xref: /dragonfly/sys/dev/disk/advansys/advansys.c (revision c03f08f3)
1 /*
2  * Generic driver for the Advanced Systems Inc. SCSI controllers
3  * Product specific probe and attach routines can be found in:
4  *
5  * i386/isa/adv_isa.c	ABP5140, ABP542, ABP5150, ABP842, ABP852
6  * i386/eisa/adv_eisa.c	ABP742, ABP752
7  * pci/adv_pci.c	ABP920, ABP930, ABP930U, ABP930UA, ABP940, ABP940U,
8  *			ABP940UA, ABP950, ABP960, ABP960U, ABP960UA,
9  *			ABP970, ABP970U
10  *
11  * Copyright (c) 1996-2000 Justin Gibbs.
12  * All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions, and the following disclaimer,
19  *    without modification, immediately at the beginning of the file.
20  * 2. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
27  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/advansys/advansys.c,v 1.14.2.4 2002/01/06 21:21:42 dwmalone Exp $
36  * $DragonFly: src/sys/dev/disk/advansys/advansys.c,v 1.11 2006/12/22 23:26:15 swildner Exp $
37  */
38 /*
39  * Ported from:
40  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
41  *
42  * Copyright (c) 1995-1997 Advanced System Products, Inc.
43  * All Rights Reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that redistributions of source
47  * code retain the above copyright notice and this comment without
48  * modification.
49  */
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/thread2.h>
56 #include <sys/bus.h>
57 #include <sys/rman.h>
58 
59 #include <bus/cam/cam.h>
60 #include <bus/cam/cam_ccb.h>
61 #include <bus/cam/cam_sim.h>
62 #include <bus/cam/cam_xpt_sim.h>
63 #include <bus/cam/cam_xpt_periph.h>
64 #include <bus/cam/cam_debug.h>
65 
66 #include <bus/cam/scsi/scsi_all.h>
67 #include <bus/cam/scsi/scsi_message.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72 
73 #include "advansys.h"
74 
75 static void	adv_action(struct cam_sim *sim, union ccb *ccb);
76 static void	adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
77 				int nsegments, int error);
78 static void	adv_poll(struct cam_sim *sim);
79 static void	adv_run_doneq(struct adv_softc *adv);
80 static struct adv_ccb_info *
81 		adv_alloc_ccb_info(struct adv_softc *adv);
82 static void	adv_destroy_ccb_info(struct adv_softc *adv,
83 				     struct adv_ccb_info *cinfo);
84 static __inline struct adv_ccb_info *
85 		adv_get_ccb_info(struct adv_softc *adv);
86 static __inline void adv_free_ccb_info(struct adv_softc *adv,
87 				       struct adv_ccb_info *cinfo);
88 static __inline void adv_set_state(struct adv_softc *adv, adv_state state);
89 static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb);
90 static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb);
91 
92 static __inline struct adv_ccb_info *
93 adv_get_ccb_info(struct adv_softc *adv)
94 {
95 	struct adv_ccb_info *cinfo;
96 
97 	crit_enter();
98 	if ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
99 		SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
100 	} else {
101 		cinfo = adv_alloc_ccb_info(adv);
102 	}
103 	crit_exit();
104 
105 	return (cinfo);
106 }
107 
108 static __inline void
109 adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
110 {
111 	crit_enter();
112 	cinfo->state = ACCB_FREE;
113 	SLIST_INSERT_HEAD(&adv->free_ccb_infos, cinfo, links);
114 	crit_exit();
115 }
116 
117 static __inline void
118 adv_set_state(struct adv_softc *adv, adv_state state)
119 {
120 	if (adv->state == 0)
121 		xpt_freeze_simq(adv->sim, /*count*/1);
122 	adv->state |= state;
123 }
124 
125 static __inline void
126 adv_clear_state(struct adv_softc *adv, union ccb* ccb)
127 {
128 	if (adv->state != 0)
129 		adv_clear_state_really(adv, ccb);
130 }
131 
132 static void
133 adv_clear_state_really(struct adv_softc *adv, union ccb* ccb)
134 {
135 	if ((adv->state & ADV_BUSDMA_BLOCK_CLEARED) != 0)
136 		adv->state &= ~(ADV_BUSDMA_BLOCK_CLEARED|ADV_BUSDMA_BLOCK);
137 	if ((adv->state & ADV_RESOURCE_SHORTAGE) != 0) {
138 		int openings;
139 
140 		openings = adv->max_openings - adv->cur_active - ADV_MIN_FREE_Q;
141 		if (openings >= adv->openings_needed) {
142 			adv->state &= ~ADV_RESOURCE_SHORTAGE;
143 			adv->openings_needed = 0;
144 		}
145 	}
146 
147 	if ((adv->state & ADV_IN_TIMEOUT) != 0) {
148 		struct adv_ccb_info *cinfo;
149 
150 		cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
151 		if ((cinfo->state & ACCB_RECOVERY_CCB) != 0) {
152 			struct ccb_hdr *ccb_h;
153 
154 			/*
155 			 * We now traverse our list of pending CCBs
156 			 * and reinstate their timeouts.
157 			 */
158 			ccb_h = LIST_FIRST(&adv->pending_ccbs);
159 			while (ccb_h != NULL) {
160 				callout_reset(&ccb_h->timeout_ch,
161 				    (ccb_h->timeout * hz) / 1000,
162 				    adv_timeout, ccb_h);
163 				ccb_h = LIST_NEXT(ccb_h, sim_links.le);
164 			}
165 			adv->state &= ~ADV_IN_TIMEOUT;
166 			kprintf("%s: No longer in timeout\n", adv_name(adv));
167 		}
168 	}
169 	if (adv->state == 0)
170 		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
171 }
172 
173 void
174 adv_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
175 {
176 	bus_addr_t* physaddr;
177 
178 	physaddr = (bus_addr_t*)arg;
179 	*physaddr = segs->ds_addr;
180 }
181 
182 char *
183 adv_name(struct adv_softc *adv)
184 {
185 	static char name[10];
186 
187 	ksnprintf(name, sizeof(name), "adv%d", adv->unit);
188 	return (name);
189 }
190 
191 static void
192 adv_action(struct cam_sim *sim, union ccb *ccb)
193 {
194 	struct adv_softc *adv;
195 
196 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adv_action\n"));
197 
198 	adv = (struct adv_softc *)cam_sim_softc(sim);
199 
200 	switch (ccb->ccb_h.func_code) {
201 	/* Common cases first */
202 	case XPT_SCSI_IO:	/* Execute the requested I/O operation */
203 	{
204 		struct	ccb_hdr *ccb_h;
205 		struct	ccb_scsiio *csio;
206 		struct	adv_ccb_info *cinfo;
207 
208 		ccb_h = &ccb->ccb_h;
209 		csio = &ccb->csio;
210 		cinfo = adv_get_ccb_info(adv);
211 		if (cinfo == NULL)
212 			panic("XXX Handle CCB info error!!!");
213 
214 		ccb_h->ccb_cinfo_ptr = cinfo;
215 		cinfo->ccb = ccb;
216 
217 		/* Only use S/G if there is a transfer */
218 		if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
219 			if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
220 				/*
221 				 * We've been given a pointer
222 				 * to a single buffer
223 				 */
224 				if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
225 					int error;
226 
227 					crit_enter();
228 					error =
229 					    bus_dmamap_load(adv->buffer_dmat,
230 							    cinfo->dmamap,
231 							    csio->data_ptr,
232 							    csio->dxfer_len,
233 							    adv_execute_ccb,
234 							    csio, /*flags*/0);
235 					if (error == EINPROGRESS) {
236 						/*
237 						 * So as to maintain ordering,
238 						 * freeze the controller queue
239 						 * until our mapping is
240 						 * returned.
241 						 */
242 						adv_set_state(adv,
243 							      ADV_BUSDMA_BLOCK);
244 					}
245 					crit_exit();
246 				} else {
247 					struct bus_dma_segment seg;
248 
249 					/* Pointer to physical buffer */
250 					seg.ds_addr =
251 					     (bus_addr_t)csio->data_ptr;
252 					seg.ds_len = csio->dxfer_len;
253 					adv_execute_ccb(csio, &seg, 1, 0);
254 				}
255 			} else {
256 				struct bus_dma_segment *segs;
257 				if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
258 					panic("adv_setup_data - Physical "
259 					      "segment pointers unsupported");
260 
261 				if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
262 					panic("adv_setup_data - Virtual "
263 					      "segment addresses unsupported");
264 
265 				/* Just use the segments provided */
266 				segs = (struct bus_dma_segment *)csio->data_ptr;
267 				adv_execute_ccb(ccb, segs, csio->sglist_cnt, 0);
268 			}
269 		} else {
270 			adv_execute_ccb(ccb, NULL, 0, 0);
271 		}
272 		break;
273 	}
274 	case XPT_RESET_DEV:	/* Bus Device Reset the specified SCSI device */
275 	case XPT_TARGET_IO:	/* Execute target I/O request */
276 	case XPT_ACCEPT_TARGET_IO:	/* Accept Host Target Mode CDB */
277 	case XPT_CONT_TARGET_IO:	/* Continue Host Target I/O Connection*/
278 	case XPT_EN_LUN:		/* Enable LUN as a target */
279 	case XPT_ABORT:			/* Abort the specified CCB */
280 		/* XXX Implement */
281 		ccb->ccb_h.status = CAM_REQ_INVALID;
282 		xpt_done(ccb);
283 		break;
284 	case XPT_SET_TRAN_SETTINGS:
285 	{
286 		struct	 ccb_trans_settings *cts;
287 		target_bit_vector targ_mask;
288 		struct adv_transinfo *tconf;
289 		u_int	 update_type;
290 
291 		cts = &ccb->cts;
292 		targ_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
293 		update_type = 0;
294 
295 		/*
296 		 * The user must specify which type of settings he wishes
297 		 * to change.
298 		 */
299 		if (((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
300 		 && ((cts->flags & CCB_TRANS_USER_SETTINGS) == 0)) {
301 			tconf = &adv->tinfo[cts->ccb_h.target_id].current;
302 			update_type |= ADV_TRANS_GOAL;
303 		} else if (((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
304 			&& ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) == 0)) {
305 			tconf = &adv->tinfo[cts->ccb_h.target_id].user;
306 			update_type |= ADV_TRANS_USER;
307 		} else {
308 			ccb->ccb_h.status = CAM_REQ_INVALID;
309 			break;
310 		}
311 
312 		crit_enter();
313 		if ((update_type & ADV_TRANS_GOAL) != 0) {
314 			if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
315 				if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
316 					adv->disc_enable |= targ_mask;
317 				else
318 					adv->disc_enable &= ~targ_mask;
319 				adv_write_lram_8(adv, ADVV_DISC_ENABLE_B,
320 						 adv->disc_enable);
321 			}
322 
323 			if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
324 				if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
325 					adv->cmd_qng_enabled |= targ_mask;
326 				else
327 					adv->cmd_qng_enabled &= ~targ_mask;
328 			}
329 		}
330 
331 		if ((update_type & ADV_TRANS_USER) != 0) {
332 			if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
333 				if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
334 					adv->user_disc_enable |= targ_mask;
335 				else
336 					adv->user_disc_enable &= ~targ_mask;
337 			}
338 
339 			if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
340 				if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
341 					adv->user_cmd_qng_enabled |= targ_mask;
342 				else
343 					adv->user_cmd_qng_enabled &= ~targ_mask;
344 			}
345 		}
346 
347 		/*
348 		 * If the user specifies either the sync rate, or offset,
349 		 * but not both, the unspecified parameter defaults to its
350 		 * current value in transfer negotiations.
351 		 */
352 		if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
353 		 || ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)) {
354 			/*
355 			 * If the user provided a sync rate but no offset,
356 			 * use the current offset.
357 			 */
358 			if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
359 				cts->sync_offset = tconf->offset;
360 
361 			/*
362 			 * If the user provided an offset but no sync rate,
363 			 * use the current sync rate.
364 			 */
365 			if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
366 				cts->sync_period = tconf->period;
367 
368 			adv_period_offset_to_sdtr(adv, &cts->sync_period,
369 						  &cts->sync_offset,
370 						  cts->ccb_h.target_id);
371 
372 			adv_set_syncrate(adv, /*struct cam_path */NULL,
373 					 cts->ccb_h.target_id, cts->sync_period,
374 					 cts->sync_offset, update_type);
375 		}
376 
377 		crit_exit();
378 		ccb->ccb_h.status = CAM_REQ_CMP;
379 		xpt_done(ccb);
380 		break;
381 	}
382 	case XPT_GET_TRAN_SETTINGS:
383 	/* Get default/user set transfer settings for the target */
384 	{
385 		struct ccb_trans_settings *cts;
386 		struct adv_transinfo *tconf;
387 		target_bit_vector target_mask;
388 
389 		cts = &ccb->cts;
390 		target_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
391 
392 		cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
393 
394 		crit_enter();
395 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
396 			tconf = &adv->tinfo[cts->ccb_h.target_id].current;
397 			if ((adv->disc_enable & target_mask) != 0)
398 				cts->flags |= CCB_TRANS_DISC_ENB;
399 			if ((adv->cmd_qng_enabled & target_mask) != 0)
400 				cts->flags |= CCB_TRANS_TAG_ENB;
401 		} else {
402 			tconf = &adv->tinfo[cts->ccb_h.target_id].user;
403 			if ((adv->user_disc_enable & target_mask) != 0)
404 				cts->flags |= CCB_TRANS_DISC_ENB;
405 			if ((adv->user_cmd_qng_enabled & target_mask) != 0)
406 				cts->flags |= CCB_TRANS_TAG_ENB;
407 		}
408 
409 		cts->sync_period = tconf->period;
410 		cts->sync_offset = tconf->offset;
411 		crit_exit();
412 
413 		cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
414 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
415 			   | CCB_TRANS_SYNC_OFFSET_VALID
416 			   | CCB_TRANS_BUS_WIDTH_VALID
417 			   | CCB_TRANS_DISC_VALID
418 			   | CCB_TRANS_TQ_VALID;
419 		ccb->ccb_h.status = CAM_REQ_CMP;
420 		xpt_done(ccb);
421 		break;
422 	}
423 	case XPT_CALC_GEOMETRY:
424 	{
425 		struct	  ccb_calc_geometry *ccg;
426 		u_int32_t size_mb;
427 		u_int32_t secs_per_cylinder;
428 		int	  extended;
429 
430 		ccg = &ccb->ccg;
431 		size_mb = ccg->volume_size
432 			/ ((1024L * 1024L) / ccg->block_size);
433 		extended = (adv->control & ADV_CNTL_BIOS_GT_1GB) != 0;
434 
435 		if (size_mb > 1024 && extended) {
436 			ccg->heads = 255;
437 			ccg->secs_per_track = 63;
438 		} else {
439 			ccg->heads = 64;
440 			ccg->secs_per_track = 32;
441 		}
442 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
443 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
444 		ccb->ccb_h.status = CAM_REQ_CMP;
445 		xpt_done(ccb);
446 		break;
447 	}
448 	case XPT_RESET_BUS:		/* Reset the specified SCSI bus */
449 	{
450 		crit_enter();
451 		adv_stop_execution(adv);
452 		adv_reset_bus(adv, /*initiate_reset*/TRUE);
453 		adv_start_execution(adv);
454 		crit_exit();
455 
456 		ccb->ccb_h.status = CAM_REQ_CMP;
457 		xpt_done(ccb);
458 		break;
459 	}
460 	case XPT_TERM_IO:		/* Terminate the I/O process */
461 		/* XXX Implement */
462 		ccb->ccb_h.status = CAM_REQ_INVALID;
463 		xpt_done(ccb);
464 		break;
465 	case XPT_PATH_INQ:		/* Path routing inquiry */
466 	{
467 		struct ccb_pathinq *cpi = &ccb->cpi;
468 
469 		cpi->version_num = 1; /* XXX??? */
470 		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
471 		cpi->target_sprt = 0;
472 		cpi->hba_misc = 0;
473 		cpi->hba_eng_cnt = 0;
474 		cpi->max_target = 7;
475 		cpi->max_lun = 7;
476 		cpi->initiator_id = adv->scsi_id;
477 		cpi->bus_id = cam_sim_bus(sim);
478 		cpi->base_transfer_speed = 3300;
479 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
480 		strncpy(cpi->hba_vid, "Advansys", HBA_IDLEN);
481 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
482 		cpi->unit_number = cam_sim_unit(sim);
483 		cpi->ccb_h.status = CAM_REQ_CMP;
484 		xpt_done(ccb);
485 		break;
486 	}
487 	default:
488 		ccb->ccb_h.status = CAM_REQ_INVALID;
489 		xpt_done(ccb);
490 		break;
491 	}
492 }
493 
494 /*
495  * Currently, the output of bus_dmammap_load suits our needs just
496  * fine, but should it change, we'd need to do something here.
497  */
498 #define adv_fixup_dmasegs(adv, dm_segs) (struct adv_sg_entry *)(dm_segs)
499 
500 static void
501 adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
502 		int nsegments, int error)
503 {
504 	struct	ccb_scsiio *csio;
505 	struct	ccb_hdr *ccb_h;
506 	struct	cam_sim *sim;
507         struct	adv_softc *adv;
508 	struct	adv_ccb_info *cinfo;
509 	struct	adv_scsi_q scsiq;
510 	struct	adv_sg_head sghead;
511 
512 	csio = (struct ccb_scsiio *)arg;
513 	ccb_h = &csio->ccb_h;
514 	sim = xpt_path_sim(ccb_h->path);
515 	adv = (struct adv_softc *)cam_sim_softc(sim);
516 	cinfo = (struct adv_ccb_info *)csio->ccb_h.ccb_cinfo_ptr;
517 
518 	/*
519 	 * Setup our done routine to release the simq on
520 	 * the next ccb that completes.
521 	 */
522 	if ((adv->state & ADV_BUSDMA_BLOCK) != 0)
523 		adv->state |= ADV_BUSDMA_BLOCK_CLEARED;
524 
525 	if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
526 		if ((ccb_h->flags & CAM_CDB_PHYS) == 0) {
527 			/* XXX Need phystovirt!!!! */
528 			/* How about pmap_kenter??? */
529 			scsiq.cdbptr = csio->cdb_io.cdb_ptr;
530 		} else {
531 			scsiq.cdbptr = csio->cdb_io.cdb_ptr;
532 		}
533 	} else {
534 		scsiq.cdbptr = csio->cdb_io.cdb_bytes;
535 	}
536 	/*
537 	 * Build up the request
538 	 */
539 	scsiq.q1.status = 0;
540 	scsiq.q1.q_no = 0;
541 	scsiq.q1.cntl = 0;
542 	scsiq.q1.sg_queue_cnt = 0;
543 	scsiq.q1.target_id = ADV_TID_TO_TARGET_MASK(ccb_h->target_id);
544 	scsiq.q1.target_lun = ccb_h->target_lun;
545 	scsiq.q1.sense_len = csio->sense_len;
546 	scsiq.q1.extra_bytes = 0;
547 	scsiq.q2.ccb_index = cinfo - adv->ccb_infos;
548 	scsiq.q2.target_ix = ADV_TIDLUN_TO_IX(ccb_h->target_id,
549 					      ccb_h->target_lun);
550 	scsiq.q2.flag = 0;
551 	scsiq.q2.cdb_len = csio->cdb_len;
552 	if ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0)
553 		scsiq.q2.tag_code = csio->tag_action;
554 	else
555 		scsiq.q2.tag_code = 0;
556 	scsiq.q2.vm_id = 0;
557 
558 	if (nsegments != 0) {
559 		bus_dmasync_op_t op;
560 
561 		scsiq.q1.data_addr = dm_segs->ds_addr;
562                 scsiq.q1.data_cnt = dm_segs->ds_len;
563 		if (nsegments > 1) {
564 			scsiq.q1.cntl |= QC_SG_HEAD;
565 			sghead.entry_cnt
566 			    = sghead.entry_to_copy
567 			    = nsegments;
568 			sghead.res = 0;
569 			sghead.sg_list = adv_fixup_dmasegs(adv, dm_segs);
570 			scsiq.sg_head = &sghead;
571 		} else {
572 			scsiq.sg_head = NULL;
573 		}
574 		if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
575 			op = BUS_DMASYNC_PREREAD;
576 		else
577 			op = BUS_DMASYNC_PREWRITE;
578 		bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
579 	} else {
580 		scsiq.q1.data_addr = 0;
581 		scsiq.q1.data_cnt = 0;
582 		scsiq.sg_head = NULL;
583 	}
584 
585 
586 	crit_enter();
587 	/*
588 	 * Last time we need to check if this SCB needs to
589 	 * be aborted.
590 	 */
591 	if (ccb_h->status != CAM_REQ_INPROG) {
592 		if (nsegments != 0)
593 			bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
594 		adv_clear_state(adv, (union ccb *)csio);
595 		adv_free_ccb_info(adv, cinfo);
596 		xpt_done((union ccb *)csio);
597 		crit_exit();
598 		return;
599 	}
600 
601 	if (adv_execute_scsi_queue(adv, &scsiq, csio->dxfer_len) != 0) {
602 		/* Temporary resource shortage */
603 		adv_set_state(adv, ADV_RESOURCE_SHORTAGE);
604 		if (nsegments != 0)
605 			bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
606 		csio->ccb_h.status = CAM_REQUEUE_REQ;
607 		adv_clear_state(adv, (union ccb *)csio);
608 		adv_free_ccb_info(adv, cinfo);
609 		xpt_done((union ccb *)csio);
610 		crit_exit();
611 		return;
612 	}
613 	cinfo->state |= ACCB_ACTIVE;
614 	ccb_h->status |= CAM_SIM_QUEUED;
615 	LIST_INSERT_HEAD(&adv->pending_ccbs, ccb_h, sim_links.le);
616 	/* Schedule our timeout */
617 	callout_reset(&ccb_h->timeout_ch, (ccb_h->timeout * hz)/1000,
618 	    adv_timeout, csio);
619 	crit_exit();
620 }
621 
622 static struct adv_ccb_info *
623 adv_alloc_ccb_info(struct adv_softc *adv)
624 {
625 	int error;
626 	struct adv_ccb_info *cinfo;
627 
628 	cinfo = &adv->ccb_infos[adv->ccb_infos_allocated];
629 	cinfo->state = ACCB_FREE;
630 	error = bus_dmamap_create(adv->buffer_dmat, /*flags*/0,
631 				  &cinfo->dmamap);
632 	if (error != 0) {
633 		kprintf("%s: Unable to allocate CCB info "
634 		       "dmamap - error %d\n", adv_name(adv), error);
635 		return (NULL);
636 	}
637 	adv->ccb_infos_allocated++;
638 	return (cinfo);
639 }
640 
641 static void
642 adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
643 {
644 	bus_dmamap_destroy(adv->buffer_dmat, cinfo->dmamap);
645 }
646 
647 void
648 adv_timeout(void *arg)
649 {
650 	union ccb *ccb;
651 	struct adv_softc *adv;
652 	struct adv_ccb_info *cinfo;
653 
654 	ccb = (union ccb *)arg;
655 	adv = (struct adv_softc *)xpt_path_sim(ccb->ccb_h.path)->softc;
656 	cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
657 
658 	xpt_print_path(ccb->ccb_h.path);
659 	kprintf("Timed out\n");
660 
661 	crit_enter();
662 	/* Have we been taken care of already?? */
663 	if (cinfo == NULL || cinfo->state == ACCB_FREE) {
664 		crit_exit();
665 		return;
666 	}
667 
668 	adv_stop_execution(adv);
669 
670 	if ((cinfo->state & ACCB_ABORT_QUEUED) == 0) {
671 		struct ccb_hdr *ccb_h;
672 
673 		/*
674 		 * In order to simplify the recovery process, we ask the XPT
675 		 * layer to halt the queue of new transactions and we traverse
676 		 * the list of pending CCBs and remove their timeouts. This
677 		 * means that the driver attempts to clear only one error
678 		 * condition at a time.  In general, timeouts that occur
679 		 * close together are related anyway, so there is no benefit
680 		 * in attempting to handle errors in parrallel.  Timeouts will
681 		 * be reinstated when the recovery process ends.
682 		 */
683 		adv_set_state(adv, ADV_IN_TIMEOUT);
684 
685 		/* This CCB is the CCB representing our recovery actions */
686 		cinfo->state |= ACCB_RECOVERY_CCB|ACCB_ABORT_QUEUED;
687 
688 		ccb_h = LIST_FIRST(&adv->pending_ccbs);
689 		while (ccb_h != NULL) {
690 			callout_stop(&ccb_h->timeout_ch);
691 			ccb_h = LIST_NEXT(ccb_h, sim_links.le);
692 		}
693 
694 		/* XXX Should send a BDR */
695 		/* Attempt an abort as our first tact */
696 		xpt_print_path(ccb->ccb_h.path);
697 		kprintf("Attempting abort\n");
698 		adv_abort_ccb(adv, ccb->ccb_h.target_id,
699 			      ccb->ccb_h.target_lun, ccb,
700 			      CAM_CMD_TIMEOUT, /*queued_only*/FALSE);
701 		callout_reset(&ccb->ccb_h.timeout_ch, 2 * hz, adv_timeout, ccb);
702 	} else {
703 		/* Our attempt to perform an abort failed, go for a reset */
704 		xpt_print_path(ccb->ccb_h.path);
705 		kprintf("Resetting bus\n");
706 		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
707 		ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
708 		adv_reset_bus(adv, /*initiate_reset*/TRUE);
709 	}
710 	adv_start_execution(adv);
711 	crit_exit();
712 }
713 
714 struct adv_softc *
715 adv_alloc(device_t dev, bus_space_tag_t tag, bus_space_handle_t bsh)
716 {
717 	struct adv_softc *adv = device_get_softc(dev);
718 
719 	/*
720 	 * Allocate a storage area for us
721 	 */
722 	LIST_INIT(&adv->pending_ccbs);
723 	SLIST_INIT(&adv->free_ccb_infos);
724 	adv->dev = dev;
725 	adv->unit = device_get_unit(dev);
726 	adv->tag = tag;
727 	adv->bsh = bsh;
728 
729 	return(adv);
730 }
731 
732 void
733 adv_free(struct adv_softc *adv)
734 {
735 	switch (adv->init_level) {
736 	case 6:
737 	{
738 		struct adv_ccb_info *cinfo;
739 
740 		while ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
741 			SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
742 			adv_destroy_ccb_info(adv, cinfo);
743 		}
744 
745 		bus_dmamap_unload(adv->sense_dmat, adv->sense_dmamap);
746 	}
747 	case 5:
748 		bus_dmamem_free(adv->sense_dmat, adv->sense_buffers,
749                                 adv->sense_dmamap);
750 	case 4:
751 		bus_dma_tag_destroy(adv->sense_dmat);
752 	case 3:
753 		bus_dma_tag_destroy(adv->buffer_dmat);
754 	case 2:
755 		bus_dma_tag_destroy(adv->parent_dmat);
756 	case 1:
757 		if (adv->ccb_infos != NULL)
758 			kfree(adv->ccb_infos, M_DEVBUF);
759 	case 0:
760 		break;
761 	}
762 }
763 
764 int
765 adv_init(struct adv_softc *adv)
766 {
767 	struct	  adv_eeprom_config eeprom_config;
768 	int	  checksum, i;
769 	int	  max_sync;
770 	u_int16_t config_lsw;
771 	u_int16_t config_msw;
772 
773 	adv_lib_init(adv);
774 
775   	/*
776 	 * Stop script execution.
777 	 */
778 	adv_write_lram_16(adv, ADV_HALTCODE_W, 0x00FE);
779 	adv_stop_execution(adv);
780 	if (adv_stop_chip(adv) == 0 || adv_is_chip_halted(adv) == 0) {
781 		kprintf("adv%d: Unable to halt adapter. Initialization"
782 		       "failed\n", adv->unit);
783 		return (1);
784 	}
785 	ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
786 	if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
787 		kprintf("adv%d: Unable to set program counter. Initialization"
788 		       "failed\n", adv->unit);
789 		return (1);
790 	}
791 
792 	config_msw = ADV_INW(adv, ADV_CONFIG_MSW);
793 	config_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
794 
795 	if ((config_msw & ADV_CFG_MSW_CLR_MASK) != 0) {
796 		config_msw &= ~ADV_CFG_MSW_CLR_MASK;
797 		/*
798 		 * XXX The Linux code flags this as an error,
799 		 * but what should we report to the user???
800 		 * It seems that clearing the config register
801 		 * makes this error recoverable.
802 		 */
803 		ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
804 	}
805 
806 	/* Suck in the configuration from the EEProm */
807 	checksum = adv_get_eeprom_config(adv, &eeprom_config);
808 
809 	if (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_AUTO_CONFIG) {
810 		/*
811 		 * XXX The Linux code sets a warning level for this
812 		 * condition, yet nothing of meaning is printed to
813 		 * the user.  What does this mean???
814 		 */
815 		if (adv->chip_version == 3) {
816 			if (eeprom_config.cfg_lsw != config_lsw)
817 				eeprom_config.cfg_lsw = config_lsw;
818 			if (eeprom_config.cfg_msw != config_msw) {
819 				eeprom_config.cfg_msw = config_msw;
820 			}
821 		}
822 	}
823 	if (checksum == eeprom_config.chksum) {
824 
825 		/* Range/Sanity checking */
826 		if (eeprom_config.max_total_qng < ADV_MIN_TOTAL_QNG) {
827 			eeprom_config.max_total_qng = ADV_MIN_TOTAL_QNG;
828 		}
829 		if (eeprom_config.max_total_qng > ADV_MAX_TOTAL_QNG) {
830 			eeprom_config.max_total_qng = ADV_MAX_TOTAL_QNG;
831 		}
832 		if (eeprom_config.max_tag_qng > eeprom_config.max_total_qng) {
833 			eeprom_config.max_tag_qng = eeprom_config.max_total_qng;
834 		}
835 		if (eeprom_config.max_tag_qng < ADV_MIN_TAG_Q_PER_DVC) {
836 			eeprom_config.max_tag_qng = ADV_MIN_TAG_Q_PER_DVC;
837 		}
838 		adv->max_openings = eeprom_config.max_total_qng;
839 		adv->user_disc_enable = eeprom_config.disc_enable;
840 		adv->user_cmd_qng_enabled = eeprom_config.use_cmd_qng;
841 		adv->isa_dma_speed = EEPROM_DMA_SPEED(eeprom_config);
842 		adv->scsi_id = EEPROM_SCSIID(eeprom_config) & ADV_MAX_TID;
843 		EEPROM_SET_SCSIID(eeprom_config, adv->scsi_id);
844 		adv->control = eeprom_config.cntl;
845 		for (i = 0; i <= ADV_MAX_TID; i++) {
846 			u_int8_t sync_data;
847 
848 			if ((eeprom_config.init_sdtr & (0x1 << i)) == 0)
849 				sync_data = 0;
850 			else
851 				sync_data = eeprom_config.sdtr_data[i];
852 			adv_sdtr_to_period_offset(adv,
853 						  sync_data,
854 						  &adv->tinfo[i].user.period,
855 						  &adv->tinfo[i].user.offset,
856 						  i);
857 		}
858 		config_lsw = eeprom_config.cfg_lsw;
859 		eeprom_config.cfg_msw = config_msw;
860 	} else {
861 		u_int8_t sync_data;
862 
863 		kprintf("adv%d: Warning EEPROM Checksum mismatch. "
864 		       "Using default device parameters\n", adv->unit);
865 
866 		/* Set reasonable defaults since we can't read the EEPROM */
867 		adv->isa_dma_speed = /*ADV_DEF_ISA_DMA_SPEED*/1;
868 		adv->max_openings = ADV_DEF_MAX_TOTAL_QNG;
869 		adv->disc_enable = TARGET_BIT_VECTOR_SET;
870 		adv->user_disc_enable = TARGET_BIT_VECTOR_SET;
871 		adv->cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
872 		adv->user_cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
873 		adv->scsi_id = 7;
874 		adv->control = 0xFFFF;
875 
876 		if (adv->chip_version == ADV_CHIP_VER_PCI_ULTRA_3050)
877 			/* Default to no Ultra to support the 3030 */
878 			adv->control &= ~ADV_CNTL_SDTR_ENABLE_ULTRA;
879 		sync_data = ADV_DEF_SDTR_OFFSET | (ADV_DEF_SDTR_INDEX << 4);
880 		for (i = 0; i <= ADV_MAX_TID; i++) {
881 			adv_sdtr_to_period_offset(adv, sync_data,
882 						  &adv->tinfo[i].user.period,
883 						  &adv->tinfo[i].user.offset,
884 						  i);
885 		}
886 		config_lsw |= ADV_CFG_LSW_SCSI_PARITY_ON;
887 	}
888 	config_msw &= ~ADV_CFG_MSW_CLR_MASK;
889 	config_lsw |= ADV_CFG_LSW_HOST_INT_ON;
890 	if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)
891 	 && (adv->control & ADV_CNTL_SDTR_ENABLE_ULTRA) == 0)
892 		/* 25ns or 10MHz */
893 		max_sync = 25;
894 	else
895 		/* Unlimited */
896 		max_sync = 0;
897 	for (i = 0; i <= ADV_MAX_TID; i++) {
898 		if (adv->tinfo[i].user.period < max_sync)
899 			adv->tinfo[i].user.period = max_sync;
900 	}
901 
902 	if (adv_test_external_lram(adv) == 0) {
903 		if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)) {
904 			eeprom_config.max_total_qng =
905 			    ADV_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
906 			eeprom_config.max_tag_qng =
907 			    ADV_MAX_PCI_ULTRA_INRAM_TAG_QNG;
908 		} else {
909 			eeprom_config.cfg_msw |= 0x0800;
910 			config_msw |= 0x0800;
911 			eeprom_config.max_total_qng =
912 			     ADV_MAX_PCI_INRAM_TOTAL_QNG;
913 			eeprom_config.max_tag_qng = ADV_MAX_INRAM_TAG_QNG;
914 		}
915 		adv->max_openings = eeprom_config.max_total_qng;
916 	}
917 	ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
918 	ADV_OUTW(adv, ADV_CONFIG_LSW, config_lsw);
919 #if 0
920 	/*
921 	 * Don't write the eeprom data back for now.
922 	 * I'd rather not mess up the user's card.  We also don't
923 	 * fully sanitize the eeprom settings above for the write-back
924 	 * to be 100% correct.
925 	 */
926 	if (adv_set_eeprom_config(adv, &eeprom_config) != 0)
927 		kprintf("%s: WARNING! Failure writing to EEPROM.\n",
928 		       adv_name(adv));
929 #endif
930 
931 	adv_set_chip_scsiid(adv, adv->scsi_id);
932 	if (adv_init_lram_and_mcode(adv))
933 		return (1);
934 
935 	adv->disc_enable = adv->user_disc_enable;
936 
937 	adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
938 	for (i = 0; i <= ADV_MAX_TID; i++) {
939 		/*
940 		 * Start off in async mode.
941 		 */
942 		adv_set_syncrate(adv, /*struct cam_path */NULL,
943 				 i, /*period*/0, /*offset*/0,
944 				 ADV_TRANS_CUR);
945 		/*
946 		 * Enable the use of tagged commands on all targets.
947 		 * This allows the kernel driver to make up it's own mind
948 		 * as it sees fit to tag queue instead of having the
949 		 * firmware try and second guess the tag_code settins.
950 		 */
951 		adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + i,
952 				 adv->max_openings);
953 	}
954 	adv_write_lram_8(adv, ADVV_USE_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
955 	adv_write_lram_8(adv, ADVV_CAN_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
956 	kprintf("adv%d: AdvanSys %s Host Adapter, SCSI ID %d, queue depth %d\n",
957 	       adv->unit, (adv->type & ADV_ULTRA) && (max_sync == 0)
958 			  ? "Ultra SCSI" : "SCSI",
959 	       adv->scsi_id, adv->max_openings);
960 	return (0);
961 }
962 
963 void
964 adv_intr(void *arg)
965 {
966 	struct	  adv_softc *adv;
967 	u_int16_t chipstat;
968 	u_int16_t saved_ram_addr;
969 	u_int8_t  ctrl_reg;
970 	u_int8_t  saved_ctrl_reg;
971 	u_int8_t  host_flag;
972 
973 	adv = (struct adv_softc *)arg;
974 
975 	chipstat = ADV_INW(adv, ADV_CHIP_STATUS);
976 
977 	/* Is it for us? */
978 	if ((chipstat & (ADV_CSW_INT_PENDING|ADV_CSW_SCSI_RESET_LATCH)) == 0)
979 		return;
980 
981 	ctrl_reg = ADV_INB(adv, ADV_CHIP_CTRL);
982 	saved_ctrl_reg = ctrl_reg & (~(ADV_CC_SCSI_RESET | ADV_CC_CHIP_RESET |
983 				       ADV_CC_SINGLE_STEP | ADV_CC_DIAG |
984 				       ADV_CC_TEST));
985 
986 	if ((chipstat & (ADV_CSW_SCSI_RESET_LATCH|ADV_CSW_SCSI_RESET_ACTIVE))) {
987 		kprintf("Detected Bus Reset\n");
988 		adv_reset_bus(adv, /*initiate_reset*/FALSE);
989 		return;
990 	}
991 
992 	if ((chipstat & ADV_CSW_INT_PENDING) != 0) {
993 
994 		saved_ram_addr = ADV_INW(adv, ADV_LRAM_ADDR);
995 		host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
996 		adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
997 				 host_flag | ADV_HOST_FLAG_IN_ISR);
998 
999 		adv_ack_interrupt(adv);
1000 
1001 		if ((chipstat & ADV_CSW_HALTED) != 0
1002 		 && (ctrl_reg & ADV_CC_SINGLE_STEP) != 0) {
1003 			adv_isr_chip_halted(adv);
1004 			saved_ctrl_reg &= ~ADV_CC_HALT;
1005 		} else {
1006 			adv_run_doneq(adv);
1007 		}
1008 		ADV_OUTW(adv, ADV_LRAM_ADDR, saved_ram_addr);
1009 #ifdef DIAGNOSTIC
1010 		if (ADV_INW(adv, ADV_LRAM_ADDR) != saved_ram_addr)
1011 			panic("adv_intr: Unable to set LRAM addr");
1012 #endif
1013 		adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
1014 	}
1015 
1016 	ADV_OUTB(adv, ADV_CHIP_CTRL, saved_ctrl_reg);
1017 }
1018 
1019 void
1020 adv_run_doneq(struct adv_softc *adv)
1021 {
1022 	struct adv_q_done_info scsiq;
1023 	u_int		  doneq_head;
1024 	u_int		  done_qno;
1025 
1026 	doneq_head = adv_read_lram_16(adv, ADVV_DONE_Q_TAIL_W) & 0xFF;
1027 	done_qno = adv_read_lram_8(adv, ADV_QNO_TO_QADDR(doneq_head)
1028 				   + ADV_SCSIQ_B_FWD);
1029 	while (done_qno != ADV_QLINK_END) {
1030 		union ccb* ccb;
1031 		struct adv_ccb_info *cinfo;
1032 		u_int done_qaddr;
1033 		u_int sg_queue_cnt;
1034 		int   aborted;
1035 
1036 		done_qaddr = ADV_QNO_TO_QADDR(done_qno);
1037 
1038 		/* Pull status from this request */
1039 		sg_queue_cnt = adv_copy_lram_doneq(adv, done_qaddr, &scsiq,
1040 						   adv->max_dma_count);
1041 
1042 		/* Mark it as free */
1043 		adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS,
1044 				 scsiq.q_status & ~(QS_READY|QS_ABORTED));
1045 
1046 		/* Process request based on retrieved info */
1047 		if ((scsiq.cntl & QC_SG_HEAD) != 0) {
1048 			u_int i;
1049 
1050 			/*
1051 			 * S/G based request.  Free all of the queue
1052 			 * structures that contained S/G information.
1053 			 */
1054 			for (i = 0; i < sg_queue_cnt; i++) {
1055 				done_qno = adv_read_lram_8(adv, done_qaddr
1056 							   + ADV_SCSIQ_B_FWD);
1057 
1058 #ifdef DIAGNOSTIC
1059 				if (done_qno == ADV_QLINK_END) {
1060 					panic("adv_qdone: Corrupted SG "
1061 					      "list encountered");
1062 				}
1063 #endif
1064 				done_qaddr = ADV_QNO_TO_QADDR(done_qno);
1065 
1066 				/* Mark SG queue as free */
1067 				adv_write_lram_8(adv, done_qaddr
1068 						 + ADV_SCSIQ_B_STATUS, QS_FREE);
1069 			}
1070 		} else
1071 			sg_queue_cnt = 0;
1072 #ifdef DIAGNOSTIC
1073 		if (adv->cur_active < (sg_queue_cnt + 1))
1074 			panic("adv_qdone: Attempting to free more "
1075 			      "queues than are active");
1076 #endif
1077 		adv->cur_active -= sg_queue_cnt + 1;
1078 
1079 		aborted = (scsiq.q_status & QS_ABORTED) != 0;
1080 
1081 		if ((scsiq.q_status != QS_DONE)
1082 		 && (scsiq.q_status & QS_ABORTED) == 0)
1083 			panic("adv_qdone: completed scsiq with unknown status");
1084 
1085 		scsiq.remain_bytes += scsiq.extra_bytes;
1086 
1087 		if ((scsiq.d3.done_stat == QD_WITH_ERROR) &&
1088 		    (scsiq.d3.host_stat == QHSTA_M_DATA_OVER_RUN)) {
1089 			if ((scsiq.cntl & (QC_DATA_IN|QC_DATA_OUT)) == 0) {
1090 				scsiq.d3.done_stat = QD_NO_ERROR;
1091 				scsiq.d3.host_stat = QHSTA_NO_ERROR;
1092 			}
1093 		}
1094 
1095 		cinfo = &adv->ccb_infos[scsiq.d2.ccb_index];
1096 		ccb = cinfo->ccb;
1097 		ccb->csio.resid = scsiq.remain_bytes;
1098 		adv_done(adv, ccb,
1099 			 scsiq.d3.done_stat, scsiq.d3.host_stat,
1100 			 scsiq.d3.scsi_stat, scsiq.q_no);
1101 
1102 		doneq_head = done_qno;
1103 		done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD);
1104 	}
1105 	adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, doneq_head);
1106 }
1107 
1108 
1109 void
1110 adv_done(struct adv_softc *adv, union ccb *ccb, u_int done_stat,
1111 	 u_int host_stat, u_int scsi_status, u_int q_no)
1112 {
1113 	struct	   adv_ccb_info *cinfo;
1114 
1115 	cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
1116 	LIST_REMOVE(&ccb->ccb_h, sim_links.le);
1117 	callout_stop(&ccb->ccb_h.timeout_ch);
1118 	if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
1119 		bus_dmasync_op_t op;
1120 
1121 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
1122 			op = BUS_DMASYNC_POSTREAD;
1123 		else
1124 			op = BUS_DMASYNC_POSTWRITE;
1125 		bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
1126 		bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
1127 	}
1128 
1129 	switch (done_stat) {
1130 	case QD_NO_ERROR:
1131 		if (host_stat == QHSTA_NO_ERROR) {
1132 			ccb->ccb_h.status = CAM_REQ_CMP;
1133 			break;
1134 		}
1135 		xpt_print_path(ccb->ccb_h.path);
1136 		kprintf("adv_done - queue done without error, "
1137 		       "but host status non-zero(%x)\n", host_stat);
1138 		/*FALLTHROUGH*/
1139 	case QD_WITH_ERROR:
1140 		switch (host_stat) {
1141 		case QHSTA_M_TARGET_STATUS_BUSY:
1142 		case QHSTA_M_BAD_QUEUE_FULL_OR_BUSY:
1143 			/*
1144 			 * Assume that if we were a tagged transaction
1145 			 * the target reported queue full.  Otherwise,
1146 			 * report busy.  The firmware really should just
1147 			 * pass the original status back up to us even
1148 			 * if it thinks the target was in error for
1149 			 * returning this status as no other transactions
1150 			 * from this initiator are in effect, but this
1151 			 * ignores multi-initiator setups and there is
1152 			 * evidence that the firmware gets its per-device
1153 			 * transaction counts screwed up occassionally.
1154 			 */
1155 			ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
1156 			if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0
1157 			 && host_stat != QHSTA_M_TARGET_STATUS_BUSY)
1158 				scsi_status = SCSI_STATUS_QUEUE_FULL;
1159 			else
1160 				scsi_status = SCSI_STATUS_BUSY;
1161 			adv_abort_ccb(adv, ccb->ccb_h.target_id,
1162 				      ccb->ccb_h.target_lun,
1163 				      /*ccb*/NULL, CAM_REQUEUE_REQ,
1164 				      /*queued_only*/TRUE);
1165 			/*FALLTHROUGH*/
1166 		case QHSTA_M_NO_AUTO_REQ_SENSE:
1167 		case QHSTA_NO_ERROR:
1168 			ccb->csio.scsi_status = scsi_status;
1169 			switch (scsi_status) {
1170 			case SCSI_STATUS_CHECK_COND:
1171 			case SCSI_STATUS_CMD_TERMINATED:
1172 				ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
1173 				/* Structure copy */
1174 				ccb->csio.sense_data =
1175 				    adv->sense_buffers[q_no - 1];
1176 				/* FALLTHROUGH */
1177 			case SCSI_STATUS_BUSY:
1178 			case SCSI_STATUS_RESERV_CONFLICT:
1179 			case SCSI_STATUS_QUEUE_FULL:
1180 			case SCSI_STATUS_COND_MET:
1181 			case SCSI_STATUS_INTERMED:
1182 			case SCSI_STATUS_INTERMED_COND_MET:
1183 				ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
1184 				break;
1185 			case SCSI_STATUS_OK:
1186 				ccb->ccb_h.status |= CAM_REQ_CMP;
1187 				break;
1188 			}
1189 			break;
1190 		case QHSTA_M_SEL_TIMEOUT:
1191 			ccb->ccb_h.status = CAM_SEL_TIMEOUT;
1192 			break;
1193 		case QHSTA_M_DATA_OVER_RUN:
1194 			ccb->ccb_h.status = CAM_DATA_RUN_ERR;
1195 			break;
1196 		case QHSTA_M_UNEXPECTED_BUS_FREE:
1197 			ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
1198 			break;
1199 		case QHSTA_M_BAD_BUS_PHASE_SEQ:
1200 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1201 			break;
1202 		case QHSTA_M_BAD_CMPL_STATUS_IN:
1203 			/* No command complete after a status message */
1204 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1205 			break;
1206 		case QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT:
1207 		case QHSTA_M_WTM_TIMEOUT:
1208 		case QHSTA_M_HUNG_REQ_SCSI_BUS_RESET:
1209 			/* The SCSI bus hung in a phase */
1210 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1211 			adv_reset_bus(adv, /*initiate_reset*/TRUE);
1212 			break;
1213 		case QHSTA_M_AUTO_REQ_SENSE_FAIL:
1214 			ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
1215 			break;
1216 		case QHSTA_D_QDONE_SG_LIST_CORRUPTED:
1217 		case QHSTA_D_ASC_DVC_ERROR_CODE_SET:
1218 		case QHSTA_D_HOST_ABORT_FAILED:
1219 		case QHSTA_D_EXE_SCSI_Q_FAILED:
1220 		case QHSTA_D_ASPI_NO_BUF_POOL:
1221 		case QHSTA_M_BAD_TAG_CODE:
1222 		case QHSTA_D_LRAM_CMP_ERROR:
1223 		case QHSTA_M_MICRO_CODE_ERROR_HALT:
1224 		default:
1225 			panic("%s: Unhandled Host status error %x",
1226 			      adv_name(adv), host_stat);
1227 			/* NOTREACHED */
1228 		}
1229 		break;
1230 
1231 	case QD_ABORTED_BY_HOST:
1232 		/* Don't clobber any, more explicit, error codes we've set */
1233 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
1234 			ccb->ccb_h.status = CAM_REQ_ABORTED;
1235 		break;
1236 
1237 	default:
1238 		xpt_print_path(ccb->ccb_h.path);
1239 		kprintf("adv_done - queue done with unknown status %x:%x\n",
1240 		       done_stat, host_stat);
1241 		ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1242 		break;
1243 	}
1244 	adv_clear_state(adv, ccb);
1245 	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP
1246 	 && (ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
1247 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1248 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
1249 	}
1250 	adv_free_ccb_info(adv, cinfo);
1251 	/*
1252 	 * Null this out so that we catch driver bugs that cause a
1253 	 * ccb to be completed twice.
1254 	 */
1255 	ccb->ccb_h.ccb_cinfo_ptr = NULL;
1256 	ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
1257 	xpt_done(ccb);
1258 }
1259 
1260 /*
1261  * Function to poll for command completion when
1262  * interrupts are disabled (crash dumps)
1263  */
1264 static void
1265 adv_poll(struct cam_sim *sim)
1266 {
1267 	adv_intr(cam_sim_softc(sim));
1268 }
1269 
1270 /*
1271  * Attach all the sub-devices we can find
1272  */
1273 int
1274 adv_attach(adv)
1275 	struct adv_softc *adv;
1276 {
1277 	struct ccb_setasync csa;
1278 	int max_sg;
1279 
1280 	/*
1281 	 * Allocate an array of ccb mapping structures.  We put the
1282 	 * index of the ccb_info structure into the queue representing
1283 	 * a transaction and use it for mapping the queue to the
1284 	 * upper level SCSI transaction it represents.
1285 	 */
1286 	adv->ccb_infos = kmalloc(sizeof(*adv->ccb_infos) * adv->max_openings,
1287 				M_DEVBUF, M_WAITOK);
1288 	adv->init_level++;
1289 
1290 	/*
1291 	 * Create our DMA tags.  These tags define the kinds of device
1292 	 * accessible memory allocations and memory mappings we will
1293 	 * need to perform during normal operation.
1294 	 *
1295 	 * Unless we need to further restrict the allocation, we rely
1296 	 * on the restrictions of the parent dmat, hence the common
1297 	 * use of MAXADDR and MAXSIZE.
1298 	 *
1299 	 * The ASC boards use chains of "queues" (the transactional
1300 	 * resources on the board) to represent long S/G lists.
1301 	 * The first queue represents the command and holds a
1302 	 * single address and data pair.  The queues that follow
1303 	 * can each hold ADV_SG_LIST_PER_Q entries.  Given the
1304 	 * total number of queues, we can express the largest
1305 	 * transaction we can map.  We reserve a few queues for
1306 	 * error recovery.  Take those into account as well.
1307 	 *
1308 	 * There is a way to take an interrupt to download the
1309 	 * next batch of S/G entries if there are more than 255
1310 	 * of them (the counter in the queue structure is a u_int8_t).
1311 	 * We don't use this feature, so limit the S/G list size
1312 	 * accordingly.
1313 	 */
1314 	max_sg = (adv->max_openings - ADV_MIN_FREE_Q - 1) * ADV_SG_LIST_PER_Q;
1315 	if (max_sg > 255)
1316 		max_sg = 255;
1317 
1318 	/* DMA tag for mapping buffers into device visible space. */
1319 	if (bus_dma_tag_create(adv->parent_dmat, /*alignment*/1, /*boundary*/0,
1320 			       /*lowaddr*/BUS_SPACE_MAXADDR,
1321 			       /*highaddr*/BUS_SPACE_MAXADDR,
1322 			       /*filter*/NULL, /*filterarg*/NULL,
1323 			       /*maxsize*/MAXPHYS,
1324 			       /*nsegments*/max_sg,
1325 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1326 			       /*flags*/BUS_DMA_ALLOCNOW,
1327 			       &adv->buffer_dmat) != 0) {
1328 		return (ENXIO);
1329 	}
1330 	adv->init_level++;
1331 
1332 	/* DMA tag for our sense buffers */
1333 	if (bus_dma_tag_create(adv->parent_dmat, /*alignment*/1, /*boundary*/0,
1334 			       /*lowaddr*/BUS_SPACE_MAXADDR,
1335 			       /*highaddr*/BUS_SPACE_MAXADDR,
1336 			       /*filter*/NULL, /*filterarg*/NULL,
1337 			       sizeof(struct scsi_sense_data)*adv->max_openings,
1338 			       /*nsegments*/1,
1339 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1340 			       /*flags*/0, &adv->sense_dmat) != 0) {
1341 		return (ENXIO);
1342         }
1343 
1344 	adv->init_level++;
1345 
1346 	/* Allocation for our sense buffers */
1347 	if (bus_dmamem_alloc(adv->sense_dmat, (void **)&adv->sense_buffers,
1348 			     BUS_DMA_NOWAIT, &adv->sense_dmamap) != 0) {
1349 		return (ENOMEM);
1350 	}
1351 
1352 	adv->init_level++;
1353 
1354 	/* And permanently map them */
1355 	bus_dmamap_load(adv->sense_dmat, adv->sense_dmamap,
1356        			adv->sense_buffers,
1357 			sizeof(struct scsi_sense_data)*adv->max_openings,
1358 			adv_map, &adv->sense_physbase, /*flags*/0);
1359 
1360 	adv->init_level++;
1361 
1362 	/*
1363 	 * Fire up the chip
1364 	 */
1365 	if (adv_start_chip(adv) != 1) {
1366 		kprintf("adv%d: Unable to start on board processor. Aborting.\n",
1367 		       adv->unit);
1368 		return (ENXIO);
1369 	}
1370 
1371 	/*
1372 	 * Construct our SIM entry.
1373 	 */
1374 	adv->sim = cam_sim_alloc(adv_action, adv_poll, "adv", adv, adv->unit,
1375 				 1, adv->max_openings, NULL);
1376 	if (adv->sim == NULL)
1377 		return (ENOMEM);
1378 
1379 	/*
1380 	 * Register the bus.
1381 	 *
1382 	 * XXX Twin Channel EISA Cards???
1383 	 */
1384 	if (xpt_bus_register(adv->sim, 0) != CAM_SUCCESS) {
1385 		cam_sim_free(adv->sim);
1386 		return (ENXIO);
1387 	}
1388 
1389 	if (xpt_create_path(&adv->path, /*periph*/NULL, cam_sim_path(adv->sim),
1390 			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
1391 	    != CAM_REQ_CMP) {
1392 		xpt_bus_deregister(cam_sim_path(adv->sim));
1393 		cam_sim_free(adv->sim);
1394 		return (ENXIO);
1395 	}
1396 
1397 	xpt_setup_ccb(&csa.ccb_h, adv->path, /*priority*/5);
1398 	csa.ccb_h.func_code = XPT_SASYNC_CB;
1399 	csa.event_enable = AC_FOUND_DEVICE|AC_LOST_DEVICE;
1400 	csa.callback = advasync;
1401 	csa.callback_arg = adv;
1402 	xpt_action((union ccb *)&csa);
1403 	return (0);
1404 }
1405