xref: /dragonfly/sys/dev/crypto/safe/safe.c (revision 25a2db75)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/safe/safe.c,v 1.22 2011/06/12 23:33:08 delphij Exp $
28  */
29 
30 /*
31  * SafeNet SafeXcel-1141 hardware crypto accelerator
32  */
33 #include "opt_safe.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/errno.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/sysctl.h>
45 #include <sys/endian.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 
50 #include <sys/bus.h>
51 #include <sys/rman.h>
52 
53 #include <crypto/sha1.h>
54 #include <opencrypto/cryptodev.h>
55 #include <opencrypto/cryptosoft.h>
56 #include <sys/md5.h>
57 #include <sys/random.h>
58 #include <sys/kobj.h>
59 
60 #include "cryptodev_if.h"
61 
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcireg.h>
64 
65 #ifdef SAFE_RNDTEST
66 #include <dev/crypto/rndtest/rndtest.h>
67 #endif
68 #include <dev/crypto/safe/safereg.h>
69 #include <dev/crypto/safe/safevar.h>
70 
71 #ifndef bswap32
72 #define	bswap32	NTOHL
73 #endif
74 
75 /*
76  * Prototypes and count for the pci_device structure
77  */
78 static	int safe_probe(device_t);
79 static	int safe_attach(device_t);
80 static	int safe_detach(device_t);
81 static	int safe_suspend(device_t);
82 static	int safe_resume(device_t);
83 static	int safe_shutdown(device_t);
84 
85 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
86 static	int safe_freesession(device_t, u_int64_t);
87 static	int safe_process(device_t, struct cryptop *, int);
88 
89 static device_method_t safe_methods[] = {
90 	/* Device interface */
91 	DEVMETHOD(device_probe,		safe_probe),
92 	DEVMETHOD(device_attach,	safe_attach),
93 	DEVMETHOD(device_detach,	safe_detach),
94 	DEVMETHOD(device_suspend,	safe_suspend),
95 	DEVMETHOD(device_resume,	safe_resume),
96 	DEVMETHOD(device_shutdown,	safe_shutdown),
97 
98 	/* bus interface */
99 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
100 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104 	DEVMETHOD(cryptodev_freesession,safe_freesession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110 	"safe",
111 	safe_methods,
112 	sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115 
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, NULL, NULL);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
147 
148 #ifdef SAFE_DEBUG
149 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
150 static	void safe_dump_ringstate(struct safe_softc *, const char *);
151 static	void safe_dump_intrstate(struct safe_softc *, const char *);
152 static	void safe_dump_request(struct safe_softc *, const char *,
153 		struct safe_ringentry *);
154 
155 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
156 
157 static	int safe_debug = 0;
158 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
159 	    0, "control debugging msgs");
160 #define	DPRINTF(_x)	if (safe_debug) kprintf _x
161 #else
162 #define	DPRINTF(_x)
163 #endif
164 
165 #define	READ_REG(sc,r) \
166 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
167 
168 #define WRITE_REG(sc,reg,val) \
169 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
170 
171 struct safe_stats safestats;
172 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
173 	    safe_stats, "driver statistics");
174 #ifndef SAFE_NO_RNG
175 static	int safe_rnginterval = 1;		/* poll once a second */
176 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
177 	    0, "RNG polling interval (secs)");
178 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
179 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
180 	    0, "RNG polling buffer size (32-bit words)");
181 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
182 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
183 	    0, "RNG max alarms before reset");
184 #endif /* SAFE_NO_RNG */
185 
186 static int
187 safe_probe(device_t dev)
188 {
189 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
190 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
191 		return (BUS_PROBE_DEFAULT);
192 	return (ENXIO);
193 }
194 
195 static const char*
196 safe_partname(struct safe_softc *sc)
197 {
198 	/* XXX sprintf numbers when not decoded */
199 	switch (pci_get_vendor(sc->sc_dev)) {
200 	case PCI_VENDOR_SAFENET:
201 		switch (pci_get_device(sc->sc_dev)) {
202 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
203 		}
204 		return "SafeNet unknown-part";
205 	}
206 	return "Unknown-vendor unknown-part";
207 }
208 
209 #ifndef SAFE_NO_RNG
210 static void
211 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
212 {
213 	uint32_t *p = (uint32_t *)buf;
214 
215 	for (count /= sizeof(uint32_t); count; count--)
216 		add_true_randomness(*p++);
217 }
218 #endif /* SAFE_NO_RNG */
219 
220 static int
221 safe_attach(device_t dev)
222 {
223 	struct safe_softc *sc = device_get_softc(dev);
224 	u_int32_t raddr;
225 	u_int32_t cmd, i, devinfo;
226 	int rid;
227 
228 	bzero(sc, sizeof (*sc));
229 	sc->sc_dev = dev;
230 
231 	/* XXX handle power management */
232 
233 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
234 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
235 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
236 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
237 
238 	if (!(cmd & PCIM_CMD_MEMEN)) {
239 		device_printf(dev, "failed to enable memory mapping\n");
240 		goto bad;
241 	}
242 
243 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
244 		device_printf(dev, "failed to enable bus mastering\n");
245 		goto bad;
246 	}
247 
248 	/*
249 	 * Setup memory-mapping of PCI registers.
250 	 */
251 	rid = BS_BAR;
252 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
253 					   RF_ACTIVE);
254 	if (sc->sc_sr == NULL) {
255 		device_printf(dev, "cannot map register space\n");
256 		goto bad;
257 	}
258 	sc->sc_st = rman_get_bustag(sc->sc_sr);
259 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
260 
261 	/*
262 	 * Arrange interrupt line.
263 	 */
264 	rid = 0;
265 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
266 					    RF_SHAREABLE|RF_ACTIVE);
267 	if (sc->sc_irq == NULL) {
268 		device_printf(dev, "could not map interrupt\n");
269 		goto bad1;
270 	}
271 	/*
272 	 * NB: Network code assumes we are blocked with splimp()
273 	 *     so make sure the IRQ is mapped appropriately.
274 	 */
275 	if (bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE,
276 			   safe_intr, sc, &sc->sc_ih, NULL)) {
277 		device_printf(dev, "could not establish interrupt\n");
278 		goto bad2;
279 	}
280 
281 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
282 	if (sc->sc_cid < 0) {
283 		device_printf(dev, "could not get crypto driver id\n");
284 		goto bad3;
285 	}
286 
287 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
288 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
289 
290 	/*
291 	 * Setup DMA descriptor area.
292 	 */
293 	if (bus_dma_tag_create(NULL,			/* parent */
294 			       1,			/* alignment */
295 			       SAFE_DMA_BOUNDARY,	/* boundary */
296 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
297 			       BUS_SPACE_MAXADDR,	/* highaddr */
298 			       NULL, NULL,		/* filter, filterarg */
299 			       SAFE_MAX_DMA,		/* maxsize */
300 			       SAFE_MAX_PART,		/* nsegments */
301 			       SAFE_MAX_SSIZE,		/* maxsegsize */
302 			       BUS_DMA_ALLOCNOW,	/* flags */
303 			       &sc->sc_srcdmat)) {
304 		device_printf(dev, "cannot allocate DMA tag\n");
305 		goto bad4;
306 	}
307 	if (bus_dma_tag_create(NULL,			/* parent */
308 			       1,			/* alignment */
309 			       SAFE_MAX_DSIZE,		/* boundary */
310 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
311 			       BUS_SPACE_MAXADDR,	/* highaddr */
312 			       NULL, NULL,		/* filter, filterarg */
313 			       SAFE_MAX_DMA,		/* maxsize */
314 			       SAFE_MAX_PART,		/* nsegments */
315 			       SAFE_MAX_DSIZE,		/* maxsegsize */
316 			       BUS_DMA_ALLOCNOW,	/* flags */
317 			       &sc->sc_dstdmat)) {
318 		device_printf(dev, "cannot allocate DMA tag\n");
319 		goto bad4;
320 	}
321 
322 	/*
323 	 * Allocate packet engine descriptors.
324 	 */
325 	if (safe_dma_malloc(sc,
326 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
327 	    &sc->sc_ringalloc, 0)) {
328 		device_printf(dev, "cannot allocate PE descriptor ring\n");
329 		bus_dma_tag_destroy(sc->sc_srcdmat);
330 		goto bad4;
331 	}
332 	/*
333 	 * Hookup the static portion of all our data structures.
334 	 */
335 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
336 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
337 	sc->sc_front = sc->sc_ring;
338 	sc->sc_back = sc->sc_ring;
339 	raddr = sc->sc_ringalloc.dma_paddr;
340 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
341 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
342 		struct safe_ringentry *re = &sc->sc_ring[i];
343 
344 		re->re_desc.d_sa = raddr +
345 			offsetof(struct safe_ringentry, re_sa);
346 		re->re_sa.sa_staterec = raddr +
347 			offsetof(struct safe_ringentry, re_sastate);
348 
349 		raddr += sizeof (struct safe_ringentry);
350 	}
351 	lockinit(&sc->sc_ringlock, "packet engine ring", 0, LK_CANRECURSE);
352 
353 	/*
354 	 * Allocate scatter and gather particle descriptors.
355 	 */
356 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
357 	    &sc->sc_spalloc, 0)) {
358 		device_printf(dev, "cannot allocate source particle "
359 			"descriptor ring\n");
360 		lockuninit(&sc->sc_ringlock);
361 		safe_dma_free(sc, &sc->sc_ringalloc);
362 		bus_dma_tag_destroy(sc->sc_srcdmat);
363 		goto bad4;
364 	}
365 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
366 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
367 	sc->sc_spfree = sc->sc_spring;
368 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
369 
370 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
371 	    &sc->sc_dpalloc, 0)) {
372 		device_printf(dev, "cannot allocate destination particle "
373 			"descriptor ring\n");
374 		lockuninit(&sc->sc_ringlock);
375 		safe_dma_free(sc, &sc->sc_spalloc);
376 		safe_dma_free(sc, &sc->sc_ringalloc);
377 		bus_dma_tag_destroy(sc->sc_dstdmat);
378 		goto bad4;
379 	}
380 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
381 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
382 	sc->sc_dpfree = sc->sc_dpring;
383 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
384 
385 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
386 
387 	devinfo = READ_REG(sc, SAFE_DEVINFO);
388 	if (devinfo & SAFE_DEVINFO_RNG) {
389 		sc->sc_flags |= SAFE_FLAGS_RNG;
390 		kprintf(" rng");
391 	}
392 	if (devinfo & SAFE_DEVINFO_PKEY) {
393 #if 0
394 		kprintf(" key");
395 		sc->sc_flags |= SAFE_FLAGS_KEY;
396 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
397 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
398 #endif
399 	}
400 	if (devinfo & SAFE_DEVINFO_DES) {
401 		kprintf(" des/3des");
402 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
403 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
404 	}
405 	if (devinfo & SAFE_DEVINFO_AES) {
406 		kprintf(" aes");
407 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
408 	}
409 	if (devinfo & SAFE_DEVINFO_MD5) {
410 		kprintf(" md5");
411 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
412 	}
413 	if (devinfo & SAFE_DEVINFO_SHA1) {
414 		kprintf(" sha1");
415 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
416 	}
417 	kprintf(" null");
418 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
419 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
420 	/* XXX other supported algorithms */
421 	kprintf("\n");
422 
423 	safe_reset_board(sc);		/* reset h/w */
424 	safe_init_pciregs(dev);		/* init pci settings */
425 	safe_init_board(sc);		/* init h/w */
426 
427 #ifndef SAFE_NO_RNG
428 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
429 #ifdef SAFE_RNDTEST
430 		sc->sc_rndtest = rndtest_attach(dev);
431 		if (sc->sc_rndtest)
432 			sc->sc_harvest = rndtest_harvest;
433 		else
434 			sc->sc_harvest = default_harvest;
435 #else
436 		sc->sc_harvest = default_harvest;
437 #endif
438 		safe_rng_init(sc);
439 
440 		callout_init_mp(&sc->sc_rngto);
441 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
442 	}
443 #endif /* SAFE_NO_RNG */
444 #ifdef SAFE_DEBUG
445 	safec = sc;			/* for use by hw.safe.dump */
446 #endif
447 	return (0);
448 bad4:
449 	crypto_unregister_all(sc->sc_cid);
450 bad3:
451 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
452 bad2:
453 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
454 bad1:
455 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
456 bad:
457 	return (ENXIO);
458 }
459 
460 /*
461  * Detach a device that successfully probed.
462  */
463 static int
464 safe_detach(device_t dev)
465 {
466 	struct safe_softc *sc = device_get_softc(dev);
467 
468 	/* XXX wait/abort active ops */
469 
470 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
471 
472 	callout_stop(&sc->sc_rngto);
473 
474 	crypto_unregister_all(sc->sc_cid);
475 
476 #ifdef SAFE_RNDTEST
477 	if (sc->sc_rndtest)
478 		rndtest_detach(sc->sc_rndtest);
479 #endif
480 
481 	safe_cleanchip(sc);
482 	safe_dma_free(sc, &sc->sc_dpalloc);
483 	safe_dma_free(sc, &sc->sc_spalloc);
484 	lockuninit(&sc->sc_ringlock);
485 	safe_dma_free(sc, &sc->sc_ringalloc);
486 
487 	bus_generic_detach(dev);
488 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
489 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
490 
491 	bus_dma_tag_destroy(sc->sc_srcdmat);
492 	bus_dma_tag_destroy(sc->sc_dstdmat);
493 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
494 
495 	return (0);
496 }
497 
498 /*
499  * Stop all chip i/o so that the kernel's probe routines don't
500  * get confused by errant DMAs when rebooting.
501  */
502 static int
503 safe_shutdown(device_t dev)
504 {
505 #ifdef notyet
506 	safe_stop(device_get_softc(dev));
507 #endif
508 	return (0);
509 }
510 
511 /*
512  * Device suspend routine.
513  */
514 static int
515 safe_suspend(device_t dev)
516 {
517 	struct safe_softc *sc = device_get_softc(dev);
518 
519 #ifdef notyet
520 	/* XXX stop the device and save PCI settings */
521 #endif
522 	sc->sc_suspended = 1;
523 
524 	return (0);
525 }
526 
527 static int
528 safe_resume(device_t dev)
529 {
530 	struct safe_softc *sc = device_get_softc(dev);
531 
532 #ifdef notyet
533 	/* XXX retore PCI settings and start the device */
534 #endif
535 	sc->sc_suspended = 0;
536 	return (0);
537 }
538 
539 /*
540  * SafeXcel Interrupt routine
541  */
542 static void
543 safe_intr(void *arg)
544 {
545 	struct safe_softc *sc = arg;
546 	volatile u_int32_t stat;
547 
548 	stat = READ_REG(sc, SAFE_HM_STAT);
549 	if (stat == 0)			/* shared irq, not for us */
550 		return;
551 
552 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
553 
554 	if ((stat & SAFE_INT_PE_DDONE)) {
555 		/*
556 		 * Descriptor(s) done; scan the ring and
557 		 * process completed operations.
558 		 */
559 		lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
560 		while (sc->sc_back != sc->sc_front) {
561 			struct safe_ringentry *re = sc->sc_back;
562 #ifdef SAFE_DEBUG
563 			if (safe_debug) {
564 				safe_dump_ringstate(sc, __func__);
565 				safe_dump_request(sc, __func__, re);
566 			}
567 #endif
568 			/*
569 			 * safe_process marks ring entries that were allocated
570 			 * but not used with a csr of zero.  This insures the
571 			 * ring front pointer never needs to be set backwards
572 			 * in the event that an entry is allocated but not used
573 			 * because of a setup error.
574 			 */
575 			if (re->re_desc.d_csr != 0) {
576 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
577 					break;
578 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
579 					break;
580 				sc->sc_nqchip--;
581 				safe_callback(sc, re);
582 			}
583 			if (++(sc->sc_back) == sc->sc_ringtop)
584 				sc->sc_back = sc->sc_ring;
585 		}
586 		lockmgr(&sc->sc_ringlock, LK_RELEASE);
587 	}
588 
589 	/*
590 	 * Check to see if we got any DMA Error
591 	 */
592 	if (stat & SAFE_INT_PE_ERROR) {
593 		DPRINTF(("dmaerr dmastat %08x\n",
594 			READ_REG(sc, SAFE_PE_DMASTAT)));
595 		safestats.st_dmaerr++;
596 		safe_totalreset(sc);
597 #if 0
598 		safe_feed(sc);
599 #endif
600 	}
601 
602 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
603 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
604 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
605 			sc->sc_needwakeup));
606 		sc->sc_needwakeup &= ~wakeup;
607 		crypto_unblock(sc->sc_cid, wakeup);
608 	}
609 }
610 
611 /*
612  * safe_feed() - post a request to chip
613  */
614 static void
615 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
616 {
617 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
618 	if (re->re_dst_map != NULL)
619 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
620 			BUS_DMASYNC_PREREAD);
621 	/* XXX have no smaller granularity */
622 	safe_dma_sync(&sc->sc_ringalloc,
623 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
624 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
625 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
626 
627 #ifdef SAFE_DEBUG
628 	if (safe_debug) {
629 		safe_dump_ringstate(sc, __func__);
630 		safe_dump_request(sc, __func__, re);
631 	}
632 #endif
633 	sc->sc_nqchip++;
634 	if (sc->sc_nqchip > safestats.st_maxqchip)
635 		safestats.st_maxqchip = sc->sc_nqchip;
636 	/* poke h/w to check descriptor ring, any value can be written */
637 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
638 }
639 
640 #define	N(a)	(sizeof(a) / sizeof (a[0]))
641 static void
642 safe_setup_enckey(struct safe_session *ses, caddr_t key)
643 {
644 	int i;
645 
646 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
647 
648 	/* PE is little-endian, insure proper byte order */
649 	for (i = 0; i < N(ses->ses_key); i++)
650 		ses->ses_key[i] = htole32(ses->ses_key[i]);
651 }
652 
653 static void
654 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
655 {
656 	MD5_CTX md5ctx;
657 	SHA1_CTX sha1ctx;
658 	int i;
659 
660 
661 	for (i = 0; i < klen; i++)
662 		key[i] ^= HMAC_IPAD_VAL;
663 
664 	if (algo == CRYPTO_MD5_HMAC) {
665 		MD5Init(&md5ctx);
666 		MD5Update(&md5ctx, key, klen);
667 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
668 		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
669 	} else {
670 		SHA1Init(&sha1ctx);
671 		SHA1Update(&sha1ctx, key, klen);
672 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
673 		    SHA1_HMAC_BLOCK_LEN - klen);
674 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
675 	}
676 
677 	for (i = 0; i < klen; i++)
678 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
679 
680 	if (algo == CRYPTO_MD5_HMAC) {
681 		MD5Init(&md5ctx);
682 		MD5Update(&md5ctx, key, klen);
683 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
684 		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
685 	} else {
686 		SHA1Init(&sha1ctx);
687 		SHA1Update(&sha1ctx, key, klen);
688 		SHA1Update(&sha1ctx, hmac_opad_buffer,
689 		    SHA1_HMAC_BLOCK_LEN - klen);
690 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
691 	}
692 
693 	for (i = 0; i < klen; i++)
694 		key[i] ^= HMAC_OPAD_VAL;
695 
696 	/* PE is little-endian, insure proper byte order */
697 	for (i = 0; i < N(ses->ses_hminner); i++) {
698 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
699 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
700 	}
701 }
702 #undef N
703 
704 /*
705  * Allocate a new 'session' and return an encoded session id.  'sidp'
706  * contains our registration id, and should contain an encoded session
707  * id on successful allocation.
708  */
709 static int
710 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
711 {
712 	struct safe_softc *sc = device_get_softc(dev);
713 	struct cryptoini *c, *encini = NULL, *macini = NULL;
714 	struct safe_session *ses = NULL;
715 	int sesn;
716 
717 	if (sidp == NULL || cri == NULL || sc == NULL)
718 		return (EINVAL);
719 
720 	for (c = cri; c != NULL; c = c->cri_next) {
721 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
722 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
723 		    c->cri_alg == CRYPTO_NULL_HMAC) {
724 			if (macini)
725 				return (EINVAL);
726 			macini = c;
727 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
728 		    c->cri_alg == CRYPTO_3DES_CBC ||
729 		    c->cri_alg == CRYPTO_AES_CBC ||
730 		    c->cri_alg == CRYPTO_NULL_CBC) {
731 			if (encini)
732 				return (EINVAL);
733 			encini = c;
734 		} else
735 			return (EINVAL);
736 	}
737 	if (encini == NULL && macini == NULL)
738 		return (EINVAL);
739 	if (encini) {			/* validate key length */
740 		switch (encini->cri_alg) {
741 		case CRYPTO_DES_CBC:
742 			if (encini->cri_klen != 64)
743 				return (EINVAL);
744 			break;
745 		case CRYPTO_3DES_CBC:
746 			if (encini->cri_klen != 192)
747 				return (EINVAL);
748 			break;
749 		case CRYPTO_AES_CBC:
750 			if (encini->cri_klen != 128 &&
751 			    encini->cri_klen != 192 &&
752 			    encini->cri_klen != 256)
753 				return (EINVAL);
754 			break;
755 		}
756 	}
757 
758 	if (sc->sc_sessions == NULL) {
759 		ses = sc->sc_sessions = (struct safe_session *)kmalloc(
760 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
761 		if (ses == NULL)
762 			return (ENOMEM);
763 		sesn = 0;
764 		sc->sc_nsessions = 1;
765 	} else {
766 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
767 			if (sc->sc_sessions[sesn].ses_used == 0) {
768 				ses = &sc->sc_sessions[sesn];
769 				break;
770 			}
771 		}
772 
773 		if (ses == NULL) {
774 			sesn = sc->sc_nsessions;
775 			ses = (struct safe_session *)kmalloc((sesn + 1) *
776 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
777 			if (ses == NULL)
778 				return (ENOMEM);
779 			bcopy(sc->sc_sessions, ses, sesn *
780 			    sizeof(struct safe_session));
781 			bzero(sc->sc_sessions, sesn *
782 			    sizeof(struct safe_session));
783 			kfree(sc->sc_sessions, M_DEVBUF);
784 			sc->sc_sessions = ses;
785 			ses = &sc->sc_sessions[sesn];
786 			sc->sc_nsessions++;
787 		}
788 	}
789 
790 	bzero(ses, sizeof(struct safe_session));
791 	ses->ses_used = 1;
792 
793 	if (encini) {
794 		/* get an IV */
795 		/* XXX may read fewer than requested */
796 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
797 
798 		ses->ses_klen = encini->cri_klen;
799 		if (encini->cri_key != NULL)
800 			safe_setup_enckey(ses, encini->cri_key);
801 	}
802 
803 	if (macini) {
804 		ses->ses_mlen = macini->cri_mlen;
805 		if (ses->ses_mlen == 0) {
806 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
807 				ses->ses_mlen = MD5_HASH_LEN;
808 			else
809 				ses->ses_mlen = SHA1_HASH_LEN;
810 		}
811 
812 		if (macini->cri_key != NULL) {
813 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
814 			    macini->cri_klen / 8);
815 		}
816 	}
817 
818 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
819 	return (0);
820 }
821 
822 /*
823  * Deallocate a session.
824  */
825 static int
826 safe_freesession(device_t dev, u_int64_t tid)
827 {
828 	struct safe_softc *sc = device_get_softc(dev);
829 	int session, ret;
830 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
831 
832 	if (sc == NULL)
833 		return (EINVAL);
834 
835 	session = SAFE_SESSION(sid);
836 	if (session < sc->sc_nsessions) {
837 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
838 		ret = 0;
839 	} else
840 		ret = EINVAL;
841 	return (ret);
842 }
843 
844 static void
845 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
846 {
847 	struct safe_operand *op = arg;
848 
849 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
850 		(u_int) mapsize, nsegs, error));
851 	if (error != 0)
852 		return;
853 	op->mapsize = mapsize;
854 	op->nsegs = nsegs;
855 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
856 }
857 
858 static int
859 safe_process(device_t dev, struct cryptop *crp, int hint)
860 {
861 	struct safe_softc *sc = device_get_softc(dev);
862 	int err = 0, i, nicealign, uniform;
863 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
864 	int bypass, oplen, ivsize;
865 	caddr_t iv;
866 	int16_t coffset;
867 	struct safe_session *ses;
868 	struct safe_ringentry *re;
869 	struct safe_sarec *sa;
870 	struct safe_pdesc *pd;
871 	u_int32_t cmd0, cmd1, staterec;
872 
873 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
874 		safestats.st_invalid++;
875 		return (EINVAL);
876 	}
877 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
878 		safestats.st_badsession++;
879 		return (EINVAL);
880 	}
881 
882 	lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
883 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
884 		safestats.st_ringfull++;
885 		sc->sc_needwakeup |= CRYPTO_SYMQ;
886 		lockmgr(&sc->sc_ringlock, LK_RELEASE);
887 		return (ERESTART);
888 	}
889 	re = sc->sc_front;
890 
891 	staterec = re->re_sa.sa_staterec;	/* save */
892 	/* NB: zero everything but the PE descriptor */
893 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
894 	re->re_sa.sa_staterec = staterec;	/* restore */
895 
896 	re->re_crp = crp;
897 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
898 
899 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
900 		re->re_src_m = (struct mbuf *)crp->crp_buf;
901 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
902 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
903 		re->re_src_io = (struct uio *)crp->crp_buf;
904 		re->re_dst_io = (struct uio *)crp->crp_buf;
905 	} else {
906 		safestats.st_badflags++;
907 		err = EINVAL;
908 		goto errout;	/* XXX we don't handle contiguous blocks! */
909 	}
910 
911 	sa = &re->re_sa;
912 	ses = &sc->sc_sessions[re->re_sesn];
913 
914 	crd1 = crp->crp_desc;
915 	if (crd1 == NULL) {
916 		safestats.st_nodesc++;
917 		err = EINVAL;
918 		goto errout;
919 	}
920 	crd2 = crd1->crd_next;
921 
922 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
923 	cmd1 = 0;
924 	if (crd2 == NULL) {
925 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
926 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
927 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
928 			maccrd = crd1;
929 			enccrd = NULL;
930 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
931 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
932 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
933 		    crd1->crd_alg == CRYPTO_AES_CBC ||
934 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
935 			maccrd = NULL;
936 			enccrd = crd1;
937 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
938 		} else {
939 			safestats.st_badalg++;
940 			err = EINVAL;
941 			goto errout;
942 		}
943 	} else {
944 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
945 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
946 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
947 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
948 			crd2->crd_alg == CRYPTO_3DES_CBC ||
949 		        crd2->crd_alg == CRYPTO_AES_CBC ||
950 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
951 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
952 			maccrd = crd1;
953 			enccrd = crd2;
954 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
955 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
956 		    crd1->crd_alg == CRYPTO_AES_CBC ||
957 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
958 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
959 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
960 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
961 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
962 			enccrd = crd1;
963 			maccrd = crd2;
964 		} else {
965 			safestats.st_badalg++;
966 			err = EINVAL;
967 			goto errout;
968 		}
969 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
970 	}
971 
972 	if (enccrd) {
973 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
974 			safe_setup_enckey(ses, enccrd->crd_key);
975 
976 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
977 			cmd0 |= SAFE_SA_CMD0_DES;
978 			cmd1 |= SAFE_SA_CMD1_CBC;
979 			ivsize = 2*sizeof(u_int32_t);
980 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
981 			cmd0 |= SAFE_SA_CMD0_3DES;
982 			cmd1 |= SAFE_SA_CMD1_CBC;
983 			ivsize = 2*sizeof(u_int32_t);
984 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
985 			cmd0 |= SAFE_SA_CMD0_AES;
986 			cmd1 |= SAFE_SA_CMD1_CBC;
987 			if (ses->ses_klen == 128)
988 			     cmd1 |=  SAFE_SA_CMD1_AES128;
989 			else if (ses->ses_klen == 192)
990 			     cmd1 |=  SAFE_SA_CMD1_AES192;
991 			else
992 			     cmd1 |=  SAFE_SA_CMD1_AES256;
993 			ivsize = 4*sizeof(u_int32_t);
994 		} else {
995 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
996 			ivsize = 0;
997 		}
998 
999 		/*
1000 		 * Setup encrypt/decrypt state.  When using basic ops
1001 		 * we can't use an inline IV because hash/crypt offset
1002 		 * must be from the end of the IV to the start of the
1003 		 * crypt data and this leaves out the preceding header
1004 		 * from the hash calculation.  Instead we place the IV
1005 		 * in the state record and set the hash/crypt offset to
1006 		 * copy both the header+IV.
1007 		 */
1008 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1009 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1010 
1011 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1012 				iv = enccrd->crd_iv;
1013 			else
1014 				iv = (caddr_t) ses->ses_iv;
1015 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1016 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1017 				    enccrd->crd_inject, ivsize, iv);
1018 			}
1019 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1020 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1021 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1022 		} else {
1023 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1024 
1025 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1026 				bcopy(enccrd->crd_iv,
1027 					re->re_sastate.sa_saved_iv, ivsize);
1028 			} else {
1029 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1030 				    enccrd->crd_inject, ivsize,
1031 				    (caddr_t)re->re_sastate.sa_saved_iv);
1032 			}
1033 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1034 		}
1035 		/*
1036 		 * For basic encryption use the zero pad algorithm.
1037 		 * This pads results to an 8-byte boundary and
1038 		 * suppresses padding verification for inbound (i.e.
1039 		 * decrypt) operations.
1040 		 *
1041 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1042 		 */
1043 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1044 
1045 		/* XXX assert key bufs have the same size */
1046 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1047 	}
1048 
1049 	if (maccrd) {
1050 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1051 			safe_setup_mackey(ses, maccrd->crd_alg,
1052 			    maccrd->crd_key, maccrd->crd_klen / 8);
1053 		}
1054 
1055 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1056 			cmd0 |= SAFE_SA_CMD0_MD5;
1057 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1058 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1059 			cmd0 |= SAFE_SA_CMD0_SHA1;
1060 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1061 		} else {
1062 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1063 		}
1064 		/*
1065 		 * Digest data is loaded from the SA and the hash
1066 		 * result is saved to the state block where we
1067 		 * retrieve it for return to the caller.
1068 		 */
1069 		/* XXX assert digest bufs have the same size */
1070 		bcopy(ses->ses_hminner, sa->sa_indigest,
1071 			sizeof(sa->sa_indigest));
1072 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1073 			sizeof(sa->sa_outdigest));
1074 
1075 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1076 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1077 	}
1078 
1079 	if (enccrd && maccrd) {
1080 		/*
1081 		 * The offset from hash data to the start of
1082 		 * crypt data is the difference in the skips.
1083 		 */
1084 		bypass = maccrd->crd_skip;
1085 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1086 		if (coffset < 0) {
1087 			DPRINTF(("%s: hash does not precede crypt; "
1088 				"mac skip %u enc skip %u\n",
1089 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1090 			safestats.st_skipmismatch++;
1091 			err = EINVAL;
1092 			goto errout;
1093 		}
1094 		oplen = enccrd->crd_skip + enccrd->crd_len;
1095 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1096 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1097 				__func__, maccrd->crd_skip + maccrd->crd_len,
1098 				oplen));
1099 			safestats.st_lenmismatch++;
1100 			err = EINVAL;
1101 			goto errout;
1102 		}
1103 #ifdef SAFE_DEBUG
1104 		if (safe_debug) {
1105 			kprintf("mac: skip %d, len %d, inject %d\n",
1106 			    maccrd->crd_skip, maccrd->crd_len,
1107 			    maccrd->crd_inject);
1108 			kprintf("enc: skip %d, len %d, inject %d\n",
1109 			    enccrd->crd_skip, enccrd->crd_len,
1110 			    enccrd->crd_inject);
1111 			kprintf("bypass %d coffset %d oplen %d\n",
1112 				bypass, coffset, oplen);
1113 		}
1114 #endif
1115 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1116 			DPRINTF(("%s: coffset %u misaligned\n",
1117 				__func__, coffset));
1118 			safestats.st_coffmisaligned++;
1119 			err = EINVAL;
1120 			goto errout;
1121 		}
1122 		coffset >>= 2;
1123 		if (coffset > 255) {	/* offset must be <256 dwords */
1124 			DPRINTF(("%s: coffset %u too big\n",
1125 				__func__, coffset));
1126 			safestats.st_cofftoobig++;
1127 			err = EINVAL;
1128 			goto errout;
1129 		}
1130 		/*
1131 		 * Tell the hardware to copy the header to the output.
1132 		 * The header is defined as the data from the end of
1133 		 * the bypass to the start of data to be encrypted.
1134 		 * Typically this is the inline IV.  Note that you need
1135 		 * to do this even if src+dst are the same; it appears
1136 		 * that w/o this bit the crypted data is written
1137 		 * immediately after the bypass data.
1138 		 */
1139 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1140 		/*
1141 		 * Disable IP header mutable bit handling.  This is
1142 		 * needed to get correct HMAC calculations.
1143 		 */
1144 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1145 	} else {
1146 		if (enccrd) {
1147 			bypass = enccrd->crd_skip;
1148 			oplen = bypass + enccrd->crd_len;
1149 		} else {
1150 			bypass = maccrd->crd_skip;
1151 			oplen = bypass + maccrd->crd_len;
1152 		}
1153 		coffset = 0;
1154 	}
1155 	/* XXX verify multiple of 4 when using s/g */
1156 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1157 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1158 		safestats.st_bypasstoobig++;
1159 		err = EINVAL;
1160 		goto errout;
1161 	}
1162 
1163 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1164 		safestats.st_nomap++;
1165 		err = ENOMEM;
1166 		goto errout;
1167 	}
1168 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1169 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1170 		    re->re_src_m, safe_op_cb,
1171 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1172 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1173 			re->re_src_map = NULL;
1174 			safestats.st_noload++;
1175 			err = ENOMEM;
1176 			goto errout;
1177 		}
1178 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1179 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1180 		    re->re_src_io, safe_op_cb,
1181 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1182 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1183 			re->re_src_map = NULL;
1184 			safestats.st_noload++;
1185 			err = ENOMEM;
1186 			goto errout;
1187 		}
1188 	}
1189 	nicealign = safe_dmamap_aligned(&re->re_src);
1190 	uniform = safe_dmamap_uniform(&re->re_src);
1191 
1192 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1193 		nicealign, uniform, re->re_src.nsegs));
1194 	if (re->re_src.nsegs > 1) {
1195 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1196 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1197 		for (i = 0; i < re->re_src_nsegs; i++) {
1198 			/* NB: no need to check if there's space */
1199 			pd = sc->sc_spfree;
1200 			if (++(sc->sc_spfree) == sc->sc_springtop)
1201 				sc->sc_spfree = sc->sc_spring;
1202 
1203 			KASSERT((pd->pd_flags&3) == 0 ||
1204 				(pd->pd_flags&3) == SAFE_PD_DONE,
1205 				("bogus source particle descriptor; flags %x",
1206 				pd->pd_flags));
1207 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1208 			pd->pd_size = re->re_src_segs[i].ds_len;
1209 			pd->pd_flags = SAFE_PD_READY;
1210 		}
1211 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1212 	} else {
1213 		/*
1214 		 * No need for gather, reference the operand directly.
1215 		 */
1216 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1217 	}
1218 
1219 	if (enccrd == NULL && maccrd != NULL) {
1220 		/*
1221 		 * Hash op; no destination needed.
1222 		 */
1223 	} else {
1224 		if (crp->crp_flags & CRYPTO_F_IOV) {
1225 			if (!nicealign) {
1226 				safestats.st_iovmisaligned++;
1227 				err = EINVAL;
1228 				goto errout;
1229 			}
1230 			if (uniform != 1) {
1231 				/*
1232 				 * Source is not suitable for direct use as
1233 				 * the destination.  Create a new scatter/gather
1234 				 * list based on the destination requirements
1235 				 * and check if that's ok.
1236 				 */
1237 				if (bus_dmamap_create(sc->sc_dstdmat,
1238 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1239 					safestats.st_nomap++;
1240 					err = ENOMEM;
1241 					goto errout;
1242 				}
1243 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1244 				    re->re_dst_map, re->re_dst_io,
1245 				    safe_op_cb, &re->re_dst,
1246 				    BUS_DMA_NOWAIT) != 0) {
1247 					bus_dmamap_destroy(sc->sc_dstdmat,
1248 						re->re_dst_map);
1249 					re->re_dst_map = NULL;
1250 					safestats.st_noload++;
1251 					err = ENOMEM;
1252 					goto errout;
1253 				}
1254 				uniform = safe_dmamap_uniform(&re->re_dst);
1255 				if (!uniform) {
1256 					/*
1257 					 * There's no way to handle the DMA
1258 					 * requirements with this uio.  We
1259 					 * could create a separate DMA area for
1260 					 * the result and then copy it back,
1261 					 * but for now we just bail and return
1262 					 * an error.  Note that uio requests
1263 					 * > SAFE_MAX_DSIZE are handled because
1264 					 * the DMA map and segment list for the
1265 					 * destination wil result in a
1266 					 * destination particle list that does
1267 					 * the necessary scatter DMA.
1268 					 */
1269 					safestats.st_iovnotuniform++;
1270 					err = EINVAL;
1271 					goto errout;
1272 				}
1273 			} else
1274 				re->re_dst = re->re_src;
1275 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1276 			if (nicealign && uniform == 1) {
1277 				/*
1278 				 * Source layout is suitable for direct
1279 				 * sharing of the DMA map and segment list.
1280 				 */
1281 				re->re_dst = re->re_src;
1282 			} else if (nicealign && uniform == 2) {
1283 				/*
1284 				 * The source is properly aligned but requires a
1285 				 * different particle list to handle DMA of the
1286 				 * result.  Create a new map and do the load to
1287 				 * create the segment list.  The particle
1288 				 * descriptor setup code below will handle the
1289 				 * rest.
1290 				 */
1291 				if (bus_dmamap_create(sc->sc_dstdmat,
1292 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1293 					safestats.st_nomap++;
1294 					err = ENOMEM;
1295 					goto errout;
1296 				}
1297 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1298 				    re->re_dst_map, re->re_dst_m,
1299 				    safe_op_cb, &re->re_dst,
1300 				    BUS_DMA_NOWAIT) != 0) {
1301 					bus_dmamap_destroy(sc->sc_dstdmat,
1302 						re->re_dst_map);
1303 					re->re_dst_map = NULL;
1304 					safestats.st_noload++;
1305 					err = ENOMEM;
1306 					goto errout;
1307 				}
1308 			} else {		/* !(aligned and/or uniform) */
1309 				int totlen, len;
1310 				struct mbuf *m, *top, **mp;
1311 
1312 				/*
1313 				 * DMA constraints require that we allocate a
1314 				 * new mbuf chain for the destination.  We
1315 				 * allocate an entire new set of mbufs of
1316 				 * optimal/required size and then tell the
1317 				 * hardware to copy any bits that are not
1318 				 * created as a byproduct of the operation.
1319 				 */
1320 				if (!nicealign)
1321 					safestats.st_unaligned++;
1322 				if (!uniform)
1323 					safestats.st_notuniform++;
1324 				totlen = re->re_src_mapsize;
1325 				if (re->re_src_m->m_flags & M_PKTHDR) {
1326 					len = MHLEN;
1327 					MGETHDR(m, MB_DONTWAIT, MT_DATA);
1328 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1329 					    MB_DONTWAIT)) {
1330 						m_free(m);
1331 						m = NULL;
1332 					}
1333 				} else {
1334 					len = MLEN;
1335 					MGET(m, MB_DONTWAIT, MT_DATA);
1336 				}
1337 				if (m == NULL) {
1338 					safestats.st_nombuf++;
1339 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1340 					goto errout;
1341 				}
1342 				if (totlen >= MINCLSIZE) {
1343 					MCLGET(m, MB_DONTWAIT);
1344 					if ((m->m_flags & M_EXT) == 0) {
1345 						m_free(m);
1346 						safestats.st_nomcl++;
1347 						err = sc->sc_nqchip ?
1348 							ERESTART : ENOMEM;
1349 						goto errout;
1350 					}
1351 					len = MCLBYTES;
1352 				}
1353 				m->m_len = len;
1354 				top = NULL;
1355 				mp = &top;
1356 
1357 				while (totlen > 0) {
1358 					if (top) {
1359 						MGET(m, MB_DONTWAIT, MT_DATA);
1360 						if (m == NULL) {
1361 							m_freem(top);
1362 							safestats.st_nombuf++;
1363 							err = sc->sc_nqchip ?
1364 							    ERESTART : ENOMEM;
1365 							goto errout;
1366 						}
1367 						len = MLEN;
1368 					}
1369 					if (top && totlen >= MINCLSIZE) {
1370 						MCLGET(m, MB_DONTWAIT);
1371 						if ((m->m_flags & M_EXT) == 0) {
1372 							*mp = m;
1373 							m_freem(top);
1374 							safestats.st_nomcl++;
1375 							err = sc->sc_nqchip ?
1376 							    ERESTART : ENOMEM;
1377 							goto errout;
1378 						}
1379 						len = MCLBYTES;
1380 					}
1381 					m->m_len = len = min(totlen, len);
1382 					totlen -= len;
1383 					*mp = m;
1384 					mp = &m->m_next;
1385 				}
1386 				re->re_dst_m = top;
1387 				if (bus_dmamap_create(sc->sc_dstdmat,
1388 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1389 					safestats.st_nomap++;
1390 					err = ENOMEM;
1391 					goto errout;
1392 				}
1393 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1394 				    re->re_dst_map, re->re_dst_m,
1395 				    safe_op_cb, &re->re_dst,
1396 				    BUS_DMA_NOWAIT) != 0) {
1397 					bus_dmamap_destroy(sc->sc_dstdmat,
1398 					re->re_dst_map);
1399 					re->re_dst_map = NULL;
1400 					safestats.st_noload++;
1401 					err = ENOMEM;
1402 					goto errout;
1403 				}
1404 				if (re->re_src.mapsize > oplen) {
1405 					/*
1406 					 * There's data following what the
1407 					 * hardware will copy for us.  If this
1408 					 * isn't just the ICV (that's going to
1409 					 * be written on completion), copy it
1410 					 * to the new mbufs
1411 					 */
1412 					if (!(maccrd &&
1413 					    (re->re_src.mapsize-oplen) == 12 &&
1414 					    maccrd->crd_inject == oplen))
1415 						safe_mcopy(re->re_src_m,
1416 							   re->re_dst_m,
1417 							   oplen);
1418 					else
1419 						safestats.st_noicvcopy++;
1420 				}
1421 			}
1422 		} else {
1423 			safestats.st_badflags++;
1424 			err = EINVAL;
1425 			goto errout;
1426 		}
1427 
1428 		if (re->re_dst.nsegs > 1) {
1429 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1430 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1431 			for (i = 0; i < re->re_dst_nsegs; i++) {
1432 				pd = sc->sc_dpfree;
1433 				KASSERT((pd->pd_flags&3) == 0 ||
1434 					(pd->pd_flags&3) == SAFE_PD_DONE,
1435 					("bogus dest particle descriptor; flags %x",
1436 						pd->pd_flags));
1437 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1438 					sc->sc_dpfree = sc->sc_dpring;
1439 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1440 				pd->pd_flags = SAFE_PD_READY;
1441 			}
1442 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1443 		} else {
1444 			/*
1445 			 * No need for scatter, reference the operand directly.
1446 			 */
1447 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * All done with setup; fillin the SA command words
1453 	 * and the packet engine descriptor.  The operation
1454 	 * is now ready for submission to the hardware.
1455 	 */
1456 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1457 	sa->sa_cmd1 = cmd1
1458 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1459 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1460 		    | SAFE_SA_CMD1_SRPCI
1461 		    ;
1462 	/*
1463 	 * NB: the order of writes is important here.  In case the
1464 	 * chip is scanning the ring because of an outstanding request
1465 	 * it might nab this one too.  In that case we need to make
1466 	 * sure the setup is complete before we write the length
1467 	 * field of the descriptor as it signals the descriptor is
1468 	 * ready for processing.
1469 	 */
1470 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1471 	if (maccrd)
1472 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1473 	re->re_desc.d_len = oplen
1474 			  | SAFE_PE_LEN_READY
1475 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1476 			  ;
1477 
1478 	safestats.st_ipackets++;
1479 	safestats.st_ibytes += oplen;
1480 
1481 	if (++(sc->sc_front) == sc->sc_ringtop)
1482 		sc->sc_front = sc->sc_ring;
1483 
1484 	/* XXX honor batching */
1485 	safe_feed(sc, re);
1486 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
1487 	return (0);
1488 
1489 errout:
1490 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1491 		m_freem(re->re_dst_m);
1492 
1493 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1494 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1495 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1496 	}
1497 	if (re->re_src_map != NULL) {
1498 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1499 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1500 	}
1501 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
1502 	if (err != ERESTART) {
1503 		crp->crp_etype = err;
1504 		crypto_done(crp);
1505 	} else {
1506 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1507 	}
1508 	return (err);
1509 }
1510 
1511 static void
1512 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1513 {
1514 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1515 	struct cryptodesc *crd;
1516 
1517 	safestats.st_opackets++;
1518 	safestats.st_obytes += re->re_dst.mapsize;
1519 
1520 	safe_dma_sync(&sc->sc_ringalloc,
1521 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1522 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1523 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1524 			re->re_desc.d_csr,
1525 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1526 		safestats.st_peoperr++;
1527 		crp->crp_etype = EIO;		/* something more meaningful? */
1528 	}
1529 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1530 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1531 		    BUS_DMASYNC_POSTREAD);
1532 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1533 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1534 	}
1535 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1536 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1537 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1538 
1539 	/*
1540 	 * If result was written to a differet mbuf chain, swap
1541 	 * it in as the return value and reclaim the original.
1542 	 */
1543 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1544 		m_freem(re->re_src_m);
1545 		crp->crp_buf = (caddr_t)re->re_dst_m;
1546 	}
1547 
1548 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1549 		/* copy out IV for future use */
1550 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1551 			int ivsize;
1552 
1553 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1554 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1555 				ivsize = 2*sizeof(u_int32_t);
1556 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1557 				ivsize = 4*sizeof(u_int32_t);
1558 			} else
1559 				continue;
1560 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1561 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1562 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1563 			break;
1564 		}
1565 	}
1566 
1567 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1568 		/* copy out ICV result */
1569 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1570 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1571 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1572 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1573 				continue;
1574 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1575 				/*
1576 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1577 				 * before copy them to their destination.
1578 				 */
1579 				re->re_sastate.sa_saved_indigest[0] =
1580 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1581 				re->re_sastate.sa_saved_indigest[1] =
1582 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1583 				re->re_sastate.sa_saved_indigest[2] =
1584 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1585 			}
1586 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1587 			    crd->crd_inject,
1588 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1589 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1590 			break;
1591 		}
1592 	}
1593 	crypto_done(crp);
1594 }
1595 
1596 /*
1597  * Copy all data past offset from srcm to dstm.
1598  */
1599 static void
1600 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1601 {
1602 	u_int j, dlen, slen;
1603 	caddr_t dptr, sptr;
1604 
1605 	/*
1606 	 * Advance src and dst to offset.
1607 	 */
1608 	j = offset;
1609 	while (j >= 0) {
1610 		if (srcm->m_len > j)
1611 			break;
1612 		j -= srcm->m_len;
1613 		srcm = srcm->m_next;
1614 		if (srcm == NULL)
1615 			return;
1616 	}
1617 	sptr = mtod(srcm, caddr_t) + j;
1618 	slen = srcm->m_len - j;
1619 
1620 	j = offset;
1621 	while (j >= 0) {
1622 		if (dstm->m_len > j)
1623 			break;
1624 		j -= dstm->m_len;
1625 		dstm = dstm->m_next;
1626 		if (dstm == NULL)
1627 			return;
1628 	}
1629 	dptr = mtod(dstm, caddr_t) + j;
1630 	dlen = dstm->m_len - j;
1631 
1632 	/*
1633 	 * Copy everything that remains.
1634 	 */
1635 	for (;;) {
1636 		j = min(slen, dlen);
1637 		bcopy(sptr, dptr, j);
1638 		if (slen == j) {
1639 			srcm = srcm->m_next;
1640 			if (srcm == NULL)
1641 				return;
1642 			sptr = srcm->m_data;
1643 			slen = srcm->m_len;
1644 		} else
1645 			sptr += j, slen -= j;
1646 		if (dlen == j) {
1647 			dstm = dstm->m_next;
1648 			if (dstm == NULL)
1649 				return;
1650 			dptr = dstm->m_data;
1651 			dlen = dstm->m_len;
1652 		} else
1653 			dptr += j, dlen -= j;
1654 	}
1655 }
1656 
1657 #ifndef SAFE_NO_RNG
1658 #define	SAFE_RNG_MAXWAIT	1000
1659 
1660 static void
1661 safe_rng_init(struct safe_softc *sc)
1662 {
1663 	u_int32_t w, v;
1664 	int i;
1665 
1666 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1667 	/* use default value according to the manual */
1668 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1669 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1670 
1671 	/*
1672 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1673 	 * is brought out of reset the ready status flag does not
1674 	 * work until the RNG has finished its internal initialization.
1675 	 *
1676 	 * So in order to determine the device is through its
1677 	 * initialization we must read the data register, using the
1678 	 * status reg in the read in case it is initialized.  Then read
1679 	 * the data register until it changes from the first read.
1680 	 * Once it changes read the data register until it changes
1681 	 * again.  At this time the RNG is considered initialized.
1682 	 * This could take between 750ms - 1000ms in time.
1683 	 */
1684 	i = 0;
1685 	w = READ_REG(sc, SAFE_RNG_OUT);
1686 	do {
1687 		v = READ_REG(sc, SAFE_RNG_OUT);
1688 		if (v != w) {
1689 			w = v;
1690 			break;
1691 		}
1692 		DELAY(10);
1693 	} while (++i < SAFE_RNG_MAXWAIT);
1694 
1695 	/* Wait Until data changes again */
1696 	i = 0;
1697 	do {
1698 		v = READ_REG(sc, SAFE_RNG_OUT);
1699 		if (v != w)
1700 			break;
1701 		DELAY(10);
1702 	} while (++i < SAFE_RNG_MAXWAIT);
1703 }
1704 
1705 static __inline void
1706 safe_rng_disable_short_cycle(struct safe_softc *sc)
1707 {
1708 	WRITE_REG(sc, SAFE_RNG_CTRL,
1709 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1710 }
1711 
1712 static __inline void
1713 safe_rng_enable_short_cycle(struct safe_softc *sc)
1714 {
1715 	WRITE_REG(sc, SAFE_RNG_CTRL,
1716 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1717 }
1718 
1719 static __inline u_int32_t
1720 safe_rng_read(struct safe_softc *sc)
1721 {
1722 	int i;
1723 
1724 	i = 0;
1725 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1726 		;
1727 	return READ_REG(sc, SAFE_RNG_OUT);
1728 }
1729 
1730 static void
1731 safe_rng(void *arg)
1732 {
1733 	struct safe_softc *sc = arg;
1734 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1735 	u_int maxwords;
1736 	int i;
1737 
1738 	safestats.st_rng++;
1739 	/*
1740 	 * Fetch the next block of data.
1741 	 */
1742 	maxwords = safe_rngbufsize;
1743 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1744 		maxwords = SAFE_RNG_MAXBUFSIZ;
1745 retry:
1746 	for (i = 0; i < maxwords; i++)
1747 		buf[i] = safe_rng_read(sc);
1748 	/*
1749 	 * Check the comparator alarm count and reset the h/w if
1750 	 * it exceeds our threshold.  This guards against the
1751 	 * hardware oscillators resonating with external signals.
1752 	 */
1753 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1754 		u_int32_t freq_inc, w;
1755 
1756 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1757 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1758 		safestats.st_rngalarm++;
1759 		safe_rng_enable_short_cycle(sc);
1760 		freq_inc = 18;
1761 		for (i = 0; i < 64; i++) {
1762 			w = READ_REG(sc, SAFE_RNG_CNFG);
1763 			freq_inc = ((w + freq_inc) & 0x3fL);
1764 			w = ((w & ~0x3fL) | freq_inc);
1765 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1766 
1767 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1768 
1769 			(void) safe_rng_read(sc);
1770 			DELAY(25);
1771 
1772 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1773 				safe_rng_disable_short_cycle(sc);
1774 				goto retry;
1775 			}
1776 			freq_inc = 1;
1777 		}
1778 		safe_rng_disable_short_cycle(sc);
1779 	} else
1780 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1781 
1782 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1783 	callout_reset(&sc->sc_rngto,
1784 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1785 }
1786 #endif /* SAFE_NO_RNG */
1787 
1788 static void
1789 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1790 {
1791 	bus_addr_t *paddr = (bus_addr_t*) arg;
1792 	*paddr = segs->ds_addr;
1793 }
1794 
1795 static int
1796 safe_dma_malloc(
1797 	struct safe_softc *sc,
1798 	bus_size_t size,
1799 	struct safe_dma_alloc *dma,
1800 	int mapflags
1801 )
1802 {
1803 	int r;
1804 
1805 	r = bus_dma_tag_create(NULL,			/* parent */
1806 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1807 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1808 			       BUS_SPACE_MAXADDR,	/* highaddr */
1809 			       NULL, NULL,		/* filter, filterarg */
1810 			       size,			/* maxsize */
1811 			       1,			/* nsegments */
1812 			       size,			/* maxsegsize */
1813 			       BUS_DMA_ALLOCNOW,	/* flags */
1814 			       &dma->dma_tag);
1815 	if (r != 0) {
1816 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1817 			"bus_dma_tag_create failed; error %u\n", r);
1818 		goto fail_0;
1819 	}
1820 
1821 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1822 	if (r != 0) {
1823 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1824 			"bus_dmamap_create failed; error %u\n", r);
1825 		goto fail_1;
1826 	}
1827 
1828 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1829 			     BUS_DMA_NOWAIT, &dma->dma_map);
1830 	if (r != 0) {
1831 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1832 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1833 			size, r);
1834 		goto fail_2;
1835 	}
1836 
1837 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1838 		            size,
1839 			    safe_dmamap_cb,
1840 			    &dma->dma_paddr,
1841 			    mapflags | BUS_DMA_NOWAIT);
1842 	if (r != 0) {
1843 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1844 			"bus_dmamap_load failed; error %u\n", r);
1845 		goto fail_3;
1846 	}
1847 
1848 	dma->dma_size = size;
1849 	return (0);
1850 
1851 fail_3:
1852 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1853 fail_2:
1854 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1855 fail_1:
1856 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1857 	bus_dma_tag_destroy(dma->dma_tag);
1858 fail_0:
1859 	dma->dma_map = NULL;
1860 	dma->dma_tag = NULL;
1861 	return (r);
1862 }
1863 
1864 static void
1865 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1866 {
1867 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1868 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1869 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1870 	bus_dma_tag_destroy(dma->dma_tag);
1871 }
1872 
1873 /*
1874  * Resets the board.  Values in the regesters are left as is
1875  * from the reset (i.e. initial values are assigned elsewhere).
1876  */
1877 static void
1878 safe_reset_board(struct safe_softc *sc)
1879 {
1880 	u_int32_t v;
1881 	/*
1882 	 * Reset the device.  The manual says no delay
1883 	 * is needed between marking and clearing reset.
1884 	 */
1885 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1886 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1887 		 SAFE_PE_DMACFG_SGRESET);
1888 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1889 				    | SAFE_PE_DMACFG_PERESET
1890 				    | SAFE_PE_DMACFG_PDRRESET
1891 				    | SAFE_PE_DMACFG_SGRESET);
1892 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1893 }
1894 
1895 /*
1896  * Initialize registers we need to touch only once.
1897  */
1898 static void
1899 safe_init_board(struct safe_softc *sc)
1900 {
1901 	u_int32_t v, dwords;
1902 
1903 	v = READ_REG(sc, SAFE_PE_DMACFG);
1904 	v &=~ SAFE_PE_DMACFG_PEMODE;
1905 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1906 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1907 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1908 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1909 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1910 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1911 	  ;
1912 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1913 #if 0
1914 	/* XXX select byte swap based on host byte order */
1915 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1916 #endif
1917 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1918 		/*
1919 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1920 		 * "target mode transfers" done while the chip is DMA'ing
1921 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1922 		 * we reduce the max PCI transfer size and use small source
1923 		 * particle descriptors (<= 256 bytes).
1924 		 */
1925 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1926 		device_printf(sc->sc_dev,
1927 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1928 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1929 			SAFE_REV_MAJ(sc->sc_chiprev),
1930 			SAFE_REV_MIN(sc->sc_chiprev));
1931 	}
1932 
1933 	/* NB: operands+results are overlaid */
1934 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1935 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1936 	/*
1937 	 * Configure ring entry size and number of items in the ring.
1938 	 */
1939 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1940 		("PE ring entry not 32-bit aligned!"));
1941 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1942 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1943 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1944 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1945 
1946 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1947 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1948 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1949 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1950 	/*
1951 	 * NB: destination particles are fixed size.  We use
1952 	 *     an mbuf cluster and require all results go to
1953 	 *     clusters or smaller.
1954 	 */
1955 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1956 
1957 	/* it's now safe to enable PE mode, do it */
1958 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1959 
1960 	/*
1961 	 * Configure hardware to use level-triggered interrupts and
1962 	 * to interrupt after each descriptor is processed.
1963 	 */
1964 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1965 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1966 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1967 }
1968 
1969 /*
1970  * Init PCI registers
1971  */
1972 static void
1973 safe_init_pciregs(device_t dev)
1974 {
1975 }
1976 
1977 /*
1978  * Clean up after a chip crash.
1979  * It is assumed that the caller in splimp()
1980  */
1981 static void
1982 safe_cleanchip(struct safe_softc *sc)
1983 {
1984 
1985 	if (sc->sc_nqchip != 0) {
1986 		struct safe_ringentry *re = sc->sc_back;
1987 
1988 		while (re != sc->sc_front) {
1989 			if (re->re_desc.d_csr != 0)
1990 				safe_free_entry(sc, re);
1991 			if (++re == sc->sc_ringtop)
1992 				re = sc->sc_ring;
1993 		}
1994 		sc->sc_back = re;
1995 		sc->sc_nqchip = 0;
1996 	}
1997 }
1998 
1999 /*
2000  * free a safe_q
2001  * It is assumed that the caller is within splimp().
2002  */
2003 static int
2004 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2005 {
2006 	struct cryptop *crp;
2007 
2008 	/*
2009 	 * Free header MCR
2010 	 */
2011 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2012 		m_freem(re->re_dst_m);
2013 
2014 	crp = (struct cryptop *)re->re_crp;
2015 
2016 	re->re_desc.d_csr = 0;
2017 
2018 	crp->crp_etype = EFAULT;
2019 	crypto_done(crp);
2020 	return(0);
2021 }
2022 
2023 /*
2024  * Routine to reset the chip and clean up.
2025  * It is assumed that the caller is in splimp()
2026  */
2027 static void
2028 safe_totalreset(struct safe_softc *sc)
2029 {
2030 	safe_reset_board(sc);
2031 	safe_init_board(sc);
2032 	safe_cleanchip(sc);
2033 }
2034 
2035 /*
2036  * Is the operand suitable aligned for direct DMA.  Each
2037  * segment must be aligned on a 32-bit boundary and all
2038  * but the last segment must be a multiple of 4 bytes.
2039  */
2040 static int
2041 safe_dmamap_aligned(const struct safe_operand *op)
2042 {
2043 	int i;
2044 
2045 	for (i = 0; i < op->nsegs; i++) {
2046 		if (op->segs[i].ds_addr & 3)
2047 			return (0);
2048 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2049 			return (0);
2050 	}
2051 	return (1);
2052 }
2053 
2054 /*
2055  * Is the operand suitable for direct DMA as the destination
2056  * of an operation.  The hardware requires that each ``particle''
2057  * but the last in an operation result have the same size.  We
2058  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2059  * 0 if some segment is not a multiple of of this size, 1 if all
2060  * segments are exactly this size, or 2 if segments are at worst
2061  * a multple of this size.
2062  */
2063 static int
2064 safe_dmamap_uniform(const struct safe_operand *op)
2065 {
2066 	int result = 1;
2067 
2068 	if (op->nsegs > 0) {
2069 		int i;
2070 
2071 		for (i = 0; i < op->nsegs-1; i++) {
2072 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2073 				return (0);
2074 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2075 				result = 2;
2076 		}
2077 	}
2078 	return (result);
2079 }
2080 
2081 #ifdef SAFE_DEBUG
2082 static void
2083 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2084 {
2085 	kprintf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2086 		, tag
2087 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2088 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2089 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2090 		, READ_REG(sc, SAFE_DMA_STAT)
2091 	);
2092 }
2093 
2094 static void
2095 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2096 {
2097 	kprintf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2098 		, tag
2099 		, READ_REG(sc, SAFE_HI_CFG)
2100 		, READ_REG(sc, SAFE_HI_MASK)
2101 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2102 		, READ_REG(sc, SAFE_HU_STAT)
2103 		, READ_REG(sc, SAFE_HM_STAT)
2104 	);
2105 }
2106 
2107 static void
2108 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2109 {
2110 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2111 
2112 	/* NB: assume caller has lock on ring */
2113 	kprintf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2114 		tag,
2115 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2116 		(unsigned long)(sc->sc_back - sc->sc_ring),
2117 		(unsigned long)(sc->sc_front - sc->sc_ring));
2118 }
2119 
2120 static void
2121 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2122 {
2123 	int ix, nsegs;
2124 
2125 	ix = re - sc->sc_ring;
2126 	kprintf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2127 		, tag
2128 		, re, ix
2129 		, re->re_desc.d_csr
2130 		, re->re_desc.d_src
2131 		, re->re_desc.d_dst
2132 		, re->re_desc.d_sa
2133 		, re->re_desc.d_len
2134 	);
2135 	if (re->re_src.nsegs > 1) {
2136 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2137 			sizeof(struct safe_pdesc);
2138 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2139 			kprintf(" spd[%u] %p: %p size %u flags %x"
2140 				, ix, &sc->sc_spring[ix]
2141 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2142 				, sc->sc_spring[ix].pd_size
2143 				, sc->sc_spring[ix].pd_flags
2144 			);
2145 			if (sc->sc_spring[ix].pd_size == 0)
2146 				kprintf(" (zero!)");
2147 			kprintf("\n");
2148 			if (++ix == SAFE_TOTAL_SPART)
2149 				ix = 0;
2150 		}
2151 	}
2152 	if (re->re_dst.nsegs > 1) {
2153 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2154 			sizeof(struct safe_pdesc);
2155 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2156 			kprintf(" dpd[%u] %p: %p flags %x\n"
2157 				, ix, &sc->sc_dpring[ix]
2158 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2159 				, sc->sc_dpring[ix].pd_flags
2160 			);
2161 			if (++ix == SAFE_TOTAL_DPART)
2162 				ix = 0;
2163 		}
2164 	}
2165 	kprintf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2166 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2167 	kprintf("sa: key %x %x %x %x %x %x %x %x\n"
2168 		, re->re_sa.sa_key[0]
2169 		, re->re_sa.sa_key[1]
2170 		, re->re_sa.sa_key[2]
2171 		, re->re_sa.sa_key[3]
2172 		, re->re_sa.sa_key[4]
2173 		, re->re_sa.sa_key[5]
2174 		, re->re_sa.sa_key[6]
2175 		, re->re_sa.sa_key[7]
2176 	);
2177 	kprintf("sa: indigest %x %x %x %x %x\n"
2178 		, re->re_sa.sa_indigest[0]
2179 		, re->re_sa.sa_indigest[1]
2180 		, re->re_sa.sa_indigest[2]
2181 		, re->re_sa.sa_indigest[3]
2182 		, re->re_sa.sa_indigest[4]
2183 	);
2184 	kprintf("sa: outdigest %x %x %x %x %x\n"
2185 		, re->re_sa.sa_outdigest[0]
2186 		, re->re_sa.sa_outdigest[1]
2187 		, re->re_sa.sa_outdigest[2]
2188 		, re->re_sa.sa_outdigest[3]
2189 		, re->re_sa.sa_outdigest[4]
2190 	);
2191 	kprintf("sr: iv %x %x %x %x\n"
2192 		, re->re_sastate.sa_saved_iv[0]
2193 		, re->re_sastate.sa_saved_iv[1]
2194 		, re->re_sastate.sa_saved_iv[2]
2195 		, re->re_sastate.sa_saved_iv[3]
2196 	);
2197 	kprintf("sr: hashbc %u indigest %x %x %x %x %x\n"
2198 		, re->re_sastate.sa_saved_hashbc
2199 		, re->re_sastate.sa_saved_indigest[0]
2200 		, re->re_sastate.sa_saved_indigest[1]
2201 		, re->re_sastate.sa_saved_indigest[2]
2202 		, re->re_sastate.sa_saved_indigest[3]
2203 		, re->re_sastate.sa_saved_indigest[4]
2204 	);
2205 }
2206 
2207 static void
2208 safe_dump_ring(struct safe_softc *sc, const char *tag)
2209 {
2210 	lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
2211 	kprintf("\nSafeNet Ring State:\n");
2212 	safe_dump_intrstate(sc, tag);
2213 	safe_dump_dmastatus(sc, tag);
2214 	safe_dump_ringstate(sc, tag);
2215 	if (sc->sc_nqchip) {
2216 		struct safe_ringentry *re = sc->sc_back;
2217 		do {
2218 			safe_dump_request(sc, tag, re);
2219 			if (++re == sc->sc_ringtop)
2220 				re = sc->sc_ring;
2221 		} while (re != sc->sc_front);
2222 	}
2223 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
2224 }
2225 
2226 static int
2227 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2228 {
2229 	char dmode[64];
2230 	int error;
2231 
2232 	strncpy(dmode, "", sizeof(dmode) - 1);
2233 	dmode[sizeof(dmode) - 1] = '\0';
2234 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2235 
2236 	if (error == 0 && req->newptr != NULL) {
2237 		struct safe_softc *sc = safec;
2238 
2239 		if (!sc)
2240 			return EINVAL;
2241 		if (strncmp(dmode, "dma", 3) == 0)
2242 			safe_dump_dmastatus(sc, "safe0");
2243 		else if (strncmp(dmode, "int", 3) == 0)
2244 			safe_dump_intrstate(sc, "safe0");
2245 		else if (strncmp(dmode, "ring", 4) == 0)
2246 			safe_dump_ring(sc, "safe0");
2247 		else
2248 			return EINVAL;
2249 	}
2250 	return error;
2251 }
2252 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2253 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2254 #endif /* SAFE_DEBUG */
2255