xref: /dragonfly/sys/dev/disk/advansys/adwlib.c (revision 0fe46dc6)
1 /*
2  * Low level routines for Second Generation
3  * Advanced Systems Inc. SCSI controllers chips
4  *
5  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/advansys/adwlib.c,v 1.6.2.1 2000/04/14 13:32:50 nyan Exp $
33  */
34 /*
35  * Ported from:
36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37  *
38  * Copyright (c) 1995-1998 Advanced System Products, Inc.
39  * All Rights Reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that redistributions of source
43  * code retain the above copyright notice and this comment without
44  * modification.
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bus.h>
50 #include <sys/thread2.h>
51 
52 #include <machine/clock.h>
53 
54 #include <bus/cam/cam.h>
55 #include <bus/cam/cam_ccb.h>
56 #include <bus/cam/cam_sim.h>
57 #include <bus/cam/cam_xpt_sim.h>
58 #include <bus/cam/scsi/scsi_all.h>
59 
60 #include "adwlib.h"
61 
62 const struct adw_eeprom adw_asc3550_default_eeprom =
63 {
64 	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
65 	0x0000,				/* cfg_msw */
66 	0xFFFF,				/* disc_enable */
67 	0xFFFF,				/* wdtr_able */
68 	{ 0xFFFF },			/* sdtr_able */
69 	0xFFFF,				/* start_motor */
70 	0xFFFF,				/* tagqng_able */
71 	0xFFFF,				/* bios_scan */
72 	0,				/* scam_tolerant */
73 	7,				/* adapter_scsi_id */
74 	0,				/* bios_boot_delay */
75 	3,				/* scsi_reset_delay */
76 	0,				/* bios_id_lun */
77 	0,				/* termination */
78 	0,				/* reserved1 */
79 	0xFFE7,				/* bios_ctrl */
80 	{ 0xFFFF },			/* ultra_able */
81 	{ 0 },				/* reserved2 */
82 	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
83 	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
84 	0,				/* dvc_cntl */
85 	{ 0 },				/* bug_fix */
86 	{ 0, 0, 0 },			/* serial_number */
87 	0,				/* check_sum */
88 	{				/* oem_name[16] */
89 	  0, 0, 0, 0, 0, 0, 0, 0,
90 	  0, 0, 0, 0, 0, 0, 0, 0
91 	},
92 	0,				/* dvc_err_code */
93 	0,				/* adv_err_code */
94 	0,				/* adv_err_addr */
95 	0,				/* saved_dvc_err_code */
96 	0,				/* saved_adv_err_code */
97 	0				/* saved_adv_err_addr */
98 };
99 
100 const struct adw_eeprom adw_asc38C0800_default_eeprom =
101 {
102 	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
103 	0x0000,				/* 01 cfg_msw */
104 	0xFFFF,				/* 02 disc_enable */
105 	0xFFFF,				/* 03 wdtr_able */
106 	{ 0x4444 },			/* 04 sdtr_speed1 */
107 	0xFFFF,				/* 05 start_motor */
108 	0xFFFF,				/* 06 tagqng_able */
109 	0xFFFF,				/* 07 bios_scan */
110 	0,				/* 08 scam_tolerant */
111 	7,				/* 09 adapter_scsi_id */
112 	0,				/*    bios_boot_delay */
113 	3,				/* 10 scsi_reset_delay */
114 	0,				/*    bios_id_lun */
115 	0,				/* 11 termination_se */
116 	0,				/*    termination_lvd */
117 	0xFFE7,				/* 12 bios_ctrl */
118 	{ 0x4444 },			/* 13 sdtr_speed2 */
119 	{ 0x4444 },			/* 14 sdtr_speed3 */
120 	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
121 	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
122 	0,				/* 16 dvc_cntl */
123 	{ 0x4444 } ,			/* 17 sdtr_speed4 */
124 	{ 0, 0, 0 },			/* 18-20 serial_number */
125 	0,				/* 21 check_sum */
126 	{				/* 22-29 oem_name[16] */
127 	  0, 0, 0, 0, 0, 0, 0, 0,
128 	  0, 0, 0, 0, 0, 0, 0, 0
129 	},
130 	0,				/* 30 dvc_err_code */
131 	0,				/* 31 adv_err_code */
132 	0,				/* 32 adv_err_addr */
133 	0,				/* 33 saved_dvc_err_code */
134 	0,				/* 34 saved_adv_err_code */
135 	0,				/* 35 saved_adv_err_addr */
136 	{				/* 36 - 55 reserved */
137 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
138 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
139 	},
140 	0,				/* 56 cisptr_lsw */
141 	0,				/* 57 cisprt_msw */
142 					/* 58-59 sub-id */
143 	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
144 };
145 
146 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
147 #define ADW_MC_SDTR_OFFSET_ULTRA2	1
148 #define ADW_MC_SDTR_OFFSET_ULTRA	2
149 const struct adw_syncrate adw_syncrates[] =
150 {
151 	/*   mc_sdtr		  period      rate */
152 	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
153 	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
154 	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
155 	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
156 	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
157 	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
158 };
159 
160 const int adw_num_syncrates = NELEM(adw_syncrates);
161 
162 static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
163 static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
164 					    u_int data);
165 static void		adw_eeprom_wait(struct adw_softc *adw);
166 
167 int
168 adw_find_signature(struct adw_softc *adw)
169 {
170 	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
171 	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
172 		return (1);
173 	return (0);
174 }
175 
176 /*
177  * Reset Chip.
178  */
179 void
180 adw_reset_chip(struct adw_softc *adw)
181 {
182 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
183 	DELAY(1000 * 100);
184 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
185 
186 	/*
187 	 * Initialize Chip registers.
188 	 */
189 	adw_outw(adw, ADW_SCSI_CFG1,
190 		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
191 }
192 
193 /*
194  * Reset the SCSI bus.
195  */
196 int
197 adw_reset_bus(struct adw_softc *adw)
198 {
199 	adw_idle_cmd_status_t status;
200 
201 	status =
202 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
203 	if (status != ADW_IDLE_CMD_SUCCESS) {
204 		xpt_print_path(adw->path);
205 		kprintf("Bus Reset start attempt failed\n");
206 		return (1);
207 	}
208 	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
209 	status =
210 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
211 	if (status != ADW_IDLE_CMD_SUCCESS) {
212 		xpt_print_path(adw->path);
213 		kprintf("Bus Reset end attempt failed\n");
214 		return (1);
215 	}
216 	return (0);
217 }
218 
219 /*
220  * Read the specified EEPROM location
221  */
222 static u_int16_t
223 adw_eeprom_read_16(struct adw_softc *adw, int addr)
224 {
225 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
226 	adw_eeprom_wait(adw);
227 	return (adw_inw(adw, ADW_EEP_DATA));
228 }
229 
230 static void
231 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
232 {
233 	adw_outw(adw, ADW_EEP_DATA, data);
234 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
235 	adw_eeprom_wait(adw);
236 }
237 
238 /*
239  * Wait for and EEPROM command to complete
240  */
241 static void
242 adw_eeprom_wait(struct adw_softc *adw)
243 {
244 	int i;
245 
246 	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
247 		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
248             		break;
249 		DELAY(1000);
250     	}
251 	if (i == ADW_EEP_DELAY_MS)
252 		panic("%s: Timedout Reading EEPROM", adw_name(adw));
253 }
254 
255 /*
256  * Read EEPROM configuration into the specified buffer.
257  *
258  * Return a checksum based on the EEPROM configuration read.
259  */
260 u_int16_t
261 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
262 {
263 	u_int16_t *wbuf;
264 	u_int16_t  wval;
265 	u_int16_t  chksum;
266 	int	   eep_addr;
267 
268 	wbuf = (u_int16_t *)eep_buf;
269 	chksum = 0;
270 
271 	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
272 	     eep_addr < ADW_EEP_DVC_CFG_END;
273 	     eep_addr++, wbuf++) {
274 		wval = adw_eeprom_read_16(adw, eep_addr);
275 		chksum += wval;
276 		*wbuf = wval;
277 	}
278 
279 	/* checksum field is not counted in the checksum */
280 	*wbuf = adw_eeprom_read_16(adw, eep_addr);
281 	wbuf++;
282 
283 	/* Driver seeprom variables are not included in the checksum */
284 	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
285 	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
286 	     eep_addr++, wbuf++)
287 		*wbuf = adw_eeprom_read_16(adw, eep_addr);
288 
289 	return (chksum);
290 }
291 
292 void
293 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
294 {
295 	u_int16_t *wbuf;
296 	u_int16_t  addr;
297 	u_int16_t  chksum;
298 
299 	wbuf = (u_int16_t *)eep_buf;
300 	chksum = 0;
301 
302 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
303 	adw_eeprom_wait(adw);
304 
305 	/*
306 	 * Write EEPROM until checksum.
307 	 */
308 	for (addr = ADW_EEP_DVC_CFG_BEGIN;
309 	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
310 		chksum += *wbuf;
311 		adw_eeprom_write_16(adw, addr, *wbuf);
312 	}
313 
314 	/*
315 	 * Write calculated EEPROM checksum
316 	 */
317 	adw_eeprom_write_16(adw, addr, chksum);
318 
319 	/* skip over buffer's checksum */
320 	wbuf++;
321 
322 	/*
323 	 * Write the rest.
324 	 */
325 	for (addr = ADW_EEP_DVC_CTL_BEGIN;
326 	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
327 		adw_eeprom_write_16(adw, addr, *wbuf);
328 
329 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
330 	adw_eeprom_wait(adw);
331 }
332 
333 int
334 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
335 {
336 	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
337 	const u_int16_t    *word_table;
338 	const u_int8_t     *byte_codes;
339 	const u_int8_t     *byte_codes_end;
340 	u_int		    bios_sig;
341 	u_int		    bytes_downloaded;
342 	u_int		    addr;
343 	u_int		    end_addr;
344 	u_int		    checksum;
345 	u_int		    scsicfg1;
346 	u_int		    tid;
347 
348 	/*
349 	 * Save the RISC memory BIOS region before writing the microcode.
350 	 * The BIOS may already be loaded and using its RISC LRAM region
351 	 * so its region must be saved and restored.
352 	 */
353 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
354 		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
355 
356 	/*
357 	 * Save current per TID negotiated values if the BIOS has been
358 	 * loaded (BIOS signature is present).  These will be used if
359 	 * we cannot get information from the EEPROM.
360 	 */
361 	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
362 	bios_sig = biosmem[addr]
363 		 | (biosmem[addr + 1] << 8);
364 	if (bios_sig == 0x55AA
365 	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
366 		u_int major_ver;
367 		u_int minor_ver;
368 		u_int sdtr_able;
369 
370 		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
371 		minor_ver = biosmem[addr + 1] & 0xF;
372 		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
373 		if ((adw->chip == ADW_CHIP_ASC3550)
374 		 && (major_ver <= 3
375 		  || (major_ver == 3 && minor_ver == 1))) {
376 			/*
377 			 * BIOS 3.1 and earlier location of
378 			 * 'wdtr_able' variable.
379 			 */
380 			adw->user_wdtr =
381 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
382 		} else {
383 			adw->user_wdtr =
384 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
385 		}
386 		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
387 		for (tid = 0; tid < ADW_MAX_TID; tid++) {
388 			u_int tid_mask;
389 			u_int mc_sdtr;
390 
391 			tid_mask = 0x1 << tid;
392 			if ((sdtr_able & tid_mask) == 0)
393 				mc_sdtr = ADW_MC_SDTR_ASYNC;
394 			else if ((adw->features & ADW_DT) != 0)
395 				mc_sdtr = ADW_MC_SDTR_80;
396 			else if ((adw->features & ADW_ULTRA2) != 0)
397 				mc_sdtr = ADW_MC_SDTR_40;
398 			else
399 				mc_sdtr = ADW_MC_SDTR_20;
400 			adw_set_user_sdtr(adw, tid, mc_sdtr);
401 		}
402 		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
403 	}
404 
405 	/*
406 	 * Load the Microcode.
407 	 *
408 	 * Assume the following compressed format of the microcode buffer:
409 	 *
410 	 *	253 word (506 byte) table indexed by byte code followed
411 	 *	by the following byte codes:
412 	 *
413 	 *	1-Byte Code:
414 	 *		00: Emit word 0 in table.
415 	 *		01: Emit word 1 in table.
416 	 *		.
417 	 *		FD: Emit word 253 in table.
418 	 *
419 	 *	Multi-Byte Code:
420 	 *		FD RESEVED
421 	 *
422 	 *		FE WW WW: (3 byte code)
423 	 *			Word to emit is the next word WW WW.
424 	 *		FF BB WW WW: (4 byte code)
425 	 *			Emit BB count times next word WW WW.
426 	 *
427 	 */
428 	bytes_downloaded = 0;
429 	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
430 	byte_codes = (const u_int8_t *)&word_table[253];
431 	byte_codes_end = adw->mcode_data->mcode_buf
432 		       + adw->mcode_data->mcode_size;
433 	adw_outw(adw, ADW_RAM_ADDR, 0);
434 	while (byte_codes < byte_codes_end) {
435 		if (*byte_codes == 0xFF) {
436 			u_int16_t value;
437 
438 			value = byte_codes[2]
439 			      | byte_codes[3] << 8;
440 			adw_set_multi_2(adw, ADW_RAM_DATA,
441 					value, byte_codes[1]);
442 			bytes_downloaded += byte_codes[1];
443 			byte_codes += 4;
444 		} else if (*byte_codes == 0xFE) {
445 			u_int16_t value;
446 
447 			value = byte_codes[1]
448 			      | byte_codes[2] << 8;
449 			adw_outw(adw, ADW_RAM_DATA, value);
450 			bytes_downloaded++;
451 			byte_codes += 3;
452 		} else {
453 			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
454 			bytes_downloaded++;
455 			byte_codes++;
456 		}
457 	}
458 	/* Convert from words to bytes */
459 	bytes_downloaded *= 2;
460 
461 	/*
462 	 * Clear the rest of LRAM.
463 	 */
464 	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
465 		adw_outw(adw, ADW_RAM_DATA, 0);
466 
467 	/*
468 	 * Verify the microcode checksum.
469 	 */
470 	checksum = 0;
471 	adw_outw(adw, ADW_RAM_ADDR, 0);
472 	for (addr = 0; addr < bytes_downloaded; addr += 2)
473 		checksum += adw_inw(adw, ADW_RAM_DATA);
474 
475 	if (checksum != adw->mcode_data->mcode_chksum) {
476 		kprintf("%s: Firmware load failed!\n", adw_name(adw));
477 		return (EIO);
478 	}
479 
480 	/*
481 	 * Restore the RISC memory BIOS region.
482 	 */
483 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
484 		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
485 
486 	/*
487 	 * Calculate and write the microcode code checksum to
488 	 * the microcode code checksum location.
489 	 */
490 	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
491 	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
492 	checksum = 0;
493 	adw_outw(adw, ADW_RAM_ADDR, addr);
494 	for (; addr < end_addr; addr += 2)
495 		checksum += adw_inw(adw, ADW_RAM_DATA);
496 	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
497 
498 	/*
499 	 * Tell the microcode what kind of chip it's running on.
500 	 */
501 	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
502 
503 	/*
504 	 * Leave WDTR and SDTR negotiation disabled until the XPT has
505 	 * informed us of device capabilities, but do set the desired
506 	 * user rates in case we receive an SDTR request from the target
507 	 * before we negotiate.  We turn on tagged queuing at the microcode
508 	 * level for all devices, and modulate this on a per command basis.
509 	 */
510 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
511 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
512 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
513 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
514 	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
515 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
516 		/* Cam limits the maximum number of commands for us */
517 		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
518 				 adw->max_acbs);
519 	}
520 	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
521 
522 	/*
523 	 * Set SCSI_CFG0 Microcode Default Value.
524 	 *
525 	 * The microcode will set the SCSI_CFG0 register using this value
526 	 * after it is started.
527 	 */
528 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
529 			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
530 			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
531 
532 	/*
533 	 * Tell the MC about the memory size that
534 	 * was setup by the probe code.
535 	 */
536 	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
537 			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
538 
539 	/*
540 	 * Determine SCSI_CFG1 Microcode Default Value.
541 	 *
542 	 * The microcode will set the SCSI_CFG1 register using this value
543 	 * after it is started below.
544 	 */
545 	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
546 
547 	/*
548 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
549 	 * register signals will be set. Check for and return an error if
550 	 * this condition is found.
551 	 */
552 	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
553 		kprintf("%s: Illegal Cable Config!\n", adw_name(adw));
554 		kprintf("%s: Internal cable is reversed!\n", adw_name(adw));
555 		return (EIO);
556 	}
557 
558 	/*
559 	 * If this is a differential board and a single-ended device
560 	 * is attached to one of the connectors, return an error.
561 	 */
562 	if ((adw->features & ADW_ULTRA) != 0)  {
563 		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
564 		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
565 			kprintf("%s: A Single Ended Device is attached to our "
566 			       "differential bus!\n", adw_name(adw));
567 		        return (EIO);
568 		}
569 	} else {
570 		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
571 			kprintf("%s: A High Voltage Differential Device "
572 			       "is attached to this controller.\n",
573 			       adw_name(adw));
574 			kprintf("%s: HVD devices are not supported.\n",
575 			       adw_name(adw));
576 		        return (EIO);
577 		}
578 	}
579 
580 	/*
581 	 * Perform automatic termination control if desired.
582 	 */
583 	if ((adw->features & ADW_ULTRA2) != 0) {
584 		u_int cable_det;
585 
586 		/*
587 		 * Ultra2 Chips require termination disabled to
588 		 * detect cable presence.
589 		 */
590 		adw_outw(adw, ADW_SCSI_CFG1,
591 			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
592 		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
593 		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
594 
595 		/* SE Termination first if auto-term has been specified */
596 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
597 
598 			/*
599 			 * For all SE cable configurations, high byte
600 			 * termination is enabled.
601 			 */
602 			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
603 			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
604 			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
605 				/*
606 				 * If either cable is not present, the
607 				 * low byte must be terminated as well.
608 				 */
609 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
610 			}
611 		}
612 
613 		/* LVD auto-term */
614 		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
615 		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
616 			/*
617 			 * If both cables are installed, termination
618 			 * is disabled.  Otherwise it is enabled.
619 			 */
620 			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
621 			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
622 
623 				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
624 			}
625 		}
626 		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
627 	} else {
628 		/* Ultra Controller Termination */
629 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
630 			int cable_count;
631 			int wide_cable_count;
632 
633 			cable_count = 0;
634 			wide_cable_count = 0;
635 			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
636 				cable_count++;
637 				wide_cable_count++;
638 			}
639 			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
640 				cable_count++;
641 
642 			/* There is only one external port */
643 			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
644 				cable_count++;
645 				wide_cable_count++;
646 			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
647 				cable_count++;
648 
649 			if (cable_count == 3) {
650 				kprintf("%s: Illegal Cable Config!\n",
651 				       adw_name(adw));
652 				kprintf("%s: Only Two Ports may be used at "
653 				       "a time!\n", adw_name(adw));
654 			} else if (cable_count <= 1) {
655 				/*
656 				 * At least two out of three cables missing.
657 				 * Terminate both bytes.
658 				 */
659 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
660 					      |  ADW_SCSI_CFG1_TERM_CTL_L;
661 			} else if (wide_cable_count <= 1) {
662 				/* No two 16bit cables present.  High on. */
663 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
664 			}
665 		}
666         }
667 
668 	/* Tell the user about our decission */
669 	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
670 	case ADW_SCSI_CFG1_TERM_CTL_MASK:
671 		kprintf("High & Low SE Term Enabled, ");
672 		break;
673 	case ADW_SCSI_CFG1_TERM_CTL_H:
674 		kprintf("High SE Termination Enabled, ");
675 		break;
676 	case ADW_SCSI_CFG1_TERM_CTL_L:
677 		kprintf("Low SE Term Enabled, ");
678 		break;
679 	default:
680 		break;
681 	}
682 
683 	if ((adw->features & ADW_ULTRA2) != 0
684 	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
685 		kprintf("LVD Term Enabled, ");
686 
687 	/*
688 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
689 	 * set 'scsicfg1'. The TERM_POL bit does not need to be
690 	 * referenced, because the hardware internally inverts
691 	 * the Termination High and Low bits if TERM_POL is set.
692 	 */
693 	if ((adw->features & ADW_ULTRA2) != 0) {
694 		term_scsicfg1 = ~term_scsicfg1;
695 		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
696 			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
697 		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
698 			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
699 			     |ADW_SCSI_CFG1_BIG_ENDIAN
700 			     |ADW_SCSI_CFG1_TERM_POL
701 			     |ADW2_SCSI_CFG1_DEV_DETECT);
702 		scsicfg1 |= term_scsicfg1;
703 	} else {
704 		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
705 		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
706 		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
707 		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
708 	}
709 
710 	/*
711 	 * Set SCSI_CFG1 Microcode Default Value
712 	 *
713 	 * The microcode will set the SCSI_CFG1 register using this value
714 	 * after it is started below.
715 	 */
716 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
717 
718 	/*
719 	 * Only accept selections on our initiator target id.
720 	 * This may change in target mode scenarios...
721 	 */
722 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
723 			  (0x01 << adw->initiator_id));
724 
725 	/*
726 	 * Tell the microcode where it can find our
727 	 * Initiator Command Queue (ICQ).  It is
728 	 * currently empty hence the "stopper" address.
729 	 */
730 	adw->commandq = adw->free_carriers;
731 	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
732 	adw->commandq->next_ba = ADW_CQ_STOPPER;
733 	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
734 
735 	/*
736 	 * Tell the microcode where it can find our
737 	 * Initiator Response Queue (IRQ).  It too
738 	 * is currently empty.
739 	 */
740 	adw->responseq = adw->free_carriers;
741 	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
742 	adw->responseq->next_ba = ADW_CQ_STOPPER;
743 	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
744 
745 	adw_outb(adw, ADW_INTR_ENABLES,
746 		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
747 
748 	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
749 
750 	return (0);
751 }
752 
753 void
754 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
755 {
756 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
757 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
758 	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
759 }
760 
761 u_int
762 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
763 {
764 	u_int mc_sdtr;
765 
766 	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
767 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
768 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
769 	return (mc_sdtr);
770 }
771 
772 void
773 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
774 {
775 	u_int mc_sdtr_offset;
776 	u_int mc_sdtr;
777 
778 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
779 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
780 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
781 	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
782 	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
783 	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
784 }
785 
786 u_int
787 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
788 {
789 	u_int mc_sdtr_offset;
790 	u_int mc_sdtr;
791 
792 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
793 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
794 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
795 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
796 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
797 	return (mc_sdtr);
798 }
799 
800 u_int
801 adw_find_sdtr(struct adw_softc *adw, u_int period)
802 {
803 	int i;
804 
805 	i = 0;
806 	if ((adw->features & ADW_DT) == 0)
807 		i = ADW_MC_SDTR_OFFSET_ULTRA2;
808 	if ((adw->features & ADW_ULTRA2) == 0)
809 		i = ADW_MC_SDTR_OFFSET_ULTRA;
810 	if (period == 0)
811 		return ADW_MC_SDTR_ASYNC;
812 
813 	for (; i < adw_num_syncrates; i++) {
814 		if (period <= adw_syncrates[i].period)
815 			return (adw_syncrates[i].mc_sdtr);
816 	}
817 	return ADW_MC_SDTR_ASYNC;
818 }
819 
820 u_int
821 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
822 {
823 	int i;
824 
825 	for (i = 0; i < adw_num_syncrates; i++) {
826 		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
827 			break;
828 	}
829 	return (adw_syncrates[i].period);
830 }
831 
832 u_int
833 adw_hshk_cfg_period_factor(u_int tinfo)
834 {
835 	tinfo &= ADW_HSHK_CFG_RATE_MASK;
836 	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
837 	if (tinfo == 0x11)
838 		/* 80MHz/DT */
839 		return (9);
840 	else if (tinfo == 0x10)
841 		/* 40MHz */
842 		return (10);
843 	else
844 		return (((tinfo * 25) + 50) / 4);
845 }
846 
847 /*
848  * Send an idle command to the chip and wait for completion.
849  */
850 adw_idle_cmd_status_t
851 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
852 {
853 	u_int		      timeout;
854 	adw_idle_cmd_status_t status;
855 
856 	crit_enter();
857 
858 	/*
859 	 * Clear the idle command status which is set by the microcode
860 	 * to a non-zero value to indicate when the command is completed.
861 	 */
862 	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
863 
864 	/*
865 	 * Write the idle command value after the idle command parameter
866 	 * has been written to avoid a race condition. If the order is not
867 	 * followed, the microcode may process the idle command before the
868 	 * parameters have been written to LRAM.
869 	 */
870 	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
871     	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
872 
873 	/*
874 	 * Tickle the RISC to tell it to process the idle command.
875 	 */
876 	adw_tickle_risc(adw, ADW_TICKLE_B);
877 
878 	/* Wait for up to 10 seconds for the command to complete */
879 	timeout = 5000000;
880 	while (--timeout) {
881 		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
882        		if (status != 0)
883 			break;
884 		DELAY(20);
885 	}
886 
887 	if (timeout == 0)
888 		panic("%s: Idle Command Timed Out!", adw_name(adw));
889 	crit_exit();
890 	return (status);
891 }
892