xref: /dragonfly/sys/dev/crypto/safe/safe.c (revision 7d84b73d)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/safe/safe.c,v 1.22 2011/06/12 23:33:08 delphij Exp $
28  */
29 
30 /*
31  * SafeNet SafeXcel-1141 hardware crypto accelerator
32  */
33 #include "opt_safe.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/errno.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/sysctl.h>
45 #include <sys/endian.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 
50 #include <sys/bus.h>
51 #include <sys/rman.h>
52 
53 #include <crypto/sha1.h>
54 #include <opencrypto/cryptodev.h>
55 #include <opencrypto/cryptosoft.h>
56 #include <sys/md5.h>
57 #include <sys/random.h>
58 #include <sys/kobj.h>
59 
60 #include "cryptodev_if.h"
61 
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcireg.h>
64 
65 #ifdef SAFE_RNDTEST
66 #include <dev/crypto/rndtest/rndtest.h>
67 #endif
68 #include <dev/crypto/safe/safereg.h>
69 #include <dev/crypto/safe/safevar.h>
70 
71 #ifndef bswap32
72 #define	bswap32	NTOHL
73 #endif
74 
75 /*
76  * Prototypes and count for the pci_device structure
77  */
78 static	int safe_probe(device_t);
79 static	int safe_attach(device_t);
80 static	int safe_detach(device_t);
81 static	int safe_suspend(device_t);
82 static	int safe_resume(device_t);
83 static	int safe_shutdown(device_t);
84 
85 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
86 static	int safe_freesession(device_t, u_int64_t);
87 static	int safe_process(device_t, struct cryptop *, int);
88 
89 static device_method_t safe_methods[] = {
90 	/* Device interface */
91 	DEVMETHOD(device_probe,		safe_probe),
92 	DEVMETHOD(device_attach,	safe_attach),
93 	DEVMETHOD(device_detach,	safe_detach),
94 	DEVMETHOD(device_suspend,	safe_suspend),
95 	DEVMETHOD(device_resume,	safe_resume),
96 	DEVMETHOD(device_shutdown,	safe_shutdown),
97 
98 	/* bus interface */
99 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
100 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104 	DEVMETHOD(cryptodev_freesession,safe_freesession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110 	"safe",
111 	safe_methods,
112 	sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115 
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, NULL, NULL);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
147 
148 #ifdef SAFE_DEBUG
149 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
150 static	void safe_dump_ringstate(struct safe_softc *, const char *);
151 static	void safe_dump_intrstate(struct safe_softc *, const char *);
152 static	void safe_dump_request(struct safe_softc *, const char *,
153 		struct safe_ringentry *);
154 
155 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
156 
157 static	int safe_debug = 0;
158 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
159 	    0, "control debugging msgs");
160 #define	DPRINTF(_x)	if (safe_debug) kprintf _x
161 #else
162 #define	DPRINTF(_x)
163 #endif
164 
165 #define	READ_REG(sc,r) \
166 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
167 
168 #define WRITE_REG(sc,reg,val) \
169 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
170 
171 struct safe_stats safestats;
172 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
173 	    safe_stats, "driver statistics");
174 #ifndef SAFE_NO_RNG
175 static	int safe_rnginterval = 1;		/* poll once a second */
176 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
177 	    0, "RNG polling interval (secs)");
178 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
179 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
180 	    0, "RNG polling buffer size (32-bit words)");
181 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
182 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
183 	    0, "RNG max alarms before reset");
184 #endif /* SAFE_NO_RNG */
185 
186 static int
187 safe_probe(device_t dev)
188 {
189 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
190 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
191 		return (BUS_PROBE_DEFAULT);
192 	return (ENXIO);
193 }
194 
195 static const char*
196 safe_partname(struct safe_softc *sc)
197 {
198 	/* XXX sprintf numbers when not decoded */
199 	switch (pci_get_vendor(sc->sc_dev)) {
200 	case PCI_VENDOR_SAFENET:
201 		switch (pci_get_device(sc->sc_dev)) {
202 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
203 		}
204 		return "SafeNet unknown-part";
205 	}
206 	return "Unknown-vendor unknown-part";
207 }
208 
209 #ifndef SAFE_NO_RNG
210 static void
211 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
212 {
213 	add_buffer_randomness_src(buf, count, RAND_SRC_SAFE);
214 }
215 #endif /* SAFE_NO_RNG */
216 
217 static int
218 safe_attach(device_t dev)
219 {
220 	struct safe_softc *sc = device_get_softc(dev);
221 	u_int32_t raddr;
222 	u_int32_t cmd, i, devinfo;
223 	int rid;
224 
225 	bzero(sc, sizeof (*sc));
226 	sc->sc_dev = dev;
227 
228 	/* XXX handle power management */
229 
230 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
231 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
232 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
233 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
234 
235 	if (!(cmd & PCIM_CMD_MEMEN)) {
236 		device_printf(dev, "failed to enable memory mapping\n");
237 		goto bad;
238 	}
239 
240 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
241 		device_printf(dev, "failed to enable bus mastering\n");
242 		goto bad;
243 	}
244 
245 	/*
246 	 * Setup memory-mapping of PCI registers.
247 	 */
248 	rid = BS_BAR;
249 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
250 					   RF_ACTIVE);
251 	if (sc->sc_sr == NULL) {
252 		device_printf(dev, "cannot map register space\n");
253 		goto bad;
254 	}
255 	sc->sc_st = rman_get_bustag(sc->sc_sr);
256 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
257 
258 	/*
259 	 * Arrange interrupt line.
260 	 */
261 	rid = 0;
262 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
263 					    RF_SHAREABLE|RF_ACTIVE);
264 	if (sc->sc_irq == NULL) {
265 		device_printf(dev, "could not map interrupt\n");
266 		goto bad1;
267 	}
268 	/*
269 	 * NB: Network code assumes we are blocked with splimp()
270 	 *     so make sure the IRQ is mapped appropriately.
271 	 */
272 	if (bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE,
273 			   safe_intr, sc, &sc->sc_ih, NULL)) {
274 		device_printf(dev, "could not establish interrupt\n");
275 		goto bad2;
276 	}
277 
278 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
279 	if (sc->sc_cid < 0) {
280 		device_printf(dev, "could not get crypto driver id\n");
281 		goto bad3;
282 	}
283 
284 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
285 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
286 
287 	/*
288 	 * Setup DMA descriptor area.
289 	 */
290 	if (bus_dma_tag_create(NULL,			/* parent */
291 			       1,			/* alignment */
292 			       SAFE_DMA_BOUNDARY,	/* boundary */
293 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
294 			       BUS_SPACE_MAXADDR,	/* highaddr */
295 			       SAFE_MAX_DMA,		/* maxsize */
296 			       SAFE_MAX_PART,		/* nsegments */
297 			       SAFE_MAX_SSIZE,		/* maxsegsize */
298 			       BUS_DMA_ALLOCNOW,	/* flags */
299 			       &sc->sc_srcdmat)) {
300 		device_printf(dev, "cannot allocate DMA tag\n");
301 		goto bad4;
302 	}
303 	if (bus_dma_tag_create(NULL,			/* parent */
304 			       1,			/* alignment */
305 			       SAFE_MAX_DSIZE,		/* boundary */
306 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
307 			       BUS_SPACE_MAXADDR,	/* highaddr */
308 			       SAFE_MAX_DMA,		/* maxsize */
309 			       SAFE_MAX_PART,		/* nsegments */
310 			       SAFE_MAX_DSIZE,		/* maxsegsize */
311 			       BUS_DMA_ALLOCNOW,	/* flags */
312 			       &sc->sc_dstdmat)) {
313 		device_printf(dev, "cannot allocate DMA tag\n");
314 		goto bad4;
315 	}
316 
317 	/*
318 	 * Allocate packet engine descriptors.
319 	 */
320 	if (safe_dma_malloc(sc,
321 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
322 	    &sc->sc_ringalloc, 0)) {
323 		device_printf(dev, "cannot allocate PE descriptor ring\n");
324 		bus_dma_tag_destroy(sc->sc_srcdmat);
325 		goto bad4;
326 	}
327 	/*
328 	 * Hookup the static portion of all our data structures.
329 	 */
330 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
331 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
332 	sc->sc_front = sc->sc_ring;
333 	sc->sc_back = sc->sc_ring;
334 	raddr = sc->sc_ringalloc.dma_paddr;
335 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
336 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
337 		struct safe_ringentry *re = &sc->sc_ring[i];
338 
339 		re->re_desc.d_sa = raddr +
340 			offsetof(struct safe_ringentry, re_sa);
341 		re->re_sa.sa_staterec = raddr +
342 			offsetof(struct safe_ringentry, re_sastate);
343 
344 		raddr += sizeof (struct safe_ringentry);
345 	}
346 	lockinit(&sc->sc_ringlock, "packet engine ring", 0, LK_CANRECURSE);
347 
348 	/*
349 	 * Allocate scatter and gather particle descriptors.
350 	 */
351 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
352 	    &sc->sc_spalloc, 0)) {
353 		device_printf(dev, "cannot allocate source particle "
354 			"descriptor ring\n");
355 		lockuninit(&sc->sc_ringlock);
356 		safe_dma_free(sc, &sc->sc_ringalloc);
357 		bus_dma_tag_destroy(sc->sc_srcdmat);
358 		goto bad4;
359 	}
360 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
361 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
362 	sc->sc_spfree = sc->sc_spring;
363 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
364 
365 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
366 	    &sc->sc_dpalloc, 0)) {
367 		device_printf(dev, "cannot allocate destination particle "
368 			"descriptor ring\n");
369 		lockuninit(&sc->sc_ringlock);
370 		safe_dma_free(sc, &sc->sc_spalloc);
371 		safe_dma_free(sc, &sc->sc_ringalloc);
372 		bus_dma_tag_destroy(sc->sc_dstdmat);
373 		goto bad4;
374 	}
375 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
376 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
377 	sc->sc_dpfree = sc->sc_dpring;
378 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
379 
380 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
381 
382 	devinfo = READ_REG(sc, SAFE_DEVINFO);
383 	if (devinfo & SAFE_DEVINFO_RNG) {
384 		sc->sc_flags |= SAFE_FLAGS_RNG;
385 		kprintf(" rng");
386 	}
387 	if (devinfo & SAFE_DEVINFO_PKEY) {
388 #if 0
389 		kprintf(" key");
390 		sc->sc_flags |= SAFE_FLAGS_KEY;
391 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
392 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
393 #endif
394 	}
395 	if (devinfo & SAFE_DEVINFO_DES) {
396 		kprintf(" des/3des");
397 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
398 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
399 	}
400 	if (devinfo & SAFE_DEVINFO_AES) {
401 		kprintf(" aes");
402 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
403 	}
404 	if (devinfo & SAFE_DEVINFO_MD5) {
405 		kprintf(" md5");
406 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
407 	}
408 	if (devinfo & SAFE_DEVINFO_SHA1) {
409 		kprintf(" sha1");
410 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
411 	}
412 	kprintf(" null");
413 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
414 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
415 	/* XXX other supported algorithms */
416 	kprintf("\n");
417 
418 	safe_reset_board(sc);		/* reset h/w */
419 	safe_init_pciregs(dev);		/* init pci settings */
420 	safe_init_board(sc);		/* init h/w */
421 
422 #ifndef SAFE_NO_RNG
423 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
424 #ifdef SAFE_RNDTEST
425 		sc->sc_rndtest = rndtest_attach(dev);
426 		if (sc->sc_rndtest)
427 			sc->sc_harvest = rndtest_harvest;
428 		else
429 			sc->sc_harvest = default_harvest;
430 #else
431 		sc->sc_harvest = default_harvest;
432 #endif
433 		safe_rng_init(sc);
434 
435 		callout_init_mp(&sc->sc_rngto);
436 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
437 	}
438 #endif /* SAFE_NO_RNG */
439 #ifdef SAFE_DEBUG
440 	safec = sc;			/* for use by hw.safe.dump */
441 #endif
442 	return (0);
443 bad4:
444 	crypto_unregister_all(sc->sc_cid);
445 bad3:
446 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
447 bad2:
448 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
449 bad1:
450 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
451 bad:
452 	return (ENXIO);
453 }
454 
455 /*
456  * Detach a device that successfully probed.
457  */
458 static int
459 safe_detach(device_t dev)
460 {
461 	struct safe_softc *sc = device_get_softc(dev);
462 
463 	/* XXX wait/abort active ops */
464 
465 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
466 
467 	callout_stop(&sc->sc_rngto);
468 
469 	crypto_unregister_all(sc->sc_cid);
470 
471 #ifdef SAFE_RNDTEST
472 	if (sc->sc_rndtest)
473 		rndtest_detach(sc->sc_rndtest);
474 #endif
475 
476 	safe_cleanchip(sc);
477 	safe_dma_free(sc, &sc->sc_dpalloc);
478 	safe_dma_free(sc, &sc->sc_spalloc);
479 	lockuninit(&sc->sc_ringlock);
480 	safe_dma_free(sc, &sc->sc_ringalloc);
481 
482 	bus_generic_detach(dev);
483 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
484 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
485 
486 	bus_dma_tag_destroy(sc->sc_srcdmat);
487 	bus_dma_tag_destroy(sc->sc_dstdmat);
488 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
489 
490 	return (0);
491 }
492 
493 /*
494  * Stop all chip i/o so that the kernel's probe routines don't
495  * get confused by errant DMAs when rebooting.
496  */
497 static int
498 safe_shutdown(device_t dev)
499 {
500 #ifdef notyet
501 	safe_stop(device_get_softc(dev));
502 #endif
503 	return (0);
504 }
505 
506 /*
507  * Device suspend routine.
508  */
509 static int
510 safe_suspend(device_t dev)
511 {
512 	struct safe_softc *sc = device_get_softc(dev);
513 
514 #ifdef notyet
515 	/* XXX stop the device and save PCI settings */
516 #endif
517 	sc->sc_suspended = 1;
518 
519 	return (0);
520 }
521 
522 static int
523 safe_resume(device_t dev)
524 {
525 	struct safe_softc *sc = device_get_softc(dev);
526 
527 #ifdef notyet
528 	/* XXX retore PCI settings and start the device */
529 #endif
530 	sc->sc_suspended = 0;
531 	return (0);
532 }
533 
534 /*
535  * SafeXcel Interrupt routine
536  */
537 static void
538 safe_intr(void *arg)
539 {
540 	struct safe_softc *sc = arg;
541 	volatile u_int32_t stat;
542 
543 	stat = READ_REG(sc, SAFE_HM_STAT);
544 	if (stat == 0)			/* shared irq, not for us */
545 		return;
546 
547 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
548 
549 	if ((stat & SAFE_INT_PE_DDONE)) {
550 		/*
551 		 * Descriptor(s) done; scan the ring and
552 		 * process completed operations.
553 		 */
554 		lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
555 		while (sc->sc_back != sc->sc_front) {
556 			struct safe_ringentry *re = sc->sc_back;
557 #ifdef SAFE_DEBUG
558 			if (safe_debug) {
559 				safe_dump_ringstate(sc, __func__);
560 				safe_dump_request(sc, __func__, re);
561 			}
562 #endif
563 			/*
564 			 * safe_process marks ring entries that were allocated
565 			 * but not used with a csr of zero.  This insures the
566 			 * ring front pointer never needs to be set backwards
567 			 * in the event that an entry is allocated but not used
568 			 * because of a setup error.
569 			 */
570 			if (re->re_desc.d_csr != 0) {
571 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
572 					break;
573 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
574 					break;
575 				sc->sc_nqchip--;
576 				safe_callback(sc, re);
577 			}
578 			if (++(sc->sc_back) == sc->sc_ringtop)
579 				sc->sc_back = sc->sc_ring;
580 		}
581 		lockmgr(&sc->sc_ringlock, LK_RELEASE);
582 	}
583 
584 	/*
585 	 * Check to see if we got any DMA Error
586 	 */
587 	if (stat & SAFE_INT_PE_ERROR) {
588 		DPRINTF(("dmaerr dmastat %08x\n",
589 			READ_REG(sc, SAFE_PE_DMASTAT)));
590 		safestats.st_dmaerr++;
591 		safe_totalreset(sc);
592 #if 0
593 		safe_feed(sc);
594 #endif
595 	}
596 
597 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
598 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
599 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
600 			sc->sc_needwakeup));
601 		sc->sc_needwakeup &= ~wakeup;
602 		crypto_unblock(sc->sc_cid, wakeup);
603 	}
604 }
605 
606 /*
607  * safe_feed() - post a request to chip
608  */
609 static void
610 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
611 {
612 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
613 	if (re->re_dst_map != NULL)
614 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
615 			BUS_DMASYNC_PREREAD);
616 	/* XXX have no smaller granularity */
617 	safe_dma_sync(&sc->sc_ringalloc,
618 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
619 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
620 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
621 
622 #ifdef SAFE_DEBUG
623 	if (safe_debug) {
624 		safe_dump_ringstate(sc, __func__);
625 		safe_dump_request(sc, __func__, re);
626 	}
627 #endif
628 	sc->sc_nqchip++;
629 	if (sc->sc_nqchip > safestats.st_maxqchip)
630 		safestats.st_maxqchip = sc->sc_nqchip;
631 	/* poke h/w to check descriptor ring, any value can be written */
632 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
633 }
634 
635 static void
636 safe_setup_enckey(struct safe_session *ses, caddr_t key)
637 {
638 	int i;
639 
640 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
641 
642 	/* PE is little-endian, insure proper byte order */
643 	for (i = 0; i < nitems(ses->ses_key); i++)
644 		ses->ses_key[i] = htole32(ses->ses_key[i]);
645 }
646 
647 static void
648 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
649 {
650 	MD5_CTX md5ctx;
651 	SHA1_CTX sha1ctx;
652 	int i;
653 
654 
655 	for (i = 0; i < klen; i++)
656 		key[i] ^= HMAC_IPAD_VAL;
657 
658 	if (algo == CRYPTO_MD5_HMAC) {
659 		MD5Init(&md5ctx);
660 		MD5Update(&md5ctx, key, klen);
661 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
662 		/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
663 		_bcopy(&md5ctx.A, ses->ses_hminner, sizeof(md5ctx.A) * 4);
664 	} else {
665 		SHA1Init(&sha1ctx);
666 		SHA1Update(&sha1ctx, key, klen);
667 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
668 		    SHA1_HMAC_BLOCK_LEN - klen);
669 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
670 	}
671 
672 	for (i = 0; i < klen; i++)
673 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
674 
675 	if (algo == CRYPTO_MD5_HMAC) {
676 		MD5Init(&md5ctx);
677 		MD5Update(&md5ctx, key, klen);
678 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
679 		/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
680 		_bcopy(&md5ctx.A, ses->ses_hmouter, sizeof(md5ctx.A) * 4);
681 	} else {
682 		SHA1Init(&sha1ctx);
683 		SHA1Update(&sha1ctx, key, klen);
684 		SHA1Update(&sha1ctx, hmac_opad_buffer,
685 		    SHA1_HMAC_BLOCK_LEN - klen);
686 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
687 	}
688 
689 	for (i = 0; i < klen; i++)
690 		key[i] ^= HMAC_OPAD_VAL;
691 
692 	/* PE is little-endian, insure proper byte order */
693 	for (i = 0; i < nitems(ses->ses_hminner); i++) {
694 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
695 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
696 	}
697 }
698 
699 /*
700  * Allocate a new 'session' and return an encoded session id.  'sidp'
701  * contains our registration id, and should contain an encoded session
702  * id on successful allocation.
703  */
704 static int
705 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
706 {
707 	struct safe_softc *sc = device_get_softc(dev);
708 	struct cryptoini *c, *encini = NULL, *macini = NULL;
709 	struct safe_session *ses = NULL;
710 	int sesn;
711 
712 	if (sidp == NULL || cri == NULL || sc == NULL)
713 		return (EINVAL);
714 
715 	for (c = cri; c != NULL; c = c->cri_next) {
716 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
717 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
718 		    c->cri_alg == CRYPTO_NULL_HMAC) {
719 			if (macini)
720 				return (EINVAL);
721 			macini = c;
722 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
723 		    c->cri_alg == CRYPTO_3DES_CBC ||
724 		    c->cri_alg == CRYPTO_AES_CBC ||
725 		    c->cri_alg == CRYPTO_NULL_CBC) {
726 			if (encini)
727 				return (EINVAL);
728 			encini = c;
729 		} else
730 			return (EINVAL);
731 	}
732 	if (encini == NULL && macini == NULL)
733 		return (EINVAL);
734 	if (encini) {			/* validate key length */
735 		switch (encini->cri_alg) {
736 		case CRYPTO_DES_CBC:
737 			if (encini->cri_klen != 64)
738 				return (EINVAL);
739 			break;
740 		case CRYPTO_3DES_CBC:
741 			if (encini->cri_klen != 192)
742 				return (EINVAL);
743 			break;
744 		case CRYPTO_AES_CBC:
745 			if (encini->cri_klen != 128 &&
746 			    encini->cri_klen != 192 &&
747 			    encini->cri_klen != 256)
748 				return (EINVAL);
749 			break;
750 		}
751 	}
752 
753 	if (sc->sc_sessions == NULL) {
754 		ses = sc->sc_sessions = (struct safe_session *)kmalloc(
755 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
756 		if (ses == NULL)
757 			return (ENOMEM);
758 		sesn = 0;
759 		sc->sc_nsessions = 1;
760 	} else {
761 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
762 			if (sc->sc_sessions[sesn].ses_used == 0) {
763 				ses = &sc->sc_sessions[sesn];
764 				break;
765 			}
766 		}
767 
768 		if (ses == NULL) {
769 			sesn = sc->sc_nsessions;
770 			ses = (struct safe_session *)kmalloc((sesn + 1) *
771 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
772 			if (ses == NULL)
773 				return (ENOMEM);
774 			bcopy(sc->sc_sessions, ses, sesn *
775 			    sizeof(struct safe_session));
776 			bzero(sc->sc_sessions, sesn *
777 			    sizeof(struct safe_session));
778 			kfree(sc->sc_sessions, M_DEVBUF);
779 			sc->sc_sessions = ses;
780 			ses = &sc->sc_sessions[sesn];
781 			sc->sc_nsessions++;
782 		}
783 	}
784 
785 	bzero(ses, sizeof(struct safe_session));
786 	ses->ses_used = 1;
787 
788 	if (encini) {
789 		/* get an IV */
790 		/* XXX may read fewer than requested */
791 		read_random(ses->ses_iv, sizeof(ses->ses_iv), 0);
792 
793 		ses->ses_klen = encini->cri_klen;
794 		if (encini->cri_key != NULL)
795 			safe_setup_enckey(ses, encini->cri_key);
796 	}
797 
798 	if (macini) {
799 		ses->ses_mlen = macini->cri_mlen;
800 		if (ses->ses_mlen == 0) {
801 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
802 				ses->ses_mlen = MD5_HASH_LEN;
803 			else
804 				ses->ses_mlen = SHA1_HASH_LEN;
805 		}
806 
807 		if (macini->cri_key != NULL) {
808 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
809 			    macini->cri_klen / 8);
810 		}
811 	}
812 
813 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
814 	return (0);
815 }
816 
817 /*
818  * Deallocate a session.
819  */
820 static int
821 safe_freesession(device_t dev, u_int64_t tid)
822 {
823 	struct safe_softc *sc = device_get_softc(dev);
824 	int session, ret;
825 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
826 
827 	if (sc == NULL)
828 		return (EINVAL);
829 
830 	session = SAFE_SESSION(sid);
831 	if (session < sc->sc_nsessions) {
832 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
833 		ret = 0;
834 	} else
835 		ret = EINVAL;
836 	return (ret);
837 }
838 
839 static void
840 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
841 {
842 	struct safe_operand *op = arg;
843 
844 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
845 		(u_int) mapsize, nsegs, error));
846 	if (error != 0)
847 		return;
848 	op->mapsize = mapsize;
849 	op->nsegs = nsegs;
850 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
851 }
852 
853 static int
854 safe_process(device_t dev, struct cryptop *crp, int hint)
855 {
856 	struct safe_softc *sc = device_get_softc(dev);
857 	int err = 0, i, nicealign, uniform;
858 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
859 	int bypass, oplen, ivsize;
860 	caddr_t iv;
861 	int16_t coffset;
862 	struct safe_session *ses;
863 	struct safe_ringentry *re;
864 	struct safe_sarec *sa;
865 	struct safe_pdesc *pd;
866 	u_int32_t cmd0, cmd1, staterec;
867 
868 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
869 		safestats.st_invalid++;
870 		return (EINVAL);
871 	}
872 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
873 		safestats.st_badsession++;
874 		return (EINVAL);
875 	}
876 
877 	lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
878 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
879 		safestats.st_ringfull++;
880 		sc->sc_needwakeup |= CRYPTO_SYMQ;
881 		lockmgr(&sc->sc_ringlock, LK_RELEASE);
882 		return (ERESTART);
883 	}
884 	re = sc->sc_front;
885 
886 	staterec = re->re_sa.sa_staterec;	/* save */
887 	/* NB: zero everything but the PE descriptor */
888 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
889 	re->re_sa.sa_staterec = staterec;	/* restore */
890 
891 	re->re_crp = crp;
892 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
893 
894 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
895 		re->re_src_m = (struct mbuf *)crp->crp_buf;
896 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
897 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
898 		re->re_src_io = (struct uio *)crp->crp_buf;
899 		re->re_dst_io = (struct uio *)crp->crp_buf;
900 	} else {
901 		safestats.st_badflags++;
902 		err = EINVAL;
903 		goto errout;	/* XXX we don't handle contiguous blocks! */
904 	}
905 
906 	sa = &re->re_sa;
907 	ses = &sc->sc_sessions[re->re_sesn];
908 
909 	crd1 = crp->crp_desc;
910 	if (crd1 == NULL) {
911 		safestats.st_nodesc++;
912 		err = EINVAL;
913 		goto errout;
914 	}
915 	crd2 = crd1->crd_next;
916 
917 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
918 	cmd1 = 0;
919 	if (crd2 == NULL) {
920 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
921 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
922 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
923 			maccrd = crd1;
924 			enccrd = NULL;
925 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
926 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
927 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
928 		    crd1->crd_alg == CRYPTO_AES_CBC ||
929 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
930 			maccrd = NULL;
931 			enccrd = crd1;
932 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
933 		} else {
934 			safestats.st_badalg++;
935 			err = EINVAL;
936 			goto errout;
937 		}
938 	} else {
939 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
940 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
941 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
942 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
943 			crd2->crd_alg == CRYPTO_3DES_CBC ||
944 		        crd2->crd_alg == CRYPTO_AES_CBC ||
945 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
946 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
947 			maccrd = crd1;
948 			enccrd = crd2;
949 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
950 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
951 		    crd1->crd_alg == CRYPTO_AES_CBC ||
952 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
953 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
954 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
955 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
956 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
957 			enccrd = crd1;
958 			maccrd = crd2;
959 		} else {
960 			safestats.st_badalg++;
961 			err = EINVAL;
962 			goto errout;
963 		}
964 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
965 	}
966 
967 	if (enccrd) {
968 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
969 			safe_setup_enckey(ses, enccrd->crd_key);
970 
971 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
972 			cmd0 |= SAFE_SA_CMD0_DES;
973 			cmd1 |= SAFE_SA_CMD1_CBC;
974 			ivsize = 2*sizeof(u_int32_t);
975 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
976 			cmd0 |= SAFE_SA_CMD0_3DES;
977 			cmd1 |= SAFE_SA_CMD1_CBC;
978 			ivsize = 2*sizeof(u_int32_t);
979 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
980 			cmd0 |= SAFE_SA_CMD0_AES;
981 			cmd1 |= SAFE_SA_CMD1_CBC;
982 			if (ses->ses_klen == 128)
983 			     cmd1 |=  SAFE_SA_CMD1_AES128;
984 			else if (ses->ses_klen == 192)
985 			     cmd1 |=  SAFE_SA_CMD1_AES192;
986 			else
987 			     cmd1 |=  SAFE_SA_CMD1_AES256;
988 			ivsize = 4*sizeof(u_int32_t);
989 		} else {
990 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
991 			ivsize = 0;
992 		}
993 
994 		/*
995 		 * Setup encrypt/decrypt state.  When using basic ops
996 		 * we can't use an inline IV because hash/crypt offset
997 		 * must be from the end of the IV to the start of the
998 		 * crypt data and this leaves out the preceding header
999 		 * from the hash calculation.  Instead we place the IV
1000 		 * in the state record and set the hash/crypt offset to
1001 		 * copy both the header+IV.
1002 		 */
1003 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1004 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1005 
1006 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1007 				iv = enccrd->crd_iv;
1008 			else
1009 				iv = (caddr_t) ses->ses_iv;
1010 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1011 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1012 				    enccrd->crd_inject, ivsize, iv);
1013 			}
1014 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1015 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1016 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1017 		} else {
1018 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1019 
1020 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1021 				bcopy(enccrd->crd_iv,
1022 					re->re_sastate.sa_saved_iv, ivsize);
1023 			} else {
1024 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1025 				    enccrd->crd_inject, ivsize,
1026 				    (caddr_t)re->re_sastate.sa_saved_iv);
1027 			}
1028 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1029 		}
1030 		/*
1031 		 * For basic encryption use the zero pad algorithm.
1032 		 * This pads results to an 8-byte boundary and
1033 		 * suppresses padding verification for inbound (i.e.
1034 		 * decrypt) operations.
1035 		 *
1036 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1037 		 */
1038 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1039 
1040 		/* XXX assert key bufs have the same size */
1041 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1042 	}
1043 
1044 	if (maccrd) {
1045 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1046 			safe_setup_mackey(ses, maccrd->crd_alg,
1047 			    maccrd->crd_key, maccrd->crd_klen / 8);
1048 		}
1049 
1050 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1051 			cmd0 |= SAFE_SA_CMD0_MD5;
1052 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1053 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1054 			cmd0 |= SAFE_SA_CMD0_SHA1;
1055 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1056 		} else {
1057 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1058 		}
1059 		/*
1060 		 * Digest data is loaded from the SA and the hash
1061 		 * result is saved to the state block where we
1062 		 * retrieve it for return to the caller.
1063 		 */
1064 		/* XXX assert digest bufs have the same size */
1065 		bcopy(ses->ses_hminner, sa->sa_indigest,
1066 			sizeof(sa->sa_indigest));
1067 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1068 			sizeof(sa->sa_outdigest));
1069 
1070 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1071 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1072 	}
1073 
1074 	if (enccrd && maccrd) {
1075 		/*
1076 		 * The offset from hash data to the start of
1077 		 * crypt data is the difference in the skips.
1078 		 */
1079 		bypass = maccrd->crd_skip;
1080 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1081 		if (coffset < 0) {
1082 			DPRINTF(("%s: hash does not precede crypt; "
1083 				"mac skip %u enc skip %u\n",
1084 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1085 			safestats.st_skipmismatch++;
1086 			err = EINVAL;
1087 			goto errout;
1088 		}
1089 		oplen = enccrd->crd_skip + enccrd->crd_len;
1090 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1091 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1092 				__func__, maccrd->crd_skip + maccrd->crd_len,
1093 				oplen));
1094 			safestats.st_lenmismatch++;
1095 			err = EINVAL;
1096 			goto errout;
1097 		}
1098 #ifdef SAFE_DEBUG
1099 		if (safe_debug) {
1100 			kprintf("mac: skip %d, len %d, inject %d\n",
1101 			    maccrd->crd_skip, maccrd->crd_len,
1102 			    maccrd->crd_inject);
1103 			kprintf("enc: skip %d, len %d, inject %d\n",
1104 			    enccrd->crd_skip, enccrd->crd_len,
1105 			    enccrd->crd_inject);
1106 			kprintf("bypass %d coffset %d oplen %d\n",
1107 				bypass, coffset, oplen);
1108 		}
1109 #endif
1110 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1111 			DPRINTF(("%s: coffset %u misaligned\n",
1112 				__func__, coffset));
1113 			safestats.st_coffmisaligned++;
1114 			err = EINVAL;
1115 			goto errout;
1116 		}
1117 		coffset >>= 2;
1118 		if (coffset > 255) {	/* offset must be <256 dwords */
1119 			DPRINTF(("%s: coffset %u too big\n",
1120 				__func__, coffset));
1121 			safestats.st_cofftoobig++;
1122 			err = EINVAL;
1123 			goto errout;
1124 		}
1125 		/*
1126 		 * Tell the hardware to copy the header to the output.
1127 		 * The header is defined as the data from the end of
1128 		 * the bypass to the start of data to be encrypted.
1129 		 * Typically this is the inline IV.  Note that you need
1130 		 * to do this even if src+dst are the same; it appears
1131 		 * that w/o this bit the crypted data is written
1132 		 * immediately after the bypass data.
1133 		 */
1134 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1135 		/*
1136 		 * Disable IP header mutable bit handling.  This is
1137 		 * needed to get correct HMAC calculations.
1138 		 */
1139 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1140 	} else {
1141 		if (enccrd) {
1142 			bypass = enccrd->crd_skip;
1143 			oplen = bypass + enccrd->crd_len;
1144 		} else {
1145 			bypass = maccrd->crd_skip;
1146 			oplen = bypass + maccrd->crd_len;
1147 		}
1148 		coffset = 0;
1149 	}
1150 	/* XXX verify multiple of 4 when using s/g */
1151 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1152 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1153 		safestats.st_bypasstoobig++;
1154 		err = EINVAL;
1155 		goto errout;
1156 	}
1157 
1158 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1159 		safestats.st_nomap++;
1160 		err = ENOMEM;
1161 		goto errout;
1162 	}
1163 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1164 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1165 		    re->re_src_m, safe_op_cb,
1166 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1167 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1168 			re->re_src_map = NULL;
1169 			safestats.st_noload++;
1170 			err = ENOMEM;
1171 			goto errout;
1172 		}
1173 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1174 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1175 		    re->re_src_io, safe_op_cb,
1176 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1177 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1178 			re->re_src_map = NULL;
1179 			safestats.st_noload++;
1180 			err = ENOMEM;
1181 			goto errout;
1182 		}
1183 	}
1184 	nicealign = safe_dmamap_aligned(&re->re_src);
1185 	uniform = safe_dmamap_uniform(&re->re_src);
1186 
1187 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1188 		nicealign, uniform, re->re_src.nsegs));
1189 	if (re->re_src.nsegs > 1) {
1190 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1191 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1192 		for (i = 0; i < re->re_src_nsegs; i++) {
1193 			/* NB: no need to check if there's space */
1194 			pd = sc->sc_spfree;
1195 			if (++(sc->sc_spfree) == sc->sc_springtop)
1196 				sc->sc_spfree = sc->sc_spring;
1197 
1198 			KASSERT((pd->pd_flags&3) == 0 ||
1199 				(pd->pd_flags&3) == SAFE_PD_DONE,
1200 				("bogus source particle descriptor; flags %x",
1201 				pd->pd_flags));
1202 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1203 			pd->pd_size = re->re_src_segs[i].ds_len;
1204 			pd->pd_flags = SAFE_PD_READY;
1205 		}
1206 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1207 	} else {
1208 		/*
1209 		 * No need for gather, reference the operand directly.
1210 		 */
1211 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1212 	}
1213 
1214 	if (enccrd == NULL && maccrd != NULL) {
1215 		/*
1216 		 * Hash op; no destination needed.
1217 		 */
1218 	} else {
1219 		if (crp->crp_flags & CRYPTO_F_IOV) {
1220 			if (!nicealign) {
1221 				safestats.st_iovmisaligned++;
1222 				err = EINVAL;
1223 				goto errout;
1224 			}
1225 			if (uniform != 1) {
1226 				/*
1227 				 * Source is not suitable for direct use as
1228 				 * the destination.  Create a new scatter/gather
1229 				 * list based on the destination requirements
1230 				 * and check if that's ok.
1231 				 */
1232 				if (bus_dmamap_create(sc->sc_dstdmat,
1233 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1234 					safestats.st_nomap++;
1235 					err = ENOMEM;
1236 					goto errout;
1237 				}
1238 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1239 				    re->re_dst_map, re->re_dst_io,
1240 				    safe_op_cb, &re->re_dst,
1241 				    BUS_DMA_NOWAIT) != 0) {
1242 					bus_dmamap_destroy(sc->sc_dstdmat,
1243 						re->re_dst_map);
1244 					re->re_dst_map = NULL;
1245 					safestats.st_noload++;
1246 					err = ENOMEM;
1247 					goto errout;
1248 				}
1249 				uniform = safe_dmamap_uniform(&re->re_dst);
1250 				if (!uniform) {
1251 					/*
1252 					 * There's no way to handle the DMA
1253 					 * requirements with this uio.  We
1254 					 * could create a separate DMA area for
1255 					 * the result and then copy it back,
1256 					 * but for now we just bail and return
1257 					 * an error.  Note that uio requests
1258 					 * > SAFE_MAX_DSIZE are handled because
1259 					 * the DMA map and segment list for the
1260 					 * destination wil result in a
1261 					 * destination particle list that does
1262 					 * the necessary scatter DMA.
1263 					 */
1264 					safestats.st_iovnotuniform++;
1265 					err = EINVAL;
1266 					goto errout;
1267 				}
1268 			} else
1269 				re->re_dst = re->re_src;
1270 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1271 			if (nicealign && uniform == 1) {
1272 				/*
1273 				 * Source layout is suitable for direct
1274 				 * sharing of the DMA map and segment list.
1275 				 */
1276 				re->re_dst = re->re_src;
1277 			} else if (nicealign && uniform == 2) {
1278 				/*
1279 				 * The source is properly aligned but requires a
1280 				 * different particle list to handle DMA of the
1281 				 * result.  Create a new map and do the load to
1282 				 * create the segment list.  The particle
1283 				 * descriptor setup code below will handle the
1284 				 * rest.
1285 				 */
1286 				if (bus_dmamap_create(sc->sc_dstdmat,
1287 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1288 					safestats.st_nomap++;
1289 					err = ENOMEM;
1290 					goto errout;
1291 				}
1292 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1293 				    re->re_dst_map, re->re_dst_m,
1294 				    safe_op_cb, &re->re_dst,
1295 				    BUS_DMA_NOWAIT) != 0) {
1296 					bus_dmamap_destroy(sc->sc_dstdmat,
1297 						re->re_dst_map);
1298 					re->re_dst_map = NULL;
1299 					safestats.st_noload++;
1300 					err = ENOMEM;
1301 					goto errout;
1302 				}
1303 			} else {		/* !(aligned and/or uniform) */
1304 				int totlen, len;
1305 				struct mbuf *m, *top, **mp;
1306 
1307 				/*
1308 				 * DMA constraints require that we allocate a
1309 				 * new mbuf chain for the destination.  We
1310 				 * allocate an entire new set of mbufs of
1311 				 * optimal/required size and then tell the
1312 				 * hardware to copy any bits that are not
1313 				 * created as a byproduct of the operation.
1314 				 */
1315 				if (!nicealign)
1316 					safestats.st_unaligned++;
1317 				if (!uniform)
1318 					safestats.st_notuniform++;
1319 				totlen = re->re_src_mapsize;
1320 				if (re->re_src_m->m_flags & M_PKTHDR) {
1321 					len = MHLEN;
1322 					MGETHDR(m, M_NOWAIT, MT_DATA);
1323 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1324 					    M_NOWAIT)) {
1325 						m_free(m);
1326 						m = NULL;
1327 					}
1328 				} else {
1329 					len = MLEN;
1330 					MGET(m, M_NOWAIT, MT_DATA);
1331 				}
1332 				if (m == NULL) {
1333 					safestats.st_nombuf++;
1334 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1335 					goto errout;
1336 				}
1337 				if (totlen >= MINCLSIZE) {
1338 					MCLGET(m, M_NOWAIT);
1339 					if ((m->m_flags & M_EXT) == 0) {
1340 						m_free(m);
1341 						safestats.st_nomcl++;
1342 						err = sc->sc_nqchip ?
1343 							ERESTART : ENOMEM;
1344 						goto errout;
1345 					}
1346 					len = MCLBYTES;
1347 				}
1348 				m->m_len = len;
1349 				top = NULL;
1350 				mp = &top;
1351 
1352 				while (totlen > 0) {
1353 					if (top) {
1354 						MGET(m, M_NOWAIT, MT_DATA);
1355 						if (m == NULL) {
1356 							m_freem(top);
1357 							safestats.st_nombuf++;
1358 							err = sc->sc_nqchip ?
1359 							    ERESTART : ENOMEM;
1360 							goto errout;
1361 						}
1362 						len = MLEN;
1363 					}
1364 					if (top && totlen >= MINCLSIZE) {
1365 						MCLGET(m, M_NOWAIT);
1366 						if ((m->m_flags & M_EXT) == 0) {
1367 							*mp = m;
1368 							m_freem(top);
1369 							safestats.st_nomcl++;
1370 							err = sc->sc_nqchip ?
1371 							    ERESTART : ENOMEM;
1372 							goto errout;
1373 						}
1374 						len = MCLBYTES;
1375 					}
1376 					m->m_len = len = min(totlen, len);
1377 					totlen -= len;
1378 					*mp = m;
1379 					mp = &m->m_next;
1380 				}
1381 				re->re_dst_m = top;
1382 				if (bus_dmamap_create(sc->sc_dstdmat,
1383 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1384 					safestats.st_nomap++;
1385 					err = ENOMEM;
1386 					goto errout;
1387 				}
1388 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1389 				    re->re_dst_map, re->re_dst_m,
1390 				    safe_op_cb, &re->re_dst,
1391 				    BUS_DMA_NOWAIT) != 0) {
1392 					bus_dmamap_destroy(sc->sc_dstdmat,
1393 					re->re_dst_map);
1394 					re->re_dst_map = NULL;
1395 					safestats.st_noload++;
1396 					err = ENOMEM;
1397 					goto errout;
1398 				}
1399 				if (re->re_src.mapsize > oplen) {
1400 					/*
1401 					 * There's data following what the
1402 					 * hardware will copy for us.  If this
1403 					 * isn't just the ICV (that's going to
1404 					 * be written on completion), copy it
1405 					 * to the new mbufs
1406 					 */
1407 					if (!(maccrd &&
1408 					    (re->re_src.mapsize-oplen) == 12 &&
1409 					    maccrd->crd_inject == oplen))
1410 						safe_mcopy(re->re_src_m,
1411 							   re->re_dst_m,
1412 							   oplen);
1413 					else
1414 						safestats.st_noicvcopy++;
1415 				}
1416 			}
1417 		} else {
1418 			safestats.st_badflags++;
1419 			err = EINVAL;
1420 			goto errout;
1421 		}
1422 
1423 		if (re->re_dst.nsegs > 1) {
1424 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1425 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1426 			for (i = 0; i < re->re_dst_nsegs; i++) {
1427 				pd = sc->sc_dpfree;
1428 				KASSERT((pd->pd_flags&3) == 0 ||
1429 					(pd->pd_flags&3) == SAFE_PD_DONE,
1430 					("bogus dest particle descriptor; flags %x",
1431 						pd->pd_flags));
1432 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1433 					sc->sc_dpfree = sc->sc_dpring;
1434 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1435 				pd->pd_flags = SAFE_PD_READY;
1436 			}
1437 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1438 		} else {
1439 			/*
1440 			 * No need for scatter, reference the operand directly.
1441 			 */
1442 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1443 		}
1444 	}
1445 
1446 	/*
1447 	 * All done with setup; fillin the SA command words
1448 	 * and the packet engine descriptor.  The operation
1449 	 * is now ready for submission to the hardware.
1450 	 */
1451 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1452 	sa->sa_cmd1 = cmd1
1453 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1454 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1455 		    | SAFE_SA_CMD1_SRPCI
1456 		    ;
1457 	/*
1458 	 * NB: the order of writes is important here.  In case the
1459 	 * chip is scanning the ring because of an outstanding request
1460 	 * it might nab this one too.  In that case we need to make
1461 	 * sure the setup is complete before we write the length
1462 	 * field of the descriptor as it signals the descriptor is
1463 	 * ready for processing.
1464 	 */
1465 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1466 	if (maccrd)
1467 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1468 	re->re_desc.d_len = oplen
1469 			  | SAFE_PE_LEN_READY
1470 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1471 			  ;
1472 
1473 	safestats.st_ipackets++;
1474 	safestats.st_ibytes += oplen;
1475 
1476 	if (++(sc->sc_front) == sc->sc_ringtop)
1477 		sc->sc_front = sc->sc_ring;
1478 
1479 	/* XXX honor batching */
1480 	safe_feed(sc, re);
1481 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
1482 	return (0);
1483 
1484 errout:
1485 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1486 		m_freem(re->re_dst_m);
1487 
1488 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1489 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1490 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1491 	}
1492 	if (re->re_src_map != NULL) {
1493 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1494 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1495 	}
1496 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
1497 	if (err != ERESTART) {
1498 		crp->crp_etype = err;
1499 		crypto_done(crp);
1500 	} else {
1501 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1502 	}
1503 	return (err);
1504 }
1505 
1506 static void
1507 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1508 {
1509 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1510 	struct cryptodesc *crd;
1511 
1512 	safestats.st_opackets++;
1513 	safestats.st_obytes += re->re_dst.mapsize;
1514 
1515 	safe_dma_sync(&sc->sc_ringalloc,
1516 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1517 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1518 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1519 			re->re_desc.d_csr,
1520 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1521 		safestats.st_peoperr++;
1522 		crp->crp_etype = EIO;		/* something more meaningful? */
1523 	}
1524 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1525 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1526 		    BUS_DMASYNC_POSTREAD);
1527 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1528 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1529 	}
1530 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1531 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1532 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1533 
1534 	/*
1535 	 * If result was written to a differet mbuf chain, swap
1536 	 * it in as the return value and reclaim the original.
1537 	 */
1538 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1539 		m_freem(re->re_src_m);
1540 		crp->crp_buf = (caddr_t)re->re_dst_m;
1541 	}
1542 
1543 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1544 		/* copy out IV for future use */
1545 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1546 			int ivsize;
1547 
1548 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1549 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1550 				ivsize = 2*sizeof(u_int32_t);
1551 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1552 				ivsize = 4*sizeof(u_int32_t);
1553 			} else
1554 				continue;
1555 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1556 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1557 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1558 			break;
1559 		}
1560 	}
1561 
1562 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1563 		/* copy out ICV result */
1564 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1565 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1566 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1567 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1568 				continue;
1569 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1570 				/*
1571 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1572 				 * before copy them to their destination.
1573 				 */
1574 				re->re_sastate.sa_saved_indigest[0] =
1575 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1576 				re->re_sastate.sa_saved_indigest[1] =
1577 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1578 				re->re_sastate.sa_saved_indigest[2] =
1579 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1580 			}
1581 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1582 			    crd->crd_inject,
1583 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1584 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1585 			break;
1586 		}
1587 	}
1588 	crypto_done(crp);
1589 }
1590 
1591 /*
1592  * Copy all data past offset from srcm to dstm.
1593  */
1594 static void
1595 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1596 {
1597 	u_int j, dlen, slen;
1598 	caddr_t dptr, sptr;
1599 
1600 	/*
1601 	 * Advance src and dst to offset.
1602 	 */
1603 	j = offset;
1604 	while (j >= 0) {
1605 		if (srcm->m_len > j)
1606 			break;
1607 		j -= srcm->m_len;
1608 		srcm = srcm->m_next;
1609 		if (srcm == NULL)
1610 			return;
1611 	}
1612 	sptr = mtod(srcm, caddr_t) + j;
1613 	slen = srcm->m_len - j;
1614 
1615 	j = offset;
1616 	while (j >= 0) {
1617 		if (dstm->m_len > j)
1618 			break;
1619 		j -= dstm->m_len;
1620 		dstm = dstm->m_next;
1621 		if (dstm == NULL)
1622 			return;
1623 	}
1624 	dptr = mtod(dstm, caddr_t) + j;
1625 	dlen = dstm->m_len - j;
1626 
1627 	/*
1628 	 * Copy everything that remains.
1629 	 */
1630 	for (;;) {
1631 		j = min(slen, dlen);
1632 		bcopy(sptr, dptr, j);
1633 		if (slen == j) {
1634 			srcm = srcm->m_next;
1635 			if (srcm == NULL)
1636 				return;
1637 			sptr = srcm->m_data;
1638 			slen = srcm->m_len;
1639 		} else
1640 			sptr += j, slen -= j;
1641 		if (dlen == j) {
1642 			dstm = dstm->m_next;
1643 			if (dstm == NULL)
1644 				return;
1645 			dptr = dstm->m_data;
1646 			dlen = dstm->m_len;
1647 		} else
1648 			dptr += j, dlen -= j;
1649 	}
1650 }
1651 
1652 #ifndef SAFE_NO_RNG
1653 #define	SAFE_RNG_MAXWAIT	1000
1654 
1655 static void
1656 safe_rng_init(struct safe_softc *sc)
1657 {
1658 	u_int32_t w, v;
1659 	int i;
1660 
1661 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1662 	/* use default value according to the manual */
1663 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1664 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1665 
1666 	/*
1667 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1668 	 * is brought out of reset the ready status flag does not
1669 	 * work until the RNG has finished its internal initialization.
1670 	 *
1671 	 * So in order to determine the device is through its
1672 	 * initialization we must read the data register, using the
1673 	 * status reg in the read in case it is initialized.  Then read
1674 	 * the data register until it changes from the first read.
1675 	 * Once it changes read the data register until it changes
1676 	 * again.  At this time the RNG is considered initialized.
1677 	 * This could take between 750ms - 1000ms in time.
1678 	 */
1679 	i = 0;
1680 	w = READ_REG(sc, SAFE_RNG_OUT);
1681 	do {
1682 		v = READ_REG(sc, SAFE_RNG_OUT);
1683 		if (v != w) {
1684 			w = v;
1685 			break;
1686 		}
1687 		DELAY(10);
1688 	} while (++i < SAFE_RNG_MAXWAIT);
1689 
1690 	/* Wait Until data changes again */
1691 	i = 0;
1692 	do {
1693 		v = READ_REG(sc, SAFE_RNG_OUT);
1694 		if (v != w)
1695 			break;
1696 		DELAY(10);
1697 	} while (++i < SAFE_RNG_MAXWAIT);
1698 }
1699 
1700 static __inline void
1701 safe_rng_disable_short_cycle(struct safe_softc *sc)
1702 {
1703 	WRITE_REG(sc, SAFE_RNG_CTRL,
1704 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1705 }
1706 
1707 static __inline void
1708 safe_rng_enable_short_cycle(struct safe_softc *sc)
1709 {
1710 	WRITE_REG(sc, SAFE_RNG_CTRL,
1711 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1712 }
1713 
1714 static __inline u_int32_t
1715 safe_rng_read(struct safe_softc *sc)
1716 {
1717 	int i;
1718 
1719 	i = 0;
1720 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1721 		;
1722 	return READ_REG(sc, SAFE_RNG_OUT);
1723 }
1724 
1725 static void
1726 safe_rng(void *arg)
1727 {
1728 	struct safe_softc *sc = arg;
1729 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1730 	u_int maxwords;
1731 	int i;
1732 
1733 	safestats.st_rng++;
1734 	/*
1735 	 * Fetch the next block of data.
1736 	 */
1737 	maxwords = safe_rngbufsize;
1738 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1739 		maxwords = SAFE_RNG_MAXBUFSIZ;
1740 retry:
1741 	for (i = 0; i < maxwords; i++)
1742 		buf[i] = safe_rng_read(sc);
1743 	/*
1744 	 * Check the comparator alarm count and reset the h/w if
1745 	 * it exceeds our threshold.  This guards against the
1746 	 * hardware oscillators resonating with external signals.
1747 	 */
1748 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1749 		u_int32_t freq_inc, w;
1750 
1751 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1752 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1753 		safestats.st_rngalarm++;
1754 		safe_rng_enable_short_cycle(sc);
1755 		freq_inc = 18;
1756 		for (i = 0; i < 64; i++) {
1757 			w = READ_REG(sc, SAFE_RNG_CNFG);
1758 			freq_inc = ((w + freq_inc) & 0x3fL);
1759 			w = ((w & ~0x3fL) | freq_inc);
1760 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1761 
1762 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1763 
1764 			(void) safe_rng_read(sc);
1765 			DELAY(25);
1766 
1767 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1768 				safe_rng_disable_short_cycle(sc);
1769 				goto retry;
1770 			}
1771 			freq_inc = 1;
1772 		}
1773 		safe_rng_disable_short_cycle(sc);
1774 	} else
1775 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1776 
1777 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1778 	callout_reset(&sc->sc_rngto,
1779 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1780 }
1781 #endif /* SAFE_NO_RNG */
1782 
1783 static void
1784 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1785 {
1786 	bus_addr_t *paddr = (bus_addr_t*) arg;
1787 	*paddr = segs->ds_addr;
1788 }
1789 
1790 static int
1791 safe_dma_malloc(
1792 	struct safe_softc *sc,
1793 	bus_size_t size,
1794 	struct safe_dma_alloc *dma,
1795 	int mapflags
1796 )
1797 {
1798 	int r;
1799 
1800 	r = bus_dma_tag_create(NULL,			/* parent */
1801 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1802 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1803 			       BUS_SPACE_MAXADDR,	/* highaddr */
1804 			       size,			/* maxsize */
1805 			       1,			/* nsegments */
1806 			       size,			/* maxsegsize */
1807 			       BUS_DMA_ALLOCNOW,	/* flags */
1808 			       &dma->dma_tag);
1809 	if (r != 0) {
1810 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1811 			"bus_dma_tag_create failed; error %u\n", r);
1812 		goto fail_0;
1813 	}
1814 
1815 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1816 	if (r != 0) {
1817 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1818 			"bus_dmamap_create failed; error %u\n", r);
1819 		goto fail_1;
1820 	}
1821 
1822 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1823 			     BUS_DMA_NOWAIT, &dma->dma_map);
1824 	if (r != 0) {
1825 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1826 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1827 			size, r);
1828 		goto fail_2;
1829 	}
1830 
1831 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1832 		            size,
1833 			    safe_dmamap_cb,
1834 			    &dma->dma_paddr,
1835 			    mapflags | BUS_DMA_NOWAIT);
1836 	if (r != 0) {
1837 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1838 			"bus_dmamap_load failed; error %u\n", r);
1839 		goto fail_3;
1840 	}
1841 
1842 	dma->dma_size = size;
1843 	return (0);
1844 
1845 fail_3:
1846 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1847 fail_2:
1848 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1849 fail_1:
1850 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1851 	bus_dma_tag_destroy(dma->dma_tag);
1852 fail_0:
1853 	dma->dma_map = NULL;
1854 	dma->dma_tag = NULL;
1855 	return (r);
1856 }
1857 
1858 static void
1859 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1860 {
1861 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1862 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1863 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1864 	bus_dma_tag_destroy(dma->dma_tag);
1865 }
1866 
1867 /*
1868  * Resets the board.  Values in the regesters are left as is
1869  * from the reset (i.e. initial values are assigned elsewhere).
1870  */
1871 static void
1872 safe_reset_board(struct safe_softc *sc)
1873 {
1874 	u_int32_t v;
1875 	/*
1876 	 * Reset the device.  The manual says no delay
1877 	 * is needed between marking and clearing reset.
1878 	 */
1879 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1880 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1881 		 SAFE_PE_DMACFG_SGRESET);
1882 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1883 				    | SAFE_PE_DMACFG_PERESET
1884 				    | SAFE_PE_DMACFG_PDRRESET
1885 				    | SAFE_PE_DMACFG_SGRESET);
1886 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1887 }
1888 
1889 /*
1890  * Initialize registers we need to touch only once.
1891  */
1892 static void
1893 safe_init_board(struct safe_softc *sc)
1894 {
1895 	u_int32_t v, dwords;
1896 
1897 	v = READ_REG(sc, SAFE_PE_DMACFG);
1898 	v &=~ SAFE_PE_DMACFG_PEMODE;
1899 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1900 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1901 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1902 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1903 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1904 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1905 	  ;
1906 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1907 #if 0
1908 	/* XXX select byte swap based on host byte order */
1909 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1910 #endif
1911 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1912 		/*
1913 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1914 		 * "target mode transfers" done while the chip is DMA'ing
1915 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1916 		 * we reduce the max PCI transfer size and use small source
1917 		 * particle descriptors (<= 256 bytes).
1918 		 */
1919 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1920 		device_printf(sc->sc_dev,
1921 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1922 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1923 			SAFE_REV_MAJ(sc->sc_chiprev),
1924 			SAFE_REV_MIN(sc->sc_chiprev));
1925 	}
1926 
1927 	/* NB: operands+results are overlaid */
1928 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1929 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1930 	/*
1931 	 * Configure ring entry size and number of items in the ring.
1932 	 */
1933 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1934 		("PE ring entry not 32-bit aligned!"));
1935 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1936 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1937 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1938 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1939 
1940 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1941 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1942 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1943 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1944 	/*
1945 	 * NB: destination particles are fixed size.  We use
1946 	 *     an mbuf cluster and require all results go to
1947 	 *     clusters or smaller.
1948 	 */
1949 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1950 
1951 	/* it's now safe to enable PE mode, do it */
1952 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1953 
1954 	/*
1955 	 * Configure hardware to use level-triggered interrupts and
1956 	 * to interrupt after each descriptor is processed.
1957 	 */
1958 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1959 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1960 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1961 }
1962 
1963 /*
1964  * Init PCI registers
1965  */
1966 static void
1967 safe_init_pciregs(device_t dev)
1968 {
1969 }
1970 
1971 /*
1972  * Clean up after a chip crash.
1973  * It is assumed that the caller in splimp()
1974  */
1975 static void
1976 safe_cleanchip(struct safe_softc *sc)
1977 {
1978 
1979 	if (sc->sc_nqchip != 0) {
1980 		struct safe_ringentry *re = sc->sc_back;
1981 
1982 		while (re != sc->sc_front) {
1983 			if (re->re_desc.d_csr != 0)
1984 				safe_free_entry(sc, re);
1985 			if (++re == sc->sc_ringtop)
1986 				re = sc->sc_ring;
1987 		}
1988 		sc->sc_back = re;
1989 		sc->sc_nqchip = 0;
1990 	}
1991 }
1992 
1993 /*
1994  * free a safe_q
1995  * It is assumed that the caller is within splimp().
1996  */
1997 static int
1998 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1999 {
2000 	struct cryptop *crp;
2001 
2002 	/*
2003 	 * Free header MCR
2004 	 */
2005 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2006 		m_freem(re->re_dst_m);
2007 
2008 	crp = (struct cryptop *)re->re_crp;
2009 
2010 	re->re_desc.d_csr = 0;
2011 
2012 	crp->crp_etype = EFAULT;
2013 	crypto_done(crp);
2014 	return(0);
2015 }
2016 
2017 /*
2018  * Routine to reset the chip and clean up.
2019  * It is assumed that the caller is in splimp()
2020  */
2021 static void
2022 safe_totalreset(struct safe_softc *sc)
2023 {
2024 	safe_reset_board(sc);
2025 	safe_init_board(sc);
2026 	safe_cleanchip(sc);
2027 }
2028 
2029 /*
2030  * Is the operand suitable aligned for direct DMA.  Each
2031  * segment must be aligned on a 32-bit boundary and all
2032  * but the last segment must be a multiple of 4 bytes.
2033  */
2034 static int
2035 safe_dmamap_aligned(const struct safe_operand *op)
2036 {
2037 	int i;
2038 
2039 	for (i = 0; i < op->nsegs; i++) {
2040 		if (op->segs[i].ds_addr & 3)
2041 			return (0);
2042 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2043 			return (0);
2044 	}
2045 	return (1);
2046 }
2047 
2048 /*
2049  * Is the operand suitable for direct DMA as the destination
2050  * of an operation.  The hardware requires that each ``particle''
2051  * but the last in an operation result have the same size.  We
2052  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2053  * 0 if some segment is not a multiple of of this size, 1 if all
2054  * segments are exactly this size, or 2 if segments are at worst
2055  * a multple of this size.
2056  */
2057 static int
2058 safe_dmamap_uniform(const struct safe_operand *op)
2059 {
2060 	int result = 1;
2061 
2062 	if (op->nsegs > 0) {
2063 		int i;
2064 
2065 		for (i = 0; i < op->nsegs-1; i++) {
2066 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2067 				return (0);
2068 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2069 				result = 2;
2070 		}
2071 	}
2072 	return (result);
2073 }
2074 
2075 #ifdef SAFE_DEBUG
2076 static void
2077 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2078 {
2079 	kprintf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2080 		, tag
2081 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2082 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2083 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2084 		, READ_REG(sc, SAFE_DMA_STAT)
2085 	);
2086 }
2087 
2088 static void
2089 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2090 {
2091 	kprintf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2092 		, tag
2093 		, READ_REG(sc, SAFE_HI_CFG)
2094 		, READ_REG(sc, SAFE_HI_MASK)
2095 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2096 		, READ_REG(sc, SAFE_HU_STAT)
2097 		, READ_REG(sc, SAFE_HM_STAT)
2098 	);
2099 }
2100 
2101 static void
2102 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2103 {
2104 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2105 
2106 	/* NB: assume caller has lock on ring */
2107 	kprintf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2108 		tag,
2109 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2110 		(unsigned long)(sc->sc_back - sc->sc_ring),
2111 		(unsigned long)(sc->sc_front - sc->sc_ring));
2112 }
2113 
2114 static void
2115 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2116 {
2117 	int ix, nsegs;
2118 
2119 	ix = re - sc->sc_ring;
2120 	kprintf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2121 		, tag
2122 		, re, ix
2123 		, re->re_desc.d_csr
2124 		, re->re_desc.d_src
2125 		, re->re_desc.d_dst
2126 		, re->re_desc.d_sa
2127 		, re->re_desc.d_len
2128 	);
2129 	if (re->re_src.nsegs > 1) {
2130 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2131 			sizeof(struct safe_pdesc);
2132 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2133 			kprintf(" spd[%u] %p: %p size %u flags %x"
2134 				, ix, &sc->sc_spring[ix]
2135 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2136 				, sc->sc_spring[ix].pd_size
2137 				, sc->sc_spring[ix].pd_flags
2138 			);
2139 			if (sc->sc_spring[ix].pd_size == 0)
2140 				kprintf(" (zero!)");
2141 			kprintf("\n");
2142 			if (++ix == SAFE_TOTAL_SPART)
2143 				ix = 0;
2144 		}
2145 	}
2146 	if (re->re_dst.nsegs > 1) {
2147 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2148 			sizeof(struct safe_pdesc);
2149 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2150 			kprintf(" dpd[%u] %p: %p flags %x\n"
2151 				, ix, &sc->sc_dpring[ix]
2152 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2153 				, sc->sc_dpring[ix].pd_flags
2154 			);
2155 			if (++ix == SAFE_TOTAL_DPART)
2156 				ix = 0;
2157 		}
2158 	}
2159 	kprintf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2160 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2161 	kprintf("sa: key %x %x %x %x %x %x %x %x\n"
2162 		, re->re_sa.sa_key[0]
2163 		, re->re_sa.sa_key[1]
2164 		, re->re_sa.sa_key[2]
2165 		, re->re_sa.sa_key[3]
2166 		, re->re_sa.sa_key[4]
2167 		, re->re_sa.sa_key[5]
2168 		, re->re_sa.sa_key[6]
2169 		, re->re_sa.sa_key[7]
2170 	);
2171 	kprintf("sa: indigest %x %x %x %x %x\n"
2172 		, re->re_sa.sa_indigest[0]
2173 		, re->re_sa.sa_indigest[1]
2174 		, re->re_sa.sa_indigest[2]
2175 		, re->re_sa.sa_indigest[3]
2176 		, re->re_sa.sa_indigest[4]
2177 	);
2178 	kprintf("sa: outdigest %x %x %x %x %x\n"
2179 		, re->re_sa.sa_outdigest[0]
2180 		, re->re_sa.sa_outdigest[1]
2181 		, re->re_sa.sa_outdigest[2]
2182 		, re->re_sa.sa_outdigest[3]
2183 		, re->re_sa.sa_outdigest[4]
2184 	);
2185 	kprintf("sr: iv %x %x %x %x\n"
2186 		, re->re_sastate.sa_saved_iv[0]
2187 		, re->re_sastate.sa_saved_iv[1]
2188 		, re->re_sastate.sa_saved_iv[2]
2189 		, re->re_sastate.sa_saved_iv[3]
2190 	);
2191 	kprintf("sr: hashbc %u indigest %x %x %x %x %x\n"
2192 		, re->re_sastate.sa_saved_hashbc
2193 		, re->re_sastate.sa_saved_indigest[0]
2194 		, re->re_sastate.sa_saved_indigest[1]
2195 		, re->re_sastate.sa_saved_indigest[2]
2196 		, re->re_sastate.sa_saved_indigest[3]
2197 		, re->re_sastate.sa_saved_indigest[4]
2198 	);
2199 }
2200 
2201 static void
2202 safe_dump_ring(struct safe_softc *sc, const char *tag)
2203 {
2204 	lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
2205 	kprintf("\nSafeNet Ring State:\n");
2206 	safe_dump_intrstate(sc, tag);
2207 	safe_dump_dmastatus(sc, tag);
2208 	safe_dump_ringstate(sc, tag);
2209 	if (sc->sc_nqchip) {
2210 		struct safe_ringentry *re = sc->sc_back;
2211 		do {
2212 			safe_dump_request(sc, tag, re);
2213 			if (++re == sc->sc_ringtop)
2214 				re = sc->sc_ring;
2215 		} while (re != sc->sc_front);
2216 	}
2217 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
2218 }
2219 
2220 static int
2221 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2222 {
2223 	char dmode[64];
2224 	int error;
2225 
2226 	strncpy(dmode, "", sizeof(dmode) - 1);
2227 	dmode[sizeof(dmode) - 1] = '\0';
2228 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2229 
2230 	if (error == 0 && req->newptr != NULL) {
2231 		struct safe_softc *sc = safec;
2232 
2233 		if (!sc)
2234 			return EINVAL;
2235 		if (strncmp(dmode, "dma", 3) == 0)
2236 			safe_dump_dmastatus(sc, "safe0");
2237 		else if (strncmp(dmode, "int", 3) == 0)
2238 			safe_dump_intrstate(sc, "safe0");
2239 		else if (strncmp(dmode, "ring", 4) == 0)
2240 			safe_dump_ring(sc, "safe0");
2241 		else
2242 			return EINVAL;
2243 	}
2244 	return error;
2245 }
2246 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2247 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2248 #endif /* SAFE_DEBUG */
2249