xref: /dragonfly/sys/dev/crypto/ubsec/ubsec.c (revision 16dd80e4)
1 /* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.12 2003/06/04 17:56:59 sam Exp $ */
2 /*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
3 
4 /*
5  * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6  * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7  * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8  *
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by Jason L. Wright
22  * 4. The name of the author may not be used to endorse or promote products
23  *    derived from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * Effort sponsored in part by the Defense Advanced Research Projects
38  * Agency (DARPA) and Air Force Research Laboratory, Air Force
39  * Materiel Command, USAF, under agreement number F30602-01-2-0537.
40  *
41  */
42 
43 /*
44  * uBsec 5[56]01, 58xx hardware crypto accelerator
45  */
46 
47 #include "opt_ubsec.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/errno.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/endian.h>
58 #include <sys/bus.h>
59 #include <sys/rman.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/thread2.h>
63 
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 
67 #include <machine/clock.h>
68 
69 #include <crypto/sha1.h>
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/cryptosoft.h>
72 
73 #include "cryptodev_if.h"
74 
75 #include <bus/pci/pcivar.h>
76 #include <bus/pci/pcireg.h>
77 
78 /* grr, #defines for gratuitous incompatibility in queue.h */
79 #define	SIMPLEQ_HEAD		STAILQ_HEAD
80 #define	SIMPLEQ_ENTRY		STAILQ_ENTRY
81 #define	SIMPLEQ_INIT		STAILQ_INIT
82 #define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
83 #define	SIMPLEQ_EMPTY		STAILQ_EMPTY
84 #define	SIMPLEQ_FIRST		STAILQ_FIRST
85 #define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
86 #define	SIMPLEQ_FOREACH		STAILQ_FOREACH
87 /* ditto for endian.h */
88 #define	letoh16(x)		le16toh(x)
89 #define	letoh32(x)		le32toh(x)
90 
91 #ifdef UBSEC_RNDTEST
92 #include "../rndtest/rndtest.h"
93 #endif
94 #include "ubsecreg.h"
95 #include "ubsecvar.h"
96 
97 /*
98  * Prototypes and count for the pci_device structure
99  */
100 static	int ubsec_probe(device_t);
101 static	int ubsec_attach(device_t);
102 static	int ubsec_detach(device_t);
103 static	int ubsec_suspend(device_t);
104 static	int ubsec_resume(device_t);
105 static	void ubsec_shutdown(device_t);
106 static	void ubsec_intr(void *);
107 static	int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
108 static	int ubsec_freesession(device_t, u_int64_t);
109 static	int ubsec_process(device_t, struct cryptop *, int);
110 static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
111 static	void ubsec_feed(struct ubsec_softc *);
112 static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
113 static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
114 static	int ubsec_feed2(struct ubsec_softc *);
115 static	void ubsec_rng(void *);
116 static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
117 			     struct ubsec_dma_alloc *, int);
118 #define	ubsec_dma_sync(_dma, _flags) \
119 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
120 static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
121 static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
122 
123 static	void ubsec_reset_board(struct ubsec_softc *sc);
124 static	void ubsec_init_board(struct ubsec_softc *sc);
125 static	void ubsec_init_pciregs(device_t dev);
126 static	void ubsec_totalreset(struct ubsec_softc *sc);
127 
128 static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
129 
130 static	int ubsec_kprocess(device_t, struct cryptkop *, int);
131 static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
132 static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
133 static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
134 static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
135 static	int ubsec_ksigbits(struct crparam *);
136 static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
137 static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
138 
139 
140 static device_method_t ubsec_methods[] = {
141 	/* Device interface */
142 	DEVMETHOD(device_probe,		ubsec_probe),
143 	DEVMETHOD(device_attach,	ubsec_attach),
144 	DEVMETHOD(device_detach,	ubsec_detach),
145 	DEVMETHOD(device_suspend,	ubsec_suspend),
146 	DEVMETHOD(device_resume,	ubsec_resume),
147 	DEVMETHOD(device_shutdown,	ubsec_shutdown),
148 
149 	/* bus interface */
150 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
151 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
152 
153 	/* crypto device methods */
154 	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
155 	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
156 	DEVMETHOD(cryptodev_process,	ubsec_process),
157 	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
158 
159 	DEVMETHOD_END
160 };
161 static driver_t ubsec_driver = {
162 	"ubsec",
163 	ubsec_methods,
164 	sizeof (struct ubsec_softc)
165 };
166 static devclass_t ubsec_devclass;
167 
168 DECLARE_DUMMY_MODULE(ubsec);
169 DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, NULL, NULL);
170 MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
171 #ifdef UBSEC_RNDTEST
172 MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
173 #endif
174 
175 SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
176 
177 #ifdef UBSEC_DEBUG
178 static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
179 static	void ubsec_dump_mcr(struct ubsec_mcr *);
180 static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
181 
182 static	int ubsec_debug = 0;
183 SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
184 	    0, "control debugging msgs");
185 #endif
186 
187 #define	READ_REG(sc,r) \
188 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
189 
190 #define WRITE_REG(sc,reg,val) \
191 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
192 
193 #define	SWAP32(x) (x) = htole32(ntohl((x)))
194 #define	HTOLE32(x) (x) = htole32(x)
195 
196 
197 struct ubsec_stats ubsecstats;
198 SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
199 	    ubsec_stats, "driver statistics");
200 
201 static int
202 ubsec_probe(device_t dev)
203 {
204 	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
205 	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
206 	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
207 		return (0);
208 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
209 	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
210 	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
211 		return (0);
212 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
213 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
214 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
215 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
216 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
217 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
218 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
219 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
220 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825
221 	     ))
222 		return (0);
223 	return (ENXIO);
224 }
225 
226 static const char*
227 ubsec_partname(struct ubsec_softc *sc)
228 {
229 	/* XXX sprintf numbers when not decoded */
230 	switch (pci_get_vendor(sc->sc_dev)) {
231 	case PCI_VENDOR_BROADCOM:
232 		switch (pci_get_device(sc->sc_dev)) {
233 		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
234 		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
235 		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
236 		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
237 		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
238 		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
239 		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
240 		case PCI_PRODUCT_BROADCOM_5825: return "Broadcom 5825";
241 		}
242 		return "Broadcom unknown-part";
243 	case PCI_VENDOR_BLUESTEEL:
244 		switch (pci_get_device(sc->sc_dev)) {
245 		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
246 		}
247 		return "Bluesteel unknown-part";
248 	case PCI_VENDOR_SUN:
249 		switch (pci_get_device(sc->sc_dev)) {
250 		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
251 		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
252 		}
253 		return "Sun unknown-part";
254 	}
255 	return "Unknown-vendor unknown-part";
256 }
257 
258 static void
259 default_harvest(struct rndtest_state *rsp __unused, void *buf, u_int count)
260 {
261 	add_buffer_randomness_src(buf, count, RAND_SRC_UBSEC);
262 }
263 
264 static int
265 ubsec_attach(device_t dev)
266 {
267 	struct ubsec_softc *sc = device_get_softc(dev);
268 	struct ubsec_dma *dmap;
269 	u_int32_t cmd, i;
270 	int rid;
271 
272 	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
273 	bzero(sc, sizeof (*sc));
274 	sc->sc_dev = dev;
275 
276 	SIMPLEQ_INIT(&sc->sc_queue);
277 	SIMPLEQ_INIT(&sc->sc_qchip);
278 	SIMPLEQ_INIT(&sc->sc_queue2);
279 	SIMPLEQ_INIT(&sc->sc_qchip2);
280 	SIMPLEQ_INIT(&sc->sc_q2free);
281 
282 	/* XXX handle power management */
283 
284 	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
285 
286 	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
287 	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
288 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
289 
290 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
291 	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
292 	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
293 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
294 
295 	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
296 	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
297 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
298 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
299 
300 	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
301 	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
302 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
303 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
304 	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825)) ||
305 	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
306 	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
307 	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
308 		/* NB: the 5821/5822 defines some additional status bits */
309 		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
310 		    BS_STAT_MCR2_ALLEMPTY;
311 		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
312 		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
313 	}
314 
315 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
316 	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
317 	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
318 	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
319 
320 	if (!(cmd & PCIM_CMD_MEMEN)) {
321 		device_printf(dev, "failed to enable memory mapping\n");
322 		goto bad;
323 	}
324 
325 	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
326 		device_printf(dev, "failed to enable bus mastering\n");
327 		goto bad;
328 	}
329 
330 	/*
331 	 * Setup memory-mapping of PCI registers.
332 	 */
333 	rid = BS_BAR;
334 	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
335 				       0, ~0, 1, RF_ACTIVE);
336 	if (sc->sc_sr == NULL) {
337 		device_printf(dev, "cannot map register space\n");
338 		goto bad;
339 	}
340 	sc->sc_st = rman_get_bustag(sc->sc_sr);
341 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
342 
343 	/*
344 	 * Arrange interrupt line.
345 	 */
346 	rid = 0;
347 	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
348 					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
349 	if (sc->sc_irq == NULL) {
350 		device_printf(dev, "could not map interrupt\n");
351 		goto bad1;
352 	}
353 	/*
354 	 * NB: Network code assumes we are blocked with splimp()
355 	 *     so make sure the IRQ is mapped appropriately.
356 	 */
357 	if (bus_setup_intr(dev, sc->sc_irq, 0,
358 			   ubsec_intr, sc,
359 			   &sc->sc_ih, NULL)) {
360 		device_printf(dev, "could not establish interrupt\n");
361 		goto bad2;
362 	}
363 
364 	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
365 	if (sc->sc_cid < 0) {
366 		device_printf(dev, "could not get crypto driver id\n");
367 		goto bad3;
368 	}
369 
370 	/*
371 	 * Setup DMA descriptor area.
372 	 */
373 	if (bus_dma_tag_create(NULL,			/* parent */
374 			       1, 0,			/* alignment, bounds */
375 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
376 			       BUS_SPACE_MAXADDR,	/* highaddr */
377 			       NULL, NULL,		/* filter, filterarg */
378 			       0x3ffff,			/* maxsize */
379 			       UBS_MAX_SCATTER,		/* nsegments */
380 			       0xffff,			/* maxsegsize */
381 			       BUS_DMA_ALLOCNOW,	/* flags */
382 			       &sc->sc_dmat)) {
383 		device_printf(dev, "cannot allocate DMA tag\n");
384 		goto bad4;
385 	}
386 	SIMPLEQ_INIT(&sc->sc_freequeue);
387 	dmap = sc->sc_dmaa;
388 	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
389 		struct ubsec_q *q;
390 
391 		q = kmalloc(sizeof(struct ubsec_q), M_DEVBUF, M_WAITOK);
392 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
393 		    &dmap->d_alloc, 0)) {
394 			device_printf(dev, "cannot allocate dma buffers\n");
395 			kfree(q, M_DEVBUF);
396 			break;
397 		}
398 		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
399 
400 		q->q_dma = dmap;
401 		sc->sc_queuea[i] = q;
402 
403 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
404 	}
405 
406 	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
407 
408 	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
409 	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
410 	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
411 	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
412 
413 	/*
414 	 * Reset Broadcom chip
415 	 */
416 	ubsec_reset_board(sc);
417 
418 	/*
419 	 * Init Broadcom specific PCI settings
420 	 */
421 	ubsec_init_pciregs(dev);
422 
423 	/*
424 	 * Init Broadcom chip
425 	 */
426 	ubsec_init_board(sc);
427 
428 #ifndef UBSEC_NO_RNG
429 	if (sc->sc_flags & UBS_FLAGS_RNG) {
430 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
431 #ifdef UBSEC_RNDTEST
432 		sc->sc_rndtest = rndtest_attach(dev);
433 		if (sc->sc_rndtest)
434 			sc->sc_harvest = rndtest_harvest;
435 		else
436 			sc->sc_harvest = default_harvest;
437 #else
438 		sc->sc_harvest = default_harvest;
439 #endif
440 
441 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
442 		    &sc->sc_rng.rng_q.q_mcr, 0))
443 			goto skip_rng;
444 
445 		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
446 		    &sc->sc_rng.rng_q.q_ctx, 0)) {
447 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
448 			goto skip_rng;
449 		}
450 
451 		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
452 		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
453 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
454 			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
455 			goto skip_rng;
456 		}
457 
458 		if (hz >= 100)
459 			sc->sc_rnghz = hz / 100;
460 		else
461 			sc->sc_rnghz = 1;
462 		callout_init(&sc->sc_rngto);
463 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
464 skip_rng:
465 	;
466 	}
467 #endif /* UBSEC_NO_RNG */
468 
469 	if (sc->sc_flags & UBS_FLAGS_KEY) {
470 		sc->sc_statmask |= BS_STAT_MCR2_DONE;
471 
472 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
473 #if 0
474 		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
475 #endif
476 	}
477 	return (0);
478 bad4:
479 	crypto_unregister_all(sc->sc_cid);
480 bad3:
481 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
482 bad2:
483 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
484 bad1:
485 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
486 bad:
487 	return (ENXIO);
488 }
489 
490 /*
491  * Detach a device that successfully probed.
492  */
493 static int
494 ubsec_detach(device_t dev)
495 {
496 	struct ubsec_softc *sc = device_get_softc(dev);
497 
498 	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
499 
500 	/* XXX wait/abort active ops */
501 
502 	crit_enter();
503 
504 	callout_stop(&sc->sc_rngto);
505 
506 	crypto_unregister_all(sc->sc_cid);
507 
508 #ifdef UBSEC_RNDTEST
509 	if (sc->sc_rndtest)
510 		rndtest_detach(sc->sc_rndtest);
511 #endif
512 
513 	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
514 		struct ubsec_q *q;
515 
516 		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
517 		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
518 		ubsec_dma_free(sc, &q->q_dma->d_alloc);
519 		kfree(q, M_DEVBUF);
520 	}
521 #ifndef UBSEC_NO_RNG
522 	if (sc->sc_flags & UBS_FLAGS_RNG) {
523 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
524 		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
525 		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
526 	}
527 #endif /* UBSEC_NO_RNG */
528 
529 	bus_generic_detach(dev);
530 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
531 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
532 
533 	bus_dma_tag_destroy(sc->sc_dmat);
534 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
535 
536 	crit_exit();
537 
538 	return (0);
539 }
540 
541 /*
542  * Stop all chip i/o so that the kernel's probe routines don't
543  * get confused by errant DMAs when rebooting.
544  */
545 static void
546 ubsec_shutdown(device_t dev)
547 {
548 #ifdef notyet
549 	ubsec_stop(device_get_softc(dev));
550 #endif
551 }
552 
553 /*
554  * Device suspend routine.
555  */
556 static int
557 ubsec_suspend(device_t dev)
558 {
559 	struct ubsec_softc *sc = device_get_softc(dev);
560 
561 	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
562 #ifdef notyet
563 	/* XXX stop the device and save PCI settings */
564 #endif
565 	sc->sc_suspended = 1;
566 
567 	return (0);
568 }
569 
570 static int
571 ubsec_resume(device_t dev)
572 {
573 	struct ubsec_softc *sc = device_get_softc(dev);
574 
575 	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
576 #ifdef notyet
577 	/* XXX retore PCI settings and start the device */
578 #endif
579 	sc->sc_suspended = 0;
580 	return (0);
581 }
582 
583 /*
584  * UBSEC Interrupt routine
585  */
586 static void
587 ubsec_intr(void *arg)
588 {
589 	struct ubsec_softc *sc = arg;
590 	volatile u_int32_t stat;
591 	struct ubsec_q *q;
592 	struct ubsec_dma *dmap;
593 	int npkts = 0, i;
594 
595 	stat = READ_REG(sc, BS_STAT);
596 	stat &= sc->sc_statmask;
597 	if (stat == 0) {
598 		return;
599 	}
600 
601 	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
602 
603 	/*
604 	 * Check to see if we have any packets waiting for us
605 	 */
606 	if ((stat & BS_STAT_MCR1_DONE)) {
607 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
608 			q = SIMPLEQ_FIRST(&sc->sc_qchip);
609 			dmap = q->q_dma;
610 
611 			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
612 				break;
613 
614 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
615 
616 			npkts = q->q_nstacked_mcrs;
617 			sc->sc_nqchip -= 1+npkts;
618 			/*
619 			 * search for further sc_qchip ubsec_q's that share
620 			 * the same MCR, and complete them too, they must be
621 			 * at the top.
622 			 */
623 			for (i = 0; i < npkts; i++) {
624 				if(q->q_stacked_mcr[i]) {
625 					ubsec_callback(sc, q->q_stacked_mcr[i]);
626 				} else {
627 					break;
628 				}
629 			}
630 			ubsec_callback(sc, q);
631 		}
632 
633 		/*
634 		 * Don't send any more packet to chip if there has been
635 		 * a DMAERR.
636 		 */
637 		if (!(stat & BS_STAT_DMAERR))
638 			ubsec_feed(sc);
639 	}
640 
641 	/*
642 	 * Check to see if we have any key setups/rng's waiting for us
643 	 */
644 	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
645 	    (stat & BS_STAT_MCR2_DONE)) {
646 		struct ubsec_q2 *q2;
647 		struct ubsec_mcr *mcr;
648 
649 		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
650 			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
651 
652 			ubsec_dma_sync(&q2->q_mcr,
653 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
654 
655 			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
656 			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
657 				ubsec_dma_sync(&q2->q_mcr,
658 				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
659 				break;
660 			}
661 			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
662 			ubsec_callback2(sc, q2);
663 			/*
664 			 * Don't send any more packet to chip if there has been
665 			 * a DMAERR.
666 			 */
667 			if (!(stat & BS_STAT_DMAERR))
668 				ubsec_feed2(sc);
669 		}
670 	}
671 
672 	/*
673 	 * Check to see if we got any DMA Error
674 	 */
675 	if (stat & BS_STAT_DMAERR) {
676 #ifdef UBSEC_DEBUG
677 		if (ubsec_debug) {
678 			volatile u_int32_t a = READ_REG(sc, BS_ERR);
679 
680 			kprintf("dmaerr %s@%08x\n",
681 			    (a & BS_ERR_READ) ? "read" : "write",
682 			    a & BS_ERR_ADDR);
683 		}
684 #endif /* UBSEC_DEBUG */
685 		ubsecstats.hst_dmaerr++;
686 		ubsec_totalreset(sc);
687 		ubsec_feed(sc);
688 	}
689 
690 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
691 		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
692 #ifdef UBSEC_DEBUG
693 		if (ubsec_debug)
694 			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
695 				sc->sc_needwakeup);
696 #endif /* UBSEC_DEBUG */
697 		sc->sc_needwakeup &= ~wakeup;
698 		crypto_unblock(sc->sc_cid, wakeup);
699 	}
700 }
701 
702 /*
703  * ubsec_feed() - aggregate and post requests to chip
704  */
705 static void
706 ubsec_feed(struct ubsec_softc *sc)
707 {
708 	struct ubsec_q *q, *q2;
709 	int npkts, i;
710 	void *v;
711 	u_int32_t stat;
712 
713 	/*
714 	 * Decide how many ops to combine in a single MCR.  We cannot
715 	 * aggregate more than UBS_MAX_AGGR because this is the number
716 	 * of slots defined in the data structure.  Note that
717 	 * aggregation only happens if ops are marked batch'able.
718 	 * Aggregating ops reduces the number of interrupts to the host
719 	 * but also (potentially) increases the latency for processing
720 	 * completed ops as we only get an interrupt when all aggregated
721 	 * ops have completed.
722 	 */
723 	if (sc->sc_nqueue == 0)
724 		return;
725 	if (sc->sc_nqueue > 1) {
726 		npkts = 0;
727 		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
728 			npkts++;
729 			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
730 				break;
731 		}
732 	} else
733 		npkts = 1;
734 	/*
735 	 * Check device status before going any further.
736 	 */
737 	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
738 		if (stat & BS_STAT_DMAERR) {
739 			ubsec_totalreset(sc);
740 			ubsecstats.hst_dmaerr++;
741 		} else
742 			ubsecstats.hst_mcr1full++;
743 		return;
744 	}
745 	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
746 		ubsecstats.hst_maxqueue = sc->sc_nqueue;
747 	if (npkts > UBS_MAX_AGGR)
748 		npkts = UBS_MAX_AGGR;
749 	if (npkts < 2)				/* special case 1 op */
750 		goto feed1;
751 
752 	ubsecstats.hst_totbatch += npkts-1;
753 #ifdef UBSEC_DEBUG
754 	if (ubsec_debug)
755 		kprintf("merging %d records\n", npkts);
756 #endif /* UBSEC_DEBUG */
757 
758 	q = SIMPLEQ_FIRST(&sc->sc_queue);
759 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
760 	--sc->sc_nqueue;
761 
762 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
763 	if (q->q_dst_map != NULL)
764 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
765 
766 	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
767 
768 	for (i = 0; i < q->q_nstacked_mcrs; i++) {
769 		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
770 		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
771 		    BUS_DMASYNC_PREWRITE);
772 		if (q2->q_dst_map != NULL)
773 			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
774 			    BUS_DMASYNC_PREREAD);
775 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
776 		--sc->sc_nqueue;
777 
778 		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
779 		    sizeof(struct ubsec_mcr_add));
780 		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
781 		q->q_stacked_mcr[i] = q2;
782 	}
783 	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
784 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
785 	sc->sc_nqchip += npkts;
786 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
787 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
788 	ubsec_dma_sync(&q->q_dma->d_alloc,
789 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
790 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
791 	    offsetof(struct ubsec_dmachunk, d_mcr));
792 	return;
793 
794 feed1:
795 	q = SIMPLEQ_FIRST(&sc->sc_queue);
796 
797 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
798 	if (q->q_dst_map != NULL)
799 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
800 	ubsec_dma_sync(&q->q_dma->d_alloc,
801 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
802 
803 	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
804 	    offsetof(struct ubsec_dmachunk, d_mcr));
805 #ifdef UBSEC_DEBUG
806 	if (ubsec_debug)
807 		kprintf("feed1: q->chip %p %08x stat %08x\n",
808 		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
809 		      stat);
810 #endif /* UBSEC_DEBUG */
811 	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
812 	--sc->sc_nqueue;
813 	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
814 	sc->sc_nqchip++;
815 	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
816 		ubsecstats.hst_maxqchip = sc->sc_nqchip;
817 	return;
818 }
819 
820 static void
821 ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
822 {
823 
824 	/* Go ahead and compute key in ubsec's byte order */
825 	if (algo == CRYPTO_DES_CBC) {
826 		bcopy(key, &ses->ses_deskey[0], 8);
827 		bcopy(key, &ses->ses_deskey[2], 8);
828 		bcopy(key, &ses->ses_deskey[4], 8);
829 	} else
830 		bcopy(key, ses->ses_deskey, 24);
831 
832 	SWAP32(ses->ses_deskey[0]);
833 	SWAP32(ses->ses_deskey[1]);
834 	SWAP32(ses->ses_deskey[2]);
835 	SWAP32(ses->ses_deskey[3]);
836 	SWAP32(ses->ses_deskey[4]);
837 	SWAP32(ses->ses_deskey[5]);
838 }
839 
840 static void
841 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
842 {
843 	MD5_CTX md5ctx;
844 	SHA1_CTX sha1ctx;
845 	int i;
846 
847 	for (i = 0; i < klen; i++)
848 		key[i] ^= HMAC_IPAD_VAL;
849 
850 	if (algo == CRYPTO_MD5_HMAC) {
851 		MD5Init(&md5ctx);
852 		MD5Update(&md5ctx, key, klen);
853 		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
854 		/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
855 		_bcopy(&md5ctx.A, ses->ses_hminner, sizeof(md5ctx.A) * 4);
856 	} else {
857 		SHA1Init(&sha1ctx);
858 		SHA1Update(&sha1ctx, key, klen);
859 		SHA1Update(&sha1ctx, hmac_ipad_buffer,
860 		    SHA1_HMAC_BLOCK_LEN - klen);
861 		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
862 	}
863 
864 	for (i = 0; i < klen; i++)
865 		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
866 
867 	if (algo == CRYPTO_MD5_HMAC) {
868 		MD5Init(&md5ctx);
869 		MD5Update(&md5ctx, key, klen);
870 		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
871 		/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
872 		_bcopy(&md5ctx.A, ses->ses_hmouter, sizeof(md5ctx.A) * 4);
873 	} else {
874 		SHA1Init(&sha1ctx);
875 		SHA1Update(&sha1ctx, key, klen);
876 		SHA1Update(&sha1ctx, hmac_opad_buffer,
877 		    SHA1_HMAC_BLOCK_LEN - klen);
878 		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
879 	}
880 
881 	for (i = 0; i < klen; i++)
882 		key[i] ^= HMAC_OPAD_VAL;
883 }
884 
885 /*
886  * Allocate a new 'session' and return an encoded session id.  'sidp'
887  * contains our registration id, and should contain an encoded session
888  * id on successful allocation.
889  */
890 static int
891 ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
892 {
893 	struct ubsec_softc *sc = device_get_softc(dev);
894 	struct cryptoini *c, *encini = NULL, *macini = NULL;
895 	struct ubsec_session *ses = NULL;
896 	int sesn;
897 #if 0
898 	MD5_CTX md5ctx;
899 	SHA1_CTX sha1ctx;
900 	int i;
901 #endif
902 
903 	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
904 	if (sidp == NULL || cri == NULL || sc == NULL)
905 		return (EINVAL);
906 
907 	for (c = cri; c != NULL; c = c->cri_next) {
908 		if (c->cri_alg == CRYPTO_MD5_HMAC ||
909 		    c->cri_alg == CRYPTO_SHA1_HMAC) {
910 			if (macini)
911 				return (EINVAL);
912 			macini = c;
913 		} else if (c->cri_alg == CRYPTO_DES_CBC ||
914 		    c->cri_alg == CRYPTO_3DES_CBC) {
915 			if (encini)
916 				return (EINVAL);
917 			encini = c;
918 		} else
919 			return (EINVAL);
920 	}
921 	if (encini == NULL && macini == NULL)
922 		return (EINVAL);
923 
924 	if (sc->sc_sessions == NULL) {
925 		ses = sc->sc_sessions = kmalloc(sizeof(struct ubsec_session),
926 						M_DEVBUF, M_INTWAIT);
927 		sesn = 0;
928 		sc->sc_nsessions = 1;
929 	} else {
930 		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
931 			if (sc->sc_sessions[sesn].ses_used == 0) {
932 				ses = &sc->sc_sessions[sesn];
933 				break;
934 			}
935 		}
936 
937 		if (ses == NULL) {
938 			sesn = sc->sc_nsessions;
939 			ses = kmalloc((sesn + 1) * sizeof(struct ubsec_session),
940 					M_DEVBUF, M_INTWAIT);
941 			bcopy(sc->sc_sessions, ses, sesn *
942 			    sizeof(struct ubsec_session));
943 			bzero(sc->sc_sessions, sesn *
944 			    sizeof(struct ubsec_session));
945 			kfree(sc->sc_sessions, M_DEVBUF);
946 			sc->sc_sessions = ses;
947 			ses = &sc->sc_sessions[sesn];
948 			sc->sc_nsessions++;
949 		}
950 	}
951 
952 	bzero(ses, sizeof(struct ubsec_session));
953 	ses->ses_used = 1;
954 	if (encini) {
955 		read_random(ses->ses_iv, sizeof(ses->ses_iv));
956 		if (encini->cri_key != NULL) {
957 			ubsec_setup_enckey(ses, encini->cri_alg,
958 			    encini->cri_key);
959 		}
960 	}
961 
962 	if (macini) {
963 		ses->ses_mlen = macini->cri_mlen;
964 		if (ses->ses_mlen == 0) {
965 			if (macini->cri_alg == CRYPTO_MD5_HMAC)
966 				ses->ses_mlen = MD5_HASH_LEN;
967 			else
968 				ses->ses_mlen = SHA1_HASH_LEN;
969 		}
970 
971 		if (macini->cri_key != NULL) {
972 			ubsec_setup_mackey(ses, macini->cri_alg,
973 			    macini->cri_key, macini->cri_klen/8);
974 		}
975 	}
976 
977 	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
978 	return (0);
979 }
980 
981 /*
982  * Deallocate a session.
983  */
984 static int
985 ubsec_freesession(device_t dev, u_int64_t tid)
986 {
987 	struct ubsec_softc *sc = device_get_softc(dev);
988 	int session;
989 	u_int32_t sid = CRYPTO_SESID2LID(tid);
990 
991 	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
992 	if (sc == NULL)
993 		return (EINVAL);
994 
995 	session = UBSEC_SESSION(sid);
996 	if (session >= sc->sc_nsessions)
997 		return (EINVAL);
998 
999 	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1000 	return (0);
1001 }
1002 
1003 static void
1004 ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1005 {
1006 	struct ubsec_operand *op = arg;
1007 
1008 	KASSERT(nsegs <= UBS_MAX_SCATTER,
1009 		("Too many DMA segments returned when mapping operand"));
1010 #ifdef UBSEC_DEBUG
1011 	if (ubsec_debug)
1012 		kprintf("ubsec_op_cb: mapsize %u nsegs %d error %d\n",
1013 			(u_int) mapsize, nsegs, error);
1014 #endif
1015 	if (error != 0)
1016 		return;
1017 
1018 	op->mapsize = mapsize;
1019 	op->nsegs = nsegs;
1020 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1021 }
1022 
1023 static int
1024 ubsec_process(device_t dev, struct cryptop *crp, int hint)
1025 {
1026 	struct ubsec_softc *sc = device_get_softc(dev);
1027 	struct ubsec_q *q = NULL;
1028 	int err = 0, i, j, nicealign;
1029 	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1030 	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1031 	int sskip, dskip, stheend, dtheend;
1032 	int16_t coffset;
1033 	struct ubsec_session *ses;
1034 	struct ubsec_pktctx ctx;
1035 	struct ubsec_dma *dmap = NULL;
1036 
1037 	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1038 		ubsecstats.hst_invalid++;
1039 		return (EINVAL);
1040 	}
1041 	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1042 		ubsecstats.hst_badsession++;
1043 		return (EINVAL);
1044 	}
1045 
1046 	crit_enter();
1047 
1048 	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1049 		ubsecstats.hst_queuefull++;
1050 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1051 		crit_exit();
1052 		return (ERESTART);
1053 	}
1054 	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1055 	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1056 	crit_exit();
1057 
1058 	dmap = q->q_dma; /* Save dma pointer */
1059 	bzero(q, sizeof(struct ubsec_q));
1060 	bzero(&ctx, sizeof(ctx));
1061 
1062 	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1063 	q->q_dma = dmap;
1064 	ses = &sc->sc_sessions[q->q_sesn];
1065 
1066 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1067 		q->q_src_m = (struct mbuf *)crp->crp_buf;
1068 		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1069 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1070 		q->q_src_io = (struct uio *)crp->crp_buf;
1071 		q->q_dst_io = (struct uio *)crp->crp_buf;
1072 	} else {
1073 		ubsecstats.hst_badflags++;
1074 		err = EINVAL;
1075 		goto errout;	/* XXX we don't handle contiguous blocks! */
1076 	}
1077 
1078 	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1079 
1080 	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1081 	dmap->d_dma->d_mcr.mcr_flags = 0;
1082 	q->q_crp = crp;
1083 
1084 	crd1 = crp->crp_desc;
1085 	if (crd1 == NULL) {
1086 		ubsecstats.hst_nodesc++;
1087 		err = EINVAL;
1088 		goto errout;
1089 	}
1090 	crd2 = crd1->crd_next;
1091 
1092 	if (crd2 == NULL) {
1093 		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1094 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1095 			maccrd = crd1;
1096 			enccrd = NULL;
1097 		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1098 		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1099 			maccrd = NULL;
1100 			enccrd = crd1;
1101 		} else {
1102 			ubsecstats.hst_badalg++;
1103 			err = EINVAL;
1104 			goto errout;
1105 		}
1106 	} else {
1107 		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1108 		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1109 		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1110 			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1111 		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1112 			maccrd = crd1;
1113 			enccrd = crd2;
1114 		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1115 		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1116 		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1117 			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1118 		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1119 			enccrd = crd1;
1120 			maccrd = crd2;
1121 		} else {
1122 			/*
1123 			 * We cannot order the ubsec as requested
1124 			 */
1125 			ubsecstats.hst_badalg++;
1126 			err = EINVAL;
1127 			goto errout;
1128 		}
1129 	}
1130 
1131 	if (enccrd) {
1132 		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1133 			ubsec_setup_enckey(ses, enccrd->crd_alg,
1134 			    enccrd->crd_key);
1135 		}
1136 
1137 		encoffset = enccrd->crd_skip;
1138 		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1139 
1140 		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1141 			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1142 
1143 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1144 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1145 			else {
1146 				ctx.pc_iv[0] = ses->ses_iv[0];
1147 				ctx.pc_iv[1] = ses->ses_iv[1];
1148 			}
1149 
1150 			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1151 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1152 				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1153 			}
1154 		} else {
1155 			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1156 
1157 			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1158 				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1159 			else {
1160 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1161 				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1162 			}
1163 		}
1164 
1165 		ctx.pc_deskey[0] = ses->ses_deskey[0];
1166 		ctx.pc_deskey[1] = ses->ses_deskey[1];
1167 		ctx.pc_deskey[2] = ses->ses_deskey[2];
1168 		ctx.pc_deskey[3] = ses->ses_deskey[3];
1169 		ctx.pc_deskey[4] = ses->ses_deskey[4];
1170 		ctx.pc_deskey[5] = ses->ses_deskey[5];
1171 		SWAP32(ctx.pc_iv[0]);
1172 		SWAP32(ctx.pc_iv[1]);
1173 	}
1174 
1175 	if (maccrd) {
1176 		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1177 			ubsec_setup_mackey(ses, maccrd->crd_alg,
1178 			    maccrd->crd_key, maccrd->crd_klen / 8);
1179 		}
1180 
1181 		macoffset = maccrd->crd_skip;
1182 
1183 		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1184 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1185 		else
1186 			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1187 
1188 		for (i = 0; i < 5; i++) {
1189 			ctx.pc_hminner[i] = ses->ses_hminner[i];
1190 			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1191 
1192 			HTOLE32(ctx.pc_hminner[i]);
1193 			HTOLE32(ctx.pc_hmouter[i]);
1194 		}
1195 	}
1196 
1197 	if (enccrd && maccrd) {
1198 		/*
1199 		 * ubsec cannot handle packets where the end of encryption
1200 		 * and authentication are not the same, or where the
1201 		 * encrypted part begins before the authenticated part.
1202 		 */
1203 		if ((encoffset + enccrd->crd_len) !=
1204 		    (macoffset + maccrd->crd_len)) {
1205 			ubsecstats.hst_lenmismatch++;
1206 			err = EINVAL;
1207 			goto errout;
1208 		}
1209 		if (enccrd->crd_skip < maccrd->crd_skip) {
1210 			ubsecstats.hst_skipmismatch++;
1211 			err = EINVAL;
1212 			goto errout;
1213 		}
1214 		sskip = maccrd->crd_skip;
1215 		cpskip = dskip = enccrd->crd_skip;
1216 		stheend = maccrd->crd_len;
1217 		dtheend = enccrd->crd_len;
1218 		coffset = enccrd->crd_skip - maccrd->crd_skip;
1219 		cpoffset = cpskip + dtheend;
1220 #ifdef UBSEC_DEBUG
1221 		if (ubsec_debug) {
1222 			kprintf("mac: skip %d, len %d, inject %d\n",
1223 			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1224 			kprintf("enc: skip %d, len %d, inject %d\n",
1225 			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1226 			kprintf("src: skip %d, len %d\n", sskip, stheend);
1227 			kprintf("dst: skip %d, len %d\n", dskip, dtheend);
1228 			kprintf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1229 			    coffset, stheend, cpskip, cpoffset);
1230 		}
1231 #endif
1232 	} else {
1233 		cpskip = dskip = sskip = macoffset + encoffset;
1234 		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1235 		cpoffset = cpskip + dtheend;
1236 		coffset = 0;
1237 	}
1238 	ctx.pc_offset = htole16(coffset >> 2);
1239 
1240 	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1241 		ubsecstats.hst_nomap++;
1242 		err = ENOMEM;
1243 		goto errout;
1244 	}
1245 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1246 		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1247 		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1248 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1249 			q->q_src_map = NULL;
1250 			ubsecstats.hst_noload++;
1251 			err = ENOMEM;
1252 			goto errout;
1253 		}
1254 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1255 		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1256 		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1257 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1258 			q->q_src_map = NULL;
1259 			ubsecstats.hst_noload++;
1260 			err = ENOMEM;
1261 			goto errout;
1262 		}
1263 	}
1264 	nicealign = ubsec_dmamap_aligned(&q->q_src);
1265 
1266 	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1267 
1268 #ifdef UBSEC_DEBUG
1269 	if (ubsec_debug)
1270 		kprintf("src skip: %d nicealign: %u\n", sskip, nicealign);
1271 #endif
1272 	for (i = j = 0; i < q->q_src_nsegs; i++) {
1273 		struct ubsec_pktbuf *pb;
1274 		bus_size_t packl = q->q_src_segs[i].ds_len;
1275 		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1276 
1277 		if (sskip >= packl) {
1278 			sskip -= packl;
1279 			continue;
1280 		}
1281 
1282 		packl -= sskip;
1283 		packp += sskip;
1284 		sskip = 0;
1285 
1286 		if (packl > 0xfffc) {
1287 			err = EIO;
1288 			goto errout;
1289 		}
1290 
1291 		if (j == 0)
1292 			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1293 		else
1294 			pb = &dmap->d_dma->d_sbuf[j - 1];
1295 
1296 		pb->pb_addr = htole32(packp);
1297 
1298 		if (stheend) {
1299 			if (packl > stheend) {
1300 				pb->pb_len = htole32(stheend);
1301 				stheend = 0;
1302 			} else {
1303 				pb->pb_len = htole32(packl);
1304 				stheend -= packl;
1305 			}
1306 		} else
1307 			pb->pb_len = htole32(packl);
1308 
1309 		if ((i + 1) == q->q_src_nsegs)
1310 			pb->pb_next = 0;
1311 		else
1312 			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1313 			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1314 		j++;
1315 	}
1316 
1317 	if (enccrd == NULL && maccrd != NULL) {
1318 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1319 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1320 		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1321 		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1322 #ifdef UBSEC_DEBUG
1323 		if (ubsec_debug)
1324 			kprintf("opkt: %x %x %x\n",
1325 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1326 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1327 			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1328 #endif
1329 	} else {
1330 		if (crp->crp_flags & CRYPTO_F_IOV) {
1331 			if (!nicealign) {
1332 				ubsecstats.hst_iovmisaligned++;
1333 				err = EINVAL;
1334 				goto errout;
1335 			}
1336 			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1337 			     &q->q_dst_map)) {
1338 				ubsecstats.hst_nomap++;
1339 				err = ENOMEM;
1340 				goto errout;
1341 			}
1342 			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1343 			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1344 				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1345 				q->q_dst_map = NULL;
1346 				ubsecstats.hst_noload++;
1347 				err = ENOMEM;
1348 				goto errout;
1349 			}
1350 		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1351 			if (nicealign) {
1352 				q->q_dst = q->q_src;
1353 			} else {
1354 				int totlen, len;
1355 				struct mbuf *m, *top, **mp;
1356 
1357 				ubsecstats.hst_unaligned++;
1358 				totlen = q->q_src_mapsize;
1359 				if (q->q_src_m->m_flags & M_PKTHDR) {
1360 					len = MHLEN;
1361 					MGETHDR(m, M_NOWAIT, MT_DATA);
1362 					if (m && !m_dup_pkthdr(m, q->q_src_m, M_NOWAIT)) {
1363 						m_free(m);
1364 						m = NULL;
1365 					}
1366 				} else {
1367 					len = MLEN;
1368 					MGET(m, M_NOWAIT, MT_DATA);
1369 				}
1370 				if (m == NULL) {
1371 					ubsecstats.hst_nombuf++;
1372 					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1373 					goto errout;
1374 				}
1375 				if (totlen >= MINCLSIZE) {
1376 					MCLGET(m, M_NOWAIT);
1377 					if ((m->m_flags & M_EXT) == 0) {
1378 						m_free(m);
1379 						ubsecstats.hst_nomcl++;
1380 						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1381 						goto errout;
1382 					}
1383 					len = MCLBYTES;
1384 				}
1385 				m->m_len = len;
1386 				top = NULL;
1387 				mp = &top;
1388 
1389 				while (totlen > 0) {
1390 					if (top) {
1391 						MGET(m, M_NOWAIT, MT_DATA);
1392 						if (m == NULL) {
1393 							m_freem(top);
1394 							ubsecstats.hst_nombuf++;
1395 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1396 							goto errout;
1397 						}
1398 						len = MLEN;
1399 					}
1400 					if (top && totlen >= MINCLSIZE) {
1401 						MCLGET(m, M_NOWAIT);
1402 						if ((m->m_flags & M_EXT) == 0) {
1403 							*mp = m;
1404 							m_freem(top);
1405 							ubsecstats.hst_nomcl++;
1406 							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1407 							goto errout;
1408 						}
1409 						len = MCLBYTES;
1410 					}
1411 					m->m_len = len = min(totlen, len);
1412 					totlen -= len;
1413 					*mp = m;
1414 					mp = &m->m_next;
1415 				}
1416 				q->q_dst_m = top;
1417 				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1418 				    cpskip, cpoffset);
1419 				if (bus_dmamap_create(sc->sc_dmat,
1420 				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1421 					ubsecstats.hst_nomap++;
1422 					err = ENOMEM;
1423 					goto errout;
1424 				}
1425 				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1426 				    q->q_dst_map, q->q_dst_m,
1427 				    ubsec_op_cb, &q->q_dst,
1428 				    BUS_DMA_NOWAIT) != 0) {
1429 					bus_dmamap_destroy(sc->sc_dmat,
1430 					q->q_dst_map);
1431 					q->q_dst_map = NULL;
1432 					ubsecstats.hst_noload++;
1433 					err = ENOMEM;
1434 					goto errout;
1435 				}
1436 			}
1437 		} else {
1438 			ubsecstats.hst_badflags++;
1439 			err = EINVAL;
1440 			goto errout;
1441 		}
1442 
1443 #ifdef UBSEC_DEBUG
1444 		if (ubsec_debug)
1445 			kprintf("dst skip: %d\n", dskip);
1446 #endif
1447 		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1448 			struct ubsec_pktbuf *pb;
1449 			bus_size_t packl = q->q_dst_segs[i].ds_len;
1450 			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1451 
1452 			if (dskip >= packl) {
1453 				dskip -= packl;
1454 				continue;
1455 			}
1456 
1457 			packl -= dskip;
1458 			packp += dskip;
1459 			dskip = 0;
1460 
1461 			if (packl > 0xfffc) {
1462 				err = EIO;
1463 				goto errout;
1464 			}
1465 
1466 			if (j == 0)
1467 				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1468 			else
1469 				pb = &dmap->d_dma->d_dbuf[j - 1];
1470 
1471 			pb->pb_addr = htole32(packp);
1472 
1473 			if (dtheend) {
1474 				if (packl > dtheend) {
1475 					pb->pb_len = htole32(dtheend);
1476 					dtheend = 0;
1477 				} else {
1478 					pb->pb_len = htole32(packl);
1479 					dtheend -= packl;
1480 				}
1481 			} else
1482 				pb->pb_len = htole32(packl);
1483 
1484 			if ((i + 1) == q->q_dst_nsegs) {
1485 				if (maccrd)
1486 					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1487 					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1488 				else
1489 					pb->pb_next = 0;
1490 			} else
1491 				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1492 				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1493 			j++;
1494 		}
1495 	}
1496 
1497 	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1498 	    offsetof(struct ubsec_dmachunk, d_ctx));
1499 
1500 	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1501 		struct ubsec_pktctx_long *ctxl;
1502 
1503 		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1504 		    offsetof(struct ubsec_dmachunk, d_ctx));
1505 
1506 		/* transform small context into long context */
1507 		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1508 		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1509 		ctxl->pc_flags = ctx.pc_flags;
1510 		ctxl->pc_offset = ctx.pc_offset;
1511 		for (i = 0; i < 6; i++)
1512 			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1513 		for (i = 0; i < 5; i++)
1514 			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1515 		for (i = 0; i < 5; i++)
1516 			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1517 		ctxl->pc_iv[0] = ctx.pc_iv[0];
1518 		ctxl->pc_iv[1] = ctx.pc_iv[1];
1519 	} else
1520 		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1521 		    offsetof(struct ubsec_dmachunk, d_ctx),
1522 		    sizeof(struct ubsec_pktctx));
1523 
1524 	crit_enter();
1525 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1526 	sc->sc_nqueue++;
1527 	ubsecstats.hst_ipackets++;
1528 	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1529 	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1530 		ubsec_feed(sc);
1531 	crit_exit();
1532 	return (0);
1533 
1534 errout:
1535 	if (q != NULL) {
1536 		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1537 			m_freem(q->q_dst_m);
1538 
1539 		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1540 			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1541 			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1542 		}
1543 		if (q->q_src_map != NULL) {
1544 			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1545 			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1546 		}
1547 
1548 		crit_enter();
1549 		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1550 		crit_exit();
1551 	}
1552 	if (err != ERESTART) {
1553 		crp->crp_etype = err;
1554 		crypto_done(crp);
1555 	} else {
1556 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1557 	}
1558 	return (err);
1559 }
1560 
1561 static void
1562 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1563 {
1564 	struct cryptop *crp = (struct cryptop *)q->q_crp;
1565 	struct cryptodesc *crd;
1566 	struct ubsec_dma *dmap = q->q_dma;
1567 
1568 	ubsecstats.hst_opackets++;
1569 	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1570 
1571 	ubsec_dma_sync(&dmap->d_alloc,
1572 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1573 	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1574 		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1575 		    BUS_DMASYNC_POSTREAD);
1576 		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1577 		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1578 	}
1579 	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1580 	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1581 	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1582 
1583 	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1584 		m_freem(q->q_src_m);
1585 		crp->crp_buf = (caddr_t)q->q_dst_m;
1586 	}
1587 
1588 	/* copy out IV for future use */
1589 	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1590 		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1591 			if (crd->crd_alg != CRYPTO_DES_CBC &&
1592 			    crd->crd_alg != CRYPTO_3DES_CBC)
1593 				continue;
1594 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1595 			    crd->crd_skip + crd->crd_len - 8, 8,
1596 			    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1597 			break;
1598 		}
1599 	}
1600 
1601 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1602 		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1603 		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1604 			continue;
1605 		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1606 		    sc->sc_sessions[q->q_sesn].ses_mlen,
1607 		    (caddr_t)dmap->d_dma->d_macbuf);
1608 	}
1609 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1610 	crypto_done(crp);
1611 }
1612 
1613 static void
1614 ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1615 {
1616 	int i, j, dlen, slen;
1617 	caddr_t dptr, sptr;
1618 
1619 	j = 0;
1620 	sptr = srcm->m_data;
1621 	slen = srcm->m_len;
1622 	dptr = dstm->m_data;
1623 	dlen = dstm->m_len;
1624 
1625 	while (1) {
1626 		for (i = 0; i < min(slen, dlen); i++) {
1627 			if (j < hoffset || j >= toffset)
1628 				*dptr++ = *sptr++;
1629 			slen--;
1630 			dlen--;
1631 			j++;
1632 		}
1633 		if (slen == 0) {
1634 			srcm = srcm->m_next;
1635 			if (srcm == NULL)
1636 				return;
1637 			sptr = srcm->m_data;
1638 			slen = srcm->m_len;
1639 		}
1640 		if (dlen == 0) {
1641 			dstm = dstm->m_next;
1642 			if (dstm == NULL)
1643 				return;
1644 			dptr = dstm->m_data;
1645 			dlen = dstm->m_len;
1646 		}
1647 	}
1648 }
1649 
1650 /*
1651  * feed the key generator, must be called at splimp() or higher.
1652  */
1653 static int
1654 ubsec_feed2(struct ubsec_softc *sc)
1655 {
1656 	struct ubsec_q2 *q;
1657 
1658 	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1659 		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1660 			break;
1661 		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1662 
1663 		ubsec_dma_sync(&q->q_mcr,
1664 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1665 		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1666 
1667 		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1668 		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1669 		--sc->sc_nqueue2;
1670 		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1671 	}
1672 	return (0);
1673 }
1674 
1675 /*
1676  * Callback for handling random numbers
1677  */
1678 static void
1679 ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1680 {
1681 	struct cryptkop *krp;
1682 	struct ubsec_ctx_keyop *ctx;
1683 
1684 	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1685 	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1686 
1687 	switch (q->q_type) {
1688 #ifndef UBSEC_NO_RNG
1689 	case UBS_CTXOP_RNGBYPASS: {
1690 		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1691 
1692 		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1693 		(*sc->sc_harvest)(sc->sc_rndtest,
1694 			rng->rng_buf.dma_vaddr,
1695 			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1696 		rng->rng_used = 0;
1697 		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1698 		break;
1699 	}
1700 #endif
1701 	case UBS_CTXOP_MODEXP: {
1702 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1703 		u_int rlen, clen;
1704 
1705 		krp = me->me_krp;
1706 		rlen = (me->me_modbits + 7) / 8;
1707 		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1708 
1709 		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1710 		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1711 		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1712 		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1713 
1714 		if (clen < rlen)
1715 			krp->krp_status = E2BIG;
1716 		else {
1717 			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1718 				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1719 				    (krp->krp_param[krp->krp_iparams].crp_nbits
1720 					+ 7) / 8);
1721 				bcopy(me->me_C.dma_vaddr,
1722 				    krp->krp_param[krp->krp_iparams].crp_p,
1723 				    (me->me_modbits + 7) / 8);
1724 			} else
1725 				ubsec_kshift_l(me->me_shiftbits,
1726 				    me->me_C.dma_vaddr, me->me_normbits,
1727 				    krp->krp_param[krp->krp_iparams].crp_p,
1728 				    krp->krp_param[krp->krp_iparams].crp_nbits);
1729 		}
1730 
1731 		crypto_kdone(krp);
1732 
1733 		/* bzero all potentially sensitive data */
1734 		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1735 		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1736 		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1737 		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1738 
1739 		/* Can't free here, so put us on the free list. */
1740 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1741 		break;
1742 	}
1743 	case UBS_CTXOP_RSAPRIV: {
1744 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1745 		u_int len;
1746 
1747 		krp = rp->rpr_krp;
1748 		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1749 		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1750 
1751 		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1752 		bcopy(rp->rpr_msgout.dma_vaddr,
1753 		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1754 
1755 		crypto_kdone(krp);
1756 
1757 		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1758 		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1759 		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1760 
1761 		/* Can't free here, so put us on the free list. */
1762 		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1763 		break;
1764 	}
1765 	default:
1766 		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1767 		    letoh16(ctx->ctx_op));
1768 		break;
1769 	}
1770 }
1771 
1772 #ifndef UBSEC_NO_RNG
1773 static void
1774 ubsec_rng(void *vsc)
1775 {
1776 	struct ubsec_softc *sc = vsc;
1777 	struct ubsec_q2_rng *rng = &sc->sc_rng;
1778 	struct ubsec_mcr *mcr;
1779 	struct ubsec_ctx_rngbypass *ctx;
1780 
1781 	crit_enter();
1782 	if (rng->rng_used) {
1783 		crit_exit();
1784 		return;
1785 	}
1786 	sc->sc_nqueue2++;
1787 	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1788 		goto out;
1789 
1790 	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1791 	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1792 
1793 	mcr->mcr_pkts = htole16(1);
1794 	mcr->mcr_flags = 0;
1795 	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1796 	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1797 	mcr->mcr_ipktbuf.pb_len = 0;
1798 	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1799 	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1800 	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1801 	    UBS_PKTBUF_LEN);
1802 	mcr->mcr_opktbuf.pb_next = 0;
1803 
1804 	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1805 	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1806 	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1807 
1808 	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1809 
1810 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1811 	rng->rng_used = 1;
1812 	ubsec_feed2(sc);
1813 	ubsecstats.hst_rng++;
1814 	crit_exit();
1815 
1816 	return;
1817 
1818 out:
1819 	/*
1820 	 * Something weird happened, generate our own call back.
1821 	 */
1822 	sc->sc_nqueue2--;
1823 	crit_exit();
1824 	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1825 }
1826 #endif /* UBSEC_NO_RNG */
1827 
1828 static void
1829 ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1830 {
1831 	bus_addr_t *paddr = (bus_addr_t*) arg;
1832 	*paddr = segs->ds_addr;
1833 }
1834 
1835 static int
1836 ubsec_dma_malloc(
1837 	struct ubsec_softc *sc,
1838 	bus_size_t size,
1839 	struct ubsec_dma_alloc *dma,
1840 	int mapflags
1841 )
1842 {
1843 	int r;
1844 
1845 	/* XXX could specify sc_dmat as parent but that just adds overhead */
1846 	r = bus_dma_tag_create(NULL,			/* parent */
1847 			       1, 0,			/* alignment, bounds */
1848 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1849 			       BUS_SPACE_MAXADDR,	/* highaddr */
1850 			       NULL, NULL,		/* filter, filterarg */
1851 			       size,			/* maxsize */
1852 			       1,			/* nsegments */
1853 			       size,			/* maxsegsize */
1854 			       BUS_DMA_ALLOCNOW,	/* flags */
1855 			       &dma->dma_tag);
1856 	if (r != 0) {
1857 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1858 			"bus_dma_tag_create failed; error %u\n", r);
1859 		goto fail_0;
1860 	}
1861 
1862 	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1863 	if (r != 0) {
1864 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1865 			"bus_dmamap_create failed; error %u\n", r);
1866 		goto fail_1;
1867 	}
1868 
1869 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1870 			     BUS_DMA_NOWAIT, &dma->dma_map);
1871 	if (r != 0) {
1872 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1873 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1874 			(intmax_t)size, r);
1875 		goto fail_2;
1876 	}
1877 
1878 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1879 		            size,
1880 			    ubsec_dmamap_cb,
1881 			    &dma->dma_paddr,
1882 			    mapflags | BUS_DMA_NOWAIT);
1883 	if (r != 0) {
1884 		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1885 			"bus_dmamap_load failed; error %u\n", r);
1886 		goto fail_3;
1887 	}
1888 
1889 	dma->dma_size = size;
1890 	return (0);
1891 
1892 fail_3:
1893 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1894 fail_2:
1895 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1896 fail_1:
1897 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1898 	bus_dma_tag_destroy(dma->dma_tag);
1899 fail_0:
1900 	dma->dma_map = NULL;
1901 	dma->dma_tag = NULL;
1902 	return (r);
1903 }
1904 
1905 static void
1906 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1907 {
1908 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1909 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1910 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1911 	bus_dma_tag_destroy(dma->dma_tag);
1912 }
1913 
1914 /*
1915  * Resets the board.  Values in the regesters are left as is
1916  * from the reset (i.e. initial values are assigned elsewhere).
1917  */
1918 static void
1919 ubsec_reset_board(struct ubsec_softc *sc)
1920 {
1921     volatile u_int32_t ctrl;
1922 
1923     ctrl = READ_REG(sc, BS_CTRL);
1924     ctrl |= BS_CTRL_RESET;
1925     WRITE_REG(sc, BS_CTRL, ctrl);
1926 
1927     /*
1928      * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1929      */
1930     DELAY(10);
1931 }
1932 
1933 /*
1934  * Init Broadcom registers
1935  */
1936 static void
1937 ubsec_init_board(struct ubsec_softc *sc)
1938 {
1939 	u_int32_t ctrl;
1940 
1941 	ctrl = READ_REG(sc, BS_CTRL);
1942 	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1943 	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1944 
1945 	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1946 		ctrl |= BS_CTRL_MCR2INT;
1947 	else
1948 		ctrl &= ~BS_CTRL_MCR2INT;
1949 
1950 	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1951 		ctrl &= ~BS_CTRL_SWNORM;
1952 
1953 	WRITE_REG(sc, BS_CTRL, ctrl);
1954 }
1955 
1956 /*
1957  * Init Broadcom PCI registers
1958  */
1959 static void
1960 ubsec_init_pciregs(device_t dev)
1961 {
1962 #if 0
1963 	u_int32_t misc;
1964 
1965 	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1966 	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1967 	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1968 	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1969 	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1970 	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1971 #endif
1972 
1973 	/*
1974 	 * This will set the cache line size to 1, this will
1975 	 * force the BCM58xx chip just to do burst read/writes.
1976 	 * Cache line read/writes are to slow
1977 	 */
1978 	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1979 }
1980 
1981 /*
1982  * Clean up after a chip crash.
1983  * It is assumed that the caller in splimp()
1984  */
1985 static void
1986 ubsec_cleanchip(struct ubsec_softc *sc)
1987 {
1988 	struct ubsec_q *q;
1989 
1990 	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1991 		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1992 		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
1993 		ubsec_free_q(sc, q);
1994 	}
1995 	sc->sc_nqchip = 0;
1996 }
1997 
1998 /*
1999  * free a ubsec_q
2000  * It is assumed that the caller is within spimp()
2001  */
2002 static int
2003 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2004 {
2005 	struct ubsec_q *q2;
2006 	struct cryptop *crp;
2007 	int npkts;
2008 	int i;
2009 
2010 	npkts = q->q_nstacked_mcrs;
2011 
2012 	for (i = 0; i < npkts; i++) {
2013 		if(q->q_stacked_mcr[i]) {
2014 			q2 = q->q_stacked_mcr[i];
2015 
2016 			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2017 				m_freem(q2->q_dst_m);
2018 
2019 			crp = (struct cryptop *)q2->q_crp;
2020 
2021 			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2022 
2023 			crp->crp_etype = EFAULT;
2024 			crypto_done(crp);
2025 		} else {
2026 			break;
2027 		}
2028 	}
2029 
2030 	/*
2031 	 * Free header MCR
2032 	 */
2033 	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2034 		m_freem(q->q_dst_m);
2035 
2036 	crp = (struct cryptop *)q->q_crp;
2037 
2038 	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2039 
2040 	crp->crp_etype = EFAULT;
2041 	crypto_done(crp);
2042 	return(0);
2043 }
2044 
2045 /*
2046  * Routine to reset the chip and clean up.
2047  * It is assumed that the caller is in splimp()
2048  */
2049 static void
2050 ubsec_totalreset(struct ubsec_softc *sc)
2051 {
2052 	ubsec_reset_board(sc);
2053 	ubsec_init_board(sc);
2054 	ubsec_cleanchip(sc);
2055 }
2056 
2057 static int
2058 ubsec_dmamap_aligned(struct ubsec_operand *op)
2059 {
2060 	int i;
2061 
2062 	for (i = 0; i < op->nsegs; i++) {
2063 		if (op->segs[i].ds_addr & 3)
2064 			return (0);
2065 		if ((i != (op->nsegs - 1)) &&
2066 		    (op->segs[i].ds_len & 3))
2067 			return (0);
2068 	}
2069 	return (1);
2070 }
2071 
2072 static void
2073 ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2074 {
2075 	switch (q->q_type) {
2076 	case UBS_CTXOP_MODEXP: {
2077 		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2078 
2079 		ubsec_dma_free(sc, &me->me_q.q_mcr);
2080 		ubsec_dma_free(sc, &me->me_q.q_ctx);
2081 		ubsec_dma_free(sc, &me->me_M);
2082 		ubsec_dma_free(sc, &me->me_E);
2083 		ubsec_dma_free(sc, &me->me_C);
2084 		ubsec_dma_free(sc, &me->me_epb);
2085 		kfree(me, M_DEVBUF);
2086 		break;
2087 	}
2088 	case UBS_CTXOP_RSAPRIV: {
2089 		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2090 
2091 		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2092 		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2093 		ubsec_dma_free(sc, &rp->rpr_msgin);
2094 		ubsec_dma_free(sc, &rp->rpr_msgout);
2095 		kfree(rp, M_DEVBUF);
2096 		break;
2097 	}
2098 	default:
2099 		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2100 		break;
2101 	}
2102 }
2103 
2104 static int
2105 ubsec_kprocess(device_t dev, struct cryptkop *krp, int hint)
2106 {
2107 	struct ubsec_softc *sc = device_get_softc(dev);
2108 	int r;
2109 
2110 	if (krp == NULL || krp->krp_callback == NULL)
2111 		return (EINVAL);
2112 
2113 	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2114 		struct ubsec_q2 *q;
2115 
2116 		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2117 		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2118 		ubsec_kfree(sc, q);
2119 	}
2120 
2121 	switch (krp->krp_op) {
2122 	case CRK_MOD_EXP:
2123 		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2124 			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2125 		else
2126 			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2127 		break;
2128 	case CRK_MOD_EXP_CRT:
2129 		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2130 	default:
2131 		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2132 		    krp->krp_op);
2133 		krp->krp_status = EOPNOTSUPP;
2134 		crypto_kdone(krp);
2135 		return (0);
2136 	}
2137 	return (0);			/* silence compiler */
2138 }
2139 
2140 /*
2141  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2142  */
2143 static int
2144 ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2145 {
2146 	struct ubsec_q2_modexp *me;
2147 	struct ubsec_mcr *mcr;
2148 	struct ubsec_ctx_modexp *ctx;
2149 	struct ubsec_pktbuf *epb;
2150 	int err = 0;
2151 	u_int nbits, normbits, mbits, shiftbits, ebits;
2152 
2153 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2154 	me->me_krp = krp;
2155 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2156 
2157 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2158 	if (nbits <= 512)
2159 		normbits = 512;
2160 	else if (nbits <= 768)
2161 		normbits = 768;
2162 	else if (nbits <= 1024)
2163 		normbits = 1024;
2164 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2165 		normbits = 1536;
2166 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2167 		normbits = 2048;
2168 	else {
2169 		err = E2BIG;
2170 		goto errout;
2171 	}
2172 
2173 	shiftbits = normbits - nbits;
2174 
2175 	me->me_modbits = nbits;
2176 	me->me_shiftbits = shiftbits;
2177 	me->me_normbits = normbits;
2178 
2179 	/* Sanity check: result bits must be >= true modulus bits. */
2180 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2181 		err = ERANGE;
2182 		goto errout;
2183 	}
2184 
2185 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2186 	    &me->me_q.q_mcr, 0)) {
2187 		err = ENOMEM;
2188 		goto errout;
2189 	}
2190 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2191 
2192 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2193 	    &me->me_q.q_ctx, 0)) {
2194 		err = ENOMEM;
2195 		goto errout;
2196 	}
2197 
2198 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2199 	if (mbits > nbits) {
2200 		err = E2BIG;
2201 		goto errout;
2202 	}
2203 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2204 		err = ENOMEM;
2205 		goto errout;
2206 	}
2207 	ubsec_kshift_r(shiftbits,
2208 	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2209 	    me->me_M.dma_vaddr, normbits);
2210 
2211 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2212 		err = ENOMEM;
2213 		goto errout;
2214 	}
2215 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2216 
2217 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2218 	if (ebits > nbits) {
2219 		err = E2BIG;
2220 		goto errout;
2221 	}
2222 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2223 		err = ENOMEM;
2224 		goto errout;
2225 	}
2226 	ubsec_kshift_r(shiftbits,
2227 	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2228 	    me->me_E.dma_vaddr, normbits);
2229 
2230 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2231 	    &me->me_epb, 0)) {
2232 		err = ENOMEM;
2233 		goto errout;
2234 	}
2235 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2236 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2237 	epb->pb_next = 0;
2238 	epb->pb_len = htole32(normbits / 8);
2239 
2240 #ifdef UBSEC_DEBUG
2241 	if (ubsec_debug) {
2242 		kprintf("Epb ");
2243 		ubsec_dump_pb(epb);
2244 	}
2245 #endif
2246 
2247 	mcr->mcr_pkts = htole16(1);
2248 	mcr->mcr_flags = 0;
2249 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2250 	mcr->mcr_reserved = 0;
2251 	mcr->mcr_pktlen = 0;
2252 
2253 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2254 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2255 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2256 
2257 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2258 	mcr->mcr_opktbuf.pb_next = 0;
2259 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2260 
2261 #ifdef DIAGNOSTIC
2262 	/* Misaligned output buffer will hang the chip. */
2263 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2264 		panic("%s: modexp invalid addr 0x%x",
2265 		    device_get_nameunit(sc->sc_dev),
2266 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2267 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2268 		panic("%s: modexp invalid len 0x%x",
2269 		    device_get_nameunit(sc->sc_dev),
2270 		    letoh32(mcr->mcr_opktbuf.pb_len));
2271 #endif
2272 
2273 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2274 	bzero(ctx, sizeof(*ctx));
2275 	ubsec_kshift_r(shiftbits,
2276 	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2277 	    ctx->me_N, normbits);
2278 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2279 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2280 	ctx->me_E_len = htole16(nbits);
2281 	ctx->me_N_len = htole16(nbits);
2282 
2283 #ifdef UBSEC_DEBUG
2284 	if (ubsec_debug) {
2285 		ubsec_dump_mcr(mcr);
2286 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2287 	}
2288 #endif
2289 
2290 	/*
2291 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2292 	 * everything else.
2293 	 */
2294 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2295 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2296 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2297 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2298 
2299 	/* Enqueue and we're done... */
2300 	crit_enter();
2301 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2302 	ubsec_feed2(sc);
2303 	ubsecstats.hst_modexp++;
2304 	crit_exit();
2305 
2306 	return (0);
2307 
2308 errout:
2309 	if (me != NULL) {
2310 		if (me->me_q.q_mcr.dma_map != NULL)
2311 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2312 		if (me->me_q.q_ctx.dma_map != NULL) {
2313 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2314 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2315 		}
2316 		if (me->me_M.dma_map != NULL) {
2317 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2318 			ubsec_dma_free(sc, &me->me_M);
2319 		}
2320 		if (me->me_E.dma_map != NULL) {
2321 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2322 			ubsec_dma_free(sc, &me->me_E);
2323 		}
2324 		if (me->me_C.dma_map != NULL) {
2325 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2326 			ubsec_dma_free(sc, &me->me_C);
2327 		}
2328 		if (me->me_epb.dma_map != NULL)
2329 			ubsec_dma_free(sc, &me->me_epb);
2330 		kfree(me, M_DEVBUF);
2331 	}
2332 	krp->krp_status = err;
2333 	crypto_kdone(krp);
2334 	return (0);
2335 }
2336 
2337 /*
2338  * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2339  */
2340 static int
2341 ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2342 {
2343 	struct ubsec_q2_modexp *me;
2344 	struct ubsec_mcr *mcr;
2345 	struct ubsec_ctx_modexp *ctx;
2346 	struct ubsec_pktbuf *epb;
2347 	int err = 0;
2348 	u_int nbits, normbits, mbits, shiftbits, ebits;
2349 
2350 	me = kmalloc(sizeof *me, M_DEVBUF, M_INTWAIT | M_ZERO);
2351 	me->me_krp = krp;
2352 	me->me_q.q_type = UBS_CTXOP_MODEXP;
2353 
2354 	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2355 	if (nbits <= 512)
2356 		normbits = 512;
2357 	else if (nbits <= 768)
2358 		normbits = 768;
2359 	else if (nbits <= 1024)
2360 		normbits = 1024;
2361 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2362 		normbits = 1536;
2363 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2364 		normbits = 2048;
2365 	else {
2366 		err = E2BIG;
2367 		goto errout;
2368 	}
2369 
2370 	shiftbits = normbits - nbits;
2371 
2372 	/* XXX ??? */
2373 	me->me_modbits = nbits;
2374 	me->me_shiftbits = shiftbits;
2375 	me->me_normbits = normbits;
2376 
2377 	/* Sanity check: result bits must be >= true modulus bits. */
2378 	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2379 		err = ERANGE;
2380 		goto errout;
2381 	}
2382 
2383 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2384 	    &me->me_q.q_mcr, 0)) {
2385 		err = ENOMEM;
2386 		goto errout;
2387 	}
2388 	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2389 
2390 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2391 	    &me->me_q.q_ctx, 0)) {
2392 		err = ENOMEM;
2393 		goto errout;
2394 	}
2395 
2396 	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2397 	if (mbits > nbits) {
2398 		err = E2BIG;
2399 		goto errout;
2400 	}
2401 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2402 		err = ENOMEM;
2403 		goto errout;
2404 	}
2405 	bzero(me->me_M.dma_vaddr, normbits / 8);
2406 	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2407 	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2408 
2409 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2410 		err = ENOMEM;
2411 		goto errout;
2412 	}
2413 	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2414 
2415 	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2416 	if (ebits > nbits) {
2417 		err = E2BIG;
2418 		goto errout;
2419 	}
2420 	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2421 		err = ENOMEM;
2422 		goto errout;
2423 	}
2424 	bzero(me->me_E.dma_vaddr, normbits / 8);
2425 	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2426 	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2427 
2428 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2429 	    &me->me_epb, 0)) {
2430 		err = ENOMEM;
2431 		goto errout;
2432 	}
2433 	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2434 	epb->pb_addr = htole32(me->me_E.dma_paddr);
2435 	epb->pb_next = 0;
2436 	epb->pb_len = htole32((ebits + 7) / 8);
2437 
2438 #ifdef UBSEC_DEBUG
2439 	if (ubsec_debug) {
2440 		kprintf("Epb ");
2441 		ubsec_dump_pb(epb);
2442 	}
2443 #endif
2444 
2445 	mcr->mcr_pkts = htole16(1);
2446 	mcr->mcr_flags = 0;
2447 	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2448 	mcr->mcr_reserved = 0;
2449 	mcr->mcr_pktlen = 0;
2450 
2451 	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2452 	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2453 	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2454 
2455 	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2456 	mcr->mcr_opktbuf.pb_next = 0;
2457 	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2458 
2459 #ifdef DIAGNOSTIC
2460 	/* Misaligned output buffer will hang the chip. */
2461 	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2462 		panic("%s: modexp invalid addr 0x%x",
2463 		    device_get_nameunit(sc->sc_dev),
2464 		    letoh32(mcr->mcr_opktbuf.pb_addr));
2465 	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2466 		panic("%s: modexp invalid len 0x%x",
2467 		    device_get_nameunit(sc->sc_dev),
2468 		    letoh32(mcr->mcr_opktbuf.pb_len));
2469 #endif
2470 
2471 	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2472 	bzero(ctx, sizeof(*ctx));
2473 	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2474 	    (nbits + 7) / 8);
2475 	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2476 	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2477 	ctx->me_E_len = htole16(ebits);
2478 	ctx->me_N_len = htole16(nbits);
2479 
2480 #ifdef UBSEC_DEBUG
2481 	if (ubsec_debug) {
2482 		ubsec_dump_mcr(mcr);
2483 		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2484 	}
2485 #endif
2486 
2487 	/*
2488 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2489 	 * everything else.
2490 	 */
2491 	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2492 	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2493 	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2494 	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2495 
2496 	/* Enqueue and we're done... */
2497 	crit_enter();
2498 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2499 	ubsec_feed2(sc);
2500 	crit_exit();
2501 
2502 	return (0);
2503 
2504 errout:
2505 	if (me != NULL) {
2506 		if (me->me_q.q_mcr.dma_map != NULL)
2507 			ubsec_dma_free(sc, &me->me_q.q_mcr);
2508 		if (me->me_q.q_ctx.dma_map != NULL) {
2509 			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2510 			ubsec_dma_free(sc, &me->me_q.q_ctx);
2511 		}
2512 		if (me->me_M.dma_map != NULL) {
2513 			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2514 			ubsec_dma_free(sc, &me->me_M);
2515 		}
2516 		if (me->me_E.dma_map != NULL) {
2517 			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2518 			ubsec_dma_free(sc, &me->me_E);
2519 		}
2520 		if (me->me_C.dma_map != NULL) {
2521 			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2522 			ubsec_dma_free(sc, &me->me_C);
2523 		}
2524 		if (me->me_epb.dma_map != NULL)
2525 			ubsec_dma_free(sc, &me->me_epb);
2526 		kfree(me, M_DEVBUF);
2527 	}
2528 	krp->krp_status = err;
2529 	crypto_kdone(krp);
2530 	return (0);
2531 }
2532 
2533 static int
2534 ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2535 {
2536 	struct ubsec_q2_rsapriv *rp = NULL;
2537 	struct ubsec_mcr *mcr;
2538 	struct ubsec_ctx_rsapriv *ctx;
2539 	int err = 0;
2540 	u_int padlen, msglen;
2541 
2542 	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2543 	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2544 	if (msglen > padlen)
2545 		padlen = msglen;
2546 
2547 	if (padlen <= 256)
2548 		padlen = 256;
2549 	else if (padlen <= 384)
2550 		padlen = 384;
2551 	else if (padlen <= 512)
2552 		padlen = 512;
2553 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2554 		padlen = 768;
2555 	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2556 		padlen = 1024;
2557 	else {
2558 		err = E2BIG;
2559 		goto errout;
2560 	}
2561 
2562 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2563 		err = E2BIG;
2564 		goto errout;
2565 	}
2566 
2567 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2568 		err = E2BIG;
2569 		goto errout;
2570 	}
2571 
2572 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2573 		err = E2BIG;
2574 		goto errout;
2575 	}
2576 
2577 	rp = kmalloc(sizeof *rp, M_DEVBUF, M_INTWAIT | M_ZERO);
2578 	rp->rpr_krp = krp;
2579 	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2580 
2581 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2582 	    &rp->rpr_q.q_mcr, 0)) {
2583 		err = ENOMEM;
2584 		goto errout;
2585 	}
2586 	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2587 
2588 	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2589 	    &rp->rpr_q.q_ctx, 0)) {
2590 		err = ENOMEM;
2591 		goto errout;
2592 	}
2593 	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2594 	bzero(ctx, sizeof *ctx);
2595 
2596 	/* Copy in p */
2597 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2598 	    &ctx->rpr_buf[0 * (padlen / 8)],
2599 	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2600 
2601 	/* Copy in q */
2602 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2603 	    &ctx->rpr_buf[1 * (padlen / 8)],
2604 	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2605 
2606 	/* Copy in dp */
2607 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2608 	    &ctx->rpr_buf[2 * (padlen / 8)],
2609 	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2610 
2611 	/* Copy in dq */
2612 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2613 	    &ctx->rpr_buf[3 * (padlen / 8)],
2614 	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2615 
2616 	/* Copy in pinv */
2617 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2618 	    &ctx->rpr_buf[4 * (padlen / 8)],
2619 	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2620 
2621 	msglen = padlen * 2;
2622 
2623 	/* Copy in input message (aligned buffer/length). */
2624 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2625 		/* Is this likely? */
2626 		err = E2BIG;
2627 		goto errout;
2628 	}
2629 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2630 		err = ENOMEM;
2631 		goto errout;
2632 	}
2633 	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2634 	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2635 	    rp->rpr_msgin.dma_vaddr,
2636 	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2637 
2638 	/* Prepare space for output message (aligned buffer/length). */
2639 	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2640 		/* Is this likely? */
2641 		err = E2BIG;
2642 		goto errout;
2643 	}
2644 	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2645 		err = ENOMEM;
2646 		goto errout;
2647 	}
2648 	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2649 
2650 	mcr->mcr_pkts = htole16(1);
2651 	mcr->mcr_flags = 0;
2652 	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2653 	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2654 	mcr->mcr_ipktbuf.pb_next = 0;
2655 	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2656 	mcr->mcr_reserved = 0;
2657 	mcr->mcr_pktlen = htole16(msglen);
2658 	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2659 	mcr->mcr_opktbuf.pb_next = 0;
2660 	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2661 
2662 #ifdef DIAGNOSTIC
2663 	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2664 		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2665 		    device_get_nameunit(sc->sc_dev),
2666 		    rp->rpr_msgin.dma_paddr,
2667 		    (uintmax_t)rp->rpr_msgin.dma_size);
2668 	}
2669 	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2670 		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2671 		    device_get_nameunit(sc->sc_dev),
2672 		    rp->rpr_msgout.dma_paddr,
2673 		    (uintmax_t)rp->rpr_msgout.dma_size);
2674 	}
2675 #endif
2676 
2677 	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2678 	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2679 	ctx->rpr_q_len = htole16(padlen);
2680 	ctx->rpr_p_len = htole16(padlen);
2681 
2682 	/*
2683 	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2684 	 * everything else.
2685 	 */
2686 	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2687 	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2688 
2689 	/* Enqueue and we're done... */
2690 	crit_enter();
2691 	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2692 	ubsec_feed2(sc);
2693 	ubsecstats.hst_modexpcrt++;
2694 	crit_exit();
2695 	return (0);
2696 
2697 errout:
2698 	if (rp != NULL) {
2699 		if (rp->rpr_q.q_mcr.dma_map != NULL)
2700 			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2701 		if (rp->rpr_msgin.dma_map != NULL) {
2702 			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2703 			ubsec_dma_free(sc, &rp->rpr_msgin);
2704 		}
2705 		if (rp->rpr_msgout.dma_map != NULL) {
2706 			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2707 			ubsec_dma_free(sc, &rp->rpr_msgout);
2708 		}
2709 		kfree(rp, M_DEVBUF);
2710 	}
2711 	krp->krp_status = err;
2712 	crypto_kdone(krp);
2713 	return (0);
2714 }
2715 
2716 #ifdef UBSEC_DEBUG
2717 static void
2718 ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2719 {
2720 	kprintf("addr 0x%x (0x%x) next 0x%x\n",
2721 	    pb->pb_addr, pb->pb_len, pb->pb_next);
2722 }
2723 
2724 static void
2725 ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2726 {
2727 	kprintf("CTX (0x%x):\n", c->ctx_len);
2728 	switch (letoh16(c->ctx_op)) {
2729 	case UBS_CTXOP_RNGBYPASS:
2730 	case UBS_CTXOP_RNGSHA1:
2731 		break;
2732 	case UBS_CTXOP_MODEXP:
2733 	{
2734 		struct ubsec_ctx_modexp *cx = (void *)c;
2735 		int i, len;
2736 
2737 		kprintf(" Elen %u, Nlen %u\n",
2738 		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2739 		len = (cx->me_N_len + 7)/8;
2740 		for (i = 0; i < len; i++)
2741 			kprintf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2742 		kprintf("\n");
2743 		break;
2744 	}
2745 	default:
2746 		kprintf("unknown context: %x\n", c->ctx_op);
2747 	}
2748 	kprintf("END CTX\n");
2749 }
2750 
2751 static void
2752 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2753 {
2754 	volatile struct ubsec_mcr_add *ma;
2755 	int i;
2756 
2757 	kprintf("MCR:\n");
2758 	kprintf(" pkts: %u, flags 0x%x\n",
2759 	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2760 	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2761 	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2762 		kprintf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2763 		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2764 		    letoh16(ma->mcr_reserved));
2765 		kprintf(" %d: ipkt ", i);
2766 		ubsec_dump_pb(&ma->mcr_ipktbuf);
2767 		kprintf(" %d: opkt ", i);
2768 		ubsec_dump_pb(&ma->mcr_opktbuf);
2769 		ma++;
2770 	}
2771 	kprintf("END MCR\n");
2772 }
2773 #endif /* UBSEC_DEBUG */
2774 
2775 /*
2776  * Return the number of significant bits of a big number.
2777  */
2778 static int
2779 ubsec_ksigbits(struct crparam *cr)
2780 {
2781 	u_int plen = (cr->crp_nbits + 7) / 8;
2782 	int i, sig = plen * 8;
2783 	u_int8_t c, *p = cr->crp_p;
2784 
2785 	for (i = plen - 1; i >= 0; i--) {
2786 		c = p[i];
2787 		if (c != 0) {
2788 			while ((c & 0x80) == 0) {
2789 				sig--;
2790 				c <<= 1;
2791 			}
2792 			break;
2793 		}
2794 		sig -= 8;
2795 	}
2796 	return (sig);
2797 }
2798 
2799 static void
2800 ubsec_kshift_r(
2801 	u_int shiftbits,
2802 	u_int8_t *src, u_int srcbits,
2803 	u_int8_t *dst, u_int dstbits)
2804 {
2805 	u_int slen, dlen;
2806 	int i, si, di, n;
2807 
2808 	slen = (srcbits + 7) / 8;
2809 	dlen = (dstbits + 7) / 8;
2810 
2811 	for (i = 0; i < slen; i++)
2812 		dst[i] = src[i];
2813 	for (i = 0; i < dlen - slen; i++)
2814 		dst[slen + i] = 0;
2815 
2816 	n = shiftbits / 8;
2817 	if (n != 0) {
2818 		si = dlen - n - 1;
2819 		di = dlen - 1;
2820 		while (si >= 0)
2821 			dst[di--] = dst[si--];
2822 		while (di >= 0)
2823 			dst[di--] = 0;
2824 	}
2825 
2826 	n = shiftbits % 8;
2827 	if (n != 0) {
2828 		for (i = dlen - 1; i > 0; i--)
2829 			dst[i] = (dst[i] << n) |
2830 			    (dst[i - 1] >> (8 - n));
2831 		dst[0] = dst[0] << n;
2832 	}
2833 }
2834 
2835 static void
2836 ubsec_kshift_l(
2837 	u_int shiftbits,
2838 	u_int8_t *src, u_int srcbits,
2839 	u_int8_t *dst, u_int dstbits)
2840 {
2841 	int slen, dlen, i, n;
2842 
2843 	slen = (srcbits + 7) / 8;
2844 	dlen = (dstbits + 7) / 8;
2845 
2846 	n = shiftbits / 8;
2847 	for (i = 0; i < slen; i++)
2848 		dst[i] = src[i + n];
2849 	for (i = 0; i < dlen - slen; i++)
2850 		dst[slen + i] = 0;
2851 
2852 	n = shiftbits % 8;
2853 	if (n != 0) {
2854 		for (i = 0; i < (dlen - 1); i++)
2855 			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2856 		dst[dlen - 1] = dst[dlen - 1] >> n;
2857 	}
2858 }
2859