
836 
837 	case AGPIOC_DEALLOCATE:
838 		return agp_deallocate_user(dev, *(int *)ap->a_data);
839 
840 	case AGPIOC_BIND:
841 		return agp_bind_user(dev, (agp_bind *)ap->a_data);
842 
843 	case AGPIOC_UNBIND:
844 		return agp_unbind_user(dev, (agp_unbind *)ap->a_data);
845 
846 	case AGPIOC_CHIPSET_FLUSH:
847 		return agp_chipset_flush(dev);
848 	}
849 
850 	return EINVAL;
851 }
852 
853 static int
854 agp_mmap(struct dev_mmap_args *ap)
855 {
856 	cdev_t kdev = ap->a_head.a_dev;
857 	device_t dev = kdev->si_drv1;
858 	struct agp_softc *sc = device_get_softc(dev);
859 
860 	if (ap->a_offset > AGP_GET_APERTURE(dev))
861 		return EINVAL;
862 	ap->a_result = atop(rman_get_start(sc->as_aperture) + ap->a_offset);
863 	return 0;
864 }
865 
866 /* Implementation of the kernel api */
867 
868 device_t
869 agp_find_device(void)
870 {
871 	device_t *children, child;
872 	int i, count;
873 
874 	if (!agp_devclass)
875 		return NULL;
876 	if (devclass_get_devices(agp_devclass, &children, &count) != 0)
877 		return NULL;
878 	child = NULL;
879 	for (i = 0; i < count; i++) {
880 		if (device_is_attached(children[i])) {
881 			child = children[i];
882 			break;
883 		}
884 	}
885 	kfree(children, M_TEMP);
886 	return child;
887 }
888 
889 enum agp_acquire_state
890 agp_state(device_t dev)
891 {
892 	struct agp_softc *sc = device_get_softc(dev);
893 	return sc->as_state;
894 }
895 
896 void
897 agp_get_info(device_t dev, struct agp_info *info)
898 {
899 	struct agp_softc *sc = device_get_softc(dev);
900 
901 	info->ai_mode =
902 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
903 	info->ai_aperture_base = rman_get_start(sc->as_aperture);
904 	info->ai_aperture_size = rman_get_size(sc->as_aperture);
905 	info->ai_memory_allowed = sc->as_maxmem;
906 	info->ai_memory_used = sc->as_allocated;
907 }
908 
909 int
910 agp_acquire(device_t dev)
911 {
912 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
913 }
914 
915 int
916 agp_release(device_t dev)
917 {
918 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
919 }
920 
921 int
922 agp_enable(device_t dev, u_int32_t mode)
923 {
924 	return AGP_ENABLE(dev, mode);
925 }
926 
927 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
928 {
929 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
930 }
931 
932 void agp_free_memory(device_t dev, void *handle)
933 {
934 	struct agp_memory *mem = (struct agp_memory *) handle;
935 	AGP_FREE_MEMORY(dev, mem);
936 }
937 
938 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
939 {
940 	struct agp_memory *mem = (struct agp_memory *) handle;
941 	return AGP_BIND_MEMORY(dev, mem, offset);
942 }
943 
944 int agp_unbind_memory(device_t dev, void *handle)
945 {
946 	struct agp_memory *mem = (struct agp_memory *) handle;
947 	return AGP_UNBIND_MEMORY(dev, mem);
948 }
949 
950 void agp_memory_info(device_t dev, void *handle, struct
951 		     agp_memory_info *mi)
952 {
953 	struct agp_memory *mem = (struct agp_memory *) handle;
954 
955 	mi->ami_size = mem->am_size;
956 	mi->ami_physical = mem->am_physical;
957 	mi->ami_offset = mem->am_offset;
958 	mi->ami_is_bound = mem->am_is_bound;
959 }
960