xref: /dragonfly/sys/dev/disk/advansys/adwlib.c (revision 6bd457ed)
1 /*
2  * Low level routines for Second Generation
3  * Advanced Systems Inc. SCSI controllers chips
4  *
5  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
24  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/advansys/adwlib.c,v 1.6.2.1 2000/04/14 13:32:50 nyan Exp $
33  * $DragonFly: src/sys/dev/disk/advansys/adwlib.c,v 1.4 2005/06/03 16:57:12 eirikn Exp $
34  */
35 /*
36  * Ported from:
37  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
38  *
39  * Copyright (c) 1995-1998 Advanced System Products, Inc.
40  * All Rights Reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that redistributions of source
44  * code retain the above copyright notice and this comment without
45  * modification.
46  */
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/thread2.h>
52 
53 #include <machine/bus_pio.h>
54 #include <machine/bus_memio.h>
55 #include <machine/bus.h>
56 #include <machine/clock.h>
57 
58 #include <bus/cam/cam.h>
59 #include <bus/cam/cam_ccb.h>
60 #include <bus/cam/cam_sim.h>
61 #include <bus/cam/cam_xpt_sim.h>
62 #include <bus/cam/scsi/scsi_all.h>
63 
64 #include "adwlib.h"
65 
66 const struct adw_eeprom adw_asc3550_default_eeprom =
67 {
68 	ADW_EEPROM_BIOS_ENABLE,		/* cfg_lsw */
69 	0x0000,				/* cfg_msw */
70 	0xFFFF,				/* disc_enable */
71 	0xFFFF,				/* wdtr_able */
72 	{ 0xFFFF },			/* sdtr_able */
73 	0xFFFF,				/* start_motor */
74 	0xFFFF,				/* tagqng_able */
75 	0xFFFF,				/* bios_scan */
76 	0,				/* scam_tolerant */
77 	7,				/* adapter_scsi_id */
78 	0,				/* bios_boot_delay */
79 	3,				/* scsi_reset_delay */
80 	0,				/* bios_id_lun */
81 	0,				/* termination */
82 	0,				/* reserved1 */
83 	0xFFE7,				/* bios_ctrl */
84 	{ 0xFFFF },			/* ultra_able */
85 	{ 0 },				/* reserved2 */
86 	ADW_DEF_MAX_HOST_QNG,		/* max_host_qng */
87 	ADW_DEF_MAX_DVC_QNG,		/* max_dvc_qng */
88 	0,				/* dvc_cntl */
89 	{ 0 },				/* bug_fix */
90 	{ 0, 0, 0 },			/* serial_number */
91 	0,				/* check_sum */
92 	{				/* oem_name[16] */
93 	  0, 0, 0, 0, 0, 0, 0, 0,
94 	  0, 0, 0, 0, 0, 0, 0, 0
95 	},
96 	0,				/* dvc_err_code */
97 	0,				/* adv_err_code */
98 	0,				/* adv_err_addr */
99 	0,				/* saved_dvc_err_code */
100 	0,				/* saved_adv_err_code */
101 	0				/* saved_adv_err_addr */
102 };
103 
104 const struct adw_eeprom adw_asc38C0800_default_eeprom =
105 {
106 	ADW_EEPROM_BIOS_ENABLE,		/* 00 cfg_lsw */
107 	0x0000,				/* 01 cfg_msw */
108 	0xFFFF,				/* 02 disc_enable */
109 	0xFFFF,				/* 03 wdtr_able */
110 	{ 0x4444 },			/* 04 sdtr_speed1 */
111 	0xFFFF,				/* 05 start_motor */
112 	0xFFFF,				/* 06 tagqng_able */
113 	0xFFFF,				/* 07 bios_scan */
114 	0,				/* 08 scam_tolerant */
115 	7,				/* 09 adapter_scsi_id */
116 	0,				/*    bios_boot_delay */
117 	3,				/* 10 scsi_reset_delay */
118 	0,				/*    bios_id_lun */
119 	0,				/* 11 termination_se */
120 	0,				/*    termination_lvd */
121 	0xFFE7,				/* 12 bios_ctrl */
122 	{ 0x4444 },			/* 13 sdtr_speed2 */
123 	{ 0x4444 },			/* 14 sdtr_speed3 */
124 	ADW_DEF_MAX_HOST_QNG,		/* 15 max_host_qng */
125 	ADW_DEF_MAX_DVC_QNG,		/*    max_dvc_qng */
126 	0,				/* 16 dvc_cntl */
127 	{ 0x4444 } ,			/* 17 sdtr_speed4 */
128 	{ 0, 0, 0 },			/* 18-20 serial_number */
129 	0,				/* 21 check_sum */
130 	{				/* 22-29 oem_name[16] */
131 	  0, 0, 0, 0, 0, 0, 0, 0,
132 	  0, 0, 0, 0, 0, 0, 0, 0
133 	},
134 	0,				/* 30 dvc_err_code */
135 	0,				/* 31 adv_err_code */
136 	0,				/* 32 adv_err_addr */
137 	0,				/* 33 saved_dvc_err_code */
138 	0,				/* 34 saved_adv_err_code */
139 	0,				/* 35 saved_adv_err_addr */
140 	{				/* 36 - 55 reserved */
141 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
142 	  0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
143 	},
144 	0,				/* 56 cisptr_lsw */
145 	0,				/* 57 cisprt_msw */
146 					/* 58-59 sub-id */
147 	(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
148 };
149 
150 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT	0
151 #define ADW_MC_SDTR_OFFSET_ULTRA2	1
152 #define ADW_MC_SDTR_OFFSET_ULTRA	2
153 const struct adw_syncrate adw_syncrates[] =
154 {
155 	/*   mc_sdtr		  period      rate */
156 	{ ADW_MC_SDTR_80,	    9,	     "80.0"  },
157 	{ ADW_MC_SDTR_40,	    10,	     "40.0"  },
158 	{ ADW_MC_SDTR_20,	    12,	     "20.0"  },
159 	{ ADW_MC_SDTR_10,	    25,	     "10.0"  },
160 	{ ADW_MC_SDTR_5,	    50,	     "5.0"   },
161 	{ ADW_MC_SDTR_ASYNC,	    0,	     "async" }
162 };
163 
164 const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
165 
166 static u_int16_t	adw_eeprom_read_16(struct adw_softc *adw, int addr);
167 static void		adw_eeprom_write_16(struct adw_softc *adw, int addr,
168 					    u_int data);
169 static void		adw_eeprom_wait(struct adw_softc *adw);
170 
171 int
172 adw_find_signature(struct adw_softc *adw)
173 {
174 	if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
175 	 && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
176 		return (1);
177 	return (0);
178 }
179 
180 /*
181  * Reset Chip.
182  */
183 void
184 adw_reset_chip(struct adw_softc *adw)
185 {
186 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
187 	DELAY(1000 * 100);
188 	adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
189 
190 	/*
191 	 * Initialize Chip registers.
192 	 */
193 	adw_outw(adw, ADW_SCSI_CFG1,
194 		 adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
195 }
196 
197 /*
198  * Reset the SCSI bus.
199  */
200 int
201 adw_reset_bus(struct adw_softc *adw)
202 {
203 	adw_idle_cmd_status_t status;
204 
205 	status =
206 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
207 	if (status != ADW_IDLE_CMD_SUCCESS) {
208 		xpt_print_path(adw->path);
209 		printf("Bus Reset start attempt failed\n");
210 		return (1);
211 	}
212 	DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
213 	status =
214 	    adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
215 	if (status != ADW_IDLE_CMD_SUCCESS) {
216 		xpt_print_path(adw->path);
217 		printf("Bus Reset end attempt failed\n");
218 		return (1);
219 	}
220 	return (0);
221 }
222 
223 /*
224  * Read the specified EEPROM location
225  */
226 static u_int16_t
227 adw_eeprom_read_16(struct adw_softc *adw, int addr)
228 {
229 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
230 	adw_eeprom_wait(adw);
231 	return (adw_inw(adw, ADW_EEP_DATA));
232 }
233 
234 static void
235 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
236 {
237 	adw_outw(adw, ADW_EEP_DATA, data);
238 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
239 	adw_eeprom_wait(adw);
240 }
241 
242 /*
243  * Wait for and EEPROM command to complete
244  */
245 static void
246 adw_eeprom_wait(struct adw_softc *adw)
247 {
248 	int i;
249 
250 	for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
251 		if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
252             		break;
253 		DELAY(1000);
254     	}
255 	if (i == ADW_EEP_DELAY_MS)
256 		panic("%s: Timedout Reading EEPROM", adw_name(adw));
257 }
258 
259 /*
260  * Read EEPROM configuration into the specified buffer.
261  *
262  * Return a checksum based on the EEPROM configuration read.
263  */
264 u_int16_t
265 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
266 {
267 	u_int16_t *wbuf;
268 	u_int16_t  wval;
269 	u_int16_t  chksum;
270 	int	   eep_addr;
271 
272 	wbuf = (u_int16_t *)eep_buf;
273 	chksum = 0;
274 
275 	for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
276 	     eep_addr < ADW_EEP_DVC_CFG_END;
277 	     eep_addr++, wbuf++) {
278 		wval = adw_eeprom_read_16(adw, eep_addr);
279 		chksum += wval;
280 		*wbuf = wval;
281 	}
282 
283 	/* checksum field is not counted in the checksum */
284 	*wbuf = adw_eeprom_read_16(adw, eep_addr);
285 	wbuf++;
286 
287 	/* Driver seeprom variables are not included in the checksum */
288 	for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
289 	     eep_addr < ADW_EEP_MAX_WORD_ADDR;
290 	     eep_addr++, wbuf++)
291 		*wbuf = adw_eeprom_read_16(adw, eep_addr);
292 
293 	return (chksum);
294 }
295 
296 void
297 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
298 {
299 	u_int16_t *wbuf;
300 	u_int16_t  addr;
301 	u_int16_t  chksum;
302 
303 	wbuf = (u_int16_t *)eep_buf;
304 	chksum = 0;
305 
306 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
307 	adw_eeprom_wait(adw);
308 
309 	/*
310 	 * Write EEPROM until checksum.
311 	 */
312 	for (addr = ADW_EEP_DVC_CFG_BEGIN;
313 	     addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
314 		chksum += *wbuf;
315 		adw_eeprom_write_16(adw, addr, *wbuf);
316 	}
317 
318 	/*
319 	 * Write calculated EEPROM checksum
320 	 */
321 	adw_eeprom_write_16(adw, addr, chksum);
322 
323 	/* skip over buffer's checksum */
324 	wbuf++;
325 
326 	/*
327 	 * Write the rest.
328 	 */
329 	for (addr = ADW_EEP_DVC_CTL_BEGIN;
330 	     addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
331 		adw_eeprom_write_16(adw, addr, *wbuf);
332 
333 	adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
334 	adw_eeprom_wait(adw);
335 }
336 
337 int
338 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
339 {
340 	u_int8_t	    biosmem[ADW_MC_BIOSLEN];
341 	const u_int16_t    *word_table;
342 	const u_int8_t     *byte_codes;
343 	const u_int8_t     *byte_codes_end;
344 	u_int		    bios_sig;
345 	u_int		    bytes_downloaded;
346 	u_int		    addr;
347 	u_int		    end_addr;
348 	u_int		    checksum;
349 	u_int		    scsicfg1;
350 	u_int		    tid;
351 
352 	/*
353 	 * Save the RISC memory BIOS region before writing the microcode.
354 	 * The BIOS may already be loaded and using its RISC LRAM region
355 	 * so its region must be saved and restored.
356 	 */
357 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
358 		biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
359 
360 	/*
361 	 * Save current per TID negotiated values if the BIOS has been
362 	 * loaded (BIOS signature is present).  These will be used if
363 	 * we cannot get information from the EEPROM.
364 	 */
365 	addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
366 	bios_sig = biosmem[addr]
367 		 | (biosmem[addr + 1] << 8);
368 	if (bios_sig == 0x55AA
369 	 && (adw->flags & ADW_EEPROM_FAILED) != 0) {
370 		u_int major_ver;
371 		u_int minor_ver;
372 		u_int sdtr_able;
373 
374 		addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
375 		minor_ver = biosmem[addr + 1] & 0xF;
376 		major_ver = (biosmem[addr + 1] >> 4) & 0xF;
377 		if ((adw->chip == ADW_CHIP_ASC3550)
378 		 && (major_ver <= 3
379 		  || (major_ver == 3 && minor_ver == 1))) {
380 			/*
381 			 * BIOS 3.1 and earlier location of
382 			 * 'wdtr_able' variable.
383 			 */
384 			adw->user_wdtr =
385 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
386 		} else {
387 			adw->user_wdtr =
388 			    adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
389 		}
390 		sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
391 		for (tid = 0; tid < ADW_MAX_TID; tid++) {
392 			u_int tid_mask;
393 			u_int mc_sdtr;
394 
395 			tid_mask = 0x1 << tid;
396 			if ((sdtr_able & tid_mask) == 0)
397 				mc_sdtr = ADW_MC_SDTR_ASYNC;
398 			else if ((adw->features & ADW_DT) != 0)
399 				mc_sdtr = ADW_MC_SDTR_80;
400 			else if ((adw->features & ADW_ULTRA2) != 0)
401 				mc_sdtr = ADW_MC_SDTR_40;
402 			else
403 				mc_sdtr = ADW_MC_SDTR_20;
404 			adw_set_user_sdtr(adw, tid, mc_sdtr);
405 		}
406 		adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
407 	}
408 
409 	/*
410 	 * Load the Microcode.
411 	 *
412 	 * Assume the following compressed format of the microcode buffer:
413 	 *
414 	 *	253 word (506 byte) table indexed by byte code followed
415 	 *	by the following byte codes:
416 	 *
417 	 *	1-Byte Code:
418 	 *		00: Emit word 0 in table.
419 	 *		01: Emit word 1 in table.
420 	 *		.
421 	 *		FD: Emit word 253 in table.
422 	 *
423 	 *	Multi-Byte Code:
424 	 *		FD RESEVED
425 	 *
426 	 *		FE WW WW: (3 byte code)
427 	 *			Word to emit is the next word WW WW.
428 	 *		FF BB WW WW: (4 byte code)
429 	 *			Emit BB count times next word WW WW.
430 	 *
431 	 */
432 	bytes_downloaded = 0;
433 	word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
434 	byte_codes = (const u_int8_t *)&word_table[253];
435 	byte_codes_end = adw->mcode_data->mcode_buf
436 		       + adw->mcode_data->mcode_size;
437 	adw_outw(adw, ADW_RAM_ADDR, 0);
438 	while (byte_codes < byte_codes_end) {
439 		if (*byte_codes == 0xFF) {
440 			u_int16_t value;
441 
442 			value = byte_codes[2]
443 			      | byte_codes[3] << 8;
444 			adw_set_multi_2(adw, ADW_RAM_DATA,
445 					value, byte_codes[1]);
446 			bytes_downloaded += byte_codes[1];
447 			byte_codes += 4;
448 		} else if (*byte_codes == 0xFE) {
449 			u_int16_t value;
450 
451 			value = byte_codes[1]
452 			      | byte_codes[2] << 8;
453 			adw_outw(adw, ADW_RAM_DATA, value);
454 			bytes_downloaded++;
455 			byte_codes += 3;
456 		} else {
457 			adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
458 			bytes_downloaded++;
459 			byte_codes++;
460 		}
461 	}
462 	/* Convert from words to bytes */
463 	bytes_downloaded *= 2;
464 
465 	/*
466 	 * Clear the rest of LRAM.
467 	 */
468 	for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
469 		adw_outw(adw, ADW_RAM_DATA, 0);
470 
471 	/*
472 	 * Verify the microcode checksum.
473 	 */
474 	checksum = 0;
475 	adw_outw(adw, ADW_RAM_ADDR, 0);
476 	for (addr = 0; addr < bytes_downloaded; addr += 2)
477 		checksum += adw_inw(adw, ADW_RAM_DATA);
478 
479 	if (checksum != adw->mcode_data->mcode_chksum) {
480 		printf("%s: Firmware load failed!\n", adw_name(adw));
481 		return (EIO);
482 	}
483 
484 	/*
485 	 * Restore the RISC memory BIOS region.
486 	 */
487 	for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
488 		adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
489 
490 	/*
491 	 * Calculate and write the microcode code checksum to
492 	 * the microcode code checksum location.
493 	 */
494 	addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
495 	end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
496 	checksum = 0;
497 	adw_outw(adw, ADW_RAM_ADDR, addr);
498 	for (; addr < end_addr; addr += 2)
499 		checksum += adw_inw(adw, ADW_RAM_DATA);
500 	adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
501 
502 	/*
503 	 * Tell the microcode what kind of chip it's running on.
504 	 */
505 	adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
506 
507 	/*
508 	 * Leave WDTR and SDTR negotiation disabled until the XPT has
509 	 * informed us of device capabilities, but do set the desired
510 	 * user rates in case we receive an SDTR request from the target
511 	 * before we negotiate.  We turn on tagged queuing at the microcode
512 	 * level for all devices, and modulate this on a per command basis.
513 	 */
514 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
515 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
516 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
517 	adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
518 	adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
519 	for (tid = 0; tid < ADW_MAX_TID; tid++) {
520 		/* Cam limits the maximum number of commands for us */
521 		adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
522 				 adw->max_acbs);
523 	}
524 	adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
525 
526 	/*
527 	 * Set SCSI_CFG0 Microcode Default Value.
528 	 *
529 	 * The microcode will set the SCSI_CFG0 register using this value
530 	 * after it is started.
531 	 */
532 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
533 			  ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
534 			  ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
535 
536 	/*
537 	 * Tell the MC about the memory size that
538 	 * was setup by the probe code.
539 	 */
540 	adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
541 			  adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
542 
543 	/*
544 	 * Determine SCSI_CFG1 Microcode Default Value.
545 	 *
546 	 * The microcode will set the SCSI_CFG1 register using this value
547 	 * after it is started below.
548 	 */
549 	scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
550 
551 	/*
552 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
553 	 * register signals will be set. Check for and return an error if
554 	 * this condition is found.
555 	 */
556 	if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
557 		printf("%s: Illegal Cable Config!\n", adw_name(adw));
558 		printf("%s: Internal cable is reversed!\n", adw_name(adw));
559 		return (EIO);
560 	}
561 
562 	/*
563 	 * If this is a differential board and a single-ended device
564 	 * is attached to one of the connectors, return an error.
565 	 */
566 	if ((adw->features & ADW_ULTRA) != 0)  {
567 		if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
568 		 && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
569 			printf("%s: A Single Ended Device is attached to our "
570 			       "differential bus!\n", adw_name(adw));
571 		        return (EIO);
572 		}
573 	} else {
574 		if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
575 			printf("%s: A High Voltage Differential Device "
576 			       "is attached to this controller.\n",
577 			       adw_name(adw));
578 			printf("%s: HVD devices are not supported.\n",
579 			       adw_name(adw));
580 		        return (EIO);
581 		}
582 	}
583 
584 	/*
585 	 * Perform automatic termination control if desired.
586 	 */
587 	if ((adw->features & ADW_ULTRA2) != 0) {
588 		u_int cable_det;
589 
590 		/*
591 		 * Ultra2 Chips require termination disabled to
592 		 * detect cable presence.
593 		 */
594 		adw_outw(adw, ADW_SCSI_CFG1,
595 			 scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
596 		cable_det = adw_inw(adw, ADW_SCSI_CFG1);
597 		adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
598 
599 		/* SE Termination first if auto-term has been specified */
600 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
601 
602 			/*
603 			 * For all SE cable configurations, high byte
604 			 * termination is enabled.
605 			 */
606 			term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
607 			if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
608 			 || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
609 				/*
610 				 * If either cable is not present, the
611 				 * low byte must be terminated as well.
612 				 */
613 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
614 			}
615 		}
616 
617 		/* LVD auto-term */
618 		if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
619 		 && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
620 			/*
621 			 * If both cables are installed, termination
622 			 * is disabled.  Otherwise it is enabled.
623 			 */
624 			if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
625 			 || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
626 
627 				term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
628 			}
629 		}
630 		term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
631 	} else {
632 		/* Ultra Controller Termination */
633 		if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
634 			int cable_count;
635 			int wide_cable_count;
636 
637 			cable_count = 0;
638 			wide_cable_count = 0;
639 			if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
640 				cable_count++;
641 				wide_cable_count++;
642 			}
643 			if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
644 				cable_count++;
645 
646 			/* There is only one external port */
647 			if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
648 				cable_count++;
649 				wide_cable_count++;
650 			} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
651 				cable_count++;
652 
653 			if (cable_count == 3) {
654 				printf("%s: Illegal Cable Config!\n",
655 				       adw_name(adw));
656 				printf("%s: Only Two Ports may be used at "
657 				       "a time!\n", adw_name(adw));
658 			} else if (cable_count <= 1) {
659 				/*
660 				 * At least two out of three cables missing.
661 				 * Terminate both bytes.
662 				 */
663 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
664 					      |  ADW_SCSI_CFG1_TERM_CTL_L;
665 			} else if (wide_cable_count <= 1) {
666 				/* No two 16bit cables present.  High on. */
667 				term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
668 			}
669 		}
670         }
671 
672 	/* Tell the user about our decission */
673 	switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
674 	case ADW_SCSI_CFG1_TERM_CTL_MASK:
675 		printf("High & Low SE Term Enabled, ");
676 		break;
677 	case ADW_SCSI_CFG1_TERM_CTL_H:
678 		printf("High SE Termination Enabled, ");
679 		break;
680 	case ADW_SCSI_CFG1_TERM_CTL_L:
681 		printf("Low SE Term Enabled, ");
682 		break;
683 	default:
684 		break;
685 	}
686 
687 	if ((adw->features & ADW_ULTRA2) != 0
688 	 && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
689 		printf("LVD Term Enabled, ");
690 
691 	/*
692 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
693 	 * set 'scsicfg1'. The TERM_POL bit does not need to be
694 	 * referenced, because the hardware internally inverts
695 	 * the Termination High and Low bits if TERM_POL is set.
696 	 */
697 	if ((adw->features & ADW_ULTRA2) != 0) {
698 		term_scsicfg1 = ~term_scsicfg1;
699 		term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
700 			      |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
701 		scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
702 			     |ADW2_SCSI_CFG1_TERM_CTL_LVD
703 			     |ADW_SCSI_CFG1_BIG_ENDIAN
704 			     |ADW_SCSI_CFG1_TERM_POL
705 			     |ADW2_SCSI_CFG1_DEV_DETECT);
706 		scsicfg1 |= term_scsicfg1;
707 	} else {
708 		term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
709 		scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
710 		scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
711 		scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
712 	}
713 
714 	/*
715 	 * Set SCSI_CFG1 Microcode Default Value
716 	 *
717 	 * The microcode will set the SCSI_CFG1 register using this value
718 	 * after it is started below.
719 	 */
720 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
721 
722 	/*
723 	 * Only accept selections on our initiator target id.
724 	 * This may change in target mode scenarios...
725 	 */
726 	adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
727 			  (0x01 << adw->initiator_id));
728 
729 	/*
730 	 * Tell the microcode where it can find our
731 	 * Initiator Command Queue (ICQ).  It is
732 	 * currently empty hence the "stopper" address.
733 	 */
734 	adw->commandq = adw->free_carriers;
735 	adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
736 	adw->commandq->next_ba = ADW_CQ_STOPPER;
737 	adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
738 
739 	/*
740 	 * Tell the microcode where it can find our
741 	 * Initiator Response Queue (IRQ).  It too
742 	 * is currently empty.
743 	 */
744 	adw->responseq = adw->free_carriers;
745 	adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
746 	adw->responseq->next_ba = ADW_CQ_STOPPER;
747 	adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
748 
749 	adw_outb(adw, ADW_INTR_ENABLES,
750 		 ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
751 
752 	adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
753 
754 	return (0);
755 }
756 
757 void
758 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
759 {
760 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
761 	adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
762 	    mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
763 }
764 
765 u_int
766 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
767 {
768 	u_int mc_sdtr;
769 
770 	mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
771 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
772 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
773 	return (mc_sdtr);
774 }
775 
776 void
777 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
778 {
779 	u_int mc_sdtr_offset;
780 	u_int mc_sdtr;
781 
782 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
783 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
784 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
785 	mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
786 	mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
787 	adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
788 }
789 
790 u_int
791 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
792 {
793 	u_int mc_sdtr_offset;
794 	u_int mc_sdtr;
795 
796 	mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
797 	mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
798 	mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
799 	mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
800 	mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
801 	return (mc_sdtr);
802 }
803 
804 u_int
805 adw_find_sdtr(struct adw_softc *adw, u_int period)
806 {
807 	int i;
808 
809 	i = 0;
810 	if ((adw->features & ADW_DT) == 0)
811 		i = ADW_MC_SDTR_OFFSET_ULTRA2;
812 	if ((adw->features & ADW_ULTRA2) == 0)
813 		i = ADW_MC_SDTR_OFFSET_ULTRA;
814 	if (period == 0)
815 		return ADW_MC_SDTR_ASYNC;
816 
817 	for (; i < adw_num_syncrates; i++) {
818 		if (period <= adw_syncrates[i].period)
819 			return (adw_syncrates[i].mc_sdtr);
820 	}
821 	return ADW_MC_SDTR_ASYNC;
822 }
823 
824 u_int
825 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
826 {
827 	int i;
828 
829 	for (i = 0; i < adw_num_syncrates; i++) {
830 		if (mc_sdtr == adw_syncrates[i].mc_sdtr)
831 			break;
832 	}
833 	return (adw_syncrates[i].period);
834 }
835 
836 u_int
837 adw_hshk_cfg_period_factor(u_int tinfo)
838 {
839 	tinfo &= ADW_HSHK_CFG_RATE_MASK;
840 	tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
841 	if (tinfo == 0x11)
842 		/* 80MHz/DT */
843 		return (9);
844 	else if (tinfo == 0x10)
845 		/* 40MHz */
846 		return (10);
847 	else
848 		return (((tinfo * 25) + 50) / 4);
849 }
850 
851 /*
852  * Send an idle command to the chip and wait for completion.
853  */
854 adw_idle_cmd_status_t
855 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
856 {
857 	u_int		      timeout;
858 	adw_idle_cmd_status_t status;
859 
860 	crit_enter();
861 
862 	/*
863 	 * Clear the idle command status which is set by the microcode
864 	 * to a non-zero value to indicate when the command is completed.
865 	 */
866 	adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
867 
868 	/*
869 	 * Write the idle command value after the idle command parameter
870 	 * has been written to avoid a race condition. If the order is not
871 	 * followed, the microcode may process the idle command before the
872 	 * parameters have been written to LRAM.
873 	 */
874 	adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
875     	adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
876 
877 	/*
878 	 * Tickle the RISC to tell it to process the idle command.
879 	 */
880 	adw_tickle_risc(adw, ADW_TICKLE_B);
881 
882 	/* Wait for up to 10 seconds for the command to complete */
883 	timeout = 5000000;
884 	while (--timeout) {
885 		status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
886        		if (status != 0)
887 			break;
888 		DELAY(20);
889 	}
890 
891 	if (timeout == 0)
892 		panic("%s: Idle Command Timed Out!\n", adw_name(adw));
893 	crit_exit();
894 	return (status);
895 }
896