xref: /dragonfly/sys/dev/disk/advansys/adwcam.c (revision 7d84b73d)
1 /*
2  * CAM SCSI interface for the the Advanced Systems Inc.
3  * Second Generation SCSI controllers.
4  *
5  * Product specific probe and attach routines can be found in:
6  *
7  * adw_pci.c	ABP[3]940UW, ABP950UW, ABP3940U2W
8  *
9  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions, and the following disclaimer,
17  *    without modification.
18  * 2. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
25  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/advansys/adwcam.c,v 1.7.2.2 2001/03/05 13:08:55 obrien Exp $
34  */
35 /*
36  * Ported from:
37  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38  *
39  * Copyright (c) 1995-1998 Advanced System Products, Inc.
40  * All Rights Reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that redistributions of source
44  * code retain the above copyright notice and this comment without
45  * modification.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/bus.h>
53 #include <sys/thread2.h>
54 
55 #include <machine/clock.h>
56 
57 #include <sys/rman.h>
58 
59 #include <bus/cam/cam.h>
60 #include <bus/cam/cam_ccb.h>
61 #include <bus/cam/cam_sim.h>
62 #include <bus/cam/cam_xpt_sim.h>
63 #include <bus/cam/cam_debug.h>
64 #include <bus/cam/cam_xpt_periph.h>
65 
66 #include <bus/cam/scsi/scsi_message.h>
67 
68 #include "adwvar.h"
69 
70 /* Definitions for our use of the SIM private CCB area */
71 #define ccb_acb_ptr spriv_ptr0
72 #define ccb_adw_ptr spriv_ptr1
73 
74 u_long adw_unit;
75 
76 static __inline cam_status	adwccbstatus(union ccb*);
77 static __inline struct acb*	adwgetacb(struct adw_softc *adw);
78 static __inline void		adwfreeacb(struct adw_softc *adw,
79 					   struct acb *acb);
80 
81 static void		adwmapmem(void *arg, bus_dma_segment_t *segs,
82 				  int nseg, int error);
83 static struct sg_map_node*
84 			adwallocsgmap(struct adw_softc *adw);
85 static int		adwallocacbs(struct adw_softc *adw);
86 
87 static void		adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs,
88 				      int nseg, int error);
89 static void		adw_action(struct cam_sim *sim, union ccb *ccb);
90 static void		adw_poll(struct cam_sim *sim);
91 static void		adw_async(void *callback_arg, u_int32_t code,
92 				  struct cam_path *path, void *arg);
93 static void		adwprocesserror(struct adw_softc *adw, struct acb *acb);
94 static void		adwtimeout(void *arg);
95 static void		adw_handle_device_reset(struct adw_softc *adw,
96 						u_int target);
97 static void		adw_handle_bus_reset(struct adw_softc *adw,
98 					     int initiated);
99 
100 static __inline cam_status
101 adwccbstatus(union ccb* ccb)
102 {
103 	return (ccb->ccb_h.status & CAM_STATUS_MASK);
104 }
105 
106 static __inline struct acb*
107 adwgetacb(struct adw_softc *adw)
108 {
109 	struct	acb* acb;
110 
111 	crit_enter();
112 	if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) {
113 		SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
114 	} else if (adw->num_acbs < adw->max_acbs) {
115 		adwallocacbs(adw);
116 		acb = SLIST_FIRST(&adw->free_acb_list);
117 		if (acb == NULL)
118 			kprintf("%s: Can't malloc ACB\n", adw_name(adw));
119 		else {
120 			SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
121 		}
122 	}
123 	crit_exit();
124 
125 	return (acb);
126 }
127 
128 static __inline void
129 adwfreeacb(struct adw_softc *adw, struct acb *acb)
130 {
131 	crit_enter();
132 	if ((acb->state & ACB_ACTIVE) != 0)
133 		LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le);
134 	if ((acb->state & ACB_RELEASE_SIMQ) != 0)
135 		acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
136 	else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0
137 	      && (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
138 		acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
139 		adw->state &= ~ADW_RESOURCE_SHORTAGE;
140 	}
141 	acb->state = ACB_FREE;
142 	SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links);
143 	crit_exit();
144 }
145 
146 static void
147 adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error)
148 {
149 	bus_addr_t *busaddrp;
150 
151 	busaddrp = (bus_addr_t *)arg;
152 	*busaddrp = segs->ds_addr;
153 }
154 
155 static struct sg_map_node *
156 adwallocsgmap(struct adw_softc *adw)
157 {
158 	struct sg_map_node *sg_map;
159 
160 	sg_map = kmalloc(sizeof(*sg_map), M_DEVBUF, M_INTWAIT);
161 
162 	/* Allocate S/G space for the next batch of ACBS */
163 	if (bus_dmamem_alloc(adw->sg_dmat, (void *)&sg_map->sg_vaddr,
164 			     BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
165 		kfree(sg_map, M_DEVBUF);
166 		return (NULL);
167 	}
168 
169 	SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links);
170 
171 	bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr,
172 			PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0);
173 
174 	bzero(sg_map->sg_vaddr, PAGE_SIZE);
175 	return (sg_map);
176 }
177 
178 /*
179  * Allocate another chunk of CCB's. Return count of entries added.
180  * Assumed to be called under crit_enter().
181  */
182 static int
183 adwallocacbs(struct adw_softc *adw)
184 {
185 	struct acb *next_acb;
186 	struct sg_map_node *sg_map;
187 	bus_addr_t busaddr;
188 	struct adw_sg_block *blocks;
189 	int newcount;
190 	int i;
191 
192 	next_acb = &adw->acbs[adw->num_acbs];
193 	sg_map = adwallocsgmap(adw);
194 
195 	if (sg_map == NULL)
196 		return (0);
197 
198 	blocks = sg_map->sg_vaddr;
199 	busaddr = sg_map->sg_physaddr;
200 
201 	newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks)));
202 	for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) {
203 		int error;
204 
205 		error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0,
206 					  &next_acb->dmamap);
207 		if (error != 0)
208 			break;
209 		next_acb->queue.scsi_req_baddr = acbvtob(adw, next_acb);
210 		next_acb->queue.scsi_req_bo = acbvtobo(adw, next_acb);
211 		next_acb->queue.sense_baddr =
212 		    acbvtob(adw, next_acb) + offsetof(struct acb, sense_data);
213 		next_acb->sg_blocks = blocks;
214 		next_acb->sg_busaddr = busaddr;
215 		next_acb->state = ACB_FREE;
216 		SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links);
217 		blocks += ADW_SG_BLOCKCNT;
218 		busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks);
219 		next_acb++;
220 		adw->num_acbs++;
221 	}
222 	return (i);
223 }
224 
225 static void
226 adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
227 {
228 	struct	 acb *acb;
229 	union	 ccb *ccb;
230 	struct	 adw_softc *adw;
231 
232 	acb = (struct acb *)arg;
233 	ccb = acb->ccb;
234 	adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
235 
236 	if (error != 0) {
237 		if (error != EFBIG)
238 			kprintf("%s: Unexpected error 0x%x returned from "
239 			       "bus_dmamap_load\n", adw_name(adw), error);
240 		if (ccb->ccb_h.status == CAM_REQ_INPROG) {
241 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
242 			ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
243 		}
244 		adwfreeacb(adw, acb);
245 		xpt_done(ccb);
246 		return;
247 	}
248 
249 	if (nseg != 0) {
250 		bus_dmasync_op_t op;
251 
252 		acb->queue.data_addr = dm_segs[0].ds_addr;
253 		acb->queue.data_cnt = ccb->csio.dxfer_len;
254 		if (nseg > 1) {
255 			struct adw_sg_block *sg_block;
256 			struct adw_sg_elm *sg;
257 			bus_addr_t sg_busaddr;
258 			u_int sg_index;
259 			bus_dma_segment_t *end_seg;
260 
261 			end_seg = dm_segs + nseg;
262 
263 			sg_busaddr = acb->sg_busaddr;
264 			sg_index = 0;
265 			/* Copy the segments into our SG list */
266 			for (sg_block = acb->sg_blocks;; sg_block++) {
267 				u_int i;
268 
269 				sg = sg_block->sg_list;
270 				for (i = 0; i < ADW_NO_OF_SG_PER_BLOCK; i++) {
271 					if (dm_segs >= end_seg)
272 						break;
273 
274 					sg->sg_addr = dm_segs->ds_addr;
275 					sg->sg_count = dm_segs->ds_len;
276 					sg++;
277 					dm_segs++;
278 				}
279 				sg_block->sg_cnt = i;
280 				sg_index += i;
281 				if (dm_segs == end_seg) {
282 					sg_block->sg_busaddr_next = 0;
283 					break;
284 				} else {
285 					sg_busaddr +=
286 					    sizeof(struct adw_sg_block);
287 					sg_block->sg_busaddr_next = sg_busaddr;
288 				}
289 			}
290 			acb->queue.sg_real_addr = acb->sg_busaddr;
291 		} else {
292 			acb->queue.sg_real_addr = 0;
293 		}
294 
295 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
296 			op = BUS_DMASYNC_PREREAD;
297 		else
298 			op = BUS_DMASYNC_PREWRITE;
299 
300 		bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
301 
302 	} else {
303 		acb->queue.data_addr = 0;
304 		acb->queue.data_cnt = 0;
305 		acb->queue.sg_real_addr = 0;
306 	}
307 
308 	crit_enter();
309 
310 	/*
311 	 * Last time we need to check if this CCB needs to
312 	 * be aborted.
313 	 */
314 	if (ccb->ccb_h.status != CAM_REQ_INPROG) {
315 		if (nseg != 0)
316 			bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
317 		adwfreeacb(adw, acb);
318 		xpt_done(ccb);
319 		crit_exit();
320 		return;
321 	}
322 
323 	acb->state |= ACB_ACTIVE;
324 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
325 	LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le);
326 	callout_reset(ccb->ccb_h.timeout_ch,
327 		      (ccb->ccb_h.timeout * hz) / 1000,
328 		      adwtimeout, acb);
329 
330 	adw_send_acb(adw, acb, acbvtob(adw, acb));
331 
332 	crit_exit();
333 }
334 
335 static void
336 adw_action(struct cam_sim *sim, union ccb *ccb)
337 {
338 	struct	adw_softc *adw;
339 
340 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n"));
341 
342 	adw = (struct adw_softc *)cam_sim_softc(sim);
343 
344 	switch (ccb->ccb_h.func_code) {
345 	/* Common cases first */
346 	case XPT_SCSI_IO:	/* Execute the requested I/O operation */
347 	{
348 		struct	ccb_scsiio *csio;
349 		struct	ccb_hdr *ccbh;
350 		struct	acb *acb;
351 
352 		csio = &ccb->csio;
353 		ccbh = &ccb->ccb_h;
354 
355 		/* Max supported CDB length is 12 bytes */
356 		if (csio->cdb_len > 12) {
357 			ccb->ccb_h.status = CAM_REQ_INVALID;
358 			xpt_done(ccb);
359 			return;
360 		}
361 
362 		if ((acb = adwgetacb(adw)) == NULL) {
363 			crit_enter();
364 			adw->state |= ADW_RESOURCE_SHORTAGE;
365 			crit_exit();
366 			xpt_freeze_simq(sim, /*count*/1);
367 			ccb->ccb_h.status = CAM_REQUEUE_REQ;
368 			xpt_done(ccb);
369 			return;
370 		}
371 
372 		/* Link acb and ccb so we can find one from the other */
373 		acb->ccb = ccb;
374 		ccb->ccb_h.ccb_acb_ptr = acb;
375 		ccb->ccb_h.ccb_adw_ptr = adw;
376 
377 		acb->queue.cntl = 0;
378 		acb->queue.target_cmd = 0;
379 		acb->queue.target_id = ccb->ccb_h.target_id;
380 		acb->queue.target_lun = ccb->ccb_h.target_lun;
381 
382 		acb->queue.mflag = 0;
383 		acb->queue.sense_len =
384 			MIN(csio->sense_len, sizeof(acb->sense_data));
385 		acb->queue.cdb_len = csio->cdb_len;
386 		if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
387 			switch (csio->tag_action) {
388 			case MSG_SIMPLE_Q_TAG:
389 				acb->queue.scsi_cntl = ADW_QSC_SIMPLE_Q_TAG;
390 				break;
391 			case MSG_HEAD_OF_Q_TAG:
392 				acb->queue.scsi_cntl = ADW_QSC_HEAD_OF_Q_TAG;
393 				break;
394 			case MSG_ORDERED_Q_TAG:
395 				acb->queue.scsi_cntl = ADW_QSC_ORDERED_Q_TAG;
396 				break;
397 			default:
398 				acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
399 				break;
400 			}
401 		} else
402 			acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
403 
404 		if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
405 			acb->queue.scsi_cntl |= ADW_QSC_NO_DISC;
406 
407 		acb->queue.done_status = 0;
408 		acb->queue.scsi_status = 0;
409 		acb->queue.host_status = 0;
410 		acb->queue.sg_wk_ix = 0;
411 		if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
412 			if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
413 				bcopy(csio->cdb_io.cdb_ptr,
414 				      acb->queue.cdb, csio->cdb_len);
415 			} else {
416 				/* I guess I could map it in... */
417 				ccb->ccb_h.status = CAM_REQ_INVALID;
418 				adwfreeacb(adw, acb);
419 				xpt_done(ccb);
420 				return;
421 			}
422 		} else {
423 			bcopy(csio->cdb_io.cdb_bytes,
424 			      acb->queue.cdb, csio->cdb_len);
425 		}
426 
427 		/*
428 		 * If we have any data to send with this command,
429 		 * map it into bus space.
430 		 */
431 		if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
432 			if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
433 				/*
434 				 * We've been given a pointer
435 				 * to a single buffer.
436 				 */
437 				if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
438 					int error;
439 
440 					crit_enter();
441 					error =
442 					    bus_dmamap_load(adw->buffer_dmat,
443 							    acb->dmamap,
444 							    csio->data_ptr,
445 							    csio->dxfer_len,
446 							    adwexecuteacb,
447 							    acb, /*flags*/0);
448 					if (error == EINPROGRESS) {
449 						/*
450 						 * So as to maintain ordering,
451 						 * freeze the controller queue
452 						 * until our mapping is
453 						 * returned.
454 						 */
455 						xpt_freeze_simq(sim, 1);
456 						acb->state |= CAM_RELEASE_SIMQ;
457 					}
458 					crit_exit();
459 				} else {
460 					struct bus_dma_segment seg;
461 
462 					/* Pointer to physical buffer */
463 					seg.ds_addr =
464 					    (bus_addr_t)csio->data_ptr;
465 					seg.ds_len = csio->dxfer_len;
466 					adwexecuteacb(acb, &seg, 1, 0);
467 				}
468 			} else {
469 				struct bus_dma_segment *segs;
470 
471 				if ((ccbh->flags & CAM_DATA_PHYS) != 0)
472 					panic("adw_action - Physical "
473 					      "segment pointers "
474 					      "unsupported");
475 
476 				if ((ccbh->flags&CAM_SG_LIST_PHYS)==0)
477 					panic("adw_action - Virtual "
478 					      "segment addresses "
479 					      "unsupported");
480 
481 				/* Just use the segments provided */
482 				segs = (struct bus_dma_segment *)csio->data_ptr;
483 				adwexecuteacb(acb, segs, csio->sglist_cnt,
484 					      (csio->sglist_cnt < ADW_SGSIZE)
485 					      ? 0 : EFBIG);
486 			}
487 		} else {
488 			adwexecuteacb(acb, NULL, 0, 0);
489 		}
490 		break;
491 	}
492 	case XPT_RESET_DEV:	/* Bus Device Reset the specified SCSI device */
493 	{
494 		adw_idle_cmd_status_t status;
495 
496 		status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
497 					   ccb->ccb_h.target_id);
498 		if (status == ADW_IDLE_CMD_SUCCESS) {
499 			ccb->ccb_h.status = CAM_REQ_CMP;
500 			if (bootverbose) {
501 				xpt_print_path(ccb->ccb_h.path);
502 				kprintf("BDR Delivered\n");
503 			}
504 		} else
505 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
506 		xpt_done(ccb);
507 		break;
508 	}
509 	case XPT_ABORT:			/* Abort the specified CCB */
510 		/* XXX Implement */
511 		ccb->ccb_h.status = CAM_REQ_INVALID;
512 		xpt_done(ccb);
513 		break;
514 	case XPT_SET_TRAN_SETTINGS:
515 	{
516 		struct ccb_trans_settings_scsi *scsi;
517 		struct ccb_trans_settings_spi *spi;
518 		struct	  ccb_trans_settings *cts;
519 		u_int	  target_mask;
520 
521 		cts = &ccb->cts;
522 		target_mask = 0x01 << ccb->ccb_h.target_id;
523 
524 		crit_enter();
525 		scsi = &cts->proto_specific.scsi;
526 		spi = &cts->xport_specific.spi;
527 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
528 			u_int sdtrdone;
529 
530 			sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE);
531 			if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
532 				u_int discenb;
533 
534 				discenb =
535 				    adw_lram_read_16(adw, ADW_MC_DISC_ENABLE);
536 
537 				if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
538 					discenb |= target_mask;
539 				else
540 					discenb &= ~target_mask;
541 
542 				adw_lram_write_16(adw, ADW_MC_DISC_ENABLE,
543 						  discenb);
544 			}
545 
546 			if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
547 
548 				if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
549 					adw->tagenb |= target_mask;
550 				else
551 					adw->tagenb &= ~target_mask;
552 			}
553 
554 			if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
555 				u_int wdtrenb_orig;
556 				u_int wdtrenb;
557 				u_int wdtrdone;
558 
559 				wdtrenb_orig =
560 				    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
561 				wdtrenb = wdtrenb_orig;
562 				wdtrdone = adw_lram_read_16(adw,
563 							    ADW_MC_WDTR_DONE);
564 				switch (spi->bus_width) {
565 				case MSG_EXT_WDTR_BUS_32_BIT:
566 				case MSG_EXT_WDTR_BUS_16_BIT:
567 					wdtrenb |= target_mask;
568 					break;
569 				case MSG_EXT_WDTR_BUS_8_BIT:
570 				default:
571 					wdtrenb &= ~target_mask;
572 					break;
573 				}
574 				if (wdtrenb != wdtrenb_orig) {
575 					adw_lram_write_16(adw,
576 							  ADW_MC_WDTR_ABLE,
577 							  wdtrenb);
578 					wdtrdone &= ~target_mask;
579 					adw_lram_write_16(adw,
580 							  ADW_MC_WDTR_DONE,
581 							  wdtrdone);
582 					/* Wide negotiation forces async */
583 					sdtrdone &= ~target_mask;
584 					adw_lram_write_16(adw,
585 							  ADW_MC_SDTR_DONE,
586 							  sdtrdone);
587 				}
588 			}
589 
590 			if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
591 			 || ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
592 				u_int sdtr_orig;
593 				u_int sdtr;
594 				u_int sdtrable_orig;
595 				u_int sdtrable;
596 
597 				sdtr = adw_get_chip_sdtr(adw,
598 							 ccb->ccb_h.target_id);
599 				sdtr_orig = sdtr;
600 				sdtrable = adw_lram_read_16(adw,
601 							    ADW_MC_SDTR_ABLE);
602 				sdtrable_orig = sdtrable;
603 
604 				if ((spi->valid
605 				   & CTS_SPI_VALID_SYNC_RATE) != 0) {
606 
607 					sdtr =
608 					    adw_find_sdtr(adw,
609 							  spi->sync_period);
610 				}
611 
612 				if ((spi->valid
613 				   & CTS_SPI_VALID_SYNC_OFFSET) != 0) {
614 					if (spi->sync_offset == 0)
615 						sdtr = ADW_MC_SDTR_ASYNC;
616 				}
617 
618 				if (sdtr == ADW_MC_SDTR_ASYNC)
619 					sdtrable &= ~target_mask;
620 				else
621 					sdtrable |= target_mask;
622 				if (sdtr != sdtr_orig
623 				 || sdtrable != sdtrable_orig) {
624 					adw_set_chip_sdtr(adw,
625 							  ccb->ccb_h.target_id,
626 							  sdtr);
627 					sdtrdone &= ~target_mask;
628 					adw_lram_write_16(adw, ADW_MC_SDTR_ABLE,
629 							  sdtrable);
630 					adw_lram_write_16(adw, ADW_MC_SDTR_DONE,
631 							  sdtrdone);
632 
633 				}
634 			}
635 		}
636 		crit_exit();
637 		ccb->ccb_h.status = CAM_REQ_CMP;
638 		xpt_done(ccb);
639 		break;
640 	}
641 	case XPT_GET_TRAN_SETTINGS:
642 	/* Get default/user set transfer settings for the target */
643 	{
644 		struct ccb_trans_settings_scsi *scsi;
645 		struct ccb_trans_settings_spi *spi;
646 		struct	ccb_trans_settings *cts;
647 		u_int	target_mask;
648 
649 		cts = &ccb->cts;
650 		target_mask = 0x01 << ccb->ccb_h.target_id;
651 		cts->protocol = PROTO_SCSI;
652 		cts->protocol_version = SCSI_REV_2;
653 		cts->transport = XPORT_SPI;
654 		cts->transport_version = 2;
655 
656 		scsi = &cts->proto_specific.scsi;
657 		spi = &cts->xport_specific.spi;
658 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
659 			u_int mc_sdtr;
660 
661 			spi->flags = 0;
662 			if ((adw->user_discenb & target_mask) != 0)
663 				spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
664 
665 			if ((adw->user_tagenb & target_mask) != 0)
666 				scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
667 
668 			if ((adw->user_wdtr & target_mask) != 0)
669 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
670 			else
671 				spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
672 
673 			mc_sdtr = adw_get_user_sdtr(adw, ccb->ccb_h.target_id);
674 			spi->sync_period = adw_find_period(adw, mc_sdtr);
675 			if (spi->sync_period != 0)
676 				spi->sync_offset = 15; /* XXX ??? */
677 			else
678 				spi->sync_offset = 0;
679 
680 
681 		} else {
682 			u_int targ_tinfo;
683 
684 			spi->flags = 0;
685 			if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE)
686 			  & target_mask) != 0)
687 				spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
688 
689 			if ((adw->tagenb & target_mask) != 0)
690 				scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
691 
692 			targ_tinfo =
693 			    adw_lram_read_16(adw,
694 					     ADW_MC_DEVICE_HSHK_CFG_TABLE
695 					     + (2 * ccb->ccb_h.target_id));
696 
697 			if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0)
698 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
699 			else
700 				spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
701 
702 			spi->sync_period =
703 			    adw_hshk_cfg_period_factor(targ_tinfo);
704 
705 			spi->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET;
706 			if (spi->sync_period == 0)
707 				spi->sync_offset = 0;
708 
709 			if (spi->sync_offset == 0)
710 				spi->sync_period = 0;
711 		}
712 
713 		spi->valid = CTS_SPI_VALID_SYNC_RATE
714 			   | CTS_SPI_VALID_SYNC_OFFSET
715 			   | CTS_SPI_VALID_BUS_WIDTH
716 			   | CTS_SPI_VALID_DISC;
717 		scsi->valid = CTS_SCSI_VALID_TQ;
718 		ccb->ccb_h.status = CAM_REQ_CMP;
719 		xpt_done(ccb);
720 		break;
721 	}
722 	case XPT_CALC_GEOMETRY:
723 	{
724 		struct	  ccb_calc_geometry *ccg;
725 		u_int32_t size_mb;
726 		u_int32_t secs_per_cylinder;
727 		int	  extended;
728 
729 		/*
730 		 * XXX Use Adaptec translation until I find out how to
731 		 *     get this information from the card.
732 		 */
733 		ccg = &ccb->ccg;
734 		size_mb = ccg->volume_size
735 			/ ((1024L * 1024L) / ccg->block_size);
736 		extended = 1;
737 
738 		if (size_mb > 1024 && extended) {
739 			ccg->heads = 255;
740 			ccg->secs_per_track = 63;
741 		} else {
742 			ccg->heads = 64;
743 			ccg->secs_per_track = 32;
744 		}
745 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
746 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
747 		ccb->ccb_h.status = CAM_REQ_CMP;
748 		xpt_done(ccb);
749 		break;
750 	}
751 	case XPT_RESET_BUS:		/* Reset the specified SCSI bus */
752 	{
753 		int failure;
754 
755 		failure = adw_reset_bus(adw);
756 		if (failure != 0) {
757 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
758 		} else {
759 			if (bootverbose) {
760 				xpt_print_path(adw->path);
761 				kprintf("Bus Reset Delivered\n");
762 			}
763 			ccb->ccb_h.status = CAM_REQ_CMP;
764 		}
765 		xpt_done(ccb);
766 		break;
767 	}
768 	case XPT_TERM_IO:		/* Terminate the I/O process */
769 		/* XXX Implement */
770 		ccb->ccb_h.status = CAM_REQ_INVALID;
771 		xpt_done(ccb);
772 		break;
773 	case XPT_PATH_INQ:		/* Path routing inquiry */
774 	{
775 		struct ccb_pathinq *cpi = &ccb->cpi;
776 
777 		cpi->version_num = 1;
778 		cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE;
779 		cpi->target_sprt = 0;
780 		cpi->hba_misc = 0;
781 		cpi->hba_eng_cnt = 0;
782 		cpi->max_target = ADW_MAX_TID;
783 		cpi->max_lun = ADW_MAX_LUN;
784 		cpi->initiator_id = adw->initiator_id;
785 		cpi->bus_id = cam_sim_bus(sim);
786 		cpi->base_transfer_speed = 3300;
787 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
788 		strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN);
789 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
790 		cpi->unit_number = cam_sim_unit(sim);
791                 cpi->transport = XPORT_SPI;
792                 cpi->transport_version = 2;
793                 cpi->protocol = PROTO_SCSI;
794                 cpi->protocol_version = SCSI_REV_2;
795 		cpi->ccb_h.status = CAM_REQ_CMP;
796 		xpt_done(ccb);
797 		break;
798 	}
799 	default:
800 		ccb->ccb_h.status = CAM_REQ_INVALID;
801 		xpt_done(ccb);
802 		break;
803 	}
804 }
805 
806 static void
807 adw_poll(struct cam_sim *sim)
808 {
809 	adw_intr(cam_sim_softc(sim));
810 }
811 
812 static void
813 adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
814 {
815 }
816 
817 struct adw_softc *
818 adw_alloc(device_t dev, struct resource *regs, int regs_type, int regs_id)
819 {
820 	struct	 adw_softc *adw;
821 	int	 i;
822 
823 	/*
824 	 * Allocate a storage area for us
825 	 */
826 	adw = kmalloc(sizeof(struct adw_softc), M_DEVBUF, M_INTWAIT | M_ZERO);
827 	LIST_INIT(&adw->pending_ccbs);
828 	SLIST_INIT(&adw->sg_maps);
829 	adw->device = dev;
830 	adw->unit = device_get_unit(dev);
831 	adw->regs_res_type = regs_type;
832 	adw->regs_res_id = regs_id;
833 	adw->regs = regs;
834 	adw->tag = rman_get_bustag(regs);
835 	adw->bsh = rman_get_bushandle(regs);
836 	KKASSERT(adw->unit >= 0 && adw->unit < 100);
837 	i = adw->unit / 10;
838 	adw->name = kmalloc(sizeof("adw") + i + 1, M_DEVBUF, M_INTWAIT);
839 	ksprintf(adw->name, "adw%d", adw->unit);
840 	return(adw);
841 }
842 
843 void
844 adw_free(struct adw_softc *adw)
845 {
846 	switch (adw->init_level) {
847 	case 9:
848 	{
849 		struct sg_map_node *sg_map;
850 
851 		while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) {
852 			SLIST_REMOVE_HEAD(&adw->sg_maps, links);
853 			bus_dmamap_unload(adw->sg_dmat,
854 					  sg_map->sg_dmamap);
855 			bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr,
856 					sg_map->sg_dmamap);
857 			kfree(sg_map, M_DEVBUF);
858 		}
859 		bus_dma_tag_destroy(adw->sg_dmat);
860 	}
861 	case 8:
862 		bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap);
863 	case 7:
864 		bus_dmamem_free(adw->acb_dmat, adw->acbs,
865 				adw->acb_dmamap);
866 		bus_dmamap_destroy(adw->acb_dmat, adw->acb_dmamap);
867 	case 6:
868 		bus_dma_tag_destroy(adw->acb_dmat);
869 	case 5:
870 		bus_dmamap_unload(adw->carrier_dmat, adw->carrier_dmamap);
871 	case 4:
872 		bus_dmamem_free(adw->carrier_dmat, adw->carriers,
873 				adw->carrier_dmamap);
874 		bus_dmamap_destroy(adw->carrier_dmat, adw->carrier_dmamap);
875 	case 3:
876 		bus_dma_tag_destroy(adw->carrier_dmat);
877 	case 2:
878 		bus_dma_tag_destroy(adw->buffer_dmat);
879 	case 1:
880 		bus_dma_tag_destroy(adw->parent_dmat);
881 	case 0:
882 		break;
883 	}
884 	kfree(adw->name, M_DEVBUF);
885 	kfree(adw, M_DEVBUF);
886 }
887 
888 int
889 adw_init(struct adw_softc *adw)
890 {
891 	struct	  adw_eeprom eep_config;
892 	u_int	  tid;
893 	u_int	  i;
894 	u_int16_t checksum;
895 	u_int16_t scsicfg1;
896 
897 	checksum = adw_eeprom_read(adw, &eep_config);
898 	bcopy(eep_config.serial_number, adw->serial_number,
899 	      sizeof(adw->serial_number));
900 	if (checksum != eep_config.checksum) {
901 		u_int16_t serial_number[3];
902 
903 		adw->flags |= ADW_EEPROM_FAILED;
904 		kprintf("%s: EEPROM checksum failed.  Restoring Defaults\n",
905 		       adw_name(adw));
906 
907 	        /*
908 		 * Restore the default EEPROM settings.
909 		 * Assume the 6 byte board serial number that was read
910 		 * from EEPROM is correct even if the EEPROM checksum
911 		 * failed.
912 		 */
913 		bcopy(adw->default_eeprom, &eep_config, sizeof(eep_config));
914 		bcopy(adw->serial_number, eep_config.serial_number,
915 		      sizeof(serial_number));
916 		adw_eeprom_write(adw, &eep_config);
917 	}
918 
919 	/* Pull eeprom information into our softc. */
920 	adw->bios_ctrl = eep_config.bios_ctrl;
921 	adw->user_wdtr = eep_config.wdtr_able;
922 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
923 		u_int	  mc_sdtr;
924 		u_int16_t tid_mask;
925 
926 		tid_mask = 0x1 << tid;
927 		if ((adw->features & ADW_ULTRA) != 0) {
928 			/*
929 			 * Ultra chips store sdtr and ultraenb
930 			 * bits in their seeprom, so we must
931 			 * construct valid mc_sdtr entries for
932 			 * indirectly.
933 			 */
934 			if (eep_config.sync1.sync_enable & tid_mask) {
935 				if (eep_config.sync2.ultra_enable & tid_mask)
936 					mc_sdtr = ADW_MC_SDTR_20;
937 				else
938 					mc_sdtr = ADW_MC_SDTR_10;
939 			} else
940 				mc_sdtr = ADW_MC_SDTR_ASYNC;
941 		} else {
942 			switch (ADW_TARGET_GROUP(tid)) {
943 			case 3:
944 				mc_sdtr = eep_config.sync4.sdtr4;
945 				break;
946 			case 2:
947 				mc_sdtr = eep_config.sync3.sdtr3;
948 				break;
949 			case 1:
950 				mc_sdtr = eep_config.sync2.sdtr2;
951 				break;
952 			default: /* Shut up compiler */
953 			case 0:
954 				mc_sdtr = eep_config.sync1.sdtr1;
955 				break;
956 			}
957 			mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
958 			mc_sdtr &= 0xFF;
959 		}
960 		adw_set_user_sdtr(adw, tid, mc_sdtr);
961 	}
962 	adw->user_tagenb = eep_config.tagqng_able;
963 	adw->user_discenb = eep_config.disc_enable;
964 	adw->max_acbs = eep_config.max_host_qng;
965 	adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
966 
967 	/*
968 	 * Sanity check the number of host openings.
969 	 */
970 	if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG)
971 		adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
972 	else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) {
973         	/* If the value is zero, assume it is uninitialized. */
974 		if (adw->max_acbs == 0)
975 			adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
976 		else
977 			adw->max_acbs = ADW_DEF_MIN_HOST_QNG;
978 	}
979 
980 	scsicfg1 = 0;
981 	if ((adw->features & ADW_ULTRA2) != 0) {
982 		switch (eep_config.termination_lvd) {
983 		default:
984 			kprintf("%s: Invalid EEPROM LVD Termination Settings.\n",
985 			       adw_name(adw));
986 			kprintf("%s: Reverting to Automatic LVD Termination\n",
987 			       adw_name(adw));
988 			/* FALLTHROUGH */
989 		case ADW_EEPROM_TERM_AUTO:
990 			break;
991 		case ADW_EEPROM_TERM_BOTH_ON:
992 			scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_LO;
993 			/* FALLTHROUGH */
994 		case ADW_EEPROM_TERM_HIGH_ON:
995 			scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_HI;
996 			/* FALLTHROUGH */
997 		case ADW_EEPROM_TERM_OFF:
998 			scsicfg1 |= ADW2_SCSI_CFG1_DIS_TERM_DRV;
999 			break;
1000 		}
1001 	}
1002 
1003 	switch (eep_config.termination_se) {
1004 	default:
1005 		kprintf("%s: Invalid SE EEPROM Termination Settings.\n",
1006 		       adw_name(adw));
1007 		kprintf("%s: Reverting to Automatic SE Termination\n",
1008 		       adw_name(adw));
1009 		/* FALLTHROUGH */
1010 	case ADW_EEPROM_TERM_AUTO:
1011 		break;
1012 	case ADW_EEPROM_TERM_BOTH_ON:
1013 		scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
1014 		/* FALLTHROUGH */
1015 	case ADW_EEPROM_TERM_HIGH_ON:
1016 		scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
1017 		/* FALLTHROUGH */
1018 	case ADW_EEPROM_TERM_OFF:
1019 		scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL;
1020 		break;
1021 	}
1022 	kprintf("%s: SCSI ID %d, ", adw_name(adw), adw->initiator_id);
1023 
1024 	/* DMA tag for mapping buffers into device visible space. */
1025 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
1026 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
1027 			       /*highaddr*/BUS_SPACE_MAXADDR,
1028 			       /*maxsize*/MAXBSIZE, /*nsegments*/ADW_SGSIZE,
1029 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1030 			       /*flags*/BUS_DMA_ALLOCNOW,
1031 			       &adw->buffer_dmat) != 0) {
1032 		return (ENOMEM);
1033 	}
1034 
1035 	adw->init_level++;
1036 
1037 	/* DMA tag for our ccb carrier structures */
1038 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0x10,
1039 			       /*boundary*/0,
1040 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
1041 			       /*highaddr*/BUS_SPACE_MAXADDR,
1042 			       (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
1043 				* sizeof(struct adw_carrier),
1044 			       /*nsegments*/1,
1045 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1046 			       /*flags*/0, &adw->carrier_dmat) != 0) {
1047 		return (ENOMEM);
1048         }
1049 
1050 	adw->init_level++;
1051 
1052 	/* Allocation for our ccb carrier structures */
1053 	if (bus_dmamem_alloc(adw->carrier_dmat, (void *)&adw->carriers,
1054 			     BUS_DMA_NOWAIT, &adw->carrier_dmamap) != 0) {
1055 		return (ENOMEM);
1056 	}
1057 
1058 	adw->init_level++;
1059 
1060 	/* And permanently map them */
1061 	bus_dmamap_load(adw->carrier_dmat, adw->carrier_dmamap,
1062 			adw->carriers,
1063 			(adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
1064 			 * sizeof(struct adw_carrier),
1065 			adwmapmem, &adw->carrier_busbase, /*flags*/0);
1066 
1067 	/* Clear them out. */
1068 	bzero(adw->carriers, (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
1069 			     * sizeof(struct adw_carrier));
1070 
1071 	/* Setup our free carrier list */
1072 	adw->free_carriers = adw->carriers;
1073 	for (i = 0; i < adw->max_acbs + ADW_NUM_CARRIER_QUEUES; i++) {
1074 		adw->carriers[i].carr_offset =
1075 			carriervtobo(adw, &adw->carriers[i]);
1076 		adw->carriers[i].carr_ba =
1077 			carriervtob(adw, &adw->carriers[i]);
1078 		adw->carriers[i].areq_ba = 0;
1079 		adw->carriers[i].next_ba =
1080 			carriervtobo(adw, &adw->carriers[i+1]);
1081 	}
1082 	/* Terminal carrier.  Never leaves the freelist */
1083 	adw->carriers[i].carr_offset =
1084 		carriervtobo(adw, &adw->carriers[i]);
1085 	adw->carriers[i].carr_ba =
1086 		carriervtob(adw, &adw->carriers[i]);
1087 	adw->carriers[i].areq_ba = 0;
1088 	adw->carriers[i].next_ba = ~0;
1089 
1090 	adw->init_level++;
1091 
1092 	/* DMA tag for our acb structures */
1093 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
1094 			       /*lowaddr*/BUS_SPACE_MAXADDR,
1095 			       /*highaddr*/BUS_SPACE_MAXADDR,
1096 			       adw->max_acbs * sizeof(struct acb),
1097 			       /*nsegments*/1,
1098 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1099 			       /*flags*/0, &adw->acb_dmat) != 0) {
1100 		return (ENOMEM);
1101         }
1102 
1103 	adw->init_level++;
1104 
1105 	/* Allocation for our ccbs */
1106 	if (bus_dmamem_alloc(adw->acb_dmat, (void *)&adw->acbs,
1107 			     BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0)
1108 		return (ENOMEM);
1109 
1110 	adw->init_level++;
1111 
1112 	/* And permanently map them */
1113 	bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap,
1114 			adw->acbs,
1115 			adw->max_acbs * sizeof(struct acb),
1116 			adwmapmem, &adw->acb_busbase, /*flags*/0);
1117 
1118 	/* Clear them out. */
1119 	bzero(adw->acbs, adw->max_acbs * sizeof(struct acb));
1120 
1121 	/* DMA tag for our S/G structures.  We allocate in page sized chunks */
1122 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
1123 			       /*lowaddr*/BUS_SPACE_MAXADDR,
1124 			       /*highaddr*/BUS_SPACE_MAXADDR,
1125 			       PAGE_SIZE, /*nsegments*/1,
1126 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1127 			       /*flags*/0, &adw->sg_dmat) != 0) {
1128 		return (ENOMEM);
1129         }
1130 
1131 	adw->init_level++;
1132 
1133 	/* Allocate our first batch of ccbs */
1134 	if (adwallocacbs(adw) == 0)
1135 		return (ENOMEM);
1136 
1137 	if (adw_init_chip(adw, scsicfg1) != 0)
1138 		return (ENXIO);
1139 
1140 	kprintf("Queue Depth %d\n", adw->max_acbs);
1141 
1142 	return (0);
1143 }
1144 
1145 /*
1146  * Attach all the sub-devices we can find
1147  */
1148 int
1149 adw_attach(struct adw_softc *adw)
1150 {
1151 	struct ccb_setasync *csa;
1152 	int error;
1153 
1154 	error = 0;
1155 	crit_enter();
1156 	/* Hook up our interrupt handler */
1157 	if ((error = bus_setup_intr(adw->device, adw->irq, 0,
1158 				    adw_intr, adw, &adw->ih, NULL)) != 0) {
1159 		device_printf(adw->device, "bus_setup_intr() failed: %d\n",
1160 			      error);
1161 		goto fail;
1162 	}
1163 
1164 	/* Start the Risc processor now that we are fully configured. */
1165 	adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN);
1166 
1167 	/*
1168 	 * Construct our SIM entry.
1169 	 */
1170 	adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw, adw->unit,
1171 				 &sim_mplock, 1, adw->max_acbs, NULL);
1172 	if (adw->sim == NULL) {
1173 		error = ENOMEM;
1174 		goto fail;
1175 	}
1176 
1177 	/*
1178 	 * Register the bus.
1179 	 */
1180 	if (xpt_bus_register(adw->sim, 0) != CAM_SUCCESS) {
1181 		cam_sim_free(adw->sim);
1182 		error = ENOMEM;
1183 		goto fail;
1184 	}
1185 
1186 	if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim),
1187 			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
1188 	   == CAM_REQ_CMP) {
1189 		csa = &xpt_alloc_ccb()->csa;
1190 		xpt_setup_ccb(&csa->ccb_h, adw->path, /*priority*/5);
1191 		csa->ccb_h.func_code = XPT_SASYNC_CB;
1192 		csa->event_enable = AC_LOST_DEVICE;
1193 		csa->callback = adw_async;
1194 		csa->callback_arg = adw;
1195 		xpt_action((union ccb *)csa);
1196 		xpt_free_ccb(&csa->ccb_h);
1197 	}
1198 
1199 fail:
1200 	crit_exit();
1201 	return (error);
1202 }
1203 
1204 void
1205 adw_intr(void *arg)
1206 {
1207 	struct	adw_softc *adw;
1208 	u_int	int_stat;
1209 
1210 	adw = (struct adw_softc *)arg;
1211 	if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0)
1212 		return;
1213 
1214 	/* Reading the register clears the interrupt. */
1215 	int_stat = adw_inb(adw, ADW_INTR_STATUS_REG);
1216 
1217 	if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) {
1218 		u_int intrb_code;
1219 
1220 		/* Async Microcode Event */
1221 		intrb_code = adw_lram_read_8(adw, ADW_MC_INTRB_CODE);
1222 		switch (intrb_code) {
1223 		case ADW_ASYNC_CARRIER_READY_FAILURE:
1224 			/*
1225 			 * The RISC missed our update of
1226 			 * the commandq.
1227 			 */
1228 			if (LIST_FIRST(&adw->pending_ccbs) != NULL)
1229 				adw_tickle_risc(adw, ADW_TICKLE_A);
1230 			break;
1231     		case ADW_ASYNC_SCSI_BUS_RESET_DET:
1232 			/*
1233 			 * The firmware detected a SCSI Bus reset.
1234 			 */
1235 			kprintf("Someone Reset the Bus\n");
1236 			adw_handle_bus_reset(adw, /*initiated*/FALSE);
1237 			break;
1238 		case ADW_ASYNC_RDMA_FAILURE:
1239 			/*
1240 			 * Handle RDMA failure by resetting the
1241 			 * SCSI Bus and chip.
1242 			 */
1243 #if 0 /* XXX */
1244 			AdvResetChipAndSB(adv_dvc_varp);
1245 #endif
1246 			break;
1247 
1248 		case ADW_ASYNC_HOST_SCSI_BUS_RESET:
1249 			/*
1250 			 * Host generated SCSI bus reset occurred.
1251 			 */
1252 			adw_handle_bus_reset(adw, /*initiated*/TRUE);
1253         		break;
1254     		default:
1255 			kprintf("adw_intr: unknown async code 0x%x\n",
1256 			       intrb_code);
1257 			break;
1258 		}
1259 	}
1260 
1261 	/*
1262 	 * Run down the RequestQ.
1263 	 */
1264 	while ((adw->responseq->next_ba & ADW_RQ_DONE) != 0) {
1265 		struct adw_carrier *free_carrier;
1266 		struct acb *acb;
1267 		union ccb *ccb;
1268 
1269 #if 0
1270 		kprintf("0x%x, 0x%x, 0x%x, 0x%x\n",
1271 		       adw->responseq->carr_offset,
1272 		       adw->responseq->carr_ba,
1273 		       adw->responseq->areq_ba,
1274 		       adw->responseq->next_ba);
1275 #endif
1276 		/*
1277 		 * The firmware copies the adw_scsi_req_q.acb_baddr
1278 		 * field into the areq_ba field of the carrier.
1279 		 */
1280 		acb = acbbotov(adw, adw->responseq->areq_ba);
1281 
1282 		/*
1283 		 * The least significant four bits of the next_ba
1284 		 * field are used as flags.  Mask them out and then
1285 		 * advance through the list.
1286 		 */
1287 		free_carrier = adw->responseq;
1288 		adw->responseq =
1289 		    carrierbotov(adw, free_carrier->next_ba & ADW_NEXT_BA_MASK);
1290 		free_carrier->next_ba = adw->free_carriers->carr_offset;
1291 		adw->free_carriers = free_carrier;
1292 
1293 		/* Process CCB */
1294 		ccb = acb->ccb;
1295 		callout_stop(ccb->ccb_h.timeout_ch);
1296 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
1297 			bus_dmasync_op_t op;
1298 
1299 			if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
1300 				op = BUS_DMASYNC_POSTREAD;
1301 			else
1302 				op = BUS_DMASYNC_POSTWRITE;
1303 			bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
1304 			bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
1305 			ccb->csio.resid = acb->queue.data_cnt;
1306 		} else
1307 			ccb->csio.resid = 0;
1308 
1309 		/* Common Cases inline... */
1310 		if (acb->queue.host_status == QHSTA_NO_ERROR
1311 		 && (acb->queue.done_status == QD_NO_ERROR
1312 		  || acb->queue.done_status == QD_WITH_ERROR)) {
1313 			ccb->csio.scsi_status = acb->queue.scsi_status;
1314 			ccb->ccb_h.status = 0;
1315 			switch (ccb->csio.scsi_status) {
1316 			case SCSI_STATUS_OK:
1317 				ccb->ccb_h.status |= CAM_REQ_CMP;
1318 				break;
1319 			case SCSI_STATUS_CHECK_COND:
1320 			case SCSI_STATUS_CMD_TERMINATED:
1321 				bcopy(&acb->sense_data, &ccb->csio.sense_data,
1322 				      ccb->csio.sense_len);
1323 				ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
1324 				ccb->csio.sense_resid = acb->queue.sense_len;
1325 				/* FALLTHROUGH */
1326 			default:
1327 				ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR
1328 						  |  CAM_DEV_QFRZN;
1329 				xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1330 				break;
1331 			}
1332 			adwfreeacb(adw, acb);
1333 			xpt_done(ccb);
1334 		} else {
1335 			adwprocesserror(adw, acb);
1336 		}
1337 	}
1338 }
1339 
1340 static void
1341 adwprocesserror(struct adw_softc *adw, struct acb *acb)
1342 {
1343 	union ccb *ccb;
1344 
1345 	ccb = acb->ccb;
1346 	if (acb->queue.done_status == QD_ABORTED_BY_HOST) {
1347 		ccb->ccb_h.status = CAM_REQ_ABORTED;
1348 	} else {
1349 
1350 		switch (acb->queue.host_status) {
1351 		case QHSTA_M_SEL_TIMEOUT:
1352 			ccb->ccb_h.status = CAM_SEL_TIMEOUT;
1353 			break;
1354 		case QHSTA_M_SXFR_OFF_UFLW:
1355 		case QHSTA_M_SXFR_OFF_OFLW:
1356 		case QHSTA_M_DATA_OVER_RUN:
1357 			ccb->ccb_h.status = CAM_DATA_RUN_ERR;
1358 			break;
1359 		case QHSTA_M_SXFR_DESELECTED:
1360 		case QHSTA_M_UNEXPECTED_BUS_FREE:
1361 			ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
1362 			break;
1363 		case QHSTA_M_SCSI_BUS_RESET:
1364 		case QHSTA_M_SCSI_BUS_RESET_UNSOL:
1365 			ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
1366 			break;
1367 		case QHSTA_M_BUS_DEVICE_RESET:
1368 			ccb->ccb_h.status = CAM_BDR_SENT;
1369 			break;
1370 		case QHSTA_M_QUEUE_ABORTED:
1371 			/* BDR or Bus Reset */
1372 			kprintf("Saw Queue Aborted\n");
1373 			ccb->ccb_h.status = adw->last_reset;
1374 			break;
1375 		case QHSTA_M_SXFR_SDMA_ERR:
1376 		case QHSTA_M_SXFR_SXFR_PERR:
1377 		case QHSTA_M_RDMA_PERR:
1378 			ccb->ccb_h.status = CAM_UNCOR_PARITY;
1379 			break;
1380 		case QHSTA_M_WTM_TIMEOUT:
1381 		case QHSTA_M_SXFR_WD_TMO:
1382 		{
1383 			/* The SCSI bus hung in a phase */
1384 			xpt_print_path(adw->path);
1385 			kprintf("Watch Dog timer expired.  Reseting bus\n");
1386 			adw_reset_bus(adw);
1387 			break;
1388 		}
1389 		case QHSTA_M_SXFR_XFR_PH_ERR:
1390 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1391 			break;
1392 		case QHSTA_M_SXFR_UNKNOWN_ERROR:
1393 			break;
1394 		case QHSTA_M_BAD_CMPL_STATUS_IN:
1395 			/* No command complete after a status message */
1396 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1397 			break;
1398 		case QHSTA_M_AUTO_REQ_SENSE_FAIL:
1399 			ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
1400 			break;
1401 		case QHSTA_M_INVALID_DEVICE:
1402 			ccb->ccb_h.status = CAM_PATH_INVALID;
1403 			break;
1404 		case QHSTA_M_NO_AUTO_REQ_SENSE:
1405 			/*
1406 			 * User didn't request sense, but we got a
1407 			 * check condition.
1408 			 */
1409 			ccb->csio.scsi_status = acb->queue.scsi_status;
1410 			ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
1411 			break;
1412 		default:
1413 			panic("%s: Unhandled Host status error %x",
1414 			      adw_name(adw), acb->queue.host_status);
1415 			/* NOTREACHED */
1416 		}
1417 	}
1418 	if ((acb->state & ACB_RECOVERY_ACB) != 0) {
1419 		if (ccb->ccb_h.status == CAM_SCSI_BUS_RESET
1420 		 || ccb->ccb_h.status == CAM_BDR_SENT)
1421 		 	ccb->ccb_h.status = CAM_CMD_TIMEOUT;
1422 	}
1423 	if (ccb->ccb_h.status != CAM_REQ_CMP) {
1424 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1425 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
1426 	}
1427 	adwfreeacb(adw, acb);
1428 	xpt_done(ccb);
1429 }
1430 
1431 static void
1432 adwtimeout(void *arg)
1433 {
1434 	struct acb	     *acb;
1435 	union  ccb	     *ccb;
1436 	struct adw_softc     *adw;
1437 	adw_idle_cmd_status_t status;
1438 	int		      target_id;
1439 
1440 	acb = (struct acb *)arg;
1441 	ccb = acb->ccb;
1442 	adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
1443 	xpt_print_path(ccb->ccb_h.path);
1444 	kprintf("ACB %p - timed out\n", (void *)acb);
1445 
1446 	crit_enter();
1447 
1448 	if ((acb->state & ACB_ACTIVE) == 0) {
1449 		xpt_print_path(ccb->ccb_h.path);
1450 		kprintf("ACB %p - timed out CCB already completed\n",
1451 		       (void *)acb);
1452 		crit_exit();
1453 		return;
1454 	}
1455 
1456 	acb->state |= ACB_RECOVERY_ACB;
1457 	target_id = ccb->ccb_h.target_id;
1458 
1459 	/* Attempt a BDR first */
1460 	status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
1461 				   ccb->ccb_h.target_id);
1462 	crit_exit();
1463 	if (status == ADW_IDLE_CMD_SUCCESS) {
1464 		kprintf("%s: BDR Delivered.  No longer in timeout\n",
1465 		       adw_name(adw));
1466 		adw_handle_device_reset(adw, target_id);
1467 	} else {
1468 		adw_reset_bus(adw);
1469 		xpt_print_path(adw->path);
1470 		kprintf("Bus Reset Delivered.  No longer in timeout\n");
1471 	}
1472 }
1473 
1474 static void
1475 adw_handle_device_reset(struct adw_softc *adw, u_int target)
1476 {
1477 	struct cam_path *path;
1478 	cam_status error;
1479 
1480 	error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim),
1481 				target, CAM_LUN_WILDCARD);
1482 
1483 	if (error == CAM_REQ_CMP) {
1484 		xpt_async(AC_SENT_BDR, path, NULL);
1485 		xpt_free_path(path);
1486 	}
1487 	adw->last_reset = CAM_BDR_SENT;
1488 }
1489 
1490 static void
1491 adw_handle_bus_reset(struct adw_softc *adw, int initiated)
1492 {
1493 	if (initiated) {
1494 		/*
1495 		 * The microcode currently sets the SCSI Bus Reset signal
1496 		 * while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET
1497 		 * command above.  But the SCSI Bus Reset Hold Time in the
1498 		 * microcode is not deterministic (it may in fact be for less
1499 		 * than the SCSI Spec. minimum of 25 us).  Therefore on return
1500 		 * the Adv Library sets the SCSI Bus Reset signal for
1501 		 * ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
1502 		 * than 25 us.
1503 		 */
1504 		u_int scsi_ctrl;
1505 
1506 	    	scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT;
1507 		adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
1508 		DELAY(ADW_SCSI_RESET_HOLD_TIME_US);
1509 		adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl);
1510 
1511 		/*
1512 		 * We will perform the async notification when the
1513 		 * SCSI Reset interrupt occurs.
1514 		 */
1515 	} else
1516 		xpt_async(AC_BUS_RESET, adw->path, NULL);
1517 	adw->last_reset = CAM_SCSI_BUS_RESET;
1518 }
1519