xref: /dragonfly/sys/dev/disk/isp/isp_pci.c (revision 9b5ae8ee)
1 /* $FreeBSD: src/sys/dev/isp/isp_pci.c,v 1.78.2.4 2002/10/11 18:50:53 mjacob Exp $ */
2 /* $DragonFly: src/sys/dev/disk/isp/isp_pci.c,v 1.12 2006/12/22 23:26:16 swildner Exp $ */
3 /*
4  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
5  * FreeBSD Version.
6  *
7  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice immediately at the beginning of the file, without modification,
14  *    this list of conditions, and the following disclaimer.
15  * 2. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/bus.h>
36 #include <sys/rman.h>
37 #include <sys/malloc.h>
38 
39 #include <bus/pci/pcireg.h>
40 #include <bus/pci/pcivar.h>
41 
42 #include "isp_freebsd.h"
43 
44 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
45 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
46 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
47 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
48 static int
49 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
50 static int
51 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
52 static int isp_pci_mbxdma(struct ispsoftc *);
53 static int
54 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
55 static void
56 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
57 
58 static void isp_pci_reset1(struct ispsoftc *);
59 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
60 
61 static struct ispmdvec mdvec = {
62 	isp_pci_rd_isr,
63 	isp_pci_rd_reg,
64 	isp_pci_wr_reg,
65 	isp_pci_mbxdma,
66 	isp_pci_dmasetup,
67 	isp_pci_dmateardown,
68 	NULL,
69 	isp_pci_reset1,
70 	isp_pci_dumpregs,
71 	NULL,
72 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
73 };
74 
75 static struct ispmdvec mdvec_1080 = {
76 	isp_pci_rd_isr,
77 	isp_pci_rd_reg_1080,
78 	isp_pci_wr_reg_1080,
79 	isp_pci_mbxdma,
80 	isp_pci_dmasetup,
81 	isp_pci_dmateardown,
82 	NULL,
83 	isp_pci_reset1,
84 	isp_pci_dumpregs,
85 	NULL,
86 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
87 };
88 
89 static struct ispmdvec mdvec_12160 = {
90 	isp_pci_rd_isr,
91 	isp_pci_rd_reg_1080,
92 	isp_pci_wr_reg_1080,
93 	isp_pci_mbxdma,
94 	isp_pci_dmasetup,
95 	isp_pci_dmateardown,
96 	NULL,
97 	isp_pci_reset1,
98 	isp_pci_dumpregs,
99 	NULL,
100 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
101 };
102 
103 static struct ispmdvec mdvec_2100 = {
104 	isp_pci_rd_isr,
105 	isp_pci_rd_reg,
106 	isp_pci_wr_reg,
107 	isp_pci_mbxdma,
108 	isp_pci_dmasetup,
109 	isp_pci_dmateardown,
110 	NULL,
111 	isp_pci_reset1,
112 	isp_pci_dumpregs
113 };
114 
115 static struct ispmdvec mdvec_2200 = {
116 	isp_pci_rd_isr,
117 	isp_pci_rd_reg,
118 	isp_pci_wr_reg,
119 	isp_pci_mbxdma,
120 	isp_pci_dmasetup,
121 	isp_pci_dmateardown,
122 	NULL,
123 	isp_pci_reset1,
124 	isp_pci_dumpregs
125 };
126 
127 static struct ispmdvec mdvec_2300 = {
128 	isp_pci_rd_isr_2300,
129 	isp_pci_rd_reg,
130 	isp_pci_wr_reg,
131 	isp_pci_mbxdma,
132 	isp_pci_dmasetup,
133 	isp_pci_dmateardown,
134 	NULL,
135 	isp_pci_reset1,
136 	isp_pci_dumpregs
137 };
138 
139 #ifndef	PCIM_CMD_INVEN
140 #define	PCIM_CMD_INVEN			0x10
141 #endif
142 #ifndef	PCIM_CMD_BUSMASTEREN
143 #define	PCIM_CMD_BUSMASTEREN		0x0004
144 #endif
145 #ifndef	PCIM_CMD_PERRESPEN
146 #define	PCIM_CMD_PERRESPEN		0x0040
147 #endif
148 #ifndef	PCIM_CMD_SEREN
149 #define	PCIM_CMD_SEREN			0x0100
150 #endif
151 
152 #ifndef	PCIR_COMMAND
153 #define	PCIR_COMMAND			0x04
154 #endif
155 
156 #ifndef	PCIR_CACHELNSZ
157 #define	PCIR_CACHELNSZ			0x0c
158 #endif
159 
160 #ifndef	PCIR_LATTIMER
161 #define	PCIR_LATTIMER			0x0d
162 #endif
163 
164 #ifndef	PCIR_ROMADDR
165 #define	PCIR_ROMADDR			0x30
166 #endif
167 
168 #ifndef	PCI_VENDOR_QLOGIC
169 #define	PCI_VENDOR_QLOGIC		0x1077
170 #endif
171 
172 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
173 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
174 #endif
175 
176 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
177 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
178 #endif
179 
180 #ifndef	PCI_PRODUCT_QLOGIC_ISP10160
181 #define	PCI_PRODUCT_QLOGIC_ISP10160	0x1016
182 #endif
183 
184 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
185 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
186 #endif
187 
188 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
189 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
190 #endif
191 
192 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
193 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
194 #endif
195 
196 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
197 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
198 #endif
199 
200 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
201 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
202 #endif
203 
204 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
205 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
206 #endif
207 
208 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
209 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
210 #endif
211 
212 #define	PCI_QLOGIC_ISP1020	\
213 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
214 
215 #define	PCI_QLOGIC_ISP1080	\
216 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
217 
218 #define	PCI_QLOGIC_ISP10160	\
219 	((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC)
220 
221 #define	PCI_QLOGIC_ISP12160	\
222 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
223 
224 #define	PCI_QLOGIC_ISP1240	\
225 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
226 
227 #define	PCI_QLOGIC_ISP1280	\
228 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
229 
230 #define	PCI_QLOGIC_ISP2100	\
231 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
232 
233 #define	PCI_QLOGIC_ISP2200	\
234 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
235 
236 #define	PCI_QLOGIC_ISP2300	\
237 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
238 
239 #define	PCI_QLOGIC_ISP2312	\
240 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
241 
242 /*
243  * Odd case for some AMI raid cards... We need to *not* attach to this.
244  */
245 #define	AMI_RAID_SUBVENDOR_ID	0x101e
246 
247 #define	IO_MAP_REG	0x10
248 #define	MEM_MAP_REG	0x14
249 
250 #define	PCI_DFLT_LTNCY	0x40
251 #define	PCI_DFLT_LNSZ	0x10
252 
253 static int isp_pci_probe (device_t);
254 static int isp_pci_attach (device_t);
255 
256 
257 struct isp_pcisoftc {
258 	struct ispsoftc			pci_isp;
259 	device_t			pci_dev;
260 	struct resource *		pci_reg;
261 	bus_space_tag_t			pci_st;
262 	bus_space_handle_t		pci_sh;
263 	void *				ih;
264 	int16_t				pci_poff[_NREG_BLKS];
265 	bus_dma_tag_t			dmat;
266 	bus_dmamap_t			*dmaps;
267 };
268 ispfwfunc *isp_get_firmware_p = NULL;
269 
270 static device_method_t isp_pci_methods[] = {
271 	/* Device interface */
272 	DEVMETHOD(device_probe,		isp_pci_probe),
273 	DEVMETHOD(device_attach,	isp_pci_attach),
274 	{ 0, 0 }
275 };
276 static void isp_pci_intr(void *);
277 
278 static driver_t isp_pci_driver = {
279 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
280 };
281 static devclass_t isp_devclass;
282 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
283 MODULE_VERSION(isp, 1);
284 
285 static int
286 isp_pci_probe(device_t dev)
287 {
288         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
289 	case PCI_QLOGIC_ISP1020:
290 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
291 		break;
292 	case PCI_QLOGIC_ISP1080:
293 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
294 		break;
295 	case PCI_QLOGIC_ISP1240:
296 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
297 		break;
298 	case PCI_QLOGIC_ISP1280:
299 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
300 		break;
301 	case PCI_QLOGIC_ISP10160:
302 		device_set_desc(dev, "Qlogic ISP 10160 PCI SCSI Adapter");
303 		break;
304 	case PCI_QLOGIC_ISP12160:
305 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
306 			return (ENXIO);
307 		}
308 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
309 		break;
310 	case PCI_QLOGIC_ISP2100:
311 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
312 		break;
313 	case PCI_QLOGIC_ISP2200:
314 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
315 		break;
316 	case PCI_QLOGIC_ISP2300:
317 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
318 		break;
319 	case PCI_QLOGIC_ISP2312:
320 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
321 		break;
322 	default:
323 		return (ENXIO);
324 	}
325 	if (device_get_unit(dev) == 0 && bootverbose) {
326 		kprintf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
327 		    "Core Version %d.%d\n",
328 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
329 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
330 	}
331 	/*
332 	 * XXXX: Here is where we might load the f/w module
333 	 * XXXX: (or increase a reference count to it).
334 	 */
335 	return (0);
336 }
337 
338 static int
339 isp_pci_attach(device_t dev)
340 {
341 	struct resource *regs, *irq;
342 	int unit, bitmap, rtp, rgd, iqd, m1, m2, isp_debug;
343 	u_int32_t data, cmd, linesz, psize, basetype;
344 	struct isp_pcisoftc *pcs;
345 	struct ispsoftc *isp = NULL;
346 	struct ispmdvec *mdvp;
347 	quad_t wwn;
348 	bus_size_t lim;
349 
350 	/*
351 	 * Figure out if we're supposed to skip this one.
352 	 */
353 	unit = device_get_unit(dev);
354 	if (kgetenv_int("isp_disable", &bitmap)) {
355 		if (bitmap & (1 << unit)) {
356 			device_printf(dev, "not configuring\n");
357 			/*
358 			 * But return '0' to preserve HBA numbering.
359 			 */
360 			return (0);
361 		}
362 	}
363 
364 	pcs = kmalloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_WAITOK | M_ZERO);
365 
366 	/*
367 	 * Figure out which we should try first - memory mapping or i/o mapping?
368 	 */
369 	m1 = PCIM_CMD_PORTEN;
370 	m2 = PCIM_CMD_MEMEN;
371 	bitmap = 0;
372 	if (kgetenv_int("isp_mem_map", &bitmap)) {
373 		if (bitmap & (1 << unit)) {
374 			m1 = PCIM_CMD_MEMEN;
375 			m2 = PCIM_CMD_PORTEN;
376 		}
377 	}
378 	bitmap = 0;
379 	if (kgetenv_int("isp_io_map", &bitmap)) {
380 		if (bitmap & (1 << unit)) {
381 			m1 = PCIM_CMD_PORTEN;
382 			m2 = PCIM_CMD_MEMEN;
383 		}
384 	}
385 
386 	linesz = PCI_DFLT_LNSZ;
387 	irq = regs = NULL;
388 	rgd = rtp = iqd = 0;
389 
390 	cmd = pci_read_config(dev, PCIR_COMMAND, 1);
391 	if (cmd & m1) {
392 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
393 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
394 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
395 	}
396 	if (regs == NULL && (cmd & m2)) {
397 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
398 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
399 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
400 	}
401 	if (regs == NULL) {
402 		device_printf(dev, "unable to map any ports\n");
403 		goto bad;
404 	}
405 	if (bootverbose)
406 		device_printf(dev, "using %s space register mapping\n",
407 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
408 	pcs->pci_dev = dev;
409 	pcs->pci_reg = regs;
410 	pcs->pci_st = rman_get_bustag(regs);
411 	pcs->pci_sh = rman_get_bushandle(regs);
412 
413 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
414 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
415 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
416 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
417 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
418 	mdvp = &mdvec;
419 	basetype = ISP_HA_SCSI_UNKNOWN;
420 	psize = sizeof (sdparam);
421 	lim = BUS_SPACE_MAXSIZE_32BIT;
422 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
423 		mdvp = &mdvec;
424 		basetype = ISP_HA_SCSI_UNKNOWN;
425 		psize = sizeof (sdparam);
426 		lim = BUS_SPACE_MAXSIZE_24BIT;
427 	}
428 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
429 		mdvp = &mdvec_1080;
430 		basetype = ISP_HA_SCSI_1080;
431 		psize = sizeof (sdparam);
432 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
433 		    ISP1080_DMA_REGS_OFF;
434 	}
435 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
436 		mdvp = &mdvec_1080;
437 		basetype = ISP_HA_SCSI_1240;
438 		psize = 2 * sizeof (sdparam);
439 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
440 		    ISP1080_DMA_REGS_OFF;
441 	}
442 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
443 		mdvp = &mdvec_1080;
444 		basetype = ISP_HA_SCSI_1280;
445 		psize = 2 * sizeof (sdparam);
446 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
447 		    ISP1080_DMA_REGS_OFF;
448 	}
449 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP10160) {
450 		mdvp = &mdvec_12160;
451 		basetype = ISP_HA_SCSI_10160;
452 		psize = sizeof (sdparam);
453 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
454 		    ISP1080_DMA_REGS_OFF;
455 	}
456 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
457 		mdvp = &mdvec_12160;
458 		basetype = ISP_HA_SCSI_12160;
459 		psize = 2 * sizeof (sdparam);
460 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
461 		    ISP1080_DMA_REGS_OFF;
462 	}
463 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
464 		mdvp = &mdvec_2100;
465 		basetype = ISP_HA_FC_2100;
466 		psize = sizeof (fcparam);
467 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
468 		    PCI_MBOX_REGS2100_OFF;
469 		if (pci_get_revid(dev) < 3) {
470 			/*
471 			 * XXX: Need to get the actual revision
472 			 * XXX: number of the 2100 FB. At any rate,
473 			 * XXX: lower cache line size for early revision
474 			 * XXX; boards.
475 			 */
476 			linesz = 1;
477 		}
478 	}
479 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
480 		mdvp = &mdvec_2200;
481 		basetype = ISP_HA_FC_2200;
482 		psize = sizeof (fcparam);
483 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
484 		    PCI_MBOX_REGS2100_OFF;
485 	}
486 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
487 		mdvp = &mdvec_2300;
488 		basetype = ISP_HA_FC_2300;
489 		psize = sizeof (fcparam);
490 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
491 		    PCI_MBOX_REGS2300_OFF;
492 	}
493 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
494 		mdvp = &mdvec_2300;
495 		basetype = ISP_HA_FC_2312;
496 		psize = sizeof (fcparam);
497 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
498 		    PCI_MBOX_REGS2300_OFF;
499 	}
500 	isp = &pcs->pci_isp;
501 	isp->isp_param = kmalloc(psize, M_DEVBUF, M_WAITOK | M_ZERO);
502 	isp->isp_mdvec = mdvp;
503 	isp->isp_type = basetype;
504 	isp->isp_revision = pci_get_revid(dev);
505 #ifdef	ISP_TARGET_MODE
506 	isp->isp_role = ISP_ROLE_BOTH;
507 #else
508 	isp->isp_role = ISP_DEFAULT_ROLES;
509 #endif
510 	isp->isp_dev = dev;
511 
512 
513 	/*
514 	 * Try and find firmware for this device.
515 	 */
516 
517 	if (isp_get_firmware_p) {
518 		int device = (int) pci_get_device(dev);
519 #ifdef	ISP_TARGET_MODE
520 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
521 #else
522 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
523 #endif
524 	}
525 
526 	/*
527 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
528 	 * are set.
529 	 */
530 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
531 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
532 	if (IS_2300(isp)) {	/* per QLogic errata */
533 		cmd &= ~PCIM_CMD_INVEN;
534 	}
535 	if (IS_23XX(isp)) {
536 		/*
537 		 * Can't tell if ROM will hang on 'ABOUT FIRMWARE' command.
538 		 */
539 		isp->isp_touched = 1;
540 
541 	}
542 	pci_write_config(dev, PCIR_COMMAND, cmd, 1);
543 
544 	/*
545 	 * Make sure the Cache Line Size register is set sensibly.
546 	 */
547 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
548 	if (data != linesz) {
549 		data = PCI_DFLT_LNSZ;
550 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
551 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
552 	}
553 
554 	/*
555 	 * Make sure the Latency Timer is sane.
556 	 */
557 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
558 	if (data < PCI_DFLT_LTNCY) {
559 		data = PCI_DFLT_LTNCY;
560 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
561 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
562 	}
563 
564 	/*
565 	 * Make sure we've disabled the ROM.
566 	 */
567 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
568 	data &= ~1;
569 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
570 
571 	iqd = 0;
572 	irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
573 	    1, RF_ACTIVE | RF_SHAREABLE);
574 	if (irq == NULL) {
575 		device_printf(dev, "could not allocate interrupt\n");
576 		goto bad;
577 	}
578 
579 	if (kgetenv_int("isp_no_fwload", &bitmap)) {
580 		if (bitmap & (1 << unit))
581 			isp->isp_confopts |= ISP_CFG_NORELOAD;
582 	}
583 	if (kgetenv_int("isp_fwload", &bitmap)) {
584 		if (bitmap & (1 << unit))
585 			isp->isp_confopts &= ~ISP_CFG_NORELOAD;
586 	}
587 	if (kgetenv_int("isp_no_nvram", &bitmap)) {
588 		if (bitmap & (1 << unit))
589 			isp->isp_confopts |= ISP_CFG_NONVRAM;
590 	}
591 	if (kgetenv_int("isp_nvram", &bitmap)) {
592 		if (bitmap & (1 << unit))
593 			isp->isp_confopts &= ~ISP_CFG_NONVRAM;
594 	}
595 	if (kgetenv_int("isp_fcduplex", &bitmap)) {
596 		if (bitmap & (1 << unit))
597 			isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
598 	}
599 	if (kgetenv_int("isp_no_fcduplex", &bitmap)) {
600 		if (bitmap & (1 << unit))
601 			isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX;
602 	}
603 	if (kgetenv_int("isp_nport", &bitmap)) {
604 		if (bitmap & (1 << unit))
605 			isp->isp_confopts |= ISP_CFG_NPORT;
606 	}
607 
608 	/*
609 	 * Because the resource_*_value functions can neither return
610 	 * 64 bit integer values, nor can they be directly coerced
611 	 * to interpret the right hand side of the assignment as
612 	 * you want them to interpret it, we have to force WWN
613 	 * hint replacement to specify WWN strings with a leading
614 	 * 'w' (e..g w50000000aaaa0001). Sigh.
615 	 */
616 	if (kgetenv_quad("isp_portwwn", &wwn)) {
617 		isp->isp_osinfo.default_port_wwn = wwn;
618 		isp->isp_confopts |= ISP_CFG_OWNWWPN;
619 	}
620 	if (isp->isp_osinfo.default_port_wwn == 0) {
621 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
622 	}
623 
624 	if (kgetenv_quad("isp_nodewwn", &wwn)) {
625 		isp->isp_osinfo.default_node_wwn = wwn;
626 		isp->isp_confopts |= ISP_CFG_OWNWWNN;
627 	}
628 	if (isp->isp_osinfo.default_node_wwn == 0) {
629 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
630 	}
631 
632 	isp_debug = 0;
633 	(void) kgetenv_int("isp_debug", &isp_debug);
634 	if (bus_setup_intr(dev, irq, 0, isp_pci_intr,
635 	    isp, &pcs->ih, NULL)) {
636 		device_printf(dev, "could not setup interrupt\n");
637 		goto bad;
638 	}
639 
640 #ifdef	ISP_FW_CRASH_DUMP
641 	bitmap = 0;
642 	if (kgetenv_int("isp_fw_dump_enable", &bitmap)) {
643 		if (bitmap & (1 << unit) {
644 			size_t amt = 0;
645 			if (IS_2200(isp)) {
646 				amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
647 			} else if (IS_23XX(isp)) {
648 				amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
649 			}
650 			if (amt) {
651 				FCPARAM(isp)->isp_dump_data =
652 				    kmalloc(amt, M_DEVBUF, M_WAITOK);
653 				bzero(FCPARAM(isp)->isp_dump_data, amt);
654 			} else {
655 				device_printf(dev,
656 				    "f/w crash dumps not supported for card\n");
657 			}
658 		}
659 	}
660 #endif
661 
662 	if (IS_2312(isp)) {
663 		isp->isp_port = pci_get_function(dev);
664 	}
665 
666 	/*
667 	 * Set up logging levels.
668 	 */
669 	if (isp_debug) {
670 		isp->isp_dblev = isp_debug;
671 	} else {
672 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
673 	}
674 	if (bootverbose)
675 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
676 
677 	/*
678 	 * Make sure we're in reset state.
679 	 */
680 	ISP_LOCK(isp);
681 	isp_reset(isp);
682 
683 	if (isp->isp_state != ISP_RESETSTATE) {
684 		ISP_UNLOCK(isp);
685 		goto bad;
686 	}
687 	isp_init(isp);
688 	if (isp->isp_state != ISP_INITSTATE) {
689 		/* If we're a Fibre Channel Card, we allow deferred attach */
690 		if (IS_SCSI(isp)) {
691 			isp_uninit(isp);
692 			ISP_UNLOCK(isp);
693 			goto bad;
694 		}
695 	}
696 	isp_attach(isp);
697 	if (isp->isp_state != ISP_RUNSTATE) {
698 		/* If we're a Fibre Channel Card, we allow deferred attach */
699 		if (IS_SCSI(isp)) {
700 			isp_uninit(isp);
701 			ISP_UNLOCK(isp);
702 			goto bad;
703 		}
704 	}
705 	/*
706 	 * XXXX: Here is where we might unload the f/w module
707 	 * XXXX: (or decrease the reference count to it).
708 	 */
709 	ISP_UNLOCK(isp);
710 	return (0);
711 
712 bad:
713 
714 	if (pcs && pcs->ih) {
715 		(void) bus_teardown_intr(dev, irq, pcs->ih);
716 	}
717 
718 	if (irq) {
719 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
720 	}
721 
722 
723 	if (regs) {
724 		(void) bus_release_resource(dev, rtp, rgd, regs);
725 	}
726 
727 	if (pcs) {
728 		if (pcs->pci_isp.isp_param)
729 			kfree(pcs->pci_isp.isp_param, M_DEVBUF);
730 		kfree(pcs, M_DEVBUF);
731 	}
732 
733 	/*
734 	 * XXXX: Here is where we might unload the f/w module
735 	 * XXXX: (or decrease the reference count to it).
736 	 */
737 	return (ENXIO);
738 }
739 
740 static void
741 isp_pci_intr(void *arg)
742 {
743 	struct ispsoftc *isp = arg;
744 	u_int16_t isr, sema, mbox;
745 
746 	ISP_LOCK(isp);
747 	isp->isp_intcnt++;
748 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
749 		isp->isp_intbogus++;
750 	} else {
751 		int iok = isp->isp_osinfo.intsok;
752 		isp->isp_osinfo.intsok = 0;
753 		isp_intr(isp, isr, sema, mbox);
754 		isp->isp_osinfo.intsok = iok;
755 	}
756 	ISP_UNLOCK(isp);
757 }
758 
759 
760 #define	IspVirt2Off(a, x)	\
761 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
762 	_BLK_REG_SHFT] + ((x) & 0xff))
763 
764 #define	BXR2(pcs, off)		\
765 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
766 #define	BXW2(pcs, off, v)	\
767 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
768 
769 
770 static INLINE int
771 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
772 {
773 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
774 	u_int16_t val0, val1;
775 	int i = 0;
776 
777 	do {
778 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
779 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
780 	} while (val0 != val1 && ++i < 1000);
781 	if (val0 != val1) {
782 		return (1);
783 	}
784 	*rp = val0;
785 	return (0);
786 }
787 
788 static int
789 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
790     u_int16_t *semap, u_int16_t *mbp)
791 {
792 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
793 	u_int16_t isr, sema;
794 
795 	if (IS_2100(isp)) {
796 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
797 		    return (0);
798 		}
799 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
800 		    return (0);
801 		}
802 	} else {
803 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
804 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
805 	}
806 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
807 	isr &= INT_PENDING_MASK(isp);
808 	sema &= BIU_SEMA_LOCK;
809 	if (isr == 0 && sema == 0) {
810 		return (0);
811 	}
812 	*isrp = isr;
813 	if ((*semap = sema) != 0) {
814 		if (IS_2100(isp)) {
815 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
816 				return (0);
817 			}
818 		} else {
819 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
820 		}
821 	}
822 	return (1);
823 }
824 
825 static int
826 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
827     u_int16_t *semap, u_int16_t *mbox0p)
828 {
829 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
830 	u_int32_t r2hisr;
831 
832 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
833 		*isrp = 0;
834 		return (0);
835 	}
836 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
837 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
838 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
839 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
840 		*isrp = 0;
841 		return (0);
842 	}
843 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
844 	case ISPR2HST_ROM_MBX_OK:
845 	case ISPR2HST_ROM_MBX_FAIL:
846 	case ISPR2HST_MBX_OK:
847 	case ISPR2HST_MBX_FAIL:
848 	case ISPR2HST_ASYNC_EVENT:
849 		*isrp = r2hisr & 0xffff;
850 		*mbox0p = (r2hisr >> 16);
851 		*semap = 1;
852 		return (1);
853 	case ISPR2HST_RIO_16:
854 		*isrp = r2hisr & 0xffff;
855 		*mbox0p = ASYNC_RIO1;
856 		*semap = 1;
857 		return (1);
858 	case ISPR2HST_FPOST:
859 		*isrp = r2hisr & 0xffff;
860 		*mbox0p = ASYNC_CMD_CMPLT;
861 		*semap = 1;
862 		return (1);
863 	case ISPR2HST_FPOST_CTIO:
864 		*isrp = r2hisr & 0xffff;
865 		*mbox0p = ASYNC_CTIO_DONE;
866 		*semap = 1;
867 		return (1);
868 	case ISPR2HST_RSPQ_UPDATE:
869 		*isrp = r2hisr & 0xffff;
870 		*mbox0p = 0;
871 		*semap = 0;
872 		return (1);
873 	default:
874 		return (0);
875 	}
876 }
877 
878 static u_int16_t
879 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
880 {
881 	u_int16_t rv;
882 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
883 	int oldconf = 0;
884 
885 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
886 		/*
887 		 * We will assume that someone has paused the RISC processor.
888 		 */
889 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
890 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
891 		    oldconf | BIU_PCI_CONF1_SXP);
892 	}
893 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
894 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
895 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
896 	}
897 	return (rv);
898 }
899 
900 static void
901 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
902 {
903 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
904 	int oldconf = 0;
905 
906 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
907 		/*
908 		 * We will assume that someone has paused the RISC processor.
909 		 */
910 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
911 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
912 		    oldconf | BIU_PCI_CONF1_SXP);
913 	}
914 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
915 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
916 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
917 	}
918 }
919 
920 static u_int16_t
921 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
922 {
923 	u_int16_t rv, oc = 0;
924 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
925 
926 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
927 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
928 		u_int16_t tc;
929 		/*
930 		 * We will assume that someone has paused the RISC processor.
931 		 */
932 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
933 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
934 		if (regoff & SXP_BANK1_SELECT)
935 			tc |= BIU_PCI1080_CONF1_SXP1;
936 		else
937 			tc |= BIU_PCI1080_CONF1_SXP0;
938 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
939 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
940 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
941 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
942 		    oc | BIU_PCI1080_CONF1_DMA);
943 	}
944 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
945 	if (oc) {
946 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
947 	}
948 	return (rv);
949 }
950 
951 static void
952 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
953 {
954 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
955 	int oc = 0;
956 
957 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
958 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
959 		u_int16_t tc;
960 		/*
961 		 * We will assume that someone has paused the RISC processor.
962 		 */
963 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
964 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
965 		if (regoff & SXP_BANK1_SELECT)
966 			tc |= BIU_PCI1080_CONF1_SXP1;
967 		else
968 			tc |= BIU_PCI1080_CONF1_SXP0;
969 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
970 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
971 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
972 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
973 		    oc | BIU_PCI1080_CONF1_DMA);
974 	}
975 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
976 	if (oc) {
977 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
978 	}
979 }
980 
981 
982 struct imush {
983 	struct ispsoftc *isp;
984 	int error;
985 };
986 
987 static void imc(void *, bus_dma_segment_t *, int, int);
988 
989 static void
990 imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
991 {
992 	struct imush *imushp = (struct imush *) arg;
993 	if (error) {
994 		imushp->error = error;
995 	} else {
996 		struct ispsoftc *isp =imushp->isp;
997 		bus_addr_t addr = segs->ds_addr;
998 
999 		isp->isp_rquest_dma = addr;
1000 		addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1001 		isp->isp_result_dma = addr;
1002 		if (IS_FC(isp)) {
1003 			addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1004 			FCPARAM(isp)->isp_scdma = addr;
1005 		}
1006 	}
1007 }
1008 
1009 /*
1010  * Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
1011  */
1012 #define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
1013 
1014 static int
1015 isp_pci_mbxdma(struct ispsoftc *isp)
1016 {
1017 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1018 	caddr_t base;
1019 	u_int32_t len;
1020 	int i, error, ns;
1021 	bus_size_t alim, slim;
1022 	struct imush im;
1023 
1024 	/*
1025 	 * Already been here? If so, leave...
1026 	 */
1027 	if (isp->isp_rquest) {
1028 		return (0);
1029 	}
1030 
1031 #ifdef	ISP_DAC_SUPPORTED
1032 	alim = BUS_SPACE_UNRESTRICTED;
1033 #else
1034 	alim = BUS_SPACE_MAXADDR_32BIT;
1035 #endif
1036 	if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
1037 		slim = BUS_SPACE_MAXADDR_32BIT;
1038 	} else {
1039 		slim = BUS_SPACE_MAXADDR_24BIT;
1040 	}
1041 
1042 	ISP_UNLOCK(isp);
1043 	if (bus_dma_tag_create(NULL, 1, slim+1, alim, alim,
1044 	    NULL, NULL, BUS_SPACE_MAXSIZE, ISP_NSEGS, slim, 0, &pcs->dmat)) {
1045 		isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
1046 		ISP_LOCK(isp);
1047 		return(1);
1048 	}
1049 
1050 
1051 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1052 	isp->isp_xflist = (XS_T **) kmalloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1053 	if (isp->isp_xflist == NULL) {
1054 		isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
1055 		ISP_LOCK(isp);
1056 		return (1);
1057 	}
1058 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1059 	pcs->dmaps = (bus_dmamap_t *) kmalloc(len, M_DEVBUF,  M_WAITOK);
1060 	if (pcs->dmaps == NULL) {
1061 		isp_prt(isp, ISP_LOGERR, "can't alloc dma map storage");
1062 		kfree(isp->isp_xflist, M_DEVBUF);
1063 		ISP_LOCK(isp);
1064 		return (1);
1065 	}
1066 
1067 	/*
1068 	 * Allocate and map the request, result queues, plus FC scratch area.
1069 	 */
1070 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1071 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1072 	if (IS_FC(isp)) {
1073 		len += ISP2100_SCRLEN;
1074 	}
1075 
1076 	ns = (len / PAGE_SIZE) + 1;
1077 	if (bus_dma_tag_create(pcs->dmat, QENTRY_LEN, slim+1, alim, alim,
1078 	    NULL, NULL, len, ns, slim, 0, &isp->isp_cdmat)) {
1079 		isp_prt(isp, ISP_LOGERR,
1080 		    "cannot create a dma tag for control spaces");
1081 		kfree(pcs->dmaps, M_DEVBUF);
1082 		kfree(isp->isp_xflist, M_DEVBUF);
1083 		ISP_LOCK(isp);
1084 		return (1);
1085 	}
1086 
1087 	if (bus_dmamem_alloc(isp->isp_cdmat, (void **)&base, BUS_DMA_NOWAIT,
1088 	    &isp->isp_cdmap) != 0) {
1089 		isp_prt(isp, ISP_LOGERR,
1090 		    "cannot allocate %d bytes of CCB memory", len);
1091 		bus_dma_tag_destroy(isp->isp_cdmat);
1092 		kfree(isp->isp_xflist, M_DEVBUF);
1093 		kfree(pcs->dmaps, M_DEVBUF);
1094 		ISP_LOCK(isp);
1095 		return (1);
1096 	}
1097 
1098 	for (i = 0; i < isp->isp_maxcmds; i++) {
1099 		error = bus_dmamap_create(pcs->dmat, 0, &pcs->dmaps[i]);
1100 		if (error) {
1101 			isp_prt(isp, ISP_LOGERR,
1102 			    "error %d creating per-cmd DMA maps", error);
1103 			while (--i >= 0) {
1104 				bus_dmamap_destroy(pcs->dmat, pcs->dmaps[i]);
1105 			}
1106 			goto bad;
1107 		}
1108 	}
1109 
1110 	im.isp = isp;
1111 	im.error = 0;
1112 	bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
1113 	if (im.error) {
1114 		isp_prt(isp, ISP_LOGERR,
1115 		    "error %d loading dma map for control areas", im.error);
1116 		goto bad;
1117 	}
1118 
1119 	isp->isp_rquest = base;
1120 	base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1121 	isp->isp_result = base;
1122 	if (IS_FC(isp)) {
1123 		base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1124 		FCPARAM(isp)->isp_scratch = base;
1125 	}
1126 	ISP_LOCK(isp);
1127 	return (0);
1128 
1129 bad:
1130 	bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
1131 	bus_dma_tag_destroy(isp->isp_cdmat);
1132 	kfree(isp->isp_xflist, M_DEVBUF);
1133 	kfree(pcs->dmaps, M_DEVBUF);
1134 	ISP_LOCK(isp);
1135 	isp->isp_rquest = NULL;
1136 	return (1);
1137 }
1138 
1139 typedef struct {
1140 	struct ispsoftc *isp;
1141 	void *cmd_token;
1142 	void *rq;
1143 	u_int16_t *nxtip;
1144 	u_int16_t optr;
1145 	u_int error;
1146 } mush_t;
1147 
1148 #define	MUSHERR_NOQENTRIES	-2
1149 
1150 #ifdef	ISP_TARGET_MODE
1151 /*
1152  * We need to handle DMA for target mode differently from initiator mode.
1153  *
1154  * DMA mapping and construction and submission of CTIO Request Entries
1155  * and rendevous for completion are very tightly coupled because we start
1156  * out by knowing (per platform) how much data we have to move, but we
1157  * don't know, up front, how many DMA mapping segments will have to be used
1158  * cover that data, so we don't know how many CTIO Request Entries we
1159  * will end up using. Further, for performance reasons we may want to
1160  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1161  *
1162  * The standard vector still goes through isp_pci_dmasetup, but the callback
1163  * for the DMA mapping routines comes here instead with the whole transfer
1164  * mapped and a pointer to a partially filled in already allocated request
1165  * queue entry. We finish the job.
1166  */
1167 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1168 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1169 
1170 #define	STATUS_WITH_DATA	1
1171 
1172 static void
1173 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1174 {
1175 	mush_t *mp;
1176 	struct ccb_scsiio *csio;
1177 	struct ispsoftc *isp;
1178 	struct isp_pcisoftc *pcs;
1179 	bus_dmamap_t *dp;
1180 	ct_entry_t *cto, *qe;
1181 	u_int8_t scsi_status;
1182 	u_int16_t curi, nxti, handle;
1183 	u_int32_t sflags;
1184 	int32_t resid;
1185 	int nth_ctio, nctios, send_status;
1186 
1187 	mp = (mush_t *) arg;
1188 	if (error) {
1189 		mp->error = error;
1190 		return;
1191 	}
1192 
1193 	isp = mp->isp;
1194 	csio = mp->cmd_token;
1195 	cto = mp->rq;
1196 	curi = isp->isp_reqidx;
1197 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1198 
1199 	cto->ct_xfrlen = 0;
1200 	cto->ct_seg_count = 0;
1201 	cto->ct_header.rqs_entry_count = 1;
1202 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1203 
1204 	if (nseg == 0) {
1205 		cto->ct_header.rqs_seqno = 1;
1206 		isp_prt(isp, ISP_LOGTDEBUG1,
1207 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1208 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1209 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1210 		    cto->ct_scsi_status, cto->ct_resid);
1211 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1212 		isp_put_ctio(isp, cto, qe);
1213 		return;
1214 	}
1215 
1216 	nctios = nseg / ISP_RQDSEG;
1217 	if (nseg % ISP_RQDSEG) {
1218 		nctios++;
1219 	}
1220 
1221 	/*
1222 	 * Save syshandle, and potentially any SCSI status, which we'll
1223 	 * reinsert on the last CTIO we're going to send.
1224 	 */
1225 
1226 	handle = cto->ct_syshandle;
1227 	cto->ct_syshandle = 0;
1228 	cto->ct_header.rqs_seqno = 0;
1229 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1230 
1231 	if (send_status) {
1232 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1233 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1234 		/*
1235 		 * Preserve residual.
1236 		 */
1237 		resid = cto->ct_resid;
1238 
1239 		/*
1240 		 * Save actual SCSI status.
1241 		 */
1242 		scsi_status = cto->ct_scsi_status;
1243 
1244 #ifndef	STATUS_WITH_DATA
1245 		sflags |= CT_NO_DATA;
1246 		/*
1247 		 * We can't do a status at the same time as a data CTIO, so
1248 		 * we need to synthesize an extra CTIO at this level.
1249 		 */
1250 		nctios++;
1251 #endif
1252 	} else {
1253 		sflags = scsi_status = resid = 0;
1254 	}
1255 
1256 	cto->ct_resid = 0;
1257 	cto->ct_scsi_status = 0;
1258 
1259 	pcs = (struct isp_pcisoftc *)isp;
1260 	dp = &pcs->dmaps[isp_handle_index(handle)];
1261 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1262 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1263 	} else {
1264 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1265 	}
1266 
1267 	nxti = *mp->nxtip;
1268 
1269 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1270 		int seglim;
1271 
1272 		seglim = nseg;
1273 		if (seglim) {
1274 			int seg;
1275 
1276 			if (seglim > ISP_RQDSEG)
1277 				seglim = ISP_RQDSEG;
1278 
1279 			for (seg = 0; seg < seglim; seg++, nseg--) {
1280 				/*
1281 				 * Unlike normal initiator commands, we don't
1282 				 * do any swizzling here.
1283 				 */
1284 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1285 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1286 				cto->ct_xfrlen += dm_segs->ds_len;
1287 				dm_segs++;
1288 			}
1289 			cto->ct_seg_count = seg;
1290 		} else {
1291 			/*
1292 			 * This case should only happen when we're sending an
1293 			 * extra CTIO with final status.
1294 			 */
1295 			if (send_status == 0) {
1296 				isp_prt(isp, ISP_LOGWARN,
1297 				    "tdma_mk ran out of segments");
1298 				mp->error = EINVAL;
1299 				return;
1300 			}
1301 		}
1302 
1303 		/*
1304 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1305 		 * ct_tagtype, and ct_timeout have been carried over
1306 		 * unchanged from what our caller had set.
1307 		 *
1308 		 * The dataseg fields and the seg_count fields we just got
1309 		 * through setting. The data direction we've preserved all
1310 		 * along and only clear it if we're now sending status.
1311 		 */
1312 
1313 		if (nth_ctio == nctios - 1) {
1314 			/*
1315 			 * We're the last in a sequence of CTIOs, so mark
1316 			 * this CTIO and save the handle to the CCB such that
1317 			 * when this CTIO completes we can free dma resources
1318 			 * and do whatever else we need to do to finish the
1319 			 * rest of the command. We *don't* give this to the
1320 			 * firmware to work on- the caller will do that.
1321 			 */
1322 
1323 			cto->ct_syshandle = handle;
1324 			cto->ct_header.rqs_seqno = 1;
1325 
1326 			if (send_status) {
1327 				cto->ct_scsi_status = scsi_status;
1328 				cto->ct_flags |= sflags;
1329 				cto->ct_resid = resid;
1330 			}
1331 			if (send_status) {
1332 				isp_prt(isp, ISP_LOGTDEBUG1,
1333 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1334 				    "scsi status %x resid %d",
1335 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1336 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1337 				    cto->ct_scsi_status, cto->ct_resid);
1338 			} else {
1339 				isp_prt(isp, ISP_LOGTDEBUG1,
1340 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1341 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1342 				    cto->ct_iid, cto->ct_tag_val,
1343 				    cto->ct_flags);
1344 			}
1345 			isp_put_ctio(isp, cto, qe);
1346 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1347 			if (nctios > 1) {
1348 				MEMORYBARRIER(isp, SYNC_REQUEST,
1349 				    curi, QENTRY_LEN);
1350 			}
1351 		} else {
1352 			ct_entry_t *oqe = qe;
1353 
1354 			/*
1355 			 * Make sure syshandle fields are clean
1356 			 */
1357 			cto->ct_syshandle = 0;
1358 			cto->ct_header.rqs_seqno = 0;
1359 
1360 			isp_prt(isp, ISP_LOGTDEBUG1,
1361 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1362 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1363 			    cto->ct_iid, cto->ct_flags);
1364 
1365 			/*
1366 			 * Get a new CTIO
1367 			 */
1368 			qe = (ct_entry_t *)
1369 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1370 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1371 			if (nxti == mp->optr) {
1372 				isp_prt(isp, ISP_LOGTDEBUG0,
1373 				    "Queue Overflow in tdma_mk");
1374 				mp->error = MUSHERR_NOQENTRIES;
1375 				return;
1376 			}
1377 
1378 			/*
1379 			 * Now that we're done with the old CTIO,
1380 			 * flush it out to the request queue.
1381 			 */
1382 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1383 			isp_put_ctio(isp, cto, oqe);
1384 			if (nth_ctio != 0) {
1385 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1386 				    QENTRY_LEN);
1387 			}
1388 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1389 
1390 			/*
1391 			 * Reset some fields in the CTIO so we can reuse
1392 			 * for the next one we'll flush to the request
1393 			 * queue.
1394 			 */
1395 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1396 			cto->ct_header.rqs_entry_count = 1;
1397 			cto->ct_header.rqs_flags = 0;
1398 			cto->ct_status = 0;
1399 			cto->ct_scsi_status = 0;
1400 			cto->ct_xfrlen = 0;
1401 			cto->ct_resid = 0;
1402 			cto->ct_seg_count = 0;
1403 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1404 		}
1405 	}
1406 	*mp->nxtip = nxti;
1407 }
1408 
1409 /*
1410  * We don't have to do multiple CTIOs here. Instead, we can just do
1411  * continuation segments as needed. This greatly simplifies the code
1412  * improves performance.
1413  */
1414 
1415 static void
1416 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1417 {
1418 	mush_t *mp;
1419 	struct ccb_scsiio *csio;
1420 	struct ispsoftc *isp;
1421 	ct2_entry_t *cto, *qe;
1422 	u_int16_t curi, nxti;
1423 	int segcnt;
1424 
1425 	mp = (mush_t *) arg;
1426 	if (error) {
1427 		mp->error = error;
1428 		return;
1429 	}
1430 
1431 	isp = mp->isp;
1432 	csio = mp->cmd_token;
1433 	cto = mp->rq;
1434 
1435 	curi = isp->isp_reqidx;
1436 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1437 
1438 	if (nseg == 0) {
1439 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1440 			isp_prt(isp, ISP_LOGWARN,
1441 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1442 			    "set (0x%x)", cto->ct_flags);
1443 			mp->error = EINVAL;
1444 			return;
1445 		}
1446 		/*
1447 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1448 		 * flags to NO DATA and clear relative offset flags.
1449 		 * We preserve the ct_resid and the response area.
1450 		 */
1451 		cto->ct_header.rqs_seqno = 1;
1452 		cto->ct_seg_count = 0;
1453 		cto->ct_reloff = 0;
1454 		isp_prt(isp, ISP_LOGTDEBUG1,
1455 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1456 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1457 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1458 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1459 		isp_put_ctio2(isp, cto, qe);
1460 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1461 		return;
1462 	}
1463 
1464 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1465 		isp_prt(isp, ISP_LOGERR,
1466 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1467 		    "(0x%x)", cto->ct_flags);
1468 		mp->error = EINVAL;
1469 		return;
1470 	}
1471 
1472 
1473 	nxti = *mp->nxtip;
1474 
1475 	/*
1476 	 * Set up the CTIO2 data segments.
1477 	 */
1478 	for (segcnt = 0; cto->ct_seg_count < ISP_RQDSEG_T2 && segcnt < nseg;
1479 	    cto->ct_seg_count++, segcnt++) {
1480 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_base =
1481 		    dm_segs[segcnt].ds_addr;
1482 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_count =
1483 		    dm_segs[segcnt].ds_len;
1484 		cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1485 		isp_prt(isp, ISP_LOGTDEBUG1, "isp_send_ctio2: ent0[%d]0x%x:%d",
1486 		    cto->ct_seg_count, dm_segs[segcnt].ds_addr,
1487 		    dm_segs[segcnt].ds_len);
1488 	}
1489 
1490 	while (segcnt < nseg) {
1491 		u_int16_t curip;
1492 		int seg;
1493 		ispcontreq_t local, *crq = &local, *qep;
1494 
1495 		qep = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1496 		curip = nxti;
1497 		nxti = ISP_NXT_QENTRY(curip, RQUEST_QUEUE_LEN(isp));
1498 		if (nxti == mp->optr) {
1499 			ISP_UNLOCK(isp);
1500 			isp_prt(isp, ISP_LOGTDEBUG0,
1501 			    "tdma_mkfc: request queue overflow");
1502 			mp->error = MUSHERR_NOQENTRIES;
1503 			return;
1504 		}
1505 		cto->ct_header.rqs_entry_count++;
1506 		MEMZERO((void *)crq, sizeof (*crq));
1507 		crq->req_header.rqs_entry_count = 1;
1508 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1509 		for (seg = 0; segcnt < nseg && seg < ISP_CDSEG;
1510 		    segcnt++, seg++) {
1511 			crq->req_dataseg[seg].ds_base = dm_segs[segcnt].ds_addr;
1512 			crq->req_dataseg[seg].ds_count = dm_segs[segcnt].ds_len;
1513 			isp_prt(isp, ISP_LOGTDEBUG1,
1514 			    "isp_send_ctio2: ent%d[%d]%x:%u",
1515 			    cto->ct_header.rqs_entry_count-1, seg,
1516 			    dm_segs[segcnt].ds_addr, dm_segs[segcnt].ds_len);
1517 			cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1518 			cto->ct_seg_count++;
1519 		}
1520 		MEMORYBARRIER(isp, SYNC_REQUEST, curip, QENTRY_LEN);
1521 		isp_put_cont_req(isp, crq, qep);
1522 		ISP_TDQE(isp, "cont entry", curi, qep);
1523 	}
1524 
1525 	/*
1526 	 * No do final twiddling for the CTIO itself.
1527 	 */
1528 	cto->ct_header.rqs_seqno = 1;
1529 	isp_prt(isp, ISP_LOGTDEBUG1,
1530 	    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x resid %d",
1531 	    cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid,
1532 	    cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status,
1533 	    cto->ct_resid);
1534 	isp_put_ctio2(isp, cto, qe);
1535 	ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1536 	*mp->nxtip = nxti;
1537 }
1538 #endif
1539 
1540 static void dma2(void *, bus_dma_segment_t *, int, int);
1541 
1542 static void
1543 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1544 {
1545 	mush_t *mp;
1546 	struct ispsoftc *isp;
1547 	struct ccb_scsiio *csio;
1548 	struct isp_pcisoftc *pcs;
1549 	bus_dmamap_t *dp;
1550 	bus_dma_segment_t *eseg;
1551 	ispreq_t *rq;
1552 	int seglim, datalen;
1553 	u_int16_t nxti;
1554 
1555 	mp = (mush_t *) arg;
1556 	if (error) {
1557 		mp->error = error;
1558 		return;
1559 	}
1560 
1561 	if (nseg < 1) {
1562 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1563 		mp->error = EFAULT;
1564 		return;
1565 	}
1566 	csio = mp->cmd_token;
1567 	isp = mp->isp;
1568 	rq = mp->rq;
1569 	pcs = (struct isp_pcisoftc *)mp->isp;
1570 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1571 	nxti = *mp->nxtip;
1572 
1573 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1574 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1575 	} else {
1576 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1577 	}
1578 
1579 	datalen = XS_XFRLEN(csio);
1580 
1581 	/*
1582 	 * We're passed an initial partially filled in entry that
1583 	 * has most fields filled in except for data transfer
1584 	 * related values.
1585 	 *
1586 	 * Our job is to fill in the initial request queue entry and
1587 	 * then to start allocating and filling in continuation entries
1588 	 * until we've covered the entire transfer.
1589 	 */
1590 
1591 	if (IS_FC(isp)) {
1592 		seglim = ISP_RQDSEG_T2;
1593 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1594 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1595 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1596 		} else {
1597 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1598 		}
1599 	} else {
1600 		if (csio->cdb_len > 12) {
1601 			seglim = 0;
1602 		} else {
1603 			seglim = ISP_RQDSEG;
1604 		}
1605 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1606 			rq->req_flags |= REQFLAG_DATA_IN;
1607 		} else {
1608 			rq->req_flags |= REQFLAG_DATA_OUT;
1609 		}
1610 	}
1611 
1612 	eseg = dm_segs + nseg;
1613 
1614 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1615 		if (IS_FC(isp)) {
1616 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1617 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1618 			    dm_segs->ds_addr;
1619 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1620 			    dm_segs->ds_len;
1621 		} else {
1622 			rq->req_dataseg[rq->req_seg_count].ds_base =
1623 				dm_segs->ds_addr;
1624 			rq->req_dataseg[rq->req_seg_count].ds_count =
1625 				dm_segs->ds_len;
1626 		}
1627 		datalen -= dm_segs->ds_len;
1628 		rq->req_seg_count++;
1629 		dm_segs++;
1630 	}
1631 
1632 	while (datalen > 0 && dm_segs != eseg) {
1633 		u_int16_t onxti;
1634 		ispcontreq_t local, *crq = &local, *cqe;
1635 
1636 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1637 		onxti = nxti;
1638 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1639 		if (nxti == mp->optr) {
1640 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1641 			mp->error = MUSHERR_NOQENTRIES;
1642 			return;
1643 		}
1644 		rq->req_header.rqs_entry_count++;
1645 		MEMZERO((void *)crq, sizeof (*crq));
1646 		crq->req_header.rqs_entry_count = 1;
1647 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1648 
1649 		seglim = 0;
1650 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1651 			crq->req_dataseg[seglim].ds_base =
1652 			    dm_segs->ds_addr;
1653 			crq->req_dataseg[seglim].ds_count =
1654 			    dm_segs->ds_len;
1655 			rq->req_seg_count++;
1656 			dm_segs++;
1657 			seglim++;
1658 			datalen -= dm_segs->ds_len;
1659 		}
1660 		isp_put_cont_req(isp, crq, cqe);
1661 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1662 	}
1663 	*mp->nxtip = nxti;
1664 }
1665 
1666 static int
1667 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1668 	u_int16_t *nxtip, u_int16_t optr)
1669 {
1670 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1671 	ispreq_t *qep;
1672 	bus_dmamap_t *dp = NULL;
1673 	mush_t mush, *mp;
1674 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1675 
1676 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1677 #ifdef	ISP_TARGET_MODE
1678 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1679 		if (IS_FC(isp)) {
1680 			eptr = tdma_mkfc;
1681 		} else {
1682 			eptr = tdma_mk;
1683 		}
1684 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1685 		    (csio->dxfer_len == 0)) {
1686 			mp = &mush;
1687 			mp->isp = isp;
1688 			mp->cmd_token = csio;
1689 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1690 			mp->nxtip = nxtip;
1691 			mp->optr = optr;
1692 			mp->error = 0;
1693 			(*eptr)(mp, NULL, 0, 0);
1694 			goto mbxsync;
1695 		}
1696 	} else
1697 #endif
1698 	eptr = dma2;
1699 
1700 
1701 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1702 	    (csio->dxfer_len == 0)) {
1703 		rq->req_seg_count = 1;
1704 		goto mbxsync;
1705 	}
1706 
1707 	/*
1708 	 * Do a virtual grapevine step to collect info for
1709 	 * the callback dma allocation that we have to use...
1710 	 */
1711 	mp = &mush;
1712 	mp->isp = isp;
1713 	mp->cmd_token = csio;
1714 	mp->rq = rq;
1715 	mp->nxtip = nxtip;
1716 	mp->optr = optr;
1717 	mp->error = 0;
1718 
1719 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1720 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1721 			int error;
1722 			dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1723 			crit_enter();
1724 			error = bus_dmamap_load(pcs->dmat, *dp,
1725 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1726 			if (error == EINPROGRESS) {
1727 				bus_dmamap_unload(pcs->dmat, *dp);
1728 				mp->error = EINVAL;
1729 				isp_prt(isp, ISP_LOGERR,
1730 				    "deferred dma allocation not supported");
1731 			} else if (error && mp->error == 0) {
1732 #ifdef	DIAGNOSTIC
1733 				isp_prt(isp, ISP_LOGERR,
1734 				    "error %d in dma mapping code", error);
1735 #endif
1736 				mp->error = error;
1737 			}
1738 			crit_exit();
1739 		} else {
1740 			/* Pointer to physical buffer */
1741 			struct bus_dma_segment seg;
1742 			seg.ds_addr = (bus_addr_t)csio->data_ptr;
1743 			seg.ds_len = csio->dxfer_len;
1744 			(*eptr)(mp, &seg, 1, 0);
1745 		}
1746 	} else {
1747 		struct bus_dma_segment *segs;
1748 
1749 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1750 			isp_prt(isp, ISP_LOGERR,
1751 			    "Physical segment pointers unsupported");
1752 			mp->error = EINVAL;
1753 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1754 			isp_prt(isp, ISP_LOGERR,
1755 			    "Virtual segment addresses unsupported");
1756 			mp->error = EINVAL;
1757 		} else {
1758 			/* Just use the segments provided */
1759 			segs = (struct bus_dma_segment *) csio->data_ptr;
1760 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1761 		}
1762 	}
1763 	if (mp->error) {
1764 		int retval = CMD_COMPLETE;
1765 		if (mp->error == MUSHERR_NOQENTRIES) {
1766 			retval = CMD_EAGAIN;
1767 		} else if (mp->error == EFBIG) {
1768 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
1769 		} else if (mp->error == EINVAL) {
1770 			XS_SETERR(csio, CAM_REQ_INVALID);
1771 		} else {
1772 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
1773 		}
1774 		return (retval);
1775 	}
1776 mbxsync:
1777 	switch (rq->req_header.rqs_entry_type) {
1778 	case RQSTYPE_REQUEST:
1779 		isp_put_request(isp, rq, qep);
1780 		break;
1781 	case RQSTYPE_CMDONLY:
1782 		isp_put_extended_request(isp, (ispextreq_t *)rq,
1783 		    (ispextreq_t *)qep);
1784 		break;
1785 	case RQSTYPE_T2RQS:
1786 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
1787 		break;
1788 	}
1789 	return (CMD_QUEUED);
1790 }
1791 
1792 static void
1793 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
1794 {
1795 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1796 	bus_dmamap_t *dp = &pcs->dmaps[isp_handle_index(handle)];
1797 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1798 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTREAD);
1799 	} else {
1800 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
1801 	}
1802 	bus_dmamap_unload(pcs->dmat, *dp);
1803 }
1804 
1805 
1806 static void
1807 isp_pci_reset1(struct ispsoftc *isp)
1808 {
1809 	/* Make sure the BIOS is disabled */
1810 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
1811 	/* and enable interrupts */
1812 	ENABLE_INTS(isp);
1813 }
1814 
1815 static void
1816 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
1817 {
1818 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1819 	if (msg)
1820 		kprintf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
1821 	else
1822 		kprintf("%s:\n", device_get_nameunit(isp->isp_dev));
1823 	if (IS_SCSI(isp))
1824 		kprintf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
1825 	else
1826 		kprintf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
1827 	kprintf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
1828 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
1829 	kprintf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
1830 
1831 
1832 	if (IS_SCSI(isp)) {
1833 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
1834 		kprintf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
1835 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
1836 			ISP_READ(isp, CDMA_FIFO_STS));
1837 		kprintf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
1838 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
1839 			ISP_READ(isp, DDMA_FIFO_STS));
1840 		kprintf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
1841 			ISP_READ(isp, SXP_INTERRUPT),
1842 			ISP_READ(isp, SXP_GROSS_ERR),
1843 			ISP_READ(isp, SXP_PINS_CTRL));
1844 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
1845 	}
1846 	kprintf("    mbox regs: %x %x %x %x %x\n",
1847 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
1848 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
1849 	    ISP_READ(isp, OUTMAILBOX4));
1850 	kprintf("    PCI Status Command/Status=%x\n",
1851 	    pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
1852 }
1853