xref: /dragonfly/sys/dev/disk/advansys/adwcam.c (revision f02303f9)
1 /*
2  * CAM SCSI interface for the the Advanced Systems Inc.
3  * Second Generation SCSI controllers.
4  *
5  * Product specific probe and attach routines can be found in:
6  *
7  * adw_pci.c	ABP[3]940UW, ABP950UW, ABP3940U2W
8  *
9  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions, and the following disclaimer,
17  *    without modification.
18  * 2. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
25  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/advansys/adwcam.c,v 1.7.2.2 2001/03/05 13:08:55 obrien Exp $
34  * $DragonFly: src/sys/dev/disk/advansys/adwcam.c,v 1.15 2006/12/22 23:26:15 swildner Exp $
35  */
36 /*
37  * Ported from:
38  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
39  *
40  * Copyright (c) 1995-1998 Advanced System Products, Inc.
41  * All Rights Reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that redistributions of source
45  * code retain the above copyright notice and this comment without
46  * modification.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/bus.h>
54 #include <sys/thread2.h>
55 
56 #include <machine/clock.h>
57 
58 #include <sys/rman.h>
59 
60 #include <bus/cam/cam.h>
61 #include <bus/cam/cam_ccb.h>
62 #include <bus/cam/cam_sim.h>
63 #include <bus/cam/cam_xpt_sim.h>
64 #include <bus/cam/cam_debug.h>
65 
66 #include <bus/cam/scsi/scsi_message.h>
67 
68 #include "adwvar.h"
69 
70 /* Definitions for our use of the SIM private CCB area */
71 #define ccb_acb_ptr spriv_ptr0
72 #define ccb_adw_ptr spriv_ptr1
73 
74 u_long adw_unit;
75 
76 static __inline cam_status	adwccbstatus(union ccb*);
77 static __inline struct acb*	adwgetacb(struct adw_softc *adw);
78 static __inline void		adwfreeacb(struct adw_softc *adw,
79 					   struct acb *acb);
80 
81 static void		adwmapmem(void *arg, bus_dma_segment_t *segs,
82 				  int nseg, int error);
83 static struct sg_map_node*
84 			adwallocsgmap(struct adw_softc *adw);
85 static int		adwallocacbs(struct adw_softc *adw);
86 
87 static void		adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs,
88 				      int nseg, int error);
89 static void		adw_action(struct cam_sim *sim, union ccb *ccb);
90 static void		adw_poll(struct cam_sim *sim);
91 static void		adw_async(void *callback_arg, u_int32_t code,
92 				  struct cam_path *path, void *arg);
93 static void		adwprocesserror(struct adw_softc *adw, struct acb *acb);
94 static void		adwtimeout(void *arg);
95 static void		adw_handle_device_reset(struct adw_softc *adw,
96 						u_int target);
97 static void		adw_handle_bus_reset(struct adw_softc *adw,
98 					     int initiated);
99 
100 static __inline cam_status
101 adwccbstatus(union ccb* ccb)
102 {
103 	return (ccb->ccb_h.status & CAM_STATUS_MASK);
104 }
105 
106 static __inline struct acb*
107 adwgetacb(struct adw_softc *adw)
108 {
109 	struct	acb* acb;
110 
111 	crit_enter();
112 	if ((acb = SLIST_FIRST(&adw->free_acb_list)) != NULL) {
113 		SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
114 	} else if (adw->num_acbs < adw->max_acbs) {
115 		adwallocacbs(adw);
116 		acb = SLIST_FIRST(&adw->free_acb_list);
117 		if (acb == NULL)
118 			kprintf("%s: Can't malloc ACB\n", adw_name(adw));
119 		else {
120 			SLIST_REMOVE_HEAD(&adw->free_acb_list, links);
121 		}
122 	}
123 	crit_exit();
124 
125 	return (acb);
126 }
127 
128 static __inline void
129 adwfreeacb(struct adw_softc *adw, struct acb *acb)
130 {
131 	crit_enter();
132 	if ((acb->state & ACB_ACTIVE) != 0)
133 		LIST_REMOVE(&acb->ccb->ccb_h, sim_links.le);
134 	if ((acb->state & ACB_RELEASE_SIMQ) != 0)
135 		acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
136 	else if ((adw->state & ADW_RESOURCE_SHORTAGE) != 0
137 	      && (acb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
138 		acb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
139 		adw->state &= ~ADW_RESOURCE_SHORTAGE;
140 	}
141 	acb->state = ACB_FREE;
142 	SLIST_INSERT_HEAD(&adw->free_acb_list, acb, links);
143 	crit_exit();
144 }
145 
146 static void
147 adwmapmem(void *arg, bus_dma_segment_t *segs, int nseg, int error)
148 {
149 	bus_addr_t *busaddrp;
150 
151 	busaddrp = (bus_addr_t *)arg;
152 	*busaddrp = segs->ds_addr;
153 }
154 
155 static struct sg_map_node *
156 adwallocsgmap(struct adw_softc *adw)
157 {
158 	struct sg_map_node *sg_map;
159 
160 	sg_map = kmalloc(sizeof(*sg_map), M_DEVBUF, M_INTWAIT);
161 
162 	/* Allocate S/G space for the next batch of ACBS */
163 	if (bus_dmamem_alloc(adw->sg_dmat, (void **)&sg_map->sg_vaddr,
164 			     BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
165 		kfree(sg_map, M_DEVBUF);
166 		return (NULL);
167 	}
168 
169 	SLIST_INSERT_HEAD(&adw->sg_maps, sg_map, links);
170 
171 	bus_dmamap_load(adw->sg_dmat, sg_map->sg_dmamap, sg_map->sg_vaddr,
172 			PAGE_SIZE, adwmapmem, &sg_map->sg_physaddr, /*flags*/0);
173 
174 	bzero(sg_map->sg_vaddr, PAGE_SIZE);
175 	return (sg_map);
176 }
177 
178 /*
179  * Allocate another chunk of CCB's. Return count of entries added.
180  * Assumed to be called under crit_enter().
181  */
182 static int
183 adwallocacbs(struct adw_softc *adw)
184 {
185 	struct acb *next_acb;
186 	struct sg_map_node *sg_map;
187 	bus_addr_t busaddr;
188 	struct adw_sg_block *blocks;
189 	int newcount;
190 	int i;
191 
192 	next_acb = &adw->acbs[adw->num_acbs];
193 	sg_map = adwallocsgmap(adw);
194 
195 	if (sg_map == NULL)
196 		return (0);
197 
198 	blocks = sg_map->sg_vaddr;
199 	busaddr = sg_map->sg_physaddr;
200 
201 	newcount = (PAGE_SIZE / (ADW_SG_BLOCKCNT * sizeof(*blocks)));
202 	for (i = 0; adw->num_acbs < adw->max_acbs && i < newcount; i++) {
203 		int error;
204 
205 		error = bus_dmamap_create(adw->buffer_dmat, /*flags*/0,
206 					  &next_acb->dmamap);
207 		if (error != 0)
208 			break;
209 		next_acb->queue.scsi_req_baddr = acbvtob(adw, next_acb);
210 		next_acb->queue.scsi_req_bo = acbvtobo(adw, next_acb);
211 		next_acb->queue.sense_baddr =
212 		    acbvtob(adw, next_acb) + offsetof(struct acb, sense_data);
213 		next_acb->sg_blocks = blocks;
214 		next_acb->sg_busaddr = busaddr;
215 		next_acb->state = ACB_FREE;
216 		SLIST_INSERT_HEAD(&adw->free_acb_list, next_acb, links);
217 		blocks += ADW_SG_BLOCKCNT;
218 		busaddr += ADW_SG_BLOCKCNT * sizeof(*blocks);
219 		next_acb++;
220 		adw->num_acbs++;
221 	}
222 	return (i);
223 }
224 
225 static void
226 adwexecuteacb(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
227 {
228 	struct	 acb *acb;
229 	union	 ccb *ccb;
230 	struct	 adw_softc *adw;
231 
232 	acb = (struct acb *)arg;
233 	ccb = acb->ccb;
234 	adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
235 
236 	if (error != 0) {
237 		if (error != EFBIG)
238 			kprintf("%s: Unexepected error 0x%x returned from "
239 			       "bus_dmamap_load\n", adw_name(adw), error);
240 		if (ccb->ccb_h.status == CAM_REQ_INPROG) {
241 			xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
242 			ccb->ccb_h.status = CAM_REQ_TOO_BIG|CAM_DEV_QFRZN;
243 		}
244 		adwfreeacb(adw, acb);
245 		xpt_done(ccb);
246 		return;
247 	}
248 
249 	if (nseg != 0) {
250 		bus_dmasync_op_t op;
251 
252 		acb->queue.data_addr = dm_segs[0].ds_addr;
253 		acb->queue.data_cnt = ccb->csio.dxfer_len;
254 		if (nseg > 1) {
255 			struct adw_sg_block *sg_block;
256 			struct adw_sg_elm *sg;
257 			bus_addr_t sg_busaddr;
258 			u_int sg_index;
259 			bus_dma_segment_t *end_seg;
260 
261 			end_seg = dm_segs + nseg;
262 
263 			sg_busaddr = acb->sg_busaddr;
264 			sg_index = 0;
265 			/* Copy the segments into our SG list */
266 			for (sg_block = acb->sg_blocks;; sg_block++) {
267 				u_int i;
268 
269 				sg = sg_block->sg_list;
270 				for (i = 0; i < ADW_NO_OF_SG_PER_BLOCK; i++) {
271 					if (dm_segs >= end_seg)
272 						break;
273 
274 					sg->sg_addr = dm_segs->ds_addr;
275 					sg->sg_count = dm_segs->ds_len;
276 					sg++;
277 					dm_segs++;
278 				}
279 				sg_block->sg_cnt = i;
280 				sg_index += i;
281 				if (dm_segs == end_seg) {
282 					sg_block->sg_busaddr_next = 0;
283 					break;
284 				} else {
285 					sg_busaddr +=
286 					    sizeof(struct adw_sg_block);
287 					sg_block->sg_busaddr_next = sg_busaddr;
288 				}
289 			}
290 			acb->queue.sg_real_addr = acb->sg_busaddr;
291 		} else {
292 			acb->queue.sg_real_addr = 0;
293 		}
294 
295 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
296 			op = BUS_DMASYNC_PREREAD;
297 		else
298 			op = BUS_DMASYNC_PREWRITE;
299 
300 		bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
301 
302 	} else {
303 		acb->queue.data_addr = 0;
304 		acb->queue.data_cnt = 0;
305 		acb->queue.sg_real_addr = 0;
306 	}
307 
308 	crit_enter();
309 
310 	/*
311 	 * Last time we need to check if this CCB needs to
312 	 * be aborted.
313 	 */
314 	if (ccb->ccb_h.status != CAM_REQ_INPROG) {
315 		if (nseg != 0)
316 			bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
317 		adwfreeacb(adw, acb);
318 		xpt_done(ccb);
319 		crit_exit();
320 		return;
321 	}
322 
323 	acb->state |= ACB_ACTIVE;
324 	ccb->ccb_h.status |= CAM_SIM_QUEUED;
325 	LIST_INSERT_HEAD(&adw->pending_ccbs, &ccb->ccb_h, sim_links.le);
326 	callout_reset(&ccb->ccb_h.timeout_ch, (ccb->ccb_h.timeout * hz) / 1000,
327 	    adwtimeout, acb);
328 
329 	adw_send_acb(adw, acb, acbvtob(adw, acb));
330 
331 	crit_exit();
332 }
333 
334 static void
335 adw_action(struct cam_sim *sim, union ccb *ccb)
336 {
337 	struct	adw_softc *adw;
338 
339 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adw_action\n"));
340 
341 	adw = (struct adw_softc *)cam_sim_softc(sim);
342 
343 	switch (ccb->ccb_h.func_code) {
344 	/* Common cases first */
345 	case XPT_SCSI_IO:	/* Execute the requested I/O operation */
346 	{
347 		struct	ccb_scsiio *csio;
348 		struct	ccb_hdr *ccbh;
349 		struct	acb *acb;
350 
351 		csio = &ccb->csio;
352 		ccbh = &ccb->ccb_h;
353 
354 		/* Max supported CDB length is 12 bytes */
355 		if (csio->cdb_len > 12) {
356 			ccb->ccb_h.status = CAM_REQ_INVALID;
357 			xpt_done(ccb);
358 			return;
359 		}
360 
361 		if ((acb = adwgetacb(adw)) == NULL) {
362 			crit_enter();
363 			adw->state |= ADW_RESOURCE_SHORTAGE;
364 			crit_exit();
365 			xpt_freeze_simq(sim, /*count*/1);
366 			ccb->ccb_h.status = CAM_REQUEUE_REQ;
367 			xpt_done(ccb);
368 			return;
369 		}
370 
371 		/* Link acb and ccb so we can find one from the other */
372 		acb->ccb = ccb;
373 		ccb->ccb_h.ccb_acb_ptr = acb;
374 		ccb->ccb_h.ccb_adw_ptr = adw;
375 
376 		acb->queue.cntl = 0;
377 		acb->queue.target_cmd = 0;
378 		acb->queue.target_id = ccb->ccb_h.target_id;
379 		acb->queue.target_lun = ccb->ccb_h.target_lun;
380 
381 		acb->queue.mflag = 0;
382 		acb->queue.sense_len =
383 			MIN(csio->sense_len, sizeof(acb->sense_data));
384 		acb->queue.cdb_len = csio->cdb_len;
385 		if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0) {
386 			switch (csio->tag_action) {
387 			case MSG_SIMPLE_Q_TAG:
388 				acb->queue.scsi_cntl = ADW_QSC_SIMPLE_Q_TAG;
389 				break;
390 			case MSG_HEAD_OF_Q_TAG:
391 				acb->queue.scsi_cntl = ADW_QSC_HEAD_OF_Q_TAG;
392 				break;
393 			case MSG_ORDERED_Q_TAG:
394 				acb->queue.scsi_cntl = ADW_QSC_ORDERED_Q_TAG;
395 				break;
396 			default:
397 				acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
398 				break;
399 			}
400 		} else
401 			acb->queue.scsi_cntl = ADW_QSC_NO_TAGMSG;
402 
403 		if ((ccb->ccb_h.flags & CAM_DIS_DISCONNECT) != 0)
404 			acb->queue.scsi_cntl |= ADW_QSC_NO_DISC;
405 
406 		acb->queue.done_status = 0;
407 		acb->queue.scsi_status = 0;
408 		acb->queue.host_status = 0;
409 		acb->queue.sg_wk_ix = 0;
410 		if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
411 			if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) {
412 				bcopy(csio->cdb_io.cdb_ptr,
413 				      acb->queue.cdb, csio->cdb_len);
414 			} else {
415 				/* I guess I could map it in... */
416 				ccb->ccb_h.status = CAM_REQ_INVALID;
417 				adwfreeacb(adw, acb);
418 				xpt_done(ccb);
419 				return;
420 			}
421 		} else {
422 			bcopy(csio->cdb_io.cdb_bytes,
423 			      acb->queue.cdb, csio->cdb_len);
424 		}
425 
426 		/*
427 		 * If we have any data to send with this command,
428 		 * map it into bus space.
429 		 */
430 		if ((ccbh->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
431 			if ((ccbh->flags & CAM_SCATTER_VALID) == 0) {
432 				/*
433 				 * We've been given a pointer
434 				 * to a single buffer.
435 				 */
436 				if ((ccbh->flags & CAM_DATA_PHYS) == 0) {
437 					int error;
438 
439 					crit_enter();
440 					error =
441 					    bus_dmamap_load(adw->buffer_dmat,
442 							    acb->dmamap,
443 							    csio->data_ptr,
444 							    csio->dxfer_len,
445 							    adwexecuteacb,
446 							    acb, /*flags*/0);
447 					if (error == EINPROGRESS) {
448 						/*
449 						 * So as to maintain ordering,
450 						 * freeze the controller queue
451 						 * until our mapping is
452 						 * returned.
453 						 */
454 						xpt_freeze_simq(sim, 1);
455 						acb->state |= CAM_RELEASE_SIMQ;
456 					}
457 					crit_exit();
458 				} else {
459 					struct bus_dma_segment seg;
460 
461 					/* Pointer to physical buffer */
462 					seg.ds_addr =
463 					    (bus_addr_t)csio->data_ptr;
464 					seg.ds_len = csio->dxfer_len;
465 					adwexecuteacb(acb, &seg, 1, 0);
466 				}
467 			} else {
468 				struct bus_dma_segment *segs;
469 
470 				if ((ccbh->flags & CAM_DATA_PHYS) != 0)
471 					panic("adw_action - Physical "
472 					      "segment pointers "
473 					      "unsupported");
474 
475 				if ((ccbh->flags&CAM_SG_LIST_PHYS)==0)
476 					panic("adw_action - Virtual "
477 					      "segment addresses "
478 					      "unsupported");
479 
480 				/* Just use the segments provided */
481 				segs = (struct bus_dma_segment *)csio->data_ptr;
482 				adwexecuteacb(acb, segs, csio->sglist_cnt,
483 					      (csio->sglist_cnt < ADW_SGSIZE)
484 					      ? 0 : EFBIG);
485 			}
486 		} else {
487 			adwexecuteacb(acb, NULL, 0, 0);
488 		}
489 		break;
490 	}
491 	case XPT_RESET_DEV:	/* Bus Device Reset the specified SCSI device */
492 	{
493 		adw_idle_cmd_status_t status;
494 
495 		status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
496 					   ccb->ccb_h.target_id);
497 		if (status == ADW_IDLE_CMD_SUCCESS) {
498 			ccb->ccb_h.status = CAM_REQ_CMP;
499 			if (bootverbose) {
500 				xpt_print_path(ccb->ccb_h.path);
501 				kprintf("BDR Delivered\n");
502 			}
503 		} else
504 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
505 		xpt_done(ccb);
506 		break;
507 	}
508 	case XPT_ABORT:			/* Abort the specified CCB */
509 		/* XXX Implement */
510 		ccb->ccb_h.status = CAM_REQ_INVALID;
511 		xpt_done(ccb);
512 		break;
513 	case XPT_SET_TRAN_SETTINGS:
514 	{
515 		struct	  ccb_trans_settings *cts;
516 		u_int	  target_mask;
517 
518 		cts = &ccb->cts;
519 		target_mask = 0x01 << ccb->ccb_h.target_id;
520 
521 		crit_enter();
522 		if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
523 			u_int sdtrdone;
524 
525 			sdtrdone = adw_lram_read_16(adw, ADW_MC_SDTR_DONE);
526 			if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
527 				u_int discenb;
528 
529 				discenb =
530 				    adw_lram_read_16(adw, ADW_MC_DISC_ENABLE);
531 
532 				if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
533 					discenb |= target_mask;
534 				else
535 					discenb &= ~target_mask;
536 
537 				adw_lram_write_16(adw, ADW_MC_DISC_ENABLE,
538 						  discenb);
539 			}
540 
541 			if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
542 
543 				if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
544 					adw->tagenb |= target_mask;
545 				else
546 					adw->tagenb &= ~target_mask;
547 			}
548 
549 			if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
550 				u_int wdtrenb_orig;
551 				u_int wdtrenb;
552 				u_int wdtrdone;
553 
554 				wdtrenb_orig =
555 				    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
556 				wdtrenb = wdtrenb_orig;
557 				wdtrdone = adw_lram_read_16(adw,
558 							    ADW_MC_WDTR_DONE);
559 				switch (cts->bus_width) {
560 				case MSG_EXT_WDTR_BUS_32_BIT:
561 				case MSG_EXT_WDTR_BUS_16_BIT:
562 					wdtrenb |= target_mask;
563 					break;
564 				case MSG_EXT_WDTR_BUS_8_BIT:
565 				default:
566 					wdtrenb &= ~target_mask;
567 					break;
568 				}
569 				if (wdtrenb != wdtrenb_orig) {
570 					adw_lram_write_16(adw,
571 							  ADW_MC_WDTR_ABLE,
572 							  wdtrenb);
573 					wdtrdone &= ~target_mask;
574 					adw_lram_write_16(adw,
575 							  ADW_MC_WDTR_DONE,
576 							  wdtrdone);
577 					/* Wide negotiation forces async */
578 					sdtrdone &= ~target_mask;
579 					adw_lram_write_16(adw,
580 							  ADW_MC_SDTR_DONE,
581 							  sdtrdone);
582 				}
583 			}
584 
585 			if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
586 			 || ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)) {
587 				u_int sdtr_orig;
588 				u_int sdtr;
589 				u_int sdtrable_orig;
590 				u_int sdtrable;
591 
592 				sdtr = adw_get_chip_sdtr(adw,
593 							 ccb->ccb_h.target_id);
594 				sdtr_orig = sdtr;
595 				sdtrable = adw_lram_read_16(adw,
596 							    ADW_MC_SDTR_ABLE);
597 				sdtrable_orig = sdtrable;
598 
599 				if ((cts->valid
600 				   & CCB_TRANS_SYNC_RATE_VALID) != 0) {
601 
602 					sdtr =
603 					    adw_find_sdtr(adw,
604 							  cts->sync_period);
605 				}
606 
607 				if ((cts->valid
608 				   & CCB_TRANS_SYNC_OFFSET_VALID) != 0) {
609 					if (cts->sync_offset == 0)
610 						sdtr = ADW_MC_SDTR_ASYNC;
611 				}
612 
613 				if (sdtr == ADW_MC_SDTR_ASYNC)
614 					sdtrable &= ~target_mask;
615 				else
616 					sdtrable |= target_mask;
617 				if (sdtr != sdtr_orig
618 				 || sdtrable != sdtrable_orig) {
619 					adw_set_chip_sdtr(adw,
620 							  ccb->ccb_h.target_id,
621 							  sdtr);
622 					sdtrdone &= ~target_mask;
623 					adw_lram_write_16(adw, ADW_MC_SDTR_ABLE,
624 							  sdtrable);
625 					adw_lram_write_16(adw, ADW_MC_SDTR_DONE,
626 							  sdtrdone);
627 
628 				}
629 			}
630 		}
631 		crit_exit();
632 		ccb->ccb_h.status = CAM_REQ_CMP;
633 		xpt_done(ccb);
634 		break;
635 	}
636 	case XPT_GET_TRAN_SETTINGS:
637 	/* Get default/user set transfer settings for the target */
638 	{
639 		struct	ccb_trans_settings *cts;
640 		u_int	target_mask;
641 
642 		cts = &ccb->cts;
643 		target_mask = 0x01 << ccb->ccb_h.target_id;
644 		if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
645 			u_int mc_sdtr;
646 
647 			cts->flags = 0;
648 			if ((adw->user_discenb & target_mask) != 0)
649 				cts->flags |= CCB_TRANS_DISC_ENB;
650 
651 			if ((adw->user_tagenb & target_mask) != 0)
652 				cts->flags |= CCB_TRANS_TAG_ENB;
653 
654 			if ((adw->user_wdtr & target_mask) != 0)
655 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
656 			else
657 				cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
658 
659 			mc_sdtr = adw_get_user_sdtr(adw, ccb->ccb_h.target_id);
660 			cts->sync_period = adw_find_period(adw, mc_sdtr);
661 			if (cts->sync_period != 0)
662 				cts->sync_offset = 15; /* XXX ??? */
663 			else
664 				cts->sync_offset = 0;
665 
666 			cts->valid = CCB_TRANS_SYNC_RATE_VALID
667 				   | CCB_TRANS_SYNC_OFFSET_VALID
668 				   | CCB_TRANS_BUS_WIDTH_VALID
669 				   | CCB_TRANS_DISC_VALID
670 				   | CCB_TRANS_TQ_VALID;
671 			ccb->ccb_h.status = CAM_REQ_CMP;
672 		} else {
673 			u_int targ_tinfo;
674 
675 			cts->flags = 0;
676 			if ((adw_lram_read_16(adw, ADW_MC_DISC_ENABLE)
677 			  & target_mask) != 0)
678 				cts->flags |= CCB_TRANS_DISC_ENB;
679 
680 			if ((adw->tagenb & target_mask) != 0)
681 				cts->flags |= CCB_TRANS_TAG_ENB;
682 
683 			targ_tinfo =
684 			    adw_lram_read_16(adw,
685 					     ADW_MC_DEVICE_HSHK_CFG_TABLE
686 					     + (2 * ccb->ccb_h.target_id));
687 
688 			if ((targ_tinfo & ADW_HSHK_CFG_WIDE_XFR) != 0)
689 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
690 			else
691 				cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
692 
693 			cts->sync_period =
694 			    adw_hshk_cfg_period_factor(targ_tinfo);
695 
696 			cts->sync_offset = targ_tinfo & ADW_HSHK_CFG_OFFSET;
697 			if (cts->sync_period == 0)
698 				cts->sync_offset = 0;
699 
700 			if (cts->sync_offset == 0)
701 				cts->sync_period = 0;
702 		}
703 		cts->valid = CCB_TRANS_SYNC_RATE_VALID
704 			   | CCB_TRANS_SYNC_OFFSET_VALID
705 			   | CCB_TRANS_BUS_WIDTH_VALID
706 			   | CCB_TRANS_DISC_VALID
707 			   | CCB_TRANS_TQ_VALID;
708 		ccb->ccb_h.status = CAM_REQ_CMP;
709 		xpt_done(ccb);
710 		break;
711 	}
712 	case XPT_CALC_GEOMETRY:
713 	{
714 		struct	  ccb_calc_geometry *ccg;
715 		u_int32_t size_mb;
716 		u_int32_t secs_per_cylinder;
717 		int	  extended;
718 
719 		/*
720 		 * XXX Use Adaptec translation until I find out how to
721 		 *     get this information from the card.
722 		 */
723 		ccg = &ccb->ccg;
724 		size_mb = ccg->volume_size
725 			/ ((1024L * 1024L) / ccg->block_size);
726 		extended = 1;
727 
728 		if (size_mb > 1024 && extended) {
729 			ccg->heads = 255;
730 			ccg->secs_per_track = 63;
731 		} else {
732 			ccg->heads = 64;
733 			ccg->secs_per_track = 32;
734 		}
735 		secs_per_cylinder = ccg->heads * ccg->secs_per_track;
736 		ccg->cylinders = ccg->volume_size / secs_per_cylinder;
737 		ccb->ccb_h.status = CAM_REQ_CMP;
738 		xpt_done(ccb);
739 		break;
740 	}
741 	case XPT_RESET_BUS:		/* Reset the specified SCSI bus */
742 	{
743 		int failure;
744 
745 		failure = adw_reset_bus(adw);
746 		if (failure != 0) {
747 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
748 		} else {
749 			if (bootverbose) {
750 				xpt_print_path(adw->path);
751 				kprintf("Bus Reset Delivered\n");
752 			}
753 			ccb->ccb_h.status = CAM_REQ_CMP;
754 		}
755 		xpt_done(ccb);
756 		break;
757 	}
758 	case XPT_TERM_IO:		/* Terminate the I/O process */
759 		/* XXX Implement */
760 		ccb->ccb_h.status = CAM_REQ_INVALID;
761 		xpt_done(ccb);
762 		break;
763 	case XPT_PATH_INQ:		/* Path routing inquiry */
764 	{
765 		struct ccb_pathinq *cpi = &ccb->cpi;
766 
767 		cpi->version_num = 1;
768 		cpi->hba_inquiry = PI_WIDE_16|PI_SDTR_ABLE|PI_TAG_ABLE;
769 		cpi->target_sprt = 0;
770 		cpi->hba_misc = 0;
771 		cpi->hba_eng_cnt = 0;
772 		cpi->max_target = ADW_MAX_TID;
773 		cpi->max_lun = ADW_MAX_LUN;
774 		cpi->initiator_id = adw->initiator_id;
775 		cpi->bus_id = cam_sim_bus(sim);
776 		cpi->base_transfer_speed = 3300;
777 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
778 		strncpy(cpi->hba_vid, "AdvanSys", HBA_IDLEN);
779 		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
780 		cpi->unit_number = cam_sim_unit(sim);
781 		cpi->ccb_h.status = CAM_REQ_CMP;
782 		xpt_done(ccb);
783 		break;
784 	}
785 	default:
786 		ccb->ccb_h.status = CAM_REQ_INVALID;
787 		xpt_done(ccb);
788 		break;
789 	}
790 }
791 
792 static void
793 adw_poll(struct cam_sim *sim)
794 {
795 	adw_intr(cam_sim_softc(sim));
796 }
797 
798 static void
799 adw_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
800 {
801 }
802 
803 struct adw_softc *
804 adw_alloc(device_t dev, struct resource *regs, int regs_type, int regs_id)
805 {
806 	struct	 adw_softc *adw;
807 	int	 i;
808 
809 	/*
810 	 * Allocate a storage area for us
811 	 */
812 	adw = kmalloc(sizeof(struct adw_softc), M_DEVBUF, M_INTWAIT | M_ZERO);
813 	LIST_INIT(&adw->pending_ccbs);
814 	SLIST_INIT(&adw->sg_maps);
815 	adw->device = dev;
816 	adw->unit = device_get_unit(dev);
817 	adw->regs_res_type = regs_type;
818 	adw->regs_res_id = regs_id;
819 	adw->regs = regs;
820 	adw->tag = rman_get_bustag(regs);
821 	adw->bsh = rman_get_bushandle(regs);
822 	KKASSERT(adw->unit >= 0 && adw->unit < 100);
823 	i = adw->unit / 10;
824 	adw->name = kmalloc(sizeof("adw") + i + 1, M_DEVBUF, M_INTWAIT);
825 	ksprintf(adw->name, "adw%d", adw->unit);
826 	return(adw);
827 }
828 
829 void
830 adw_free(struct adw_softc *adw)
831 {
832 	switch (adw->init_level) {
833 	case 9:
834 	{
835 		struct sg_map_node *sg_map;
836 
837 		while ((sg_map = SLIST_FIRST(&adw->sg_maps)) != NULL) {
838 			SLIST_REMOVE_HEAD(&adw->sg_maps, links);
839 			bus_dmamap_unload(adw->sg_dmat,
840 					  sg_map->sg_dmamap);
841 			bus_dmamem_free(adw->sg_dmat, sg_map->sg_vaddr,
842 					sg_map->sg_dmamap);
843 			kfree(sg_map, M_DEVBUF);
844 		}
845 		bus_dma_tag_destroy(adw->sg_dmat);
846 	}
847 	case 8:
848 		bus_dmamap_unload(adw->acb_dmat, adw->acb_dmamap);
849 	case 7:
850 		bus_dmamem_free(adw->acb_dmat, adw->acbs,
851 				adw->acb_dmamap);
852 		bus_dmamap_destroy(adw->acb_dmat, adw->acb_dmamap);
853 	case 6:
854 		bus_dma_tag_destroy(adw->acb_dmat);
855 	case 5:
856 		bus_dmamap_unload(adw->carrier_dmat, adw->carrier_dmamap);
857 	case 4:
858 		bus_dmamem_free(adw->carrier_dmat, adw->carriers,
859 				adw->carrier_dmamap);
860 		bus_dmamap_destroy(adw->carrier_dmat, adw->carrier_dmamap);
861 	case 3:
862 		bus_dma_tag_destroy(adw->carrier_dmat);
863 	case 2:
864 		bus_dma_tag_destroy(adw->buffer_dmat);
865 	case 1:
866 		bus_dma_tag_destroy(adw->parent_dmat);
867 	case 0:
868 		break;
869 	}
870 	kfree(adw->name, M_DEVBUF);
871 	kfree(adw, M_DEVBUF);
872 }
873 
874 int
875 adw_init(struct adw_softc *adw)
876 {
877 	struct	  adw_eeprom eep_config;
878 	u_int	  tid;
879 	u_int	  i;
880 	u_int16_t checksum;
881 	u_int16_t scsicfg1;
882 
883 	checksum = adw_eeprom_read(adw, &eep_config);
884 	bcopy(eep_config.serial_number, adw->serial_number,
885 	      sizeof(adw->serial_number));
886 	if (checksum != eep_config.checksum) {
887 		u_int16_t serial_number[3];
888 
889 		adw->flags |= ADW_EEPROM_FAILED;
890 		kprintf("%s: EEPROM checksum failed.  Restoring Defaults\n",
891 		       adw_name(adw));
892 
893 	        /*
894 		 * Restore the default EEPROM settings.
895 		 * Assume the 6 byte board serial number that was read
896 		 * from EEPROM is correct even if the EEPROM checksum
897 		 * failed.
898 		 */
899 		bcopy(adw->default_eeprom, &eep_config, sizeof(eep_config));
900 		bcopy(adw->serial_number, eep_config.serial_number,
901 		      sizeof(serial_number));
902 		adw_eeprom_write(adw, &eep_config);
903 	}
904 
905 	/* Pull eeprom information into our softc. */
906 	adw->bios_ctrl = eep_config.bios_ctrl;
907 	adw->user_wdtr = eep_config.wdtr_able;
908 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
909 		u_int	  mc_sdtr;
910 		u_int16_t tid_mask;
911 
912 		tid_mask = 0x1 << tid;
913 		if ((adw->features & ADW_ULTRA) != 0) {
914 			/*
915 			 * Ultra chips store sdtr and ultraenb
916 			 * bits in their seeprom, so we must
917 			 * construct valid mc_sdtr entries for
918 			 * indirectly.
919 			 */
920 			if (eep_config.sync1.sync_enable & tid_mask) {
921 				if (eep_config.sync2.ultra_enable & tid_mask)
922 					mc_sdtr = ADW_MC_SDTR_20;
923 				else
924 					mc_sdtr = ADW_MC_SDTR_10;
925 			} else
926 				mc_sdtr = ADW_MC_SDTR_ASYNC;
927 		} else {
928 			switch (ADW_TARGET_GROUP(tid)) {
929 			case 3:
930 				mc_sdtr = eep_config.sync4.sdtr4;
931 				break;
932 			case 2:
933 				mc_sdtr = eep_config.sync3.sdtr3;
934 				break;
935 			case 1:
936 				mc_sdtr = eep_config.sync2.sdtr2;
937 				break;
938 			default: /* Shut up compiler */
939 			case 0:
940 				mc_sdtr = eep_config.sync1.sdtr1;
941 				break;
942 			}
943 			mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
944 			mc_sdtr &= 0xFF;
945 		}
946 		adw_set_user_sdtr(adw, tid, mc_sdtr);
947 	}
948 	adw->user_tagenb = eep_config.tagqng_able;
949 	adw->user_discenb = eep_config.disc_enable;
950 	adw->max_acbs = eep_config.max_host_qng;
951 	adw->initiator_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
952 
953 	/*
954 	 * Sanity check the number of host openings.
955 	 */
956 	if (adw->max_acbs > ADW_DEF_MAX_HOST_QNG)
957 		adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
958 	else if (adw->max_acbs < ADW_DEF_MIN_HOST_QNG) {
959         	/* If the value is zero, assume it is uninitialized. */
960 		if (adw->max_acbs == 0)
961 			adw->max_acbs = ADW_DEF_MAX_HOST_QNG;
962 		else
963 			adw->max_acbs = ADW_DEF_MIN_HOST_QNG;
964 	}
965 
966 	scsicfg1 = 0;
967 	if ((adw->features & ADW_ULTRA2) != 0) {
968 		switch (eep_config.termination_lvd) {
969 		default:
970 			kprintf("%s: Invalid EEPROM LVD Termination Settings.\n",
971 			       adw_name(adw));
972 			kprintf("%s: Reverting to Automatic LVD Termination\n",
973 			       adw_name(adw));
974 			/* FALLTHROUGH */
975 		case ADW_EEPROM_TERM_AUTO:
976 			break;
977 		case ADW_EEPROM_TERM_BOTH_ON:
978 			scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_LO;
979 			/* FALLTHROUGH */
980 		case ADW_EEPROM_TERM_HIGH_ON:
981 			scsicfg1 |= ADW2_SCSI_CFG1_TERM_LVD_HI;
982 			/* FALLTHROUGH */
983 		case ADW_EEPROM_TERM_OFF:
984 			scsicfg1 |= ADW2_SCSI_CFG1_DIS_TERM_DRV;
985 			break;
986 		}
987 	}
988 
989 	switch (eep_config.termination_se) {
990 	default:
991 		kprintf("%s: Invalid SE EEPROM Termination Settings.\n",
992 		       adw_name(adw));
993 		kprintf("%s: Reverting to Automatic SE Termination\n",
994 		       adw_name(adw));
995 		/* FALLTHROUGH */
996 	case ADW_EEPROM_TERM_AUTO:
997 		break;
998 	case ADW_EEPROM_TERM_BOTH_ON:
999 		scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
1000 		/* FALLTHROUGH */
1001 	case ADW_EEPROM_TERM_HIGH_ON:
1002 		scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
1003 		/* FALLTHROUGH */
1004 	case ADW_EEPROM_TERM_OFF:
1005 		scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_MANUAL;
1006 		break;
1007 	}
1008 	kprintf("%s: SCSI ID %d, ", adw_name(adw), adw->initiator_id);
1009 
1010 	/* DMA tag for mapping buffers into device visible space. */
1011 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
1012 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
1013 			       /*highaddr*/BUS_SPACE_MAXADDR,
1014 			       /*filter*/NULL, /*filterarg*/NULL,
1015 			       /*maxsize*/MAXBSIZE, /*nsegments*/ADW_SGSIZE,
1016 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1017 			       /*flags*/BUS_DMA_ALLOCNOW,
1018 			       &adw->buffer_dmat) != 0) {
1019 		return (ENOMEM);
1020 	}
1021 
1022 	adw->init_level++;
1023 
1024 	/* DMA tag for our ccb carrier structures */
1025 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/0x10,
1026 			       /*boundary*/0,
1027 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
1028 			       /*highaddr*/BUS_SPACE_MAXADDR,
1029 			       /*filter*/NULL, /*filterarg*/NULL,
1030 			       (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
1031 				* sizeof(struct adw_carrier),
1032 			       /*nsegments*/1,
1033 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1034 			       /*flags*/0, &adw->carrier_dmat) != 0) {
1035 		return (ENOMEM);
1036         }
1037 
1038 	adw->init_level++;
1039 
1040 	/* Allocation for our ccb carrier structures */
1041 	if (bus_dmamem_alloc(adw->carrier_dmat, (void **)&adw->carriers,
1042 			     BUS_DMA_NOWAIT, &adw->carrier_dmamap) != 0) {
1043 		return (ENOMEM);
1044 	}
1045 
1046 	adw->init_level++;
1047 
1048 	/* And permanently map them */
1049 	bus_dmamap_load(adw->carrier_dmat, adw->carrier_dmamap,
1050 			adw->carriers,
1051 			(adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
1052 			 * sizeof(struct adw_carrier),
1053 			adwmapmem, &adw->carrier_busbase, /*flags*/0);
1054 
1055 	/* Clear them out. */
1056 	bzero(adw->carriers, (adw->max_acbs + ADW_NUM_CARRIER_QUEUES + 1)
1057 			     * sizeof(struct adw_carrier));
1058 
1059 	/* Setup our free carrier list */
1060 	adw->free_carriers = adw->carriers;
1061 	for (i = 0; i < adw->max_acbs + ADW_NUM_CARRIER_QUEUES; i++) {
1062 		adw->carriers[i].carr_offset =
1063 			carriervtobo(adw, &adw->carriers[i]);
1064 		adw->carriers[i].carr_ba =
1065 			carriervtob(adw, &adw->carriers[i]);
1066 		adw->carriers[i].areq_ba = 0;
1067 		adw->carriers[i].next_ba =
1068 			carriervtobo(adw, &adw->carriers[i+1]);
1069 	}
1070 	/* Terminal carrier.  Never leaves the freelist */
1071 	adw->carriers[i].carr_offset =
1072 		carriervtobo(adw, &adw->carriers[i]);
1073 	adw->carriers[i].carr_ba =
1074 		carriervtob(adw, &adw->carriers[i]);
1075 	adw->carriers[i].areq_ba = 0;
1076 	adw->carriers[i].next_ba = ~0;
1077 
1078 	adw->init_level++;
1079 
1080 	/* DMA tag for our acb structures */
1081 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
1082 			       /*lowaddr*/BUS_SPACE_MAXADDR,
1083 			       /*highaddr*/BUS_SPACE_MAXADDR,
1084 			       /*filter*/NULL, /*filterarg*/NULL,
1085 			       adw->max_acbs * sizeof(struct acb),
1086 			       /*nsegments*/1,
1087 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1088 			       /*flags*/0, &adw->acb_dmat) != 0) {
1089 		return (ENOMEM);
1090         }
1091 
1092 	adw->init_level++;
1093 
1094 	/* Allocation for our ccbs */
1095 	if (bus_dmamem_alloc(adw->acb_dmat, (void **)&adw->acbs,
1096 			     BUS_DMA_NOWAIT, &adw->acb_dmamap) != 0)
1097 		return (ENOMEM);
1098 
1099 	adw->init_level++;
1100 
1101 	/* And permanently map them */
1102 	bus_dmamap_load(adw->acb_dmat, adw->acb_dmamap,
1103 			adw->acbs,
1104 			adw->max_acbs * sizeof(struct acb),
1105 			adwmapmem, &adw->acb_busbase, /*flags*/0);
1106 
1107 	/* Clear them out. */
1108 	bzero(adw->acbs, adw->max_acbs * sizeof(struct acb));
1109 
1110 	/* DMA tag for our S/G structures.  We allocate in page sized chunks */
1111 	if (bus_dma_tag_create(adw->parent_dmat, /*alignment*/1, /*boundary*/0,
1112 			       /*lowaddr*/BUS_SPACE_MAXADDR,
1113 			       /*highaddr*/BUS_SPACE_MAXADDR,
1114 			       /*filter*/NULL, /*filterarg*/NULL,
1115 			       PAGE_SIZE, /*nsegments*/1,
1116 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
1117 			       /*flags*/0, &adw->sg_dmat) != 0) {
1118 		return (ENOMEM);
1119         }
1120 
1121 	adw->init_level++;
1122 
1123 	/* Allocate our first batch of ccbs */
1124 	if (adwallocacbs(adw) == 0)
1125 		return (ENOMEM);
1126 
1127 	if (adw_init_chip(adw, scsicfg1) != 0)
1128 		return (ENXIO);
1129 
1130 	kprintf("Queue Depth %d\n", adw->max_acbs);
1131 
1132 	return (0);
1133 }
1134 
1135 /*
1136  * Attach all the sub-devices we can find
1137  */
1138 int
1139 adw_attach(struct adw_softc *adw)
1140 {
1141 	struct ccb_setasync csa;
1142 	int error;
1143 
1144 	error = 0;
1145 	crit_enter();
1146 	/* Hook up our interrupt handler */
1147 	if ((error = bus_setup_intr(adw->device, adw->irq, 0,
1148 				    adw_intr, adw, &adw->ih, NULL)) != 0) {
1149 		device_printf(adw->device, "bus_setup_intr() failed: %d\n",
1150 			      error);
1151 		goto fail;
1152 	}
1153 
1154 	/* Start the Risc processor now that we are fully configured. */
1155 	adw_outw(adw, ADW_RISC_CSR, ADW_RISC_CSR_RUN);
1156 
1157 	/*
1158 	 * Construct our SIM entry.
1159 	 */
1160 	adw->sim = cam_sim_alloc(adw_action, adw_poll, "adw", adw, adw->unit,
1161 				 1, adw->max_acbs, NULL);
1162 	if (adw->sim == NULL) {
1163 		error = ENOMEM;
1164 		goto fail;
1165 	}
1166 
1167 	/*
1168 	 * Register the bus.
1169 	 */
1170 	if (xpt_bus_register(adw->sim, 0) != CAM_SUCCESS) {
1171 		cam_sim_free(adw->sim);
1172 		error = ENOMEM;
1173 		goto fail;
1174 	}
1175 
1176 	if (xpt_create_path(&adw->path, /*periph*/NULL, cam_sim_path(adw->sim),
1177 			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
1178 	   == CAM_REQ_CMP) {
1179 		xpt_setup_ccb(&csa.ccb_h, adw->path, /*priority*/5);
1180 		csa.ccb_h.func_code = XPT_SASYNC_CB;
1181 		csa.event_enable = AC_LOST_DEVICE;
1182 		csa.callback = adw_async;
1183 		csa.callback_arg = adw;
1184 		xpt_action((union ccb *)&csa);
1185 	}
1186 
1187 fail:
1188 	crit_exit();
1189 	return (error);
1190 }
1191 
1192 void
1193 adw_intr(void *arg)
1194 {
1195 	struct	adw_softc *adw;
1196 	u_int	int_stat;
1197 
1198 	adw = (struct adw_softc *)arg;
1199 	if ((adw_inw(adw, ADW_CTRL_REG) & ADW_CTRL_REG_HOST_INTR) == 0)
1200 		return;
1201 
1202 	/* Reading the register clears the interrupt. */
1203 	int_stat = adw_inb(adw, ADW_INTR_STATUS_REG);
1204 
1205 	if ((int_stat & ADW_INTR_STATUS_INTRB) != 0) {
1206 		u_int intrb_code;
1207 
1208 		/* Async Microcode Event */
1209 		intrb_code = adw_lram_read_8(adw, ADW_MC_INTRB_CODE);
1210 		switch (intrb_code) {
1211 		case ADW_ASYNC_CARRIER_READY_FAILURE:
1212 			/*
1213 			 * The RISC missed our update of
1214 			 * the commandq.
1215 			 */
1216 			if (LIST_FIRST(&adw->pending_ccbs) != NULL)
1217 				adw_tickle_risc(adw, ADW_TICKLE_A);
1218 			break;
1219     		case ADW_ASYNC_SCSI_BUS_RESET_DET:
1220 			/*
1221 			 * The firmware detected a SCSI Bus reset.
1222 			 */
1223 			kprintf("Someone Reset the Bus\n");
1224 			adw_handle_bus_reset(adw, /*initiated*/FALSE);
1225 			break;
1226 		case ADW_ASYNC_RDMA_FAILURE:
1227 			/*
1228 			 * Handle RDMA failure by resetting the
1229 			 * SCSI Bus and chip.
1230 			 */
1231 #if XXX
1232 			AdvResetChipAndSB(adv_dvc_varp);
1233 #endif
1234 			break;
1235 
1236 		case ADW_ASYNC_HOST_SCSI_BUS_RESET:
1237 			/*
1238 			 * Host generated SCSI bus reset occurred.
1239 			 */
1240 			adw_handle_bus_reset(adw, /*initiated*/TRUE);
1241         		break;
1242     		default:
1243 			kprintf("adw_intr: unknown async code 0x%x\n",
1244 			       intrb_code);
1245 			break;
1246 		}
1247 	}
1248 
1249 	/*
1250 	 * Run down the RequestQ.
1251 	 */
1252 	while ((adw->responseq->next_ba & ADW_RQ_DONE) != 0) {
1253 		struct adw_carrier *free_carrier;
1254 		struct acb *acb;
1255 		union ccb *ccb;
1256 
1257 #if 0
1258 		kprintf("0x%x, 0x%x, 0x%x, 0x%x\n",
1259 		       adw->responseq->carr_offset,
1260 		       adw->responseq->carr_ba,
1261 		       adw->responseq->areq_ba,
1262 		       adw->responseq->next_ba);
1263 #endif
1264 		/*
1265 		 * The firmware copies the adw_scsi_req_q.acb_baddr
1266 		 * field into the areq_ba field of the carrier.
1267 		 */
1268 		acb = acbbotov(adw, adw->responseq->areq_ba);
1269 
1270 		/*
1271 		 * The least significant four bits of the next_ba
1272 		 * field are used as flags.  Mask them out and then
1273 		 * advance through the list.
1274 		 */
1275 		free_carrier = adw->responseq;
1276 		adw->responseq =
1277 		    carrierbotov(adw, free_carrier->next_ba & ADW_NEXT_BA_MASK);
1278 		free_carrier->next_ba = adw->free_carriers->carr_offset;
1279 		adw->free_carriers = free_carrier;
1280 
1281 		/* Process CCB */
1282 		ccb = acb->ccb;
1283 		callout_stop(&ccb->ccb_h.timeout_ch);
1284 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
1285 			bus_dmasync_op_t op;
1286 
1287 			if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
1288 				op = BUS_DMASYNC_POSTREAD;
1289 			else
1290 				op = BUS_DMASYNC_POSTWRITE;
1291 			bus_dmamap_sync(adw->buffer_dmat, acb->dmamap, op);
1292 			bus_dmamap_unload(adw->buffer_dmat, acb->dmamap);
1293 			ccb->csio.resid = acb->queue.data_cnt;
1294 		} else
1295 			ccb->csio.resid = 0;
1296 
1297 		/* Common Cases inline... */
1298 		if (acb->queue.host_status == QHSTA_NO_ERROR
1299 		 && (acb->queue.done_status == QD_NO_ERROR
1300 		  || acb->queue.done_status == QD_WITH_ERROR)) {
1301 			ccb->csio.scsi_status = acb->queue.scsi_status;
1302 			ccb->ccb_h.status = 0;
1303 			switch (ccb->csio.scsi_status) {
1304 			case SCSI_STATUS_OK:
1305 				ccb->ccb_h.status |= CAM_REQ_CMP;
1306 				break;
1307 			case SCSI_STATUS_CHECK_COND:
1308 			case SCSI_STATUS_CMD_TERMINATED:
1309 				bcopy(&acb->sense_data, &ccb->csio.sense_data,
1310 				      ccb->csio.sense_len);
1311 				ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
1312 				ccb->csio.sense_resid = acb->queue.sense_len;
1313 				/* FALLTHROUGH */
1314 			default:
1315 				ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR
1316 						  |  CAM_DEV_QFRZN;
1317 				xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1318 				break;
1319 			}
1320 			adwfreeacb(adw, acb);
1321 			xpt_done(ccb);
1322 		} else {
1323 			adwprocesserror(adw, acb);
1324 		}
1325 	}
1326 }
1327 
1328 static void
1329 adwprocesserror(struct adw_softc *adw, struct acb *acb)
1330 {
1331 	union ccb *ccb;
1332 
1333 	ccb = acb->ccb;
1334 	if (acb->queue.done_status == QD_ABORTED_BY_HOST) {
1335 		ccb->ccb_h.status = CAM_REQ_ABORTED;
1336 	} else {
1337 
1338 		switch (acb->queue.host_status) {
1339 		case QHSTA_M_SEL_TIMEOUT:
1340 			ccb->ccb_h.status = CAM_SEL_TIMEOUT;
1341 			break;
1342 		case QHSTA_M_SXFR_OFF_UFLW:
1343 		case QHSTA_M_SXFR_OFF_OFLW:
1344 		case QHSTA_M_DATA_OVER_RUN:
1345 			ccb->ccb_h.status = CAM_DATA_RUN_ERR;
1346 			break;
1347 		case QHSTA_M_SXFR_DESELECTED:
1348 		case QHSTA_M_UNEXPECTED_BUS_FREE:
1349 			ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
1350 			break;
1351 		case QHSTA_M_SCSI_BUS_RESET:
1352 		case QHSTA_M_SCSI_BUS_RESET_UNSOL:
1353 			ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
1354 			break;
1355 		case QHSTA_M_BUS_DEVICE_RESET:
1356 			ccb->ccb_h.status = CAM_BDR_SENT;
1357 			break;
1358 		case QHSTA_M_QUEUE_ABORTED:
1359 			/* BDR or Bus Reset */
1360 			kprintf("Saw Queue Aborted\n");
1361 			ccb->ccb_h.status = adw->last_reset;
1362 			break;
1363 		case QHSTA_M_SXFR_SDMA_ERR:
1364 		case QHSTA_M_SXFR_SXFR_PERR:
1365 		case QHSTA_M_RDMA_PERR:
1366 			ccb->ccb_h.status = CAM_UNCOR_PARITY;
1367 			break;
1368 		case QHSTA_M_WTM_TIMEOUT:
1369 		case QHSTA_M_SXFR_WD_TMO:
1370 		{
1371 			/* The SCSI bus hung in a phase */
1372 			xpt_print_path(adw->path);
1373 			kprintf("Watch Dog timer expired.  Reseting bus\n");
1374 			adw_reset_bus(adw);
1375 			break;
1376 		}
1377 		case QHSTA_M_SXFR_XFR_PH_ERR:
1378 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1379 			break;
1380 		case QHSTA_M_SXFR_UNKNOWN_ERROR:
1381 			break;
1382 		case QHSTA_M_BAD_CMPL_STATUS_IN:
1383 			/* No command complete after a status message */
1384 			ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
1385 			break;
1386 		case QHSTA_M_AUTO_REQ_SENSE_FAIL:
1387 			ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
1388 			break;
1389 		case QHSTA_M_INVALID_DEVICE:
1390 			ccb->ccb_h.status = CAM_PATH_INVALID;
1391 			break;
1392 		case QHSTA_M_NO_AUTO_REQ_SENSE:
1393 			/*
1394 			 * User didn't request sense, but we got a
1395 			 * check condition.
1396 			 */
1397 			ccb->csio.scsi_status = acb->queue.scsi_status;
1398 			ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
1399 			break;
1400 		default:
1401 			panic("%s: Unhandled Host status error %x",
1402 			      adw_name(adw), acb->queue.host_status);
1403 			/* NOTREACHED */
1404 		}
1405 	}
1406 	if ((acb->state & ACB_RECOVERY_ACB) != 0) {
1407 		if (ccb->ccb_h.status == CAM_SCSI_BUS_RESET
1408 		 || ccb->ccb_h.status == CAM_BDR_SENT)
1409 		 	ccb->ccb_h.status = CAM_CMD_TIMEOUT;
1410 	}
1411 	if (ccb->ccb_h.status != CAM_REQ_CMP) {
1412 		xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1413 		ccb->ccb_h.status |= CAM_DEV_QFRZN;
1414 	}
1415 	adwfreeacb(adw, acb);
1416 	xpt_done(ccb);
1417 }
1418 
1419 static void
1420 adwtimeout(void *arg)
1421 {
1422 	struct acb	     *acb;
1423 	union  ccb	     *ccb;
1424 	struct adw_softc     *adw;
1425 	adw_idle_cmd_status_t status;
1426 	int		      target_id;
1427 
1428 	acb = (struct acb *)arg;
1429 	ccb = acb->ccb;
1430 	adw = (struct adw_softc *)ccb->ccb_h.ccb_adw_ptr;
1431 	xpt_print_path(ccb->ccb_h.path);
1432 	kprintf("ACB %p - timed out\n", (void *)acb);
1433 
1434 	crit_enter();
1435 
1436 	if ((acb->state & ACB_ACTIVE) == 0) {
1437 		xpt_print_path(ccb->ccb_h.path);
1438 		kprintf("ACB %p - timed out CCB already completed\n",
1439 		       (void *)acb);
1440 		crit_exit();
1441 		return;
1442 	}
1443 
1444 	acb->state |= ACB_RECOVERY_ACB;
1445 	target_id = ccb->ccb_h.target_id;
1446 
1447 	/* Attempt a BDR first */
1448 	status = adw_idle_cmd_send(adw, ADW_IDLE_CMD_DEVICE_RESET,
1449 				   ccb->ccb_h.target_id);
1450 	crit_exit();
1451 	if (status == ADW_IDLE_CMD_SUCCESS) {
1452 		kprintf("%s: BDR Delivered.  No longer in timeout\n",
1453 		       adw_name(adw));
1454 		adw_handle_device_reset(adw, target_id);
1455 	} else {
1456 		adw_reset_bus(adw);
1457 		xpt_print_path(adw->path);
1458 		kprintf("Bus Reset Delivered.  No longer in timeout\n");
1459 	}
1460 }
1461 
1462 static void
1463 adw_handle_device_reset(struct adw_softc *adw, u_int target)
1464 {
1465 	struct cam_path *path;
1466 	cam_status error;
1467 
1468 	error = xpt_create_path(&path, /*periph*/NULL, cam_sim_path(adw->sim),
1469 				target, CAM_LUN_WILDCARD);
1470 
1471 	if (error == CAM_REQ_CMP) {
1472 		xpt_async(AC_SENT_BDR, path, NULL);
1473 		xpt_free_path(path);
1474 	}
1475 	adw->last_reset = CAM_BDR_SENT;
1476 }
1477 
1478 static void
1479 adw_handle_bus_reset(struct adw_softc *adw, int initiated)
1480 {
1481 	if (initiated) {
1482 		/*
1483 		 * The microcode currently sets the SCSI Bus Reset signal
1484 		 * while handling the AscSendIdleCmd() IDLE_CMD_SCSI_RESET
1485 		 * command above.  But the SCSI Bus Reset Hold Time in the
1486 		 * microcode is not deterministic (it may in fact be for less
1487 		 * than the SCSI Spec. minimum of 25 us).  Therefore on return
1488 		 * the Adv Library sets the SCSI Bus Reset signal for
1489 		 * ADW_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
1490 		 * than 25 us.
1491 		 */
1492 		u_int scsi_ctrl;
1493 
1494 	    	scsi_ctrl = adw_inw(adw, ADW_SCSI_CTRL) & ~ADW_SCSI_CTRL_RSTOUT;
1495 		adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
1496 		DELAY(ADW_SCSI_RESET_HOLD_TIME_US);
1497 		adw_outw(adw, ADW_SCSI_CTRL, scsi_ctrl);
1498 
1499 		/*
1500 		 * We will perform the async notification when the
1501 		 * SCSI Reset interrupt occurs.
1502 		 */
1503 	} else
1504 		xpt_async(AC_BUS_RESET, adw->path, NULL);
1505 	adw->last_reset = CAM_SCSI_BUS_RESET;
1506 }
1507