xref: /dragonfly/sys/dev/crypto/safe/safe.c (revision c37c9ab3)
1 /*-
2  * Copyright (c) 2003 Sam Leffler, Errno Consulting
3  * Copyright (c) 2003 Global Technology Associates, Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/safe/safe.c,v 1.22 2011/06/12 23:33:08 delphij Exp $
28  */
29 
30 /*
31  * SafeNet SafeXcel-1141 hardware crypto accelerator
32  */
33 #include "opt_safe.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/errno.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/lock.h>
44 #include <sys/sysctl.h>
45 #include <sys/endian.h>
46 
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49 
50 #include <sys/bus.h>
51 #include <sys/rman.h>
52 
53 #include <crypto/sha1.h>
54 #include <opencrypto/cryptodev.h>
55 #include <opencrypto/cryptosoft.h>
56 #include <sys/md5.h>
57 #include <sys/random.h>
58 #include <sys/kobj.h>
59 
60 #include "cryptodev_if.h"
61 
62 #include <bus/pci/pcivar.h>
63 #include <bus/pci/pcireg.h>
64 
65 #ifdef SAFE_RNDTEST
66 #include <dev/crypto/rndtest/rndtest.h>
67 #endif
68 #include <dev/crypto/safe/safereg.h>
69 #include <dev/crypto/safe/safevar.h>
70 
71 #ifndef bswap32
72 #define	bswap32	NTOHL
73 #endif
74 
75 /*
76  * Prototypes and count for the pci_device structure
77  */
78 static	int safe_probe(device_t);
79 static	int safe_attach(device_t);
80 static	int safe_detach(device_t);
81 static	int safe_suspend(device_t);
82 static	int safe_resume(device_t);
83 static	int safe_shutdown(device_t);
84 
85 static	int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
86 static	int safe_freesession(device_t, u_int64_t);
87 static	int safe_process(device_t, struct cryptop *, int);
88 
89 static device_method_t safe_methods[] = {
90 	/* Device interface */
91 	DEVMETHOD(device_probe,		safe_probe),
92 	DEVMETHOD(device_attach,	safe_attach),
93 	DEVMETHOD(device_detach,	safe_detach),
94 	DEVMETHOD(device_suspend,	safe_suspend),
95 	DEVMETHOD(device_resume,	safe_resume),
96 	DEVMETHOD(device_shutdown,	safe_shutdown),
97 
98 	/* bus interface */
99 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
100 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
104 	DEVMETHOD(cryptodev_freesession,safe_freesession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 static driver_t safe_driver = {
110 	"safe",
111 	safe_methods,
112 	sizeof (struct safe_softc)
113 };
114 static devclass_t safe_devclass;
115 
116 DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, NULL, NULL);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
147 
148 #ifdef SAFE_DEBUG
149 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
150 static	void safe_dump_ringstate(struct safe_softc *, const char *);
151 static	void safe_dump_intrstate(struct safe_softc *, const char *);
152 static	void safe_dump_request(struct safe_softc *, const char *,
153 		struct safe_ringentry *);
154 
155 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
156 
157 static	int safe_debug = 0;
158 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
159 	    0, "control debugging msgs");
160 #define	DPRINTF(_x)	if (safe_debug) kprintf _x
161 #else
162 #define	DPRINTF(_x)
163 #endif
164 
165 #define	READ_REG(sc,r) \
166 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
167 
168 #define WRITE_REG(sc,reg,val) \
169 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
170 
171 struct safe_stats safestats;
172 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
173 	    safe_stats, "driver statistics");
174 #ifndef SAFE_NO_RNG
175 static	int safe_rnginterval = 1;		/* poll once a second */
176 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
177 	    0, "RNG polling interval (secs)");
178 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
179 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
180 	    0, "RNG polling buffer size (32-bit words)");
181 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
182 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
183 	    0, "RNG max alarms before reset");
184 #endif /* SAFE_NO_RNG */
185 
186 static int
187 safe_probe(device_t dev)
188 {
189 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
190 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
191 		return (BUS_PROBE_DEFAULT);
192 	return (ENXIO);
193 }
194 
195 static const char*
196 safe_partname(struct safe_softc *sc)
197 {
198 	/* XXX sprintf numbers when not decoded */
199 	switch (pci_get_vendor(sc->sc_dev)) {
200 	case PCI_VENDOR_SAFENET:
201 		switch (pci_get_device(sc->sc_dev)) {
202 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
203 		}
204 		return "SafeNet unknown-part";
205 	}
206 	return "Unknown-vendor unknown-part";
207 }
208 
209 #ifndef SAFE_NO_RNG
210 static void
211 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
212 {
213 	add_buffer_randomness_src(buf, count, RAND_SRC_SAFE);
214 }
215 #endif /* SAFE_NO_RNG */
216 
217 static int
218 safe_attach(device_t dev)
219 {
220 	struct safe_softc *sc = device_get_softc(dev);
221 	u_int32_t raddr;
222 	u_int32_t cmd, i, devinfo;
223 	int rid;
224 
225 	bzero(sc, sizeof (*sc));
226 	sc->sc_dev = dev;
227 
228 	/* XXX handle power management */
229 
230 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
231 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
232 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
233 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
234 
235 	if (!(cmd & PCIM_CMD_MEMEN)) {
236 		device_printf(dev, "failed to enable memory mapping\n");
237 		goto bad;
238 	}
239 
240 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
241 		device_printf(dev, "failed to enable bus mastering\n");
242 		goto bad;
243 	}
244 
245 	/*
246 	 * Setup memory-mapping of PCI registers.
247 	 */
248 	rid = BS_BAR;
249 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
250 					   RF_ACTIVE);
251 	if (sc->sc_sr == NULL) {
252 		device_printf(dev, "cannot map register space\n");
253 		goto bad;
254 	}
255 	sc->sc_st = rman_get_bustag(sc->sc_sr);
256 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
257 
258 	/*
259 	 * Arrange interrupt line.
260 	 */
261 	rid = 0;
262 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
263 					    RF_SHAREABLE|RF_ACTIVE);
264 	if (sc->sc_irq == NULL) {
265 		device_printf(dev, "could not map interrupt\n");
266 		goto bad1;
267 	}
268 	/*
269 	 * NB: Network code assumes we are blocked with splimp()
270 	 *     so make sure the IRQ is mapped appropriately.
271 	 */
272 	if (bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE,
273 			   safe_intr, sc, &sc->sc_ih, NULL)) {
274 		device_printf(dev, "could not establish interrupt\n");
275 		goto bad2;
276 	}
277 
278 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
279 	if (sc->sc_cid < 0) {
280 		device_printf(dev, "could not get crypto driver id\n");
281 		goto bad3;
282 	}
283 
284 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
285 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
286 
287 	/*
288 	 * Setup DMA descriptor area.
289 	 */
290 	if (bus_dma_tag_create(NULL,			/* parent */
291 			       1,			/* alignment */
292 			       SAFE_DMA_BOUNDARY,	/* boundary */
293 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
294 			       BUS_SPACE_MAXADDR,	/* highaddr */
295 			       NULL, NULL,		/* filter, filterarg */
296 			       SAFE_MAX_DMA,		/* maxsize */
297 			       SAFE_MAX_PART,		/* nsegments */
298 			       SAFE_MAX_SSIZE,		/* maxsegsize */
299 			       BUS_DMA_ALLOCNOW,	/* flags */
300 			       &sc->sc_srcdmat)) {
301 		device_printf(dev, "cannot allocate DMA tag\n");
302 		goto bad4;
303 	}
304 	if (bus_dma_tag_create(NULL,			/* parent */
305 			       1,			/* alignment */
306 			       SAFE_MAX_DSIZE,		/* boundary */
307 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
308 			       BUS_SPACE_MAXADDR,	/* highaddr */
309 			       NULL, NULL,		/* filter, filterarg */
310 			       SAFE_MAX_DMA,		/* maxsize */
311 			       SAFE_MAX_PART,		/* nsegments */
312 			       SAFE_MAX_DSIZE,		/* maxsegsize */
313 			       BUS_DMA_ALLOCNOW,	/* flags */
314 			       &sc->sc_dstdmat)) {
315 		device_printf(dev, "cannot allocate DMA tag\n");
316 		goto bad4;
317 	}
318 
319 	/*
320 	 * Allocate packet engine descriptors.
321 	 */
322 	if (safe_dma_malloc(sc,
323 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
324 	    &sc->sc_ringalloc, 0)) {
325 		device_printf(dev, "cannot allocate PE descriptor ring\n");
326 		bus_dma_tag_destroy(sc->sc_srcdmat);
327 		goto bad4;
328 	}
329 	/*
330 	 * Hookup the static portion of all our data structures.
331 	 */
332 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
333 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
334 	sc->sc_front = sc->sc_ring;
335 	sc->sc_back = sc->sc_ring;
336 	raddr = sc->sc_ringalloc.dma_paddr;
337 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
338 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
339 		struct safe_ringentry *re = &sc->sc_ring[i];
340 
341 		re->re_desc.d_sa = raddr +
342 			offsetof(struct safe_ringentry, re_sa);
343 		re->re_sa.sa_staterec = raddr +
344 			offsetof(struct safe_ringentry, re_sastate);
345 
346 		raddr += sizeof (struct safe_ringentry);
347 	}
348 	lockinit(&sc->sc_ringlock, "packet engine ring", 0, LK_CANRECURSE);
349 
350 	/*
351 	 * Allocate scatter and gather particle descriptors.
352 	 */
353 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
354 	    &sc->sc_spalloc, 0)) {
355 		device_printf(dev, "cannot allocate source particle "
356 			"descriptor ring\n");
357 		lockuninit(&sc->sc_ringlock);
358 		safe_dma_free(sc, &sc->sc_ringalloc);
359 		bus_dma_tag_destroy(sc->sc_srcdmat);
360 		goto bad4;
361 	}
362 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
363 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
364 	sc->sc_spfree = sc->sc_spring;
365 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
366 
367 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
368 	    &sc->sc_dpalloc, 0)) {
369 		device_printf(dev, "cannot allocate destination particle "
370 			"descriptor ring\n");
371 		lockuninit(&sc->sc_ringlock);
372 		safe_dma_free(sc, &sc->sc_spalloc);
373 		safe_dma_free(sc, &sc->sc_ringalloc);
374 		bus_dma_tag_destroy(sc->sc_dstdmat);
375 		goto bad4;
376 	}
377 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
378 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
379 	sc->sc_dpfree = sc->sc_dpring;
380 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
381 
382 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
383 
384 	devinfo = READ_REG(sc, SAFE_DEVINFO);
385 	if (devinfo & SAFE_DEVINFO_RNG) {
386 		sc->sc_flags |= SAFE_FLAGS_RNG;
387 		kprintf(" rng");
388 	}
389 	if (devinfo & SAFE_DEVINFO_PKEY) {
390 #if 0
391 		kprintf(" key");
392 		sc->sc_flags |= SAFE_FLAGS_KEY;
393 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
394 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
395 #endif
396 	}
397 	if (devinfo & SAFE_DEVINFO_DES) {
398 		kprintf(" des/3des");
399 		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
400 		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
401 	}
402 	if (devinfo & SAFE_DEVINFO_AES) {
403 		kprintf(" aes");
404 		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
405 	}
406 	if (devinfo & SAFE_DEVINFO_MD5) {
407 		kprintf(" md5");
408 		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
409 	}
410 	if (devinfo & SAFE_DEVINFO_SHA1) {
411 		kprintf(" sha1");
412 		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
413 	}
414 	kprintf(" null");
415 	crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
416 	crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
417 	/* XXX other supported algorithms */
418 	kprintf("\n");
419 
420 	safe_reset_board(sc);		/* reset h/w */
421 	safe_init_pciregs(dev);		/* init pci settings */
422 	safe_init_board(sc);		/* init h/w */
423 
424 #ifndef SAFE_NO_RNG
425 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
426 #ifdef SAFE_RNDTEST
427 		sc->sc_rndtest = rndtest_attach(dev);
428 		if (sc->sc_rndtest)
429 			sc->sc_harvest = rndtest_harvest;
430 		else
431 			sc->sc_harvest = default_harvest;
432 #else
433 		sc->sc_harvest = default_harvest;
434 #endif
435 		safe_rng_init(sc);
436 
437 		callout_init_mp(&sc->sc_rngto);
438 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
439 	}
440 #endif /* SAFE_NO_RNG */
441 #ifdef SAFE_DEBUG
442 	safec = sc;			/* for use by hw.safe.dump */
443 #endif
444 	return (0);
445 bad4:
446 	crypto_unregister_all(sc->sc_cid);
447 bad3:
448 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
449 bad2:
450 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
451 bad1:
452 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
453 bad:
454 	return (ENXIO);
455 }
456 
457 /*
458  * Detach a device that successfully probed.
459  */
460 static int
461 safe_detach(device_t dev)
462 {
463 	struct safe_softc *sc = device_get_softc(dev);
464 
465 	/* XXX wait/abort active ops */
466 
467 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
468 
469 	callout_stop(&sc->sc_rngto);
470 
471 	crypto_unregister_all(sc->sc_cid);
472 
473 #ifdef SAFE_RNDTEST
474 	if (sc->sc_rndtest)
475 		rndtest_detach(sc->sc_rndtest);
476 #endif
477 
478 	safe_cleanchip(sc);
479 	safe_dma_free(sc, &sc->sc_dpalloc);
480 	safe_dma_free(sc, &sc->sc_spalloc);
481 	lockuninit(&sc->sc_ringlock);
482 	safe_dma_free(sc, &sc->sc_ringalloc);
483 
484 	bus_generic_detach(dev);
485 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
486 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
487 
488 	bus_dma_tag_destroy(sc->sc_srcdmat);
489 	bus_dma_tag_destroy(sc->sc_dstdmat);
490 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
491 
492 	return (0);
493 }
494 
495 /*
496  * Stop all chip i/o so that the kernel's probe routines don't
497  * get confused by errant DMAs when rebooting.
498  */
499 static int
500 safe_shutdown(device_t dev)
501 {
502 #ifdef notyet
503 	safe_stop(device_get_softc(dev));
504 #endif
505 	return (0);
506 }
507 
508 /*
509  * Device suspend routine.
510  */
511 static int
512 safe_suspend(device_t dev)
513 {
514 	struct safe_softc *sc = device_get_softc(dev);
515 
516 #ifdef notyet
517 	/* XXX stop the device and save PCI settings */
518 #endif
519 	sc->sc_suspended = 1;
520 
521 	return (0);
522 }
523 
524 static int
525 safe_resume(device_t dev)
526 {
527 	struct safe_softc *sc = device_get_softc(dev);
528 
529 #ifdef notyet
530 	/* XXX retore PCI settings and start the device */
531 #endif
532 	sc->sc_suspended = 0;
533 	return (0);
534 }
535 
536 /*
537  * SafeXcel Interrupt routine
538  */
539 static void
540 safe_intr(void *arg)
541 {
542 	struct safe_softc *sc = arg;
543 	volatile u_int32_t stat;
544 
545 	stat = READ_REG(sc, SAFE_HM_STAT);
546 	if (stat == 0)			/* shared irq, not for us */
547 		return;
548 
549 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
550 
551 	if ((stat & SAFE_INT_PE_DDONE)) {
552 		/*
553 		 * Descriptor(s) done; scan the ring and
554 		 * process completed operations.
555 		 */
556 		lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
557 		while (sc->sc_back != sc->sc_front) {
558 			struct safe_ringentry *re = sc->sc_back;
559 #ifdef SAFE_DEBUG
560 			if (safe_debug) {
561 				safe_dump_ringstate(sc, __func__);
562 				safe_dump_request(sc, __func__, re);
563 			}
564 #endif
565 			/*
566 			 * safe_process marks ring entries that were allocated
567 			 * but not used with a csr of zero.  This insures the
568 			 * ring front pointer never needs to be set backwards
569 			 * in the event that an entry is allocated but not used
570 			 * because of a setup error.
571 			 */
572 			if (re->re_desc.d_csr != 0) {
573 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
574 					break;
575 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
576 					break;
577 				sc->sc_nqchip--;
578 				safe_callback(sc, re);
579 			}
580 			if (++(sc->sc_back) == sc->sc_ringtop)
581 				sc->sc_back = sc->sc_ring;
582 		}
583 		lockmgr(&sc->sc_ringlock, LK_RELEASE);
584 	}
585 
586 	/*
587 	 * Check to see if we got any DMA Error
588 	 */
589 	if (stat & SAFE_INT_PE_ERROR) {
590 		DPRINTF(("dmaerr dmastat %08x\n",
591 			READ_REG(sc, SAFE_PE_DMASTAT)));
592 		safestats.st_dmaerr++;
593 		safe_totalreset(sc);
594 #if 0
595 		safe_feed(sc);
596 #endif
597 	}
598 
599 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
600 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
601 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
602 			sc->sc_needwakeup));
603 		sc->sc_needwakeup &= ~wakeup;
604 		crypto_unblock(sc->sc_cid, wakeup);
605 	}
606 }
607 
608 /*
609  * safe_feed() - post a request to chip
610  */
611 static void
612 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
613 {
614 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
615 	if (re->re_dst_map != NULL)
616 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
617 			BUS_DMASYNC_PREREAD);
618 	/* XXX have no smaller granularity */
619 	safe_dma_sync(&sc->sc_ringalloc,
620 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
621 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
622 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
623 
624 #ifdef SAFE_DEBUG
625 	if (safe_debug) {
626 		safe_dump_ringstate(sc, __func__);
627 		safe_dump_request(sc, __func__, re);
628 	}
629 #endif
630 	sc->sc_nqchip++;
631 	if (sc->sc_nqchip > safestats.st_maxqchip)
632 		safestats.st_maxqchip = sc->sc_nqchip;
633 	/* poke h/w to check descriptor ring, any value can be written */
634 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
635 }
636 
637 static void
638 safe_setup_enckey(struct safe_session *ses, caddr_t key)
639 {
640 	int i;
641 
642 	bcopy(key, ses->ses_key, ses->ses_klen / 8);
643 
644 	/* PE is little-endian, insure proper byte order */
645 	for (i = 0; i < nitems(ses->ses_key); i++)
646 		ses->ses_key[i] = htole32(ses->ses_key[i]);
647 }
648 
649 static void
650 safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
651 {
652 	MD5_CTX md5ctx;
653 	SHA1_CTX sha1ctx;
654 	int i;
655 
656 
657 	for (i = 0; i < klen; i++)
658 		key[i] ^= HMAC_IPAD_VAL;
659 
660 	if (algo == CRYPTO_MD5_HMAC) {
661 		MD5Init(&md5ctx);
662 		MD5Update(&md5ctx, key, klen);
663 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
664 		/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
665 		_bcopy(&md5ctx.A, ses->ses_hminner, sizeof(md5ctx.A) * 4);
666 	} else {
667 		SHA1Init(&sha1ctx);
668 		SHA1Update(&sha1ctx, key, klen);
669 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
670 		    SHA1_HMAC_BLOCK_LEN - klen);
671 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
672 	}
673 
674 	for (i = 0; i < klen; i++)
675 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
676 
677 	if (algo == CRYPTO_MD5_HMAC) {
678 		MD5Init(&md5ctx);
679 		MD5Update(&md5ctx, key, klen);
680 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
681 		/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
682 		_bcopy(&md5ctx.A, ses->ses_hmouter, sizeof(md5ctx.A) * 4);
683 	} else {
684 		SHA1Init(&sha1ctx);
685 		SHA1Update(&sha1ctx, key, klen);
686 		SHA1Update(&sha1ctx, hmac_opad_buffer,
687 		    SHA1_HMAC_BLOCK_LEN - klen);
688 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
689 	}
690 
691 	for (i = 0; i < klen; i++)
692 		key[i] ^= HMAC_OPAD_VAL;
693 
694 	/* PE is little-endian, insure proper byte order */
695 	for (i = 0; i < nitems(ses->ses_hminner); i++) {
696 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
697 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
698 	}
699 }
700 
701 /*
702  * Allocate a new 'session' and return an encoded session id.  'sidp'
703  * contains our registration id, and should contain an encoded session
704  * id on successful allocation.
705  */
706 static int
707 safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
708 {
709 	struct safe_softc *sc = device_get_softc(dev);
710 	struct cryptoini *c, *encini = NULL, *macini = NULL;
711 	struct safe_session *ses = NULL;
712 	int sesn;
713 
714 	if (sidp == NULL || cri == NULL || sc == NULL)
715 		return (EINVAL);
716 
717 	for (c = cri; c != NULL; c = c->cri_next) {
718 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
719 		    c->cri_alg == CRYPTO_SHA1_HMAC ||
720 		    c->cri_alg == CRYPTO_NULL_HMAC) {
721 			if (macini)
722 				return (EINVAL);
723 			macini = c;
724 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
725 		    c->cri_alg == CRYPTO_3DES_CBC ||
726 		    c->cri_alg == CRYPTO_AES_CBC ||
727 		    c->cri_alg == CRYPTO_NULL_CBC) {
728 			if (encini)
729 				return (EINVAL);
730 			encini = c;
731 		} else
732 			return (EINVAL);
733 	}
734 	if (encini == NULL && macini == NULL)
735 		return (EINVAL);
736 	if (encini) {			/* validate key length */
737 		switch (encini->cri_alg) {
738 		case CRYPTO_DES_CBC:
739 			if (encini->cri_klen != 64)
740 				return (EINVAL);
741 			break;
742 		case CRYPTO_3DES_CBC:
743 			if (encini->cri_klen != 192)
744 				return (EINVAL);
745 			break;
746 		case CRYPTO_AES_CBC:
747 			if (encini->cri_klen != 128 &&
748 			    encini->cri_klen != 192 &&
749 			    encini->cri_klen != 256)
750 				return (EINVAL);
751 			break;
752 		}
753 	}
754 
755 	if (sc->sc_sessions == NULL) {
756 		ses = sc->sc_sessions = (struct safe_session *)kmalloc(
757 		    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
758 		if (ses == NULL)
759 			return (ENOMEM);
760 		sesn = 0;
761 		sc->sc_nsessions = 1;
762 	} else {
763 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
764 			if (sc->sc_sessions[sesn].ses_used == 0) {
765 				ses = &sc->sc_sessions[sesn];
766 				break;
767 			}
768 		}
769 
770 		if (ses == NULL) {
771 			sesn = sc->sc_nsessions;
772 			ses = (struct safe_session *)kmalloc((sesn + 1) *
773 			    sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
774 			if (ses == NULL)
775 				return (ENOMEM);
776 			bcopy(sc->sc_sessions, ses, sesn *
777 			    sizeof(struct safe_session));
778 			bzero(sc->sc_sessions, sesn *
779 			    sizeof(struct safe_session));
780 			kfree(sc->sc_sessions, M_DEVBUF);
781 			sc->sc_sessions = ses;
782 			ses = &sc->sc_sessions[sesn];
783 			sc->sc_nsessions++;
784 		}
785 	}
786 
787 	bzero(ses, sizeof(struct safe_session));
788 	ses->ses_used = 1;
789 
790 	if (encini) {
791 		/* get an IV */
792 		/* XXX may read fewer than requested */
793 		read_random(ses->ses_iv, sizeof(ses->ses_iv), 0);
794 
795 		ses->ses_klen = encini->cri_klen;
796 		if (encini->cri_key != NULL)
797 			safe_setup_enckey(ses, encini->cri_key);
798 	}
799 
800 	if (macini) {
801 		ses->ses_mlen = macini->cri_mlen;
802 		if (ses->ses_mlen == 0) {
803 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
804 				ses->ses_mlen = MD5_HASH_LEN;
805 			else
806 				ses->ses_mlen = SHA1_HASH_LEN;
807 		}
808 
809 		if (macini->cri_key != NULL) {
810 			safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
811 			    macini->cri_klen / 8);
812 		}
813 	}
814 
815 	*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
816 	return (0);
817 }
818 
819 /*
820  * Deallocate a session.
821  */
822 static int
823 safe_freesession(device_t dev, u_int64_t tid)
824 {
825 	struct safe_softc *sc = device_get_softc(dev);
826 	int session, ret;
827 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
828 
829 	if (sc == NULL)
830 		return (EINVAL);
831 
832 	session = SAFE_SESSION(sid);
833 	if (session < sc->sc_nsessions) {
834 		bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
835 		ret = 0;
836 	} else
837 		ret = EINVAL;
838 	return (ret);
839 }
840 
841 static void
842 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
843 {
844 	struct safe_operand *op = arg;
845 
846 	DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
847 		(u_int) mapsize, nsegs, error));
848 	if (error != 0)
849 		return;
850 	op->mapsize = mapsize;
851 	op->nsegs = nsegs;
852 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
853 }
854 
855 static int
856 safe_process(device_t dev, struct cryptop *crp, int hint)
857 {
858 	struct safe_softc *sc = device_get_softc(dev);
859 	int err = 0, i, nicealign, uniform;
860 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
861 	int bypass, oplen, ivsize;
862 	caddr_t iv;
863 	int16_t coffset;
864 	struct safe_session *ses;
865 	struct safe_ringentry *re;
866 	struct safe_sarec *sa;
867 	struct safe_pdesc *pd;
868 	u_int32_t cmd0, cmd1, staterec;
869 
870 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
871 		safestats.st_invalid++;
872 		return (EINVAL);
873 	}
874 	if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
875 		safestats.st_badsession++;
876 		return (EINVAL);
877 	}
878 
879 	lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
880 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
881 		safestats.st_ringfull++;
882 		sc->sc_needwakeup |= CRYPTO_SYMQ;
883 		lockmgr(&sc->sc_ringlock, LK_RELEASE);
884 		return (ERESTART);
885 	}
886 	re = sc->sc_front;
887 
888 	staterec = re->re_sa.sa_staterec;	/* save */
889 	/* NB: zero everything but the PE descriptor */
890 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
891 	re->re_sa.sa_staterec = staterec;	/* restore */
892 
893 	re->re_crp = crp;
894 	re->re_sesn = SAFE_SESSION(crp->crp_sid);
895 
896 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
897 		re->re_src_m = (struct mbuf *)crp->crp_buf;
898 		re->re_dst_m = (struct mbuf *)crp->crp_buf;
899 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
900 		re->re_src_io = (struct uio *)crp->crp_buf;
901 		re->re_dst_io = (struct uio *)crp->crp_buf;
902 	} else {
903 		safestats.st_badflags++;
904 		err = EINVAL;
905 		goto errout;	/* XXX we don't handle contiguous blocks! */
906 	}
907 
908 	sa = &re->re_sa;
909 	ses = &sc->sc_sessions[re->re_sesn];
910 
911 	crd1 = crp->crp_desc;
912 	if (crd1 == NULL) {
913 		safestats.st_nodesc++;
914 		err = EINVAL;
915 		goto errout;
916 	}
917 	crd2 = crd1->crd_next;
918 
919 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
920 	cmd1 = 0;
921 	if (crd2 == NULL) {
922 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
923 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
924 		    crd1->crd_alg == CRYPTO_NULL_HMAC) {
925 			maccrd = crd1;
926 			enccrd = NULL;
927 			cmd0 |= SAFE_SA_CMD0_OP_HASH;
928 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
929 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
930 		    crd1->crd_alg == CRYPTO_AES_CBC ||
931 		    crd1->crd_alg == CRYPTO_NULL_CBC) {
932 			maccrd = NULL;
933 			enccrd = crd1;
934 			cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
935 		} else {
936 			safestats.st_badalg++;
937 			err = EINVAL;
938 			goto errout;
939 		}
940 	} else {
941 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
942 		    crd1->crd_alg == CRYPTO_SHA1_HMAC ||
943 		    crd1->crd_alg == CRYPTO_NULL_HMAC) &&
944 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
945 			crd2->crd_alg == CRYPTO_3DES_CBC ||
946 		        crd2->crd_alg == CRYPTO_AES_CBC ||
947 		        crd2->crd_alg == CRYPTO_NULL_CBC) &&
948 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
949 			maccrd = crd1;
950 			enccrd = crd2;
951 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
952 		    crd1->crd_alg == CRYPTO_3DES_CBC ||
953 		    crd1->crd_alg == CRYPTO_AES_CBC ||
954 		    crd1->crd_alg == CRYPTO_NULL_CBC) &&
955 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
956 			crd2->crd_alg == CRYPTO_SHA1_HMAC ||
957 			crd2->crd_alg == CRYPTO_NULL_HMAC) &&
958 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
959 			enccrd = crd1;
960 			maccrd = crd2;
961 		} else {
962 			safestats.st_badalg++;
963 			err = EINVAL;
964 			goto errout;
965 		}
966 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
967 	}
968 
969 	if (enccrd) {
970 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
971 			safe_setup_enckey(ses, enccrd->crd_key);
972 
973 		if (enccrd->crd_alg == CRYPTO_DES_CBC) {
974 			cmd0 |= SAFE_SA_CMD0_DES;
975 			cmd1 |= SAFE_SA_CMD1_CBC;
976 			ivsize = 2*sizeof(u_int32_t);
977 		} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
978 			cmd0 |= SAFE_SA_CMD0_3DES;
979 			cmd1 |= SAFE_SA_CMD1_CBC;
980 			ivsize = 2*sizeof(u_int32_t);
981 		} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
982 			cmd0 |= SAFE_SA_CMD0_AES;
983 			cmd1 |= SAFE_SA_CMD1_CBC;
984 			if (ses->ses_klen == 128)
985 			     cmd1 |=  SAFE_SA_CMD1_AES128;
986 			else if (ses->ses_klen == 192)
987 			     cmd1 |=  SAFE_SA_CMD1_AES192;
988 			else
989 			     cmd1 |=  SAFE_SA_CMD1_AES256;
990 			ivsize = 4*sizeof(u_int32_t);
991 		} else {
992 			cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
993 			ivsize = 0;
994 		}
995 
996 		/*
997 		 * Setup encrypt/decrypt state.  When using basic ops
998 		 * we can't use an inline IV because hash/crypt offset
999 		 * must be from the end of the IV to the start of the
1000 		 * crypt data and this leaves out the preceding header
1001 		 * from the hash calculation.  Instead we place the IV
1002 		 * in the state record and set the hash/crypt offset to
1003 		 * copy both the header+IV.
1004 		 */
1005 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1006 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1007 
1008 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1009 				iv = enccrd->crd_iv;
1010 			else
1011 				iv = (caddr_t) ses->ses_iv;
1012 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1013 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1014 				    enccrd->crd_inject, ivsize, iv);
1015 			}
1016 			bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1017 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1018 			re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1019 		} else {
1020 			cmd0 |= SAFE_SA_CMD0_INBOUND;
1021 
1022 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1023 				bcopy(enccrd->crd_iv,
1024 					re->re_sastate.sa_saved_iv, ivsize);
1025 			} else {
1026 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1027 				    enccrd->crd_inject, ivsize,
1028 				    (caddr_t)re->re_sastate.sa_saved_iv);
1029 			}
1030 			cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1031 		}
1032 		/*
1033 		 * For basic encryption use the zero pad algorithm.
1034 		 * This pads results to an 8-byte boundary and
1035 		 * suppresses padding verification for inbound (i.e.
1036 		 * decrypt) operations.
1037 		 *
1038 		 * NB: Not sure if the 8-byte pad boundary is a problem.
1039 		 */
1040 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1041 
1042 		/* XXX assert key bufs have the same size */
1043 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1044 	}
1045 
1046 	if (maccrd) {
1047 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1048 			safe_setup_mackey(ses, maccrd->crd_alg,
1049 			    maccrd->crd_key, maccrd->crd_klen / 8);
1050 		}
1051 
1052 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1053 			cmd0 |= SAFE_SA_CMD0_MD5;
1054 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1055 		} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1056 			cmd0 |= SAFE_SA_CMD0_SHA1;
1057 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
1058 		} else {
1059 			cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1060 		}
1061 		/*
1062 		 * Digest data is loaded from the SA and the hash
1063 		 * result is saved to the state block where we
1064 		 * retrieve it for return to the caller.
1065 		 */
1066 		/* XXX assert digest bufs have the same size */
1067 		bcopy(ses->ses_hminner, sa->sa_indigest,
1068 			sizeof(sa->sa_indigest));
1069 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
1070 			sizeof(sa->sa_outdigest));
1071 
1072 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1073 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1074 	}
1075 
1076 	if (enccrd && maccrd) {
1077 		/*
1078 		 * The offset from hash data to the start of
1079 		 * crypt data is the difference in the skips.
1080 		 */
1081 		bypass = maccrd->crd_skip;
1082 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1083 		if (coffset < 0) {
1084 			DPRINTF(("%s: hash does not precede crypt; "
1085 				"mac skip %u enc skip %u\n",
1086 				__func__, maccrd->crd_skip, enccrd->crd_skip));
1087 			safestats.st_skipmismatch++;
1088 			err = EINVAL;
1089 			goto errout;
1090 		}
1091 		oplen = enccrd->crd_skip + enccrd->crd_len;
1092 		if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1093 			DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1094 				__func__, maccrd->crd_skip + maccrd->crd_len,
1095 				oplen));
1096 			safestats.st_lenmismatch++;
1097 			err = EINVAL;
1098 			goto errout;
1099 		}
1100 #ifdef SAFE_DEBUG
1101 		if (safe_debug) {
1102 			kprintf("mac: skip %d, len %d, inject %d\n",
1103 			    maccrd->crd_skip, maccrd->crd_len,
1104 			    maccrd->crd_inject);
1105 			kprintf("enc: skip %d, len %d, inject %d\n",
1106 			    enccrd->crd_skip, enccrd->crd_len,
1107 			    enccrd->crd_inject);
1108 			kprintf("bypass %d coffset %d oplen %d\n",
1109 				bypass, coffset, oplen);
1110 		}
1111 #endif
1112 		if (coffset & 3) {	/* offset must be 32-bit aligned */
1113 			DPRINTF(("%s: coffset %u misaligned\n",
1114 				__func__, coffset));
1115 			safestats.st_coffmisaligned++;
1116 			err = EINVAL;
1117 			goto errout;
1118 		}
1119 		coffset >>= 2;
1120 		if (coffset > 255) {	/* offset must be <256 dwords */
1121 			DPRINTF(("%s: coffset %u too big\n",
1122 				__func__, coffset));
1123 			safestats.st_cofftoobig++;
1124 			err = EINVAL;
1125 			goto errout;
1126 		}
1127 		/*
1128 		 * Tell the hardware to copy the header to the output.
1129 		 * The header is defined as the data from the end of
1130 		 * the bypass to the start of data to be encrypted.
1131 		 * Typically this is the inline IV.  Note that you need
1132 		 * to do this even if src+dst are the same; it appears
1133 		 * that w/o this bit the crypted data is written
1134 		 * immediately after the bypass data.
1135 		 */
1136 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1137 		/*
1138 		 * Disable IP header mutable bit handling.  This is
1139 		 * needed to get correct HMAC calculations.
1140 		 */
1141 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
1142 	} else {
1143 		if (enccrd) {
1144 			bypass = enccrd->crd_skip;
1145 			oplen = bypass + enccrd->crd_len;
1146 		} else {
1147 			bypass = maccrd->crd_skip;
1148 			oplen = bypass + maccrd->crd_len;
1149 		}
1150 		coffset = 0;
1151 	}
1152 	/* XXX verify multiple of 4 when using s/g */
1153 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
1154 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1155 		safestats.st_bypasstoobig++;
1156 		err = EINVAL;
1157 		goto errout;
1158 	}
1159 
1160 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1161 		safestats.st_nomap++;
1162 		err = ENOMEM;
1163 		goto errout;
1164 	}
1165 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1166 		if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1167 		    re->re_src_m, safe_op_cb,
1168 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1169 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1170 			re->re_src_map = NULL;
1171 			safestats.st_noload++;
1172 			err = ENOMEM;
1173 			goto errout;
1174 		}
1175 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1176 		if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1177 		    re->re_src_io, safe_op_cb,
1178 		    &re->re_src, BUS_DMA_NOWAIT) != 0) {
1179 			bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1180 			re->re_src_map = NULL;
1181 			safestats.st_noload++;
1182 			err = ENOMEM;
1183 			goto errout;
1184 		}
1185 	}
1186 	nicealign = safe_dmamap_aligned(&re->re_src);
1187 	uniform = safe_dmamap_uniform(&re->re_src);
1188 
1189 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1190 		nicealign, uniform, re->re_src.nsegs));
1191 	if (re->re_src.nsegs > 1) {
1192 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1193 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1194 		for (i = 0; i < re->re_src_nsegs; i++) {
1195 			/* NB: no need to check if there's space */
1196 			pd = sc->sc_spfree;
1197 			if (++(sc->sc_spfree) == sc->sc_springtop)
1198 				sc->sc_spfree = sc->sc_spring;
1199 
1200 			KASSERT((pd->pd_flags&3) == 0 ||
1201 				(pd->pd_flags&3) == SAFE_PD_DONE,
1202 				("bogus source particle descriptor; flags %x",
1203 				pd->pd_flags));
1204 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1205 			pd->pd_size = re->re_src_segs[i].ds_len;
1206 			pd->pd_flags = SAFE_PD_READY;
1207 		}
1208 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1209 	} else {
1210 		/*
1211 		 * No need for gather, reference the operand directly.
1212 		 */
1213 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1214 	}
1215 
1216 	if (enccrd == NULL && maccrd != NULL) {
1217 		/*
1218 		 * Hash op; no destination needed.
1219 		 */
1220 	} else {
1221 		if (crp->crp_flags & CRYPTO_F_IOV) {
1222 			if (!nicealign) {
1223 				safestats.st_iovmisaligned++;
1224 				err = EINVAL;
1225 				goto errout;
1226 			}
1227 			if (uniform != 1) {
1228 				/*
1229 				 * Source is not suitable for direct use as
1230 				 * the destination.  Create a new scatter/gather
1231 				 * list based on the destination requirements
1232 				 * and check if that's ok.
1233 				 */
1234 				if (bus_dmamap_create(sc->sc_dstdmat,
1235 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1236 					safestats.st_nomap++;
1237 					err = ENOMEM;
1238 					goto errout;
1239 				}
1240 				if (bus_dmamap_load_uio(sc->sc_dstdmat,
1241 				    re->re_dst_map, re->re_dst_io,
1242 				    safe_op_cb, &re->re_dst,
1243 				    BUS_DMA_NOWAIT) != 0) {
1244 					bus_dmamap_destroy(sc->sc_dstdmat,
1245 						re->re_dst_map);
1246 					re->re_dst_map = NULL;
1247 					safestats.st_noload++;
1248 					err = ENOMEM;
1249 					goto errout;
1250 				}
1251 				uniform = safe_dmamap_uniform(&re->re_dst);
1252 				if (!uniform) {
1253 					/*
1254 					 * There's no way to handle the DMA
1255 					 * requirements with this uio.  We
1256 					 * could create a separate DMA area for
1257 					 * the result and then copy it back,
1258 					 * but for now we just bail and return
1259 					 * an error.  Note that uio requests
1260 					 * > SAFE_MAX_DSIZE are handled because
1261 					 * the DMA map and segment list for the
1262 					 * destination wil result in a
1263 					 * destination particle list that does
1264 					 * the necessary scatter DMA.
1265 					 */
1266 					safestats.st_iovnotuniform++;
1267 					err = EINVAL;
1268 					goto errout;
1269 				}
1270 			} else
1271 				re->re_dst = re->re_src;
1272 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1273 			if (nicealign && uniform == 1) {
1274 				/*
1275 				 * Source layout is suitable for direct
1276 				 * sharing of the DMA map and segment list.
1277 				 */
1278 				re->re_dst = re->re_src;
1279 			} else if (nicealign && uniform == 2) {
1280 				/*
1281 				 * The source is properly aligned but requires a
1282 				 * different particle list to handle DMA of the
1283 				 * result.  Create a new map and do the load to
1284 				 * create the segment list.  The particle
1285 				 * descriptor setup code below will handle the
1286 				 * rest.
1287 				 */
1288 				if (bus_dmamap_create(sc->sc_dstdmat,
1289 				    BUS_DMA_NOWAIT, &re->re_dst_map)) {
1290 					safestats.st_nomap++;
1291 					err = ENOMEM;
1292 					goto errout;
1293 				}
1294 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1295 				    re->re_dst_map, re->re_dst_m,
1296 				    safe_op_cb, &re->re_dst,
1297 				    BUS_DMA_NOWAIT) != 0) {
1298 					bus_dmamap_destroy(sc->sc_dstdmat,
1299 						re->re_dst_map);
1300 					re->re_dst_map = NULL;
1301 					safestats.st_noload++;
1302 					err = ENOMEM;
1303 					goto errout;
1304 				}
1305 			} else {		/* !(aligned and/or uniform) */
1306 				int totlen, len;
1307 				struct mbuf *m, *top, **mp;
1308 
1309 				/*
1310 				 * DMA constraints require that we allocate a
1311 				 * new mbuf chain for the destination.  We
1312 				 * allocate an entire new set of mbufs of
1313 				 * optimal/required size and then tell the
1314 				 * hardware to copy any bits that are not
1315 				 * created as a byproduct of the operation.
1316 				 */
1317 				if (!nicealign)
1318 					safestats.st_unaligned++;
1319 				if (!uniform)
1320 					safestats.st_notuniform++;
1321 				totlen = re->re_src_mapsize;
1322 				if (re->re_src_m->m_flags & M_PKTHDR) {
1323 					len = MHLEN;
1324 					MGETHDR(m, M_NOWAIT, MT_DATA);
1325 					if (m && !m_dup_pkthdr(m, re->re_src_m,
1326 					    M_NOWAIT)) {
1327 						m_free(m);
1328 						m = NULL;
1329 					}
1330 				} else {
1331 					len = MLEN;
1332 					MGET(m, M_NOWAIT, MT_DATA);
1333 				}
1334 				if (m == NULL) {
1335 					safestats.st_nombuf++;
1336 					err = sc->sc_nqchip ? ERESTART : ENOMEM;
1337 					goto errout;
1338 				}
1339 				if (totlen >= MINCLSIZE) {
1340 					MCLGET(m, M_NOWAIT);
1341 					if ((m->m_flags & M_EXT) == 0) {
1342 						m_free(m);
1343 						safestats.st_nomcl++;
1344 						err = sc->sc_nqchip ?
1345 							ERESTART : ENOMEM;
1346 						goto errout;
1347 					}
1348 					len = MCLBYTES;
1349 				}
1350 				m->m_len = len;
1351 				top = NULL;
1352 				mp = &top;
1353 
1354 				while (totlen > 0) {
1355 					if (top) {
1356 						MGET(m, M_NOWAIT, MT_DATA);
1357 						if (m == NULL) {
1358 							m_freem(top);
1359 							safestats.st_nombuf++;
1360 							err = sc->sc_nqchip ?
1361 							    ERESTART : ENOMEM;
1362 							goto errout;
1363 						}
1364 						len = MLEN;
1365 					}
1366 					if (top && totlen >= MINCLSIZE) {
1367 						MCLGET(m, M_NOWAIT);
1368 						if ((m->m_flags & M_EXT) == 0) {
1369 							*mp = m;
1370 							m_freem(top);
1371 							safestats.st_nomcl++;
1372 							err = sc->sc_nqchip ?
1373 							    ERESTART : ENOMEM;
1374 							goto errout;
1375 						}
1376 						len = MCLBYTES;
1377 					}
1378 					m->m_len = len = min(totlen, len);
1379 					totlen -= len;
1380 					*mp = m;
1381 					mp = &m->m_next;
1382 				}
1383 				re->re_dst_m = top;
1384 				if (bus_dmamap_create(sc->sc_dstdmat,
1385 				    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1386 					safestats.st_nomap++;
1387 					err = ENOMEM;
1388 					goto errout;
1389 				}
1390 				if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1391 				    re->re_dst_map, re->re_dst_m,
1392 				    safe_op_cb, &re->re_dst,
1393 				    BUS_DMA_NOWAIT) != 0) {
1394 					bus_dmamap_destroy(sc->sc_dstdmat,
1395 					re->re_dst_map);
1396 					re->re_dst_map = NULL;
1397 					safestats.st_noload++;
1398 					err = ENOMEM;
1399 					goto errout;
1400 				}
1401 				if (re->re_src.mapsize > oplen) {
1402 					/*
1403 					 * There's data following what the
1404 					 * hardware will copy for us.  If this
1405 					 * isn't just the ICV (that's going to
1406 					 * be written on completion), copy it
1407 					 * to the new mbufs
1408 					 */
1409 					if (!(maccrd &&
1410 					    (re->re_src.mapsize-oplen) == 12 &&
1411 					    maccrd->crd_inject == oplen))
1412 						safe_mcopy(re->re_src_m,
1413 							   re->re_dst_m,
1414 							   oplen);
1415 					else
1416 						safestats.st_noicvcopy++;
1417 				}
1418 			}
1419 		} else {
1420 			safestats.st_badflags++;
1421 			err = EINVAL;
1422 			goto errout;
1423 		}
1424 
1425 		if (re->re_dst.nsegs > 1) {
1426 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1427 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1428 			for (i = 0; i < re->re_dst_nsegs; i++) {
1429 				pd = sc->sc_dpfree;
1430 				KASSERT((pd->pd_flags&3) == 0 ||
1431 					(pd->pd_flags&3) == SAFE_PD_DONE,
1432 					("bogus dest particle descriptor; flags %x",
1433 						pd->pd_flags));
1434 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1435 					sc->sc_dpfree = sc->sc_dpring;
1436 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1437 				pd->pd_flags = SAFE_PD_READY;
1438 			}
1439 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1440 		} else {
1441 			/*
1442 			 * No need for scatter, reference the operand directly.
1443 			 */
1444 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * All done with setup; fillin the SA command words
1450 	 * and the packet engine descriptor.  The operation
1451 	 * is now ready for submission to the hardware.
1452 	 */
1453 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1454 	sa->sa_cmd1 = cmd1
1455 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1456 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1457 		    | SAFE_SA_CMD1_SRPCI
1458 		    ;
1459 	/*
1460 	 * NB: the order of writes is important here.  In case the
1461 	 * chip is scanning the ring because of an outstanding request
1462 	 * it might nab this one too.  In that case we need to make
1463 	 * sure the setup is complete before we write the length
1464 	 * field of the descriptor as it signals the descriptor is
1465 	 * ready for processing.
1466 	 */
1467 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1468 	if (maccrd)
1469 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1470 	re->re_desc.d_len = oplen
1471 			  | SAFE_PE_LEN_READY
1472 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1473 			  ;
1474 
1475 	safestats.st_ipackets++;
1476 	safestats.st_ibytes += oplen;
1477 
1478 	if (++(sc->sc_front) == sc->sc_ringtop)
1479 		sc->sc_front = sc->sc_ring;
1480 
1481 	/* XXX honor batching */
1482 	safe_feed(sc, re);
1483 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
1484 	return (0);
1485 
1486 errout:
1487 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1488 		m_freem(re->re_dst_m);
1489 
1490 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1491 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1492 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1493 	}
1494 	if (re->re_src_map != NULL) {
1495 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1496 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1497 	}
1498 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
1499 	if (err != ERESTART) {
1500 		crp->crp_etype = err;
1501 		crypto_done(crp);
1502 	} else {
1503 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1504 	}
1505 	return (err);
1506 }
1507 
1508 static void
1509 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1510 {
1511 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1512 	struct cryptodesc *crd;
1513 
1514 	safestats.st_opackets++;
1515 	safestats.st_obytes += re->re_dst.mapsize;
1516 
1517 	safe_dma_sync(&sc->sc_ringalloc,
1518 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1519 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1520 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1521 			re->re_desc.d_csr,
1522 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1523 		safestats.st_peoperr++;
1524 		crp->crp_etype = EIO;		/* something more meaningful? */
1525 	}
1526 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1527 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1528 		    BUS_DMASYNC_POSTREAD);
1529 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1530 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1531 	}
1532 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1533 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1534 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1535 
1536 	/*
1537 	 * If result was written to a differet mbuf chain, swap
1538 	 * it in as the return value and reclaim the original.
1539 	 */
1540 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1541 		m_freem(re->re_src_m);
1542 		crp->crp_buf = (caddr_t)re->re_dst_m;
1543 	}
1544 
1545 	if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1546 		/* copy out IV for future use */
1547 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1548 			int ivsize;
1549 
1550 			if (crd->crd_alg == CRYPTO_DES_CBC ||
1551 			    crd->crd_alg == CRYPTO_3DES_CBC) {
1552 				ivsize = 2*sizeof(u_int32_t);
1553 			} else if (crd->crd_alg == CRYPTO_AES_CBC) {
1554 				ivsize = 4*sizeof(u_int32_t);
1555 			} else
1556 				continue;
1557 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1558 			    crd->crd_skip + crd->crd_len - ivsize, ivsize,
1559 			    (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1560 			break;
1561 		}
1562 	}
1563 
1564 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1565 		/* copy out ICV result */
1566 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1567 			if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1568 			    crd->crd_alg == CRYPTO_SHA1_HMAC ||
1569 			    crd->crd_alg == CRYPTO_NULL_HMAC))
1570 				continue;
1571 			if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1572 				/*
1573 				 * SHA-1 ICV's are byte-swapped; fix 'em up
1574 				 * before copy them to their destination.
1575 				 */
1576 				re->re_sastate.sa_saved_indigest[0] =
1577 				    bswap32(re->re_sastate.sa_saved_indigest[0]);
1578 				re->re_sastate.sa_saved_indigest[1] =
1579 				    bswap32(re->re_sastate.sa_saved_indigest[1]);
1580 				re->re_sastate.sa_saved_indigest[2] =
1581 				    bswap32(re->re_sastate.sa_saved_indigest[2]);
1582 			}
1583 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1584 			    crd->crd_inject,
1585 			    sc->sc_sessions[re->re_sesn].ses_mlen,
1586 			    (caddr_t)re->re_sastate.sa_saved_indigest);
1587 			break;
1588 		}
1589 	}
1590 	crypto_done(crp);
1591 }
1592 
1593 /*
1594  * Copy all data past offset from srcm to dstm.
1595  */
1596 static void
1597 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1598 {
1599 	u_int j, dlen, slen;
1600 	caddr_t dptr, sptr;
1601 
1602 	/*
1603 	 * Advance src and dst to offset.
1604 	 */
1605 	j = offset;
1606 	while (j >= 0) {
1607 		if (srcm->m_len > j)
1608 			break;
1609 		j -= srcm->m_len;
1610 		srcm = srcm->m_next;
1611 		if (srcm == NULL)
1612 			return;
1613 	}
1614 	sptr = mtod(srcm, caddr_t) + j;
1615 	slen = srcm->m_len - j;
1616 
1617 	j = offset;
1618 	while (j >= 0) {
1619 		if (dstm->m_len > j)
1620 			break;
1621 		j -= dstm->m_len;
1622 		dstm = dstm->m_next;
1623 		if (dstm == NULL)
1624 			return;
1625 	}
1626 	dptr = mtod(dstm, caddr_t) + j;
1627 	dlen = dstm->m_len - j;
1628 
1629 	/*
1630 	 * Copy everything that remains.
1631 	 */
1632 	for (;;) {
1633 		j = min(slen, dlen);
1634 		bcopy(sptr, dptr, j);
1635 		if (slen == j) {
1636 			srcm = srcm->m_next;
1637 			if (srcm == NULL)
1638 				return;
1639 			sptr = srcm->m_data;
1640 			slen = srcm->m_len;
1641 		} else
1642 			sptr += j, slen -= j;
1643 		if (dlen == j) {
1644 			dstm = dstm->m_next;
1645 			if (dstm == NULL)
1646 				return;
1647 			dptr = dstm->m_data;
1648 			dlen = dstm->m_len;
1649 		} else
1650 			dptr += j, dlen -= j;
1651 	}
1652 }
1653 
1654 #ifndef SAFE_NO_RNG
1655 #define	SAFE_RNG_MAXWAIT	1000
1656 
1657 static void
1658 safe_rng_init(struct safe_softc *sc)
1659 {
1660 	u_int32_t w, v;
1661 	int i;
1662 
1663 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1664 	/* use default value according to the manual */
1665 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1666 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1667 
1668 	/*
1669 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1670 	 * is brought out of reset the ready status flag does not
1671 	 * work until the RNG has finished its internal initialization.
1672 	 *
1673 	 * So in order to determine the device is through its
1674 	 * initialization we must read the data register, using the
1675 	 * status reg in the read in case it is initialized.  Then read
1676 	 * the data register until it changes from the first read.
1677 	 * Once it changes read the data register until it changes
1678 	 * again.  At this time the RNG is considered initialized.
1679 	 * This could take between 750ms - 1000ms in time.
1680 	 */
1681 	i = 0;
1682 	w = READ_REG(sc, SAFE_RNG_OUT);
1683 	do {
1684 		v = READ_REG(sc, SAFE_RNG_OUT);
1685 		if (v != w) {
1686 			w = v;
1687 			break;
1688 		}
1689 		DELAY(10);
1690 	} while (++i < SAFE_RNG_MAXWAIT);
1691 
1692 	/* Wait Until data changes again */
1693 	i = 0;
1694 	do {
1695 		v = READ_REG(sc, SAFE_RNG_OUT);
1696 		if (v != w)
1697 			break;
1698 		DELAY(10);
1699 	} while (++i < SAFE_RNG_MAXWAIT);
1700 }
1701 
1702 static __inline void
1703 safe_rng_disable_short_cycle(struct safe_softc *sc)
1704 {
1705 	WRITE_REG(sc, SAFE_RNG_CTRL,
1706 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1707 }
1708 
1709 static __inline void
1710 safe_rng_enable_short_cycle(struct safe_softc *sc)
1711 {
1712 	WRITE_REG(sc, SAFE_RNG_CTRL,
1713 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1714 }
1715 
1716 static __inline u_int32_t
1717 safe_rng_read(struct safe_softc *sc)
1718 {
1719 	int i;
1720 
1721 	i = 0;
1722 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1723 		;
1724 	return READ_REG(sc, SAFE_RNG_OUT);
1725 }
1726 
1727 static void
1728 safe_rng(void *arg)
1729 {
1730 	struct safe_softc *sc = arg;
1731 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1732 	u_int maxwords;
1733 	int i;
1734 
1735 	safestats.st_rng++;
1736 	/*
1737 	 * Fetch the next block of data.
1738 	 */
1739 	maxwords = safe_rngbufsize;
1740 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1741 		maxwords = SAFE_RNG_MAXBUFSIZ;
1742 retry:
1743 	for (i = 0; i < maxwords; i++)
1744 		buf[i] = safe_rng_read(sc);
1745 	/*
1746 	 * Check the comparator alarm count and reset the h/w if
1747 	 * it exceeds our threshold.  This guards against the
1748 	 * hardware oscillators resonating with external signals.
1749 	 */
1750 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1751 		u_int32_t freq_inc, w;
1752 
1753 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1754 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1755 		safestats.st_rngalarm++;
1756 		safe_rng_enable_short_cycle(sc);
1757 		freq_inc = 18;
1758 		for (i = 0; i < 64; i++) {
1759 			w = READ_REG(sc, SAFE_RNG_CNFG);
1760 			freq_inc = ((w + freq_inc) & 0x3fL);
1761 			w = ((w & ~0x3fL) | freq_inc);
1762 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1763 
1764 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1765 
1766 			(void) safe_rng_read(sc);
1767 			DELAY(25);
1768 
1769 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1770 				safe_rng_disable_short_cycle(sc);
1771 				goto retry;
1772 			}
1773 			freq_inc = 1;
1774 		}
1775 		safe_rng_disable_short_cycle(sc);
1776 	} else
1777 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1778 
1779 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1780 	callout_reset(&sc->sc_rngto,
1781 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1782 }
1783 #endif /* SAFE_NO_RNG */
1784 
1785 static void
1786 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1787 {
1788 	bus_addr_t *paddr = (bus_addr_t*) arg;
1789 	*paddr = segs->ds_addr;
1790 }
1791 
1792 static int
1793 safe_dma_malloc(
1794 	struct safe_softc *sc,
1795 	bus_size_t size,
1796 	struct safe_dma_alloc *dma,
1797 	int mapflags
1798 )
1799 {
1800 	int r;
1801 
1802 	r = bus_dma_tag_create(NULL,			/* parent */
1803 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1804 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1805 			       BUS_SPACE_MAXADDR,	/* highaddr */
1806 			       NULL, NULL,		/* filter, filterarg */
1807 			       size,			/* maxsize */
1808 			       1,			/* nsegments */
1809 			       size,			/* maxsegsize */
1810 			       BUS_DMA_ALLOCNOW,	/* flags */
1811 			       &dma->dma_tag);
1812 	if (r != 0) {
1813 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1814 			"bus_dma_tag_create failed; error %u\n", r);
1815 		goto fail_0;
1816 	}
1817 
1818 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1819 	if (r != 0) {
1820 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1821 			"bus_dmamap_create failed; error %u\n", r);
1822 		goto fail_1;
1823 	}
1824 
1825 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1826 			     BUS_DMA_NOWAIT, &dma->dma_map);
1827 	if (r != 0) {
1828 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1829 			"bus_dmammem_alloc failed; size %zu, error %u\n",
1830 			size, r);
1831 		goto fail_2;
1832 	}
1833 
1834 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1835 		            size,
1836 			    safe_dmamap_cb,
1837 			    &dma->dma_paddr,
1838 			    mapflags | BUS_DMA_NOWAIT);
1839 	if (r != 0) {
1840 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1841 			"bus_dmamap_load failed; error %u\n", r);
1842 		goto fail_3;
1843 	}
1844 
1845 	dma->dma_size = size;
1846 	return (0);
1847 
1848 fail_3:
1849 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1850 fail_2:
1851 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1852 fail_1:
1853 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1854 	bus_dma_tag_destroy(dma->dma_tag);
1855 fail_0:
1856 	dma->dma_map = NULL;
1857 	dma->dma_tag = NULL;
1858 	return (r);
1859 }
1860 
1861 static void
1862 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1863 {
1864 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1865 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1866 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1867 	bus_dma_tag_destroy(dma->dma_tag);
1868 }
1869 
1870 /*
1871  * Resets the board.  Values in the regesters are left as is
1872  * from the reset (i.e. initial values are assigned elsewhere).
1873  */
1874 static void
1875 safe_reset_board(struct safe_softc *sc)
1876 {
1877 	u_int32_t v;
1878 	/*
1879 	 * Reset the device.  The manual says no delay
1880 	 * is needed between marking and clearing reset.
1881 	 */
1882 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1883 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1884 		 SAFE_PE_DMACFG_SGRESET);
1885 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1886 				    | SAFE_PE_DMACFG_PERESET
1887 				    | SAFE_PE_DMACFG_PDRRESET
1888 				    | SAFE_PE_DMACFG_SGRESET);
1889 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1890 }
1891 
1892 /*
1893  * Initialize registers we need to touch only once.
1894  */
1895 static void
1896 safe_init_board(struct safe_softc *sc)
1897 {
1898 	u_int32_t v, dwords;
1899 
1900 	v = READ_REG(sc, SAFE_PE_DMACFG);
1901 	v &=~ SAFE_PE_DMACFG_PEMODE;
1902 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1903 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1904 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1905 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1906 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1907 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1908 	  ;
1909 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1910 #if 0
1911 	/* XXX select byte swap based on host byte order */
1912 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1913 #endif
1914 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1915 		/*
1916 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1917 		 * "target mode transfers" done while the chip is DMA'ing
1918 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1919 		 * we reduce the max PCI transfer size and use small source
1920 		 * particle descriptors (<= 256 bytes).
1921 		 */
1922 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1923 		device_printf(sc->sc_dev,
1924 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1925 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1926 			SAFE_REV_MAJ(sc->sc_chiprev),
1927 			SAFE_REV_MIN(sc->sc_chiprev));
1928 	}
1929 
1930 	/* NB: operands+results are overlaid */
1931 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1932 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1933 	/*
1934 	 * Configure ring entry size and number of items in the ring.
1935 	 */
1936 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1937 		("PE ring entry not 32-bit aligned!"));
1938 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1939 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1940 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1941 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1942 
1943 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1944 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1945 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1946 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1947 	/*
1948 	 * NB: destination particles are fixed size.  We use
1949 	 *     an mbuf cluster and require all results go to
1950 	 *     clusters or smaller.
1951 	 */
1952 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1953 
1954 	/* it's now safe to enable PE mode, do it */
1955 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1956 
1957 	/*
1958 	 * Configure hardware to use level-triggered interrupts and
1959 	 * to interrupt after each descriptor is processed.
1960 	 */
1961 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1962 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1963 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1964 }
1965 
1966 /*
1967  * Init PCI registers
1968  */
1969 static void
1970 safe_init_pciregs(device_t dev)
1971 {
1972 }
1973 
1974 /*
1975  * Clean up after a chip crash.
1976  * It is assumed that the caller in splimp()
1977  */
1978 static void
1979 safe_cleanchip(struct safe_softc *sc)
1980 {
1981 
1982 	if (sc->sc_nqchip != 0) {
1983 		struct safe_ringentry *re = sc->sc_back;
1984 
1985 		while (re != sc->sc_front) {
1986 			if (re->re_desc.d_csr != 0)
1987 				safe_free_entry(sc, re);
1988 			if (++re == sc->sc_ringtop)
1989 				re = sc->sc_ring;
1990 		}
1991 		sc->sc_back = re;
1992 		sc->sc_nqchip = 0;
1993 	}
1994 }
1995 
1996 /*
1997  * free a safe_q
1998  * It is assumed that the caller is within splimp().
1999  */
2000 static int
2001 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2002 {
2003 	struct cryptop *crp;
2004 
2005 	/*
2006 	 * Free header MCR
2007 	 */
2008 	if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2009 		m_freem(re->re_dst_m);
2010 
2011 	crp = (struct cryptop *)re->re_crp;
2012 
2013 	re->re_desc.d_csr = 0;
2014 
2015 	crp->crp_etype = EFAULT;
2016 	crypto_done(crp);
2017 	return(0);
2018 }
2019 
2020 /*
2021  * Routine to reset the chip and clean up.
2022  * It is assumed that the caller is in splimp()
2023  */
2024 static void
2025 safe_totalreset(struct safe_softc *sc)
2026 {
2027 	safe_reset_board(sc);
2028 	safe_init_board(sc);
2029 	safe_cleanchip(sc);
2030 }
2031 
2032 /*
2033  * Is the operand suitable aligned for direct DMA.  Each
2034  * segment must be aligned on a 32-bit boundary and all
2035  * but the last segment must be a multiple of 4 bytes.
2036  */
2037 static int
2038 safe_dmamap_aligned(const struct safe_operand *op)
2039 {
2040 	int i;
2041 
2042 	for (i = 0; i < op->nsegs; i++) {
2043 		if (op->segs[i].ds_addr & 3)
2044 			return (0);
2045 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2046 			return (0);
2047 	}
2048 	return (1);
2049 }
2050 
2051 /*
2052  * Is the operand suitable for direct DMA as the destination
2053  * of an operation.  The hardware requires that each ``particle''
2054  * but the last in an operation result have the same size.  We
2055  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
2056  * 0 if some segment is not a multiple of of this size, 1 if all
2057  * segments are exactly this size, or 2 if segments are at worst
2058  * a multple of this size.
2059  */
2060 static int
2061 safe_dmamap_uniform(const struct safe_operand *op)
2062 {
2063 	int result = 1;
2064 
2065 	if (op->nsegs > 0) {
2066 		int i;
2067 
2068 		for (i = 0; i < op->nsegs-1; i++) {
2069 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2070 				return (0);
2071 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2072 				result = 2;
2073 		}
2074 	}
2075 	return (result);
2076 }
2077 
2078 #ifdef SAFE_DEBUG
2079 static void
2080 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2081 {
2082 	kprintf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2083 		, tag
2084 		, READ_REG(sc, SAFE_DMA_ENDIAN)
2085 		, READ_REG(sc, SAFE_DMA_SRCADDR)
2086 		, READ_REG(sc, SAFE_DMA_DSTADDR)
2087 		, READ_REG(sc, SAFE_DMA_STAT)
2088 	);
2089 }
2090 
2091 static void
2092 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2093 {
2094 	kprintf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2095 		, tag
2096 		, READ_REG(sc, SAFE_HI_CFG)
2097 		, READ_REG(sc, SAFE_HI_MASK)
2098 		, READ_REG(sc, SAFE_HI_DESC_CNT)
2099 		, READ_REG(sc, SAFE_HU_STAT)
2100 		, READ_REG(sc, SAFE_HM_STAT)
2101 	);
2102 }
2103 
2104 static void
2105 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2106 {
2107 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2108 
2109 	/* NB: assume caller has lock on ring */
2110 	kprintf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2111 		tag,
2112 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2113 		(unsigned long)(sc->sc_back - sc->sc_ring),
2114 		(unsigned long)(sc->sc_front - sc->sc_ring));
2115 }
2116 
2117 static void
2118 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2119 {
2120 	int ix, nsegs;
2121 
2122 	ix = re - sc->sc_ring;
2123 	kprintf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2124 		, tag
2125 		, re, ix
2126 		, re->re_desc.d_csr
2127 		, re->re_desc.d_src
2128 		, re->re_desc.d_dst
2129 		, re->re_desc.d_sa
2130 		, re->re_desc.d_len
2131 	);
2132 	if (re->re_src.nsegs > 1) {
2133 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2134 			sizeof(struct safe_pdesc);
2135 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2136 			kprintf(" spd[%u] %p: %p size %u flags %x"
2137 				, ix, &sc->sc_spring[ix]
2138 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2139 				, sc->sc_spring[ix].pd_size
2140 				, sc->sc_spring[ix].pd_flags
2141 			);
2142 			if (sc->sc_spring[ix].pd_size == 0)
2143 				kprintf(" (zero!)");
2144 			kprintf("\n");
2145 			if (++ix == SAFE_TOTAL_SPART)
2146 				ix = 0;
2147 		}
2148 	}
2149 	if (re->re_dst.nsegs > 1) {
2150 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2151 			sizeof(struct safe_pdesc);
2152 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2153 			kprintf(" dpd[%u] %p: %p flags %x\n"
2154 				, ix, &sc->sc_dpring[ix]
2155 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2156 				, sc->sc_dpring[ix].pd_flags
2157 			);
2158 			if (++ix == SAFE_TOTAL_DPART)
2159 				ix = 0;
2160 		}
2161 	}
2162 	kprintf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2163 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2164 	kprintf("sa: key %x %x %x %x %x %x %x %x\n"
2165 		, re->re_sa.sa_key[0]
2166 		, re->re_sa.sa_key[1]
2167 		, re->re_sa.sa_key[2]
2168 		, re->re_sa.sa_key[3]
2169 		, re->re_sa.sa_key[4]
2170 		, re->re_sa.sa_key[5]
2171 		, re->re_sa.sa_key[6]
2172 		, re->re_sa.sa_key[7]
2173 	);
2174 	kprintf("sa: indigest %x %x %x %x %x\n"
2175 		, re->re_sa.sa_indigest[0]
2176 		, re->re_sa.sa_indigest[1]
2177 		, re->re_sa.sa_indigest[2]
2178 		, re->re_sa.sa_indigest[3]
2179 		, re->re_sa.sa_indigest[4]
2180 	);
2181 	kprintf("sa: outdigest %x %x %x %x %x\n"
2182 		, re->re_sa.sa_outdigest[0]
2183 		, re->re_sa.sa_outdigest[1]
2184 		, re->re_sa.sa_outdigest[2]
2185 		, re->re_sa.sa_outdigest[3]
2186 		, re->re_sa.sa_outdigest[4]
2187 	);
2188 	kprintf("sr: iv %x %x %x %x\n"
2189 		, re->re_sastate.sa_saved_iv[0]
2190 		, re->re_sastate.sa_saved_iv[1]
2191 		, re->re_sastate.sa_saved_iv[2]
2192 		, re->re_sastate.sa_saved_iv[3]
2193 	);
2194 	kprintf("sr: hashbc %u indigest %x %x %x %x %x\n"
2195 		, re->re_sastate.sa_saved_hashbc
2196 		, re->re_sastate.sa_saved_indigest[0]
2197 		, re->re_sastate.sa_saved_indigest[1]
2198 		, re->re_sastate.sa_saved_indigest[2]
2199 		, re->re_sastate.sa_saved_indigest[3]
2200 		, re->re_sastate.sa_saved_indigest[4]
2201 	);
2202 }
2203 
2204 static void
2205 safe_dump_ring(struct safe_softc *sc, const char *tag)
2206 {
2207 	lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
2208 	kprintf("\nSafeNet Ring State:\n");
2209 	safe_dump_intrstate(sc, tag);
2210 	safe_dump_dmastatus(sc, tag);
2211 	safe_dump_ringstate(sc, tag);
2212 	if (sc->sc_nqchip) {
2213 		struct safe_ringentry *re = sc->sc_back;
2214 		do {
2215 			safe_dump_request(sc, tag, re);
2216 			if (++re == sc->sc_ringtop)
2217 				re = sc->sc_ring;
2218 		} while (re != sc->sc_front);
2219 	}
2220 	lockmgr(&sc->sc_ringlock, LK_RELEASE);
2221 }
2222 
2223 static int
2224 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2225 {
2226 	char dmode[64];
2227 	int error;
2228 
2229 	strncpy(dmode, "", sizeof(dmode) - 1);
2230 	dmode[sizeof(dmode) - 1] = '\0';
2231 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2232 
2233 	if (error == 0 && req->newptr != NULL) {
2234 		struct safe_softc *sc = safec;
2235 
2236 		if (!sc)
2237 			return EINVAL;
2238 		if (strncmp(dmode, "dma", 3) == 0)
2239 			safe_dump_dmastatus(sc, "safe0");
2240 		else if (strncmp(dmode, "int", 3) == 0)
2241 			safe_dump_intrstate(sc, "safe0");
2242 		else if (strncmp(dmode, "ring", 4) == 0)
2243 			safe_dump_ring(sc, "safe0");
2244 		else
2245 			return EINVAL;
2246 	}
2247 	return error;
2248 }
2249 SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2250 	0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2251 #endif /* SAFE_DEBUG */
2252