xref: /dragonfly/sys/dev/disk/isp/isp_pci.c (revision 36a3d1d6)
1 /* $FreeBSD: src/sys/dev/isp/isp_pci.c,v 1.78.2.4 2002/10/11 18:50:53 mjacob Exp $ */
2 /* $DragonFly: src/sys/dev/disk/isp/isp_pci.c,v 1.13 2008/01/06 16:55:49 swildner Exp $ */
3 /*
4  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
5  * FreeBSD Version.
6  *
7  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice immediately at the beginning of the file, without modification,
14  *    this list of conditions, and the following disclaimer.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/bus.h>
36 #include <sys/rman.h>
37 #include <sys/malloc.h>
38 
39 #include <bus/pci/pcireg.h>
40 #include <bus/pci/pcivar.h>
41 
42 #include "isp_freebsd.h"
43 
44 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
45 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
46 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
47 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
48 static int
49 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
50 static int
51 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
52 static int isp_pci_mbxdma(struct ispsoftc *);
53 static int
54 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
55 static void
56 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
57 
58 static void isp_pci_reset1(struct ispsoftc *);
59 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
60 
61 static struct ispmdvec mdvec = {
62 	isp_pci_rd_isr,
63 	isp_pci_rd_reg,
64 	isp_pci_wr_reg,
65 	isp_pci_mbxdma,
66 	isp_pci_dmasetup,
67 	isp_pci_dmateardown,
68 	NULL,
69 	isp_pci_reset1,
70 	isp_pci_dumpregs,
71 	NULL,
72 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
73 };
74 
75 static struct ispmdvec mdvec_1080 = {
76 	isp_pci_rd_isr,
77 	isp_pci_rd_reg_1080,
78 	isp_pci_wr_reg_1080,
79 	isp_pci_mbxdma,
80 	isp_pci_dmasetup,
81 	isp_pci_dmateardown,
82 	NULL,
83 	isp_pci_reset1,
84 	isp_pci_dumpregs,
85 	NULL,
86 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
87 };
88 
89 static struct ispmdvec mdvec_12160 = {
90 	isp_pci_rd_isr,
91 	isp_pci_rd_reg_1080,
92 	isp_pci_wr_reg_1080,
93 	isp_pci_mbxdma,
94 	isp_pci_dmasetup,
95 	isp_pci_dmateardown,
96 	NULL,
97 	isp_pci_reset1,
98 	isp_pci_dumpregs,
99 	NULL,
100 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
101 };
102 
103 static struct ispmdvec mdvec_2100 = {
104 	isp_pci_rd_isr,
105 	isp_pci_rd_reg,
106 	isp_pci_wr_reg,
107 	isp_pci_mbxdma,
108 	isp_pci_dmasetup,
109 	isp_pci_dmateardown,
110 	NULL,
111 	isp_pci_reset1,
112 	isp_pci_dumpregs
113 };
114 
115 static struct ispmdvec mdvec_2200 = {
116 	isp_pci_rd_isr,
117 	isp_pci_rd_reg,
118 	isp_pci_wr_reg,
119 	isp_pci_mbxdma,
120 	isp_pci_dmasetup,
121 	isp_pci_dmateardown,
122 	NULL,
123 	isp_pci_reset1,
124 	isp_pci_dumpregs
125 };
126 
127 static struct ispmdvec mdvec_2300 = {
128 	isp_pci_rd_isr_2300,
129 	isp_pci_rd_reg,
130 	isp_pci_wr_reg,
131 	isp_pci_mbxdma,
132 	isp_pci_dmasetup,
133 	isp_pci_dmateardown,
134 	NULL,
135 	isp_pci_reset1,
136 	isp_pci_dumpregs
137 };
138 
139 #ifndef	PCIM_CMD_INVEN
140 #define	PCIM_CMD_INVEN			0x10
141 #endif
142 #ifndef	PCIM_CMD_BUSMASTEREN
143 #define	PCIM_CMD_BUSMASTEREN		0x0004
144 #endif
145 #ifndef	PCIM_CMD_PERRESPEN
146 #define	PCIM_CMD_PERRESPEN		0x0040
147 #endif
148 #ifndef	PCIM_CMD_SEREN
149 #define	PCIM_CMD_SEREN			0x0100
150 #endif
151 
152 #ifndef	PCIR_COMMAND
153 #define	PCIR_COMMAND			0x04
154 #endif
155 
156 #ifndef	PCIR_CACHELNSZ
157 #define	PCIR_CACHELNSZ			0x0c
158 #endif
159 
160 #ifndef	PCIR_LATTIMER
161 #define	PCIR_LATTIMER			0x0d
162 #endif
163 
164 #ifndef	PCIR_ROMADDR
165 #define	PCIR_ROMADDR			0x30
166 #endif
167 
168 #ifndef	PCI_VENDOR_QLOGIC
169 #define	PCI_VENDOR_QLOGIC		0x1077
170 #endif
171 
172 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
173 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
174 #endif
175 
176 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
177 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
178 #endif
179 
180 #ifndef	PCI_PRODUCT_QLOGIC_ISP10160
181 #define	PCI_PRODUCT_QLOGIC_ISP10160	0x1016
182 #endif
183 
184 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
185 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
186 #endif
187 
188 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
189 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
190 #endif
191 
192 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
193 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
194 #endif
195 
196 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
197 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
198 #endif
199 
200 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
201 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
202 #endif
203 
204 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
205 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
206 #endif
207 
208 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
209 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
210 #endif
211 
212 #define	PCI_QLOGIC_ISP1020	\
213 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
214 
215 #define	PCI_QLOGIC_ISP1080	\
216 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
217 
218 #define	PCI_QLOGIC_ISP10160	\
219 	((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC)
220 
221 #define	PCI_QLOGIC_ISP12160	\
222 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
223 
224 #define	PCI_QLOGIC_ISP1240	\
225 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
226 
227 #define	PCI_QLOGIC_ISP1280	\
228 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
229 
230 #define	PCI_QLOGIC_ISP2100	\
231 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
232 
233 #define	PCI_QLOGIC_ISP2200	\
234 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
235 
236 #define	PCI_QLOGIC_ISP2300	\
237 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
238 
239 #define	PCI_QLOGIC_ISP2312	\
240 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
241 
242 /*
243  * Odd case for some AMI raid cards... We need to *not* attach to this.
244  */
245 #define	AMI_RAID_SUBVENDOR_ID	0x101e
246 
247 #define	IO_MAP_REG	0x10
248 #define	MEM_MAP_REG	0x14
249 
250 #define	PCI_DFLT_LTNCY	0x40
251 #define	PCI_DFLT_LNSZ	0x10
252 
253 static int isp_pci_probe (device_t);
254 static int isp_pci_attach (device_t);
255 
256 
257 struct isp_pcisoftc {
258 	struct ispsoftc			pci_isp;
259 	device_t			pci_dev;
260 	struct resource *		pci_reg;
261 	bus_space_tag_t			pci_st;
262 	bus_space_handle_t		pci_sh;
263 	void *				ih;
264 	int16_t				pci_poff[_NREG_BLKS];
265 	bus_dma_tag_t			dmat;
266 	bus_dmamap_t			*dmaps;
267 };
268 ispfwfunc *isp_get_firmware_p = NULL;
269 
270 static device_method_t isp_pci_methods[] = {
271 	/* Device interface */
272 	DEVMETHOD(device_probe,		isp_pci_probe),
273 	DEVMETHOD(device_attach,	isp_pci_attach),
274 	{ 0, 0 }
275 };
276 static void isp_pci_intr(void *);
277 
278 static driver_t isp_pci_driver = {
279 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
280 };
281 static devclass_t isp_devclass;
282 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
283 MODULE_VERSION(isp, 1);
284 
285 static int
286 isp_pci_probe(device_t dev)
287 {
288         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
289 	case PCI_QLOGIC_ISP1020:
290 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
291 		break;
292 	case PCI_QLOGIC_ISP1080:
293 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
294 		break;
295 	case PCI_QLOGIC_ISP1240:
296 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
297 		break;
298 	case PCI_QLOGIC_ISP1280:
299 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
300 		break;
301 	case PCI_QLOGIC_ISP10160:
302 		device_set_desc(dev, "Qlogic ISP 10160 PCI SCSI Adapter");
303 		break;
304 	case PCI_QLOGIC_ISP12160:
305 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
306 			return (ENXIO);
307 		}
308 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
309 		break;
310 	case PCI_QLOGIC_ISP2100:
311 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
312 		break;
313 	case PCI_QLOGIC_ISP2200:
314 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
315 		break;
316 	case PCI_QLOGIC_ISP2300:
317 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
318 		break;
319 	case PCI_QLOGIC_ISP2312:
320 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
321 		break;
322 	default:
323 		return (ENXIO);
324 	}
325 	if (device_get_unit(dev) == 0 && bootverbose) {
326 		kprintf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
327 		    "Core Version %d.%d\n",
328 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
329 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
330 	}
331 	/*
332 	 * XXXX: Here is where we might load the f/w module
333 	 * XXXX: (or increase a reference count to it).
334 	 */
335 	return (0);
336 }
337 
338 static int
339 isp_pci_attach(device_t dev)
340 {
341 	struct resource *regs, *irq;
342 	int unit, bitmap, rtp, rgd, iqd, m1, m2, isp_debug;
343 	u_int32_t data, cmd, linesz, psize, basetype;
344 	struct isp_pcisoftc *pcs;
345 	struct ispsoftc *isp = NULL;
346 	struct ispmdvec *mdvp;
347 	quad_t wwn;
348 	bus_size_t lim;
349 
350 	/*
351 	 * Figure out if we're supposed to skip this one.
352 	 */
353 	unit = device_get_unit(dev);
354 	if (kgetenv_int("isp_disable", &bitmap)) {
355 		if (bitmap & (1 << unit)) {
356 			device_printf(dev, "not configuring\n");
357 			/*
358 			 * But return '0' to preserve HBA numbering.
359 			 */
360 			return (0);
361 		}
362 	}
363 
364 	pcs = kmalloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_WAITOK | M_ZERO);
365 
366 	/*
367 	 * Figure out which we should try first - memory mapping or i/o mapping?
368 	 */
369 	m1 = PCIM_CMD_PORTEN;
370 	m2 = PCIM_CMD_MEMEN;
371 	bitmap = 0;
372 	if (kgetenv_int("isp_mem_map", &bitmap)) {
373 		if (bitmap & (1 << unit)) {
374 			m1 = PCIM_CMD_MEMEN;
375 			m2 = PCIM_CMD_PORTEN;
376 		}
377 	}
378 	bitmap = 0;
379 	if (kgetenv_int("isp_io_map", &bitmap)) {
380 		if (bitmap & (1 << unit)) {
381 			m1 = PCIM_CMD_PORTEN;
382 			m2 = PCIM_CMD_MEMEN;
383 		}
384 	}
385 
386 	linesz = PCI_DFLT_LNSZ;
387 	irq = regs = NULL;
388 	rgd = rtp = iqd = 0;
389 
390 	cmd = pci_read_config(dev, PCIR_COMMAND, 1);
391 	if (cmd & m1) {
392 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
393 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
394 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
395 	}
396 	if (regs == NULL && (cmd & m2)) {
397 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
398 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
399 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
400 	}
401 	if (regs == NULL) {
402 		device_printf(dev, "unable to map any ports\n");
403 		goto bad;
404 	}
405 	if (bootverbose)
406 		device_printf(dev, "using %s space register mapping\n",
407 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
408 	pcs->pci_dev = dev;
409 	pcs->pci_reg = regs;
410 	pcs->pci_st = rman_get_bustag(regs);
411 	pcs->pci_sh = rman_get_bushandle(regs);
412 
413 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
414 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
415 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
416 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
417 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
418 	mdvp = &mdvec;
419 	basetype = ISP_HA_SCSI_UNKNOWN;
420 	psize = sizeof (sdparam);
421 	lim = BUS_SPACE_MAXSIZE_32BIT;
422 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
423 		mdvp = &mdvec;
424 		basetype = ISP_HA_SCSI_UNKNOWN;
425 		psize = sizeof (sdparam);
426 		lim = BUS_SPACE_MAXSIZE_24BIT;
427 	}
428 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
429 		mdvp = &mdvec_1080;
430 		basetype = ISP_HA_SCSI_1080;
431 		psize = sizeof (sdparam);
432 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
433 		    ISP1080_DMA_REGS_OFF;
434 	}
435 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
436 		mdvp = &mdvec_1080;
437 		basetype = ISP_HA_SCSI_1240;
438 		psize = 2 * sizeof (sdparam);
439 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
440 		    ISP1080_DMA_REGS_OFF;
441 	}
442 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
443 		mdvp = &mdvec_1080;
444 		basetype = ISP_HA_SCSI_1280;
445 		psize = 2 * sizeof (sdparam);
446 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
447 		    ISP1080_DMA_REGS_OFF;
448 	}
449 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP10160) {
450 		mdvp = &mdvec_12160;
451 		basetype = ISP_HA_SCSI_10160;
452 		psize = sizeof (sdparam);
453 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
454 		    ISP1080_DMA_REGS_OFF;
455 	}
456 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
457 		mdvp = &mdvec_12160;
458 		basetype = ISP_HA_SCSI_12160;
459 		psize = 2 * sizeof (sdparam);
460 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
461 		    ISP1080_DMA_REGS_OFF;
462 	}
463 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
464 		mdvp = &mdvec_2100;
465 		basetype = ISP_HA_FC_2100;
466 		psize = sizeof (fcparam);
467 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
468 		    PCI_MBOX_REGS2100_OFF;
469 		if (pci_get_revid(dev) < 3) {
470 			/*
471 			 * XXX: Need to get the actual revision
472 			 * XXX: number of the 2100 FB. At any rate,
473 			 * XXX: lower cache line size for early revision
474 			 * XXX; boards.
475 			 */
476 			linesz = 1;
477 		}
478 	}
479 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
480 		mdvp = &mdvec_2200;
481 		basetype = ISP_HA_FC_2200;
482 		psize = sizeof (fcparam);
483 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
484 		    PCI_MBOX_REGS2100_OFF;
485 	}
486 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
487 		mdvp = &mdvec_2300;
488 		basetype = ISP_HA_FC_2300;
489 		psize = sizeof (fcparam);
490 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
491 		    PCI_MBOX_REGS2300_OFF;
492 	}
493 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
494 		mdvp = &mdvec_2300;
495 		basetype = ISP_HA_FC_2312;
496 		psize = sizeof (fcparam);
497 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
498 		    PCI_MBOX_REGS2300_OFF;
499 	}
500 	isp = &pcs->pci_isp;
501 	isp->isp_param = kmalloc(psize, M_DEVBUF, M_WAITOK | M_ZERO);
502 	isp->isp_mdvec = mdvp;
503 	isp->isp_type = basetype;
504 	isp->isp_revision = pci_get_revid(dev);
505 #ifdef	ISP_TARGET_MODE
506 	isp->isp_role = ISP_ROLE_BOTH;
507 #else
508 	isp->isp_role = ISP_DEFAULT_ROLES;
509 #endif
510 	isp->isp_dev = dev;
511 
512 
513 	/*
514 	 * Try and find firmware for this device.
515 	 */
516 
517 	if (isp_get_firmware_p) {
518 		int device = (int) pci_get_device(dev);
519 #ifdef	ISP_TARGET_MODE
520 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
521 #else
522 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
523 #endif
524 	}
525 
526 	/*
527 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
528 	 * are set.
529 	 */
530 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
531 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
532 	if (IS_2300(isp)) {	/* per QLogic errata */
533 		cmd &= ~PCIM_CMD_INVEN;
534 	}
535 	if (IS_23XX(isp)) {
536 		/*
537 		 * Can't tell if ROM will hang on 'ABOUT FIRMWARE' command.
538 		 */
539 		isp->isp_touched = 1;
540 
541 	}
542 	pci_write_config(dev, PCIR_COMMAND, cmd, 1);
543 
544 	/*
545 	 * Make sure the Cache Line Size register is set sensibly.
546 	 */
547 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
548 	if (data != linesz) {
549 		data = PCI_DFLT_LNSZ;
550 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
551 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
552 	}
553 
554 	/*
555 	 * Make sure the Latency Timer is sane.
556 	 */
557 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
558 	if (data < PCI_DFLT_LTNCY) {
559 		data = PCI_DFLT_LTNCY;
560 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
561 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
562 	}
563 
564 	/*
565 	 * Make sure we've disabled the ROM.
566 	 */
567 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
568 	data &= ~1;
569 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
570 
571 	iqd = 0;
572 	irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
573 	    1, RF_ACTIVE | RF_SHAREABLE);
574 	if (irq == NULL) {
575 		device_printf(dev, "could not allocate interrupt\n");
576 		goto bad;
577 	}
578 
579 	if (kgetenv_int("isp_no_fwload", &bitmap)) {
580 		if (bitmap & (1 << unit))
581 			isp->isp_confopts |= ISP_CFG_NORELOAD;
582 	}
583 	if (kgetenv_int("isp_fwload", &bitmap)) {
584 		if (bitmap & (1 << unit))
585 			isp->isp_confopts &= ~ISP_CFG_NORELOAD;
586 	}
587 	if (kgetenv_int("isp_no_nvram", &bitmap)) {
588 		if (bitmap & (1 << unit))
589 			isp->isp_confopts |= ISP_CFG_NONVRAM;
590 	}
591 	if (kgetenv_int("isp_nvram", &bitmap)) {
592 		if (bitmap & (1 << unit))
593 			isp->isp_confopts &= ~ISP_CFG_NONVRAM;
594 	}
595 	if (kgetenv_int("isp_fcduplex", &bitmap)) {
596 		if (bitmap & (1 << unit))
597 			isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
598 	}
599 	if (kgetenv_int("isp_no_fcduplex", &bitmap)) {
600 		if (bitmap & (1 << unit))
601 			isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX;
602 	}
603 	if (kgetenv_int("isp_nport", &bitmap)) {
604 		if (bitmap & (1 << unit))
605 			isp->isp_confopts |= ISP_CFG_NPORT;
606 	}
607 
608 	/*
609 	 * Because the resource_*_value functions can neither return
610 	 * 64 bit integer values, nor can they be directly coerced
611 	 * to interpret the right hand side of the assignment as
612 	 * you want them to interpret it, we have to force WWN
613 	 * hint replacement to specify WWN strings with a leading
614 	 * 'w' (e..g w50000000aaaa0001). Sigh.
615 	 */
616 	if (kgetenv_quad("isp_portwwn", &wwn)) {
617 		isp->isp_osinfo.default_port_wwn = wwn;
618 		isp->isp_confopts |= ISP_CFG_OWNWWPN;
619 	}
620 	if (isp->isp_osinfo.default_port_wwn == 0) {
621 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
622 	}
623 
624 	if (kgetenv_quad("isp_nodewwn", &wwn)) {
625 		isp->isp_osinfo.default_node_wwn = wwn;
626 		isp->isp_confopts |= ISP_CFG_OWNWWNN;
627 	}
628 	if (isp->isp_osinfo.default_node_wwn == 0) {
629 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
630 	}
631 
632 	isp_debug = 0;
633 	(void) kgetenv_int("isp_debug", &isp_debug);
634 	if (bus_setup_intr(dev, irq, 0, isp_pci_intr,
635 	    isp, &pcs->ih, NULL)) {
636 		device_printf(dev, "could not setup interrupt\n");
637 		goto bad;
638 	}
639 
640 #ifdef	ISP_FW_CRASH_DUMP
641 	bitmap = 0;
642 	if (kgetenv_int("isp_fw_dump_enable", &bitmap)) {
643 		if (bitmap & (1 << unit) {
644 			size_t amt = 0;
645 			if (IS_2200(isp)) {
646 				amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
647 			} else if (IS_23XX(isp)) {
648 				amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
649 			}
650 			if (amt) {
651 				FCPARAM(isp)->isp_dump_data =
652 				    kmalloc(amt, M_DEVBUF, M_WAITOK);
653 				bzero(FCPARAM(isp)->isp_dump_data, amt);
654 			} else {
655 				device_printf(dev,
656 				    "f/w crash dumps not supported for card\n");
657 			}
658 		}
659 	}
660 #endif
661 
662 	if (IS_2312(isp)) {
663 		isp->isp_port = pci_get_function(dev);
664 	}
665 
666 	/*
667 	 * Set up logging levels.
668 	 */
669 	if (isp_debug) {
670 		isp->isp_dblev = isp_debug;
671 	} else {
672 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
673 	}
674 	if (bootverbose)
675 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
676 
677 	/*
678 	 * Make sure we're in reset state.
679 	 */
680 	ISP_LOCK(isp);
681 	isp_reset(isp);
682 
683 	if (isp->isp_state != ISP_RESETSTATE) {
684 		ISP_UNLOCK(isp);
685 		goto bad;
686 	}
687 	isp_init(isp);
688 	if (isp->isp_state != ISP_INITSTATE) {
689 		/* If we're a Fibre Channel Card, we allow deferred attach */
690 		if (IS_SCSI(isp)) {
691 			isp_uninit(isp);
692 			ISP_UNLOCK(isp);
693 			goto bad;
694 		}
695 	}
696 	isp_attach(isp);
697 	if (isp->isp_state != ISP_RUNSTATE) {
698 		/* If we're a Fibre Channel Card, we allow deferred attach */
699 		if (IS_SCSI(isp)) {
700 			isp_uninit(isp);
701 			ISP_UNLOCK(isp);
702 			goto bad;
703 		}
704 	}
705 	/*
706 	 * XXXX: Here is where we might unload the f/w module
707 	 * XXXX: (or decrease the reference count to it).
708 	 */
709 	ISP_UNLOCK(isp);
710 	return (0);
711 
712 bad:
713 
714 	if (pcs && pcs->ih) {
715 		(void) bus_teardown_intr(dev, irq, pcs->ih);
716 	}
717 
718 	if (irq) {
719 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
720 	}
721 
722 
723 	if (regs) {
724 		(void) bus_release_resource(dev, rtp, rgd, regs);
725 	}
726 
727 	if (pcs) {
728 		if (pcs->pci_isp.isp_param)
729 			kfree(pcs->pci_isp.isp_param, M_DEVBUF);
730 		kfree(pcs, M_DEVBUF);
731 	}
732 
733 	/*
734 	 * XXXX: Here is where we might unload the f/w module
735 	 * XXXX: (or decrease the reference count to it).
736 	 */
737 	return (ENXIO);
738 }
739 
740 static void
741 isp_pci_intr(void *arg)
742 {
743 	struct ispsoftc *isp = arg;
744 	u_int16_t isr, sema, mbox;
745 
746 	ISP_LOCK(isp);
747 	isp->isp_intcnt++;
748 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
749 		isp->isp_intbogus++;
750 	} else {
751 		int iok = isp->isp_osinfo.intsok;
752 		isp->isp_osinfo.intsok = 0;
753 		isp_intr(isp, isr, sema, mbox);
754 		isp->isp_osinfo.intsok = iok;
755 	}
756 	ISP_UNLOCK(isp);
757 }
758 
759 
760 #define	IspVirt2Off(a, x)	\
761 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
762 	_BLK_REG_SHFT] + ((x) & 0xff))
763 
764 #define	BXR2(pcs, off)		\
765 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
766 #define	BXW2(pcs, off, v)	\
767 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
768 
769 
770 static INLINE int
771 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
772 {
773 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
774 	u_int16_t val0, val1;
775 	int i = 0;
776 
777 	do {
778 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
779 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
780 	} while (val0 != val1 && ++i < 1000);
781 	if (val0 != val1) {
782 		return (1);
783 	}
784 	*rp = val0;
785 	return (0);
786 }
787 
788 static int
789 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
790     u_int16_t *semap, u_int16_t *mbp)
791 {
792 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
793 	u_int16_t isr, sema;
794 
795 	if (IS_2100(isp)) {
796 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
797 		    return (0);
798 		}
799 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
800 		    return (0);
801 		}
802 	} else {
803 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
804 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
805 	}
806 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
807 	isr &= INT_PENDING_MASK(isp);
808 	sema &= BIU_SEMA_LOCK;
809 	if (isr == 0 && sema == 0) {
810 		return (0);
811 	}
812 	*isrp = isr;
813 	if ((*semap = sema) != 0) {
814 		if (IS_2100(isp)) {
815 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
816 				return (0);
817 			}
818 		} else {
819 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
820 		}
821 	}
822 	return (1);
823 }
824 
825 static int
826 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
827     u_int16_t *semap, u_int16_t *mbox0p)
828 {
829 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
830 	u_int32_t r2hisr;
831 
832 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
833 		*isrp = 0;
834 		return (0);
835 	}
836 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
837 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
838 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
839 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
840 		*isrp = 0;
841 		return (0);
842 	}
843 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
844 	case ISPR2HST_ROM_MBX_OK:
845 	case ISPR2HST_ROM_MBX_FAIL:
846 	case ISPR2HST_MBX_OK:
847 	case ISPR2HST_MBX_FAIL:
848 	case ISPR2HST_ASYNC_EVENT:
849 		*isrp = r2hisr & 0xffff;
850 		*mbox0p = (r2hisr >> 16);
851 		*semap = 1;
852 		return (1);
853 	case ISPR2HST_RIO_16:
854 		*isrp = r2hisr & 0xffff;
855 		*mbox0p = ASYNC_RIO1;
856 		*semap = 1;
857 		return (1);
858 	case ISPR2HST_FPOST:
859 		*isrp = r2hisr & 0xffff;
860 		*mbox0p = ASYNC_CMD_CMPLT;
861 		*semap = 1;
862 		return (1);
863 	case ISPR2HST_FPOST_CTIO:
864 		*isrp = r2hisr & 0xffff;
865 		*mbox0p = ASYNC_CTIO_DONE;
866 		*semap = 1;
867 		return (1);
868 	case ISPR2HST_RSPQ_UPDATE:
869 		*isrp = r2hisr & 0xffff;
870 		*mbox0p = 0;
871 		*semap = 0;
872 		return (1);
873 	default:
874 		return (0);
875 	}
876 }
877 
878 static u_int16_t
879 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
880 {
881 	u_int16_t rv;
882 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
883 	int oldconf = 0;
884 
885 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
886 		/*
887 		 * We will assume that someone has paused the RISC processor.
888 		 */
889 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
890 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
891 		    oldconf | BIU_PCI_CONF1_SXP);
892 	}
893 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
894 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
895 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
896 	}
897 	return (rv);
898 }
899 
900 static void
901 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
902 {
903 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
904 	int oldconf = 0;
905 
906 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
907 		/*
908 		 * We will assume that someone has paused the RISC processor.
909 		 */
910 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
911 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
912 		    oldconf | BIU_PCI_CONF1_SXP);
913 	}
914 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
915 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
916 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
917 	}
918 }
919 
920 static u_int16_t
921 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
922 {
923 	u_int16_t rv, oc = 0;
924 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
925 
926 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
927 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
928 		u_int16_t tc;
929 		/*
930 		 * We will assume that someone has paused the RISC processor.
931 		 */
932 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
933 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
934 		if (regoff & SXP_BANK1_SELECT)
935 			tc |= BIU_PCI1080_CONF1_SXP1;
936 		else
937 			tc |= BIU_PCI1080_CONF1_SXP0;
938 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
939 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
940 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
941 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
942 		    oc | BIU_PCI1080_CONF1_DMA);
943 	}
944 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
945 	if (oc) {
946 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
947 	}
948 	return (rv);
949 }
950 
951 static void
952 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
953 {
954 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
955 	int oc = 0;
956 
957 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
958 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
959 		u_int16_t tc;
960 		/*
961 		 * We will assume that someone has paused the RISC processor.
962 		 */
963 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
964 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
965 		if (regoff & SXP_BANK1_SELECT)
966 			tc |= BIU_PCI1080_CONF1_SXP1;
967 		else
968 			tc |= BIU_PCI1080_CONF1_SXP0;
969 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
970 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
971 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
972 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
973 		    oc | BIU_PCI1080_CONF1_DMA);
974 	}
975 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
976 	if (oc) {
977 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
978 	}
979 }
980 
981 
982 struct imush {
983 	struct ispsoftc *isp;
984 	int error;
985 };
986 
987 static void imc(void *, bus_dma_segment_t *, int, int);
988 
989 static void
990 imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
991 {
992 	struct imush *imushp = (struct imush *) arg;
993 	if (error) {
994 		imushp->error = error;
995 	} else {
996 		struct ispsoftc *isp =imushp->isp;
997 		bus_addr_t addr = segs->ds_addr;
998 
999 		isp->isp_rquest_dma = addr;
1000 		addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1001 		isp->isp_result_dma = addr;
1002 		if (IS_FC(isp)) {
1003 			addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1004 			FCPARAM(isp)->isp_scdma = addr;
1005 		}
1006 	}
1007 }
1008 
1009 /*
1010  * Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
1011  */
1012 #define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
1013 
1014 static int
1015 isp_pci_mbxdma(struct ispsoftc *isp)
1016 {
1017 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1018 	caddr_t base;
1019 	u_int32_t len;
1020 	int i, error, ns;
1021 	bus_size_t alim, slim;
1022 	struct imush im;
1023 
1024 	/*
1025 	 * Already been here? If so, leave...
1026 	 */
1027 	if (isp->isp_rquest) {
1028 		return (0);
1029 	}
1030 
1031 #ifdef	ISP_DAC_SUPPORTED
1032 	alim = BUS_SPACE_UNRESTRICTED;
1033 #else
1034 	alim = BUS_SPACE_MAXADDR_32BIT;
1035 #endif
1036 	if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
1037 		slim = BUS_SPACE_MAXADDR_32BIT;
1038 	} else {
1039 		slim = BUS_SPACE_MAXADDR_24BIT;
1040 	}
1041 
1042 	ISP_UNLOCK(isp);
1043 	if (bus_dma_tag_create(NULL, 1, slim+1, alim, alim,
1044 	    NULL, NULL, BUS_SPACE_MAXSIZE, ISP_NSEGS, slim, 0, &pcs->dmat)) {
1045 		isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
1046 		ISP_LOCK(isp);
1047 		return(1);
1048 	}
1049 
1050 
1051 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1052 	isp->isp_xflist = (XS_T **) kmalloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1053 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1054 	pcs->dmaps = (bus_dmamap_t *) kmalloc(len, M_DEVBUF,  M_WAITOK);
1055 
1056 	/*
1057 	 * Allocate and map the request, result queues, plus FC scratch area.
1058 	 */
1059 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1060 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1061 	if (IS_FC(isp)) {
1062 		len += ISP2100_SCRLEN;
1063 	}
1064 
1065 	ns = (len / PAGE_SIZE) + 1;
1066 	if (bus_dma_tag_create(pcs->dmat, QENTRY_LEN, slim+1, alim, alim,
1067 	    NULL, NULL, len, ns, slim, 0, &isp->isp_cdmat)) {
1068 		isp_prt(isp, ISP_LOGERR,
1069 		    "cannot create a dma tag for control spaces");
1070 		kfree(pcs->dmaps, M_DEVBUF);
1071 		kfree(isp->isp_xflist, M_DEVBUF);
1072 		ISP_LOCK(isp);
1073 		return (1);
1074 	}
1075 
1076 	if (bus_dmamem_alloc(isp->isp_cdmat, (void *)&base, BUS_DMA_NOWAIT,
1077 	    &isp->isp_cdmap) != 0) {
1078 		isp_prt(isp, ISP_LOGERR,
1079 		    "cannot allocate %d bytes of CCB memory", len);
1080 		bus_dma_tag_destroy(isp->isp_cdmat);
1081 		kfree(isp->isp_xflist, M_DEVBUF);
1082 		kfree(pcs->dmaps, M_DEVBUF);
1083 		ISP_LOCK(isp);
1084 		return (1);
1085 	}
1086 
1087 	for (i = 0; i < isp->isp_maxcmds; i++) {
1088 		error = bus_dmamap_create(pcs->dmat, 0, &pcs->dmaps[i]);
1089 		if (error) {
1090 			isp_prt(isp, ISP_LOGERR,
1091 			    "error %d creating per-cmd DMA maps", error);
1092 			while (--i >= 0) {
1093 				bus_dmamap_destroy(pcs->dmat, pcs->dmaps[i]);
1094 			}
1095 			goto bad;
1096 		}
1097 	}
1098 
1099 	im.isp = isp;
1100 	im.error = 0;
1101 	bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
1102 	if (im.error) {
1103 		isp_prt(isp, ISP_LOGERR,
1104 		    "error %d loading dma map for control areas", im.error);
1105 		goto bad;
1106 	}
1107 
1108 	isp->isp_rquest = base;
1109 	base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1110 	isp->isp_result = base;
1111 	if (IS_FC(isp)) {
1112 		base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1113 		FCPARAM(isp)->isp_scratch = base;
1114 	}
1115 	ISP_LOCK(isp);
1116 	return (0);
1117 
1118 bad:
1119 	bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
1120 	bus_dma_tag_destroy(isp->isp_cdmat);
1121 	kfree(isp->isp_xflist, M_DEVBUF);
1122 	kfree(pcs->dmaps, M_DEVBUF);
1123 	ISP_LOCK(isp);
1124 	isp->isp_rquest = NULL;
1125 	return (1);
1126 }
1127 
1128 typedef struct {
1129 	struct ispsoftc *isp;
1130 	void *cmd_token;
1131 	void *rq;
1132 	u_int16_t *nxtip;
1133 	u_int16_t optr;
1134 	u_int error;
1135 } mush_t;
1136 
1137 #define	MUSHERR_NOQENTRIES	-2
1138 
1139 #ifdef	ISP_TARGET_MODE
1140 /*
1141  * We need to handle DMA for target mode differently from initiator mode.
1142  *
1143  * DMA mapping and construction and submission of CTIO Request Entries
1144  * and rendevous for completion are very tightly coupled because we start
1145  * out by knowing (per platform) how much data we have to move, but we
1146  * don't know, up front, how many DMA mapping segments will have to be used
1147  * cover that data, so we don't know how many CTIO Request Entries we
1148  * will end up using. Further, for performance reasons we may want to
1149  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1150  *
1151  * The standard vector still goes through isp_pci_dmasetup, but the callback
1152  * for the DMA mapping routines comes here instead with the whole transfer
1153  * mapped and a pointer to a partially filled in already allocated request
1154  * queue entry. We finish the job.
1155  */
1156 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1157 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1158 
1159 #define	STATUS_WITH_DATA	1
1160 
1161 static void
1162 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1163 {
1164 	mush_t *mp;
1165 	struct ccb_scsiio *csio;
1166 	struct ispsoftc *isp;
1167 	struct isp_pcisoftc *pcs;
1168 	bus_dmamap_t *dp;
1169 	ct_entry_t *cto, *qe;
1170 	u_int8_t scsi_status;
1171 	u_int16_t curi, nxti, handle;
1172 	u_int32_t sflags;
1173 	int32_t resid;
1174 	int nth_ctio, nctios, send_status;
1175 
1176 	mp = (mush_t *) arg;
1177 	if (error) {
1178 		mp->error = error;
1179 		return;
1180 	}
1181 
1182 	isp = mp->isp;
1183 	csio = mp->cmd_token;
1184 	cto = mp->rq;
1185 	curi = isp->isp_reqidx;
1186 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1187 
1188 	cto->ct_xfrlen = 0;
1189 	cto->ct_seg_count = 0;
1190 	cto->ct_header.rqs_entry_count = 1;
1191 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1192 
1193 	if (nseg == 0) {
1194 		cto->ct_header.rqs_seqno = 1;
1195 		isp_prt(isp, ISP_LOGTDEBUG1,
1196 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1197 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1198 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1199 		    cto->ct_scsi_status, cto->ct_resid);
1200 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1201 		isp_put_ctio(isp, cto, qe);
1202 		return;
1203 	}
1204 
1205 	nctios = nseg / ISP_RQDSEG;
1206 	if (nseg % ISP_RQDSEG) {
1207 		nctios++;
1208 	}
1209 
1210 	/*
1211 	 * Save syshandle, and potentially any SCSI status, which we'll
1212 	 * reinsert on the last CTIO we're going to send.
1213 	 */
1214 
1215 	handle = cto->ct_syshandle;
1216 	cto->ct_syshandle = 0;
1217 	cto->ct_header.rqs_seqno = 0;
1218 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1219 
1220 	if (send_status) {
1221 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1222 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1223 		/*
1224 		 * Preserve residual.
1225 		 */
1226 		resid = cto->ct_resid;
1227 
1228 		/*
1229 		 * Save actual SCSI status.
1230 		 */
1231 		scsi_status = cto->ct_scsi_status;
1232 
1233 #ifndef	STATUS_WITH_DATA
1234 		sflags |= CT_NO_DATA;
1235 		/*
1236 		 * We can't do a status at the same time as a data CTIO, so
1237 		 * we need to synthesize an extra CTIO at this level.
1238 		 */
1239 		nctios++;
1240 #endif
1241 	} else {
1242 		sflags = scsi_status = resid = 0;
1243 	}
1244 
1245 	cto->ct_resid = 0;
1246 	cto->ct_scsi_status = 0;
1247 
1248 	pcs = (struct isp_pcisoftc *)isp;
1249 	dp = &pcs->dmaps[isp_handle_index(handle)];
1250 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1251 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1252 	} else {
1253 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1254 	}
1255 
1256 	nxti = *mp->nxtip;
1257 
1258 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1259 		int seglim;
1260 
1261 		seglim = nseg;
1262 		if (seglim) {
1263 			int seg;
1264 
1265 			if (seglim > ISP_RQDSEG)
1266 				seglim = ISP_RQDSEG;
1267 
1268 			for (seg = 0; seg < seglim; seg++, nseg--) {
1269 				/*
1270 				 * Unlike normal initiator commands, we don't
1271 				 * do any swizzling here.
1272 				 */
1273 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1274 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1275 				cto->ct_xfrlen += dm_segs->ds_len;
1276 				dm_segs++;
1277 			}
1278 			cto->ct_seg_count = seg;
1279 		} else {
1280 			/*
1281 			 * This case should only happen when we're sending an
1282 			 * extra CTIO with final status.
1283 			 */
1284 			if (send_status == 0) {
1285 				isp_prt(isp, ISP_LOGWARN,
1286 				    "tdma_mk ran out of segments");
1287 				mp->error = EINVAL;
1288 				return;
1289 			}
1290 		}
1291 
1292 		/*
1293 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1294 		 * ct_tagtype, and ct_timeout have been carried over
1295 		 * unchanged from what our caller had set.
1296 		 *
1297 		 * The dataseg fields and the seg_count fields we just got
1298 		 * through setting. The data direction we've preserved all
1299 		 * along and only clear it if we're now sending status.
1300 		 */
1301 
1302 		if (nth_ctio == nctios - 1) {
1303 			/*
1304 			 * We're the last in a sequence of CTIOs, so mark
1305 			 * this CTIO and save the handle to the CCB such that
1306 			 * when this CTIO completes we can free dma resources
1307 			 * and do whatever else we need to do to finish the
1308 			 * rest of the command. We *don't* give this to the
1309 			 * firmware to work on- the caller will do that.
1310 			 */
1311 
1312 			cto->ct_syshandle = handle;
1313 			cto->ct_header.rqs_seqno = 1;
1314 
1315 			if (send_status) {
1316 				cto->ct_scsi_status = scsi_status;
1317 				cto->ct_flags |= sflags;
1318 				cto->ct_resid = resid;
1319 			}
1320 			if (send_status) {
1321 				isp_prt(isp, ISP_LOGTDEBUG1,
1322 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1323 				    "scsi status %x resid %d",
1324 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1325 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1326 				    cto->ct_scsi_status, cto->ct_resid);
1327 			} else {
1328 				isp_prt(isp, ISP_LOGTDEBUG1,
1329 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1330 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1331 				    cto->ct_iid, cto->ct_tag_val,
1332 				    cto->ct_flags);
1333 			}
1334 			isp_put_ctio(isp, cto, qe);
1335 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1336 			if (nctios > 1) {
1337 				MEMORYBARRIER(isp, SYNC_REQUEST,
1338 				    curi, QENTRY_LEN);
1339 			}
1340 		} else {
1341 			ct_entry_t *oqe = qe;
1342 
1343 			/*
1344 			 * Make sure syshandle fields are clean
1345 			 */
1346 			cto->ct_syshandle = 0;
1347 			cto->ct_header.rqs_seqno = 0;
1348 
1349 			isp_prt(isp, ISP_LOGTDEBUG1,
1350 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1351 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1352 			    cto->ct_iid, cto->ct_flags);
1353 
1354 			/*
1355 			 * Get a new CTIO
1356 			 */
1357 			qe = (ct_entry_t *)
1358 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1359 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1360 			if (nxti == mp->optr) {
1361 				isp_prt(isp, ISP_LOGTDEBUG0,
1362 				    "Queue Overflow in tdma_mk");
1363 				mp->error = MUSHERR_NOQENTRIES;
1364 				return;
1365 			}
1366 
1367 			/*
1368 			 * Now that we're done with the old CTIO,
1369 			 * flush it out to the request queue.
1370 			 */
1371 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1372 			isp_put_ctio(isp, cto, oqe);
1373 			if (nth_ctio != 0) {
1374 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1375 				    QENTRY_LEN);
1376 			}
1377 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1378 
1379 			/*
1380 			 * Reset some fields in the CTIO so we can reuse
1381 			 * for the next one we'll flush to the request
1382 			 * queue.
1383 			 */
1384 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1385 			cto->ct_header.rqs_entry_count = 1;
1386 			cto->ct_header.rqs_flags = 0;
1387 			cto->ct_status = 0;
1388 			cto->ct_scsi_status = 0;
1389 			cto->ct_xfrlen = 0;
1390 			cto->ct_resid = 0;
1391 			cto->ct_seg_count = 0;
1392 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1393 		}
1394 	}
1395 	*mp->nxtip = nxti;
1396 }
1397 
1398 /*
1399  * We don't have to do multiple CTIOs here. Instead, we can just do
1400  * continuation segments as needed. This greatly simplifies the code
1401  * improves performance.
1402  */
1403 
1404 static void
1405 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1406 {
1407 	mush_t *mp;
1408 	struct ccb_scsiio *csio;
1409 	struct ispsoftc *isp;
1410 	ct2_entry_t *cto, *qe;
1411 	u_int16_t curi, nxti;
1412 	int segcnt;
1413 
1414 	mp = (mush_t *) arg;
1415 	if (error) {
1416 		mp->error = error;
1417 		return;
1418 	}
1419 
1420 	isp = mp->isp;
1421 	csio = mp->cmd_token;
1422 	cto = mp->rq;
1423 
1424 	curi = isp->isp_reqidx;
1425 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1426 
1427 	if (nseg == 0) {
1428 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1429 			isp_prt(isp, ISP_LOGWARN,
1430 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1431 			    "set (0x%x)", cto->ct_flags);
1432 			mp->error = EINVAL;
1433 			return;
1434 		}
1435 		/*
1436 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1437 		 * flags to NO DATA and clear relative offset flags.
1438 		 * We preserve the ct_resid and the response area.
1439 		 */
1440 		cto->ct_header.rqs_seqno = 1;
1441 		cto->ct_seg_count = 0;
1442 		cto->ct_reloff = 0;
1443 		isp_prt(isp, ISP_LOGTDEBUG1,
1444 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1445 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1446 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1447 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1448 		isp_put_ctio2(isp, cto, qe);
1449 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1450 		return;
1451 	}
1452 
1453 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1454 		isp_prt(isp, ISP_LOGERR,
1455 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1456 		    "(0x%x)", cto->ct_flags);
1457 		mp->error = EINVAL;
1458 		return;
1459 	}
1460 
1461 
1462 	nxti = *mp->nxtip;
1463 
1464 	/*
1465 	 * Set up the CTIO2 data segments.
1466 	 */
1467 	for (segcnt = 0; cto->ct_seg_count < ISP_RQDSEG_T2 && segcnt < nseg;
1468 	    cto->ct_seg_count++, segcnt++) {
1469 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_base =
1470 		    dm_segs[segcnt].ds_addr;
1471 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_count =
1472 		    dm_segs[segcnt].ds_len;
1473 		cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1474 		isp_prt(isp, ISP_LOGTDEBUG1, "isp_send_ctio2: ent0[%d]0x%x:%d",
1475 		    cto->ct_seg_count, dm_segs[segcnt].ds_addr,
1476 		    dm_segs[segcnt].ds_len);
1477 	}
1478 
1479 	while (segcnt < nseg) {
1480 		u_int16_t curip;
1481 		int seg;
1482 		ispcontreq_t local, *crq = &local, *qep;
1483 
1484 		qep = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1485 		curip = nxti;
1486 		nxti = ISP_NXT_QENTRY(curip, RQUEST_QUEUE_LEN(isp));
1487 		if (nxti == mp->optr) {
1488 			ISP_UNLOCK(isp);
1489 			isp_prt(isp, ISP_LOGTDEBUG0,
1490 			    "tdma_mkfc: request queue overflow");
1491 			mp->error = MUSHERR_NOQENTRIES;
1492 			return;
1493 		}
1494 		cto->ct_header.rqs_entry_count++;
1495 		MEMZERO((void *)crq, sizeof (*crq));
1496 		crq->req_header.rqs_entry_count = 1;
1497 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1498 		for (seg = 0; segcnt < nseg && seg < ISP_CDSEG;
1499 		    segcnt++, seg++) {
1500 			crq->req_dataseg[seg].ds_base = dm_segs[segcnt].ds_addr;
1501 			crq->req_dataseg[seg].ds_count = dm_segs[segcnt].ds_len;
1502 			isp_prt(isp, ISP_LOGTDEBUG1,
1503 			    "isp_send_ctio2: ent%d[%d]%x:%u",
1504 			    cto->ct_header.rqs_entry_count-1, seg,
1505 			    dm_segs[segcnt].ds_addr, dm_segs[segcnt].ds_len);
1506 			cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1507 			cto->ct_seg_count++;
1508 		}
1509 		MEMORYBARRIER(isp, SYNC_REQUEST, curip, QENTRY_LEN);
1510 		isp_put_cont_req(isp, crq, qep);
1511 		ISP_TDQE(isp, "cont entry", curi, qep);
1512 	}
1513 
1514 	/*
1515 	 * No do final twiddling for the CTIO itself.
1516 	 */
1517 	cto->ct_header.rqs_seqno = 1;
1518 	isp_prt(isp, ISP_LOGTDEBUG1,
1519 	    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x resid %d",
1520 	    cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid,
1521 	    cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status,
1522 	    cto->ct_resid);
1523 	isp_put_ctio2(isp, cto, qe);
1524 	ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1525 	*mp->nxtip = nxti;
1526 }
1527 #endif
1528 
1529 static void dma2(void *, bus_dma_segment_t *, int, int);
1530 
1531 static void
1532 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1533 {
1534 	mush_t *mp;
1535 	struct ispsoftc *isp;
1536 	struct ccb_scsiio *csio;
1537 	struct isp_pcisoftc *pcs;
1538 	bus_dmamap_t *dp;
1539 	bus_dma_segment_t *eseg;
1540 	ispreq_t *rq;
1541 	int seglim, datalen;
1542 	u_int16_t nxti;
1543 
1544 	mp = (mush_t *) arg;
1545 	if (error) {
1546 		mp->error = error;
1547 		return;
1548 	}
1549 
1550 	if (nseg < 1) {
1551 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1552 		mp->error = EFAULT;
1553 		return;
1554 	}
1555 	csio = mp->cmd_token;
1556 	isp = mp->isp;
1557 	rq = mp->rq;
1558 	pcs = (struct isp_pcisoftc *)mp->isp;
1559 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1560 	nxti = *mp->nxtip;
1561 
1562 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1563 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1564 	} else {
1565 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1566 	}
1567 
1568 	datalen = XS_XFRLEN(csio);
1569 
1570 	/*
1571 	 * We're passed an initial partially filled in entry that
1572 	 * has most fields filled in except for data transfer
1573 	 * related values.
1574 	 *
1575 	 * Our job is to fill in the initial request queue entry and
1576 	 * then to start allocating and filling in continuation entries
1577 	 * until we've covered the entire transfer.
1578 	 */
1579 
1580 	if (IS_FC(isp)) {
1581 		seglim = ISP_RQDSEG_T2;
1582 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1583 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1584 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1585 		} else {
1586 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1587 		}
1588 	} else {
1589 		if (csio->cdb_len > 12) {
1590 			seglim = 0;
1591 		} else {
1592 			seglim = ISP_RQDSEG;
1593 		}
1594 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1595 			rq->req_flags |= REQFLAG_DATA_IN;
1596 		} else {
1597 			rq->req_flags |= REQFLAG_DATA_OUT;
1598 		}
1599 	}
1600 
1601 	eseg = dm_segs + nseg;
1602 
1603 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1604 		if (IS_FC(isp)) {
1605 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1606 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1607 			    dm_segs->ds_addr;
1608 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1609 			    dm_segs->ds_len;
1610 		} else {
1611 			rq->req_dataseg[rq->req_seg_count].ds_base =
1612 				dm_segs->ds_addr;
1613 			rq->req_dataseg[rq->req_seg_count].ds_count =
1614 				dm_segs->ds_len;
1615 		}
1616 		datalen -= dm_segs->ds_len;
1617 		rq->req_seg_count++;
1618 		dm_segs++;
1619 	}
1620 
1621 	while (datalen > 0 && dm_segs != eseg) {
1622 		u_int16_t onxti;
1623 		ispcontreq_t local, *crq = &local, *cqe;
1624 
1625 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1626 		onxti = nxti;
1627 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1628 		if (nxti == mp->optr) {
1629 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1630 			mp->error = MUSHERR_NOQENTRIES;
1631 			return;
1632 		}
1633 		rq->req_header.rqs_entry_count++;
1634 		MEMZERO((void *)crq, sizeof (*crq));
1635 		crq->req_header.rqs_entry_count = 1;
1636 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1637 
1638 		seglim = 0;
1639 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1640 			crq->req_dataseg[seglim].ds_base =
1641 			    dm_segs->ds_addr;
1642 			crq->req_dataseg[seglim].ds_count =
1643 			    dm_segs->ds_len;
1644 			rq->req_seg_count++;
1645 			dm_segs++;
1646 			seglim++;
1647 			datalen -= dm_segs->ds_len;
1648 		}
1649 		isp_put_cont_req(isp, crq, cqe);
1650 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1651 	}
1652 	*mp->nxtip = nxti;
1653 }
1654 
1655 static int
1656 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1657 	u_int16_t *nxtip, u_int16_t optr)
1658 {
1659 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1660 	ispreq_t *qep;
1661 	bus_dmamap_t *dp = NULL;
1662 	mush_t mush, *mp;
1663 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1664 
1665 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1666 #ifdef	ISP_TARGET_MODE
1667 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1668 		if (IS_FC(isp)) {
1669 			eptr = tdma_mkfc;
1670 		} else {
1671 			eptr = tdma_mk;
1672 		}
1673 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1674 		    (csio->dxfer_len == 0)) {
1675 			mp = &mush;
1676 			mp->isp = isp;
1677 			mp->cmd_token = csio;
1678 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1679 			mp->nxtip = nxtip;
1680 			mp->optr = optr;
1681 			mp->error = 0;
1682 			(*eptr)(mp, NULL, 0, 0);
1683 			goto mbxsync;
1684 		}
1685 	} else
1686 #endif
1687 	eptr = dma2;
1688 
1689 
1690 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1691 	    (csio->dxfer_len == 0)) {
1692 		rq->req_seg_count = 1;
1693 		goto mbxsync;
1694 	}
1695 
1696 	/*
1697 	 * Do a virtual grapevine step to collect info for
1698 	 * the callback dma allocation that we have to use...
1699 	 */
1700 	mp = &mush;
1701 	mp->isp = isp;
1702 	mp->cmd_token = csio;
1703 	mp->rq = rq;
1704 	mp->nxtip = nxtip;
1705 	mp->optr = optr;
1706 	mp->error = 0;
1707 
1708 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1709 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1710 			int error;
1711 			dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1712 			crit_enter();
1713 			error = bus_dmamap_load(pcs->dmat, *dp,
1714 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1715 			if (error == EINPROGRESS) {
1716 				bus_dmamap_unload(pcs->dmat, *dp);
1717 				mp->error = EINVAL;
1718 				isp_prt(isp, ISP_LOGERR,
1719 				    "deferred dma allocation not supported");
1720 			} else if (error && mp->error == 0) {
1721 #ifdef	DIAGNOSTIC
1722 				isp_prt(isp, ISP_LOGERR,
1723 				    "error %d in dma mapping code", error);
1724 #endif
1725 				mp->error = error;
1726 			}
1727 			crit_exit();
1728 		} else {
1729 			/* Pointer to physical buffer */
1730 			struct bus_dma_segment seg;
1731 			seg.ds_addr = (bus_addr_t)csio->data_ptr;
1732 			seg.ds_len = csio->dxfer_len;
1733 			(*eptr)(mp, &seg, 1, 0);
1734 		}
1735 	} else {
1736 		struct bus_dma_segment *segs;
1737 
1738 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1739 			isp_prt(isp, ISP_LOGERR,
1740 			    "Physical segment pointers unsupported");
1741 			mp->error = EINVAL;
1742 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1743 			isp_prt(isp, ISP_LOGERR,
1744 			    "Virtual segment addresses unsupported");
1745 			mp->error = EINVAL;
1746 		} else {
1747 			/* Just use the segments provided */
1748 			segs = (struct bus_dma_segment *) csio->data_ptr;
1749 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1750 		}
1751 	}
1752 	if (mp->error) {
1753 		int retval = CMD_COMPLETE;
1754 		if (mp->error == MUSHERR_NOQENTRIES) {
1755 			retval = CMD_EAGAIN;
1756 		} else if (mp->error == EFBIG) {
1757 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
1758 		} else if (mp->error == EINVAL) {
1759 			XS_SETERR(csio, CAM_REQ_INVALID);
1760 		} else {
1761 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
1762 		}
1763 		return (retval);
1764 	}
1765 mbxsync:
1766 	switch (rq->req_header.rqs_entry_type) {
1767 	case RQSTYPE_REQUEST:
1768 		isp_put_request(isp, rq, qep);
1769 		break;
1770 	case RQSTYPE_CMDONLY:
1771 		isp_put_extended_request(isp, (ispextreq_t *)rq,
1772 		    (ispextreq_t *)qep);
1773 		break;
1774 	case RQSTYPE_T2RQS:
1775 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
1776 		break;
1777 	}
1778 	return (CMD_QUEUED);
1779 }
1780 
1781 static void
1782 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
1783 {
1784 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1785 	bus_dmamap_t *dp = &pcs->dmaps[isp_handle_index(handle)];
1786 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1787 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTREAD);
1788 	} else {
1789 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
1790 	}
1791 	bus_dmamap_unload(pcs->dmat, *dp);
1792 }
1793 
1794 
1795 static void
1796 isp_pci_reset1(struct ispsoftc *isp)
1797 {
1798 	/* Make sure the BIOS is disabled */
1799 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
1800 	/* and enable interrupts */
1801 	ENABLE_INTS(isp);
1802 }
1803 
1804 static void
1805 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
1806 {
1807 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1808 	if (msg)
1809 		kprintf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
1810 	else
1811 		kprintf("%s:\n", device_get_nameunit(isp->isp_dev));
1812 	if (IS_SCSI(isp))
1813 		kprintf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
1814 	else
1815 		kprintf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
1816 	kprintf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
1817 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
1818 	kprintf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
1819 
1820 
1821 	if (IS_SCSI(isp)) {
1822 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
1823 		kprintf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
1824 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
1825 			ISP_READ(isp, CDMA_FIFO_STS));
1826 		kprintf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
1827 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
1828 			ISP_READ(isp, DDMA_FIFO_STS));
1829 		kprintf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
1830 			ISP_READ(isp, SXP_INTERRUPT),
1831 			ISP_READ(isp, SXP_GROSS_ERR),
1832 			ISP_READ(isp, SXP_PINS_CTRL));
1833 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
1834 	}
1835 	kprintf("    mbox regs: %x %x %x %x %x\n",
1836 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
1837 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
1838 	    ISP_READ(isp, OUTMAILBOX4));
1839 	kprintf("    PCI Status Command/Status=%x\n",
1840 	    pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
1841 }
1842