xref: /dragonfly/sys/dev/disk/isp/isp_pci.c (revision ad9f8794)
1 /* $FreeBSD: src/sys/dev/isp/isp_pci.c,v 1.78.2.4 2002/10/11 18:50:53 mjacob Exp $ */
2 /*
3  * PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
4  * FreeBSD Version.
5  *
6  * Copyright (c) 1997, 1998, 1999, 2000, 2001 by Matthew Jacob
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice immediately at the beginning of the file, without modification,
13  *    this list of conditions, and the following disclaimer.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/bus.h>
35 #include <sys/rman.h>
36 #include <sys/malloc.h>
37 
38 #include <bus/pci/pcireg.h>
39 #include <bus/pci/pcivar.h>
40 
41 #include "isp_freebsd.h"
42 
43 static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int);
44 static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t);
45 static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int);
46 static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t);
47 static int
48 isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
49 static int
50 isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *);
51 static int isp_pci_mbxdma(struct ispsoftc *);
52 static int
53 isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t);
54 static void
55 isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int16_t);
56 
57 static void isp_pci_reset1(struct ispsoftc *);
58 static void isp_pci_dumpregs(struct ispsoftc *, const char *);
59 
60 static struct ispmdvec mdvec = {
61 	isp_pci_rd_isr,
62 	isp_pci_rd_reg,
63 	isp_pci_wr_reg,
64 	isp_pci_mbxdma,
65 	isp_pci_dmasetup,
66 	isp_pci_dmateardown,
67 	NULL,
68 	isp_pci_reset1,
69 	isp_pci_dumpregs,
70 	NULL,
71 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
72 };
73 
74 static struct ispmdvec mdvec_1080 = {
75 	isp_pci_rd_isr,
76 	isp_pci_rd_reg_1080,
77 	isp_pci_wr_reg_1080,
78 	isp_pci_mbxdma,
79 	isp_pci_dmasetup,
80 	isp_pci_dmateardown,
81 	NULL,
82 	isp_pci_reset1,
83 	isp_pci_dumpregs,
84 	NULL,
85 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
86 };
87 
88 static struct ispmdvec mdvec_12160 = {
89 	isp_pci_rd_isr,
90 	isp_pci_rd_reg_1080,
91 	isp_pci_wr_reg_1080,
92 	isp_pci_mbxdma,
93 	isp_pci_dmasetup,
94 	isp_pci_dmateardown,
95 	NULL,
96 	isp_pci_reset1,
97 	isp_pci_dumpregs,
98 	NULL,
99 	BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
100 };
101 
102 static struct ispmdvec mdvec_2100 = {
103 	isp_pci_rd_isr,
104 	isp_pci_rd_reg,
105 	isp_pci_wr_reg,
106 	isp_pci_mbxdma,
107 	isp_pci_dmasetup,
108 	isp_pci_dmateardown,
109 	NULL,
110 	isp_pci_reset1,
111 	isp_pci_dumpregs
112 };
113 
114 static struct ispmdvec mdvec_2200 = {
115 	isp_pci_rd_isr,
116 	isp_pci_rd_reg,
117 	isp_pci_wr_reg,
118 	isp_pci_mbxdma,
119 	isp_pci_dmasetup,
120 	isp_pci_dmateardown,
121 	NULL,
122 	isp_pci_reset1,
123 	isp_pci_dumpregs
124 };
125 
126 static struct ispmdvec mdvec_2300 = {
127 	isp_pci_rd_isr_2300,
128 	isp_pci_rd_reg,
129 	isp_pci_wr_reg,
130 	isp_pci_mbxdma,
131 	isp_pci_dmasetup,
132 	isp_pci_dmateardown,
133 	NULL,
134 	isp_pci_reset1,
135 	isp_pci_dumpregs
136 };
137 
138 #ifndef	PCIM_CMD_INVEN
139 #define	PCIM_CMD_INVEN			0x10
140 #endif
141 #ifndef	PCIM_CMD_BUSMASTEREN
142 #define	PCIM_CMD_BUSMASTEREN		0x0004
143 #endif
144 #ifndef	PCIM_CMD_PERRESPEN
145 #define	PCIM_CMD_PERRESPEN		0x0040
146 #endif
147 #ifndef	PCIM_CMD_SEREN
148 #define	PCIM_CMD_SEREN			0x0100
149 #endif
150 
151 #ifndef	PCIR_COMMAND
152 #define	PCIR_COMMAND			0x04
153 #endif
154 
155 #ifndef	PCIR_CACHELNSZ
156 #define	PCIR_CACHELNSZ			0x0c
157 #endif
158 
159 #ifndef	PCIR_LATTIMER
160 #define	PCIR_LATTIMER			0x0d
161 #endif
162 
163 #ifndef	PCIR_ROMADDR
164 #define	PCIR_ROMADDR			0x30
165 #endif
166 
167 #ifndef	PCI_VENDOR_QLOGIC
168 #define	PCI_VENDOR_QLOGIC		0x1077
169 #endif
170 
171 #ifndef	PCI_PRODUCT_QLOGIC_ISP1020
172 #define	PCI_PRODUCT_QLOGIC_ISP1020	0x1020
173 #endif
174 
175 #ifndef	PCI_PRODUCT_QLOGIC_ISP1080
176 #define	PCI_PRODUCT_QLOGIC_ISP1080	0x1080
177 #endif
178 
179 #ifndef	PCI_PRODUCT_QLOGIC_ISP10160
180 #define	PCI_PRODUCT_QLOGIC_ISP10160	0x1016
181 #endif
182 
183 #ifndef	PCI_PRODUCT_QLOGIC_ISP12160
184 #define	PCI_PRODUCT_QLOGIC_ISP12160	0x1216
185 #endif
186 
187 #ifndef	PCI_PRODUCT_QLOGIC_ISP1240
188 #define	PCI_PRODUCT_QLOGIC_ISP1240	0x1240
189 #endif
190 
191 #ifndef	PCI_PRODUCT_QLOGIC_ISP1280
192 #define	PCI_PRODUCT_QLOGIC_ISP1280	0x1280
193 #endif
194 
195 #ifndef	PCI_PRODUCT_QLOGIC_ISP2100
196 #define	PCI_PRODUCT_QLOGIC_ISP2100	0x2100
197 #endif
198 
199 #ifndef	PCI_PRODUCT_QLOGIC_ISP2200
200 #define	PCI_PRODUCT_QLOGIC_ISP2200	0x2200
201 #endif
202 
203 #ifndef	PCI_PRODUCT_QLOGIC_ISP2300
204 #define	PCI_PRODUCT_QLOGIC_ISP2300	0x2300
205 #endif
206 
207 #ifndef	PCI_PRODUCT_QLOGIC_ISP2312
208 #define	PCI_PRODUCT_QLOGIC_ISP2312	0x2312
209 #endif
210 
211 #define	PCI_QLOGIC_ISP1020	\
212 	((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
213 
214 #define	PCI_QLOGIC_ISP1080	\
215 	((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
216 
217 #define	PCI_QLOGIC_ISP10160	\
218 	((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC)
219 
220 #define	PCI_QLOGIC_ISP12160	\
221 	((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
222 
223 #define	PCI_QLOGIC_ISP1240	\
224 	((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
225 
226 #define	PCI_QLOGIC_ISP1280	\
227 	((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
228 
229 #define	PCI_QLOGIC_ISP2100	\
230 	((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
231 
232 #define	PCI_QLOGIC_ISP2200	\
233 	((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
234 
235 #define	PCI_QLOGIC_ISP2300	\
236 	((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC)
237 
238 #define	PCI_QLOGIC_ISP2312	\
239 	((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC)
240 
241 /*
242  * Odd case for some AMI raid cards... We need to *not* attach to this.
243  */
244 #define	AMI_RAID_SUBVENDOR_ID	0x101e
245 
246 #define	IO_MAP_REG	0x10
247 #define	MEM_MAP_REG	0x14
248 
249 #define	PCI_DFLT_LTNCY	0x40
250 #define	PCI_DFLT_LNSZ	0x10
251 
252 static int isp_pci_probe (device_t);
253 static int isp_pci_attach (device_t);
254 
255 
256 struct isp_pcisoftc {
257 	struct ispsoftc			pci_isp;
258 	device_t			pci_dev;
259 	struct resource *		pci_reg;
260 	bus_space_tag_t			pci_st;
261 	bus_space_handle_t		pci_sh;
262 	void *				ih;
263 	int16_t				pci_poff[_NREG_BLKS];
264 	bus_dma_tag_t			dmat;
265 	bus_dmamap_t			*dmaps;
266 };
267 ispfwfunc *isp_get_firmware_p = NULL;
268 
269 static device_method_t isp_pci_methods[] = {
270 	/* Device interface */
271 	DEVMETHOD(device_probe,		isp_pci_probe),
272 	DEVMETHOD(device_attach,	isp_pci_attach),
273 	{ 0, 0 }
274 };
275 static void isp_pci_intr(void *);
276 
277 static driver_t isp_pci_driver = {
278 	"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
279 };
280 static devclass_t isp_devclass;
281 DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, NULL, NULL);
282 MODULE_VERSION(isp, 1);
283 
284 static int
285 isp_pci_probe(device_t dev)
286 {
287         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
288 	case PCI_QLOGIC_ISP1020:
289 		device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
290 		break;
291 	case PCI_QLOGIC_ISP1080:
292 		device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
293 		break;
294 	case PCI_QLOGIC_ISP1240:
295 		device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
296 		break;
297 	case PCI_QLOGIC_ISP1280:
298 		device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
299 		break;
300 	case PCI_QLOGIC_ISP10160:
301 		device_set_desc(dev, "Qlogic ISP 10160 PCI SCSI Adapter");
302 		break;
303 	case PCI_QLOGIC_ISP12160:
304 		if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
305 			return (ENXIO);
306 		}
307 		device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
308 		break;
309 	case PCI_QLOGIC_ISP2100:
310 		device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
311 		break;
312 	case PCI_QLOGIC_ISP2200:
313 		device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
314 		break;
315 	case PCI_QLOGIC_ISP2300:
316 		device_set_desc(dev, "Qlogic ISP 2300 PCI FC-AL Adapter");
317 		break;
318 	case PCI_QLOGIC_ISP2312:
319 		device_set_desc(dev, "Qlogic ISP 2312 PCI FC-AL Adapter");
320 		break;
321 	default:
322 		return (ENXIO);
323 	}
324 	if (device_get_unit(dev) == 0 && bootverbose) {
325 		kprintf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
326 		    "Core Version %d.%d\n",
327 		    ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
328 		    ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
329 	}
330 	/*
331 	 * XXXX: Here is where we might load the f/w module
332 	 * XXXX: (or increase a reference count to it).
333 	 */
334 	return (0);
335 }
336 
337 static int
338 isp_pci_attach(device_t dev)
339 {
340 	struct resource *regs, *irq;
341 	int unit, bitmap, rtp, rgd, iqd, m1, m2, isp_debug;
342 	u_int32_t data, cmd, linesz, psize, basetype;
343 	struct isp_pcisoftc *pcs;
344 	struct ispsoftc *isp = NULL;
345 	struct ispmdvec *mdvp;
346 	quad_t wwn;
347 	bus_size_t lim;
348 
349 	/*
350 	 * Figure out if we're supposed to skip this one.
351 	 */
352 	unit = device_get_unit(dev);
353 	if (kgetenv_int("isp_disable", &bitmap)) {
354 		if (bitmap & (1 << unit)) {
355 			device_printf(dev, "not configuring\n");
356 			/*
357 			 * But return '0' to preserve HBA numbering.
358 			 */
359 			return (0);
360 		}
361 	}
362 
363 	pcs = kmalloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_WAITOK | M_ZERO);
364 
365 	/*
366 	 * Figure out which we should try first - memory mapping or i/o mapping?
367 	 */
368 	m1 = PCIM_CMD_PORTEN;
369 	m2 = PCIM_CMD_MEMEN;
370 	bitmap = 0;
371 	if (kgetenv_int("isp_mem_map", &bitmap)) {
372 		if (bitmap & (1 << unit)) {
373 			m1 = PCIM_CMD_MEMEN;
374 			m2 = PCIM_CMD_PORTEN;
375 		}
376 	}
377 	bitmap = 0;
378 	if (kgetenv_int("isp_io_map", &bitmap)) {
379 		if (bitmap & (1 << unit)) {
380 			m1 = PCIM_CMD_PORTEN;
381 			m2 = PCIM_CMD_MEMEN;
382 		}
383 	}
384 
385 	linesz = PCI_DFLT_LNSZ;
386 	irq = regs = NULL;
387 	rgd = rtp = iqd = 0;
388 
389 	cmd = pci_read_config(dev, PCIR_COMMAND, 1);
390 	if (cmd & m1) {
391 		rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
392 		rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
393 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
394 	}
395 	if (regs == NULL && (cmd & m2)) {
396 		rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
397 		rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
398 		regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
399 	}
400 	if (regs == NULL) {
401 		device_printf(dev, "unable to map any ports\n");
402 		goto bad;
403 	}
404 	if (bootverbose)
405 		device_printf(dev, "using %s space register mapping\n",
406 		    (rgd == IO_MAP_REG)? "I/O" : "Memory");
407 	pcs->pci_dev = dev;
408 	pcs->pci_reg = regs;
409 	pcs->pci_st = rman_get_bustag(regs);
410 	pcs->pci_sh = rman_get_bushandle(regs);
411 
412 	pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
413 	pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
414 	pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
415 	pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
416 	pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
417 	mdvp = &mdvec;
418 	basetype = ISP_HA_SCSI_UNKNOWN;
419 	psize = sizeof (sdparam);
420 	lim = BUS_SPACE_MAXSIZE_32BIT;
421 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
422 		mdvp = &mdvec;
423 		basetype = ISP_HA_SCSI_UNKNOWN;
424 		psize = sizeof (sdparam);
425 		lim = BUS_SPACE_MAXSIZE_24BIT;
426 	}
427 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
428 		mdvp = &mdvec_1080;
429 		basetype = ISP_HA_SCSI_1080;
430 		psize = sizeof (sdparam);
431 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
432 		    ISP1080_DMA_REGS_OFF;
433 	}
434 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
435 		mdvp = &mdvec_1080;
436 		basetype = ISP_HA_SCSI_1240;
437 		psize = 2 * sizeof (sdparam);
438 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
439 		    ISP1080_DMA_REGS_OFF;
440 	}
441 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
442 		mdvp = &mdvec_1080;
443 		basetype = ISP_HA_SCSI_1280;
444 		psize = 2 * sizeof (sdparam);
445 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
446 		    ISP1080_DMA_REGS_OFF;
447 	}
448 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP10160) {
449 		mdvp = &mdvec_12160;
450 		basetype = ISP_HA_SCSI_10160;
451 		psize = sizeof (sdparam);
452 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
453 		    ISP1080_DMA_REGS_OFF;
454 	}
455 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
456 		mdvp = &mdvec_12160;
457 		basetype = ISP_HA_SCSI_12160;
458 		psize = 2 * sizeof (sdparam);
459 		pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
460 		    ISP1080_DMA_REGS_OFF;
461 	}
462 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
463 		mdvp = &mdvec_2100;
464 		basetype = ISP_HA_FC_2100;
465 		psize = sizeof (fcparam);
466 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
467 		    PCI_MBOX_REGS2100_OFF;
468 		if (pci_get_revid(dev) < 3) {
469 			/*
470 			 * XXX: Need to get the actual revision
471 			 * XXX: number of the 2100 FB. At any rate,
472 			 * XXX: lower cache line size for early revision
473 			 * XXX; boards.
474 			 */
475 			linesz = 1;
476 		}
477 	}
478 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
479 		mdvp = &mdvec_2200;
480 		basetype = ISP_HA_FC_2200;
481 		psize = sizeof (fcparam);
482 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
483 		    PCI_MBOX_REGS2100_OFF;
484 	}
485 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2300) {
486 		mdvp = &mdvec_2300;
487 		basetype = ISP_HA_FC_2300;
488 		psize = sizeof (fcparam);
489 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
490 		    PCI_MBOX_REGS2300_OFF;
491 	}
492 	if (pci_get_devid(dev) == PCI_QLOGIC_ISP2312) {
493 		mdvp = &mdvec_2300;
494 		basetype = ISP_HA_FC_2312;
495 		psize = sizeof (fcparam);
496 		pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
497 		    PCI_MBOX_REGS2300_OFF;
498 	}
499 	isp = &pcs->pci_isp;
500 	isp->isp_param = kmalloc(psize, M_DEVBUF, M_WAITOK | M_ZERO);
501 	isp->isp_mdvec = mdvp;
502 	isp->isp_type = basetype;
503 	isp->isp_revision = pci_get_revid(dev);
504 #ifdef	ISP_TARGET_MODE
505 	isp->isp_role = ISP_ROLE_BOTH;
506 #else
507 	isp->isp_role = ISP_DEFAULT_ROLES;
508 #endif
509 	isp->isp_dev = dev;
510 
511 
512 	/*
513 	 * Try and find firmware for this device.
514 	 */
515 
516 	if (isp_get_firmware_p) {
517 		int device = (int) pci_get_device(dev);
518 #ifdef	ISP_TARGET_MODE
519 		(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
520 #else
521 		(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
522 #endif
523 	}
524 
525 	/*
526 	 * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
527 	 * are set.
528 	 */
529 	cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
530 		PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
531 	if (IS_2300(isp)) {	/* per QLogic errata */
532 		cmd &= ~PCIM_CMD_INVEN;
533 	}
534 	if (IS_23XX(isp)) {
535 		/*
536 		 * Can't tell if ROM will hang on 'ABOUT FIRMWARE' command.
537 		 */
538 		isp->isp_touched = 1;
539 
540 	}
541 	pci_write_config(dev, PCIR_COMMAND, cmd, 1);
542 
543 	/*
544 	 * Make sure the Cache Line Size register is set sensibly.
545 	 */
546 	data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
547 	if (data != linesz) {
548 		data = PCI_DFLT_LNSZ;
549 		isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
550 		pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
551 	}
552 
553 	/*
554 	 * Make sure the Latency Timer is sane.
555 	 */
556 	data = pci_read_config(dev, PCIR_LATTIMER, 1);
557 	if (data < PCI_DFLT_LTNCY) {
558 		data = PCI_DFLT_LTNCY;
559 		isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
560 		pci_write_config(dev, PCIR_LATTIMER, data, 1);
561 	}
562 
563 	/*
564 	 * Make sure we've disabled the ROM.
565 	 */
566 	data = pci_read_config(dev, PCIR_ROMADDR, 4);
567 	data &= ~1;
568 	pci_write_config(dev, PCIR_ROMADDR, data, 4);
569 
570 	iqd = 0;
571 	irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
572 	    1, RF_ACTIVE | RF_SHAREABLE);
573 	if (irq == NULL) {
574 		device_printf(dev, "could not allocate interrupt\n");
575 		goto bad;
576 	}
577 
578 	if (kgetenv_int("isp_no_fwload", &bitmap)) {
579 		if (bitmap & (1 << unit))
580 			isp->isp_confopts |= ISP_CFG_NORELOAD;
581 	}
582 	if (kgetenv_int("isp_fwload", &bitmap)) {
583 		if (bitmap & (1 << unit))
584 			isp->isp_confopts &= ~ISP_CFG_NORELOAD;
585 	}
586 	if (kgetenv_int("isp_no_nvram", &bitmap)) {
587 		if (bitmap & (1 << unit))
588 			isp->isp_confopts |= ISP_CFG_NONVRAM;
589 	}
590 	if (kgetenv_int("isp_nvram", &bitmap)) {
591 		if (bitmap & (1 << unit))
592 			isp->isp_confopts &= ~ISP_CFG_NONVRAM;
593 	}
594 	if (kgetenv_int("isp_fcduplex", &bitmap)) {
595 		if (bitmap & (1 << unit))
596 			isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
597 	}
598 	if (kgetenv_int("isp_no_fcduplex", &bitmap)) {
599 		if (bitmap & (1 << unit))
600 			isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX;
601 	}
602 	if (kgetenv_int("isp_nport", &bitmap)) {
603 		if (bitmap & (1 << unit))
604 			isp->isp_confopts |= ISP_CFG_NPORT;
605 	}
606 
607 	/*
608 	 * Because the resource_*_value functions can neither return
609 	 * 64 bit integer values, nor can they be directly coerced
610 	 * to interpret the right hand side of the assignment as
611 	 * you want them to interpret it, we have to force WWN
612 	 * hint replacement to specify WWN strings with a leading
613 	 * 'w' (e..g w50000000aaaa0001). Sigh.
614 	 */
615 	if (kgetenv_quad("isp_portwwn", &wwn)) {
616 		isp->isp_osinfo.default_port_wwn = wwn;
617 		isp->isp_confopts |= ISP_CFG_OWNWWPN;
618 	}
619 	if (isp->isp_osinfo.default_port_wwn == 0) {
620 		isp->isp_osinfo.default_port_wwn = 0x400000007F000009ull;
621 	}
622 
623 	if (kgetenv_quad("isp_nodewwn", &wwn)) {
624 		isp->isp_osinfo.default_node_wwn = wwn;
625 		isp->isp_confopts |= ISP_CFG_OWNWWNN;
626 	}
627 	if (isp->isp_osinfo.default_node_wwn == 0) {
628 		isp->isp_osinfo.default_node_wwn = 0x400000007F000009ull;
629 	}
630 
631 	isp_debug = 0;
632 	(void) kgetenv_int("isp_debug", &isp_debug);
633 	if (bus_setup_intr(dev, irq, 0, isp_pci_intr,
634 	    isp, &pcs->ih, NULL)) {
635 		device_printf(dev, "could not setup interrupt\n");
636 		goto bad;
637 	}
638 
639 #ifdef	ISP_FW_CRASH_DUMP
640 	bitmap = 0;
641 	if (kgetenv_int("isp_fw_dump_enable", &bitmap)) {
642 		if (bitmap & (1 << unit) {
643 			size_t amt = 0;
644 			if (IS_2200(isp)) {
645 				amt = QLA2200_RISC_IMAGE_DUMP_SIZE;
646 			} else if (IS_23XX(isp)) {
647 				amt = QLA2300_RISC_IMAGE_DUMP_SIZE;
648 			}
649 			if (amt) {
650 				FCPARAM(isp)->isp_dump_data =
651 				    kmalloc(amt, M_DEVBUF, M_WAITOK);
652 				bzero(FCPARAM(isp)->isp_dump_data, amt);
653 			} else {
654 				device_printf(dev,
655 				    "f/w crash dumps not supported for card\n");
656 			}
657 		}
658 	}
659 #endif
660 
661 	if (IS_2312(isp)) {
662 		isp->isp_port = pci_get_function(dev);
663 	}
664 
665 	/*
666 	 * Set up logging levels.
667 	 */
668 	if (isp_debug) {
669 		isp->isp_dblev = isp_debug;
670 	} else {
671 		isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
672 	}
673 	if (bootverbose)
674 		isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO;
675 
676 	/*
677 	 * Make sure we're in reset state.
678 	 */
679 	ISP_LOCK(isp);
680 	isp_reset(isp);
681 
682 	if (isp->isp_state != ISP_RESETSTATE) {
683 		ISP_UNLOCK(isp);
684 		goto bad;
685 	}
686 	isp_init(isp);
687 	if (isp->isp_state != ISP_INITSTATE) {
688 		/* If we're a Fibre Channel Card, we allow deferred attach */
689 		if (IS_SCSI(isp)) {
690 			isp_uninit(isp);
691 			ISP_UNLOCK(isp);
692 			goto bad;
693 		}
694 	}
695 	isp_attach(isp);
696 	if (isp->isp_state != ISP_RUNSTATE) {
697 		/* If we're a Fibre Channel Card, we allow deferred attach */
698 		if (IS_SCSI(isp)) {
699 			isp_uninit(isp);
700 			ISP_UNLOCK(isp);
701 			goto bad;
702 		}
703 	}
704 	/*
705 	 * XXXX: Here is where we might unload the f/w module
706 	 * XXXX: (or decrease the reference count to it).
707 	 */
708 	ISP_UNLOCK(isp);
709 	return (0);
710 
711 bad:
712 
713 	if (pcs && pcs->ih) {
714 		(void) bus_teardown_intr(dev, irq, pcs->ih);
715 	}
716 
717 	if (irq) {
718 		(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
719 	}
720 
721 
722 	if (regs) {
723 		(void) bus_release_resource(dev, rtp, rgd, regs);
724 	}
725 
726 	if (pcs) {
727 		if (pcs->pci_isp.isp_param)
728 			kfree(pcs->pci_isp.isp_param, M_DEVBUF);
729 		kfree(pcs, M_DEVBUF);
730 	}
731 
732 	/*
733 	 * XXXX: Here is where we might unload the f/w module
734 	 * XXXX: (or decrease the reference count to it).
735 	 */
736 	return (ENXIO);
737 }
738 
739 static void
740 isp_pci_intr(void *arg)
741 {
742 	struct ispsoftc *isp = arg;
743 	u_int16_t isr, sema, mbox;
744 
745 	ISP_LOCK(isp);
746 	isp->isp_intcnt++;
747 	if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) {
748 		isp->isp_intbogus++;
749 	} else {
750 		int iok = isp->isp_osinfo.intsok;
751 		isp->isp_osinfo.intsok = 0;
752 		isp_intr(isp, isr, sema, mbox);
753 		isp->isp_osinfo.intsok = iok;
754 	}
755 	ISP_UNLOCK(isp);
756 }
757 
758 
759 #define	IspVirt2Off(a, x)	\
760 	(((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \
761 	_BLK_REG_SHFT] + ((x) & 0xff))
762 
763 #define	BXR2(pcs, off)		\
764 	bus_space_read_2(pcs->pci_st, pcs->pci_sh, off)
765 #define	BXW2(pcs, off, v)	\
766 	bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v)
767 
768 
769 static INLINE int
770 isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp)
771 {
772 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
773 	u_int16_t val0, val1;
774 	int i = 0;
775 
776 	do {
777 		val0 = BXR2(pcs, IspVirt2Off(isp, off));
778 		val1 = BXR2(pcs, IspVirt2Off(isp, off));
779 	} while (val0 != val1 && ++i < 1000);
780 	if (val0 != val1) {
781 		return (1);
782 	}
783 	*rp = val0;
784 	return (0);
785 }
786 
787 static int
788 isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp,
789     u_int16_t *semap, u_int16_t *mbp)
790 {
791 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
792 	u_int16_t isr, sema;
793 
794 	if (IS_2100(isp)) {
795 		if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) {
796 		    return (0);
797 		}
798 		if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) {
799 		    return (0);
800 		}
801 	} else {
802 		isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR));
803 		sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA));
804 	}
805 	isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema);
806 	isr &= INT_PENDING_MASK(isp);
807 	sema &= BIU_SEMA_LOCK;
808 	if (isr == 0 && sema == 0) {
809 		return (0);
810 	}
811 	*isrp = isr;
812 	if ((*semap = sema) != 0) {
813 		if (IS_2100(isp)) {
814 			if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) {
815 				return (0);
816 			}
817 		} else {
818 			*mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0));
819 		}
820 	}
821 	return (1);
822 }
823 
824 static int
825 isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp,
826     u_int16_t *semap, u_int16_t *mbox0p)
827 {
828 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
829 	u_int32_t r2hisr;
830 
831 	if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR) & BIU2100_ISR_RISC_INT))) {
832 		*isrp = 0;
833 		return (0);
834 	}
835 	r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh,
836 	    IspVirt2Off(pcs, BIU_R2HSTSLO));
837 	isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr);
838 	if ((r2hisr & BIU_R2HST_INTR) == 0) {
839 		*isrp = 0;
840 		return (0);
841 	}
842 	switch (r2hisr & BIU_R2HST_ISTAT_MASK) {
843 	case ISPR2HST_ROM_MBX_OK:
844 	case ISPR2HST_ROM_MBX_FAIL:
845 	case ISPR2HST_MBX_OK:
846 	case ISPR2HST_MBX_FAIL:
847 	case ISPR2HST_ASYNC_EVENT:
848 		*isrp = r2hisr & 0xffff;
849 		*mbox0p = (r2hisr >> 16);
850 		*semap = 1;
851 		return (1);
852 	case ISPR2HST_RIO_16:
853 		*isrp = r2hisr & 0xffff;
854 		*mbox0p = ASYNC_RIO1;
855 		*semap = 1;
856 		return (1);
857 	case ISPR2HST_FPOST:
858 		*isrp = r2hisr & 0xffff;
859 		*mbox0p = ASYNC_CMD_CMPLT;
860 		*semap = 1;
861 		return (1);
862 	case ISPR2HST_FPOST_CTIO:
863 		*isrp = r2hisr & 0xffff;
864 		*mbox0p = ASYNC_CTIO_DONE;
865 		*semap = 1;
866 		return (1);
867 	case ISPR2HST_RSPQ_UPDATE:
868 		*isrp = r2hisr & 0xffff;
869 		*mbox0p = 0;
870 		*semap = 0;
871 		return (1);
872 	default:
873 		return (0);
874 	}
875 }
876 
877 static u_int16_t
878 isp_pci_rd_reg(struct ispsoftc *isp, int regoff)
879 {
880 	u_int16_t rv;
881 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
882 	int oldconf = 0;
883 
884 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
885 		/*
886 		 * We will assume that someone has paused the RISC processor.
887 		 */
888 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
889 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
890 		    oldconf | BIU_PCI_CONF1_SXP);
891 	}
892 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
893 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
894 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
895 	}
896 	return (rv);
897 }
898 
899 static void
900 isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val)
901 {
902 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
903 	int oldconf = 0;
904 
905 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
906 		/*
907 		 * We will assume that someone has paused the RISC processor.
908 		 */
909 		oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
910 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
911 		    oldconf | BIU_PCI_CONF1_SXP);
912 	}
913 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
914 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
915 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf);
916 	}
917 }
918 
919 static u_int16_t
920 isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff)
921 {
922 	u_int16_t rv, oc = 0;
923 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
924 
925 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
926 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
927 		u_int16_t tc;
928 		/*
929 		 * We will assume that someone has paused the RISC processor.
930 		 */
931 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
932 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
933 		if (regoff & SXP_BANK1_SELECT)
934 			tc |= BIU_PCI1080_CONF1_SXP1;
935 		else
936 			tc |= BIU_PCI1080_CONF1_SXP0;
937 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
938 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
939 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
940 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
941 		    oc | BIU_PCI1080_CONF1_DMA);
942 	}
943 	rv = BXR2(pcs, IspVirt2Off(isp, regoff));
944 	if (oc) {
945 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
946 	}
947 	return (rv);
948 }
949 
950 static void
951 isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val)
952 {
953 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
954 	int oc = 0;
955 
956 	if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
957 	    (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
958 		u_int16_t tc;
959 		/*
960 		 * We will assume that someone has paused the RISC processor.
961 		 */
962 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
963 		tc = oc & ~BIU_PCI1080_CONF1_DMA;
964 		if (regoff & SXP_BANK1_SELECT)
965 			tc |= BIU_PCI1080_CONF1_SXP1;
966 		else
967 			tc |= BIU_PCI1080_CONF1_SXP0;
968 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc);
969 	} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
970 		oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1));
971 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1),
972 		    oc | BIU_PCI1080_CONF1_DMA);
973 	}
974 	BXW2(pcs, IspVirt2Off(isp, regoff), val);
975 	if (oc) {
976 		BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc);
977 	}
978 }
979 
980 
981 struct imush {
982 	struct ispsoftc *isp;
983 	int error;
984 };
985 
986 static void imc(void *, bus_dma_segment_t *, int, int);
987 
988 static void
989 imc(void *arg, bus_dma_segment_t *segs, int nseg, int error)
990 {
991 	struct imush *imushp = (struct imush *) arg;
992 	if (error) {
993 		imushp->error = error;
994 	} else {
995 		struct ispsoftc *isp =imushp->isp;
996 		bus_addr_t addr = segs->ds_addr;
997 
998 		isp->isp_rquest_dma = addr;
999 		addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1000 		isp->isp_result_dma = addr;
1001 		if (IS_FC(isp)) {
1002 			addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1003 			FCPARAM(isp)->isp_scdma = addr;
1004 		}
1005 	}
1006 }
1007 
1008 /*
1009  * Should be BUS_SPACE_MAXSIZE, but MAXPHYS is larger than BUS_SPACE_MAXSIZE
1010  */
1011 #define ISP_NSEGS ((MAXPHYS / PAGE_SIZE) + 1)
1012 
1013 static int
1014 isp_pci_mbxdma(struct ispsoftc *isp)
1015 {
1016 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1017 	caddr_t base;
1018 	u_int32_t len;
1019 	int i, error, ns;
1020 	bus_size_t alim, slim;
1021 	struct imush im;
1022 
1023 	/*
1024 	 * Already been here? If so, leave...
1025 	 */
1026 	if (isp->isp_rquest) {
1027 		return (0);
1028 	}
1029 
1030 #ifdef	ISP_DAC_SUPPORTED
1031 	alim = BUS_SPACE_UNRESTRICTED;
1032 #else
1033 	alim = BUS_SPACE_MAXADDR_32BIT;
1034 #endif
1035 	if (IS_ULTRA2(isp) || IS_FC(isp) || IS_1240(isp)) {
1036 		slim = BUS_SPACE_MAXADDR_32BIT;
1037 	} else {
1038 		slim = BUS_SPACE_MAXADDR_24BIT;
1039 	}
1040 
1041 	ISP_UNLOCK(isp);
1042 	if (bus_dma_tag_create(NULL, 1, slim+1, alim, alim,
1043 	    NULL, NULL, BUS_SPACE_MAXSIZE, ISP_NSEGS, slim, 0, &pcs->dmat)) {
1044 		isp_prt(isp, ISP_LOGERR, "could not create master dma tag");
1045 		ISP_LOCK(isp);
1046 		return(1);
1047 	}
1048 
1049 
1050 	len = sizeof (XS_T **) * isp->isp_maxcmds;
1051 	isp->isp_xflist = (XS_T **) kmalloc(len, M_DEVBUF, M_WAITOK | M_ZERO);
1052 	len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
1053 	pcs->dmaps = (bus_dmamap_t *) kmalloc(len, M_DEVBUF,  M_WAITOK);
1054 
1055 	/*
1056 	 * Allocate and map the request, result queues, plus FC scratch area.
1057 	 */
1058 	len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1059 	len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1060 	if (IS_FC(isp)) {
1061 		len += ISP2100_SCRLEN;
1062 	}
1063 
1064 	ns = (len / PAGE_SIZE) + 1;
1065 	if (bus_dma_tag_create(pcs->dmat, QENTRY_LEN, slim+1, alim, alim,
1066 	    NULL, NULL, len, ns, slim, 0, &isp->isp_cdmat)) {
1067 		isp_prt(isp, ISP_LOGERR,
1068 		    "cannot create a dma tag for control spaces");
1069 		kfree(pcs->dmaps, M_DEVBUF);
1070 		kfree(isp->isp_xflist, M_DEVBUF);
1071 		ISP_LOCK(isp);
1072 		return (1);
1073 	}
1074 
1075 	if (bus_dmamem_alloc(isp->isp_cdmat, (void *)&base, BUS_DMA_NOWAIT,
1076 	    &isp->isp_cdmap) != 0) {
1077 		isp_prt(isp, ISP_LOGERR,
1078 		    "cannot allocate %d bytes of CCB memory", len);
1079 		bus_dma_tag_destroy(isp->isp_cdmat);
1080 		kfree(isp->isp_xflist, M_DEVBUF);
1081 		kfree(pcs->dmaps, M_DEVBUF);
1082 		ISP_LOCK(isp);
1083 		return (1);
1084 	}
1085 
1086 	for (i = 0; i < isp->isp_maxcmds; i++) {
1087 		error = bus_dmamap_create(pcs->dmat, 0, &pcs->dmaps[i]);
1088 		if (error) {
1089 			isp_prt(isp, ISP_LOGERR,
1090 			    "error %d creating per-cmd DMA maps", error);
1091 			while (--i >= 0) {
1092 				bus_dmamap_destroy(pcs->dmat, pcs->dmaps[i]);
1093 			}
1094 			goto bad;
1095 		}
1096 	}
1097 
1098 	im.isp = isp;
1099 	im.error = 0;
1100 	bus_dmamap_load(isp->isp_cdmat, isp->isp_cdmap, base, len, imc, &im, 0);
1101 	if (im.error) {
1102 		isp_prt(isp, ISP_LOGERR,
1103 		    "error %d loading dma map for control areas", im.error);
1104 		goto bad;
1105 	}
1106 
1107 	isp->isp_rquest = base;
1108 	base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
1109 	isp->isp_result = base;
1110 	if (IS_FC(isp)) {
1111 		base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
1112 		FCPARAM(isp)->isp_scratch = base;
1113 	}
1114 	ISP_LOCK(isp);
1115 	return (0);
1116 
1117 bad:
1118 	bus_dmamem_free(isp->isp_cdmat, base, isp->isp_cdmap);
1119 	bus_dma_tag_destroy(isp->isp_cdmat);
1120 	kfree(isp->isp_xflist, M_DEVBUF);
1121 	kfree(pcs->dmaps, M_DEVBUF);
1122 	ISP_LOCK(isp);
1123 	isp->isp_rquest = NULL;
1124 	return (1);
1125 }
1126 
1127 typedef struct {
1128 	struct ispsoftc *isp;
1129 	void *cmd_token;
1130 	void *rq;
1131 	u_int16_t *nxtip;
1132 	u_int16_t optr;
1133 	u_int error;
1134 } mush_t;
1135 
1136 #define	MUSHERR_NOQENTRIES	-2
1137 
1138 #ifdef	ISP_TARGET_MODE
1139 /*
1140  * We need to handle DMA for target mode differently from initiator mode.
1141  *
1142  * DMA mapping and construction and submission of CTIO Request Entries
1143  * and rendevous for completion are very tightly coupled because we start
1144  * out by knowing (per platform) how much data we have to move, but we
1145  * don't know, up front, how many DMA mapping segments will have to be used
1146  * cover that data, so we don't know how many CTIO Request Entries we
1147  * will end up using. Further, for performance reasons we may want to
1148  * (on the last CTIO for Fibre Channel), send status too (if all went well).
1149  *
1150  * The standard vector still goes through isp_pci_dmasetup, but the callback
1151  * for the DMA mapping routines comes here instead with the whole transfer
1152  * mapped and a pointer to a partially filled in already allocated request
1153  * queue entry. We finish the job.
1154  */
1155 static void tdma_mk(void *, bus_dma_segment_t *, int, int);
1156 static void tdma_mkfc(void *, bus_dma_segment_t *, int, int);
1157 
1158 #define	STATUS_WITH_DATA	1
1159 
1160 static void
1161 tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1162 {
1163 	mush_t *mp;
1164 	struct ccb_scsiio *csio;
1165 	struct ispsoftc *isp;
1166 	struct isp_pcisoftc *pcs;
1167 	bus_dmamap_t *dp;
1168 	ct_entry_t *cto, *qe;
1169 	u_int8_t scsi_status;
1170 	u_int16_t curi, nxti, handle;
1171 	u_int32_t sflags;
1172 	int32_t resid;
1173 	int nth_ctio, nctios, send_status;
1174 
1175 	mp = (mush_t *) arg;
1176 	if (error) {
1177 		mp->error = error;
1178 		return;
1179 	}
1180 
1181 	isp = mp->isp;
1182 	csio = mp->cmd_token;
1183 	cto = mp->rq;
1184 	curi = isp->isp_reqidx;
1185 	qe = (ct_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1186 
1187 	cto->ct_xfrlen = 0;
1188 	cto->ct_seg_count = 0;
1189 	cto->ct_header.rqs_entry_count = 1;
1190 	MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1191 
1192 	if (nseg == 0) {
1193 		cto->ct_header.rqs_seqno = 1;
1194 		isp_prt(isp, ISP_LOGTDEBUG1,
1195 		    "CTIO[%x] lun%d iid%d tag %x flgs %x sts %x ssts %x res %d",
1196 		    cto->ct_fwhandle, csio->ccb_h.target_lun, cto->ct_iid,
1197 		    cto->ct_tag_val, cto->ct_flags, cto->ct_status,
1198 		    cto->ct_scsi_status, cto->ct_resid);
1199 		ISP_TDQE(isp, "tdma_mk[no data]", curi, cto);
1200 		isp_put_ctio(isp, cto, qe);
1201 		return;
1202 	}
1203 
1204 	nctios = nseg / ISP_RQDSEG;
1205 	if (nseg % ISP_RQDSEG) {
1206 		nctios++;
1207 	}
1208 
1209 	/*
1210 	 * Save syshandle, and potentially any SCSI status, which we'll
1211 	 * reinsert on the last CTIO we're going to send.
1212 	 */
1213 
1214 	handle = cto->ct_syshandle;
1215 	cto->ct_syshandle = 0;
1216 	cto->ct_header.rqs_seqno = 0;
1217 	send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
1218 
1219 	if (send_status) {
1220 		sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
1221 		cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
1222 		/*
1223 		 * Preserve residual.
1224 		 */
1225 		resid = cto->ct_resid;
1226 
1227 		/*
1228 		 * Save actual SCSI status.
1229 		 */
1230 		scsi_status = cto->ct_scsi_status;
1231 
1232 #ifndef	STATUS_WITH_DATA
1233 		sflags |= CT_NO_DATA;
1234 		/*
1235 		 * We can't do a status at the same time as a data CTIO, so
1236 		 * we need to synthesize an extra CTIO at this level.
1237 		 */
1238 		nctios++;
1239 #endif
1240 	} else {
1241 		sflags = scsi_status = resid = 0;
1242 	}
1243 
1244 	cto->ct_resid = 0;
1245 	cto->ct_scsi_status = 0;
1246 
1247 	pcs = (struct isp_pcisoftc *)isp;
1248 	dp = &pcs->dmaps[isp_handle_index(handle)];
1249 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1250 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1251 	} else {
1252 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1253 	}
1254 
1255 	nxti = *mp->nxtip;
1256 
1257 	for (nth_ctio = 0; nth_ctio < nctios; nth_ctio++) {
1258 		int seglim;
1259 
1260 		seglim = nseg;
1261 		if (seglim) {
1262 			int seg;
1263 
1264 			if (seglim > ISP_RQDSEG)
1265 				seglim = ISP_RQDSEG;
1266 
1267 			for (seg = 0; seg < seglim; seg++, nseg--) {
1268 				/*
1269 				 * Unlike normal initiator commands, we don't
1270 				 * do any swizzling here.
1271 				 */
1272 				cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
1273 				cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
1274 				cto->ct_xfrlen += dm_segs->ds_len;
1275 				dm_segs++;
1276 			}
1277 			cto->ct_seg_count = seg;
1278 		} else {
1279 			/*
1280 			 * This case should only happen when we're sending an
1281 			 * extra CTIO with final status.
1282 			 */
1283 			if (send_status == 0) {
1284 				isp_prt(isp, ISP_LOGWARN,
1285 				    "tdma_mk ran out of segments");
1286 				mp->error = EINVAL;
1287 				return;
1288 			}
1289 		}
1290 
1291 		/*
1292 		 * At this point, the fields ct_lun, ct_iid, ct_tagval,
1293 		 * ct_tagtype, and ct_timeout have been carried over
1294 		 * unchanged from what our caller had set.
1295 		 *
1296 		 * The dataseg fields and the seg_count fields we just got
1297 		 * through setting. The data direction we've preserved all
1298 		 * along and only clear it if we're now sending status.
1299 		 */
1300 
1301 		if (nth_ctio == nctios - 1) {
1302 			/*
1303 			 * We're the last in a sequence of CTIOs, so mark
1304 			 * this CTIO and save the handle to the CCB such that
1305 			 * when this CTIO completes we can free dma resources
1306 			 * and do whatever else we need to do to finish the
1307 			 * rest of the command. We *don't* give this to the
1308 			 * firmware to work on- the caller will do that.
1309 			 */
1310 
1311 			cto->ct_syshandle = handle;
1312 			cto->ct_header.rqs_seqno = 1;
1313 
1314 			if (send_status) {
1315 				cto->ct_scsi_status = scsi_status;
1316 				cto->ct_flags |= sflags;
1317 				cto->ct_resid = resid;
1318 			}
1319 			if (send_status) {
1320 				isp_prt(isp, ISP_LOGTDEBUG1,
1321 				    "CTIO[%x] lun%d iid %d tag %x ct_flags %x "
1322 				    "scsi status %x resid %d",
1323 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1324 				    cto->ct_iid, cto->ct_tag_val, cto->ct_flags,
1325 				    cto->ct_scsi_status, cto->ct_resid);
1326 			} else {
1327 				isp_prt(isp, ISP_LOGTDEBUG1,
1328 				    "CTIO[%x] lun%d iid%d tag %x ct_flags 0x%x",
1329 				    cto->ct_fwhandle, csio->ccb_h.target_lun,
1330 				    cto->ct_iid, cto->ct_tag_val,
1331 				    cto->ct_flags);
1332 			}
1333 			isp_put_ctio(isp, cto, qe);
1334 			ISP_TDQE(isp, "last tdma_mk", curi, cto);
1335 			if (nctios > 1) {
1336 				MEMORYBARRIER(isp, SYNC_REQUEST,
1337 				    curi, QENTRY_LEN);
1338 			}
1339 		} else {
1340 			ct_entry_t *oqe = qe;
1341 
1342 			/*
1343 			 * Make sure syshandle fields are clean
1344 			 */
1345 			cto->ct_syshandle = 0;
1346 			cto->ct_header.rqs_seqno = 0;
1347 
1348 			isp_prt(isp, ISP_LOGTDEBUG1,
1349 			    "CTIO[%x] lun%d for ID%d ct_flags 0x%x",
1350 			    cto->ct_fwhandle, csio->ccb_h.target_lun,
1351 			    cto->ct_iid, cto->ct_flags);
1352 
1353 			/*
1354 			 * Get a new CTIO
1355 			 */
1356 			qe = (ct_entry_t *)
1357 			    ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1358 			nxti = ISP_NXT_QENTRY(nxti, RQUEST_QUEUE_LEN(isp));
1359 			if (nxti == mp->optr) {
1360 				isp_prt(isp, ISP_LOGTDEBUG0,
1361 				    "Queue Overflow in tdma_mk");
1362 				mp->error = MUSHERR_NOQENTRIES;
1363 				return;
1364 			}
1365 
1366 			/*
1367 			 * Now that we're done with the old CTIO,
1368 			 * flush it out to the request queue.
1369 			 */
1370 			ISP_TDQE(isp, "dma_tgt_fc", curi, cto);
1371 			isp_put_ctio(isp, cto, oqe);
1372 			if (nth_ctio != 0) {
1373 				MEMORYBARRIER(isp, SYNC_REQUEST, curi,
1374 				    QENTRY_LEN);
1375 			}
1376 			curi = ISP_NXT_QENTRY(curi, RQUEST_QUEUE_LEN(isp));
1377 
1378 			/*
1379 			 * Reset some fields in the CTIO so we can reuse
1380 			 * for the next one we'll flush to the request
1381 			 * queue.
1382 			 */
1383 			cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
1384 			cto->ct_header.rqs_entry_count = 1;
1385 			cto->ct_header.rqs_flags = 0;
1386 			cto->ct_status = 0;
1387 			cto->ct_scsi_status = 0;
1388 			cto->ct_xfrlen = 0;
1389 			cto->ct_resid = 0;
1390 			cto->ct_seg_count = 0;
1391 			MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
1392 		}
1393 	}
1394 	*mp->nxtip = nxti;
1395 }
1396 
1397 /*
1398  * We don't have to do multiple CTIOs here. Instead, we can just do
1399  * continuation segments as needed. This greatly simplifies the code
1400  * improves performance.
1401  */
1402 
1403 static void
1404 tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1405 {
1406 	mush_t *mp;
1407 	struct ccb_scsiio *csio;
1408 	struct ispsoftc *isp;
1409 	ct2_entry_t *cto, *qe;
1410 	u_int16_t curi, nxti;
1411 	int segcnt;
1412 
1413 	mp = (mush_t *) arg;
1414 	if (error) {
1415 		mp->error = error;
1416 		return;
1417 	}
1418 
1419 	isp = mp->isp;
1420 	csio = mp->cmd_token;
1421 	cto = mp->rq;
1422 
1423 	curi = isp->isp_reqidx;
1424 	qe = (ct2_entry_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, curi);
1425 
1426 	if (nseg == 0) {
1427 		if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
1428 			isp_prt(isp, ISP_LOGWARN,
1429 			    "dma2_tgt_fc, a status CTIO2 without MODE1 "
1430 			    "set (0x%x)", cto->ct_flags);
1431 			mp->error = EINVAL;
1432 			return;
1433 		}
1434 		/*
1435 		 * We preserve ct_lun, ct_iid, ct_rxid. We set the data
1436 		 * flags to NO DATA and clear relative offset flags.
1437 		 * We preserve the ct_resid and the response area.
1438 		 */
1439 		cto->ct_header.rqs_seqno = 1;
1440 		cto->ct_seg_count = 0;
1441 		cto->ct_reloff = 0;
1442 		isp_prt(isp, ISP_LOGTDEBUG1,
1443 		    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts "
1444 		    "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
1445 		    cto->ct_iid, cto->ct_flags, cto->ct_status,
1446 		    cto->rsp.m1.ct_scsi_status, cto->ct_resid);
1447 		isp_put_ctio2(isp, cto, qe);
1448 		ISP_TDQE(isp, "dma2_tgt_fc[no data]", curi, qe);
1449 		return;
1450 	}
1451 
1452 	if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
1453 		isp_prt(isp, ISP_LOGERR,
1454 		    "dma2_tgt_fc, a data CTIO2 without MODE0 set "
1455 		    "(0x%x)", cto->ct_flags);
1456 		mp->error = EINVAL;
1457 		return;
1458 	}
1459 
1460 
1461 	nxti = *mp->nxtip;
1462 
1463 	/*
1464 	 * Set up the CTIO2 data segments.
1465 	 */
1466 	for (segcnt = 0; cto->ct_seg_count < ISP_RQDSEG_T2 && segcnt < nseg;
1467 	    cto->ct_seg_count++, segcnt++) {
1468 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_base =
1469 		    dm_segs[segcnt].ds_addr;
1470 		cto->rsp.m0.ct_dataseg[cto->ct_seg_count].ds_count =
1471 		    dm_segs[segcnt].ds_len;
1472 		cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1473 		isp_prt(isp, ISP_LOGTDEBUG1, "isp_send_ctio2: ent0[%d]0x%x:%d",
1474 		    cto->ct_seg_count, dm_segs[segcnt].ds_addr,
1475 		    dm_segs[segcnt].ds_len);
1476 	}
1477 
1478 	while (segcnt < nseg) {
1479 		u_int16_t curip;
1480 		int seg;
1481 		ispcontreq_t local, *crq = &local, *qep;
1482 
1483 		qep = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1484 		curip = nxti;
1485 		nxti = ISP_NXT_QENTRY(curip, RQUEST_QUEUE_LEN(isp));
1486 		if (nxti == mp->optr) {
1487 			ISP_UNLOCK(isp);
1488 			isp_prt(isp, ISP_LOGTDEBUG0,
1489 			    "tdma_mkfc: request queue overflow");
1490 			mp->error = MUSHERR_NOQENTRIES;
1491 			return;
1492 		}
1493 		cto->ct_header.rqs_entry_count++;
1494 		MEMZERO((void *)crq, sizeof (*crq));
1495 		crq->req_header.rqs_entry_count = 1;
1496 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1497 		for (seg = 0; segcnt < nseg && seg < ISP_CDSEG;
1498 		    segcnt++, seg++) {
1499 			crq->req_dataseg[seg].ds_base = dm_segs[segcnt].ds_addr;
1500 			crq->req_dataseg[seg].ds_count = dm_segs[segcnt].ds_len;
1501 			isp_prt(isp, ISP_LOGTDEBUG1,
1502 			    "isp_send_ctio2: ent%d[%d]%x:%u",
1503 			    cto->ct_header.rqs_entry_count-1, seg,
1504 			    dm_segs[segcnt].ds_addr, dm_segs[segcnt].ds_len);
1505 			cto->rsp.m0.ct_xfrlen += dm_segs[segcnt].ds_len;
1506 			cto->ct_seg_count++;
1507 		}
1508 		MEMORYBARRIER(isp, SYNC_REQUEST, curip, QENTRY_LEN);
1509 		isp_put_cont_req(isp, crq, qep);
1510 		ISP_TDQE(isp, "cont entry", curi, qep);
1511 	}
1512 
1513 	/*
1514 	 * No do final twiddling for the CTIO itself.
1515 	 */
1516 	cto->ct_header.rqs_seqno = 1;
1517 	isp_prt(isp, ISP_LOGTDEBUG1,
1518 	    "CTIO2[%x] lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x resid %d",
1519 	    cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid,
1520 	    cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status,
1521 	    cto->ct_resid);
1522 	isp_put_ctio2(isp, cto, qe);
1523 	ISP_TDQE(isp, "last dma2_tgt_fc", curi, qe);
1524 	*mp->nxtip = nxti;
1525 }
1526 #endif
1527 
1528 static void dma2(void *, bus_dma_segment_t *, int, int);
1529 
1530 static void
1531 dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
1532 {
1533 	mush_t *mp;
1534 	struct ispsoftc *isp;
1535 	struct ccb_scsiio *csio;
1536 	struct isp_pcisoftc *pcs;
1537 	bus_dmamap_t *dp;
1538 	bus_dma_segment_t *eseg;
1539 	ispreq_t *rq;
1540 	int seglim, datalen;
1541 	u_int16_t nxti;
1542 
1543 	mp = (mush_t *) arg;
1544 	if (error) {
1545 		mp->error = error;
1546 		return;
1547 	}
1548 
1549 	if (nseg < 1) {
1550 		isp_prt(mp->isp, ISP_LOGERR, "bad segment count (%d)", nseg);
1551 		mp->error = EFAULT;
1552 		return;
1553 	}
1554 	csio = mp->cmd_token;
1555 	isp = mp->isp;
1556 	rq = mp->rq;
1557 	pcs = (struct isp_pcisoftc *)mp->isp;
1558 	dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1559 	nxti = *mp->nxtip;
1560 
1561 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1562 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREREAD);
1563 	} else {
1564 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_PREWRITE);
1565 	}
1566 
1567 	datalen = XS_XFRLEN(csio);
1568 
1569 	/*
1570 	 * We're passed an initial partially filled in entry that
1571 	 * has most fields filled in except for data transfer
1572 	 * related values.
1573 	 *
1574 	 * Our job is to fill in the initial request queue entry and
1575 	 * then to start allocating and filling in continuation entries
1576 	 * until we've covered the entire transfer.
1577 	 */
1578 
1579 	if (IS_FC(isp)) {
1580 		seglim = ISP_RQDSEG_T2;
1581 		((ispreqt2_t *)rq)->req_totalcnt = datalen;
1582 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1583 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
1584 		} else {
1585 			((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
1586 		}
1587 	} else {
1588 		if (csio->cdb_len > 12) {
1589 			seglim = 0;
1590 		} else {
1591 			seglim = ISP_RQDSEG;
1592 		}
1593 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1594 			rq->req_flags |= REQFLAG_DATA_IN;
1595 		} else {
1596 			rq->req_flags |= REQFLAG_DATA_OUT;
1597 		}
1598 	}
1599 
1600 	eseg = dm_segs + nseg;
1601 
1602 	while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
1603 		if (IS_FC(isp)) {
1604 			ispreqt2_t *rq2 = (ispreqt2_t *)rq;
1605 			rq2->req_dataseg[rq2->req_seg_count].ds_base =
1606 			    dm_segs->ds_addr;
1607 			rq2->req_dataseg[rq2->req_seg_count].ds_count =
1608 			    dm_segs->ds_len;
1609 		} else {
1610 			rq->req_dataseg[rq->req_seg_count].ds_base =
1611 				dm_segs->ds_addr;
1612 			rq->req_dataseg[rq->req_seg_count].ds_count =
1613 				dm_segs->ds_len;
1614 		}
1615 		datalen -= dm_segs->ds_len;
1616 		rq->req_seg_count++;
1617 		dm_segs++;
1618 	}
1619 
1620 	while (datalen > 0 && dm_segs != eseg) {
1621 		u_int16_t onxti;
1622 		ispcontreq_t local, *crq = &local, *cqe;
1623 
1624 		cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti);
1625 		onxti = nxti;
1626 		nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp));
1627 		if (nxti == mp->optr) {
1628 			isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++");
1629 			mp->error = MUSHERR_NOQENTRIES;
1630 			return;
1631 		}
1632 		rq->req_header.rqs_entry_count++;
1633 		MEMZERO((void *)crq, sizeof (*crq));
1634 		crq->req_header.rqs_entry_count = 1;
1635 		crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
1636 
1637 		seglim = 0;
1638 		while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
1639 			crq->req_dataseg[seglim].ds_base =
1640 			    dm_segs->ds_addr;
1641 			crq->req_dataseg[seglim].ds_count =
1642 			    dm_segs->ds_len;
1643 			rq->req_seg_count++;
1644 			dm_segs++;
1645 			seglim++;
1646 			datalen -= dm_segs->ds_len;
1647 		}
1648 		isp_put_cont_req(isp, crq, cqe);
1649 		MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN);
1650 	}
1651 	*mp->nxtip = nxti;
1652 }
1653 
1654 static int
1655 isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
1656 	u_int16_t *nxtip, u_int16_t optr)
1657 {
1658 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1659 	ispreq_t *qep;
1660 	bus_dmamap_t *dp = NULL;
1661 	mush_t mush, *mp;
1662 	void (*eptr)(void *, bus_dma_segment_t *, int, int);
1663 
1664 	qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx);
1665 #ifdef	ISP_TARGET_MODE
1666 	if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
1667 		if (IS_FC(isp)) {
1668 			eptr = tdma_mkfc;
1669 		} else {
1670 			eptr = tdma_mk;
1671 		}
1672 		if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1673 		    (csio->dxfer_len == 0)) {
1674 			mp = &mush;
1675 			mp->isp = isp;
1676 			mp->cmd_token = csio;
1677 			mp->rq = rq;	/* really a ct_entry_t or ct2_entry_t */
1678 			mp->nxtip = nxtip;
1679 			mp->optr = optr;
1680 			mp->error = 0;
1681 			(*eptr)(mp, NULL, 0, 0);
1682 			goto mbxsync;
1683 		}
1684 	} else
1685 #endif
1686 	eptr = dma2;
1687 
1688 
1689 	if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
1690 	    (csio->dxfer_len == 0)) {
1691 		rq->req_seg_count = 1;
1692 		goto mbxsync;
1693 	}
1694 
1695 	/*
1696 	 * Do a virtual grapevine step to collect info for
1697 	 * the callback dma allocation that we have to use...
1698 	 */
1699 	mp = &mush;
1700 	mp->isp = isp;
1701 	mp->cmd_token = csio;
1702 	mp->rq = rq;
1703 	mp->nxtip = nxtip;
1704 	mp->optr = optr;
1705 	mp->error = 0;
1706 
1707 	if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
1708 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
1709 			int error;
1710 			dp = &pcs->dmaps[isp_handle_index(rq->req_handle)];
1711 			crit_enter();
1712 			error = bus_dmamap_load(pcs->dmat, *dp,
1713 			    csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
1714 			if (error == EINPROGRESS) {
1715 				bus_dmamap_unload(pcs->dmat, *dp);
1716 				mp->error = EINVAL;
1717 				isp_prt(isp, ISP_LOGERR,
1718 				    "deferred dma allocation not supported");
1719 			} else if (error && mp->error == 0) {
1720 #ifdef	DIAGNOSTIC
1721 				isp_prt(isp, ISP_LOGERR,
1722 				    "error %d in dma mapping code", error);
1723 #endif
1724 				mp->error = error;
1725 			}
1726 			crit_exit();
1727 		} else {
1728 			/* Pointer to physical buffer */
1729 			struct bus_dma_segment seg;
1730 			seg.ds_addr = (bus_addr_t)csio->data_ptr;
1731 			seg.ds_len = csio->dxfer_len;
1732 			(*eptr)(mp, &seg, 1, 0);
1733 		}
1734 	} else {
1735 		struct bus_dma_segment *segs;
1736 
1737 		if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
1738 			isp_prt(isp, ISP_LOGERR,
1739 			    "Physical segment pointers unsupported");
1740 			mp->error = EINVAL;
1741 		} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
1742 			isp_prt(isp, ISP_LOGERR,
1743 			    "Virtual segment addresses unsupported");
1744 			mp->error = EINVAL;
1745 		} else {
1746 			/* Just use the segments provided */
1747 			segs = (struct bus_dma_segment *) csio->data_ptr;
1748 			(*eptr)(mp, segs, csio->sglist_cnt, 0);
1749 		}
1750 	}
1751 	if (mp->error) {
1752 		int retval = CMD_COMPLETE;
1753 		if (mp->error == MUSHERR_NOQENTRIES) {
1754 			retval = CMD_EAGAIN;
1755 		} else if (mp->error == EFBIG) {
1756 			XS_SETERR(csio, CAM_REQ_TOO_BIG);
1757 		} else if (mp->error == EINVAL) {
1758 			XS_SETERR(csio, CAM_REQ_INVALID);
1759 		} else {
1760 			XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
1761 		}
1762 		return (retval);
1763 	}
1764 mbxsync:
1765 	switch (rq->req_header.rqs_entry_type) {
1766 	case RQSTYPE_REQUEST:
1767 		isp_put_request(isp, rq, qep);
1768 		break;
1769 	case RQSTYPE_CMDONLY:
1770 		isp_put_extended_request(isp, (ispextreq_t *)rq,
1771 		    (ispextreq_t *)qep);
1772 		break;
1773 	case RQSTYPE_T2RQS:
1774 		isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep);
1775 		break;
1776 	}
1777 	return (CMD_QUEUED);
1778 }
1779 
1780 static void
1781 isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle)
1782 {
1783 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1784 	bus_dmamap_t *dp = &pcs->dmaps[isp_handle_index(handle)];
1785 	if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
1786 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTREAD);
1787 	} else {
1788 		bus_dmamap_sync(pcs->dmat, *dp, BUS_DMASYNC_POSTWRITE);
1789 	}
1790 	bus_dmamap_unload(pcs->dmat, *dp);
1791 }
1792 
1793 
1794 static void
1795 isp_pci_reset1(struct ispsoftc *isp)
1796 {
1797 	/* Make sure the BIOS is disabled */
1798 	isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
1799 	/* and enable interrupts */
1800 	ENABLE_INTS(isp);
1801 }
1802 
1803 static void
1804 isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
1805 {
1806 	struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp;
1807 	if (msg)
1808 		kprintf("%s: %s\n", device_get_nameunit(isp->isp_dev), msg);
1809 	else
1810 		kprintf("%s:\n", device_get_nameunit(isp->isp_dev));
1811 	if (IS_SCSI(isp))
1812 		kprintf("    biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
1813 	else
1814 		kprintf("    biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
1815 	kprintf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
1816 	    ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
1817 	kprintf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
1818 
1819 
1820 	if (IS_SCSI(isp)) {
1821 		ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
1822 		kprintf("    cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
1823 			ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
1824 			ISP_READ(isp, CDMA_FIFO_STS));
1825 		kprintf("    ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
1826 			ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
1827 			ISP_READ(isp, DDMA_FIFO_STS));
1828 		kprintf("    sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
1829 			ISP_READ(isp, SXP_INTERRUPT),
1830 			ISP_READ(isp, SXP_GROSS_ERR),
1831 			ISP_READ(isp, SXP_PINS_CTRL));
1832 		ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
1833 	}
1834 	kprintf("    mbox regs: %x %x %x %x %x\n",
1835 	    ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
1836 	    ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
1837 	    ISP_READ(isp, OUTMAILBOX4));
1838 	kprintf("    PCI Status Command/Status=%x\n",
1839 	    pci_read_config(pcs->pci_dev, PCIR_COMMAND, 1));
1840 }
1841