xref: /dragonfly/sys/dev/disk/advansys/adwlib.c (revision 0cfebe3d)
1 /*
2  * Low level routines for Second Generation
3  * Advanced Systems Inc. SCSI controllers chips
4  *
5  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/advansys/adwlib.c,v 1.6.2.1 2000/04/14 13:32:50 nyan Exp $
33  * $DragonFly: src/sys/dev/disk/advansys/adwlib.c,v 1.6 2006/12/22 23:26:15 swildner Exp $
34  */
35 /*
36  * Ported from:
37  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38  *
39  * Copyright (c) 1995-1998 Advanced System Products, Inc.
40  * All Rights Reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that redistributions of source
44  * code retain the above copyright notice and this comment without
45  * modification.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/thread2.h>
52 
53 #include <machine/clock.h>
54 
55 #include <bus/cam/cam.h>
56 #include <bus/cam/cam_ccb.h>
57 #include <bus/cam/cam_sim.h>
58 #include <bus/cam/cam_xpt_sim.h>
59 #include <bus/cam/scsi/scsi_all.h>
60 
61 #include "adwlib.h"
62 
63 const struct adw_eeprom adw_asc3550_default_eeprom =
64 {
65 	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
66 	0x0000,				/* cfg_msw */
67 	0xFFFF,				/* disc_enable */
68 	0xFFFF,				/* wdtr_able */
69 	{ 0xFFFF },			/* sdtr_able */
70 	0xFFFF,				/* start_motor */
71 	0xFFFF,				/* tagqng_able */
72 	0xFFFF,				/* bios_scan */
73 	0,				/* scam_tolerant */
74 	7,				/* adapter_scsi_id */
75 	0,				/* bios_boot_delay */
76 	3,				/* scsi_reset_delay */
77 	0,				/* bios_id_lun */
78 	0,				/* termination */
79 	0,				/* reserved1 */
80 	0xFFE7,				/* bios_ctrl */
81 	{ 0xFFFF },			/* ultra_able */
82 	{ 0 },				/* reserved2 */
83 	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
84 	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
85 	0,				/* dvc_cntl */
86 	{ 0 },				/* bug_fix */
87 	{ 0, 0, 0 },			/* serial_number */
88 	0,				/* check_sum */
89 	{				/* oem_name[16] */
90 	  0, 0, 0, 0, 0, 0, 0, 0,
91 	  0, 0, 0, 0, 0, 0, 0, 0
92 	},
93 	0,				/* dvc_err_code */
94 	0,				/* adv_err_code */
95 	0,				/* adv_err_addr */
96 	0,				/* saved_dvc_err_code */
97 	0,				/* saved_adv_err_code */
98 	0				/* saved_adv_err_addr */
99 };
100 
101 const struct adw_eeprom adw_asc38C0800_default_eeprom =
102 {
103 	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
104 	0x0000,				/* 01 cfg_msw */
105 	0xFFFF,				/* 02 disc_enable */
106 	0xFFFF,				/* 03 wdtr_able */
107 	{ 0x4444 },			/* 04 sdtr_speed1 */
108 	0xFFFF,				/* 05 start_motor */
109 	0xFFFF,				/* 06 tagqng_able */
110 	0xFFFF,				/* 07 bios_scan */
111 	0,				/* 08 scam_tolerant */
112 	7,				/* 09 adapter_scsi_id */
113 	0,				/*    bios_boot_delay */
114 	3,				/* 10 scsi_reset_delay */
115 	0,				/*    bios_id_lun */
116 	0,				/* 11 termination_se */
117 	0,				/*    termination_lvd */
118 	0xFFE7,				/* 12 bios_ctrl */
119 	{ 0x4444 },			/* 13 sdtr_speed2 */
120 	{ 0x4444 },			/* 14 sdtr_speed3 */
121 	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
122 	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
123 	0,				/* 16 dvc_cntl */
124 	{ 0x4444 } ,			/* 17 sdtr_speed4 */
125 	{ 0, 0, 0 },			/* 18-20 serial_number */
126 	0,				/* 21 check_sum */
127 	{				/* 22-29 oem_name[16] */
128 	  0, 0, 0, 0, 0, 0, 0, 0,
129 	  0, 0, 0, 0, 0, 0, 0, 0
130 	},
131 	0,				/* 30 dvc_err_code */
132 	0,				/* 31 adv_err_code */
133 	0,				/* 32 adv_err_addr */
134 	0,				/* 33 saved_dvc_err_code */
135 	0,				/* 34 saved_adv_err_code */
136 	0,				/* 35 saved_adv_err_addr */
137 	{				/* 36 - 55 reserved */
138 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
139 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
140 	},
141 	0,				/* 56 cisptr_lsw */
142 	0,				/* 57 cisprt_msw */
143 					/* 58-59 sub-id */
144 	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
145 };
146 
147 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
148 #define ADW_MC_SDTR_OFFSET_ULTRA2	1
149 #define ADW_MC_SDTR_OFFSET_ULTRA	2
150 const struct adw_syncrate adw_syncrates[] =
151 {
152 	/*   mc_sdtr		  period      rate */
153 	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
154 	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
155 	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
156 	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
157 	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
158 	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
159 };
160 
161 const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
162 
163 static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
164 static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
165 					    u_int data);
166 static void		adw_eeprom_wait(struct adw_softc *adw);
167 
168 int
169 adw_find_signature(struct adw_softc *adw)
170 {
171 	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
172 	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
173 		return (1);
174 	return (0);
175 }
176 
177 /*
178  * Reset Chip.
179  */
180 void
181 adw_reset_chip(struct adw_softc *adw)
182 {
183 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
184 	DELAY(1000 * 100);
185 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
186 
187 	/*
188 	 * Initialize Chip registers.
189 	 */
190 	adw_outw(adw, ADW_SCSI_CFG1,
191 		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
192 }
193 
194 /*
195  * Reset the SCSI bus.
196  */
197 int
198 adw_reset_bus(struct adw_softc *adw)
199 {
200 	adw_idle_cmd_status_t status;
201 
202 	status =
203 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
204 	if (status != ADW_IDLE_CMD_SUCCESS) {
205 		xpt_print_path(adw->path);
206 		kprintf("Bus Reset start attempt failed\n");
207 		return (1);
208 	}
209 	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
210 	status =
211 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
212 	if (status != ADW_IDLE_CMD_SUCCESS) {
213 		xpt_print_path(adw->path);
214 		kprintf("Bus Reset end attempt failed\n");
215 		return (1);
216 	}
217 	return (0);
218 }
219 
220 /*
221  * Read the specified EEPROM location
222  */
223 static u_int16_t
224 adw_eeprom_read_16(struct adw_softc *adw, int addr)
225 {
226 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
227 	adw_eeprom_wait(adw);
228 	return (adw_inw(adw, ADW_EEP_DATA));
229 }
230 
231 static void
232 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
233 {
234 	adw_outw(adw, ADW_EEP_DATA, data);
235 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
236 	adw_eeprom_wait(adw);
237 }
238 
239 /*
240  * Wait for and EEPROM command to complete
241  */
242 static void
243 adw_eeprom_wait(struct adw_softc *adw)
244 {
245 	int i;
246 
247 	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
248 		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
249             		break;
250 		DELAY(1000);
251     	}
252 	if (i == ADW_EEP_DELAY_MS)
253 		panic("%s: Timedout Reading EEPROM", adw_name(adw));
254 }
255 
256 /*
257  * Read EEPROM configuration into the specified buffer.
258  *
259  * Return a checksum based on the EEPROM configuration read.
260  */
261 u_int16_t
262 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
263 {
264 	u_int16_t *wbuf;
265 	u_int16_t  wval;
266 	u_int16_t  chksum;
267 	int	   eep_addr;
268 
269 	wbuf = (u_int16_t *)eep_buf;
270 	chksum = 0;
271 
272 	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
273 	     eep_addr < ADW_EEP_DVC_CFG_END;
274 	     eep_addr++, wbuf++) {
275 		wval = adw_eeprom_read_16(adw, eep_addr);
276 		chksum += wval;
277 		*wbuf = wval;
278 	}
279 
280 	/* checksum field is not counted in the checksum */
281 	*wbuf = adw_eeprom_read_16(adw, eep_addr);
282 	wbuf++;
283 
284 	/* Driver seeprom variables are not included in the checksum */
285 	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
286 	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
287 	     eep_addr++, wbuf++)
288 		*wbuf = adw_eeprom_read_16(adw, eep_addr);
289 
290 	return (chksum);
291 }
292 
293 void
294 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
295 {
296 	u_int16_t *wbuf;
297 	u_int16_t  addr;
298 	u_int16_t  chksum;
299 
300 	wbuf = (u_int16_t *)eep_buf;
301 	chksum = 0;
302 
303 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
304 	adw_eeprom_wait(adw);
305 
306 	/*
307 	 * Write EEPROM until checksum.
308 	 */
309 	for (addr = ADW_EEP_DVC_CFG_BEGIN;
310 	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
311 		chksum += *wbuf;
312 		adw_eeprom_write_16(adw, addr, *wbuf);
313 	}
314 
315 	/*
316 	 * Write calculated EEPROM checksum
317 	 */
318 	adw_eeprom_write_16(adw, addr, chksum);
319 
320 	/* skip over buffer's checksum */
321 	wbuf++;
322 
323 	/*
324 	 * Write the rest.
325 	 */
326 	for (addr = ADW_EEP_DVC_CTL_BEGIN;
327 	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
328 		adw_eeprom_write_16(adw, addr, *wbuf);
329 
330 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
331 	adw_eeprom_wait(adw);
332 }
333 
334 int
335 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
336 {
337 	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
338 	const u_int16_t    *word_table;
339 	const u_int8_t     *byte_codes;
340 	const u_int8_t     *byte_codes_end;
341 	u_int		    bios_sig;
342 	u_int		    bytes_downloaded;
343 	u_int		    addr;
344 	u_int		    end_addr;
345 	u_int		    checksum;
346 	u_int		    scsicfg1;
347 	u_int		    tid;
348 
349 	/*
350 	 * Save the RISC memory BIOS region before writing the microcode.
351 	 * The BIOS may already be loaded and using its RISC LRAM region
352 	 * so its region must be saved and restored.
353 	 */
354 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
355 		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
356 
357 	/*
358 	 * Save current per TID negotiated values if the BIOS has been
359 	 * loaded (BIOS signature is present).  These will be used if
360 	 * we cannot get information from the EEPROM.
361 	 */
362 	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
363 	bios_sig = biosmem[addr]
364 		 | (biosmem[addr + 1] << 8);
365 	if (bios_sig == 0x55AA
366 	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
367 		u_int major_ver;
368 		u_int minor_ver;
369 		u_int sdtr_able;
370 
371 		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
372 		minor_ver = biosmem[addr + 1] & 0xF;
373 		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
374 		if ((adw->chip == ADW_CHIP_ASC3550)
375 		 && (major_ver <= 3
376 		  || (major_ver == 3 && minor_ver == 1))) {
377 			/*
378 			 * BIOS 3.1 and earlier location of
379 			 * 'wdtr_able' variable.
380 			 */
381 			adw->user_wdtr =
382 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
383 		} else {
384 			adw->user_wdtr =
385 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
386 		}
387 		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
388 		for (tid = 0; tid < ADW_MAX_TID; tid++) {
389 			u_int tid_mask;
390 			u_int mc_sdtr;
391 
392 			tid_mask = 0x1 << tid;
393 			if ((sdtr_able & tid_mask) == 0)
394 				mc_sdtr = ADW_MC_SDTR_ASYNC;
395 			else if ((adw->features & ADW_DT) != 0)
396 				mc_sdtr = ADW_MC_SDTR_80;
397 			else if ((adw->features & ADW_ULTRA2) != 0)
398 				mc_sdtr = ADW_MC_SDTR_40;
399 			else
400 				mc_sdtr = ADW_MC_SDTR_20;
401 			adw_set_user_sdtr(adw, tid, mc_sdtr);
402 		}
403 		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
404 	}
405 
406 	/*
407 	 * Load the Microcode.
408 	 *
409 	 * Assume the following compressed format of the microcode buffer:
410 	 *
411 	 *	253 word (506 byte) table indexed by byte code followed
412 	 *	by the following byte codes:
413 	 *
414 	 *	1-Byte Code:
415 	 *		00: Emit word 0 in table.
416 	 *		01: Emit word 1 in table.
417 	 *		.
418 	 *		FD: Emit word 253 in table.
419 	 *
420 	 *	Multi-Byte Code:
421 	 *		FD RESEVED
422 	 *
423 	 *		FE WW WW: (3 byte code)
424 	 *			Word to emit is the next word WW WW.
425 	 *		FF BB WW WW: (4 byte code)
426 	 *			Emit BB count times next word WW WW.
427 	 *
428 	 */
429 	bytes_downloaded = 0;
430 	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
431 	byte_codes = (const u_int8_t *)&word_table[253];
432 	byte_codes_end = adw->mcode_data->mcode_buf
433 		       + adw->mcode_data->mcode_size;
434 	adw_outw(adw, ADW_RAM_ADDR, 0);
435 	while (byte_codes < byte_codes_end) {
436 		if (*byte_codes == 0xFF) {
437 			u_int16_t value;
438 
439 			value = byte_codes[2]
440 			      | byte_codes[3] << 8;
441 			adw_set_multi_2(adw, ADW_RAM_DATA,
442 					value, byte_codes[1]);
443 			bytes_downloaded += byte_codes[1];
444 			byte_codes += 4;
445 		} else if (*byte_codes == 0xFE) {
446 			u_int16_t value;
447 
448 			value = byte_codes[1]
449 			      | byte_codes[2] << 8;
450 			adw_outw(adw, ADW_RAM_DATA, value);
451 			bytes_downloaded++;
452 			byte_codes += 3;
453 		} else {
454 			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
455 			bytes_downloaded++;
456 			byte_codes++;
457 		}
458 	}
459 	/* Convert from words to bytes */
460 	bytes_downloaded *= 2;
461 
462 	/*
463 	 * Clear the rest of LRAM.
464 	 */
465 	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
466 		adw_outw(adw, ADW_RAM_DATA, 0);
467 
468 	/*
469 	 * Verify the microcode checksum.
470 	 */
471 	checksum = 0;
472 	adw_outw(adw, ADW_RAM_ADDR, 0);
473 	for (addr = 0; addr < bytes_downloaded; addr += 2)
474 		checksum += adw_inw(adw, ADW_RAM_DATA);
475 
476 	if (checksum != adw->mcode_data->mcode_chksum) {
477 		kprintf("%s: Firmware load failed!\n", adw_name(adw));
478 		return (EIO);
479 	}
480 
481 	/*
482 	 * Restore the RISC memory BIOS region.
483 	 */
484 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
485 		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
486 
487 	/*
488 	 * Calculate and write the microcode code checksum to
489 	 * the microcode code checksum location.
490 	 */
491 	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
492 	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
493 	checksum = 0;
494 	adw_outw(adw, ADW_RAM_ADDR, addr);
495 	for (; addr < end_addr; addr += 2)
496 		checksum += adw_inw(adw, ADW_RAM_DATA);
497 	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
498 
499 	/*
500 	 * Tell the microcode what kind of chip it's running on.
501 	 */
502 	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
503 
504 	/*
505 	 * Leave WDTR and SDTR negotiation disabled until the XPT has
506 	 * informed us of device capabilities, but do set the desired
507 	 * user rates in case we receive an SDTR request from the target
508 	 * before we negotiate.  We turn on tagged queuing at the microcode
509 	 * level for all devices, and modulate this on a per command basis.
510 	 */
511 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
512 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
513 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
514 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
515 	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
516 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
517 		/* Cam limits the maximum number of commands for us */
518 		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
519 				 adw->max_acbs);
520 	}
521 	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
522 
523 	/*
524 	 * Set SCSI_CFG0 Microcode Default Value.
525 	 *
526 	 * The microcode will set the SCSI_CFG0 register using this value
527 	 * after it is started.
528 	 */
529 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
530 			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
531 			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
532 
533 	/*
534 	 * Tell the MC about the memory size that
535 	 * was setup by the probe code.
536 	 */
537 	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
538 			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
539 
540 	/*
541 	 * Determine SCSI_CFG1 Microcode Default Value.
542 	 *
543 	 * The microcode will set the SCSI_CFG1 register using this value
544 	 * after it is started below.
545 	 */
546 	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
547 
548 	/*
549 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
550 	 * register signals will be set. Check for and return an error if
551 	 * this condition is found.
552 	 */
553 	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
554 		kprintf("%s: Illegal Cable Config!\n", adw_name(adw));
555 		kprintf("%s: Internal cable is reversed!\n", adw_name(adw));
556 		return (EIO);
557 	}
558 
559 	/*
560 	 * If this is a differential board and a single-ended device
561 	 * is attached to one of the connectors, return an error.
562 	 */
563 	if ((adw->features & ADW_ULTRA) != 0)  {
564 		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
565 		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
566 			kprintf("%s: A Single Ended Device is attached to our "
567 			       "differential bus!\n", adw_name(adw));
568 		        return (EIO);
569 		}
570 	} else {
571 		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
572 			kprintf("%s: A High Voltage Differential Device "
573 			       "is attached to this controller.\n",
574 			       adw_name(adw));
575 			kprintf("%s: HVD devices are not supported.\n",
576 			       adw_name(adw));
577 		        return (EIO);
578 		}
579 	}
580 
581 	/*
582 	 * Perform automatic termination control if desired.
583 	 */
584 	if ((adw->features & ADW_ULTRA2) != 0) {
585 		u_int cable_det;
586 
587 		/*
588 		 * Ultra2 Chips require termination disabled to
589 		 * detect cable presence.
590 		 */
591 		adw_outw(adw, ADW_SCSI_CFG1,
592 			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
593 		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
594 		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
595 
596 		/* SE Termination first if auto-term has been specified */
597 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
598 
599 			/*
600 			 * For all SE cable configurations, high byte
601 			 * termination is enabled.
602 			 */
603 			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
604 			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
605 			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
606 				/*
607 				 * If either cable is not present, the
608 				 * low byte must be terminated as well.
609 				 */
610 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
611 			}
612 		}
613 
614 		/* LVD auto-term */
615 		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
616 		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
617 			/*
618 			 * If both cables are installed, termination
619 			 * is disabled.  Otherwise it is enabled.
620 			 */
621 			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
622 			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
623 
624 				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
625 			}
626 		}
627 		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
628 	} else {
629 		/* Ultra Controller Termination */
630 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
631 			int cable_count;
632 			int wide_cable_count;
633 
634 			cable_count = 0;
635 			wide_cable_count = 0;
636 			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
637 				cable_count++;
638 				wide_cable_count++;
639 			}
640 			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
641 				cable_count++;
642 
643 			/* There is only one external port */
644 			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
645 				cable_count++;
646 				wide_cable_count++;
647 			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
648 				cable_count++;
649 
650 			if (cable_count == 3) {
651 				kprintf("%s: Illegal Cable Config!\n",
652 				       adw_name(adw));
653 				kprintf("%s: Only Two Ports may be used at "
654 				       "a time!\n", adw_name(adw));
655 			} else if (cable_count <= 1) {
656 				/*
657 				 * At least two out of three cables missing.
658 				 * Terminate both bytes.
659 				 */
660 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
661 					      |  ADW_SCSI_CFG1_TERM_CTL_L;
662 			} else if (wide_cable_count <= 1) {
663 				/* No two 16bit cables present.  High on. */
664 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
665 			}
666 		}
667         }
668 
669 	/* Tell the user about our decission */
670 	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
671 	case ADW_SCSI_CFG1_TERM_CTL_MASK:
672 		kprintf("High & Low SE Term Enabled, ");
673 		break;
674 	case ADW_SCSI_CFG1_TERM_CTL_H:
675 		kprintf("High SE Termination Enabled, ");
676 		break;
677 	case ADW_SCSI_CFG1_TERM_CTL_L:
678 		kprintf("Low SE Term Enabled, ");
679 		break;
680 	default:
681 		break;
682 	}
683 
684 	if ((adw->features & ADW_ULTRA2) != 0
685 	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
686 		kprintf("LVD Term Enabled, ");
687 
688 	/*
689 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
690 	 * set 'scsicfg1'. The TERM_POL bit does not need to be
691 	 * referenced, because the hardware internally inverts
692 	 * the Termination High and Low bits if TERM_POL is set.
693 	 */
694 	if ((adw->features & ADW_ULTRA2) != 0) {
695 		term_scsicfg1 = ~term_scsicfg1;
696 		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
697 			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
698 		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
699 			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
700 			     |ADW_SCSI_CFG1_BIG_ENDIAN
701 			     |ADW_SCSI_CFG1_TERM_POL
702 			     |ADW2_SCSI_CFG1_DEV_DETECT);
703 		scsicfg1 |= term_scsicfg1;
704 	} else {
705 		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
706 		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
707 		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
708 		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
709 	}
710 
711 	/*
712 	 * Set SCSI_CFG1 Microcode Default Value
713 	 *
714 	 * The microcode will set the SCSI_CFG1 register using this value
715 	 * after it is started below.
716 	 */
717 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
718 
719 	/*
720 	 * Only accept selections on our initiator target id.
721 	 * This may change in target mode scenarios...
722 	 */
723 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
724 			  (0x01 << adw->initiator_id));
725 
726 	/*
727 	 * Tell the microcode where it can find our
728 	 * Initiator Command Queue (ICQ).  It is
729 	 * currently empty hence the "stopper" address.
730 	 */
731 	adw->commandq = adw->free_carriers;
732 	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
733 	adw->commandq->next_ba = ADW_CQ_STOPPER;
734 	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
735 
736 	/*
737 	 * Tell the microcode where it can find our
738 	 * Initiator Response Queue (IRQ).  It too
739 	 * is currently empty.
740 	 */
741 	adw->responseq = adw->free_carriers;
742 	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
743 	adw->responseq->next_ba = ADW_CQ_STOPPER;
744 	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
745 
746 	adw_outb(adw, ADW_INTR_ENABLES,
747 		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
748 
749 	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
750 
751 	return (0);
752 }
753 
754 void
755 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
756 {
757 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
758 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
759 	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
760 }
761 
762 u_int
763 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
764 {
765 	u_int mc_sdtr;
766 
767 	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
768 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
769 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
770 	return (mc_sdtr);
771 }
772 
773 void
774 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
775 {
776 	u_int mc_sdtr_offset;
777 	u_int mc_sdtr;
778 
779 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
780 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
781 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
782 	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
783 	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
784 	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
785 }
786 
787 u_int
788 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
789 {
790 	u_int mc_sdtr_offset;
791 	u_int mc_sdtr;
792 
793 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
794 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
795 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
796 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
797 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
798 	return (mc_sdtr);
799 }
800 
801 u_int
802 adw_find_sdtr(struct adw_softc *adw, u_int period)
803 {
804 	int i;
805 
806 	i = 0;
807 	if ((adw->features & ADW_DT) == 0)
808 		i = ADW_MC_SDTR_OFFSET_ULTRA2;
809 	if ((adw->features & ADW_ULTRA2) == 0)
810 		i = ADW_MC_SDTR_OFFSET_ULTRA;
811 	if (period == 0)
812 		return ADW_MC_SDTR_ASYNC;
813 
814 	for (; i < adw_num_syncrates; i++) {
815 		if (period <= adw_syncrates[i].period)
816 			return (adw_syncrates[i].mc_sdtr);
817 	}
818 	return ADW_MC_SDTR_ASYNC;
819 }
820 
821 u_int
822 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
823 {
824 	int i;
825 
826 	for (i = 0; i < adw_num_syncrates; i++) {
827 		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
828 			break;
829 	}
830 	return (adw_syncrates[i].period);
831 }
832 
833 u_int
834 adw_hshk_cfg_period_factor(u_int tinfo)
835 {
836 	tinfo &= ADW_HSHK_CFG_RATE_MASK;
837 	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
838 	if (tinfo == 0x11)
839 		/* 80MHz/DT */
840 		return (9);
841 	else if (tinfo == 0x10)
842 		/* 40MHz */
843 		return (10);
844 	else
845 		return (((tinfo * 25) + 50) / 4);
846 }
847 
848 /*
849  * Send an idle command to the chip and wait for completion.
850  */
851 adw_idle_cmd_status_t
852 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
853 {
854 	u_int		      timeout;
855 	adw_idle_cmd_status_t status;
856 
857 	crit_enter();
858 
859 	/*
860 	 * Clear the idle command status which is set by the microcode
861 	 * to a non-zero value to indicate when the command is completed.
862 	 */
863 	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
864 
865 	/*
866 	 * Write the idle command value after the idle command parameter
867 	 * has been written to avoid a race condition. If the order is not
868 	 * followed, the microcode may process the idle command before the
869 	 * parameters have been written to LRAM.
870 	 */
871 	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
872     	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
873 
874 	/*
875 	 * Tickle the RISC to tell it to process the idle command.
876 	 */
877 	adw_tickle_risc(adw, ADW_TICKLE_B);
878 
879 	/* Wait for up to 10 seconds for the command to complete */
880 	timeout = 5000000;
881 	while (--timeout) {
882 		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
883        		if (status != 0)
884 			break;
885 		DELAY(20);
886 	}
887 
888 	if (timeout == 0)
889 		panic("%s: Idle Command Timed Out!\n", adw_name(adw));
890 	crit_exit();
891 	return (status);
892 }
893